WO2018176879A1 - 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法 - Google Patents

激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法 Download PDF

Info

Publication number
WO2018176879A1
WO2018176879A1 PCT/CN2017/113288 CN2017113288W WO2018176879A1 WO 2018176879 A1 WO2018176879 A1 WO 2018176879A1 CN 2017113288 W CN2017113288 W CN 2017113288W WO 2018176879 A1 WO2018176879 A1 WO 2018176879A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
marking
controller
component
scanning head
Prior art date
Application number
PCT/CN2017/113288
Other languages
English (en)
French (fr)
Inventor
徐强
Original Assignee
广州新可激光设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州新可激光设备有限公司 filed Critical 广州新可激光设备有限公司
Publication of WO2018176879A1 publication Critical patent/WO2018176879A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns

Definitions

  • the invention belongs to the technical field of laser marking, and particularly relates to a laser marking machine, a method for adjusting a distance between a scanning head of a laser marking machine and a marking object, and an automatic focusing method of the marking machine.
  • the laser marking machine is a light and mechatronics device that combines laser technology and computer technology.
  • the application of laser marking technology in industry at home and abroad is being paid more and more attention.
  • Various new marking equipments are emerging one after another. It is replacing the traditional marking method with its unique advantages. It can be used in various mechanical parts and electronic elements. Marks are printed on the surface of various objects such as devices, integrated circuit modules, instruments, and meters.
  • the working principle is that the laser generates laser light, and after being focused by the focusing lens, it is irradiated onto the surface of the marking object, and the marking effect is only ideal when the marking object is located at the focal length position.
  • the prior art manually adjusts and focuses the marking machine manually. The manual adjustment reduces the working efficiency of the marking machine, and the adjustment error is large, which reduces the precision and speed of the marking.
  • the invention provides a laser marking machine, a method for adjusting the distance between the scanning head and the marking object of the laser marking machine and an automatic focusing method of the marking machine.
  • the laser marking machine is manually adjusted and reduced. Marking accuracy and speed issues.
  • the adopted scheme is:
  • a laser marking machine comprising a marking machine for placing a marking object, a frame on the marking machine table, a pallet arranged on the frame and movable up and down the rack, and supporting
  • the laser marking component is arranged on the stage.
  • the laser marking component comprises a laser, an optical path component and a scanning head which are sequentially mounted.
  • the optical path component comprises a plurality of concave lenses and/or convex lenses between the laser and the scanning head for adjusting the beam of the incident laser light.
  • the focal length, the marking laser is emitted from the laser, passes through the optical path component, and is incident on the scanning head.
  • the scanning head includes an X mirror and a Y mirror which are sequentially mounted, the X mirror is mounted on the rotating output shaft of the X motor, and the Y mirror is mounted on the On the rotating output shaft of the Y motor, the direction of the rotation axis of the X motor is perpendicular to the direction of the axis of rotation of the Y motor, and the marking laser is sequentially incident on the X mirror and the Y mirror, and is changed by the X mirror and the Y mirror.
  • the marking laser is injected toward the marking machine in a scanning manner; further comprising a controller and a first driving component disposed on the frame for driving the pallet to move up and down the rack, the first driving
  • the moving component comprises a plurality of driving motors, and the driving motor is directly or indirectly connected to the pallet, the controller controls the driving motor to drive the pallet to move up and down along the rack; and further comprises a distance measuring component disposed on the pallet or the laser marking component,
  • the distance component comprises a laser pointer and a laser sensor; the distance measuring component, the controller and the first driving component are sequentially connected; the laser pointer is used for emitting an indicating laser to the marking surface,
  • the light sensor is configured to receive the feedback laser of the surface of the marking surface by the diffuse reflection indicating laser, the indicating laser does not coincide with the feedback laser; the laser sensor sends the sensing signal to the controller, and the controller is configured to calculate the angle between the indicating laser and the feedback laser according to the sensing signal.
  • the controller sends a control signal to the first driving component, and the driving motor of the first driving component drives the laser marking component to move according to the control signal, so that the scanning head of the laser marking component The distance from the surface of the marking object matches the marking focal length of the laser marking machine.
  • the laser marking machine comprises a marking machine for placing the marking object on the base and the base, and the marking machine can be moved up and down, the frame above the marking machine table, and the setting on the frame a laser marking component is disposed on the pallet, the laser marking component comprises a laser, an optical path component and a scanning head which are sequentially mounted, and the optical path component comprises a plurality of concave lenses and/or convex lenses between the laser and the scanning head for adjusting incident The focal length of the laser beam, the marking laser is emitted from the laser, passes through the optical path component, and is incident on the scanning head.
  • the scanning head includes an X mirror and a Y mirror which are sequentially mounted, and the X mirror is mounted on the rotating output shaft of the X motor, and the Y reflection The mirror is mounted on the rotating output shaft of the Y motor.
  • the direction of the rotation axis of the X motor is perpendicular to the direction of the axis of rotation of the Y motor, and the marking laser is sequentially incident on the X mirror and the Y mirror, passing through the X mirror and Y.
  • the marking laser is scanned toward the marking machine; and the controller and the second driving component for driving the marking machine to move up and down, the second driving
  • the component comprises a plurality of driving motors, and the driving motor is directly or indirectly connected to the marking machine table, wherein the controller controls the driving motor to drive the marking machine to move up and down; and further comprises a distance measuring component disposed on the pallet or the laser marking component, and measuring
  • the distance component comprises a laser pointer and a laser sensor; the distance measuring component, the controller and the second driving component are sequentially connected; the laser pointer is used for emitting an indicating laser to the surface of the marking object, and the laser sensor is used for receiving the diffuse reflection indication of the surface of the marked object
  • the feedback laser of the laser indicates that the laser does not coincide with the feedback laser; the laser sensor sends an induction signal to the controller, and the controller is configured to calculate an angle between the indication laser and the feedback laser according to the sensing signal and further calculate the distance from the surface of the marking object to the scanning head.
  • the controller sends a control signal to the second driving component, and the driving motor of the second driving component drives the laser marking component to move according to the control signal, so that the distance between the scanning head of the laser marking component and the surface of the marking object matches the laser marking machine. Mark the focal length.
  • the upper surface of the base is provided with a vertically extending sliding cavity, and the marking machine is disposed in the sliding cavity, and the second driving component connected to the marking platform is disposed in the sliding cavity.
  • the laser pointer is used to emit an indication laser to a feature point preset on the surface of the marking object
  • the laser sensor is configured to receive the feedback laser reflected by the characteristic point and send the sensing signal to the controller
  • the controller is configured to receive the sensing signal according to the sensing
  • the signal calculates a vertical distance of the feature point to the scan head and sends a control signal to the first driving component or the second driving component
  • the first driving component drives the laser marking component according to the control signal or the second driving component drives the marking machine according to the control information
  • the starting point of the table moving to the surface of the marking object is located below the marking focal length of the scanning head of the laser marking component.
  • the laser pointer is used to receive the laser on the surface of the marking object after the marking start point of the marking object is located below the marking focal length of the scanning head of the laser marking component, and the laser sensor is used to receive the warp.
  • a feedback laser that diffuses the surface of the target and sends a sensing signal to the controller, and the controller is configured to calculate a vertical distance from the surface of the marking object to the scanning head according to the sensing signal and send a fine adjustment signal to the first driving component or the second driving component, first The drive component or the second drive component is used to drive according to the trimming signal Fine tune the calibration.
  • Scheme 3 a method of adjusting the distance between the scanning head and the marking object, the laser pointer emits laser light to the surface of the marking object; the laser sensor receives the feedback laser diffused and reflected by the surface of the marking object and sends an induction signal to the controller; Calculating a vertical distance from the surface of the marking object to the scanning head according to the sensing signal and transmitting a control signal to the first driving component or the second driving component; the first driving component drives the laser marking component according to the control signal or the second driving component is driven according to the control information
  • the marking machine moves to the surface of the marking object and the marking starting point is below the marking focal length of the scanning head of the laser marking component.
  • the laser pointer emits laser light to a feature point preset on the surface of the marking object; the laser sensor receives the laser light reflected by the characteristic point and sends an induction signal to the controller.
  • the laser pointer emits an indication laser to the surface of the marking object; the laser sensor receives the laser light reflected by the surface of the marking object and sends an induction signal to the controller; the controller calculates the surface of the marking object to the scanning head according to the sensing signal.
  • the vertical distance sends a trimming signal to the first driving component or the second driving component; the first driving component or the second driving component performs driving fine tuning calibration according to the trimming signal.
  • the optical path assembly includes at least one fixed convex lens and at least one movable concave lens; and further includes a guide rail extending along a direction of the marking laser light, a bracket disposed on the guide rail, and a concave lens fixed On the bracket, the swing motor is directly or indirectly connected to the bracket, and the swing motor control bracket slides back and forth along the guide rail direction, and the swing motor is connected with the controller; the laser pointer is matched with the distance between the scan head and the reference point of the surface feature of the marking object. After marking the focal length of the machine, the laser pointer again emits an indication laser to the surface of the marking object.
  • the laser sensor receives the feedback laser diffusely reflected on the surface of the marking object and sends a sensing signal to the controller, and the controller calculates the marking again according to the sensing signal.
  • the surface feature points the vertical distance from the reference point to the scan head and sends a control signal to the swing motor.
  • the drive bracket and its concave lens slide on the guide rail to change the marking focal length of the marking machine until the marking focal length is equal to the marking surface to the scanning head. The vertical distance.
  • the method further includes: a control terminal connected to the controller, wherein the control terminal stores a digital model of the marking object, and when the marking laser is shot at a point other than the feature reference point on the surface of the marking object, the control terminal is The digital model of the target and the vertical distance from the feature reference point to the scan head calculate the real-time distance between the point of the target surface except the feature reference point and the scan head, and send a signal to the controller, and the controller controls the swing motor adjustment bracket and The sliding position of the concave lens on the guide rail again causes the marking focal length to be equal to the real-time distance of the point of the marking object other than the feature reference point from the scanning head.
  • a control terminal connected to the controller, wherein the control terminal stores a digital model of the marking object, and when the marking laser is shot at a point other than the feature reference point on the surface of the marking object, the control terminal is The digital model of the target and the vertical distance from the feature reference point to the scan head calculate the real-time distance between the point of the target surface except the
  • the invention has the beneficial effects that: since the invention emits laser light to the surface of the marking object through the laser pointer, the laser sensor is configured to receive the laser light reflected by the surface of the marking object and send the sensing signal to the controller, and the controller calculates the signal according to the first signal. Marking the vertical distance of the surface of the object to the distance measuring component and sending a control signal to the driving component, the first driving component driving the laser marking component according to the control signal to move the marking object to the marking focal length of the laser marking component, or the second The driving component drives the marking platform according to the control signal to move the marking object to the marking focal length of the laser marking component. Therefore, the application can automatically adjust the distance between the scanning head and the marking object to the marking focal length, thereby ensuring the accuracy of the marking and improving the marking speed.
  • Figure 1 is a schematic view showing the structure of a laser marking machine of the present invention
  • Figure 2 is a side view of the laser marking machine of the present invention
  • FIG. 3 is a schematic view showing the working principle of the laser marking machine of the present invention
  • FIG. 4 is a schematic structural view of an optical path assembly of a laser marking machine according to the present invention.
  • Figure 5 is an enlarged view of the portion A in Figure 4.
  • FIG. 6 is a schematic diagram of the autofocus principle of the laser marking machine of the present invention
  • a laser marking machine as shown in FIG. 1 and FIG. 2, comprises a base 1 on which a frame 2 is arranged, and a vertical extending rail is arranged on the frame 2, and a pallet 3 is arranged on the rail.
  • the pallet 3 is slidable along the guide rails.
  • a laser marking assembly 4 is provided on the pallet 3, and the laser marking assembly 4 is used to generate a marking laser, and the marking laser is emitted from the scanning head 41.
  • the scanning head includes an X mirror and a Y mirror which are sequentially mounted, the X mirror is mounted on the rotating output shaft of the X motor, and the Y mirror is mounted on the rotating output shaft of the Y motor, and the rotation axis direction of the X motor is opposite to the Y motor The direction of the rotation axis is perpendicular to each other, and the marking laser is sequentially incident on the X mirror and the Y mirror. After the X mirror and the Y mirror change direction, the marking laser is scanned toward the marking machine.
  • the laser marking machine pallet 3 is coupled to the first drive assembly, and the first drive assembly 6 is coupled to the controller.
  • the first driving component 6 includes a driver and a screw mechanism, and the control button 81 is manually operated to cause the controller to issue a command to drive the pallet 3 to move up and down along the rail on the frame 2 through the cooperation of the driver and the screw mechanism, thereby adjusting the scanning head.
  • a distance measuring unit 5 is disposed on one side of the scanning head 41, and a laser pointer and a laser sensor are integrated in the distance measuring unit 5.
  • the laser sensor, the controller and the first drive assembly 6 are electrically connected in sequence.
  • the laser pointer can be selected with a red laser pointer, and the red laser has high recognizability and is convenient for sensing by the laser sensor.
  • the first driving component comprises a plurality of driving motors, and the driving motor is directly or indirectly connected to the pallet, the controller controls the driving motor to drive the pallet to move up and down the rack; and further comprises a distance measuring component disposed on the pallet or the laser marking component
  • the distance measuring component comprises a laser pointer and a laser sensor; the distance measuring component, the controller and the first driving component are sequentially connected; the laser pointer is used for emitting an indicating laser to the surface of the marking object, and the laser sensor is used for receiving the surface of the marking object
  • the reflection indicates laser feedback laser, indicating that the laser does not coincide with the feedback laser; the laser sensor sends an induction signal to the controller, and the controller is configured to calculate an angle between the indication laser and the feedback laser according to the sensing signal and further calculate the surface of the marking object to the scanning head
  • the controller sends a control signal to the first driving component, and the driving motor of the first driving component drives the laser marking component to move according to the control signal, so that the scanning head of the laser marking component and the
  • the laser pointer is configured to emit an indication laser to the feature points preset on the surface of the marking object
  • the laser sensor is configured to receive the feedback laser reflected by the characteristic point and send the sensing signal to the controller
  • the controller is configured to calculate the feature point to the scanning head according to the sensing signal
  • the vertical direction distance sends a control signal to the first driving component, and the first driving component drives the laser marking component to move to the marking surface according to the control signal.
  • the marking starting point is below the marking focal length of the scanning head of the laser marking component.
  • the laser pointer emits an indication laser to the surface of the marking object after the marking starting point is located below the marking focal length of the scanning head of the laser marking component, and the laser sensor is used for receiving the diffuse reflection of the surface of the marking object.
  • the laser is fed back and sends a sensing signal to the controller.
  • the controller is configured to calculate a vertical distance from the surface of the marking object to the scanning head according to the sensing signal and send a fine adjustment signal to the first driving component, and the first driving component performs driving fine adjustment calibration according to the fine adjustment signal.
  • the laser marking assembly includes a laser 42, an optical path assembly 43 and a scanning head 41 which are sequentially mounted.
  • the optical path assembly includes a concave lens 433 and a convex lens 434 between the laser and the scanning head for The focal length of the incident laser beam is adjusted, and the marking laser is emitted from the laser and passed through the optical path component to be incident on the scanning head.
  • the scanning head includes a plurality of reflecting lenses for changing the direction of the marking laser to cause the marking laser to be emitted toward the marking machine.
  • the laser pointer when the marking object 10 is specifically marked, after the laser marking machine starts working, the laser pointer emits laser light to the surface of the marking object 10, and the laser generates diffuse reflection on the surface of the marking object 10, and the laser
  • the sensor is configured to receive the laser light reflected by the surface of the marked object 10, thereby generating an induction and transmitting an induction signal to the controller, and the controller is configured to calculate a vertical distance of the surface of the marking object 10 to the ranging component according to the sensing signal.
  • the principle of calculating the distance by the controller is that according to the linear propagation and emission angle of the laser, after the controller calculates the vertical distance from the surface of the marking object 10 to the ranging component, the controller sends a control signal to the first driving component 6, and the first driving component 6 For driving the pallet 3 according to the control signal, the laser marking assembly 4 is moved until the marking object 10 is located on the marking focal length of the laser marking assembly 4. Thereafter, the laser marking machine marks the marking object 10 according to the position of the marking pattern on the virtual model.
  • the first driving component 6 includes a driver and a screw mechanism.
  • the first driving component that can drive the laser marking component 3 to move up and down along the rail on the frame 2 by a control signal is It falls within the scope of protection of this embodiment.
  • the present embodiment measures the vertical distance from the surface of the marking object 10 to the distance measuring assembly 5.
  • the laser marking machine comprises a marking machine for placing a marking object on the base and the base, the marking machine can be moved up and down, a frame above the marking machine, a pallet set on the frame, and a tray
  • the laser marking component is arranged on the stage.
  • the laser marking component comprises a laser, an optical path component and a scanning head which are sequentially mounted.
  • the optical path component comprises a plurality of concave lenses and/or convex lenses between the laser and the scanning head for adjusting the beam of the incident laser light.
  • the focal length, the marking laser is emitted from the laser, passes through the optical path component, and is incident on the scanning head.
  • the scanning head includes a plurality of reflecting lenses for changing the direction of the marking laser to cause the marking laser to be emitted toward the marking machine; and the controller and the a second driving component for driving the marking machine to move up and down, the second driving component comprises a plurality of driving motors, the driving motor is directly or indirectly connected to the marking machine table, and the controller controls the driving motor to drive the marking machine to move up and down; Also includes setting on the pallet or laser marking group
  • the distance measuring component on the piece, the distance measuring component comprises a laser pointer and a laser sensor; the distance measuring component, the controller and the second driving component are sequentially connected; the laser pointer is used for emitting the indicating laser to the surface of the marking object, and the laser sensor is used for receiving The diffuse reflection on the surface of the marking indicates the feedback laser of the laser, indicating that the laser does not coincide with the feedback laser; the laser sensor sends an inductive signal to the controller, and the controller is configured to calculate the angle between the indicating laser and the feedback laser according to the sensing signal and calculate the hit
  • the controller sends a control signal to the second driving component, and the driving motor of the second driving component drives the laser marking component to move according to the control signal, so that the scanning head of the laser marking component and the surface of the marking object The distance matches the marking focal length of the laser marking machine.
  • the upper surface of the base is provided with a vertically extending sliding cavity, and the marking machine is disposed in the sliding cavity, and the second driving component connected to the marking platform is disposed in the sliding cavity.
  • the laser pointer is configured to emit an indication laser to the feature points preset on the surface of the marking object
  • the laser sensor is configured to receive the feedback laser reflected by the characteristic point and send the sensing signal to the controller
  • the controller is configured to calculate the feature point to the scanning head according to the sensing signal
  • the vertical direction distance sends a control signal to the second driving component, and the second driving component drives the marking machine to move to the marking surface according to the control information.
  • the marking starting point is below the marking focal length of the scanning head of the laser marking component.
  • the laser pointer emits an indication laser on the surface of the marking object after the marking starting point is located below the marking focal length of the scanning head of the laser marking component, and the laser sensor is used to receive the feedback of the diffuse reflection on the surface of the marking object.
  • the laser sends an induction signal to the controller, and the controller is configured to calculate a vertical distance from the surface of the marking object to the scanning head according to the sensing signal and send a fine adjustment signal to the second driving component, and the second driving component is configured to perform driving fine adjustment calibration according to the fine adjustment signal.
  • This embodiment is improved on the basis of Embodiment 1 or 2.
  • This embodiment illustrates a scheme of a laser marking machine for a stereo marker.
  • the laser marking machine can also be connected to the external control terminal.
  • a virtual model of the marking object 10 is built in the control terminal, and the marking pattern is attached to the surface of the virtual model.
  • a feature point needs to be preset on the surface of the marking object 10, and the feature point may be any point that is easily recognized on the surface of the marking object 10, and the highest point or the lowest point of the surface of the marking object 10 may be selected.
  • the position of the point corresponding to the feature point in the virtual model is stored.
  • the feature point 101 is preset as the highest point on the surface of the marking object 10, and the marking object 10 is placed on the marking platform 11, and the marking object 10 is moved to the laser light emitted by the laser pointer to the feature point.
  • the laser pointer is used to emit laser light to the feature point 101
  • the laser sensor is used to receive the laser light reflected at the feature point 101
  • the controller 8 calculates the vertical distance of the feature point 101 to the ranging component 5, and then marks any point on the object 10 to
  • the vertical distance of the ranging assembly 5 shows that the laser marking machine can start marking from any point on the marking object 10, thus setting a marking initial point 102 and transmitting a control signal to the driving assembly.
  • Drive The assembly is adapted to drive movement according to the control signal until the marking initial point 102 is at the marking focal length of the laser marking assembly 4. Thereafter, the internal program of the control terminal controls the laser marking machine to start marking from the marking initial point 102.
  • Embodiment 1 when the first driving component 6 drives the laser marking component 4 to move to the marking focal length of the laser marking component 4, the position of the laser marking component 4 and the actual focal length position will be A larger error, especially when the first driving component 6 drives the laser marking component 4 to move a large distance, the error is greater. Therefore, the embodiment provides a fine tuning calibration scheme.
  • the laser pointer After the laser pointer is driven by the first driving component 6 to move the laser marking component 4 to the marking focal length of the laser marking component 4, the laser pointer again emits laser light to the surface of the marking object, and the laser sensor receives the marking again.
  • the laser reflected from the surface of the object sends an induction signal to the controller, and the controller again calculates the vertical distance from the surface of the marking object to the ranging component and sends a fine adjustment signal to the first driving component, and the first driving component is used to drive the laser according to the fine tuning signal.
  • the component is fine-tuned to improve the accuracy of the position adjustment.
  • This embodiment is an improvement on the basis of Embodiments 1 and 2, and the specific improvement is as follows.
  • a laser marking machine as shown in FIGS. 3 and 4, includes a frame and a laser assembly 4 disposed on the frame, the laser marking assembly 4 includes a laser 42 for generating laser light, and is sequentially disposed in the laser 42 A focusing assembly 43 and a scanning head 41 on the optical path of the laser are generated. Also included is a concentrating mirror controller 7 and a concentrating mirror driving assembly 61, and the concentrating mirror controller 7, the concentrating mirror driving assembly 61, and the optical path assembly 43 are sequentially connected.
  • the scanning head 41 includes an X mirror for adjusting the optical path to be deflected in the lateral direction and a Y mirror for adjusting the optical path to be deflected in the longitudinal direction.
  • the marking laser is emitted from the laser 42 and is focused by the optical path assembly 43 and adjusted by the scanning head 41 to be irradiated onto the marking object 10.
  • the optical path assembly 43 includes a support base 431, a bracket 432, a concave lens 433, and a convex lens 434 (in other embodiments, the positions of the two are interchangeable and should be considered equivalent to the present embodiment).
  • the support base 431 is provided with a guide rail 435 extending along the laser optical path.
  • the bracket 432 is disposed on the guide rail 435 and slidable along the guide rail 435.
  • the focus lens 433 is fixed on the bracket 432, and further includes a swing motor directly or indirectly connected to the bracket.
  • the motor control bracket slides back and forth along the guide rail direction, and the swing motor is connected to the controller; therefore, when the bracket 432 slides on the guide rail 435, the focus lens 433 is also moved, and the position of the focus lens 433 at the position of the guide rail 435 corresponds to the focal length of the marking laser, and the focus is passed.
  • the movement of the lens 433 on the guide rail 435 changes the focal length of the marking laser.
  • a distance measuring assembly 5 is further provided on the laser marking assembly 4, and the distance measuring assembly 5 includes a laser pointer and a laser sensor.
  • the laser pointer is used to emit laser light to the surface of the marking object, the laser generates diffuse reflection on the surface of the marking object 10, and the laser sensor is used to receive the laser light reflected by the surface of the marking object 10, thereby generating an induction and transmitting a first sensing signal to the controller.
  • the concentrating mirror controller 7 is configured to calculate the vertical distance of the marking object surface to the ranging component 5 according to the first sensing signal.
  • the concentrating mirror controller 7 calculates the surface of the marking object to the distance measuring After the vertical distance of the component, a control signal is sent to the concentrating mirror driving component 61.
  • the concentrating mirror driving component 61 is configured to drive the gantry 3 to move the laser component 4 according to the control signal until the marking object is located on the marking focal length of the laser component 4.
  • This embodiment is a method for adjusting the distance between the scanning head and the marking object based on the devices of Embodiments 1 and 2.
  • a method for adjusting a distance between a scanning head and a marking object the laser pointer emitting a laser to the surface of the marking object; the laser sensor receiving the feedback laser diffused and reflected by the surface of the marking object and transmitting the sensing signal to the controller;
  • the sensing signal calculates a vertical distance from the surface of the marking object to the scanning head and sends a control signal to the first driving component or the second driving component; the first driving component drives the laser marking component according to the control signal or the second driving component drives the driving according to the control information
  • the marking machine moves to the surface of the marking object and the marking starting point is below the marking focal length of the scanning head of the laser marking component.
  • the laser pointer emits laser light to a feature point preset on the surface of the marking object; the laser sensor receives the laser light reflected by the feature point and sends an induction signal to the controller.
  • the laser pointer again emits an indication laser to the surface of the marking object; the laser sensor receives the laser light reflected by the surface of the marking object and sends an induction signal to the controller; the controller calculates the vertical distance from the surface of the marking object to the scanning head according to the sensing signal and The first driving component or the second driving component sends a trimming signal; the first driving component or the second driving component performs driving fine tuning calibration according to the trimming signal.
  • This embodiment is a marking machine autofocus method adopted on the basis of the devices of Embodiments 1 and 2.
  • a marking machine autofocus method comprising at least one fixed convex lens and at least one movable concave lens; further comprising a guide rail extending along a direction of the marking laser light, a bracket disposed on the guide rail, the concave lens being fixed at The bracket further includes a swing motor directly or indirectly connected to the bracket, the swing motor control bracket slides back and forth along the guide rail direction, and the swing motor is connected with the controller; the distance between the scan head and the surface feature reference point of the marking object matches the laser marking machine After the marking focal length, the laser pointer again emits an indicating laser to the surface of the marking object, the laser sensor receives the feedback laser diffused and reflected by the surface of the marking object and sends an induction signal to the controller, and the controller calculates the marking object again according to the sensing signal.
  • the surface feature points the vertical distance from the scanning head to the scanning motor and sends a control signal to the swinging motor.
  • the driving bracket and its concave lens slide on the guide rail to change the marking focal length of the marking machine to the marking focal length equal to the surface of the marking object to the scanning head. vertical distance.
  • the utility model further comprises a control terminal connected to the controller, wherein the control terminal stores a digital model of the marking object, and the control terminal is based on the digital model of the marking object when the marking laser is incident on the surface of the marking object except the feature reference point. And calculating the real-time distance between the point of the target surface and the scanning head except the characteristic reference point, and sending a signal to the controller, and the controller controls the swing motor adjusting bracket and the concave lens thereof on the guide rail.
  • the sliding position is again such that the marking focal length is equal to the real-time distance of the point of the marking surface other than the feature reference point from the scanning head.
  • the overall beneficial effect of the present invention is: since the present invention emits laser light to the surface of the marking object through the laser pointer, the laser sensor is configured to receive the laser light reflected by the surface of the marking object and send an induction signal to the controller, the controller according to the first The signal calculates a vertical distance from the surface of the marking object to the ranging component and sends a control signal to the driving component, and the first driving component drives the laser marking component to move to the marking focal length of the laser marking component according to the control signal, or The second driving component drives the marking platform to move according to the control signal to the marking object located at the marking focal length of the laser marking component. Therefore, the application can automatically adjust the distance between the scanning head and the marking object to the marking focal length, thereby ensuring the accuracy of the marking and improving the marking speed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光打标机,包括机架(2)和设置在机架上并可沿机架上下移动的托台(3),托台上设置有激光打标组件(4),还包括控制器(8)和设置在机架上用于驱动托台沿机架上下移动的第一驱动组件(6),还包括设置在激光打标组件上的测距组件(5)。测距组件包括激光指示器和激光传感器,激光指示器用于向打标物体(10)表面发射激光,激光传感器用于接收经打标物体表面反射的激光并向控制器发送信号,控制器根据信号计算打标物体表面到测距组件的垂直距离,第一驱动组件根据信号驱动托台带动激光打标组件移动至扫描头(41)和打标物体表面之间的距离达到预定距离。还公开了一种调节激光打标机扫描头与打标物距离的方法、及激光打标机的自动对焦方法。上述激光打标机可保证打标的准确性,提升打标速度。

Description

激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法 技术领域
本发明属于激光打标技术领域,具体涉及一种激光打标机、调节激光打标机扫描头与打标物距离的方法及打标机自动对焦方法。
背景技术
激光打标机是综合了激光技术和计算机技术的光、机电一体化设备。激光打标技术目前在国内外工业上的应用正被人们逐渐重视,各种新型的打标设备层出不穷,它以其独特的优点正在取代传统的标记方法,可在各种机械零部件、电子元器件、集成电路模块、仪器、仪表等多种物体表面上,打印出标记。
其工作原理为激光器产生激光,经过聚焦镜片聚焦后,再照射到打标物体的表面,只有当打标物***于焦距位置时才具有较为理想的打标效果。现有技术都是人工手动对打标机进行调整以及对焦,手动调节降低了打标机的工作效率,调节的误差较大,这降低了打标的精度和速度。
发明内容
本发明提供一种激光打标机、调节激光打标机扫描头与打标物距离的方法及打标机自动对焦方法,解决现有技术中,需手动对激光打标机进行调整而降低了打标精度和速度的问题。所采用的方案为:
方案一:一种激光打标机,包括用于放置打标物的打标机台,位于打标机台上的机架,设置在机架上并可沿机架上下移动的托台,托台上设置有激光打标组件,激光打标组件包括依次安装的激光器、光路组件和扫描头,光路组件包括若干凹透镜和/或凸透镜,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头,扫描头包括依次安装的X反射镜和Y反射镜,X反射镜安装在X电机的转动输出轴上,Y反射镜安装在Y电机的转动输出轴上,X电机的转动轴线方向与Y电机的转动轴线方向相互异面垂直,打标激光依次射至X反射镜和Y反射镜上,经过X反射镜和Y反射镜改变方向后,使打标激光以扫描的方式朝向打标机台射出;还包括控制器和设置在机架上用于驱动托台沿机架上下移动的第一驱动组件,第一驱动组件包括若干驱动电机,驱动电机直接或间接连接托台,所述控制器控制驱动电机驱动托台沿机架上下移动;还包括设置在托台或者激光打标组件上的测距组件,测距组件包括激光指示器和激光传感器;测距组件、控制器和第一驱动组件依次相连;激光指示器用于向打标物表面发射指示激光,激 光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;控制器向第一驱动组件发送控制信号,第一驱动组件的驱动电机根据控制信号驱动激光打标组件移动,使激光打标组件的扫描头与打标物表面的距离匹配激光打标机的打标焦距。
方案二:激光打标机,包括底座和底座上用于放置打标物的打标机台,打标机台可上下移动,位于打标机台上方的机架,设置在机架上的托台,托台上设置有激光打标组件,激光打标组件包括依次安装的激光器、光路组件和扫描头,光路组件包括若干凹透镜和/或凸透镜,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头,扫描头包括依次安装的X反射镜和Y反射镜,X反射镜安装在X电机的转动输出轴上,Y反射镜安装在Y电机的转动输出轴上,X电机的转动轴线方向与Y电机的转动轴线方向相互异面垂直,打标激光依次射至X反射镜和Y反射镜上,经过X反射镜和Y反射镜改变方向后,使打标激光以扫描的方式朝向打标机台射出;还包括控制器和用于驱动打标机台上下移动的第二驱动组件,第二驱动组件包括若干驱动电机,驱动电机直接或间接连接打标机台,所述控制器控制驱动电机驱动打标机台上下移动;还包括设置在托台或者激光打标组件上的测距组件,测距组件包括激光指示器和激光传感器;测距组件、控制器和第二驱动组件依次相连;激光指示器用于向打标物表面发射指示激光,激光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;控制器向第二驱动组件发送控制信号,第二驱动组件的驱动电机根据控制信号驱动激光打标组件移动,使激光打标组件的扫描头与打标物表面的距离匹配激光打标机的打标焦距。
方案二的优选:底座的上表面开设有竖向延伸的滑动腔,打标机台设置在滑动腔内,滑动腔内设置与打标平台相连的所述第二驱动组件。
方案一和二的优选:激光指示器用于向打标物表面预置的特征点发射指示激光,激光传感器用于接收经特征点反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算特征点到扫描头的垂直方向距离并向第一驱动组件或第二驱动组件发送控制信号,第一驱动组件根据控制信号驱动激光打标组件或第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。
方案一和二的优选:激光指示器在打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方后,再次向打标物体表面发射指示激光,激光传感器用于接收经打标物表面漫反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送微调信号,第一驱动组件或第二驱动组件用于根据微调信号进行驱 动微调校准。
方案三:调节扫描头和打标物体之间距离的方法,激光指示器向打标物表面发射激光;激光传感器接收经打标物体表面漫反射的反馈激光并向控制器发送感应信号;控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送控制信号;第一驱动组件根据控制信号驱动激光打标组件或第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。
方案三的优选:激光指示器向打标物体表面预置的特征点发射激光;激光传感器接收经特征点反射的激光并向控制器发送感应信号。
方案三的优选:激光指示器再次向打标物体表面发射指示激光;激光传感器接收经打标物体表面反射的激光并向控制器发送感应信号;控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送微调信号;第一驱动组件或第二驱动组件根据微调信号进行驱动微调校准。
方案四:打标机自动对焦方法,所述光路组件包括至少1个固定的凸透镜和至少1个活动的凹透镜;还包括沿打标激光光亮方向延伸的导轨,设置在导轨上的支架,凹透镜固定在支架上,还包括与支架直接或间接连接的摆动电机,摆动电机控制支架沿导轨方向往返滑动,摆动电机与控制器连接;在扫描头与打标物表面特征参考点的距离匹配激光打标机的打标焦距后,激光指示器再次向打标物体表面发射指示激光,激光传感器接收经打标物表面漫反射的反馈激光并向控制器发送感应信号,控制器再次根据感应信号计算打标物表面特征参考点到扫描头的垂直距离,并向摆动电机发出控制信号,驱动支架及其凹透镜在导轨上滑动以改变打标机的打标焦距至打标焦距等于打标物表面到扫描头的垂直距离。
方案四的优选:还包括与控制器连接的控制终端,控制终端内存储有打标物的数字模型,在打标激光射在打标物表面除特征参考点以外的点时,控制终端依据打标物的数字模型以及特征参考点到扫描头的垂直距离计算出打标物表面除特征参考点以外的点与扫描头的实时距离,并向控制器发出信号,控制器控制摆动电机调节支架及其凹透镜在导轨上的滑动位置以再次使打标焦距等于打标物表面除特征参考点以外的点与扫描头的实时距离。
本发明的有益效果是:由于本发明通过激光指示器向打标物体表面发射激光,激光传感器用于接收经打标物体表面反射的激光并向控制器发送感应信号,控制器根据第一信号计算打标物体表面到测距组件的垂直距离并向驱动组件发送控制信号,第一驱动组件根据控制信号驱动激光打标组件移动至打标物***于激光打标组件的打标焦距上,或者第二驱动组件根据控制信号驱动打标平台移动至打标物***于激光打标组件的打标焦距上。因此,本申请可自动将扫描头和打标物体之间的距离调整至打标焦距,保证了打标的准确性,提升了打标速度。
附图说明
图1为本发明激光打标机的结构示意图
图2为本发明激光打标机的侧视图
图3为本发明激光打标机工作原理示意图
图4为本发明激光打标机的光路组件的结构示意图
图5为图4中A部放大图
图6为本发明激光打标机的自动对焦原理示意图
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1:
一种激光打标机,如图1和图2所示,包括底座1,在底座1上设置有机架2,机架2上开设有竖向延伸的导轨,导轨上设置有托台3,托台3可沿导轨滑动。在托台3上设置有激光打标组件4,激光打标组件4用于产生打标激光,打标激光从扫描头41射出。
扫描头包括依次安装的X反射镜和Y反射镜,X反射镜安装在X电机的转动输出轴上,Y反射镜安装在Y电机的转动输出轴上,X电机的转动轴线方向与Y电机的转动轴线方向相互异面垂直,打标激光依次射至X反射镜和Y反射镜上,经过X反射镜和Y反射镜改变方向后,使打标激光以扫描的方式朝向打标机台射出。
再照射到打标平台11上的打标物体10上。激光打标机托台3与第一驱动组件相连,第一驱动组件6与控制器相连。第一驱动组件6包括驱动器和丝杆机构,手动操作控制按钮81,使控制器发出指令,通过驱动器和丝杆机构的配合驱动托台3在机架2上沿导轨上下移动,从而调整扫描头41与打标物体10之间的距离。
在扫描头41的一侧设置有测距组件5,测距组件5内集成有激光指示器和激光传感器。激光传感器、控制器和第一驱动组件6依次电连接。其中,激光指示器可选用红光激光指示器,红色激光的可识别度高,便于激光感应器的感应。
第一驱动组件包括若干驱动电机,驱动电机直接或间接连接托台,所述控制器控制驱动电机驱动托台沿机架上下移动;还包括设置在托台或者激光打标组件上的测距组件,测距组件包括激光指示器和激光传感器;测距组件、控制器和第一驱动组件依次相连;激光指示器用于向打标物表面发射指示激光,激光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;控制器向第一驱动组件发送控制信号,第一驱动组件的驱动电机根据控制信号驱动激光打标组件移动,使激光打标组件的扫描头与打标物表面的距 离匹配激光打标机的打标焦距。激光指示器用于向打标物表面预置的特征点发射指示激光,激光传感器用于接收经特征点反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算特征点到扫描头的垂直方向距离并向第一驱动组件发送控制信号,第一驱动组件根据控制信号驱动激光打标组件移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。:激光指示器在打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方后,再次向打标物体表面发射指示激光,激光传感器用于接收经打标物表面漫反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件发送微调信号,第一驱动组件根据微调信号进行驱动微调校准。
如图3、图4和图5所示,激光打标组件包括依次安装的激光器42、光路组件43和扫描头41,光路组件包括凹透镜433和凸透镜434,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头。扫描头包括若干反射透镜,用于改变打标激光的方向,使打标激光朝向打标机台射出。
如图6所示,在具体对打标物体10进行打标时,激光打标机启动工作后,激光指示器向打标物体10表面发射激光,激光在打标物体10表面产生漫反射,激光传感器用于接收经打标物体10表面反射的激光,从而产生感应并向控制器发送感应信号,控制器用于根据感应信号计算打标物体10表面到测距组件的垂直距离。控制器计算距离的原理是根据激光的直线传播和发射角度,,控制器计算出打标物体10表面到测距组件的垂直距离后,向第一驱动组件6发送控制信号,第一驱动组件6用于根据控制信号驱动托台3带动激光打标组件4移动,直至打标物体10位于激光打标组件4的打标焦距上。之后,激光打标机根据打标图案在虚拟模型上的位置对打标物体10进行打标。
本实施例中,第一驱动组件6包括驱动器和丝杆机构,在其他实施例中,凡是可通过控制信号驱动激打标组件3在机架2上沿导轨上下移动的第一驱动组件,均落入本实施例的保护范围。同时,本实施例是测量打标物体10表面到测距组件5的垂直距离。
实施例2:
本实施例相对于实施例的1的差别,主要在于第二驱动组件上。具体来说:
激光打标机,包括底座和底座上用于放置打标物的打标机台,打标机台可上下移动,位于打标机台上方的机架,设置在机架上的托台,托台上设置有激光打标组件,激光打标组件包括依次安装的激光器、光路组件和扫描头,光路组件包括若干凹透镜和/或凸透镜,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头,扫描头包括若干反射透镜,用于改变打标激光的方向,使打标激光朝向打标机台射出;还包括控制器和用于驱动打标机台上下移动的第二驱动组件,第二驱动组件包括若干驱动电机,驱动电机直接或间接连接打标机台,所述控制器控制驱动电机驱动打标机台上下移动;还包括设置在托台或者激光打标组 件上的测距组件,测距组件包括激光指示器和激光传感器;测距组件、控制器和第二驱动组件依次相连;激光指示器用于向打标物表面发射指示激光,激光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;控制器向第二驱动组件发送控制信号,第二驱动组件的驱动电机根据控制信号驱动激光打标组件移动,使激光打标组件的扫描头与打标物表面的距离匹配激光打标机的打标焦距。
底座的上表面开设有竖向延伸的滑动腔,打标机台设置在滑动腔内,滑动腔内设置与打标平台相连的所述第二驱动组件。
激光指示器用于向打标物表面预置的特征点发射指示激光,激光传感器用于接收经特征点反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算特征点到扫描头的垂直方向距离并向第二驱动组件发送控制信号,第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。激光指示器在打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方后,再次向打标物体表面发射指示激光,激光传感器用于接收经打标物表面漫反射的反馈激光并向控制器发送感应信号,控制器用于根据感应信号计算打标物体表面到扫描头的垂直距离并向第二驱动组件发送微调信号,第二驱动组件用于根据微调信号进行驱动微调校准。
实施例3:
本实施是在实施例1或2的基础上改进,本实施例说明一种针对立体打标物的激光打标机的方案。
如图6所示,在具体对打标物体10进行打标时,激光打标机还可以连接外部控制终端。在控制终端内建立打标物体10的虚拟模型,将打标图案贴覆到虚拟模型的表面。
由于控制终端内存储有打标物体10的虚拟模型,也存储有虚拟模型的各项参数,只要知晓模型上任意一点到测距组件5的距离,即可获知虚拟模型上其他任意一点到测距组件5的距离。因此,本实施例需要在打标物体10表面预先设定一个特征点,该特征点可以是打标物体10表面任意较易识别的点,可以选打标物体10表面的最高点或者最低点。同时,存储在虚拟模型内与该特征点相对应点的位置。
如图6所示,预先设定特征点101为打标物体10表面的最高点,打标物体10放置在打标平台11上,移动打标物体10至激光指示器所发射激光照射到特征点101上。激光指示器用于向特征点101发射激光,激光传感器用于接收在特征点101反射的激光,控制器8计算出特征点101到测距组件5的垂直距离,则打标物体10上任意一点到测距组件5的垂直距离可知,激光打标机可从打标物体10上的任意一点开始打标,因此设定一个打标初始点102,并向驱动组件发送控制信号。驱动 组件用于根据控制信号驱动移动,直至打标初始点102位于激光打标组件4的打标焦距上。之后,控制终端的内部程序会控制激光打标机从打标初始点102开始打标。
实施例4:
在实施例1中,第一驱动组件6驱动激光打标组件4移动至打标物体10位于激光打标组件4的打标焦距上时,激光打标组件4所处位置与实际焦距位置会有较大误差,特别是第一驱动组件6驱动激光打标组件4移动距离较大时,这种误差会更大,因此本实施例提供一种微调校准的方案。
激光指示器在第一驱动组件6驱动激光打标组件4移动至打标物体10位于激光打标组件4的打标焦距上之后,再次向打标物体表面发射激光,激光传感器再次接收经打标物体表面反射的激光并向控制器发送感应信号,控制器再次计算打标物体表面到测距组件的垂直距离并向第一驱动组件发送微调信号,第一驱动组件用于根据微调信号驱动激光打标组件进行微调校准,从而提升位置调整的准确性。
实施例5:
本实施例为在实施例1和2基础上的改进,具体改进如下。
一种激光打标机,如图3和图4所示,包括机架和设置在机架上的激光组件4,激光打标组件4包括用于产生激光的激光器42以及依次设置在激光器42所产生激光的光路上的调焦组件43和扫描头41。还包括聚镜控制器7和聚镜驱动组件61,聚镜控制器7、聚镜驱动组件61和光路组件43依次连接。
扫描头41包括X反射镜和Y反射镜,X反射镜用于调整光路在横向上偏转,Y反射镜用于调整光路在纵向上偏转。打标激光从激光器42中射出,经光路组件43聚焦和扫描头41调整后照射到打标物体10上。
光路组件43包括支撑座431、支架432、凹透镜433和凸透镜434(其他实施例中,两者位置可以互换,应当认为与本方案等同)。支撑座431上设置有沿激光光路延伸的导轨435,支架432设置在导轨435上并可沿导轨435滑动,聚焦镜片433固定在支架432上,还包括与支架直接或间接连接的摆动电机,摆动电机控制支架沿导轨方向往返滑动,摆动电机与控制器连接;因此支架432在导轨435上滑动时,也带动聚焦镜片433移动,聚焦镜片433在导轨435的位置对应打标激光的焦距,通过聚焦镜片433在导轨435上的移动而改变打标激光的焦距。
在激光打标组件4上还设置有测距组件5,测距组件5包括激光指示器和激光传感器。激光指示器用于向打标物体表面发射激光,激光在打标物体10表面产生漫反射,激光传感器用于接收经打标物体10表面反射的激光,从而产生感应并向控制器发送第一感应信号,聚镜控制器7用于根据第一感应信号计算打标物体表面到测距组件5的垂直距离。聚镜控制器7计算出打标物体表面到测距 组件的垂直距离后,向聚镜驱动组件61发送控制信号,聚镜驱动组件61用于根据控制信号驱动托台3带动激光组件4移动,直至打标物***于激光组件4的打标焦距上。
实施例6:
本实施例为在实施例1和2设备基础上采用的调节扫描头和打标物体之间距离的方法。
一种调节扫描头和打标物体之间距离的方法,激光指示器向打标物表面发射激光;激光传感器接收经打标物体表面漫反射的反馈激光并向控制器发送感应信号;控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送控制信号;第一驱动组件根据控制信号驱动激光打标组件或第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。
激光指示器向打标物体表面预置的特征点发射激光;激光传感器接收经特征点反射的激光并向控制器发送感应信号。
激光指示器再次向打标物体表面发射指示激光;激光传感器接收经打标物体表面反射的激光并向控制器发送感应信号;控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送微调信号;第一驱动组件或第二驱动组件根据微调信号进行驱动微调校准。
实施例7:
本实施例为在实施例1和2设备基础上采用的打标机自动对焦方法。
一种打标机自动对焦方法,所述光路组件包括至少1个固定的凸透镜和至少1个活动的凹透镜;还包括沿打标激光光亮方向延伸的导轨,设置在导轨上的支架,凹透镜固定在支架上,还包括与支架直接或间接连接的摆动电机,摆动电机控制支架沿导轨方向往返滑动,摆动电机与控制器连接;在扫描头与打标物表面特征参考点的距离匹配激光打标机的打标焦距后,激光指示器再次向打标物体表面发射指示激光,激光传感器接收经打标物表面漫反射的反馈激光并向控制器发送感应信号,控制器再次根据感应信号计算打标物表面特征参考点到扫描头的垂直距离,并向摆动电机发出控制信号,驱动支架及其凹透镜在导轨上滑动以改变打标机的打标焦距至打标焦距等于打标物表面到扫描头的垂直距离。
还包括与控制器连接的控制终端,控制终端内存储有打标物的数字模型,在打标激光射在打标物表面除特征参考点以外的点时,控制终端依据打标物的数字模型以及特征参考点到扫描头的垂直距离计算出打标物表面除特征参考点以外的点与扫描头的实时距离,并向控制器发出信号,控制器控制摆动电机调节支架及其凹透镜在导轨上的滑动位置以再次使打标焦距等于打标物表面除特征参考点以外的点与扫描头的实时距离。
本发明的总体的有益效果是:由于本发明通过激光指示器向打标物体表面发射激光,激光传感器用于接收经打标物体表面反射的激光并向控制器发送感应信号,控制器根据第一信号计算打标物体表面到测距组件的垂直距离并向驱动组件发送控制信号,第一驱动组件根据控制信号驱动激光打标组件移动至打标物***于激光打标组件的打标焦距上,或者第二驱动组件根据控制信号驱动打标平台移动至打标物***于激光打标组件的打标焦距上。因此,本申请可自动将扫描头和打标物体之间的距离调整至打标焦距,保证了打标的准确性,提升了打标速度。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本实用新型构成任何限制。

Claims (10)

  1. 激光打标机,包括用于放置打标物的打标机台,位于打标机台上的机架,设置在机架上并可沿机架上下移动的托台,托台上设置有激光打标组件;
    激光打标组件包括依次安装的激光器、光路组件和扫描头,光路组件包括若干凹透镜和/或凸透镜,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头;
    扫描头包括依次安装的X反射镜和Y反射镜,X反射镜安装在X电机的转动输出轴上,Y反射镜安装在Y电机的转动输出轴上,X电机的转动轴线方向与Y电机的转动轴线方向相互异面垂直,打标激光依次射至X反射镜和Y反射镜上,经过X反射镜和Y反射镜改变方向后,使打标激光以扫描的方式朝向打标机台射出;
    其特征在于:还包括控制器和设置在机架上用于驱动托台沿机架上下移动的第一驱动组件,第一驱动组件包括若干驱动电机,驱动电机直接或间接连接托台,所述控制器控制驱动电机驱动托台沿机架上下移动;
    还包括设置在托台或者激光打标组件上的测距组件,测距组件包括激光指示器和激光传感器,测距组件、控制器和第一驱动组件依次连接;
    激光指示器用于向打标物表面发射指示激光,激光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;
    激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;
    控制器向第一驱动组件发送控制信号,第一驱动组件的驱动电机根据控制信号驱动托台移动,使托台上激光打标组件的扫描头与打标物表面的距离匹配激光打标机的打标焦距。
  2. 激光打标机,包括底座和底座上用于放置打标物的打标机台,打标机台可上下移动,位于打标机台上方的机架,设置在机架上的托台,托台上设置有激光打标组件;
    激光打标组件包括依次安装的激光器、光路组件和扫描头,光路组件包括若干凹透镜和/或凸透镜,位于激光器和扫描头之间,用于调节入射激光的光束焦距,打标激光自激光器出射,经过光路组件,入射至扫描头;
    扫描头包括依次安装的X反射镜和Y反射镜,X反射镜安装在X电机的转动输出轴上,Y反射镜安装在Y电机的转动输出轴上,X电机的转动轴线方向与Y电机的转动轴线方向相互异面垂直,打标激光依次射至X反射镜和Y反射镜上,经过X反射镜和Y反射镜改变方向后,使打标激光以扫描的方式朝向打标机台射出;
    其特征在于:还包括控制器和用于驱动打标机台上下移动的第二驱动组件,第二驱动组件包括若干驱动电机,驱动电机直接或间接连接打标机台,所述控制器控制驱动电机驱动打标机台上下移动;
    还包括设置在托台或者激光打标组件上的测距组件,测距组件包括激光指示器和激光传感器,测距组件、控制器和第二驱动组件依次连接;
    激光指示器用于向打标物表面发射指示激光,激光传感器用于接收经打标物表面漫反射指示激光的反馈激光,指示激光与反馈激光不重合;
    激光传感器向控制器发送感应信号,控制器用于根据感应信号计算指示激光与反馈激光的夹角并进一度计算出打标物表面到扫描头的距离;
    控制器向第二驱动组件发送控制信号,第二驱动组件的驱动电机根据控制信号驱动打标机台移动,使激光打标组件的扫描头与打标物表面的距离匹配激光打标机的打标焦距。
  3. 根据权利要求2所述的激光打标机,其特征在于:底座的上表面开设有竖向延伸的滑动腔,打标机台设置在滑动腔内,滑动腔内设置与打标平台相连的所述第二驱动组件。
  4. 根据权利要求1或2所述的激光打标机,其特征在于:激光指示器用于向打标物表面预置的特征点发射指示激光,激光传感器用于接收经特征点反射的反馈激光并向控制器发送感应信号;
    控制器用于根据感应信号计算特征点到扫描头的垂直方向距离并向第一驱动组件或第二驱动组件发送控制信号,第一驱动组件根据控制信号驱动托台或第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。
  5. 根据权利要求4所述的激光打标机,其特征在于:激光指示器在打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方后,再次向打标物体表面发射指示激光,激光传感器用于接收经打标物表面漫反射的反馈激光并向控制器发送感应信号;
    控制器用于根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送微调信号,第一驱动组件或第二驱动组件用于根据微调信号进行驱动微调校准。
  6. 根据权利要求1或2所述激光打标机的调节扫描头和打标物距离的方法,其特征在于:
    激光指示器向打标物表面发射激光;
    激光传感器接收经打标物体表面漫反射的反馈激光并向控制器发送感应信号;
    控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送控制信号;
    第一驱动组件根据控制信号驱动托台或第二驱动组件根据控制信息驱动打标机台移动至打标物表面打标起始点位于激光打标组件扫描头的打标焦距下方。
  7. 根据权利要求6所述的调节扫描头和打标物距离的方法,其特征在于:
    激光指示器向打标物体表面预置的特征点发射激光,激光传感器接收经特征点反射的激光并向控制器发送感应信号。
  8. 根据权利要求7所述的调节扫描头和打标物距离的方法,其特征在于:
    激光指示器再次向打标物体表面发射指示激光;
    激光传感器接收经打标物体表面反射的激光并向控制器发送感应信号;
    控制器根据感应信号计算打标物体表面到扫描头的垂直距离并向第一驱动组件或第二驱动组件发送微调信号;
    第一驱动组件或第二驱动组件根据微调信号进行驱动微调校准。
  9. 根据权利要求1或2所述激光打标机的打标机自动对焦方法,其特征在于:
    所述光路组件包括至少1个固定的凸透镜和至少1个活动的凹透镜;还包括沿打标激光光亮方向延伸的导轨,设置在导轨上的支架,凹透镜固定在支架上,还包括与支架直接或间接连接的摆动电机,摆动电机控制支架沿导轨方向往返滑动,摆动电机与控制器连接;
    在扫描头与打标物表面特征参考点的距离匹配激光打标机的打标焦距后,激光指示器再次向打标物体表面发射指示激光;
    激光传感器接收经打标物表面漫反射的反馈激光并向控制器发送感应信号;
    控制器再次根据感应信号计算打标物表面特征参考点到扫描头的垂直距离,并向摆动电机发出控制信号;
    驱动支架及其凹透镜在导轨上滑动以改变打标机的打标焦距至打标焦距等于打标物表面到扫描头的垂直距离。
  10. 根据权利要求9所述的打标机自动对焦方法,其特征在于:
    还包括与控制器连接的控制终端,控制终端内存储有打标物的数字模型;
    在打标激光射在打标物表面除特征参考点以外的点时,控制终端依据打标物的数字模型以及特征参考点到扫描头的垂直距离计算出打标物表面除特征参考点以外的点与扫描头的实时距离,并向控制器发出信号;
    控制器控制摆动电机调节支架及其凹透镜在导轨上的滑动位置以再次使打标焦距等于打标物表面除特征参考点以外的点与扫描头的实时距离。
PCT/CN2017/113288 2016-03-26 2017-11-28 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法 WO2018176879A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610182815 2016-03-26
CN201710185470.3 2017-03-26
CN201710185470.3A CN107225322A (zh) 2016-03-26 2017-03-26 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法

Publications (1)

Publication Number Publication Date
WO2018176879A1 true WO2018176879A1 (zh) 2018-10-04

Family

ID=59933586

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2017/113278 WO2018176878A1 (zh) 2016-03-26 2017-11-28 一种激光打标机及其自动对焦打标方法
PCT/CN2017/113288 WO2018176879A1 (zh) 2016-03-26 2017-11-28 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法
PCT/CN2018/080565 WO2018177261A1 (zh) 2016-03-26 2018-03-26 一种激光打标机、调节扫描头与打标物距离的方法、打标机自动对焦方法和自动对焦打标方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113278 WO2018176878A1 (zh) 2016-03-26 2017-11-28 一种激光打标机及其自动对焦打标方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080565 WO2018177261A1 (zh) 2016-03-26 2018-03-26 一种激光打标机、调节扫描头与打标物距离的方法、打标机自动对焦方法和自动对焦打标方法

Country Status (2)

Country Link
CN (7) CN107225322A (zh)
WO (3) WO2018176878A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530927A (zh) * 2019-01-24 2019-03-29 深圳市杰普特光电股份有限公司 激光打标机及激光加工***
CN113581859A (zh) * 2021-07-28 2021-11-02 达科为(深圳)医疗设备有限公司 玻片打号机
CN114749804A (zh) * 2022-05-07 2022-07-15 同日云联信息技术(苏州)有限公司 基于工业互联网的手持激光刻印装置及方法
CN115890003A (zh) * 2022-10-24 2023-04-04 湖北三江航天红峰控制有限公司 一种双振镜自动激光剥线打标与去漆设备及其使用方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790876A (zh) * 2017-03-26 2018-03-13 广州新可激光设备有限公司 自动对焦打标一体机
CN107225322A (zh) * 2016-03-26 2017-10-03 广州创乐激光设备有限公司 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法
CN107813059A (zh) * 2017-11-27 2018-03-20 江苏昆太工业装备有限公司 一种激光打标通讯***
CN108161232A (zh) * 2017-12-11 2018-06-15 厦门盈趣科技股份有限公司 一种激光曲面雕刻的方法及装置
CN107900527A (zh) * 2017-12-21 2018-04-13 江苏森蓝智能***有限公司 一种自动化打标电控***及其打标方法
CN108015430A (zh) * 2018-01-22 2018-05-11 成都迈锐捷激光技术有限公司 激光打标装置及设备
CN108406126B (zh) * 2018-04-23 2023-10-03 广州新可激光设备有限公司 一种单层抽拉换料激光打标机
CN108311786A (zh) * 2018-04-23 2018-07-24 广州新可激光设备有限公司 一种多层抽拉换料激光打标机
CN108393578A (zh) * 2018-05-21 2018-08-14 世特科汽车工程产品(常州)有限公司 一种激光刻印机自动调焦机构
CN109590611A (zh) * 2018-12-18 2019-04-09 苏州青石光电技术有限公司 多卡多头协同控制***
CN109649059A (zh) * 2018-12-24 2019-04-19 苏州爱沛达自动化设备有限公司 一种自动刻印及检测二维码的机构
CN109514091B (zh) * 2018-12-29 2020-07-31 广州新可激光设备有限公司 一种激光打标机的3d扫描建模方法、***及其打标机
CN109968854B (zh) * 2019-04-17 2021-07-16 大族激光科技产业集团股份有限公司 激光打标机及其打标方法
CN110102905A (zh) * 2019-04-30 2019-08-09 深圳市艾雷激光科技有限公司 自动化激光打标设备
CN110270762B (zh) * 2019-06-06 2020-11-17 中国科学院西安光学精密机械研究所 采用激光加工方式对回转体零件内壁进行雕刻的设备
CN110170741A (zh) * 2019-07-03 2019-08-27 温州大学 激光加工中聚焦光束对焦装置
CN110548990B (zh) * 2019-09-06 2020-07-10 深圳市大德激光技术有限公司 一种动力电池精密结构件激光焊接的光束控制方法及***
CN110497090A (zh) * 2019-09-25 2019-11-26 中科和光(天津)应用激光技术研究所有限公司 一种钢板在线激光打标装置
CN111037106B (zh) * 2019-12-31 2021-11-12 广州新可激光设备有限公司 一种激光加工设备的z轴运动控制***及方法
CN111308694B (zh) * 2020-04-01 2023-05-23 重庆金樾光电科技有限公司 能够自适应调节距离的激光扫描***及自动调距方法
CN111907223A (zh) * 2020-08-06 2020-11-10 珠海格力智能装备有限公司 打标机的控制方法及装置、打标机
CN114654095A (zh) * 2020-12-22 2022-06-24 富联裕展科技(深圳)有限公司 打标装置、***及方法
CN112872593A (zh) * 2020-12-24 2021-06-01 中国电子科技集团公司第十四研究所 一种激光打磨***及其打磨方法
CN113325670A (zh) * 2021-06-08 2021-08-31 深圳市先地图像科技有限公司 在工件的不平整表面上激光直接成像的设备及成像方法
CN113325671B (zh) * 2021-06-08 2022-11-25 深圳市先地图像科技有限公司 在工件的不平整表面上激光直接成像的装置及成像方法
CN115570891A (zh) * 2021-06-21 2023-01-06 阳程科技股份有限公司 激光转印设备及激光转印至基材方法
CN113561667A (zh) * 2021-07-23 2021-10-29 华域皮尔博格有色零部件(上海)有限公司 一种自动打标装置
CN113843510B (zh) * 2021-09-13 2024-06-04 武汉先同科技有限公司 移动打标式手持激光打标机
CN113751885A (zh) * 2021-10-25 2021-12-07 安徽日正汽车部件有限公司 一种曲面自动激光打标机
CN114211123A (zh) * 2021-11-24 2022-03-22 浙江东尼电子股份有限公司 一种晶圆镭射打标装置
CN113947967B (zh) * 2021-12-01 2024-04-26 浙江太学科技集团有限公司 装配式建筑构件安装实训***
CN114226988B (zh) * 2021-12-14 2024-03-26 武汉联思光电科技有限公司 一种激光打标机自动调焦装置及自动调焦方法
CN115255652B (zh) * 2022-09-05 2023-03-24 深圳市智鼎自动化技术有限公司 用于激光雕刻机的多角度激光发射自适应控制方法及装置
CN116511728B (zh) * 2023-06-09 2024-03-08 深圳市鸿林机械设备有限公司 一种激光打标机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023657A (ko) * 2003-09-01 2005-03-10 (주)한빛레이저 자동초점 실물영상 레이저 마킹장치
JP2009142865A (ja) * 2007-12-14 2009-07-02 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定方法
CN101856773A (zh) * 2010-04-22 2010-10-13 广州中国科学院工业技术研究院 一种激光加工初始位置的对焦定位方法及激光加工装置
CN104097402A (zh) * 2014-07-08 2014-10-15 深圳市大族激光科技股份有限公司 激光打标机及其打标方法
CN105424008A (zh) * 2015-12-01 2016-03-23 广东顺德华焯机械科技有限公司 机器视觉的激光打标振镜扫描***
CN105644156A (zh) * 2015-12-30 2016-06-08 深圳市创鑫激光股份有限公司 一种激光打标机
CN107225322A (zh) * 2016-03-26 2017-10-03 广州创乐激光设备有限公司 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123952A (ja) * 1997-06-30 1999-01-29 Nec Corp オートフォーカス装置及びこれを利用したレーザ加工装置
CN201677132U (zh) * 2010-04-23 2010-12-22 包头高源激光科技发展有限公司 激光加工机自动对焦装置
CN201848648U (zh) * 2010-09-27 2011-06-01 珠海市铭语自动化设备有限公司 一种自动对焦激光加工装置
CN102442142A (zh) * 2010-09-30 2012-05-09 富泰华工业(深圳)有限公司 镭射雕刻机台
CN202726319U (zh) * 2012-08-21 2013-02-13 武汉先河激光技术有限公司 一种银浆激光蚀刻机
TWI562854B (en) * 2012-10-30 2016-12-21 Hon Hai Prec Ind Co Ltd Device for manufacturing mold core
CN103121326B (zh) * 2013-01-21 2014-12-10 深圳市大族激光科技股份有限公司 一种利用工业相机对物品进行定位的运动打标装置和方法
CN104422393B (zh) * 2013-08-27 2017-04-19 中国兵器工业第二0二研究所 一种测量位移的激光传感器
CN204077082U (zh) * 2014-08-07 2015-01-07 深圳市大族激光科技股份有限公司 激光打标机
CN204101001U (zh) * 2014-09-29 2015-01-14 攀钢集团西昌钢钒有限公司 一种带钢厚度测量设备
CN104553353B (zh) * 2014-12-18 2016-08-03 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示方法、打标方法、可控距离指示装置及3d激光打标机
CN204430557U (zh) * 2015-01-14 2015-07-01 深圳市创鑫激光股份有限公司 一种激光束自动对焦装置
CN105034607A (zh) * 2015-06-03 2015-11-11 张家港市旭华激光有限公司 一种焦点迅速定位的激光打标机和焦点定位方法
CN105880828B (zh) * 2015-06-09 2018-09-18 广州创乐激光设备有限公司 一种延迟振镜动作的激光打标***及激光打标方法
CN107790876A (zh) * 2017-03-26 2018-03-13 广州新可激光设备有限公司 自动对焦打标一体机
CN205464833U (zh) * 2016-04-19 2016-08-17 北京艾森博威科技发展有限公司 激光打标机
CN205989564U (zh) * 2016-08-24 2017-03-01 广州码清机电有限公司 一种红光反射自动对焦激光打标机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023657A (ko) * 2003-09-01 2005-03-10 (주)한빛레이저 자동초점 실물영상 레이저 마킹장치
JP2009142865A (ja) * 2007-12-14 2009-07-02 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定方法
CN101856773A (zh) * 2010-04-22 2010-10-13 广州中国科学院工业技术研究院 一种激光加工初始位置的对焦定位方法及激光加工装置
CN104097402A (zh) * 2014-07-08 2014-10-15 深圳市大族激光科技股份有限公司 激光打标机及其打标方法
CN105424008A (zh) * 2015-12-01 2016-03-23 广东顺德华焯机械科技有限公司 机器视觉的激光打标振镜扫描***
CN105644156A (zh) * 2015-12-30 2016-06-08 深圳市创鑫激光股份有限公司 一种激光打标机
CN107225322A (zh) * 2016-03-26 2017-10-03 广州创乐激光设备有限公司 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530927A (zh) * 2019-01-24 2019-03-29 深圳市杰普特光电股份有限公司 激光打标机及激光加工***
CN113581859A (zh) * 2021-07-28 2021-11-02 达科为(深圳)医疗设备有限公司 玻片打号机
CN113581859B (zh) * 2021-07-28 2022-11-18 达科为(深圳)医疗设备有限公司 玻片打号机
CN114749804A (zh) * 2022-05-07 2022-07-15 同日云联信息技术(苏州)有限公司 基于工业互联网的手持激光刻印装置及方法
CN114749804B (zh) * 2022-05-07 2024-03-19 同日云联信息技术(苏州)有限公司 基于工业互联网的手持激光刻印装置及方法
CN115890003A (zh) * 2022-10-24 2023-04-04 湖北三江航天红峰控制有限公司 一种双振镜自动激光剥线打标与去漆设备及其使用方法

Also Published As

Publication number Publication date
CN107839367A (zh) 2018-03-27
CN206747778U (zh) 2017-12-15
CN108526697A (zh) 2018-09-14
CN107755879B (zh) 2018-12-07
CN208358035U (zh) 2019-01-11
CN208019618U (zh) 2018-10-30
CN108526697B (zh) 2023-11-14
CN107755879A (zh) 2018-03-06
WO2018177261A1 (zh) 2018-10-04
WO2018176878A1 (zh) 2018-10-04
CN107225322A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2018176879A1 (zh) 激光打标机、调节扫描头与打标物距离的方法及打标机自动对焦方法
US20170326684A1 (en) Laser marking head and laser marking machine
CN207858053U (zh) 自动对焦打标一体机
CN111661589B (zh) 一种基于图像定位的运动平台校正方法及装置
WO2016050101A1 (zh) 一种3d激光打标机的可控距离指示方法及可控距离指示装置
KR101572301B1 (ko) 노광 장치
CN111037106B (zh) 一种激光加工设备的z轴运动控制***及方法
CN102305988A (zh) 一种基于光斑检测的投影灯泡自动调焦装置及其使用方法
KR20130096840A (ko) 자동 초점 조절 기능을 가진 레이저 마킹 장치
CN112091413B (zh) 一种激光打标***的打标焦距校正方法
JP2000202655A (ja) レ―ザ―マ―キング装置
KR101554389B1 (ko) 레이저 가공장치
JP2000317657A (ja) レーザマーキング装置
JP2006214850A (ja) レーザ測量機
JPH1147970A (ja) 自動焦点調節機構付きレーザ溶接装置
CN109175737B (zh) 一种激光束与机床轴运动方向平行度的调试方法
KR20160107992A (ko) 레이저 마킹 장치
CN111360412A (zh) 一种通过多个定点按键实现无级调焦的激光打标设备及方法
CN219776623U (zh) 一种激光检测装置
JPH0724589A (ja) レーザロボットの自動アライメント調整方法及び装置
CN219786947U (zh) 一种可切换打标范围的对焦结构
CN209208087U (zh) 光斑大小可调的三维打印设备
CN216647378U (zh) 一种具有测距和调焦功能的pda设备
CN115655662A (zh) 边发射半导体激光器精准测试方法以及***
CN108311786A (zh) 一种多层抽拉换料激光打标机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903867

Country of ref document: EP

Kind code of ref document: A1