WO2018170931A1 - 机器人标定的方法和装置 - Google Patents

机器人标定的方法和装置 Download PDF

Info

Publication number
WO2018170931A1
WO2018170931A1 PCT/CN2017/078213 CN2017078213W WO2018170931A1 WO 2018170931 A1 WO2018170931 A1 WO 2018170931A1 CN 2017078213 W CN2017078213 W CN 2017078213W WO 2018170931 A1 WO2018170931 A1 WO 2018170931A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
axis
calibration
mechanical
zero
Prior art date
Application number
PCT/CN2017/078213
Other languages
English (en)
French (fr)
Inventor
王春晓
刘子雨
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2017/078213 priority Critical patent/WO2018170931A1/zh
Priority to CN201780034031.0A priority patent/CN109641352A/zh
Publication of WO2018170931A1 publication Critical patent/WO2018170931A1/zh

Links

Definitions

  • the present invention relates to the field of industrial robots, and more particularly to a method and apparatus for robot calibration.
  • the zero point is the reference of the robot coordinate system. Without the zero point, the robot has no way to judge its position. When the robot zero point is corrected, the axes of the robot will move the mechanical zero position. At this time, the absolute position of the current encoder battery of each axis will be saved to complete the calibration of the robot. After the calibration is completed, the mobile robot or the running program can be operated in the defined Cartesian coordinate system to reach the predetermined position, and the robot can also know the position of the soft limit position and the like to avoid mechanical collision during the robot movement.
  • the zero calibration of the robot can only be calibrated at a fixed position (mechanical zero position), and should be recalibrated under the following conditions: 1 replacement of the motor 2 replacement of the encoder battery battery 3 replacement of mechanical parts 4 robot and control cabinet separate handling, etc.
  • the above-mentioned problem occurs frequently in the actual use process. If the zero point calibration is performed every time, it takes a lot of time, and each time the zero position of the calibration has a certain deviation, resulting in the accuracy error of the robot motion.
  • the technical problem to be solved by the present invention is to provide a method for robot calibration, which can avoid the need to re-zero the zero point calibration, and then return the axes of the robot to the mechanical zero position for calibration to facilitate the manipulation of the robot.
  • the present invention provides a technical solution for providing a method for calibrating a robot.
  • the method includes: performing zero-point position calibration on each axis of the robot at a mechanical zero position, and establishing a coordinate system according to the calibration result; Before the robot changes mechanically, the position value of each axis of the robot in the coordinate system is recorded; after the mechanical change of the robot, the position value of each axis of the recorded robot is recalibrated.
  • the mechanical change of the robot includes: the robot replaces the motor; or the robot replaces the encoder battery; or the robot replaces the mechanical component; or the robot exceeds the mechanical limit position; or the robot does not move under the control of the controller.
  • the position value of each axis of the robot in the recording coordinate system includes: receiving a recording instruction input by the user before the mechanical change of the robot; and recording the position of the current axis of the robot in the coordinate system according to the recording instruction. Value.
  • the position value of each axis of the robot in the coordinate system includes: periodically recording the position values of the axes of the robot in the coordinate system at regular intervals.
  • the numerical value calibration of the zero position of each axis of the robot at the mechanical zero position includes: using the calibration block to perform numerical calibration of the zero position of each axis of the robot at the mechanical zero position.
  • the recalibration according to the position value of each axis of the recorded robot includes: after the mechanical change of the robot, the position value of each axis of the recorded robot is used as the current position of each axis of the robot. .
  • the recalibration according to the recorded position values of the axes of the robot includes: obtaining a new position value of each axis of the robot after the mechanical change of the robot, according to the new position value and the recorded robot The position values of the axes are recalibrated.
  • the recalibration includes: taking the position value of each axis of the recorded robot as the starting position, taking the new position value as the target position, and controlling the encoder to move accordingly.
  • the number of pulses reaches the target position; the new position value is used as the current position of each axis of the robot.
  • a device for calibrating a robot comprising: a position calibration module for performing numerical calibration of the zero position of each axis of the robot at the mechanical zero position, according to The calibration result establishes a coordinate system; the position recording module is configured to record the position values of the axes of the robot in the coordinate system before the mechanical change of the robot; wherein the position calibration module is further used to record the mechanical changes after the robot The position values of the axes of the robot are recalibrated.
  • the mechanical change of the robot includes: the robot replaces the motor; or the robot replaces the encoder battery; or the robot replaces the mechanical component; or the robot exceeds the mechanical limit position; or the robot does not move under the control of the controller.
  • the position recording module is configured to receive a recording instruction input by the user before the mechanical change of the robot, and record the position value of the current axis of the robot in the coordinate system according to the recording instruction.
  • the position recording module is configured to periodically record the position values of the axes of the robot in the coordinate system at regular intervals.
  • the position calibration module is used for numerically calibrating the zero position of each axis of the robot at the mechanical zero position by using the calibration block.
  • the position calibration module is used to record the position value of each axis of the robot as the current position of each axis of the robot after the mechanical change of the robot.
  • the position calibration module is used to acquire the new position value of each axis of the robot after the mechanical change of the robot, and recalibrate according to the new position value and the position value of each axis of the recorded robot.
  • the position calibration module is used for taking the position value of each axis of the recorded robot as the starting position, taking the new position value as the target position, controlling the encoder to move the corresponding pulse number to reach the target position; using the new position value as the robot axis The current location.
  • the invention has the beneficial effects that: in contrast to the prior art, the present invention establishes a coordinate system according to the calibration result by performing numerical calibration of the zero position of each axis of the robot at the mechanical zero position; and recording the coordinate system before the mechanical change of the robot occurs.
  • the position value of each axis of the lower robot; after the mechanical change of the robot, the re-calibration according to the position value of each axis of the recorded robot can avoid the need to restart the zero point calibration and return the axes of the robot to the machine again.
  • the zero position is calibrated to facilitate the manipulation of the robot.
  • FIG. 1 is a flow chart of a method of robot calibration according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of a method of robot calibration according to a second embodiment of the present invention.
  • FIG. 3 is a flow chart showing a method of robot calibration according to a third embodiment of the present invention.
  • FIG. 4 is a block diagram of a preferred embodiment of the apparatus for robot calibration of the present invention.
  • the robot of the embodiment of the present invention comprises a base and a plurality of shafts hinged end to end on the base.
  • the "axes” hereinafter are the respective axes of the robot.
  • the robot comprises six The axis, that is, the six-axis industrial robot, the six axes are J1 axis, J2 axis, J3 axis, J4 axis, J5 axis and J6 axis, and the head end of the J1 axis is hinged on the base, and the J2 axis head end and J1 axis
  • the end of the J7 axis is hinged
  • the head end of the J3 axis is hinged to the end of the J2 axis
  • the head end of the J4 axis is hinged to the end of the J3 axis
  • the head end of the J5 axis is hinged to the end of the J4 axis
  • the head end of the J6 axis is The end of the J
  • the zero point position calibration of the robot described below is to adjust the position of each axis to the mechanical zero position by the measuring instrument with manual operation or machine control, and then record the position value of the zero point position, wherein the position value is the axis relative to the coordinate.
  • the angle of the system, the specific zero calibration can be used to process the calibration groove at the mechanical zero of each axis of the robot, using the calibration block or other methods to zero the calibration.
  • the specific implementation method can be as follows.
  • the calibration block is used to operate the zero point calibration.
  • the calibration block and the calibration slot of each axis must ensure the surface smoothness, accurate size, no rust and deformation, and other unfavorable factors affecting the calibration result, and then use In the manual mode, the robot teaches the robot to move. Firstly, the calibration groove of each axis is basically aligned, then the speed in the manual mode is adjusted to the lowest position, the position of each axis is fine-tuned, and the specified shape is inserted when the appropriate position is observed.
  • the calibration block ensures that the calibration block can be inserted into two calibration slots at the same time, and can be smoothly taken out in the calibration slot without jamming.
  • the robot control software is operated to perform zero point calibration of each axis, wherein, in one embodiment, the mechanical zero position of each axis is [J1 0°, J2 0°, J3 90°, J4 0°, J5 0°, J6 0°]).
  • the movement of the other axis may occur when the rotation of one axis occurs due to the interaction of the mechanical structure between the respective axes of the robot. Therefore, in the robot calibration, preferably, the calibration is performed in the order of the J1 axis to the J6 axis. .
  • laser measurement calibration may be used, and the machine actively adjusts each axis to the mechanical zero position, etc., which are all included in the scope of the present invention, and are not enumerated here.
  • FIG. 1 is a flow chart of a method for calibration of a robot according to a first embodiment of the present invention.
  • the method of robot calibration includes the following steps:
  • Step S11 Perform numerical calibration on the zero position of each axis of the robot at the mechanical zero position, and establish a coordinate system according to the calibration result.
  • the numerical value calibration of the zero position of each axis of the robot at the mechanical zero position includes: using the calibration block to perform numerical calibration of the zero position of each axis of the robot at the mechanical zero position.
  • the zero position value calibration can be other ways.
  • Step S12 Record the position value of each axis of the robot in the coordinate system before the robot changes mechanically.
  • the mechanical change of the robot includes: the robot replaces the motor; or the robot replaces the encoder battery; or the robot replaces the mechanical component; or the robot exceeds the mechanical limit position; or the robot does not move under the control of the controller .
  • mechanical changes to the robot may also be other mechanical changes.
  • step S12 before the mechanical change of the robot occurs, recording the position values of the axes of the robot in the coordinate system includes: receiving a recording instruction input by the user before the mechanical change of the robot; recording current currents of the robot in the coordinate system according to the recording instruction The position value of the axis.
  • the position values of the axes of the robot in the coordinate system include: periodically recording the position values of the axes of the robot in the coordinate system at regular intervals.
  • Step S13 After the mechanical change of the robot, recalibration is performed according to the position value of each axis of the recorded robot.
  • step S13 for example, after the mechanical change of the robot, the recalibration according to the position value of each axis of the recorded robot includes: after the mechanical change of the robot, the position value of each axis of the recorded robot is used as the robot. The current position of each axis.
  • the recalibration according to the recorded position values of the axes of the robot includes: obtaining a new position value of each axis of the robot after the mechanical change of the robot, according to the new position value and the recorded robot The position values of the axes are recalibrated.
  • the recalibration includes: taking the position value of each axis of the recorded robot as the starting position, taking the new position value as the target position, and controlling the encoder to move the corresponding pulse number. To reach the target position; the new position value is used as the current position of each axis of the robot. See the description below for details.
  • FIG. 2 is a flow chart of a method for calibration of a robot according to a second embodiment of the present invention.
  • the position of each axis of the robot does not change before and after the mechanical change occurs. Therefore, the encoder can directly input the recorded position as the current position without moving the pulse. That is, after the mechanical change of the robot, the recalibration according to the position value of each axis of the recorded robot includes: after the mechanical change of the robot, the position value of each axis of the recorded robot is used as the current position of each axis of the robot.
  • the method of robot calibration includes the following steps:
  • Step S21 Perform numerical calibration on the zero position of each axis of the robot at the mechanical zero position, and establish a coordinate system according to the calibration result.
  • step S21 numerically calibrating the zero position of each axis of the robot at the mechanical zero position includes: performing numerical calibration of the zero position of each axis of the robot at the mechanical zero position by using the calibration block.
  • the zero position value calibration can be other ways.
  • Step S22 Record the position value of each axis of the robot in the coordinate system before the robot changes mechanically.
  • the mechanical change of the robot includes: the robot replaces the motor; or the robot replaces the encoder battery; or the robot replaces the mechanical component.
  • mechanical changes to the robot may also be other mechanical changes.
  • Step S23 After the mechanical change of the robot, the position value of each axis of the recorded robot is used as the current position of each axis of the robot.
  • step S23 for example, the position of each axis before the robot replaces the encoder battery is [J1 20°, J2 20°, J3 80°, J4 30°, J5 30°, J6 30°], the data is recorded. After the robot replaces the encoder battery, the position value of each axis of the recorded robot is used as the current position of each axis of the robot.
  • FIG. 3 is a flow chart of a method for calibration of a robot according to a third embodiment of the present invention.
  • the position changes of each axis of the robot before and after the mechanical change occurs the position information of each axis of the robot needs to be updated, and the encoder moves the corresponding pulse. That is, after the mechanical change of the robot, the recalibration according to the recorded position values of the axes of the robot includes: acquiring the new position value of each axis of the robot after the mechanical change of the robot, according to the new position value and each of the recorded robots. The position value of the axis is recalibrated.
  • the recalibration includes: taking the position value of each axis of the recorded robot as the starting position, taking the new position value as the target position, and controlling the encoder to move the corresponding pulse number. To reach the target position; the new position value is used as the current position of each axis of the robot.
  • Step S31 Perform numerical calibration on the zero position of each axis of the robot at the mechanical zero position, and establish a coordinate system according to the calibration result.
  • step S31 the zero position calibration of each axis of the robot at the mechanical zero position includes: numerically calibrating the zero position of each axis of the robot at the mechanical zero position by using the calibration block.
  • the zero position value calibration can be other ways.
  • Step S32 Record the position value of each axis of the robot in the coordinate system before the robot changes mechanically.
  • step S32 the mechanical change of the robot includes: the robot overruns the mechanical limit position; or the movement of the robot that does not occur under the control of the controller.
  • mechanical changes to the robot may also be other mechanical changes.
  • Step S33 Acquire a new position value of each axis of the robot after the mechanical change of the robot.
  • Step S34 Recalibration is performed according to the new position value and the position value of each axis of the robot under recording.
  • step S34 recalibration according to the new position value and the position value of each axis of the recorded robot includes: taking the position value of each axis of the recorded robot as the starting position, taking the new position value as the target position, and controlling the coding.
  • the device moves the corresponding number of pulses to reach the target position; the new position value is used as the current position of each axis of the robot. For example, if the robot does not move under the control of the controller, in order to facilitate the packing and transportation, the robot will be moved to [J1] during the transportation of each axis.
  • the target position of 0°] after being transported to the designated location, the position value of each axis of the robot recorded before the transfer is taken as the starting position, and the new position value is used as the target position, and the encoder is controlled to move the corresponding pulse number to reach the target position. [J1 0°, J2 - 60°, J3 170°, J4 0°, J5 70°, J6 0°].
  • FIG. 4 is a schematic block diagram of a preferred embodiment of the apparatus for robot calibration of the present invention.
  • the robot calibration device includes a position calibration module 11 and a position recording module 12.
  • the position calibration module 11 is configured to perform numerical calibration of the zero position of each axis of the robot at the mechanical zero position, and establish a coordinate system according to the calibration result.
  • the position calibration module 11 is configured to perform zero point position numerical calibration on each axis of the robot at the mechanical zero position using the calibration block.
  • the position recording module 12 is configured to record the position values of the axes of the robot in the coordinate system before the robot changes mechanically.
  • the position recording module 12 is configured to receive a recording instruction input by the user and record the position value of the current axis of the robot in the coordinate system according to the recording instruction before the mechanical change of the robot; in another case The position recording module 12 is configured to periodically record the position values of the axes of the robot in the coordinate system at regular intervals.
  • the position calibration module 11 is further configured to recalibrate according to the recorded position values of the axes of the robot after the mechanical change of the robot occurs.
  • the position calibration module 11 is configured to use the position value of each axis of the recorded robot as the current position of each axis of the robot after the mechanical change of the robot.
  • the position calibration module 11 is configured to acquire a new position value of each axis of the robot after the mechanical change of the robot, and recalibrate according to the new position value and the position value of each axis of the recorded robot.
  • the position calibration module 11 is configured to take the position value of each axis of the recorded robot as the starting position, and use the new position value as the target position to control the encoder to move the corresponding pulse number to reach the target position; the new position value is used as the axis of the robot. current position.
  • the mechanical change of the robot includes: the robot replaces the motor; or the robot replaces the encoder battery; or the robot replaces the mechanical component; or the robot exceeds the mechanical limit position; or the robot does not move under the control of the controller.
  • the present invention establishes a coordinate system according to the calibration result by performing numerical calibration of the zero position of each axis of the robot at the mechanical zero position; and recording the position of each axis of the robot in the coordinate system before the mechanical change of the robot occurs.
  • the value is recalibrated according to the recorded position value of each axis of the robot after the mechanical change of the robot. It is possible to avoid the need to re-zero the zero point calibration and return the axes of the robot to the mechanical zero again for calibration. Manipulation.

Landscapes

  • Manipulator (AREA)

Abstract

一种机器人标定的方法,包括:在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系(S11);在机器人发生机械变化前,记录所述坐标系下机器人的各轴的位置数值(S12);在机器人发生机械变化后,依据记录的机器人的各轴的位置数值进行重新标定(S13)。还提供了一种机器人标定的装置。所述方法和装置能够在需要重新进行零点标定时,避免再次将机器人的各轴回到机械零位进行标定。

Description

机器人标定的方法和装置
【技术领域】
本发明涉及工业机器人领域,特别是涉及一种机器人标定的方法和装置。
【背景技术】
零点是机器人坐标系的基准,没有零点,机器人就没有办法判断自身的位置。机器人零点校正时,机器人各轴会移动机械零位,此时各轴当前的编码器电池绝对位置会被保存下来,完成机器人的标定。标定完成后可以在定义的笛卡尔坐标系中操作移动机器人或运行程序,使其达到预定的位置,并且机器人也可以知道软限位的位置等信息,避免机器人运动过程中发生机械碰撞等问题。
目前机器人的零点标定,只能在固定位置(机械零位)进行标定,并且在如下情况下要重新标定:①更换电机②更换编码器电池电池③更换机械零部件④机器人与控制柜分开搬运等,但是上述问题在实际使用过程中发生的频率较高,若每次都要进行零点标定,要花费大量的时间,并且每次标定的零点位置都有一定的偏差,导致机器人运动的精度误差。
因此,需要提供一种机器人标定的方法和装置,以解决上述问题。
【发明内容】
本发明主要解决的技术问题是提供一种机器人标定的方法,能够避免在需要重新进行零点标定时,再次将机器人的各轴回到机械零位进行标定,方便机器人的操控。
为解决上述技术问题,本发明提供的一种技术方案是:提供一种机器人标定的方法,方法包括:在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值;在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定。
其中,机器人发生机械变化包括:机器人更换电机;或者,机器人更换编码器电池;或者,机器人更换机械零部件;或者,机器人超越机械极限位置;或者,机器人不在控制器控制下发生的移动。
其中,在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值包括:在机器人发生机械变化前,接收用户输入的记录指令;根据记录指令记录坐标系下机器人的当前各轴的位置数值。
其中,在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值包括:每隔固定时间周期性地记录坐标系下机器人的各轴的位置数值。
其中,在机械零位对机器人的各轴进行零点位置数值标定包括:利用标定块在机械零位对机器人的各轴进行零点位置数值标定。
其中,在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。
其中,在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:获取机器人各轴在机器人发生机械变化后的新位置数值,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。
其中,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定包括:以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。
为解决上述技术问题,本发明提供的另一种技术方案是:提供一种机器人标定的装置,装置包括:位置标定模块,用于在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;位置记录模块,用于在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值;其中,位置标定模块还用于在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定。
其中,机器人发生机械变化包括:机器人更换电机;或者,机器人更换编码器电池;或者,机器人更换机械零部件;或者,机器人超越机械极限位置;或者,机器人不在控制器控制下发生的移动。
其中,位置记录模块用于在机器人发生机械变化前,接收用户输入的记录指令并根据记录指令记录坐标系下机器人的当前各轴的位置数值。
其中,位置记录模块用于每隔固定时间周期性地记录坐标系下机器人的各轴的位置数值。
其中,位置标定模块用于利用标定块在机械零位对机器人的各轴进行零点位置数值标定。
其中,位置标定模块用于在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。
其中,位置标定模块用于获取机器人各轴在机器人发生机械变化后的新位置数值,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。
其中,位置标定模块用于以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。
本发明的有益效果是:区别于现有技术的情况,本发明通过在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值;在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定,能够避免在需要重新进行零点标定时,再次将机器人的各轴回到机械零位进行标定,方便机器人的操控。
【附图说明】
图1是本发明第一实施例的机器人标定的方法流程图;
图2是本发明第二实施例的机器人标定的方法流程图;
图3是本发明第三实施例的机器人标定的方法流程图;
图4是本发明机器人标定的装置优选实施例的模块示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细的说明。
本发明实施例的机器人包括基座和多个依次首尾铰接在基座上的轴,以下所称“各轴”即为机器人的各个轴,优选地,在一种实施方式中,机器人包括六个轴,即六轴工业机器人,六个轴分别为J1轴、J2轴、J3轴、J4轴、J5轴以及J6轴,且J1轴的首端铰接在基座上,J2轴首端与J1轴的尾端铰接,J3轴的首端与J2轴的尾端铰接,J4轴的首端与J3轴的尾端铰接,J5轴的首端与J4轴的尾端铰接,J6轴的首端与J5轴的尾端铰接。当然其他工业机器人其通过各轴配合转动达到工业生产目的的工业机器人也包含在本发明限定范围之内,此处不做一一的列举。
以下所述机器人的零点位置数值标定,即为零点标定,为通过测量仪器配合人工操作或者机器控制将各轴调整到机械零位然后记录零点位置的位置数值,其中位置数值为各轴相对于坐标系的角度,具体的零点标定可以为采用在机器人的各个轴的机械零位处加工标定槽的方法,使用标定块或其他方法进行零点的标定。其具体的实现方式可以如下,采用标定块进行操作零点标定时,各个轴的标定块和标定槽必须尽可能保证表面光洁,尺寸准确,无锈迹和变形等影响标定结果的不利因素,然后使用机器人示教器在手动模式下,操作机器人运动,先肉眼观察各轴的标定槽基本对齐,然后将手动模式下的速度调成最低档,微调各个轴的位置,观察到合适位置时***指定形状的标定块,保证标定块能同时***两个标定槽,且能够顺利的在标定槽内取出,不会发生卡顿现象。这时操作机器人控制软件进行各轴的零点标定,其中,在一种实施方式中各轴的机械零位为[J1 0°,J2 0°,J3 90°,J4 0°,J5 0°,J6 0°])。另外,机器人的各个轴之间可能因机械结构的相互作用而出现某个轴转动时引起另一个轴的运动,因此在进行机器人标定时,优选地,按照J1轴至J6轴的顺序依次进行标定。当然,在其他的实施例中,可以采用激光测量标定,机器主动调整各轴到机械零位等等,均是包含在本发明限定范围之内,此处不做一一的列举。
请参阅图1,图1是本发明第一实施例的机器人标定的方法流程图。在本实施例中,机器人标定的方法包括以下步骤:
步骤S11:在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系。
在步骤S11中,在机械零位对机器人的各轴进行零点位置数值标定包括:利用标定块在机械零位对机器人的各轴进行零点位置数值标定。当然在其他实施例,零点位置数值标定可以为其他方式。
步骤S12:在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值。
在步骤S12中,机器人发生机械变化包括:机器人更换电机;或者,机器人更换编码器电池;或者,机器人更换机械零部件;或者,机器人超越机械极限位置;或者,机器人不在控制器控制下发生的移动。当然在其他实施例中,机器人发生机械变化还可以为其他的机械变化。
在步骤S12中,在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值包括:在机器人发生机械变化前,接收用户输入的记录指令;根据记录指令记录坐标系下机器人的当前各轴的位置数值。或者,在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值包括:每隔固定时间周期性地记录坐标系下机器人的各轴的位置数值。
步骤S13:在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定。
在步骤S13中,例如,在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。或者,在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:获取机器人各轴在机器人发生机械变化后的新位置数值,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定包括:以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。具体参见下文的描述。
请参阅图2,图2是本发明第二实施例的机器人标定的方法流程图。在本实施例中,机器人各轴在发生机械变化前后没有发生位置变化的情况,因此编码器无需移动脉冲,直接输入记录下的位置作为当前位置即可。即在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。
在本实施例中,机器人标定的方法包括以下步骤:
步骤S21:在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系。
在步骤S21中,在机械零位对机器人的各轴进行零点位置数值标定包括:利用标定块在机械零位对机器人的各轴进行零点位置数值标定。当然在其他实施例,零点位置数值标定可以为其他方式。
步骤S22:在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值。
在步骤S22中,机器人发生机械变化包括:机器人更换电机;或者,机器人更换编码器电池;或者,机器人更换机械零部件。当然在其他实施例中,机器人发生机械变化还可以为其他的机械变化。
步骤S23:在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。
在步骤S23中,例如,机器人更换编码器电池前各个轴的位置是[J1 20°,J2 20°,J3 80°,J4 30°,J5 30°,J6 30°],记录该数据,在完成机器人更换编码器电池后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。
请参阅图3,图3是本发明第三实施例的机器人标定的方法流程图。在本实施例中,机器人各轴在发生机械变化前后发生了位置变化的情况,机器人各轴的位置信息需要更新,而且编码器要移动相应的脉冲。即在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定包括:获取机器人各轴在机器人发生机械变化后的新位置数值,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定包括:以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。
步骤S31:在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系。
在步骤S31中,在机械零位对机器人的各轴进行零点位置数值标定包括:利用标定块在机械零位对机器人的各轴进行零点位置数值标定。当然在其他实施例,零点位置数值标定可以为其他方式。
步骤S32:在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值。
在步骤S32中,机器人发生机械变化包括:机器人超越机械极限位置;或者,机器人不在控制器控制下发生的移动。当然在其他实施例中,机器人发生机械变化还可以为其他的机械变化。
步骤S33:获取机器人各轴在机器人发生机械变化后的新位置数值。
步骤S34:依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。
在步骤S34中,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定包括:以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。例如,机器人不在控制器控制下发生的移动为为了方便打包运输,机器人各轴运输过程时会被移动到[J1 0°,J2 -60°,J3 170°,J4 0°,J5 70°,J6 0°]的目标位置,在搬运到指定地点后,以搬运前记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置[J1 0°,J2 -60°,J3 170°,J4 0°,J5 70°,J6 0°]。
请参阅图4,图4是本发明机器人标定的装置优选实施例的模块示意图。在本实施例中,机器人标定的装置包括位置标定模块11和位置记录模块12。
位置标定模块11用于在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系。例如,位置标定模块11用于利用标定块在机械零位对机器人的各轴进行零点位置数值标定。
位置记录模块12用于在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值。例如,在一种情况下,位置记录模块12用于在机器人发生机械变化前,接收用户输入的记录指令并根据记录指令记录坐标系下机器人的当前各轴的位置数值;在另一种情况下,位置记录模块12用于每隔固定时间周期性地记录坐标系下机器人的各轴的位置数值。
位置标定模块11还用于在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定。例如,在一种情况下,位置标定模块11用于在机器人发生机械变化后,以记录下的机器人的各轴的位置数值作为机器人各轴的当前位置。在另一种情况下,位置标定模块11用于获取机器人各轴在机器人发生机械变化后的新位置数值,依据新位置数值和记录下的机器人的各轴的位置数值进行重新标定。位置标定模块11用于以记录下的机器人的各轴的位置数值为起点位置,以新位置数值为目标位置,控制编码器移动相应脉冲数以到达目标位置;以新位置数值作为机器人各轴的当前位置。
优选地,机器人发生机械变化包括:机器人更换电机;或者,机器人更换编码器电池;或者,机器人更换机械零部件;或者,机器人超越机械极限位置;或者,机器人不在控制器控制下发生的移动。
区别于现有技术的情况,本发明通过在机械零位对机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;在机器人发生机械变化前,记录坐标系下机器人的各轴的位置数值;在机器人发生机械变化后,依据记录下的机器人的各轴的位置数值进行重新标定,能够避免在需要重新进行零点标定时,再次将机器人的各轴回到机械零位进行标定,方便机器人的操控。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种机器人标定的方法,其特征在于,所述方法包括:
    在机械零位对所述机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;
    在所述机器人发生机械变化前,记录所述坐标系下所述机器人的各轴的位置数值;
    在所述机器人发生机械变化后,依据记录下的所述机器人的各轴的位置数值进行重新标定。
  2. 根据权利要求1所述的方法,其特征在于,所述机器人发生机械变化包括:
    所述机器人更换电机;或者,
    所述机器人更换编码器电池;或者,
    所述机器人更换机械零部件;或者,
    所述机器人超越机械极限位置;或者,
    所述机器人不在控制器控制下发生的移动。
  3. 根据权利要求1所述的方法,其特征在于,所述在所述机器人发生机械变化前,记录所述坐标系下所述机器人的各轴的位置数值包括:
    在所述机器人发生机械变化前,接收用户输入的记录指令;
    根据所述记录指令记录所述坐标系下所述机器人的当前各轴的位置数值。
  4. 根据权利要求1所述的方法,其特征在于,所述在所述机器人发生机械变化前,记录所述坐标系下所述机器人的各轴的位置数值包括:
    每隔固定时间周期性地记录所述坐标系下所述机器人的各轴的位置数值。
  5. 根据权利要求1所述的方法,其特征在于,所述在机械零位对所述机器人的各轴进行零点位置数值标定包括:
    利用标定块在机械零位对所述机器人的各轴进行零点位置数值标定。
  6. 根据权利要求2所述的方法,其特征在于,所述在所述机器人发生机械变化后,依据记录下的所述机器人的各轴的位置数值进行重新标定包括:
    在所述机器人发生机械变化后,以所述记录下的所述机器人的各轴的位置数值作为机器人各轴的当前位置。
  7. 根据权利要求2所述的方法,其特征在于,所述在所述机器人发生机械变化后,依据记录下的所述机器人的各轴的位置数值进行重新标定包括:
    获取机器人各轴在所述机器人发生机械变化后的新位置数值,依据所述新位置数值和记录下的所述机器人的各轴的位置数值进行重新标定。
  8. 根据权利要求7所述的方法,其特征在于,所述依据所述新位置数值和记录下的所述机器人的各轴的位置数值进行重新标定包括:
    以所述记录下的所述机器人的各轴的位置数值为起点位置,以所述新位置数值为目标位置,控制所述编码器移动相应脉冲数以到达所述目标位置;
    以所述新位置数值作为所述机器人各轴的当前位置。
  9. 一种机器人标定的装置,其特征在于,所述装置包括:
    位置标定模块,用于在机械零位对所述机器人的各轴进行零点位置数值标定,根据标定结果建立坐标系;
    位置记录模块,用于在所述机器人发生机械变化前,记录所述坐标系下所述机器人的各轴的位置数值;
    其中,所述位置标定模块还用于在所述机器人发生机械变化后,依据记录下的所述机器人的各轴的位置数值进行重新标定。
  10. 根据权利要求9所述的装置,其特征在于,所述机器人发生机械变化包括:
    所述机器人更换电机;或者,
    所述机器人更换编码器电池;或者,
    所述机器人更换机械零部件;或者,
    所述机器人超越机械极限位置;或者,
    所述机器人不在控制器控制下发生的移动。
  11. 根据权利要求9所述的装置,其特征在于,所述位置记录模块用于在所述机器人发生机械变化前,接收用户输入的记录指令并根据所述记录指令记录所述坐标系下所述机器人的当前各轴的位置数值。
  12. 根据权利要求9所述的装置,其特征在于,所述位置记录模块用于每隔固定时间周期性地记录所述坐标系下所述机器人的各轴的位置数值。
  13. 根据权利要求9所述的装置,其特征在于,位置标定模块用于利用标定块在机械零位对所述机器人的各轴进行零点位置数值标定。
  14. 根据权利要求10所述的装置,其特征在于,所述位置标定模块用于在所述机器人发生机械变化后,以所述记录下的所述机器人的各轴的位置数值作为机器人各轴的当前位置。
  15. 根据权利要求10所述的装置,其特征在于,所述位置标定模块用于获取机器人各轴在所述机器人发生机械变化后的新位置数值,依据所述新位置数值和记录下的所述机器人的各轴的位置数值进行重新标定。
  16. 根据权利要求15所述的装置,其特征在于,所述位置标定模块用于以所述记录下的所述机器人的各轴的位置数值为起点位置,以所述新位置数值为目标位置,控制所述编码器移动相应脉冲数以到达所述目标位置;以所述新位置数值作为所述机器人各轴的当前位置。
PCT/CN2017/078213 2017-03-24 2017-03-24 机器人标定的方法和装置 WO2018170931A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/078213 WO2018170931A1 (zh) 2017-03-24 2017-03-24 机器人标定的方法和装置
CN201780034031.0A CN109641352A (zh) 2017-03-24 2017-03-24 机器人标定的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078213 WO2018170931A1 (zh) 2017-03-24 2017-03-24 机器人标定的方法和装置

Publications (1)

Publication Number Publication Date
WO2018170931A1 true WO2018170931A1 (zh) 2018-09-27

Family

ID=63584785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078213 WO2018170931A1 (zh) 2017-03-24 2017-03-24 机器人标定的方法和装置

Country Status (2)

Country Link
CN (1) CN109641352A (zh)
WO (1) WO2018170931A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805534A (zh) * 2020-06-02 2020-10-23 珠海格力智能装备有限公司 一种机器人及其零点标定的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676387B (zh) * 2021-08-11 2023-02-24 北京小米移动软件有限公司 多足机器人的零位标定方法和装置、存储介质及电子装置
CN114102580B (zh) * 2021-10-25 2024-05-24 珠海格力电器股份有限公司 一种工业机器人零点校准方法、校准装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055005A (ko) * 1999-02-02 2000-09-05 윤종용 산업용 로봇의 원점좌표 오차보정장치 및 방법
CN101694581A (zh) * 2009-09-28 2010-04-14 昆山华恒工程技术中心有限公司 一种机器人自动回零的方法
CN101968341A (zh) * 2010-08-31 2011-02-09 南京理工大学 一种工业机器人零位自标定方法及装置
CN202726917U (zh) * 2012-08-07 2013-02-13 吕健 一种工业机器人的机械零点标定装置
CN103968761A (zh) * 2014-05-28 2014-08-06 中科华赫(北京)科技有限责任公司 串联关节式机器人绝对定位误差校准方法及标定***
CN104354166A (zh) * 2014-07-28 2015-02-18 天津大学 一种三自由度并联机器人的零点标定方法
CN104385281A (zh) * 2014-07-28 2015-03-04 天津大学 一种两自由度高速并联机器人的零点标定方法
CN106239510A (zh) * 2016-08-25 2016-12-21 芜湖瑞思机器人有限公司 一种三自由度并联机器人零点标定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160689B1 (ko) * 1995-04-24 1998-12-15 김광호 로보트의 원점복귀 장치
CN102374328B (zh) * 2010-08-27 2013-10-23 杭州三花研究院有限公司 一种电子膨胀阀及其步进电机在汽车空调中的应用
CN102717395A (zh) * 2011-03-30 2012-10-10 北京理工大学 基于霍尔开关的机器人关节初始位置精确定位***
CN203416144U (zh) * 2013-07-15 2014-01-29 常州富兴机电有限公司 一种新型步进电机
CN103465275A (zh) * 2013-09-24 2013-12-25 昆山泰丰自动化技术有限公司 一种机械手编码器供电***
CN103728904B (zh) * 2014-01-06 2016-08-17 金东纸业(江苏)股份有限公司 编码器校正***及方法
CN104959973B (zh) * 2015-07-06 2017-01-18 江苏小铁人机床有限公司 一种多用途的六轴工业机器人
CN105773660B (zh) * 2016-05-28 2018-07-06 埃夫特智能装备股份有限公司 机器人零点位置标定装置及标定方法
CN106197472B (zh) * 2016-09-27 2020-07-14 中信重工开诚智能装备有限公司 一种轨道式机器人距离定位和里程校准装置及方法
CN106354091B (zh) * 2016-11-01 2019-02-26 上海维宏电子科技股份有限公司 基于绝对值编码器记录机床位置的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055005A (ko) * 1999-02-02 2000-09-05 윤종용 산업용 로봇의 원점좌표 오차보정장치 및 방법
CN101694581A (zh) * 2009-09-28 2010-04-14 昆山华恒工程技术中心有限公司 一种机器人自动回零的方法
CN101968341A (zh) * 2010-08-31 2011-02-09 南京理工大学 一种工业机器人零位自标定方法及装置
CN202726917U (zh) * 2012-08-07 2013-02-13 吕健 一种工业机器人的机械零点标定装置
CN103968761A (zh) * 2014-05-28 2014-08-06 中科华赫(北京)科技有限责任公司 串联关节式机器人绝对定位误差校准方法及标定***
CN104354166A (zh) * 2014-07-28 2015-02-18 天津大学 一种三自由度并联机器人的零点标定方法
CN104385281A (zh) * 2014-07-28 2015-03-04 天津大学 一种两自由度高速并联机器人的零点标定方法
CN106239510A (zh) * 2016-08-25 2016-12-21 芜湖瑞思机器人有限公司 一种三自由度并联机器人零点标定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805534A (zh) * 2020-06-02 2020-10-23 珠海格力智能装备有限公司 一种机器人及其零点标定的方法

Also Published As

Publication number Publication date
CN109641352A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2018170931A1 (zh) 机器人标定的方法和装置
JP5120258B2 (ja) ワーク搬送装置
CN102017121B (zh) 使用通过系列晶片运动获得的补偿值的晶片动态对准
CN111618857A (zh) 一种机械臂的多负载自适应重力补偿方法
CN102881618A (zh) 基板搬送装置、基板处理***和基板搬送方法
CN104625676A (zh) 轴孔装配工业机器人***及其工作方法
CN116604600A (zh) 驱动设备、机器人***、控制方法、部件制造方法和介质
WO2017022893A1 (ko) 작업공간에서의 강성 개선을 위한 여자유도 로봇 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
KR20130015818A (ko) 인간-로봇 협업 시스템 및 이를 기반으로 하는 부품 조립 방법
JP5061965B2 (ja) ロボット生産システム
JPH06301411A (ja) 産業用ロボットシステムの設置誤差較正方法及び較正制御装置
WO2013128548A1 (ja) ロボットシステム
WO2013058481A1 (ko) 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
JPH1148179A (ja) ロボットの作業線追跡制御方法
JP5895376B2 (ja) ロボットセルの位置合わせ方法及び位置合わせ制御装置
JP2006069687A (ja) 懸垂式昇降搬送装置における搬送台車の教示装置
JP2017109289A (ja) 生産装置モジュール、および生産装置ライン
CN112571743B (zh) 操纵装置及其控制或调节方法、组件以及计算机程序产品
US10532400B2 (en) Assembly system, assembling method, and assembly unit
WO2020138705A1 (ko) 편차 제어부를 구비한 갠트리 스테이지의 제어 장치
Tian et al. A dual-six-dimensional force sensors calibration method for pHRI based on ridge regression
JPH09304241A (ja) オ−トサンプラ
De Schutter et al. Active force feedback in industrial robotic assembly: a case study
CN111573258B (zh) 机械手上下料对位***及方法
WO2023054749A1 (ko) 로봇 강성 유지 자세를 구현하는 가공 장치 및 이를 이용한 로봇 강성 유지 자세를 구현하는 가공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901641

Country of ref document: EP

Kind code of ref document: A1