WO2018157907A1 - Verfahren zur überwachung des kurbelgehäusedrucks - Google Patents

Verfahren zur überwachung des kurbelgehäusedrucks Download PDF

Info

Publication number
WO2018157907A1
WO2018157907A1 PCT/EP2017/001342 EP2017001342W WO2018157907A1 WO 2018157907 A1 WO2018157907 A1 WO 2018157907A1 EP 2017001342 W EP2017001342 W EP 2017001342W WO 2018157907 A1 WO2018157907 A1 WO 2018157907A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankcase pressure
curve
pkg
limit
ist
Prior art date
Application number
PCT/EP2017/001342
Other languages
English (en)
French (fr)
Inventor
Johannes Baldauf
Patrick Dußler
Eugen Bucher
Vadzim Khakholka
Original Assignee
Mtu Friedrichshafen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Friedrichshafen Gmbh filed Critical Mtu Friedrichshafen Gmbh
Priority to CN201780087589.5A priority Critical patent/CN110325723B/zh
Priority to US16/489,100 priority patent/US11187174B2/en
Publication of WO2018157907A1 publication Critical patent/WO2018157907A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting
    • F02D41/2493Resetting of data to a predefined set of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M2013/0077Engine parameters used for crankcase breather systems
    • F01M2013/0083Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/024Fluid pressure of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/08Engine blow-by from crankcase chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for monitoring the crankcase pressure according to the preamble of claim 1.
  • Crankcase pressure monitoring is based on a limit curve.
  • the limit curve is calculated as a function of the target crankcase pressure and an offset value.
  • a second functional scope includes a tracking of the target crankcase pressure based on a learning curve.
  • the learning curve is determined from an average of desired crankcase pressure values, their deviation from the actual crankcase pressure, and a weighting factor. The target crankcase pressure is then adjusted accordingly via the learning curve.
  • a crankcase ventilation is designed as a closed circuit.
  • the blow-by is sucked out of the crankcase, de-oiled and the fresh air side fed again, for example, upstream of an exhaust gas turbocharger.
  • an air filter is arranged in the air path of the internal combustion engine whose transmission rate deteriorates during operation. The method described in DE 10 2013 021 295 B3 responds to a worsening air supply via the tracking of the
  • the invention is therefore based on the object to improve the known from the prior art method. This object is achieved by a method having the features of claim 1.
  • the innovation consists in the fact that after an engine start and detected stationary operation of the internal combustion engine, the actual crankcase pressure is compared with a limit value. If the limit value is exceeded, the learning curve is reset as a measure and the initial value is reset as a result of the limit curve. After the learning curve and the limit curve have been reset, the actual crankcase pressure is compared with a limit value. If the limit value is exceeded, the learning curve is reset as a measure and the initial value is reset as a result of the limit curve. After the learning curve and the limit curve have been reset, the actual crankcase pressure is compared with a limit value. If the limit value is exceeded, the learning curve is reset as a measure and the initial value is reset as a result of the limit curve. After the learning curve and the limit curve have been reset, the actual crankcase pressure is compared with a limit value. If the limit value is exceeded, the learning curve is reset as a measure and the initial value is reset as a result of the limit curve. After the learning curve and the limit curve have been reset, the actual crankcase
  • Air filter change is undoubtedly detected by the process and therefore avoid unwanted error messages.
  • the inventive method offers the operator of the internal combustion engine the advantage that he make of himself an air filter replacement, ie without service technician of the engine manufacturer, and still the
  • the initial value to which the learning curve or the limit curve is set corresponds to the original value in the new state of the internal combustion engine.
  • the characteristic curves / maps are filled with the original data again.
  • the initial value is set to a corrected original value, wherein the original value is corrected on the basis of the load profile of the internal combustion engine or the operating time of the internal combustion engine.
  • the load profile is typically determined as a function of the engine speed and the engine torque, for example using the DIN classification method.
  • the actual crankcase pressure is compared with a limit only within a predetermined time. After this time is changed directly in the actual crankcase pressure monitoring mode.
  • FIG. 1 is a timing diagram
  • FIG. 1 shows the crankcase pressure pKG over time.
  • pKG identify the actual crankcase pressure
  • LK the learning curve
  • GK the limit curve.
  • the learning curve LK is calculated from an average, its deviation from the actual crankcase pressure and a weighting factor.
  • the mean value in turn is calculated from values of the target crankcase pressure, which are stored in a corresponding characteristic field.
  • the limit curve GK is calculated as a function of the target crankcase pressure and an offset value.
  • the initial values of the actual crankcase pressure pKG (IST), the learning curve LK and the limit curve GK correspond to the values at the time t0.
  • the learning curve LK this is the pressure value p1
  • the limit curve GK this is the pressure value p2.
  • a stationary operating state is present when the internal combustion engine has reached its target speed, for example, 1500 1 / min, 50Hz, stable.
  • the stationary operating state is detected at the time t1.
  • the invention now provides that, after a time step has elapsed, it is checked at time t1 whether the actual crankcase pressure pKG (IST) is greater than a limit value dpKG. In the course of the actual crankcase pressure pKG (IST) shown in FIG. 1, this is the case.
  • the reason for the changed course of the actual crankcase pressure pKG (IST) is an exchange of the air filter.
  • both the learning curve LK and the limit curve GK become their initial values reset.
  • the initial values may correspond to the original values, that is, the originally applied data values when the engine is new.
  • the learning curve LK therefore has the same pressure level p1 at time t0 and time t1. In the figure, this is indicated by the two points A and B1.
  • the limit curve GK has the same pressure level p2 at time t0 and time t1.
  • the learning curve LK and the limit curve GK be set to corrected original values.
  • the correction is calculated, for example, based on the load profile of the internal combustion engine or
  • the load profile is in
  • the learning curve LK is then corrected to a smaller value of the crankcase pressure at time t1.
  • the corrected original value is identified by the point B2.
  • the limit curve GK this applies in adapted form.
  • FIG. 2 shows a program sequence.
  • S1 after the initialization of the electronic engine control unit, it is first waited until the starting process is completed.
  • S2 it is checked whether a stationary operating state exists. If this is not the case, query result S2: no, then branch back to point A. If, on the other hand, a stationary operating state was detected, query result S2: yes, then it is checked at S3 whether a time step tGW has not yet expired. This time is set tGW, for example fifteen minutes, with the completed boot process. If the check at S3 indicates that the time step tGW has already expired, query result S3: no, the system branches to S8 and changes to the crankcase pressure monitoring mode.
  • query result S3 yes, the system branches to S4 and checks whether the actual crankcase pressure pKG (IST) is greater than or equal to a limit value dpKG. This is the case when the air filter has been replaced. If the actual crankcase pressure pKG (IST) is not greater, query result S4: no, a branch is made to the point C. This
  • Program path is then run through if the air filter has not been replaced. If it is determined at S4 that the actual crankcase pressure pKG (IST) is greater than / equal to the limit value dpKG, query result S3: yes, then it is checked at S5 whether the time step t has expired. If this is not the case, query result S5: no, the time is reduced at S6 and branched back to point B. If, on the other hand, it was determined at S5 that the time step t has elapsed, the result of the query is yes, the learning curve LK and the limit curve GK are reset to their initial values at S7.
  • the initial values correspond to the original values, ie the originally applied data values when the internal state of the internal combustion engine is new. Alternatively, the initial values can also be determined as a function of the load profile of the internal combustion engine or the operating time of the engine
  • crankcase pressure monitoring mode is set and checked at S9 if an engine stop has been detected. If this is not the case, query result S9: no, then it branches back to point C, otherwise the program sequence is ended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Überwachung des Kurbelgehäusedrucks (pKG), bei dem eine Lernkurve (LK) in Abhängigkeit einer Soll-Istabweichung des Kurbelgehäusedrucks berechnet wird, bei dem der Soll-Kurbelgehäusedruck in Abhängigkeit der Lernkurve (LK) angepasst wird, in Abhängigkeit des Soll- Kurbelgehäusedrucks eine Grenzkurve (GK) berechnet wird und bei dem der Ist- Kurbelgehäusedruck (pKG(IST)) auf Überschreitung der Grenzwertkurve (GK) überwacht wird. Die Erfindung ist dadurch gekennzeichnet, dass nach einem Motorstart mit erkanntem stationären Betrieb der Brennkraftmaschine der Ist-Kurbelgehäusedruck (pKG(IST)) mit einem Grenzwert (dpKG) verglichen wird und bei festgestellter Grenzwertüberschreitung (pKG(IST)≥dpKG) die Lernkurve (LK) und infolge die Grenzkurve (GK) auf ihre Anfangswerte zurückgesetzt werden.

Description

Verfahren zur Überwachung des Kurbelgehäusedrucks
Die Erfindung betrifft ein Verfahren zur Überwachung des Kurbelgehäusedrucks nach dem Oberbegriff von Anspruch 1.
Aus der DE 10 013 021 295 B3 ist ein Verfahren zur Überwachung des
Kurbelgehäusedrucks bekannt, bei dem in einem ersten Funktionsumfang eine
Kurbelgehäusedruck-Überwachung anhand einer Grenzkurve erfolgt. Berechnet wird die Grenzkurve in Abhängigkeit des Soll-Kurbelgehäusedrucks und eines Offsetwerts.
Übersteigt der aktuelle Ist-Kurbelgehäusedruck den Wert der Grenzkurve, so wird dem Bediener der Brennkraftmaschine ein sicherheitskritischer Fehler angezeigt. Ein zweiter Funktionsumfang beinhaltet eine Nachführung des Soll-Kurbelgehäusedrucks anhand einer Lernkurve. Bestimmt wird die Lernkurve wiederum aus einem Mittelwert von Soll- Kurbelgehäusedruckwerten, dessen Abweichung zum Ist-Kurbelgehäusedruck und einem Gewichtungsfaktor. Über die Lernkurve wird dann der Soll-Kurbelgehäusedruck entsprechend nachgeführt.
Eine Kurbelgehäuseentlüftung ist als geschlossener Kreislauf ausgeführt. Hierbei wird das Blowby aus dem Kurbelgehäuse abgesaugt, entölt und der Frischluftseite wieder zugeführt, zum Beispiel stromauf eines Abgasturboladers. Typischerweise ist im Luftpfad der Brennkraftmaschine ein Luftfilter angeordnet, dessen Durchlassrate sich im laufenden Betrieb verschlechtert. Das in der DE 10 2013 021 295 B3 beschriebene Verfahren reagiert auf eine sich verschlechternde Luftzuführung über die Nachführung der
Lernkurve und der Grenzkurve. In der Praxis hat es sich nun gezeigt, dass ein Austausch des Luftfilters zu einer unerwarteten Fehleranzeige führen kann.
Der Erfindung liegt daher die Aufgabe zugrunde, das aus dem Stand der Technik bekannte Verfahren zu verbessern. Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen von Anspruch 1.
Die Neuerung besteht nun darin, dass nach einem Motorstart und erkanntem stationären Betrieb der Brennkraftmaschine der Ist-Kurbelgehäusedruck mit einem Grenzwert verglichen wird. Bei festgestellter Grenzwertüberschreitung werden als Maßnahme die Lernkurve und infolge die Grenzkurve auf ihre Anfangswerte zurückgesetzt. Nachdem die Lernkurve und die Grenzkurve zurückgesetzt wurden, wird in den eigentlichen
Kurbelgehäusedruck-Überwachungsmodus gewechselt, wie dieser in der
DE 10 013 021 295 B3 offenbart ist. Ein stationärer Betrieb liegt dann vor, wenn die Motordrehzahl und das Motormoment konstant sind. Von Vorteil ist, dass ein
Luftfilterwechsel zweifelsfrei durch das Verfahren erkannt wird und daher unerwünschte Fehlermeldungen unterbleiben. Das erfindungsgemäße Verfahren bietet dem Betreiber der Brennkraftmaschine den Vorteil, dass er von sich aus einen Luftfilterwechsel, also ohne Servicetechniker des Motorenherstellers, vornehmen und trotzdem die
Brennkraftmaschine im vollen Funktionsumfang weiter nutzen kann.
Der Anfangswert, auf welchen die Lernkurve bzw. die Grenzkurve gesetzt wird, entspricht hierbei dem Ursprungswert im Neuzustand der Brennkraftmaschine. Mit anderen Worten: die Kennlinien/Kennfelder werden mit den ursprünglichen Daten wieder bestückt. In einer Alternative ist vorgesehen, dass der Anfangswert auf einen korrigierten Ursprungswert gesetzt wird, wobei der Ursprungswert anhand des Lastprofils der Brennkraftmaschine oder der Betriebsdauer der Brennkraftmaschine korrigiert wird.
Ermittelt wird das Lastprofil typischerweise in Abhängigkeit der Motordrehzahl und des Motormoments, zum Beispiel anhand der DIN-Klassierverfahren.
Zur Erhöhung der Prozesssicherheit ist vorgesehen, dass der Ist-Kurbelgehäusedruck mit einem Grenzwert nur innerhalb einer vorgebbaren Zeit verglichen wird. Nach Ablauf dieser Zeit wird unmittelbar in den eigentlichen Kurbelgehäusedruck- Überwachungsmodus gewechselt.
In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
Figur 1 ein Zeitdiagramm und
Figur 2 einen Programm-Ablaufplan Die Figur 1 zeigt den Kurbelgehäusedruck pKG über der Zeit. Innerhalb des Diagramms sind drei Kurvenverläufe dargestellt. Hierbei kennzeichnen pKG(IST) den Ist- Kurbelgehäusedruck, LK die Lernkurve und GK die Grenzkurve. Berechnet wird die Lernkurve LK aus einem Mittelwert, dessen Abweichung zum Ist-Kurbelgehäusedruck und zu einem Gewichtungsfaktor. Der Mittelwert wiederum wird aus Werten des Soll- Kurbelgehäusedrucks berechnet, welche in einem entsprechenden Kennlinienfeld abgelegt sind. Über die Lernkurve LK wird der Soll-Kurbelgehäusedruck entsprechend der Abweichung zum Ist-Kurbelgehäusedruck pKG(IST) nachgeführt. Die Grenzkurve GK wird in Abhängigkeit des Soll-Kurbelgehäusedrucks und eines Offsetwerts berechnet. Die Anfangswerte des Ist-Kurbelgehäusedrucks pKG(IST), der Lernkurve LK und der Grenzkurve GK entsprechen den Werten zum Zeitpunkt tO. Für die Lernkurve LK ist dies der Druckwert p1 und für die Grenzkurve GK ist dies der Druckwert p2.
Im Folgenden wird nun davon ausgegangen, dass sich der Ist-Kurbelgehäusedruck pKG(IST) zu geringeren Druckwerten verändert. Verursacht wird dieser Verlauf durch einen sich zusetzenden Luftfilter, d.h. der Luftvolumenstrom nimmt ab. Aufgrund der zuvor beschrieben Abhängigkeit folgen sowohl die Lernkurve LK als auch die Grenzkurve GK dem Verlauf des Ist-Kurbelgehäusedrucks pKG(IST). Vor einem Zeitpunkt t1 wird die Brennkraftmaschine deaktiviert und der letzte Wert der Lernkurve LK im elektronischen Motorsteuergerät abgespeichert.
Wird nun die Brennkraftmaschine neu gestartet, so wird nach Abschluss des
Startvorgangs so lange gewartet bis ein stationärer Betriebszustand erkannt wird. Bei einem Notstromaggregat liegt ein stationärer Betriebszustand dann vor, wenn die Brennkraftmaschine ihre Soll-Drehzahl zum Beispiel 1500 1/min, 50Hz entsprechend, stabil erreicht hat. Der stationäre Betriebszustand wird zum Zeitpunkt t1 erkannt. Die Erfindung sieht nun vor, dass nach Ablauf einer Zeitstufe zum Zeitpunkt t1 geprüft wird, ob der Ist-Kurbelgehäusedruck pKG(IST) größer als ein Grenzwert dpKG ist. Bei dem in der Figur 1 dargestellten Verlauf des Ist-Kurbelgehäusedruck pKG(IST) ist dies der Fall. Ursache für den veränderten Verlauf des Ist-Kurbelgehäusedrucks pKG(IST) ist ein Tausch des Luftfilters. Zur Erhöhung der Prozesssicherheit kann vorgesehen sein, dass noch eine vorgebbare Zeit gewartet wird, bis auf den veränderten Verlauf des Ist- Kurbelgehäusedrucks pKG(IST) reagiert wird. Nach Ablauf dieser Zeitstufe werden sowohl die Lernkurve LK als auch die Grenzkurve GK auf ihre Anfangswerte zurückgesetzt. Die Anfangswerte können den Ursprungswerten entsprechen, also den ursprünglich applizierten Datenwerten bei Neuzustand der Brennkraftmaschine. Dieser Fall ist in der Figur 1 dargestellt. Die Lernkurve LK hat daher zum Zeitpunkt tO und zum Zeitpunkt t1 dasselbe Druckniveau p1. In der Figur ist dies durch die beiden Punkte A und B1 gekennzeichnet. Entsprechend hat die Grenzkurve GK zum Zeitpunkt tO und zum Zeitpunkt t1 dasselbe Druckniveau p2. Nach dem Zurücksetzen der Lernkurve LK und der Grenzkurve GK wird in den Kurbelgehäuse-Drucküberwachungsmodus gewechselt.
In einer alternativen Ausführungsform ist vorgesehen, dass die Lernkurve LK und die Grenzkurve GK auf korrigierte Ursprungswerte gesetzt werden. Berechnet wird die Korrektur zum Beispiel anhand des Lastprofils der Brennkraftmaschine oder der
Betriebsdauer der Brennkraftmaschine. Typischerweise wird das Lastprofil in
Abhängigkeit der Motordrehzahl und des Motormoments ermittelt, zum Beispiel über die Verweildauer in den entsprechenden Drehzahl- und Motormomentklassen. Bei dieser Ausführungsform wird dann die Lernkurve LK zum Zeitpunkt t1 auf einen kleineren Wert des Kurbelgehäusedrucks korrigiert. In der Figur 1 ist der korrigierte Ursprungswert mit dem Punkt B2 gekennzeichnet. Für die Grenzkurve GK gilt dies in angepasster Form.
In der Figur 2 ist ein Programm-Ablauf dargestellt. Bei S1 wird nach der Initialisierung des elektronischen Motorsteuergeräts zunächst solange gewartet, bis der Startvorgang abgeschlossen ist. Bei S2 wird geprüft, ob ein stationärer Betriebszustand vorliegt. Ist dies nicht der Fall, Abfrageergebnis S2: nein, so wird zum Punkt A zurückverzweigt. Wurde hingegen ein stationärer Betriebszustand erkannt, Abfrageergebnis S2: ja, so wird im Anschluss bei S3 geprüft, ob eine Zeitstufe tGW noch nicht abgelaufen ist. Gesetzt wird diese Zeitstufe tGW, zum Beispiel fünfzehn Minuten, mit dem abgeschlossenen Startvorgang. Ergibt die Prüfung bei S3, dass die Zeitstufe tGW bereits abgelaufen ist, Abfrageergebnis S3: nein, so wird zu S8 verzweigt und in den Kurbelgehäuse- Drucküberwachungsmodus gewechselt. Ist die Zeitstufe tGW hingegen noch nicht abgelaufen, Abfrageergebnis S3: ja, so wird zu S4 verzweigt und geprüft ob der Ist- Kurbelgehäusedruck pKG(IST) größer/gleich einem Grenzwert dpKG ist. Dies ist dann der Fall, wenn der Luftfilter getauscht wurde. Wenn der Ist-Kurbelgehäusedruck pKG(IST) nicht größer ist, Abfrageergebnis S4: nein, wird zum Punkt C verzweigt. Dieser
Programmpfad wird also dann durchlaufen, wenn der Luftfilter nicht getauscht wurde. Wird bei S4 festgestellt, dass der Ist-Kurbelgehäusedruck pKG(IST) größer/gleich dem Grenzwert dpKG ist, Abfrageergebnis S3: ja, so wird bei S5 geprüft, ob die Zeitstufe t abgelaufen ist. Ist dies nicht der Fall, Abfrageergebnis S5: nein, wird bei S6 die Zeit verringert und zum Punkt B zurückverzweigt. Wurde bei S5 hingegen festgestellt, dass die Zeitstufe t abgelaufen ist, Abfrageergebnis: ja, so werden bei S7 die Lernkurve LK und die Grenzkurve GK auf ihre Anfangswerte zurückgesetzt. Die Anfangswerte entsprechen den Ursprungswerten, also den ursprünglich applizierten Datenwerten bei Neuzustand der Brennkraftmaschine. Alternativ können die Anfangswerte auch in Abhängigkeit des Lastprofils der Brennkraftmaschine oder der Betriebsdauer der
Brennkraftmaschine korrigiert sein. Anschließend wird dann bei S8 der Kurbelgehäuse- Drucküberwachungsmodus gesetzt und bei S9 geprüft, ob ein Motorstopp erkannt wurde. Ist dies nicht der Fall, Abfrageergebnis S9: nein, so wird zum Punkt C zurückverzweigt, anderenfalls ist der Programmablauf beendet.

Claims

Patentansprüche
1. Verfahren zur Überwachung des Kurbelgehäusedrucks (pKG), bei dem eine
Lernkurve (LK) in Abhängigkeit einer Soll-Istabweichung des Kurbelgehäusedrucks berechnet wird, bei dem der Soll-Kurbelgehäusedruck in Abhängigkeit der
Lernkurve (LK) angepasst wird, in Abhängigkeit des Soll-Kurbelgehäusedrucks eine Grenzkurve (GK) berechnet wird und bei dem der Ist-Kurbelgehäusedruck (pKG(IST)) auf Überschreitung der Grenzwertkurve (GK) überwacht wird, dadurch gekennzeichnet, dass nach einem Motorstart mit erkanntem stationärem Betrieb der Brennkraftmaschine der Ist-Kurbelgehäusedruck (pKG(IST)) mit einem Grenzwert (dpKG) verglichen wird und bei festgestellter Grenzwertüberschreitung (pKG(IST)ädpKG) die Lernkurve (LK) und infolge die Grenzkurve (GK) auf ihre Anfangswerte zurückgesetzt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Anfangswert auf einen Ursprungswert im Neuzustand der Brennkraftmaschine gesetzt wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Anfangswert auf einen korrigierten Ursprungswert gesetzt wird, wobei der Ursprungswert anhand des Lastprofils der Brennkraftmaschine oder der Betriebsdauer der
Brennkraftmaschine korrigiert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Ist- Kurbelgehäusedruck (pKG(IST)) mit einem Grenzwert (dpKG) innerhalb einer vorgebbaren Zeit (tGW) verglichen wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass nach Zurücksetzen der Lernkurve (LK) und der Grenzkurve (GK) in den Kurbelgehäusedruck- Überwachungsmodus gewechselt wird.
PCT/EP2017/001342 2017-02-28 2017-11-16 Verfahren zur überwachung des kurbelgehäusedrucks WO2018157907A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780087589.5A CN110325723B (zh) 2017-02-28 2017-11-16 用于监控曲轴壳体压力的方法
US16/489,100 US11187174B2 (en) 2017-02-28 2017-11-16 Method for monitoring crankcase pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017001904.5 2017-02-28
DE102017001904.5A DE102017001904B4 (de) 2017-02-28 2017-02-28 Verfahren zur Überwachung des Kurbelgehäusedrucks

Publications (1)

Publication Number Publication Date
WO2018157907A1 true WO2018157907A1 (de) 2018-09-07

Family

ID=60387972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/001342 WO2018157907A1 (de) 2017-02-28 2017-11-16 Verfahren zur überwachung des kurbelgehäusedrucks

Country Status (4)

Country Link
US (1) US11187174B2 (de)
CN (1) CN110325723B (de)
DE (1) DE102017001904B4 (de)
WO (1) WO2018157907A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200978B4 (de) * 2019-01-25 2020-11-12 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit eines Kurbelgehäuseentlüftungssystems eines Verbrennungsmotors
CN113389617A (zh) * 2021-07-30 2021-09-14 广西玉柴机器股份有限公司 一种电驱油气分离器曲轴箱压力的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020139331A1 (en) * 2001-03-27 2002-10-03 Honda Giken Kogyo Kabushiki Kaisha Variable valve-timing engine
US6546321B1 (en) * 1999-08-25 2003-04-08 Unisia Jecs Corporation Method and apparatus for rewriting data of control unit for vehicle
EP1921300A1 (de) * 2005-08-18 2008-05-14 Isuzu Motors Limited Brennstoffeinspritzungssteuervorrichtung
WO2008099276A1 (en) * 2007-02-15 2008-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle control device
DE102013021295B3 (de) 2013-12-19 2015-05-28 Mtu Friedrichshafen Gmbh Verfahren und Steuereinrichtung zum Überwachen eines Kurbelgehäusedrucks

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131644A (ja) * 1984-07-20 1986-02-14 Fuji Heavy Ind Ltd 自動車用エンジンの電子制御方式
US5792949A (en) * 1996-08-28 1998-08-11 General Motors Corporation Crankcase ventilation system diagnostic
US6240772B1 (en) * 1998-12-09 2001-06-05 Detroit Diesel Corporation System and method for detecting engine malfunction based on crankcase pressure
DE10320054A1 (de) * 2003-05-06 2004-11-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009023964B4 (de) 2009-06-05 2021-12-30 Andreas Stihl Ag & Co. Kg Verfahren zum Betrieb eines Zweitaktmotors
DE102010040900A1 (de) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Kurbelgehäuseentlüftung von Verbrennungsmotoren
US10619534B2 (en) * 2012-09-14 2020-04-14 Ford Global Technologies, Llc Crankcase integrity breach detection
US9260990B2 (en) * 2012-09-14 2016-02-16 Ford Global Technologies, Llc Crankcase integrity breach detection
US9416694B2 (en) * 2012-09-14 2016-08-16 Ford Global Technologies, Llc Crankcase integrity breach detection
US9068486B2 (en) * 2012-09-14 2015-06-30 Ford Global Technologies, Llc Crankcase integrity breach detection
US9316131B2 (en) * 2012-09-14 2016-04-19 Ford Global Technologies, Llc Crankcase integrity breach detection
CN102966409B (zh) * 2012-11-23 2015-07-22 浙江吉利汽车研究院有限公司杭州分公司 一种曲轴箱通风电子控制方法及***
JP5878460B2 (ja) * 2012-12-21 2016-03-08 トヨタ自動車株式会社 エンジンの制御装置
DE102013224030B4 (de) 2013-11-25 2015-06-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Überprüfen der Funktionstüchtigkeit einer Kurbelgehäuse-Entlüftungsvorrichtung einer Brennkraftmaschine
CN203962158U (zh) * 2014-05-30 2014-11-26 东风商用车有限公司 一种发动机曲轴箱压力报警***
DE102014114397A1 (de) 2014-10-02 2016-04-07 Hengst Of North America, Inc. Brennkraftmaschine mit einer Kurbelgehäuseentlüftungseinrichtung und Verfahren zum Überwachen einer Kurbelgehäuseentlüftungseinrichtung
US9664079B2 (en) * 2014-10-03 2017-05-30 Ford Global Technologies, Llc Crankcase integrity breach detection
US9909470B2 (en) * 2015-04-23 2018-03-06 Ford Global Technologies, Llc Crankcase ventilation pressure management for turbocharged engine
US9932924B2 (en) * 2015-12-17 2018-04-03 Aisan Kobyo Kabushiki Kaisha Abnormality diagnosis device for blow-by gas returning apparatus
DE102016216122B4 (de) * 2016-08-26 2018-07-26 Continental Automotive Gmbh Verfahren und Vorrichtung zur Plausibilisierung der Funktionsfähigkeit einer Kurbelgehäuseentlüftung
JP6409086B1 (ja) * 2017-03-30 2018-10-17 株式会社Subaru リーク検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546321B1 (en) * 1999-08-25 2003-04-08 Unisia Jecs Corporation Method and apparatus for rewriting data of control unit for vehicle
US20020139331A1 (en) * 2001-03-27 2002-10-03 Honda Giken Kogyo Kabushiki Kaisha Variable valve-timing engine
EP1921300A1 (de) * 2005-08-18 2008-05-14 Isuzu Motors Limited Brennstoffeinspritzungssteuervorrichtung
WO2008099276A1 (en) * 2007-02-15 2008-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle control device
DE102013021295B3 (de) 2013-12-19 2015-05-28 Mtu Friedrichshafen Gmbh Verfahren und Steuereinrichtung zum Überwachen eines Kurbelgehäusedrucks

Also Published As

Publication number Publication date
DE102017001904A1 (de) 2018-08-30
US11187174B2 (en) 2021-11-30
CN110325723A (zh) 2019-10-11
US20200109676A1 (en) 2020-04-09
DE102017001904B4 (de) 2019-01-03
CN110325723B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
DE102006028695B4 (de) Elektronisches Steuersystem mit Fehlfunktionsüberwachung
DE102008021385B3 (de) Verfahren und Vorrichtung zum Lernen der Ruhestellung des Gaspedals eines Kraftfahrzeuges
DE102007013252A1 (de) Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102012108027A1 (de) Ölpumpenregelungssystem für ein Fahrzeug und Betriebsverfahren davon
DE10230834A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1165948A1 (de) Verfahren zur fehlererkennung eines kühlsystems eines kraftfahrzeug-motors
WO2018157907A1 (de) Verfahren zur überwachung des kurbelgehäusedrucks
DE102013221995A1 (de) Verfahren und Vorrichtung zur Bewertung von anormalen Verbrennungen einer Brennkraftmaschine eines Kraftfahrzeuges durch eine Regressionsberechnung einer physikalischen Größe
DE19836845A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
DE3834711A1 (de) Verfahren und vorrichtung zur fehlererkennung und/oder fehlerbehandlung bei stereo-lambdaregelung
DE102013019498A1 (de) Verfahren zum Betrieb einer Klimaanlage eines Kraftfahrzeugs und Klimaanlage
WO2001077511A1 (de) Verfahren zur fehlererkennung und fehlerheilung
DE4203502A1 (de) Verfahren und vorrichtung zum beurteilen der funktionsfaehigkeit einer lambdaregelung
WO2007065852A1 (de) Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
EP3759326A1 (de) Diagnoseverfahren zur sprungerkennung einer kontinuierlichen messgrösse, steuerung zur durchführung des verfahrens
DE102010029839B4 (de) Steuersystem
DE102012019599A1 (de) Vorrichtung und Verfahren für ein Feldgerät einer Maschine
DE2846804A1 (de) Verfahren und anordnung zur erzielung einer korrektur einer kennlinie, die in einer ansteuereinrichtung fuer ein kraftstoffzumessorgan einer brennkraftmaschine gespeichert ist
DE102016209450A1 (de) Verfahren zur Überwachung einer Entlüftung eines Kurbelgehäuses
DE10031066C2 (de) Einspritzanlage für eine Brennkraftmaschine sowie Verfahren zum Betrieb einer Einspritzanlage
DE102016215125B4 (de) Verfahren zur Steuerung einer Notfalleinrichtung, Klappensteuergerät und Steuereinrichtung für eine Brennkraftmaschine sowie Brennkraftmaschine
DE102010031323A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102017216989A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem und Einspritzsystem zur Durchführung eines solchen Verfahrens
DE102017009194B4 (de) Verfahren zur Prüfung eines Hydrauliksystems
DE102019129179A1 (de) Vorrichtung und Verfahren zum Steuern eines Kombinationsinstruments eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17800703

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17800703

Country of ref document: EP

Kind code of ref document: A1