WO2018177222A1 - 含铬废水处理***及工艺 - Google Patents

含铬废水处理***及工艺 Download PDF

Info

Publication number
WO2018177222A1
WO2018177222A1 PCT/CN2018/080320 CN2018080320W WO2018177222A1 WO 2018177222 A1 WO2018177222 A1 WO 2018177222A1 CN 2018080320 W CN2018080320 W CN 2018080320W WO 2018177222 A1 WO2018177222 A1 WO 2018177222A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
chromium
solid
liquid separation
containing wastewater
Prior art date
Application number
PCT/CN2018/080320
Other languages
English (en)
French (fr)
Inventor
余章军
Original Assignee
福建欣宇卫浴科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建欣宇卫浴科技股份有限公司 filed Critical 福建欣宇卫浴科技股份有限公司
Publication of WO2018177222A1 publication Critical patent/WO2018177222A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Definitions

  • the present application relates to the field of wastewater treatment technology, and in particular to a chromium-containing wastewater treatment system.
  • the sources of electroplating wastewater are generally: (1) plating water for cleaning; (2) waste plating solution; (3) other wastewater, including scouring workshop floor, scrubbing plate washing water, ventilating equipment condensate, and leakage due to plating tank Or the operation and management of various "run, run, drip, leak" of various tanks and drainage; (4) equipment cooling water, cooling water in the course of use in addition to temperature rise, not contaminated.
  • the water quality and quantity of electroplating wastewater are related to the process conditions, production load, operation management and water use mode of electroplating production.
  • the water quality of electroplating wastewater is complex and the composition is difficult to control. It contains heavy metal ions such as chromium, cadmium, nickel, copper, zinc, gold and silver, and cyanide. Some of them are highly toxic substances that are carcinogenic, teratogenic and mutagenic.
  • Chromium-containing wastewater is the most common type of electroplating wastewater.
  • the main components of chromium-containing wastewater are sulfuric acid and Cr 6+ , and a small amount of other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn .
  • One or more impurities such as 2+ , Fe 2+ , Cr 3+ , and Ca 2+ .
  • the existing chromium-containing wastewater treatment system has a complicated structure, low processing efficiency, poor treatment effect, and can not efficiently separate and treat Cr 6+ , and consumes labor, has low automation, and has a short service life. Therefore, it is necessary to improve the current chromium-containing wastewater treatment system.
  • the present application provides a chromium-containing wastewater treatment system, which better overcomes the problems and shortcomings of the prior art described above, and can effectively separate and treat Cr 6+ , has a simple structure and high processing efficiency. The advantage of good processing effect.
  • a chromium-containing wastewater treatment system comprising a pH adjustment tank connected in sequence, a filtering device, a cationic resin exchange system, a storage tank, and a first solid-liquid separation system;
  • the water outlet of the cationic resin exchange system is in communication with the reservoir, the desorption liquid outlet of the cationic resin exchange system is connected to a desorption liquid reservoir, and the desorption liquid reservoir is connected to a second solid-liquid separation system.
  • a wastewater storage tank is further included, and the wastewater storage tank is connected to the pH adjusting tank by a water pump.
  • the first solid-liquid separation system includes a reduction reaction tank, a first precipitation reaction tank, a first concentration membrane device, a first sedimentation tank, a first collection tank, and a first nanofiltration-microfiltration combination device that are sequentially connected.
  • a first clear water tank the concentrated water outlet of the first concentration membrane device is in communication with the first sedimentation tank, and the sludge outlet of the first sedimentation tank is connected to a first centrifuge or a filter press, the first The water outlet of the concentrated membrane device and the water outlet of the first sedimentation tank are both in communication with the first collection tank, and the water outlet of the first nanofiltration-microfiltration combination device is in communication with the first clear water tank,
  • the sludge outlet of the first nanofiltration-microfiltration combination device is in communication with the first precipitation tank, and the sludge outlet of the first centrifuge or filter press is connected to the first calcining furnace.
  • the second solid-liquid separation system includes a second precipitation reaction tank, a second concentration membrane device, a second sedimentation tank, a second collection tank, a second nanofiltration-microfiltration combination device, and a second clean water that are sequentially connected.
  • a tank; the concentrated water outlet of the second concentration membrane device is in communication with the second sedimentation tank, and the sludge outlet of the second sedimentation tank is connected to a second centrifuge or a filter press, and the second concentrated membrane device is The water outlet of the fresh water outlet and the second sedimentation tank are both connected to the second collection tank, and the water outlet of the second nanofiltration-microfiltration combination device is in communication with the second clear water tank, the second nanofiltration
  • the sludge outlet of the microfiltration combination device is in communication with the second sedimentation tank, and the sludge outlet of the second centrifuge or filter press is connected to the second calciner.
  • the first solid-liquid separation system further includes a first dosing device and a second dosing device in communication with the reduction reaction tank, the first dosing device being configured to add to the reduction reaction pool The acidic substance, the second dosing device is configured to add a reducing agent to the reduction reaction tank.
  • the reduction reaction tank is provided with a first pH monitoring device and a potential controller, the first pH monitoring device is connected to the first medicating device, and the potential controller and the second medicating device connection.
  • the first solid-liquid separation system further includes a third dosing device in communication with the first precipitation reaction tank, the third dosing device configured to add an alkaline substance to the precipitation reaction tank;
  • the first precipitation reaction tank is provided with a second pH monitoring device, and the second pH monitoring device is connected to the third medicating device.
  • the second solid-liquid separation system further includes a fourth dosing device in communication with the second precipitation reaction tank, the fourth dosing device configured to add alkalinity to the second precipitation reaction tank a substance; the second precipitation reaction tank is provided with a third pH monitoring device, and the third pH monitoring device is connected to the fourth dosing device.
  • the first sedimentation tank is connected to the first centrifuge or the filter press through the first sludge storage tank; the water outlet of the first centrifuge or the filter press and the first concentration membrane device Connected.
  • the second sedimentation tank is connected to the second centrifuge or the filter press through the second sludge storage tank; the water outlet of the second centrifuge or the filter press and the second concentrated membrane device Connected.
  • the cationic resin exchange system comprises a plurality of cationic resin exchangers.
  • the filtering device comprises a quartz sand filter, an activated carbon filter, a ceramic filter, a multi-media filter or a fiber filter.
  • the chromium-containing wastewater treatment system of the present application effectively uses Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2 by using a cationic resin exchange system. + , one or more impurities such as Cr 3+ and Ca 2+ are separated, and then the wastewater containing Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ are separately separated by a solid-liquid separation system.
  • the desorption liquid of one or more impurities such as Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ is subjected to solid-liquid separation treatment, and it is not necessary to add organic substances such as PAC and PAM, thereby saving cost and avoiding Water again causes pollution.
  • the solid-liquid separation system of the present application forms a precipitate by causing a metal ion in the wastewater to precipitate with a basic substance such as sodium hydroxide in a precipitation reaction tank, and then is concentrated by a concentration membrane device to precipitate the particles.
  • concentration and concentration increase and increase, accelerate the sedimentation, and then carry out solid-liquid separation in the sedimentation tank.
  • the collected water in the collection tank is further filtered by the nanofiltration-microfiltration combination device for microfiltration and nanofiltration, and the water can be removed more thoroughly.
  • a small amount of fine solid suspension, the precipitate obtained by filtration is discharged into the sedimentation tank in batches, and the precipitate in the sedimentation tank is dehydrated by a centrifuge or a filter press, and the obtained solid waste residue does not contain PAC, PAM.
  • the organic impurities, the water content is also low, and then calcined in the calcining furnace, the obtained metal oxides and other compounds can not only be recycled, but also achieve zero pollutant emissions, and the related technology eventually generates dangerous solid waste, and needs to be Compared with the system for treating dangerous solid waste, it effectively reduces the sludge treatment cost and load, and solves the problem of waste of resources, and greatly reduces The production cost of the enterprise has great social and economic benefits.
  • the solid-liquid separation system of the present application monitors the pH value in the reaction tank in real time by setting a pH monitoring device on the precipitation reaction tank, and controls the dosing device to automatically add the medicine according to the corresponding pH value, so that the system is automated. High, safe, stable, easy to operate, easy to manage and better.
  • Another aspect of the present application provides a chromium-containing wastewater treatment process for treating chromium-containing wastewater by using the chromium-containing wastewater treatment system described above, including:
  • the chromium-containing wastewater is pumped into the pH adjusting tank, the pH is adjusted to 3.0-7.0, filtered through a filtering device, and the filtrate is subjected to ion exchange through two tandem cationic resin exchangers to separate Cr 6+ in the wastewater, containing Cr. 6+ of the waste water is discharged into the storage tank, and the cation exchange resin adsorbing the remaining metal ions enters the regeneration device to regenerate the resin, and the obtained desorbed liquid containing the remaining metal ions is discharged into the desorption liquid storage tank;
  • the Cr 6+ -containing wastewater discharged into the reservoir is subjected to solid-liquid separation by the first solid-liquid separation system, and the desorbed liquid containing the remaining metal ions discharged into the desorption liquid reservoir is subjected to solid-liquid separation by the second solid-liquid separation system.
  • the waste water discharged into the storage tank containing Cr 6+ passes through the reduction reaction tank in the first solid-liquid separation system, and after the Cr 6+ in the waste water is reduced to Cr 3+ , the Cr is reacted through the first precipitation reaction tank to form Cr.
  • (OH) 3 precipitates, and then concentrated by the first concentration membrane device; then enters the first sedimentation tank for solid-liquid separation, and the obtained supernatant liquid is discharged into the first collection tank; the sediment is discharged into the first sludge storage tank After the amount of sludge in the first sludge storage tank reaches a set amount, the sludge is pumped to the first centrifuge or the filter press for dehydration separation, and the obtained wastewater is recovered into the first concentrated membrane device to continue the second time. After the treatment, the obtained solid waste residue is automatically sent to the first calcining furnace for direct high-temperature calcination or after being placed, and calcined intermittently to obtain chromium oxide.
  • the supernatant collected in the first collection tank is further subjected to the first nanofiltration-microfiltration combination device to further remove the solid suspension in the supernatant collected in the first collection tank, and the precipitate obtained by filtration is discharged in batches.
  • the secondary treatment is continued in the first sedimentation tank, and the filtered water is discharged into the first clear water tank for recycling.
  • the desorbed liquid discharged into the desorption liquid reservoir is first reacted by the second precipitation reaction tank to form a metal hydroxide precipitate, and then concentrated by a second concentration membrane device; and then enters a second sedimentation tank for solid-liquid separation.
  • the supernatant liquid is discharged into the second collection tank; the sediment is discharged into the second sludge storage tank, and the amount of sludge in the second sludge storage tank reaches a set amount, and is pumped to the second centrifuge through the sludge pump or The filter press performs dehydration separation, and the obtained wastewater is recovered into the second concentration membrane device to continue the secondary treatment, and the obtained solid waste residue is automatically sent to the second calcination furnace for direct high-temperature calcination or intermittently calcined to obtain a metal oxide. And a mixture of compounds.
  • FIG. 1 is a first structural schematic view of a chromium-containing wastewater treatment system of the present application
  • FIG. 2 is a schematic view showing the second structure of the first solid-liquid separation system of the present application.
  • FIG. 3 is a schematic view showing the third structure of the second solid-liquid separation system of the present application.
  • 1-chromium-containing wastewater treatment system 100-wastewater storage tank; 200-pump pump; 300-pH adjustment tank; 400-filter device; 500-cationic resin exchanger; 600-reservoir; 700-first solid-liquid separation system 701-reduction reaction cell; 7011-first dosing device; 7012-second dosing device; 7013-first pH monitoring device; 7014-potential controller; 702-first precipitation reaction cell; 7021-third plus Drug device; 7022 - second pH monitoring device; 703 - first concentration membrane device; 704 - first sedimentation tank; 705 - first collection tank; 706 - first nanofiltration - microfiltration combination device; 707 - first clear water Pool; 708-first sludge storage tank; 709-first centrifuge or filter press; 710-first calciner; 800-desorbent reservoir; 900-second solid-liquid separation system; 901-second precipitation Reaction cell; 9011-fourth dosing device; 9012-third pH monitoring device; 902-second concentration membrane device; 90
  • a chromium-containing wastewater treatment system will now be described more fully with reference to the associated drawings.
  • a preferred embodiment of a chromium-containing wastewater treatment system is given in the accompanying drawings.
  • the chromium-containing wastewater treatment system can be implemented in many different forms and is not limited to the embodiments described herein. Rather, the purpose of providing these embodiments is to make the disclosure of chromium-containing wastewater treatment systems more thorough and comprehensive.
  • the present application provides a chromium-containing wastewater treatment system 1 comprising a pH adjustment tank 300, a filtration device 400, a cationic resin exchange system, a reservoir 600, and a first solid-liquid separation system 700 that are sequentially connected.
  • the outlet of the cationic resin exchange system is in communication with the reservoir 600, the desorption liquid outlet of the cationic resin exchange system is connected to a desorption liquid reservoir 800, and the desorption liquid reservoir 800 is connected to the second solid-liquid separation system. 900.
  • the filtering device 400 is configured to filter out impurities such as solid particulate matter in the chromium-containing wastewater to avoid affecting the adsorption performance of the cation exchange resin in the subsequent cationic resin exchange system.
  • the filtration device 400 may be exemplified by a quartz sand filter, an activated carbon filter, a ceramic filter, a multi-media filter, or a fiber filter.
  • the cationic resin exchange system of the present application is configured to adsorb a metal ion other than Cr 6+ such as Cu 2+ , Ni 2+ , Co 2+ , Fe by loading a cation exchange resin into the cation resin exchanger 500.
  • a metal ion other than Cr 6+ such as Cu 2+ , Ni 2+ , Co 2+ , Fe
  • One or more impurities such as 3+ , Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ , etc., thereby Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3
  • One or more impurities such as + , Zn 2+ , Fe 2+ , Cr 3+ , and Ca 2+ are separated.
  • the wastewater containing Cr 6+ is discharged into the reservoir 600 through the water outlet; and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ are adsorbed.
  • a cation exchange resin of one or more impurities such as Ca 2+ enters the regeneration device through a desorption and regeneration process to regenerate the resin, and the obtained other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+
  • the desorbed liquid of one or more impurities such as Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ is discharged into the desorption liquid reservoir 800 through the desorbent outlet.
  • the first solid-liquid separation system 700 is configured to perform solid-liquid separation of the Cr 6+ -containing wastewater discharged into the storage tank 600; the second solid-liquid separation system 900 is configured to discharge the desorption
  • the liquid storage tank 800 contains one or more impurities such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ , etc.
  • the desorbed liquid is subjected to solid-liquid separation.
  • the chromium-containing wastewater treatment system 1 of the present application further includes a wastewater storage tank 100 that communicates with the pH adjustment tank 300 through a water pump 200.
  • the first solid-liquid separation system 700 includes a reduction reaction tank 701, a first precipitation reaction tank 702, a first concentration membrane device 703, which are sequentially connected, a first sedimentation tank 704, a first collection tank 705, a first nanofiltration-microfiltration combination device 706, a first clear water tank 707; a concentrated water outlet of the first concentration membrane device 703 is in communication with the first precipitation tank 704,
  • the sludge outlet of the first sedimentation tank 704 is connected to a first centrifuge or a filter press 709, and the water outlet of the first concentration membrane device 703 and the water outlet of the first sedimentation tank 704 are both the first
  • the collection tank 705 is in communication
  • the water outlet of the first nanofiltration-microfiltration combination device 706 is in communication with the first clear water tank 707
  • the sludge outlet of the first nanofiltration-microfiltration combination device 706 and the first A sedimentation tank 704 is in communication, and the sludge outlet of the first centrion of the first centrion of the first centr
  • the reduction reaction tank 701 Cr 6+ in the wastewater is reduced to Cr 3+ by adding a reducing agent
  • the reducing agent may, for example, be sodium sulfite, sodium metabisulfite or sodium hydrogen sulfite.
  • the embodiment The amount of reducing agent is slightly larger than the theoretical amount of the reaction, so that a sufficient reaction can occur.
  • the first solid-liquid separation system 700 further includes a first dosing device 7011 and a second dosing device 7012 that are in communication with the reduction reaction cell 701, and the first dosing device 7011 is configured to An acidic substance is added to the reduction reaction tank 701, and the second dosing device 7012 is configured to add a reducing agent to the reduction reaction tank 701; the reduction reaction tank 701 is provided with a first pH monitoring device 7013 and a potential The controller 7014 is connected to the first dosing device 7011, and the potential controller 7014 is connected to the second dosing device 7012.
  • the first pH monitoring device 7013 is configured to monitor the pH value of the wastewater in the reduction reaction tank 701 in real time. When the monitored pH value is greater than 3.0, the first pH monitoring device 7013 automatically controls.
  • the first dosing device 7011 adds an acidic substance to the reduction reaction tank 701; when the monitored pH value is lower than 2.5, the first pH monitoring device 7013 automatically controls the first dosing device 7011 to reduce the reaction.
  • the addition of acidic substances in the tank 701 is stopped.
  • the acidic substance may, for example, be sulfuric acid or hydrochloric acid.
  • the potential controller 7014 (ORP meter) is configured to monitor the potential of the wastewater in the reduction reaction tank 701 in real time.
  • the potential controller 7014 (ORP meter) Automatically controlling the second dosing device 7012 to add a reducing agent to the reduction reaction cell 701; when the monitored pH value is lower than 220 mV, the potential controller 7014 (ORP meter) automatically controls the second dosing The device 7012 stops adding the reducing agent to the reduction reaction cell 701.
  • the pH of the Cr 3+ -containing wastewater obtained by reduction through the reduction reaction tank 701 is adjusted to a certain range, and a Cr(OH) 3 precipitate is formed by reacting a basic substance with Cr 3+ .
  • the alkaline substance is sodium hydroxide in the present embodiment, and of course, the alkaline substance may also be exemplified by lime or a mixture of lime and sodium hydroxide.
  • the specific reaction formula is:
  • the first solid-liquid separation system 700 further includes a third dosing device 7021 in communication with the first precipitation reaction cell 702, and the third dosing device 7021 is configured to react to the precipitation.
  • the pool is doped with an alkaline substance; the first precipitation reaction tank 702 is provided with a second pH monitoring device 7022, and the second pH monitoring device 7022 is connected to the third dosing device 7021.
  • the second pH monitoring device 7022 is configured to monitor the pH value of the wastewater in the first precipitation reaction tank 702 in real time. When the monitored pH value is less than 10, the second pH monitoring device 7022 Automatically controlling the third dosing device 7021 to add alkaline substances to the first precipitation reaction tank 702; when the monitored pH value is greater, the third pH monitoring device 9012 automatically controls the fourth dosing device 9011 The addition of the alkaline substance to the first precipitation reaction tank 702 is stopped.
  • the second solid-liquid separation system 900 includes a second precipitation reaction tank 901, a second concentration membrane device 902, and a second sedimentation tank 903 that are sequentially connected.
  • the sludge outlet of the tank 903 is connected to the second centrifuge or the filter press 908, and the water outlet of the second concentration membrane device 902 and the water outlet of the second sedimentation tank 903 are both connected to the second collection tank 904.
  • the water outlet of the second nanofiltration-microfiltration combination device 905 is in communication with the second clear water tank 906, and the sludge outlet of the second nanofiltration-microfiltration combination device 905 is connected to the second precipitation tank 903.
  • the sludge outlet of the second centrifuge or filter press 908 is connected to a second calciner 909.
  • the first precipitation reaction tank 702 is provided by containing other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ or the like or
  • the pH of wastewater with various impurities is adjusted to a certain range, and alkaline substances and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2+ , Cr 3 are utilized.
  • One or more reactions such as + and Ca 2+ form a metal hydroxide precipitate to remove other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2 in the wastewater.
  • the alkaline substance is sodium hydroxide in the present embodiment, and of course, the alkaline substance may also be exemplified by lime or a mixture of lime and sodium hydroxide. Specific reaction formulas can be listed as follows:
  • Ni 2+ +2OH - Ni(OH) 2 ⁇ .
  • the second solid-liquid separation system 900 further includes a fourth dosing device 9011 in communication with the second precipitation reaction tank 901, and the fourth dosing device 9011 is configured to be toward the second
  • the precipitation reaction tank 901 is added with a basic substance; the second precipitation reaction tank 901 is provided with a third pH monitoring device 9012, and the third pH monitoring device 9012 is connected to the fourth dosing device 9011.
  • the third pH monitoring device 9012 has the same working principle as the second pH monitoring device 7022 described above, that is, configured to monitor the pH value in the second precipitation reaction tank 901 in real time, and control the fourth dosing device 9011 according to the corresponding pH value. Start or stop adding alkaline substances.
  • the first concentrated membrane device 703 and the second concentrated membrane device 902 can be exemplified by a high pressure reverse osmosis roll membrane or a high pressure reverse osmosis disc membrane or a vibrating membrane or a forward osmosis membrane.
  • the first concentration membrane device 703 and the second concentration membrane device 902 can also be exemplified by a nanofiltration membrane, an ultrafiltration membrane, a microfiltration membrane, or a general filter cartridge.
  • the hydroxide precipitated particles are further concentrated, aggregated, and thickened by membrane separation.
  • the first settling tank 704 is in communication with the first centrifuge or filter press 709 through a first sludge storage tank 708; the water outlet of the first centrifuge or filter press 709 is The first concentration membrane device 703 is in communication.
  • the second sedimentation tank 903 is in communication with the second centrifuge or filter press 908 through the second sludge storage tank 907; the water outlet of the second centrifuge or filter press 908 is The second concentrated membrane device 902 is in communication.
  • the sludge storage tank is configured to store the sludge discharged from the sludge outlet of the sedimentation tank, and after being accumulated to a certain amount, it is sent to a centrifuge or a filter press for dehydration separation, thereby avoiding intermittent provision of the sedimentation tank.
  • the sludge is sent to a centrifuge or filter press to affect the service life of the centrifuge or filter press.
  • the solid-liquid separation system of the embodiment of the present application recovers the waste water obtained by dehydration and separation by a centrifuge or a filter press to a concentrated membrane device, thereby realizing secondary recovery treatment and utilization of the wastewater, thereby reducing emission pollution.
  • the cationic resin exchange system includes a plurality of cationic resin exchangers 500.
  • two or three parallel or series cation resin exchangers 500 can be set to make Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , One or more impurities such as Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ , and Ca 2+ are completely separated.
  • the cationic resin exchange system of the present application includes two tandem cation resin exchangers 500.
  • the process flow of the chromium-containing wastewater treatment system 1 of the present application is:
  • the chromium-containing wastewater in the wastewater storage tank 100 is pumped into the pH adjusting tank 300 through the pump 200, and the pH is adjusted to 3.0 to 7.0, and filtered by the filtering device 400 to remove solid particles in the chromium-containing wastewater.
  • the filtrate is further ion-exchanged through two tandem cation resin exchangers 500, and the Cr 6+ and other metal ions in the wastewater such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2
  • One or more impurities such as + , Fe 2+ , Cr 3+ , and Ca 2+ are separated.
  • the wastewater containing Cr 6+ is discharged into the reservoir 600 through the water outlet, and adsorbs other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ .
  • the cation exchange resin of one or more impurities such as Ca 2+ undergoes a desorption and regeneration process to regenerate the resin, and the obtained metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2 are obtained.
  • the desorbed solution of one or more impurities such as + , Fe 2+ , Cr 3+ , Ca 2+ is discharged into the desorbent reservoir 800 through the desorbent outlet.
  • the wastewater containing Cr6 + discharged into the storage tank 600 passes through the reduction reaction tank 701 in the first solid-liquid separation system 700, and the Cr 6+ in the wastewater is reduced to Cr 3+ and then passes through the first precipitation.
  • the reaction cell 702 reacts to form a Cr(OH) 3 precipitate, and is concentrated by the first concentration membrane device 703 to concentrate and aggregate the Ni(OH) 2 precipitated particles to increase and increase; then enter the first precipitation tank 704 for solid-liquid separation.
  • the obtained supernatant liquid is discharged into the first collection tank 705 through the water outlet of the first sedimentation tank 704; the sediment is discharged into the first sludge storage tank 708 through the sludge outlet of the first sedimentation tank 704, and the first sewage is to be treated.
  • the amount of sludge in the mud storage tank 708 reaches a certain amount, and is pumped to the first centrifuge or the filter press 709 through a sludge pump (not shown) for dehydration separation, and the obtained wastewater is recovered to the first concentrated membrane device 703.
  • the secondary treatment is continued, and the obtained solid waste residue is automatically sent to the first calcining furnace 710 for direct high-temperature calcination or intermittently calcined after being placed to obtain chromium oxide having higher purity. Further, hydrogen gas and nitrogen gas may be further introduced into the first calcining furnace 710 to further reduce chromium oxide into elemental chromium, and finally chromium or chromium oxide is recycled.
  • the supernatant collected in the first collection tank 705 is further subjected to the first nanofiltration-microfiltration combination device 706 to further remove traces of fine solid suspension in the supernatant collected in the first collection tank 705, and the precipitate obtained by filtration is filtered.
  • the material is discharged into the first sedimentation tank 704 in batches to continue the secondary treatment, and the filtered water is discharged into the first clear water tank 707 for recycling.
  • the supernatant collected in the second collection tank 904 is further removed by the second nanofiltration-microfiltration combination device 905 to further remove traces of fine solid suspension in the supernatant collected in the second collection tank 904, and the precipitate obtained by filtration is filtered.
  • the material is discharged into the second sedimentation tank 903 in batches to continue the secondary treatment, and the filtered water is discharged into the second clear water tank 906 for recycling.
  • the chromium-containing wastewater treatment system of the present application effectively uses Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ , Fe 3+ , Zn 2+ , Fe 2 by using a cationic resin exchange system. + , one or more impurities such as Cr 3+ and Ca 2+ are separated, and then the wastewater containing Cr 6+ and other metal ions such as Cu 2+ , Ni 2+ , Co 2+ are separately separated by a solid-liquid separation system.
  • the desorption liquid of one or more impurities such as Fe 3+ , Zn 2+ , Fe 2+ , Cr 3+ , Ca 2+ is subjected to solid-liquid separation treatment, and it is not necessary to add organic substances such as PAC and PAM, thereby saving cost and avoiding Water again causes pollution.
  • the solid-liquid separation system of the present application forms a precipitate by causing a metal ion in the wastewater to precipitate with a basic substance such as sodium hydroxide in a precipitation reaction tank, and then is concentrated by a concentration membrane device to precipitate the particles.
  • concentration and concentration increase and increase, accelerate the sedimentation, and then carry out solid-liquid separation in the sedimentation tank.
  • the collected water in the collection tank is further filtered by the nanofiltration-microfiltration combination device for microfiltration and nanofiltration, and the water can be removed more thoroughly.
  • a small amount of fine solid suspension, the precipitate obtained by filtration is discharged into the sedimentation tank in batches, and the precipitate in the sedimentation tank is dehydrated by a centrifuge or a filter press, and the obtained solid waste residue does not contain PAC, PAM.
  • the organic impurities, the water content is also low, and then calcined in the calcining furnace, the obtained metal oxides and other compounds can not only be recycled, but also achieve zero pollutant emissions, and the related technology eventually generates dangerous solid waste, and needs to be Compared with the system for treating dangerous solid waste, it effectively reduces the sludge treatment cost and load, and solves the problem of waste of resources, and greatly reduces The production cost of the enterprise has great social and economic benefits.
  • the solid-liquid separation system of the present application monitors the pH value in the reaction tank in real time by setting a pH monitoring device on the precipitation reaction tank, and controls the dosing device to automatically add the medicine according to the corresponding pH value, so that the system is automated. High, safe, stable, easy to operate, easy to manage and better.
  • the metal oxides and other compounds obtained by the chromium-containing wastewater treatment system provided by the present application can not only be recycled, but also realize zero pollutant discharge, effectively reduce sludge treatment cost and load, and solve the problem of resource waste, and greatly reduce The production cost of the enterprise has great social and economic benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种含铬废水处理***(1),包括依次连通的pH调节池(300)、过滤装置(400)、阳离子树脂交换***、储水池(600)、第一固液分离***(700);阳离子树脂交换***的出水口与储水池(600)连通,阳离子树脂交换***的解吸液出口连通有解吸液储池(800),解吸液储池(800)连通有第二固液分离***(900)。还公开了一种含铬废水处理工艺,对含铬废水调节pH至3.0~7.0,经过滤装置(400)过滤,过滤液经阳离子树脂交换器(500)进行离子交换,含Cr6+的废水排入储水池(600),通过第一固液分离***(700)进行固液分离,吸附有剩余金属离子的阳离子交换树脂进入再生装置使树脂再生,解吸液排入到解吸液储池(800),通过第二固液分离***(900)进行固液分离,固液分离得到的固体废渣煅烧处理。

Description

[根据细则37.2由ISA制定的发明名称] 含铬废水处理***及工艺
相关申请的交叉引用
本申请要求于2017年03月27日提交中国专利局的申请号为2017101877758、名称为“含铬废水处理***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及废水处理技术领域,具体而言,涉及一种含铬废水处理***。
背景技术
电镀废水的来源一般为:(1)镀件清洗水;(2)废电镀液;(3)其他废水,包括冲刷车间地面,刷洗极板洗水,通风设备冷凝水,以及由于镀槽渗漏或操作管理不当造成的“跑、冒、滴、漏”的各种槽液和排水;(4)设备冷却水,冷却水在使用过程中除温度升高以外,未受到污染。电镀废水的水质、水量与电镀生产的工艺条件、生产负荷、操作管理与用水方式等因素有关。电镀废水的水质复杂,成分不易控制,其中含有铬、镉、镍、铜、锌、金、银等重金属离子和氰化物等,有些属于致癌、致畸、致突变的剧毒物质。
含铬废水是电镀废水中最常见的一种,含铬废水主要成分为硫酸和Cr 6+,还包括少量的其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质。然而,现有的含铬废水处理***结构复杂,处理工作效率低,处理效果差,不能高效地对Cr 6+进行分离处理,并且耗人工、自动化程度低,使用寿命短。因此,有必要对目前的含铬废水处理***进行改进。
发明内容
有鉴于此,本申请一方面提供一种含铬废水处理***,更好的克服了上述现有技术存在的问题和缺陷,能够有效对Cr 6+进行分离处理,具有结构简单、处理效率高、处理效果佳的优点。
一种含铬废水处理***,包括依次连通的pH调节池、过滤装置、阳离子树脂交换***、储水池、第一固液分离***;
所述阳离子树脂交换***的出水口与所述储水池连通,所述阳离子树脂交换***的解吸液出口连通有解吸液储池,所述解吸液储池连通有第二固液分离***。
进一步地,还包括废水存储池,所述废水存储池通过抽水泵与所述pH调节池连通。
进一步地,所述第一固液分离***包括依次连通的还原反应池、第一沉淀反应池、第一浓缩膜装置、第一沉淀池、第一收集池、第一纳滤-微滤组合装置、第一清水池;所述第一浓缩膜装置的浓水口与所述第一沉淀池连通,所述第一沉淀池的污泥出口连通有第一离心机或压滤机,所述第一浓缩膜装置的清水口和所述第一沉淀池的出水口均与所述第一收集池连通,所述第一纳滤-微滤组合装置的出水口与所述第一清水池连通,所述第一纳滤-微滤组合装置的污泥出口与所述第一沉淀池连通,所述第一离心机或压滤机的污泥出口连通有第一煅烧炉。
进一步地,所述第二固液分离***包括依次连通的第二沉淀反应池、第二浓缩膜装置、第二沉淀池、第二收集池、第二纳滤-微滤组合装置、第二清水池;所述第二浓缩膜装置的浓水口与所述第二沉淀池连通,所述第二沉淀池的污泥出口连通有第二离心机或压滤机,所述第二浓缩膜装置的清水口和所述第二沉淀池的出水口均与所述第二收集池连通,所述第二纳滤-微滤组合装置的出水口与所述第二清水池连通,所述第二纳滤-微滤组合装置的污泥出口与所述第二沉淀池连通,所述第二离心机或压滤机的污泥出口连通有第二煅烧炉。
进一步地,所述第一固液分离***还包括与所述还原反应池连通的第一加药装置和第二加药装置,所述第一加药装置配置成向所述还原反应池投加酸性物质,所述第二加药装置配置成向所述还原反应池投加还原剂。
进一步地,所述还原反应池设有第一pH监测装置和电位控制仪,所述第一pH监测装置与所述第一加药装置连接,所述电位控制仪与所述第二加药装置连接。
进一步地,所述第一固液分离***还包括与所述第一沉淀反应池连通的第三加药装置,所述第三加药装置配置成向所述沉淀反应池投加碱性物质;所述第一沉淀反应池设有第二pH监测装置,所述第二pH监测装置与所述第三加药装置连接。
进一步地,所述第二固液分离***还包括与所述第二沉淀反应池连通的第四加药装置,所述第四加药装置配置成向所述第二沉淀反应池投加碱性物质;所述第二沉淀反应池设有第三pH监测装置,所述第三pH监测装置与所述第四加药装置连接。
进一步地,所述第一沉淀池通过第一污泥贮池与所述第一离心机或压滤机连通;所述第一离心机或压滤机的出水口与所述第一浓缩膜装置连通。
进一步地,所述第二沉淀池通过第二污泥贮池与所述第二离心机或压滤机连通;所述第二离心机或压滤机的出水口与所述第二浓缩膜装置连通。
进一步地,所述阳离子树脂交换***包括若干阳离子树脂交换器。
进一步地,所述过滤装置包括石英砂过滤器、活性炭过滤器、陶瓷过滤器、多介质过 滤器或纤维过滤器。
与现有技术相比,本申请的含铬废水处理***的有益效果是:
(1)、本申请的含铬废水处理***通过采用阳离子树脂交换***有效将Cr 6+与其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质分离开,然后通过固液分离***分别对含Cr 6+的废水和含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液进行固液分离处理,无需加入PAC和PAM等有机物,可节约成本和避免对水再次造成污染。
(2)、进一步地,本申请的固液分离***通过在沉淀反应池使废水中的金属离子与碱性物质如氢氧化钠等发生沉淀反应生成沉淀,再经过浓缩膜装置浓缩,使沉淀颗粒浓缩聚集增粗增大,加速沉淀,再在沉淀池进行固液分离,收集池中收集的清水再通过设置纳滤-微滤组合装置进行微滤和纳滤双重过滤后,可更彻底除去清水中的微量的细小固体悬浮物,过滤得到的沉淀物分批排入到沉淀池中再处理,沉淀池中的沉淀物经离心机或压滤机进行脱水,得到的固体废渣不含PAC、PAM等有机杂质,含水率也较低,然后经过煅烧炉煅烧处理,得到的金属氧化物及其它化合物不仅可以回收利用,而且实现零污染物排放,与相关技术中最终生成危险固废,并需再对危险固废进行处理的***相比,有效降低了污泥处理成本和负荷,以及解决了资源浪费的问题,并大大降低了企业的生产成本,具有很大的社会和经济效益。
(3)、进一步地,本申请的固液分离***通过对沉淀反应池设置pH监测装置实时监测反应池内的pH值,并根据相应的pH值控制加药装置自动加药,使该***自动化程度高、运行安全、稳定、操作简单、管理方便且处理效果更好。
本申请另一方面提供一种含铬废水处理工艺,利用上述的含铬废水处理***处理含铬废水,包括:
将含铬废水抽入pH调节池,调PH至3.0~7.0,经过过滤装置过滤,过滤液再经过两个串联的阳离子树脂交换器进行离子交换,将废水中的Cr 6+分离出,含Cr 6+的废水排入储水池,吸附有剩余金属离子的阳离子交换树脂进入再生装置使树脂再生,得到的含剩余金属离子的解吸液排入到解吸液储池;
排入储水池内的含Cr 6+的废水通过第一固液分离***进行固液分离,排入解吸液储池内的含剩余金属离子的解吸液通过第二固液分离***进行固液分离。
进一步地,排入储水池内含Cr 6+的废水通过第一固液分离***中的还原反应池,将废水中的Cr 6+还原成Cr 3+后,经过第一沉淀反应池反应生成Cr(OH) 3沉淀,再经过第一浓缩膜装置浓缩;然后进入第一沉淀池中进行固液分离,得到的上清液排到第一收集池中;沉 淀物排到第一污泥贮池内,待第一污泥贮池中的污泥量达到设定量,经污泥泵抽到第一离心机或压滤机进行脱水分离,得到的废水回收到第一浓缩膜装置中继续二次处理,得到的固体废渣自动输送到第一煅烧炉中直接高温煅烧或者放置后间歇进行煅烧处理,得到氧化铬。
进一步地,在第一煅烧炉中通入氢气和氮气将氧化铬继续还原成单质铬,最后将铬或氧化铬回收利用。
进一步地,第一收集池内收集的上清液再经过第一纳滤-微滤组合装置进一步除去第一收集池中收集的上清液中的固体悬浮物,过滤得到的沉淀物分批排入到第一沉淀池中继续二次处理,过滤水排入第一清水池中回收利用。
进一步地,排入解吸液储池内的解吸液先经过第二沉淀反应池反应生成金属氢氧化物沉淀,再经过第二浓缩膜装置浓缩;然后进入第二沉淀池中进行固液分离,得到的上清液排到第二收集池中;沉淀物排到第二污泥贮池内,待第二污泥贮池中的污泥量达到设定量,经污泥泵抽到第二离心机或压滤机进行脱水分离,得到的废水回收到第二浓缩膜装置中继续二次处理,得到的固体废渣自动输送到第二煅烧炉中直接高温煅烧或者放置后间歇进行煅烧处理,得到金属氧化物及化合物的混合物。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请的含铬废水处理***的第一种结构示意图;
图2为本申请的第一固液分离***的第二种结构示意图;
图3为本申请的第二固液分离***的第三种结构示意图。
附图标号说明:
1-含铬废水处理***;100-废水存储池;200-抽水泵;300-pH调节池;400-过滤装置;500-阳离子树脂交换器;600-储水池;700-第一固液分离***;701-还原反应池;7011-第一加药装置;7012-第二加药装置;7013-第一pH监测装置;7014-电位控制仪;702-第一沉淀反应池;7021-第三加药装置;7022-第二pH监测装置;703-第一浓缩膜装置;704-第一沉淀 池;705-第一收集池;706-第一纳滤-微滤组合装置;707-第一清水池;708-第一污泥贮池;709-第一离心机或压滤机;710-第一煅烧炉;800-解吸液储池;900-第二固液分离***;901-第二沉淀反应池;9011-第四加药装置;9012-第三pH监测装置;902-第二浓缩膜装置;903-第二沉淀池;904-第二收集池;905-第二纳滤-微滤组合装置;906-第二清水池;907-第二污泥贮池;908-第二离心机或压滤机;909-第二煅烧炉。
具体实施方式
为了便于理解本申请,下面将参照相关附图对含铬废水处理***进行更全面的描述。附图中给出了含铬废水处理***的首选实施例。但是,含铬废水处理***可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对含铬废水处理***的公开内容更加透彻全面。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连通”应做广义理解,例如,可以是机械连通或电连通,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
参阅图1,本申请提供了一种含铬废水处理***1,包括依次连通的pH调节池300、过滤装置400、阳离子树脂交换***、储水池600、第一固液分离***700。
所述阳离子树脂交换***的出水口与所述储水池600连通,所述阳离子树脂交换***的解吸液出口连通有解吸液储池800,所述解吸液储池800连通有第二固液分离***900。
需要理解的是,所述过滤装置400配置成过滤掉含铬废水中的固体颗粒物等杂质,避 免影响后序阳离子树脂交换***中阳离子交换树脂的吸附性能。所述过滤装置400可列举为石英砂过滤器、活性炭过滤器、陶瓷过滤器、多介质过滤器或纤维过滤器等。
需要说明的是,阳离子树脂交换***中包括再生装置(未示出)。所述本申请的阳离子树脂交换***中通过把阳离子交换树脂装填于阳离子树脂交换器500中,配置成吸附除Cr 6+以外的其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质,从而将Cr 6+与其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质分离开。含Cr 6+的废水通过出水口排入储水池600内;而吸附了其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的阳离子交换树脂进入再生装置经过解吸和再生过程,使树脂再生,得到的含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液通过解吸液出口排入到解吸液储池800中。
可以理解的是,所述第一固液分离***700配置成将排入储水池600内的含Cr 6+的废水进行固液分离;所述第二固液分离***900配置成将排入解吸液储池800内的含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液进行固液分离。
在本实施例中,本申请的含铬废水处理***1还包括废水存储池100,所述废水存储池100通过抽水泵200与所述pH调节池300连通。
在本实施例中,如图2所示,本申请实施例中,所述第一固液分离***700包括依次连通的还原反应池701、第一沉淀反应池702、第一浓缩膜装置703、第一沉淀池704、第一收集池705、第一纳滤-微滤组合装置706、第一清水池707;所述第一浓缩膜装置703的浓水口与所述第一沉淀池704连通,所述第一沉淀池704的污泥出口连通有第一离心机或压滤机709,所述第一浓缩膜装置703的清水口和所述第一沉淀池704的出水口均与所述第一收集池705连通,所述第一纳滤-微滤组合装置706的出水口与所述第一清水池707连通,所述第一纳滤-微滤组合装置706的污泥出口与所述第一沉淀池704连通,所述第一离心机或压滤机709的污泥出口连通有第一煅烧炉710。
上述还原反应池701中利用添加还原剂将废水中的Cr 6+还原为Cr 3+,该还原剂可列举为亚硫酸钠、焦亚硫酸钠或亚硫酸氢钠等。作为一种示例说明,当还原剂为亚硫酸钠时,具体还原反应式为:4Cr 6++3S 2O 5 2-+9H 2O=4Cr 3++6SO 4 2-+18H +,本实施例的还原剂用量略大于反应的理论用量,便于发生充分的反应。
在本实施例中,所述第一固液分离***700还包括与所述还原反应池701连通的第一 加药装置7011和第二加药装置7012,所述第一加药装置7011配置成向所述还原反应池701投加酸性物质,所述第二加药装置7012配置成向所述还原反应池701投加还原剂;所述还原反应池701设有第一pH监测装置7013和电位控制仪7014,所述第一pH监测装置7013与所述第一加药装置7011连接,所述电位控制仪7014与所述第二加药装置7012连接。
需要说明的是,为保证还原反应池701中还原反应达到最佳效果,即彻底将废水中的Cr 6+还原为Cr 3+,反应池中的pH值需达到2.5~3.0。因此本申请实施例中通过设置第一pH监测装置7013配置成实时监测所述还原反应池701内废水的pH值,当监测到的pH值大于3.0时,所述第一pH监测装置7013自动控制所述第一加药装置7011向还原反应池701中添加酸性物质;当监测到的pH值低于2.5时,所述第一pH监测装置7013自动控制所述第一加药装置7011向还原反应池701中停止添加酸性物质。所述酸性物质可列举为硫酸或盐酸等。
需要说明的是,为保证还原反应池701中还原反应达到最佳效果,即彻底将废水中的Cr 6+还原为Cr 3+,反应池中的电位需控制在220~270mV。因此本申请实施例中通过设置电位控制仪7014(ORP计)配置成实时监测所述还原反应池701内废水的电位,当监测到的电位高于270mV时,所述电位控制仪7014(ORP计)自动控制所述第二加药装置7012向还原反应池701中添加还原剂;当监测到的pH值低于220mV时,所述电位控制仪7014(ORP计)自动控制所述第二加药装置7012向还原反应池701中停止添加还原剂。
上述第一沉淀反应池702中通过将经过还原反应池701还原后得到的含Cr 3+废水的pH值调节到一定范围内,利用碱性物质与Cr 3+反应生成Cr(OH) 3沉淀,以除去废水中的Cr 3+。所述碱性物质在本实施例中为氢氧化钠,当然碱性物质还可列举为石灰或石灰与氢氧化钠的混合物等。具体反应式为:
Cr 3++3OH -=Cr(OH) 3↓。
在本实施例中,所述第一固液分离***700还包括与所述第一沉淀反应池702连通的第三加药装置7021,所述第三加药装置7021配置成向所述沉淀反应池投加碱性物质;所述第一沉淀反应池702设有第二pH监测装置7022,所述第二pH监测装置7022与所述第三加药装置7021连接。
需要说明的是,为保证第一沉淀反应池702中反应达到最佳效果,即碱性物质与Cr 3+完全反应,反应池中的pH值需控制在10~11.5之间。因此本申请实施例中通过设置第二pH监测装置7022配置成实时监测所述第一沉淀反应池702内废水的pH值,当监测到的pH值小于10时,所述第二pH监测装置7022自动控制所述第三加药装置7021向第一沉淀反应池702中添加碱性物质;当监测到的pH值大于时,所述第三pH监测装置9012自动 控制所述第四加药装置9011向第一沉淀反应池702中停止添加碱性物质。
在本实施例中,如图3所示,本申请实施例中,所述第二固液分离***900包括依次连通的第二沉淀反应池901、第二浓缩膜装置902、第二沉淀池903、第二收集池904、第二纳滤-微滤组合装置905、第二清水池906;所述第二浓缩膜装置902的浓水口与所述第二沉淀池903连通,所述第二沉淀池903的污泥出口连通有第二离心机或压滤机908,所述第二浓缩膜装置902的清水口和所述第二沉淀池903的出水口均与所述第二收集池904连通,所述第二纳滤-微滤组合装置905的出水口与所述第二清水池906连通,所述第二纳滤-微滤组合装置905的污泥出口与所述第二沉淀池903连通,所述第二离心机或压滤机908的污泥出口连通有第二煅烧炉909。
上述第一沉淀反应池702中通过将含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的废水的pH值调节到一定范围内,同时利用碱性物质与其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种反应生成金属氢氧化物沉淀,以除去废水中的其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质。所述碱性物质在本实施例中为氢氧化钠,当然碱性物质还可列举为石灰或石灰与氢氧化钠的混合物等。具体反应式可列举如下:
Cu 2++2OH -=Cu(OH) 2↓;
Ni 2++2OH -=Ni(OH) 2↓。
在本实施例中,所述第二固液分离***900还包括与所述第二沉淀反应池901连通的第四加药装置9011,所述第四加药装置9011配置成向所述第二沉淀反应池901投加碱性物质;所述第二沉淀反应池901设有第三pH监测装置9012,所述第三pH监测装置9012与所述第四加药装置9011连接。
所述第三pH监测装置9012同上述第二pH监测装置7022的工作原理相同,即配置成实时监测第二沉淀反应池901内的pH值,并根据相应的pH值控制第四加药装置9011开始或者停止投加碱性物质。
所述第一浓缩膜装置703和所述第二浓缩膜装置902均可列举为高压反渗透卷式膜或高压反渗透盘式膜或振动膜或正渗透膜。所述第一浓缩膜装置703和所述第二浓缩膜装置902还均可列举为纳滤膜、超滤膜、微滤膜或一般的过滤芯等。在浓缩膜装置中,通过膜分离,使氢氧化物沉淀颗粒进一步浓缩聚集增粗增大。
在本实施例中,所述第一沉淀池704通过第一污泥贮池708与所述第一离心机或压滤机709连通;所述第一离心机或压滤机709的出水口与所述第一浓缩膜装置703连通。
在本实施例中,所述第二沉淀池903通过第二污泥贮池907与所述第二离心机或压滤 机908连通;所述第二离心机或压滤机908的出水口与所述第二浓缩膜装置902连通。
需要理解的是,上述污泥贮池配置成储存沉淀池的污泥出口排出的污泥,并在积累到一定量后输送给离心机或压滤机进行脱水分离,避免沉淀池间歇性地提供污泥给离心机或压滤机,影响离心机或压滤机的使用寿命。
本申请实施例的固液分离***通过将经离心机或压滤机进行脱水分离后得到的废水回收到浓缩膜装置,实现该废水的二次回收处理和利用,减少排放污染。
在本实施例中,所述阳离子树脂交换***包括若干阳离子树脂交换器500。可根据实际需处理的含铬废水处理量设置为2个或3个并联或串联的阳离子树脂交换器500等,使Cr 6+与其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质完全分离开。在本实施例中,本申请所述阳离子树脂交换***包括2个串联的阳离子树脂交换器500。
本申请的含铬废水处理***1的工艺流程是:
如图1所示,将废水存储池100内的含铬废水通过抽水泵200抽入pH调节池300内,调PH至3.0~7.0,经过过滤装置400过滤,除掉含铬废水中的固体颗粒物等杂质,过滤液再经过两个串联的阳离子树脂交换器500进行离子交换,将废水中的Cr 6+和其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质分离开。含Cr 6+的废水通过出水口排入储水池600内,而吸附了其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的阳离子交换树脂经过解吸和再生过程,使树脂再生,得到的含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液通过解吸液出口排入到解吸液储池800中。
如图2所示,排入储水池600内含Cr6 +的废水通过第一固液分离***700中的还原反应池701,将废水中的Cr 6+还原成Cr 3+后,经过第一沉淀反应池702反应生成Cr(OH) 3沉淀,再经过第一浓缩膜装置703浓缩,使Ni(OH) 2沉淀颗粒浓缩聚集增粗增大;然后进入第一沉淀池704中进行固液分离,得到的上清液通过第一沉淀池704的出水口排到第一收集池705中;沉淀物通过第一沉淀池704的污泥出口排到第一污泥贮池708内,待第一污泥贮池708中的污泥量达到一定量,经污泥泵(图中未示出)抽到第一离心机或压滤机709进行脱水分离,得到的废水回收到第一浓缩膜装置703中继续二次处理,得到的固体废渣自动输送到第一煅烧炉710中直接高温煅烧或者放置后间歇进行煅烧处理,得到纯度较高的氧化铬。还可进一步地在第一煅烧炉710中通入氢气和氮气将氧化铬继续还原成单质铬,最后将铬或氧化铬回收利用。而第一收集池705内收集的上清液再经过第一纳滤-微滤组合装置706进一步除去第一收集池705中收集的上清液中的微量的细小固体悬浮物,过滤得 到的沉淀物分批排入到第一沉淀池704中继续二次处理,过滤水排入第一清水池707中回收利用。
如图3所示,排入解吸液储池800内的含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液通过第二固液分离***900进行固液分离,先经过第二沉淀反应池901反应生成金属氢氧化物沉淀,再经过第二浓缩膜装置902浓缩,使金属氢氧化物沉淀颗粒浓缩聚集增粗增大;然后进入第二沉淀池903中进行固液分离,得到的上清液通过第二沉淀池903的出水口排到第二收集池904中;沉淀物通过第二沉淀池903的污泥出口排到第二污泥贮池907内,待第二污泥贮池907中的污泥量达到一定量,经污泥泵(图中未示出)抽到第二离心机或压滤机908进行脱水分离,得到的废水回收到第二浓缩膜装置902中继续二次处理,得到的固体废渣自动输送到第二煅烧炉909中直接高温煅烧或者放置后间歇进行煅烧处理,得到金属氧化物及化合物的混合物,最后将金属氧化物及化合物的混合物回收利用。而第二收集池904内收集的上清液再经过第二纳滤-微滤组合装置905进一步除去第二收集池904中收集的上清液中的微量的细小固体悬浮物,过滤得到的沉淀物分批排入到第二沉淀池903中继续二次处理,过滤水排入第二清水池906中回收利用。
综上所述,本申请的含铬废水处理***的有益效果是:
(1)、本申请的含铬废水处理***通过采用阳离子树脂交换***有效将Cr 6+与其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质分离开,然后通过固液分离***分别对含Cr 6+的废水和含其它金属离子如Cu 2+、Ni 2+、Co 2+、Fe 3+、Zn 2+、Fe 2+、Cr 3+、Ca 2+等一种或多种杂质的解吸液进行固液分离处理,无需加入PAC和PAM等有机物,可节约成本和避免对水再次造成污染。
(2)、进一步地,本申请的固液分离***通过在沉淀反应池使废水中的金属离子与碱性物质如氢氧化钠等发生沉淀反应生成沉淀,再经过浓缩膜装置浓缩,使沉淀颗粒浓缩聚集增粗增大,加速沉淀,再在沉淀池进行固液分离,收集池中收集的清水再通过设置纳滤-微滤组合装置进行微滤和纳滤双重过滤后,可更彻底除去清水中的微量的细小固体悬浮物,过滤得到的沉淀物分批排入到沉淀池中再处理,沉淀池中的沉淀物经离心机或压滤机进行脱水,得到的固体废渣不含PAC、PAM等有机杂质,含水率也较低,然后经过煅烧炉煅烧处理,得到的金属氧化物及其它化合物不仅可以回收利用,而且实现零污染物排放,与相关技术中最终生成危险固废,并需再对危险固废进行处理的***相比,有效降低了污泥处理成本和负荷,以及解决了资源浪费的问题,并大大降低了企业的生产成本,具有很大的社会和经济效益。
(3)、进一步地,本申请的固液分离***通过对沉淀反应池设置pH监测装置实时监测反应池内的pH值,并根据相应的pH值控制加药装置自动加药,使该***自动化程度高、运行安全、稳定、操作简单、管理方便且处理效果更好。
尽管以上较多使用了表示结构的术语,例如“第一沉淀反应池”、“第一浓缩膜装置”、“第一pH监测装置”等,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本申请的本质;把它们解释成任何一种附加的限制都是与本申请精神相违背的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本申请提供的含铬废水处理***得到的金属氧化物及其它化合物不仅可以回收利用,而且实现零污染物排放,有效降低了污泥处理成本和负荷,以及解决了资源浪费的问题,并大大降低了企业的生产成本,具有很大的社会和经济效益。

Claims (17)

  1. 一种含铬废水处理***,其特征在于:包括依次连通的pH调节池、过滤装置、阳离子树脂交换***、储水池和第一固液分离***;
    所述阳离子树脂交换***的出水口与所述储水池连通,所述阳离子树脂交换***的解吸液出口连通有解吸液储池,所述解吸液储池连通有第二固液分离***。
  2. 根据权利要求1所述的含铬废水处理***,其特征在于:还包括废水存储池,所述废水存储池通过抽水泵与所述pH调节池连通。
  3. 根据权利要求1所述的含铬废水处理***,其特征在于:所述第一固液分离***包括依次连通的还原反应池、第一沉淀反应池、第一浓缩膜装置、第一沉淀池、第一收集池、第一纳滤-微滤组合装置和第一清水池;所述第一浓缩膜装置的浓水口与所述第一沉淀池连通,所述第一沉淀池的污泥出口连通有第一离心机或压滤机,所述第一浓缩膜装置的清水口和所述第一沉淀池的出水口均与所述第一收集池连通,所述第一纳滤-微滤组合装置的出水口与所述第一清水池连通,所述第一纳滤-微滤组合装置的污泥出口与所述第一沉淀池连通,所述第一离心机或压滤机的污泥出口连通有第一煅烧炉。
  4. 根据权利要求1所述的含铬废水处理***,其特征在于:所述第二固液分离***包括依次连通的第二沉淀反应池、第二浓缩膜装置、第二沉淀池、第二收集池、第二纳滤-微滤组合装置和第二清水池;所述第二浓缩膜装置的浓水口与所述第二沉淀池连通,所述第二沉淀池的污泥出口连通有第二离心机或压滤机,所述第二浓缩膜装置的清水口和所述第二沉淀池的出水口均与所述第二收集池连通,所述第二纳滤-微滤组合装置的出水口与所述第二清水池连通,所述第二纳滤-微滤组合装置的污泥出口与所述第二沉淀池连通,所述第二离心机或压滤机的污泥出口连通有第二煅烧炉。
  5. 根据权利要求3所述的含铬废水处理***,其特征在于:所述第一固液分离***还包括与所述还原反应池连通的第一加药装置和第二加药装置,所述第一加药装置配置成向所述还原反应池投加酸性物质,所述第二加药装置配置成向所述还原反应池投加还原剂。
  6. 根据权利要求4所述的含铬废水处理***,其特征在于:所述还原反应池设有第一pH监测装置和电位控制仪,所述第一pH监测装置与所述第一加药装置连接,所述电位控制仪与所述第二加药装置连接。
  7. 根据权利要求3所述的含铬废水处理***,其特征在于:所述第一固液分离***还包括与所述第一沉淀反应池连通的第三加药装置,所述第三加药装置配置成向所述沉淀反应池投加碱性物质;
    所述第一沉淀反应池设有第二pH监测装置,所述第二pH监测装置与所述第三加药装置连接。
  8. 根据权利要求4所述的含铬废水处理***,其特征在于:所述第二固液分离***还包括与所述第二沉淀反应池连通的第四加药装置,所述第四加药装置配置成向所述第二沉淀反应池投加碱性物质;所述第二沉淀反应池设有第三pH监测装置,所述第三pH监测装置与所述第四加药装置连接。
  9. 根据权利要求3所述的含铬废水处理***,其特征在于:所述第一沉淀池通过第一污泥贮池与所述第一离心机或压滤机连通;所述第一离心机或压滤机的出水口与所述第一浓缩膜装置连通。
  10. 根据权利要求4所述的含铬废水处理***,其特征在于:所述第二沉淀池通过第二污泥贮池与所述第二离心机或压滤机连通;所述第二离心机或压滤机的出水口与所述第二浓缩膜装置连通。
  11. 根据权利要求1所述的含铬废水处理***,其特征在于:所述阳离子树脂交换***包括若干阳离子树脂交换器。
  12. 根据权利要求1所述的含铬废水处理***,其特征在于:所述过滤装置包括石英砂过滤器、活性炭过滤器、陶瓷过滤器、多介质过滤器或纤维过滤器。
  13. 一种含铬废水处理工艺,利用权利要求1-12任一项所述的含铬废水处理***处理含铬废水,其特征在于:
    将含铬废水抽入pH调节池,调PH至3.0~7.0,经过过滤装置过滤,过滤液再经过两个串联的阳离子树脂交换器进行离子交换,将废水中的Cr 6+分离出,含Cr 6+的废水排入储水池,吸附有剩余金属离子的阳离子交换树脂进入再生装置使树脂再生,得到的含剩余金属离子的解吸液排入到解吸液储池;
    排入储水池内的含Cr 6+的废水通过第一固液分离***进行固液分离,排入解吸液储池内的含剩余金属离子的解吸液通过第二固液分离***进行固液分离。
  14. 根据权利要求13所述的含铬废水处理工艺,其特征在于:排入储水池内含Cr 6+的废水通过第一固液分离***中的还原反应池,将废水中的Cr 6+还原成Cr 3+后,经过第一沉淀反应池反应生成Cr(OH) 3沉淀,再经过第一浓缩膜装置浓缩;然后进入第一沉淀池中进行固液分离,得到的上清液排到第一收集池中;沉淀物排到第一污泥贮池内,待第一污泥贮池中的污泥量达到设定量,经污泥泵抽到第一离心机或压滤机进行脱水分离,得到的废水回收到第一浓缩膜装置中继续二次处理,得到的固体废渣自动输送到第一煅烧炉中直接高温煅烧或者放置后间歇进行煅烧处理,得到氧化铬。
  15. 根据权利要求16所述的含铬废水处理工艺,其特征在于:在第一煅烧炉中通入氢气和氮气将氧化铬继续还原成单质铬,最后将铬或氧化铬回收利用。
  16. 根据权利要求14所述的含铬废水处理工艺,其特征在于:第一收集池内收集的上清液再经过第一纳滤-微滤组合装置进一步除去第一收集池中收集的上清液中的固体悬浮物,过滤得到的沉淀物分批排入到第一沉淀池中继续二次处理,过滤水排入第一清水池中回收利用。
  17. 根据权利要求13所述的含铬废水处理工艺,其特征在于:排入解吸液储池内的解吸液先经过第二沉淀反应池反应生成金属氢氧化物沉淀,再经过第二浓缩膜装置浓缩;然后进入第二沉淀池中进行固液分离,得到的上清液排到第二收集池中;沉淀物排到第二污泥贮池内,待第二污泥贮池中的污泥量达到设定量,经污泥泵抽到第二离心机或压滤机进行脱水分离,得到的废水回收到第二浓缩膜装置中继续二次处理,得到的固体废渣自动输送到第二煅烧炉中直接高温煅烧或者放置后间歇进行煅烧处理,得到金属氧化物及化合物的混合物。
PCT/CN2018/080320 2017-03-27 2018-03-23 含铬废水处理***及工艺 WO2018177222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710187775.8 2017-03-27
CN201710187775.8A CN106830489A (zh) 2017-03-27 2017-03-27 含铬废水处理***

Publications (1)

Publication Number Publication Date
WO2018177222A1 true WO2018177222A1 (zh) 2018-10-04

Family

ID=59130568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080320 WO2018177222A1 (zh) 2017-03-27 2018-03-23 含铬废水处理***及工艺

Country Status (2)

Country Link
CN (1) CN106830489A (zh)
WO (1) WO2018177222A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745996A (zh) * 2019-11-08 2020-02-04 苏州热工研究院有限公司 水体中镍-63的收集设备以及水体中镍-63的检测方法
CN114807600A (zh) * 2022-04-18 2022-07-29 厦门宜境环保科技有限公司 一种从电镀污泥中分离回收有价金属的装置及工艺
CN114988599A (zh) * 2022-03-09 2022-09-02 上海瑞勇实业有限公司 一种智能化达标排放设备
CN115196835A (zh) * 2022-07-28 2022-10-18 揭阳市嵘途环保设备工程有限公司 一种工业污水处理***及方法
CN116282163A (zh) * 2021-12-20 2023-06-23 重庆昌元化工集团有限公司 一种提高铬酸酐品质的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830489A (zh) * 2017-03-27 2017-06-13 福建欣宇卫浴科技股份有限公司 含铬废水处理***
CN108046480A (zh) * 2018-01-26 2018-05-18 福建欣宇卫浴科技股份有限公司 不锈钢酸洗废水处理***
CN108975621B (zh) * 2018-08-13 2021-09-21 漳州香洲皮革有限公司 一种皮革生产的污水分级处理***及处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430995B1 (zh) * 1969-12-04 1979-10-04
CN102531233A (zh) * 2011-12-21 2012-07-04 邵梦馨 一种含重金属的电镀废水处理及重金属回收利用方法
CN106277053A (zh) * 2016-07-25 2017-01-04 中国科学院过程工程研究所 一种氧化铬的制备方法
CN106830489A (zh) * 2017-03-27 2017-06-13 福建欣宇卫浴科技股份有限公司 含铬废水处理***
CN206635167U (zh) * 2017-03-27 2017-11-14 福建欣宇卫浴科技股份有限公司 含铬废水处理***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347264A (ja) * 2000-06-07 2001-12-18 Shimadzu Corp 水処理装置及び水処理方法
KR100512257B1 (ko) * 2003-08-01 2005-09-05 태랑엔지니어링(주) 이온 교환 수지를 이용한 크롬 폐수 재이용 처리 장치
CN101234827B (zh) * 2008-02-26 2010-11-03 南京工业大学 一种含高浓度硫酸钠的含铬废水治理和资源回收方法
CN101269871B (zh) * 2008-04-23 2010-06-02 南京大学 一种处理含铬废水的方法
CN101570372B (zh) * 2009-05-05 2011-06-08 中国科学院长春应用化学研究所 一种电镀废水净化、资源综合利用的方法
CN103467645B (zh) * 2013-08-30 2016-03-16 南京大学 一种抗有机物污染离子交换树脂及其制备方法和应用
CN104355365B (zh) * 2014-10-31 2016-08-24 武汉钢铁(集团)公司 含铬废水污染物零排放的处理方法
CN204939131U (zh) * 2015-08-17 2016-01-06 北京朗新明环保科技有限公司南京分公司 管式微滤膜废水处理以及废水回用***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430995B1 (zh) * 1969-12-04 1979-10-04
CN102531233A (zh) * 2011-12-21 2012-07-04 邵梦馨 一种含重金属的电镀废水处理及重金属回收利用方法
CN106277053A (zh) * 2016-07-25 2017-01-04 中国科学院过程工程研究所 一种氧化铬的制备方法
CN106830489A (zh) * 2017-03-27 2017-06-13 福建欣宇卫浴科技股份有限公司 含铬废水处理***
CN206635167U (zh) * 2017-03-27 2017-11-14 福建欣宇卫浴科技股份有限公司 含铬废水处理***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745996A (zh) * 2019-11-08 2020-02-04 苏州热工研究院有限公司 水体中镍-63的收集设备以及水体中镍-63的检测方法
CN116282163A (zh) * 2021-12-20 2023-06-23 重庆昌元化工集团有限公司 一种提高铬酸酐品质的方法
CN116282163B (zh) * 2021-12-20 2024-03-22 重庆昌元化工集团有限公司 一种提高铬酸酐品质的方法
CN114988599A (zh) * 2022-03-09 2022-09-02 上海瑞勇实业有限公司 一种智能化达标排放设备
CN114807600A (zh) * 2022-04-18 2022-07-29 厦门宜境环保科技有限公司 一种从电镀污泥中分离回收有价金属的装置及工艺
CN115196835A (zh) * 2022-07-28 2022-10-18 揭阳市嵘途环保设备工程有限公司 一种工业污水处理***及方法
CN115196835B (zh) * 2022-07-28 2023-09-22 揭阳市嵘途环保设备工程有限公司 一种工业污水处理***及方法

Also Published As

Publication number Publication date
CN106830489A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018177222A1 (zh) 含铬废水处理***及工艺
WO2018177221A1 (zh) 含铬废水处理***
CN101357798B (zh) 重金属废水净化剂
CN106865920A (zh) 含重金属离子酸性废水的深度处理方法及回用工艺
WO2018177289A1 (zh) 固液分离***
CN204848545U (zh) 一种电镀废水回收零排放装置
CN202542980U (zh) 工业循环水旁滤处理装置
WO2018166503A1 (zh) 不锈钢酸洗废水处理***
CN112794500B (zh) 一种焦化废水浓盐水近零排放处理***及其处理方法
CN102020375A (zh) 铅酸蓄电池废水回用设备
CN103172199A (zh) 氢氟酸废水的处理方法
CN104118956A (zh) 一种污水处理的方法
CN109626672A (zh) 基于电化学和树脂组合工艺深度处理废水中硝态氮方法
CN106186421A (zh) 一种含镍废水的处理方法
CN105174563A (zh) 一种叶酸废水的处理方法
CN112479233A (zh) 一种垃圾焚烧飞灰水洗液深度除杂净化***和方法
CN105565553A (zh) 含氰重金属污水零排放净化回用***
CN102897885B (zh) 硫酸工业双循环喷射式除砷的方法
CN106517578B (zh) 一种颗粒污泥与陶瓷膜破除络合物的重金属废水处理方法
CN103274560B (zh) 重金属废水零排放工艺
CN203307148U (zh) 一种工业电镀废水的综合处理***
CN214990901U (zh) 一种处理沉淀白炭黑废水的工艺***
WO2018166480A1 (zh) 含镍废水处理***
CN108751325A (zh) 一种氨氮废水处理***及氨氮废水处理方法
CN112573720A (zh) 一种热电厂脱硫废水零排放***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777398

Country of ref document: EP

Kind code of ref document: A1