WO2018143002A1 - 樹脂組成物、該組成物から形成される成形体 - Google Patents

樹脂組成物、該組成物から形成される成形体 Download PDF

Info

Publication number
WO2018143002A1
WO2018143002A1 PCT/JP2018/001911 JP2018001911W WO2018143002A1 WO 2018143002 A1 WO2018143002 A1 WO 2018143002A1 JP 2018001911 W JP2018001911 W JP 2018001911W WO 2018143002 A1 WO2018143002 A1 WO 2018143002A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
vinyl chloride
lubricant
rubber
Prior art date
Application number
PCT/JP2018/001911
Other languages
English (en)
French (fr)
Inventor
浩貴 金谷
邦昭 川辺
庸祐 ▲高▼橋
幸治 松永
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201880009480.4A priority Critical patent/CN110234703B/zh
Priority to KR1020197022666A priority patent/KR102228717B1/ko
Priority to JP2018566071A priority patent/JP6741796B2/ja
Priority to US16/479,875 priority patent/US11453768B2/en
Priority to EP18748316.9A priority patent/EP3578603A4/en
Publication of WO2018143002A1 publication Critical patent/WO2018143002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a resin composition having a specific composition, a molded body formed from the composition, and a pipe joint.
  • Vinyl chloride resin has excellent mechanical properties, processability, chemical resistance, and is cheaper than other resins, so it is mainly used in the housing field such as pipes, joints, flat plates, gutters, sashes, and siding. Although it is used in a wide range of applications, the current mainstream polyvinyl chloride (PVC) has low heat resistance and is liable to undergo thermal deformation, so its use at high temperatures has been limited. Therefore, in order to improve the heat resistance of the vinyl chloride resin, a method of post-chlorinating the vinyl chloride resin is generally used. As a result, the post-chlorinated vinyl chloride resin (hereinafter referred to as chlorinated vinyl chloride resin). The resin can be used in a fire extinguishing sprinkler pipe and a hot water supply pipe (see Patent Documents 1, 2, and 4).
  • chlorinated vinyl chloride resin With chlorinated vinyl chloride resin, as the chlorine content increases, the brittle side of the resin increases and the impact strength decreases. Therefore, as a chlorinated vinyl chloride resin composition, it is necessary to add a large amount of an impact absorbing material as compared with conventional PVC in order to further improve the impact strength and balance the mechanical properties.
  • the impact absorbing material a rubber-based impact absorbing material having a low glass transition temperature is used.
  • the impact strength of the chlorinated vinyl chloride resin increases in proportion to the proportion of the rubber-based shock absorber in the resin composition. On the other hand, if the proportion of the rubber-based shock absorber is excessively large, The heat resistance, which is a characteristic of vinyl resins, is remarkably deteriorated, and processability is also lowered. For this reason, various resin compositions having sufficient heat resistance, mechanical properties, and processability have been studied (see Patent Documents 1 to 4).
  • JP-A-5-132603 JP 2000-204215 A Japanese Patent Application Laid-Open No. 2002-244952 JP-A-6-228398
  • Patent Documents 1 to 4 are all said to have sufficient heat resistance, mechanical properties, and processability.
  • an object of the present invention is to provide a new vinyl chloride resin composition having excellent transparency, and a molded body formed from the resin composition, particularly a pipe joint.
  • the present invention relates to the following [1] to [9].
  • the following requirements (I) A resin composition satisfying (III).
  • the glass transition temperature (Tg) in the differential scanning calorimetry (DSC) of the rubber shock absorber (B) is 0.
  • the lubricant (C) satisfies the following requirements (i) to (iv) (i) The melt viscosity at 200 ° C.
  • the softening point is 60 to 180
  • the glass transition temperature (Tg) measured with a differential scanning calorimeter (DSC) is in the range of 0 to 100 ° C.
  • Tg glass transition temperature measured with a differential scanning calorimeter
  • the vinyl chloride resin (A) contains chlorine
  • the resin composition according to [1], wherein the rate is 60 to 75% by mass.
  • the ratio ((A) / (C)) of the density of the vinyl chloride resin (A) and the lubricant (C) is 1.70 or less, and the rubber-based shock absorber (B).
  • the molded article according to [7] which is an injection molded article.
  • the molded body of the present invention includes a pipe joint.
  • the resin composition of the present invention contains a vinyl chloride resin (A), a rubber shock absorber (B), and a lubricant (C).
  • the amount of the vinyl chloride resin (A) is 100 parts by mass
  • the amount of the rubber shock absorber (B) is 3 to 15 parts by mass, preferably 4 to 14 parts by mass
  • the amount is preferably 5 to 13 parts by mass, particularly preferably 6 to 12 parts by mass.
  • the amount of the lubricant (C) is 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass. More preferably, the content is 0.1 to 3 parts by mass, particularly preferably 0.1 to 2 parts by mass, and particularly preferably 0.5 to 2 parts by mass.
  • the resin composition is excellent in the balance between impact resistance and heat resistance.
  • the vinyl chloride resin (A) increases in brittleness in proportion to the chlorine content and is easily broken by external force, but in proportion to the content of the rubber-based shock absorber (B).
  • the tough side is increased and it becomes difficult to be destroyed by external force.
  • many rubber-based shock absorbers (B) generally have an intramolecular unsaturated bond in the rubber component, coloring due to thermal deterioration tends to occur in proportion to the content.
  • the vinyl chloride resin (A) and the rubber shock absorber (B) are contained in the above ratio in terms of excellent balance between the impact resistance and the heat resistance of the resin composition.
  • the ratio of the density of the vinyl chloride resin (A) to the density of the lubricant (C) ((A) / (C)) is preferably 1.70 or less, more preferably 1.65 or less, Especially preferably, it is 1.55 or less.
  • the ratio of the density of the rubber-based shock absorber (B) and the density of the lubricant (C) ((B) / (C)) is preferably 1.05 or less, more preferably 1.00 or less, Especially preferably, it is 0.95 or less. When the density ratio is within the above range, the transparency of the resin composition is excellent.
  • Vinyl chloride resin (A) The chlorine content of the vinyl chloride resin (A) is 55 to 75% by mass, preferably 57 to 75% by mass, more preferably 60 to 75% by mass, and particularly preferably 63 to 75% by mass. When the chlorine content of the vinyl chloride resin (A) is 55% by mass or more, a resin composition having sufficient heat resistance can be obtained. On the other hand, when the chlorine content is 75% by mass or less, the melt viscosity does not become too high, and a resin composition with good processability can be obtained. The chlorine content can be measured according to ISO 1158.
  • the average degree of polymerization of the vinyl chloride resin (A) is preferably 600 to 1500, more preferably 600 to 1300, and still more preferably 600 to 1200.
  • the average degree of polymerization of the vinyl chloride resin (A) is 600 or more, a resin composition having more sufficient mechanical strength can be obtained.
  • the average degree of polymerization is 1500 or less, the melt viscosity does not become too high, and a resin composition with good processability can be obtained.
  • the average degree of polymerization can be measured according to JIS K6720-2.
  • the density of the vinyl chloride resin (A) is preferably 1300 to 1900 kg / m 3 , more preferably 1400 to 1800 kg / m 3 , still more preferably 1500 to 1700 kg / m 3 .
  • the density can be measured according to JIS K7112.
  • vinyl chloride resin (A) examples include homopolymer polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer.
  • a so-called post-chlorinated vinyl chloride resin obtained by post-chlorinating these can be used. These may be used alone or in combination of two or more. Further, when the vinyl chloride resin (A) is a copolymer, the content ratio of the structural units derived from the respective monomers is not particularly limited as long as the chlorine content falls within the above range.
  • Rubber shock absorber (B) The glass transition temperature (Tg) in the differential scanning calorimetry (DSC) of the rubber-based shock absorber (B) is 0 ° C. or less, preferably ⁇ 20 ° C. or less, more preferably ⁇ 40 ° C. or less, particularly preferably ⁇ It is 60 degrees C or less. If Tg of the rubber-based shock absorber (B) is 0 ° C. or less, a resin composition having sufficient impact resistance can be obtained.
  • the rubber-based shock absorber (B) preferably has a melt flow rate (MFR) measured at a temperature of 200 ° C. and a load of 5 kgf in accordance with JIS K7210-1, 0.1 to 70 g / 10 min. It is preferably 0.3 to 60 g / 10 minutes, more preferably 0.5 to 50 g / 10 minutes.
  • MFR melt flow rate
  • the MFR of the rubber-based shock absorbing material (B) is within the above range, it is preferable in that a resin composition having more sufficient impact resistance can be obtained.
  • the density measured by the density gradient tube method of the rubber-based shock absorber (B) is preferably 900 to 1200 kg / m 3 , more preferably 920 to 1100 kg / m 3 , and still more preferably 930 to 1050 kg / m 3. It is.
  • the density of the rubber-based shock absorber (B) is within the above range, it is preferable in that a resin composition having more sufficient impact resistance can be obtained.
  • the Tg of the rubber-based shock absorber (B) is not particularly limited as long as it is 0 ° C. or lower, but it is preferable that butadiene rubber, acrylic rubber or silicon rubber is included as a rubber component. Moreover, it is preferable that the rubber component contains a structural unit derived from a functional group-containing olefin monomer. In the rubber component, the concentration of the structural unit derived from the functional group-containing olefin monomer in the vicinity of the particle surface is particularly preferably higher than the concentration of the structural unit derived from the functional group-containing olefin monomer in the other part.
  • Examples of the functional group of the functional group-containing olefin monomer include a group containing an aromatic ring and a group containing a group 15 to 17 element.
  • Examples include aromatic hydrocarbon groups having 6 to 20 carbon atoms, nitrile groups, ester groups, carboxyl groups, ketone groups, aldehyde groups, ether groups, amide groups, imide groups, and halogen atoms, and those having 6 to 20 carbon atoms.
  • Aromatic hydrocarbon groups, nitrile groups, ester groups and carboxyl groups are preferred.
  • Examples of the functional group-containing olefin monomer include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, paramethylstyrene, chlorostyrene, bromostyrene, dibromostyrene, tribromostyrene, vinylnaphthalene, isopropenylnaphthalene, and divinylbenzene; Vinyl cyanide compounds such as (meth) acrylonitrile; unsaturated carboxylic acids (anhydrides) such as (meth) acrylic acid and maleic anhydride; (meth) acrylic such as (meth) acrylic acid methyl, ethyl, propyl and butyl An ⁇ , ⁇ -unsaturated carboxylic acid ester such as an acid alkyl ester can be used.
  • aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, paramethylstyrene, chlorostyrene, bromostyrene, dibromostyrene, tribro
  • Examples of the rubber-based shock absorber (B) include acrylonitrile-butadiene-styrene copolymer (ABS, Tg: -80 ° C), methyl methacrylate-butadiene-styrene copolymer (MBS, Tg: -80 ° C).
  • Alkyl methacrylate-styrene copolymer (MS, Tg: -42 ° C), alkyl methacrylate-polydimethylsiloxane-styrene copolymer (Tg: -125 ° C), acrylonitrile-butadiene rubber (NBR, Tg: -85) ° C), styrene-butadiene copolymer (SBR, Tg: -80 ° C), hydrogenated styrene-butadiene-styrene copolymer (SEBS, Tg: -80 ° C), and the like.
  • MS Alkyl methacrylate-styrene copolymer
  • Tg: -125 ° C alkyl methacrylate-polydimethylsiloxane-styrene copolymer
  • NBR acrylonitrile-butadiene rubber
  • SBR styrene-butadiene
  • Lubricant (C) The resin composition of this invention may contain only 1 type of lubricants (C), and may contain 2 or more types.
  • a lubricant is a substance that can be given fluidity when melted by being blended with a high molecular weight compound, and generally has a molecular weight of several hundred to several tens of thousands and a softening point of about 60 to 160 ° C. It is an oligomer.
  • lubricant (C) examples include natural rosin, modified rosin, polyterpene resin, synthetic petroleum resin, coumarone resin, phenol resin, xylene resin, styrene resin, and isoprene resin.
  • the lubricant (C) include C 4 fraction obtained by cracking petroleum, naphtha, etc., C 5 fraction, a mixture thereof, or any component (for example, C 5 fraction) contained therein. Isoprene and 1,3-pentadiene etc.) as main raw materials; Petroleum, aromatic hydrocarbon resin to the styrene derivatives and indenes contained in C 9 fraction obtained by decomposition of naphtha as a main material; C 4 fraction and C 5 fraction to any component and copolymerized with aliphatic aromatic copolymer hydrocarbon resin contained in any component and C 9 fraction contained; An alicyclic hydrocarbon resin obtained by hydrogenating an aromatic hydrocarbon resin; Synthetic terpene-based hydrocarbon resins including aliphatic, alicyclic and aromatic hydrocarbon resins; Terpene hydrocarbon resin made from ⁇ , ⁇ -pinene in turpentine oil; Coumarone indene hydrocarbon resin made from indene and styrene in coal tar nap
  • the lubricant (C) satisfies the following requirements (i) to (iv).
  • the melt viscosity at 200 ° C. is 5 to 5,000 mP ⁇ s.
  • the melt viscosity at 200 ° C. of the lubricant (C) is preferably 5 to 2,000 mP ⁇ s, more preferably 10 to 500 mP. ⁇ S, particularly preferably 30 to 200 mP ⁇ s.
  • the lubricant (C) When the melt viscosity at 200 ° C. of the lubricant (C) is within the above range, the lubricant (C) is easily compatible with the vinyl chloride resin (A). Therefore, the lubricant (C) is more easily dispersed more uniformly in the resin composition, and a resin composition having more sufficient transparency and heat resistance can be obtained. In addition, the molding processability of the resin composition, specifically, the kneadability and the molding processability during injection molding, etc. are improved.
  • the softening point measured according to JIS K2207 is 60 to 180 ° C.
  • the softening point of the lubricant (C) is preferably 100 to 160 ° C., more preferably 110 to 150 ° C. is there.
  • the softening point of the lubricant (C) is in the above range, the lubricant (C) is easily compatible with the vinyl chloride resin (A) and more easily dispersed more uniformly. Therefore, it is preferable at the point from which the resin composition which has more sufficient impact resistance and is excellent in workability is obtained.
  • Glass transition temperature (Tg) measured with a differential scanning calorimeter (DSC) is in the range of 0 to 100 ° C.
  • the glass transition temperature (Tg) of the lubricant (C) is preferably 20 to 95 ° C. More preferably, it is 40 to 90 ° C, and further preferably 50 to 85 ° C.
  • the glass transition temperature (Tg) of the lubricant (C) is not less than the above lower limit value, it is preferable from the viewpoint of improving the heat resistance of the resin composition, and when it is not more than the above upper limit value, workability at the time of compounding the resin composition. Is preferable.
  • the content of the structural unit selected from the above group is preferably 60 to 100% by mass, more preferably 80 to 100% by mass.
  • a lubricant (C) contains the some structural unit chosen from the said group, the said content is these total amounts.
  • the lubricant (C) has the above structural unit in the molecule, the flowability of the vinyl chloride resin (A) is improved and the rubber-based impact modifier (B) is easily finely dispersed. Further, since the lubricant (C) hardly crystallizes, light scattering hardly occurs at the interface of the vinyl chloride resin (A), which is an amorphous resin, and the transparency is maintained.
  • the vinyl chloride resin (A) Since the refractive index is close, light scattering at the interface is unlikely to occur, so transparency is maintained.
  • the content of each structural unit can be calculated from the ratio of the supply amount of each monomer to the total monomer supply amount during polymerization.
  • the content of each structural unit of the lubricant (C) can be calculated from the quantitative ratio of the peak derived from ethylene and the peak derived from styrene by analysis of 13 C-NMR spectrum.
  • the lubricant (C) preferably satisfies the following physical properties. Density measured with a density gradient tube method of lubricant (C) is preferably 900 ⁇ 1200kg / m 3, more preferably 950 ⁇ 1150kg / m 3, more preferably from 1000 ⁇ 1130kg / m 3, Particularly preferred is 1010 to 1100 kg / m 3 . When the density is in the above range, the lubricant (C) is easily compatible with the vinyl chloride resin (A) and more easily dispersed more uniformly. As a result, a resin composition having excellent transparency can be obtained.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) of the lubricant (C) is preferably 500 to 2500, and more preferably 600 to 2300. More preferably, it is 700-2000.
  • the weight average molecular weight (Mw) is preferably 800 to 4000, more preferably 900 to 3800. More preferably, it is 1000-3500.
  • the weight average molecular weight / number average molecular weight (Mw / Mn) is preferably 1.1 to 2.5, more preferably 1.2 to 2.0. More preferably, it is 1.3 to 1.9.
  • the degree of unsaturation (the amount of hydrogen on the unsaturated bond in the total amount of hydrogen) measured by proton nuclear magnetic resonance ( 1 H-NMR) of the lubricant (C) is preferably 0.10 to 0.80, and more It is preferably 0.15 to 0.60, and more preferably 0.18 to 0.40.
  • the degree of unsaturation of the lubricant (C) is within the above range, the compatibility of the vinyl chloride resin (A), the rubber-based shock absorber (B) and the lubricant (C) is improved, and the transparency is increased.
  • the lubricant (C) can be produced by a known method. For example, a method in which at least one monomer selected from the group consisting of styrene, ⁇ -methylstyrene, indene, vinyltoluene and isopropenyltoluene, which are raw materials, is homopolymerized or copolymerized with two or more, these monomers and others And other monomers (such as vinyl aromatic compounds and unsaturated aliphatic compounds other than those mentioned above).
  • Examples of other vinyl aromatic compounds used in the above method include substituted styrene having a substituent on the aromatic ring; and styrene monomers such as substituted ⁇ -methylstyrene having a substituent on the aromatic ring.
  • Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a halogen atom.
  • substituted styrene examples include methyl styrene (excluding ⁇ -methyl styrene), ethyl styrene, 2,4-dimethyl styrene, pn-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, p -N-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene be able to.
  • examples of the unsaturated aliphatic compound that is another monomer include unsaturated aliphatic hydrocarbons having 4 to 5 carbon atoms.
  • the unsaturated aliphatic hydrocarbons having 4 to 5 carbon atoms include C 4 fractions and C 5 fractions containing, as a main component, unsaturated aliphatic hydrocarbons having 4 to 5 carbon atoms by-produced during petroleum refining and decomposition. Any compound selected can be used. By using these compounds in combination with styrene or the like, it is possible to adjust each physical property such as the softening point of the lubricant (C) according to the use.
  • C 4 fraction and C 5 fraction are fractions having a boiling point range of usually ⁇ 15 to + 45 ° C. under normal pressure, and are 1-butene, isobutene, 2-butene, 1,3-butadiene, 1-pentene, It contains polymerizable monomers such as 2-methyl-1-butene, 3-methyl-1-butene, 2-pentene, isoprene, 1,3-pentadiene and cyclopentadiene.
  • the unsaturated aliphatic compound any polymerizable monomer selected from C 4 fraction and C 5 fraction can be used, but the unsaturated aliphatic compound does not have a conjugated double bond, or the content thereof. Is preferably low. Specifically, it is preferable that 1,3-butadiene, isoprene, 1,3-pentadiene, cyclopentadiene or the like is not contained or the content thereof is low.
  • the oil fraction as described above is, for example, a light oil fraction containing a gas fraction by-produced at the time of atmospheric distillation (topping) of crude oil or the like in a refinery or the like; it is by-produced in oil cracking and reforming processes. Similar light oil fractions; or light oil fractions containing gas obtained in petroleum naphtha cracking in petrochemical plants; etc., as desired, or optionally with distillation, extraction or other treatment It can be obtained as a fraction.
  • the homopolymerization reaction or copolymerization reaction of a monomer selected from the above group, and the copolymerization reaction of the monomer with another monomer are mainly cationic polymerization, more specifically in the presence of a Friedel-Crafts catalyst.
  • a Friedel-Crafts catalyst known Friedel-Crafts catalysts can be used. Specifically, aluminum chloride, aluminum bromide, dichloromonoethylaluminum, titanium tetrachloride, tin tetrachloride, boron trifluoride, trifluoride. Examples thereof include various complexes such as an ether complex and a phenol complex of boron bromide.
  • the amount of Friedel-Crafts catalyst used is usually 0.05 to 5 parts by weight, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the total amount of raw material monomers.
  • the polymerization reaction is performed using a solvent so that the concentration of the polymerizable monomer as a raw material is about 10 to 60% by mass in order to remove reaction heat generated during the polymerization reaction, suppress the viscosity of the reaction solution, and adjust the molecular weight.
  • suitable solvents include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and mesitylene. Can be mentioned. These may be used alone or in combination.
  • a polymerizable monomer that is a raw material in the reactor is subjected to a polymerization reaction in the solvent in the presence of the catalyst.
  • the polymerization step can be carried out in a single stage, but is preferably carried out in a plurality of stages.
  • the polymerization temperature varies depending on the raw material composition, the target molecular weight region, and the like, but is usually preferably in the range of ⁇ 50 to + 50 ° C.
  • the reaction time is preferably in the range of usually 10 minutes to 10 hours.
  • the catalyst After completion of the polymerization, the catalyst is decomposed with a basic compound such as a basic aqueous solution or alcohol such as methanol, washed with water, and stripped of unreacted raw materials and solvents, etc.
  • a basic compound such as a basic aqueous solution or alcohol such as methanol
  • the lubricant (C) may be a solid such as a powder, a tablet, or a block, and may be dispersed in a solvent or dissolved.
  • the resin composition of the present invention may further contain a resin other than the above (A) to (C) as long as the effects of the present invention are not significantly impaired.
  • the content of the other resin is not particularly limited, but is preferably about 0.1 to 30 parts by mass with respect to 100 parts by mass of (A).
  • additives include additives known in the field of vinyl chloride resins, such as nucleating agents, antiblocking agents, fibers, fillers, fillers. , Pigments, dyes, lubricants (those not corresponding to the above (C)), plasticizers, mold release agents, antioxidants, flame retardants, ultraviolet absorbers, antibacterial agents, surfactants, antistatic agents, weathering stabilizers, Heat stabilizer, anti-slip agent, foaming agent, crystallization aid, anti-fogging agent, anti-aging agent, hydrochloric acid absorbent, impact modifier, cross-linking agent, co-crosslinking agent, cross-linking aid, adhesive, softener, processing An auxiliary agent etc. are mentioned.
  • additives may be used alone or in combination of two or more.
  • the content of these additives is not particularly limited depending on the use within the range not impairing the object of the present invention, but for each additive to be added to 100 parts by mass of the vinyl chloride resin (A),
  • the amount is preferably about 0.05 to 70 parts by mass.
  • the upper limit is more preferably 30 parts by mass.
  • Fibers include glass fiber, carbon fiber, natural fiber (wood flour, wood fiber, bamboo, cotton, cellulose, nanocellulosic fiber, etc.) or agricultural fiber (straw, hemp, flax, kenaf, kapok, jute, ramie) , Sisal hemp, henecken, corn fiber or coir, or nuts or rice husks).
  • natural fiber wood flour, wood fiber, bamboo, cotton, cellulose, nanocellulosic fiber, etc.
  • agricultural fiber straw, hemp, flax, kenaf, kapok, jute, ramie
  • Sisal hemp henecken
  • corn fiber or coir or nuts or rice husks
  • nuts or rice husks nuts or rice husks
  • the type of glass fiber is not particularly limited, but roving glass, chopped strand glass, milled glass, and the like can be used. These may be used alone or in combination of two or more.
  • Fillers include calcium carbonate, silica, kaolin, clay, titanium oxide, barium sulfate, zinc oxide, amorphous fillers such as aluminum hydroxide, alumina, magnesium hydroxide, plate fillers such as talc, mica, or glass flakes. Wollastonite, potassium titanate, basic magnesium sulfate, sepiolite, zonotlite, needle fillers such as aluminum borate, fillers such as metal powder, metal flakes, and the like are used. Other glass beads, glass powder, etc. are used. These fillers may be used alone or in combination, or those whose surfaces are subjected to carbon coating or silane coupling treatment may be used alone or in combination.
  • the pigment examples include inorganic contents (titanium oxide, iron oxide, chromium oxide, cadmium sulfide, etc.) and organic pigments (azo lake, thioindigo, phthalocyanine, anthraquinone).
  • the dye examples include azo series, anthraquinone series, and triphenylmethane series.
  • the addition amount of these pigments and dyes is not particularly limited, but is generally 5 parts by mass or less, preferably 0.1 to 3 parts by mass in total with respect to 100 parts by mass of the vinyl chloride resin (A).
  • lubricant examples include waxes other than the lubricant (C) (unmodified polyethylene wax, unmodified polypropylene wax, petroleum jelly, tall oil, castor oil, rapeseed oil, soybean oil, coconut oil, beeswax, paraffin wax, Liquid paraffin, carnauba wax, montanic acid wax, microcrystalline wax, etc.), higher fatty acids (such as stearic acid), and metal salts thereof (such as zinc stearate and calcium stearate), higher alcohols (such as stearyl alcohol), and esters thereof (stearin) Acid butyl etc.), higher fatty acid amides (stearic acid amide etc.), process oils and various lubricants.
  • C lubricant
  • the lubricant is preferably used at a ratio of 0.05 to 5 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A).
  • plasticizer examples include aromatic carboxylic acid esters (such as dibutyl phthalate), aliphatic carboxylic acid esters (such as methylacetylricinoleate), aliphatic dialcolic acid esters (such as adipic acid-propylene glycol polyester), and aliphatics.
  • aromatic carboxylic acid esters such as dibutyl phthalate
  • aliphatic carboxylic acid esters such as methylacetylricinoleate
  • aliphatic dialcolic acid esters such as adipic acid-propylene glycol polyester
  • aliphatics examples include tricarboxylic acid esters (such as triethyl citrate), phosphoric acid triesters (such as triphenyl phosphate), epoxy fatty acid esters (such as epoxybutyl stearate), and petroleum resins.
  • antioxidants known antioxidants can be used. Specifically, phenolic (2,6-di-t-butyl-4-methylphenol, etc.), polycyclic phenolic (2,2′-methylenebis (4-methyl-6-t-butylphenol, etc.), phosphorus System (tetrakis (2,4-di-t-butylphenyl) -4,4-biphenylenediphosphonate etc.), sulfur system (dilauryl thiodipropionate etc.), amine system (N, N-diisopropyl-p-) Phenylenediamine, etc.) and lactone antioxidants.
  • phenolic 2,6-di-t-butyl-4-methylphenol, etc.
  • phosphorus System tetrakis (2,4-di-t-butylphenyl) -4,4-biphenylened
  • flame retardants examples include organic flame retardants (nitrogen-containing, sulfur-containing, silicon-containing, phosphorus-containing, etc.), inorganic flame retardants (antimony trioxide, magnesium hydroxide, zinc borate, red phosphorus, etc.) ).
  • ultraviolet absorbers examples include benzotriazole, benzophenone, salicylic acid, and acrylate ultraviolet absorbers.
  • antibacterial agent examples include quaternary ammonium salts, pyridine compounds, organic acids, organic acid esters, halogenated phenols, and organic iodine.
  • surfactants include nonionic, anionic, cationic or amphoteric surfactants.
  • nonionic surfactant include polyethylene glycol type nonionic surfactants such as higher alcohol ethylene oxide adduct, fatty acid ethylene oxide adduct, higher alkylamine ethylene oxide adduct, polypropylene glycol ethylene oxide adduct, polyethylene oxide, and glycerin.
  • Polyhydric alcohol type nonionic surfactants such as fatty acid ester, fatty acid ester of pentaerythritol, fatty acid ester of sorbit or sorbitan, alkyl ether of polyhydric alcohol, aliphatic amide of alkanolamine, and the like.
  • anionic surfactant examples include sulfate salts such as alkali metal salts of higher fatty acids, sulfonate salts such as alkylbenzene sulfonates, alkyl sulfonates, and paraffin sulfonates, higher alcohol phosphate salts, and the like. Examples thereof include phosphate ester salts. Examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts.
  • amphoteric surfactant examples include amino acid-type double-sided surfactants such as higher alkylaminopropionate, and betaine-type amphoteric surfactants such as higher alkyldimethylbetaine and higher alkyl hydroxyethylbetaine.
  • antistatic agent examples include the above-mentioned surfactants, fatty acid esters, and polymer type antistatic agents.
  • polymer type antistatic agent examples include polyether ester amide.
  • an organic peroxide is used as the crosslinking agent.
  • the organic peroxide include dicumyl organic peroxide, di-tert-butyl organic peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, and 2,5-dimethyl-2,5-dioxide.
  • 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane and 2,5-dimethyl-2,5-di- (tert-) are preferred in terms of odor and scorch stability.
  • Butylperoxy) hexyne-3,1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4- Bis (tert-butylperoxy) valerate is more preferably used, and 1,3-bis (tert-butylperoxyisopropyl) benzene is more preferably used.
  • the organic peroxide is preferably used at a ratio of 0.05 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A).
  • divinylbenzene is preferably used in the present invention.
  • Divinylbenzene is easy to handle, has good compatibility with the polymer, has an action of solubilizing the organic peroxide, and acts as a dispersant for the organic peroxide. For this reason, a homogeneous cross-linking effect is obtained, and a dynamic heat-treated product having a balance between fluidity and physical properties is obtained.
  • the crosslinking aid is preferably used at a ratio of 0.05 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A).
  • softener examples include coal tar softeners such as coal tar and coal tar pitch, synthetic polymer substances such as atactic polypropylene, ester plasticizers such as dioctyl phthalate, dioctyl adipate and dioctyl sebacate, diisododecyl Examples thereof include carbonate plasticizers such as carbonate.
  • the amount of the softening agent is not particularly limited, but is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A).
  • the softening agent facilitates processing and aids dispersion of carbon black and the like when preparing the resin composition.
  • the melt flow rate (MFR) measured at a test load of 5 kgf at a temperature of 200 ° C. in accordance with JIS K7210-1 of the resin composition of the present invention is preferably 0.01 to 100 g / 10 min, more preferably. Is 0.1 to 95 g / 10 min, more preferably 1 to 90 g / 10 min, particularly preferably 10 to 85 g / 10 min, and further preferably 20 to 80 g / 10 min. When the MFR of the resin composition is in the above range, the balance between impact resistance, workability and heat resistance is excellent.
  • the transparency (haze) by the haze meter of the resin composition of the present invention is preferably 25% / 3 mm or less, more preferably 23% / 3 mm or less, and further preferably 20% / 3 mm or less.
  • the transparency of the resin composition is in the above range, visual confirmation of the application state of the adhesive and the joining state of the pipe is facilitated when the pipe joint is formed.
  • the IZOD impact strength of the resin composition of the present invention in accordance with ASTM D256 (Method A) is preferably 20 J / m or more, more preferably 25 J / m or more, and further preferably 30 J / m or more. .
  • the impact resistance of the resin composition is in the above range, the balance between impact resistance and workability is excellent.
  • the resin composition of the present invention can be produced by dry blending or melt blending using any of various methods.
  • a vinyl chloride resin (A), a rubber-based shock absorber (B), a lubricant (C) and other optional components can be used simultaneously or in any order in a tumbler, V-type blender, A blending method using a Nauter mixer, a Banbury mixer, a kneading roll, a single-screw or twin-screw extruder, or the like is appropriately used.
  • the vinyl chloride resin (A), the rubber shock absorber (B), the lubricant (C), and other optional components are once dispersed or dissolved in an arbitrary solvent, and then naturally dried or heated and forced dried. Etc., and may be blended by drying by an appropriate method.
  • the molded body according to the present invention is formed from the resin composition.
  • the molded body according to the present invention is obtained by molding the above resin composition into a desired shape by a conventionally known method such as extrusion molding, compression molding, injection molding or the like.
  • Examples of the molded product of the present invention include pipes, joints, flat plates, gutters, sashes, sidings, sheets, cards, cable connection parts, and molded products for flanges, since the resin composition is excellent in transparency, In particular, it is preferably used for manufacturing a pipe joint.
  • Pipe joints are generally formed by injection molding. Specific pipe applications include fire extinguishing sprinkler pipes and hot water supply pipes.
  • the shape of the molded body is not particularly limited, it is preferable to apply the resin composition to a molded body having a minimum thickness of 1 mm or more because the transparency of the molded body becomes higher.
  • Vinyl chloride resin (A) As the vinyl chloride resin (A), H727 manufactured by Kaneka Corporation (chlorine content: 67 mass%, Vicat softening temperature: 120 ° C., deflection temperature under load: 107 ° C., density: 1570 kg / m 3 ) was used. These physical properties were measured under the following conditions. ⁇ Chlorine content> Measured according to ISO 1158. ⁇ Vicat softening temperature> Measured according to ASTM D1525. ⁇ Load deflection temperature> Measured according to ASTM D648. ⁇ Density> Measurement was performed according to JIS K7112 (density gradient tube method).
  • ⁇ Glass transition temperature> It measured with the differential scanning calorimeter (DSC).
  • the measurement method is as follows. A SII differential scanning calorimeter (X-DSC7000) calibrated with indium standards is used. A measurement sample is weighed on an aluminum DSC pan so as to be about 10 mg. Crimp the lid onto the pan to create a sealed atmosphere to obtain a sample pan. A sample pan is placed in the DSC cell and an empty aluminum pan is placed as a reference. The DSC cell is heated from 30 ° C. (room temperature) to 150 ° C. at 10 ° C./min in a nitrogen atmosphere (first temperature raising process). Next, after holding at 150 ° C.
  • the glass transition point (Tg) is the intersection of the tangent at the inflection point of the enthalpy curve obtained during the temperature drop process (the point at which the upwardly convex curve changes to the downwardly convex curve) and the endothermic amount when the temperature is maintained. ).
  • ⁇ MFR> Measurement was performed in accordance with ISO 1133 (temperature 200 ° C., load 5 kg).
  • ⁇ Density> Measurement was performed according to JIS K7112 (density gradient tube method).
  • Lubricant (C) As the lubricant (C), C1 to C3 and W1 shown in Table 1 were used. Each manufacturing method will be described later in the section of manufacturing examples. The results analyzed by the following method are shown in Table 1.
  • IPT isopropenyltoluene
  • IND indene
  • C2 means ethylene
  • C3 means propylene, or a structural unit derived from each.
  • ⁇ Polymer composition> The content ratio (mass ratio) of each structural unit constituting the lubricants C1 to C3 was determined from the supply amount of each component with respect to the total monomer supply amount at the time of polymerization. On the other hand, the amount of each structural unit constituting the polymer W1 (composition ratio of ethylene and propylene) was determined by analysis of 13 C-NMR spectrum measured under the following conditions.
  • ⁇ Number average molecular weight (Mn)> For C1 to C3, the number average molecular weight (Mn) was determined from GPC measurement. The measurement was performed under the following conditions. And the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated
  • the number average molecular weight Mn was calculated
  • the measurement was performed under the following conditions.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated
  • Apparatus Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters) Solvent: o-dichlorobenzene Column: TSKgel GMH6-HT ⁇ 2, TSKgel GMH6-HTL column ⁇ 2 (both manufactured by Tosoh Corporation) Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution Temperature: 140 ° C.
  • Tg Glass transition temperature
  • Mass ratio of isopropenyl toluene and C 5 fraction (5 fraction isopropenyltoluene / C) is 90/10 and then, the supply amount of the mixture of monomers and toluene was 1.0 l / hr, the supply amount of diluted catalyst was 80 ml / hour.
  • the reaction mixture was transferred to the second stage autoclave and the polymerization reaction was continued at 5 ° C.
  • the reaction mixture is continuously discharged from the autoclave to obtain a time three times the residence time (5.4. 1 liter of reaction mixture was collected at the time when the time passed, and the polymerization reaction was terminated.
  • the reaction mixture was transferred to the second stage autoclave and the polymerization reaction was continued at 5 ° C.
  • the reaction mixture is continuously discharged from the autoclave and three times the residence time (6 hours) has elapsed.
  • 1 liter of reaction mixture was collected to complete the polymerization reaction.
  • 1N NaOH aqueous solution was added to the collected reaction mixture to deash the catalyst residue.
  • the obtained reaction mixture was washed 5 times with a large amount of water, and then the solvent and unreacted monomers were distilled off under reduced pressure using an evaporator to obtain an isopropenyltoluene polymer (C2).
  • the mass ratio (IPT / IND) of isopropenyltoluene (IPT) to indene (IND) was 55/45, the feed rate of the monomer and toluene mixture was 1.0 liter / hour, and the feed rate of the diluted catalyst was 75 Milliliter / hour.
  • the reaction mixture was transferred to the second stage autoclave and the polymerization reaction was continued at 5 ° C. Thereafter, when the total residence time in the first and second stage autoclaves is 2 hours, the reaction mixture is continuously discharged from the autoclave. The reaction mixture was collected to complete the polymerization reaction. After completion of the polymerization, 1N NaOH aqueous solution was added to the collected reaction mixture to deash the catalyst residue. Further, the obtained reaction mixture was washed 5 times with a large amount of water, and then the solvent and unreacted monomer were distilled off under reduced pressure using an evaporator to obtain an isopropenyltoluene-indene copolymer (C3).
  • C3 isopropenyltoluene-indene copolymer
  • Examples 1 to 5 Comparative Examples 1 and 2] (Preparation of resin composition) AT-1000 (manufactured by Nitto Kasei Co., Ltd.) as a rubber-based shock absorber (B) (MBS), various lubricants, and stabilizers with respect to 100 parts by mass of the vinyl chloride resin (A) (chlorinated vinyl chloride). Mercaptotin stabilizers) were collectively put into a plastic bag at a mass ratio shown in Table 2 and dry blended. However, Comparative Example 1 did not contain a lubricant.
  • 200 g of the resin composition was kneaded for 5 minutes using a two-roll (DY6-15 type, roll clearance 0.7 mm) heated to 180 ° C. Thereafter, the resin composition recovered in the form of a sheet was heated and pressed (70 ton press used, set temperature 195 ° C., preheating time 5 minutes, pressurizing time 40 seconds, pressure 15 MPa) and cooling press (30 ton press used, cooled). Compression molding into a plate shape of 200 mm ⁇ 200 mm ⁇ T3 mm using a time of 2 minutes and a pressure of 15 MPa. An IZOD impact test piece (notched) was prepared by cutting.
  • IZOD impact strength was measured in accordance with ASTM D256 (Method A).
  • Examples 1 to 5 are smaller in haze and superior in transparency than Comparative Examples 1 and 2.
  • Examples 1 to 4 using C1 or C2 having a melt viscosity at 200 ° C. in the more preferable range as the lubricant (C) are excellent in heat resistance as compared with Example 5.
  • the melt viscosity is in a more preferable range, it is presumed that the effect of suppressing the thermal decomposition of the vinyl chloride resin (A) was higher.
  • the resin composition of the present invention is excellent in transparency in addition to the excellent impact resistance possessed by the vinyl chloride resin, and can be suitably used particularly for applications such as pipe joints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、透明性に優れる新たな塩化ビニル系樹脂組成物、ならびにこの樹脂組成物から形成される成形体、特にはパイプ継手を提供することをその目的とする。本発明の樹脂組成物は、塩素含有率が55~75質量%である塩化ビニル系樹脂(A)100質量部に対して、DSCにおけるガラス転移温度(Tg)が0℃以下であるゴム系衝撃吸収材(B)3~15質量部、下記要件(i)~(iv)を満たす滑剤(C)0.1~10質量部を含む。 (i)200℃における溶融粘度が5~5,000mP・sである (ii)軟化点が60~180℃の範囲にある (iii)示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0~100℃の範囲にある (iv)分子中に、スチレン、α-メチルスチレン、インデン、ビニルトルエン、およびイソプロペニルトルエンからなる群から選ばれる少なくとも1種に由来する構造単位を50~100質量%含有する

Description

樹脂組成物、該組成物から形成される成形体
 本発明は、特定の組成を有する樹脂組成物、該組成物から形成される成形体およびパイプ継手に関する。
 塩化ビニル系樹脂は、優れた機械物性、加工性、耐薬品性を有し、且つ他の樹脂よりも安価であるため、パイプ、継ぎ手、平板、雨樋、サッシ、サイディングなど住宅分野を中心に幅広い用途で利用されているが、現在主流のポリ塩化ビニル(PVC)は、耐熱性が低く、熱変形を起こしやすいため、高温での利用が制限されていた。そこで塩化ビニル系樹脂の耐熱性を向上させるべく、塩化ビニル系樹脂を後塩素化する方法が一般的に用いられ、その結果として後塩素化された塩化ビニル系樹脂(以降、塩素化塩化ビニル系樹脂と記述)は、消火用スプリンクラー用パイプ、給湯用パイプでの利用が可能となった(特許文献1,2,4参照)。
 塩素化塩化ビニル系樹脂は、塩素含量の増加に伴い、樹脂の脆性的な側面が増して衝撃強度が低下する。そこで塩素化塩化ビニル系樹脂組成物としては、衝撃強度をより高めて機械物性のバランスを図るため、従来のPVCに比較して衝撃吸収材を多量に添加する必要がある。衝撃吸収材としては、低いガラス転移温度を有するゴム系衝撃吸収材が用いられる。しかし、樹脂組成物におけるゴム系衝撃吸収材の割合に比例して塩素化塩化ビニル系樹脂の衝撃強度は向上するが、一方で、ゴム系衝撃吸収材の割合が過剰に多いと、塩素化塩化ビニル系樹脂の特徴である耐熱性が著しく悪化し、また、加工性も低下する。そのため、耐熱性、機械物性、および加工性がいずれも十分であるような種々の樹脂組成物が検討されている(特許文献1~4参照)。
特開平5-132603号公報 特開2000-204215号公報 特開2002-284952号公報 特開平6-228398号公報
 特許文献1~4に記載の樹脂組成物は、耐熱性、機械物性、および加工性がいずれも十分であるとされている。
 そこで、本発明者らは、樹脂組成物の各用途に望まれる他の特性を種々検討したところ、優れた機械物性(特には耐衝撃性)を有する塩素化塩化ビニル樹脂の透明性をさらに高めることができれば、たとえば各種パイプの継手にした場合に接着剤の塗布状態やパイプの接合状態の目視確認が容易になるという利点が得られると考えた。そこで本発明の課題は、透明性に優れる新たな塩化ビニル系樹脂組成物、ならびにこの樹脂組成物から形成される成形体、特にはパイプ継手を提供することである。
 本発明者らは上記課題を解決すべく鋭意検討を行った結果、特定の組成を有する樹脂組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の[1]~[9]に関する。
 [1] 塩化ビニル系樹脂(A)100質量部に対して、ゴム系衝撃吸収材(B)3~15質量部、滑剤(C)0.1~10質量部を含み、下記要件(I)~(III)を満たす樹脂組成物。
 (I)塩化ビニル系樹脂(A)の塩素含有率が55~75質量%である
 (II)ゴム系衝撃吸収材(B)の示差走査熱量測定(DSC)におけるガラス転移温度(Tg)が0℃以下である
 (III)滑剤(C)が下記要件(i)~(iv)を満たす
 (i)200℃における溶融粘度が5~5,000mP・sである
 (ii)軟化点が60~180℃の範囲にある
 (iii)示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0~100℃の範囲にある
 (iv)分子中に、スチレン、α-メチルスチレン、インデン、ビニルトルエン、およびイソプロペニルトルエンからなる群から選ばれる少なくとも1種に由来する構造単位を50~100質量%含有する
 [2] 前記要件(I)において、塩化ビニル系樹脂(A)の塩素含有率が60~75質量%である、[1]に記載の樹脂組成物。
 [3] 前記ゴム系衝撃吸収材(B)がブタジエンゴム,アクリルゴム,シリコンゴムから選ばれるゴム成分を含有する[1]または[2]に記載の樹脂組成物。
 [4] 前記滑剤(C)の含有量が、前記塩化ビニル系樹脂(A)100質量部に対して0.1~3質量部である、[1]~[3]のいずれかに記載の樹脂組成物。
 [5] 前記滑剤(C)の要件(i)において、200℃における溶融粘度が5~2,000mP・sである、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 前記塩化ビニル系樹脂(A)の密度と前記滑剤(C)の密度の比((A)/(C))が1.70以下であり、且つ前記ゴム系衝撃吸収材(B)の密度と前記滑剤(C)の密度の比((B)/(C))が1.05以下である、[1]~[5]のいずれかに記載の樹脂組成物。
 [7] [1]~[6]のいずれかに記載の樹脂組成物から形成される成形体。
 [8] 射出成形体である、[7]に記載の成形体。
 [9] パイプ継手である、[7]または[8]に記載の成形体。
 [10] 最小厚みが1mm以上である、[7]~[9]のいずれかに記載の成形体。
 本発明によれば、透明性に優れる塩化ビニル系樹脂組成物、ならびにこの樹脂組成物から形成される成形体、特にはパイプ継手を提供することができる。
 以下、本発明の樹脂組成物およびそれから形成される成形体について詳説する。本発明の成形体には、パイプ継手が含まれる。
 A.樹脂組成物
 本発明の樹脂組成物は、塩化ビニル系樹脂(A)と、ゴム系衝撃吸収材(B)と、滑剤(C)とを含有する。
 上記塩化ビニル系樹脂(A)の量を100質量部としたときの、上記ゴム系衝撃吸収材(B)の量は3~15質量部であり、好ましくは4~14質量部であり、より好ましくは5~13質量部であり、特に好ましくは6~12質量部である。一方、上記塩化ビニル系樹脂(A)の量を100質量部としたときの、上記滑剤(C)の量は0.1~10質量部であり、好ましくは0.1~5質量部であり、より好ましくは0.1~3質量部であり、特に好ましくは0.1~2質量部であり、とりわけ好ましくは0.5~2質量部である。
 塩化ビニル系樹脂(A)とゴム系衝撃吸収材(B)を上記割合で含有すると、樹脂組成物の耐衝撃性と耐熱性のバランスに優れる。具体的には、塩化ビニル系樹脂(A)は塩素含有量に比例して脆性的な側面が増し、外力によって破壊され易くなるが、ゴム系衝撃吸収材(B)の含有量に比例して靱性的な側面が増し、外力によって破壊され難くなる。しかし、ゴム系衝撃吸収材(B)は一般的にゴム成分に分子内不飽和結合を有するものが多いため、含有量に比例して熱劣化による着色が生じやすくなる。これに対し、塩化ビニル系樹脂(A)とゴム系衝撃吸収材(B)を上記割合で含有することは、樹脂組成物の耐衝撃性と耐熱性のバランスに優れる点で好ましい。
 また、塩化ビニル系樹脂(A)の密度と滑剤(C)の密度の比((A)/(C))は、好ましくは1.70以下であり、より好ましくは1.65以下であり、特に好ましくは1.55以下である。またゴム系衝撃吸収材(B)の密度と滑剤(C)の密度の比((B)/(C))は、好ましくは1.05以下であり、より好ましくは1.00以下であり、特に好ましくは0.95以下である。密度の比が上記範囲内であると、樹脂組成物の透明性に優れる。
 以下、各成分および各要件につき説明する。
 1.塩化ビニル系樹脂(A)
 塩化ビニル系樹脂(A)の塩素含有率は、55~75質量%であり、好ましくは57~75質量%、より好ましくは60~75質量%、特に好ましくは63~75質量%である。塩化ビニル系樹脂(A)の塩素含有率が55質量%以上であれば、十分な耐熱性を有する樹脂組成物が得られる。一方、塩素含有率が75質量%以下であれば、溶融粘度が高くなり過ぎず、加工性の良い樹脂組成物が得られる。塩素含有率はISO 1158に準拠して測定することができる。
 塩化ビニル系樹脂(A)の平均重合度は、600~1500であることが好ましく、より好ましくは600~1300、さらに好ましくは600~1200である。塩化ビニル系樹脂(A)の平均重合度が600以上であれば、より十分な機械強度を有する樹脂組成物が得られる。一方、平均重合度が1500以下であれば、溶融粘度が高くなり過ぎず、加工性の良い樹脂組成物が得られる。平均重合度はJIS K6720-2に準拠して測定することができる。
 塩化ビニル系樹脂(A)の密度は、1300~1900kg/mであることが好ましく、より好ましくは1400~1800kg/m、さらに好ましくは1500~1700kg/mである。塩化ビニル系樹脂(A)の密度が上記範囲内にあると、より十分な耐熱性と機械強度を有する樹脂組成物が得られる。密度はJIS K7112に準拠して測定することができる。
 塩化ビニル系樹脂(A)としては、例えば、ホモポリマーのポリ塩化ビニル、ポリ塩化ビニリデンなどの他に、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-プロピレン共重合体、塩化ビニル-スチレン共重合体、塩化ビニル-イソブチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-スチレン-無水マレイン酸共重合体、塩化ビニル-スチレン-アクリロニトリル共重合体、塩化ビニル-ブタジエン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-メタクリル酸エステル共重合体、塩化ビニル-アクリロニトリル共重合体、内部可塑化ポリ塩化ビニル等の重合体などのコポリマーを使用することができる。さらにはこれらを後塩素化したいわゆる後塩素化塩化ビニル系樹脂を使用することができる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、塩化ビニル系樹脂(A)がコポリマーであるとき、塩素含有率が上記範囲となる限りにおいて、それぞれのモノマー由来の構造単位の含有比率は特に限定されない。
 2.ゴム系衝撃吸収材(B)
 ゴム系衝撃吸収材(B)の示差走査熱量測定(DSC)におけるガラス転移温度(Tg)は、0℃以下であり、好ましくは-20℃以下、より好ましくは-40℃以下、特に好ましくは-60℃以下である。ゴム系衝撃吸収材(B)のTgが0℃以下であれば、十分な耐衝撃性を有する樹脂組成物が得られる。
 ゴム系衝撃吸収材(B)は、JIS K7210-1に準拠して温度200℃,荷重5kgfで測定されたメルトフローレート(MFR)が0.1~70g/10分であることが好ましく、より好ましくは0.3~60g/10分、さらに好ましくは0.5~50g/10分である。ゴム系衝撃吸収材(B)のMFRが上記範囲内にあると、より十分な耐衝撃性を有する樹脂組成物が得られる点で好ましい。
 ゴム系衝撃吸収材(B)の密度勾配管法で測定した密度は、900~1200kg/mであることが好ましく、より好ましくは920~1100kg/m、さらに好ましくは930~1050kg/mである。ゴム系衝撃吸収材(B)の密度が上記範囲内にあると、より十分な耐衝撃性を有する樹脂組成物が得られる点で好ましい。
 ゴム系衝撃吸収材(B)のTgは、0℃以下であれば特に限定されないが、ゴム成分としてブタジエンゴム,アクリルゴムまたはシリコンゴムを含むことが好ましい。また、ゴム成分に官能基含有オレフィンモノマー由来の構造単位が含まれることが好ましい。ゴム成分は、粒子表面近傍における官能基含有オレフィンモノマー由来の構造単位の濃度が、それ以外の部分における官能基含有オレフィンモノマー由来の構造単位の濃度よりも高いことが特に好ましい。ゴム系衝撃吸収材(B)に官能基含有オレフィンモノマー由来の構造単位が含まれると、塩化ビニル系樹脂(A)とゴム系衝撃吸収材(B)に含まれるゴム成分との親和性が高まり、十分な耐衝撃性を有する樹脂組成物が得られる。
 官能基含有オレフィンモノマーの官能基としては、芳香環を含む基、15~17族元素を含む基が挙げられる。例えば、炭素数6~20の芳香族炭化水素基、ニトリル基、エステル基、カルボキシル基、ケトン基、アルデヒド基、エーテル基、アミド基、イミド基、ハロゲン原子が挙げられ、炭素数6~20の芳香族炭化水素基、ニトリル基、エステル基、カルボキシル基が好ましい。
 官能基含有オレフィンモノマーとしては、例えば、スチレン、α-メチルスチレン、パラメチルスチレン、クロロスチレン、ブロムスチレン、ジブロモスチレン、トリブロモスチレン、ビニルナフタレン、イソプロペニルナフタレン、ジビニルベンゼン等の芳香族ビニル化合物;(メタ)アクリロニトリル等のシアン化ビニル化合物;(メタ)アクリル酸、無水マレイン酸等の不飽和カルボン酸(無水物);(メタ)アクリル酸のメチル、エチル、プロピル、ブチル等の(メタ)アクリル酸アルキルエステル等のα,β-不飽和カルボン酸エステルを使用することができる。
 ゴム系衝撃吸収材(B)としては、例えば、アクリロニトリル-ブタジエン-スチレン共重合体(ABS,Tg:-80℃)、メタクリル酸メチル-ブタジエン-スチレン共重合体(MBS,Tg:-80℃)、メタクリル酸アルキル-スチレン共重合体(MS,Tg:-42℃)、メタクリル酸アルキル-ポリジメチルシロキサン-スチレン共重合体(Tg:-125℃)、アクリロニトリル-ブタジエンゴム(NBR,Tg:-85℃)、スチレン-ブタジエン共重合体(SBR,Tg:-80℃)、水添スチレン-ブタジエン-スチレン共重合体(SEBS,Tg:-80℃)などを使用することができる。
 3.滑剤(C)
 本発明の樹脂組成物は、滑剤(C)を1種のみ含んでいてもよく、2種以上を含んでいてもよい。滑剤とは、高分子量化合物に配合することによって溶融時の流動性を付与することのできる物質であり、一般的に分子量が数百~数万であり、かつ軟化点約60~160℃程度のオリゴマーである。
 滑剤(C)の具体例としては、天然ロジン、変性ロジン、ポリテルペン系樹脂、合成石油樹脂、クマロン系樹脂、フェノール系樹脂、キシレン系樹脂、スチレン系樹脂、およびイソプレン系樹脂が挙げられる。
 滑剤(C)のさらに具体的な例としては、石油、ナフサ等の分解によって得られるC留分、C留分、これらの混合物、あるいはこれらに含まれる任意の成分(たとえばC留分中のイソプレンおよび1,3-ペンタジエンなど)を主原料とする脂肪族系炭化水素樹脂;
 石油、ナフサ等の分解によって得られるC留分に含まれるスチレン誘導体やインデン類を主原料とする芳香族系炭化水素樹脂;
 C留分およびC留分に含まれる任意の成分とC留分に含まれる任意の成分とを共重合した脂肪族・芳香族共重合炭化水素樹脂;
 芳香族系炭化水素樹脂を水素添加した脂環族系炭化水素樹脂;
 脂肪族、脂環族および芳香族炭化水素樹脂を含む合成テルペン系炭化水素樹脂;
 テレピン油中のα,β-ピネンを原料とするテルペン系炭化水素樹脂;
 コールタール系ナフサ中のインデンおよびスチレン類を原料とするクマロンインデン系炭化水素樹脂;
 低分子量スチレン系樹脂;
 ロジン系炭化水素樹脂;等が挙げられる。
 あるいは特開2005-194488号公報に開示されているような、テルペン系モノマー、クロマン系モノマー、スチレン系モノマー、あるいはフェノール系モノマーから選ばれる複数種のモノマーを共重合して得られたものであってもよい。
 滑剤(C)は下記要件(i)~(iv)を満たす。
 要件(i):200℃における溶融粘度が5~5,000mP・sである
 滑剤(C)の200℃における溶融粘度は、好ましくは5~2,000mP・sであり、より好ましくは10~500mP・sであり、特に好ましくは30~200mP・sである。
 滑剤(C)の200℃における溶融粘度が上記範囲内にあると、滑剤(C)が塩化ビニル系樹脂(A)に相溶しやすくなる。そのため、滑剤(C)が樹脂組成物中により均一に分散しやすくなり、より十分な透明性および耐熱性を有する樹脂組成物が得られる。また、樹脂組成物の成形加工性、具体的には混練性や射出成形等する際の成形加工性も良好になる。
 要件(ii):JIS K2207に準拠して測定される軟化点が60~180℃である
 滑剤(C)の軟化点は、好ましくは100~160℃であり、より好ましくは110℃~150℃である。滑剤(C)の軟化点が上記範囲にあると、滑剤(C)が塩化ビニル系樹脂(A)に相溶しやすく、より均一に分散しやすくなる。そのため、より十分な耐衝撃性を有し、加工性に優れる樹脂組成物が得られる点で好ましい。
 要件(iii):示差走査熱量計(DSC)で測定されるガラス転移温度(Tg)が0~100℃の範囲にある
 滑剤(C)のガラス転移温度(Tg)は、好ましくは20~95℃であり、より好ましくは40~90℃であり、更に好ましくは50~85℃である。滑剤(C)のガラス転移温度(Tg)が上記下限値以上であると樹脂組成物の耐熱性向上の点で好ましく、上記上限値以下であると樹脂組成物をコンパウンドする際の加工性の点で好ましい。
 要件(iv):分子中にスチレン、α-メチルスチレン、インデン、ビニルトルエンおよびイソプロペニルトルエンからなる群から選ばれる少なくとも1種に由来する構造単位を50~100質量%含有する
 上記群から選ばれる構造単位の含有量は、好ましくは60~100質量%であり、より好ましくは80~100質量%である。なお、滑剤(C)が上記群から選ばれる複数の構造単位を含む場合、上記含有量は、これらの合計量である。
 滑剤(C)が分子中に上記の構造単位を有すると、塩化ビニル系樹脂(A)の流動性が良くなりゴム系衝撃改質材(B)が微分散しやすくなる。また滑剤(C)は殆ど結晶化しないため、非晶性樹脂である塩化ビニル系樹脂(A)の界面における光散乱が殆ど起きず透明性を保持する。更に分子中にスチレン、α-メチルスチレン、インデン、ビニルトルエンおよびイソプロペニルトルエンからなる群から選ばれる少なくとも1種に由来する構造単位を50~100質量%含有すると塩化ビニル系樹脂(A)との屈折率が近くなるため界面における光散乱が起きにくいため透明性を保持する。
 各構造単位の含有率は、重合時の総モノマー供給量に対する各モノマーの供給量の割合から算出することができる。また、滑剤(C)のそれぞれの構造単位の含有率は、13C-NMRスペクトルの解析にてエチレン由来のピークとスチレン由来のピークの量比より算出することができる。
 なお、滑剤(C)は、以下の物性を満たすことも好ましい。
 滑剤(C)の密度勾配管法で測定した密度は、好ましくは900~1200kg/mであり、より好ましくは950~1150kg/mであり、さらに好ましくは1000~1130kg/mであり、特に好ましくは1010~1100kg/mである。密度が上記範囲にあると、滑剤(C)が塩化ビニル系樹脂(A)に相溶しやすく、より均一に分散しやすくなる。その結果、透明性に優れる樹脂組成物が得られる。
 滑剤(C)のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は、好ましくは500~2500であり、より好ましくは600~2300である。さらに好ましくは700~2000である。また、重量平均分子量(Mw)は好ましくは800~4000であり、より好ましくは900~3800である。さらに好ましくは、1000~3500である。さらに、重量平均分子量/数平均分子量(Mw/Mn)は、好ましくは1.1~2.5であり、より好ましくは1.2~2.0である。さらに好ましくは1.3から1.9である。滑剤(C)の数平均分子量や重量平均分子量が上記範囲であると、樹脂組成物の流動性が向上し、成形加工性が高まる。
 滑剤(C)のプロトン核磁気共鳴(H-NMR)により測定された不飽和度(全水素量における不飽和結合上の水素量)は、好ましくは0.10~0.80であり、より好ましくは0.15~0.60であり、さらに好ましくは0.18~0.40である。滑剤(C)の不飽和度が上記範囲であると、塩化ビニル系樹脂(A)とゴム系衝撃吸収材(B)と滑剤(C)との相容性が向上し、透明性が高まる。
 (滑剤(C)の製造方法)
 滑剤(C)は公知の方法にて製造することができる。例えば、原料であるスチレン、α-メチルスチレン、インデン、ビニルトルエンおよびイソプロペニルトルエンからなる群から選ばれる少なくとも1種のモノマーを単独重合もしくは2種以上を共重合させる方法や、これらのモノマーとその他のモノマー(上記以外のビニル芳香族化合物や不飽和脂肪族化合物等)とを共重合させる方法等が挙げられる。
 上記方法に用いられる、その他のモノマーであるビニル芳香族化合物としては、例えば、芳香環上に置換基を有する置換スチレン;芳香環上に置換基を有する置換α-メチルスチレン等のスチレン系モノマーが挙げられる。置換基としては、例えば、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、ハロゲン原子が挙げられる。
 置換スチレンの具体例として、メチルスチレン(α-メチルスチレンを除く)、エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレンを挙げることができる。
 一方、その他のモノマーである不飽和脂肪族化合物としては、炭素数4~5の不飽和脂肪族炭化水素等を具体例として挙げることができる。炭素数4~5の不飽和脂肪族炭化水素としては、石油精製、分解時に副生する炭素数4~5の不飽和脂肪族炭化水素を主成分として含む、C留分およびC留分から選ばれる任意の化合物を使用できる。これらの化合物をスチレン等と併用することで、滑剤(C)の軟化点等の各物性を用途等に応じて調整することが可能である。
 C留分およびC留分は、常圧下における沸点範囲が通常-15~+45℃の留分であって、1-ブテン、イソブテン、2-ブテン、1,3-ブタジエン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-ペンテン、イソプレン、1,3-ペンタジエン、シクロペンタジエン等の重合性モノマーを含んでいる。上記不飽和脂肪族化合物として、C留分およびC留分から選ばれる任意の重合性モノマー用いることができるが、不飽和脂肪族化合物は、共役二重結合を有さない、もしくはその含有率が低いことが好ましい。具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、シクロペンタジエン等を含まない、もしくはその含有率が低いことが好ましい。
 上記のような石油留分は、例えば、製油所等における原油等の常圧蒸留(トッピング)に際して副生するガス留分を含む軽質油留分;石油のクラッキング、リフォーミング処理工程において副生する同様な軽質油留分;または石油化学工場における石油ナフサ分解等において得られるガスを含む軽質油留分;等の石油留分からそのまま、または場合によっては蒸留、抽出、その他の処理を加えて所望の留分として得ることができる。
 ここで、上記群から選ばれるモノマーの単独重合反応または共重合反応、および当該モノマーとその他のモノマーとの共重合反応等は、主としてカチオン重合、より具体的にはフリーデル-クラフツ触媒の存在下に行われる。フリーデル-クラフツ触媒としては、公知のフリーデル-クラフツ触媒が使用でき、具体的には塩化アルミニウム、臭化アルミニウム、ジクロロモノエチルアルミニウム、四塩化チタン、四塩化スズ、三弗化ホウ素、三弗化ホウ素のエーテル錯体やフェノール錯体などの各種錯体等を挙げることができる。なかでも、三弗化ホウ素のフェノール錯体を用いることが好ましい。フリーデル-クラフツ触媒の使用量は、原料モノマーの合計100質量部に対して通常0.05~5質量部であり、好ましくは0.1~2質量部である。
 重合反応は、重合反応時に生じる反応熱の除去、反応液粘度の抑制、分子量の調整等のため、原料である重合性モノマーの濃度が10~60質量%程度になるように溶媒を用いて行うことが好ましい。適当な溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素;トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素を挙げることができる。これらは一種単独で用いてもよく、組み合わせて用いてもよい。
 重合工程では、反応器内において原料である重合性モノマーを、上記触媒の存在下、上記溶媒中で重合反応させる。重合工程は1段で行うこともできるが、複数段に分けて行うことが好ましい。重合温度は原料組成や目的とする分子量領域等によって異なるが、通常-50~+50℃の範囲が好ましい。また反応時間は、通常10分~10時間の範囲が好ましい。重合終了後は、例えば塩基性水溶液またはメタノ-ル等のアルコールの様な塩基性化合物を用いて触媒を分解した後、水洗し、未反応の原料および溶媒等をストリッピングすることによって除き、目的の滑剤(C)を得る。
 また、滑剤(C)は、粉体、タブレット、ブロック等の固形物であってもよく、溶媒中に分散したものや、溶解したものであってもよい。
 4.その他の樹脂
 本発明の樹脂組成物は、上記(A)~(C)以外の樹脂を、本発明の効果を顕著に損ねない範囲でさらに含んでいても良い。上記他の樹脂の含有量には特に制限されないが、(A)100質量部に対して、0.1~30質量部程度であることが好ましい。
 5.その他の添加剤
 本発明の樹脂組成物には、その他の添加剤としては、塩化ビニル系樹脂の分野において公知の添加剤が挙げられ、例えば、核剤、アンチブロッキング剤、繊維、充填剤、フィラー、顔料、染料、滑剤(上記(C)に該当しないもの)、可塑剤、離型剤、酸化防止剤、難燃剤、紫外線吸収剤、抗菌剤、界面活性剤、帯電防止剤、耐候安定剤、耐熱安定剤、スリップ防止剤、発泡剤、結晶化助剤、防曇剤、老化防止剤、塩酸吸収剤、衝撃改良剤、架橋剤、共架橋剤、架橋助剤、粘着剤、軟化剤、加工助剤などが挙げられる。
 これら添加剤は1種単独で用いてもよく、2種以上を併用してもよい。これら添加剤の含有量は、本発明の目的を損なわない範囲内で用途に応じて、特に限定されないが、塩化ビニル系樹脂(A)100質量部に対して、配合される添加剤それぞれについて、好ましくは0.05~70質量部程度である。上限は、より好ましくは30質量部である。
 繊維としては、ガラス繊維、カーボン繊維、天然繊維(木粉、木質繊維、竹、綿花、セルロース、ナノセルロース系繊維等)、又は、農産物繊維(麦わら、麻、亜麻、ケナフ、カポック、ジュート、ラミー、サイザル麻、ヘネッケン、トウモロコシ繊維若しくはコイア、若しくは木の実の殻若しくはもみ殻等)が挙げられる。充填剤としては、リグニン、スターチ、及びその含有製品等が挙げられる。
 ガラス繊維の種類は特に制限がないが、ロービングガラス、チョップドストランドガラス、ミルドガラスなどを用いることができる。また、これらは1種類でも、2種類以上を混合して用いてもよい。
 フィラーとしては、炭酸カルシウム、シリカ、カオリン、クレー、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化アルミニウム、アルミナ、水酸化マグネシウムのような無定形フィラー、タルク、マイカ、あるいはガラスフレークなどの板状フィラー、ワラステナイト、チタン酸カリウム、塩基性硫酸マグネシウム、セピオライト、ゾノトライト、あるいはホウ酸アルミニウムなどの針状フィラー、金属粉、金属フレークなどのフィラーなどが用いられる。その他ガラスビース、ガラス粉などが用いられる。これらフィラーは単体もしくは複数の組み合せで使用してもよいし、その表面に炭素被覆またはシランカップリング処理等を施したものを単体もしくは複数の組み合せとして使用してもよい。
 顔料としては、無機含量(酸化チタン、酸化鉄、酸化クロム、硫化カドミウム等)、有機顔料(アゾレーキ系、チオインジゴ系、フタロシアニン系、アントラキノン系)が挙げられる。染料としてはアゾ系、アントラキノン系、トリフェニルメタン系等が挙げられる。これら顔料および染料の添加量は、特に限定されないが、塩化ビニル系樹脂(A)100質量部に対して、合計で、通常5質量部以下、好ましくは0.1~3質量部である。
 滑剤としては、例えば、前記滑剤(C)以外のワックス(未変性のポリエチレンワックス、未変性のポリプロピレンワックス、ワセリン、トール油、ヒマシ油、ナタネ油、大豆油、ヤシ油、蜜ロウ、パラフィンワックス、流動パラフィン、カルナバロウワックス、モンタン酸ワックス、マイクロクリスタリンワックス等)、高級脂肪酸(ステアリン酸等)、およびその金属塩(ステアリン酸亜鉛、ステアリン酸カルシウム等)、高級アルコール(ステアリルアルコール等)、そのエステル(ステアリン酸ブチル等)、高級脂肪酸アミド(ステアリン酸アミド等)、プロセスオイル、各種潤滑剤が挙げられる。潤滑剤としては、例えば、三井ハイワックス(三井化学製)が用いられる。上記滑材は、塩化ビニル系樹脂(A)100質量部に対して、好ましくは0.05~5質量部の割合で用いられる。
 可塑剤としては、例えば、芳香族カルボン酸エステル(フタル酸ジブチル等)、脂肪族カルボン酸エステル(メチルアセチルリシノレート等)、脂肪族ジアルボン酸エステル(アジピン酸-プロピレングリコール系ポリエステル等)、脂肪族トリカルボン酸エステル(クエン酸トリエチル等)、リン酸トリエステル(リン酸トリフェニル等)、エポキシ脂肪酸エステル(ステアリン酸エポキシブチル等)、石油樹脂が挙げられる。
 酸化防止剤としては、公知の酸化防止剤が使用可能である。具体的には、フェノール系(2,6-ジ-t-ブチル-4-メチルフェノール等)、多環フェノール系(2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール等)、リン系(テトラキス(2,4-ジ-t-ブチルフェニル)-4,4-ビフェニレンジホスフォネート等)、イオウ系(チオジプロピオン酸ジラウリル等)、アミン系(N,N-ジイソプロピル-p-フェニレンジアミン等)、ラクトン系の酸化防止剤等が挙げられる。
 難燃剤としては、例えば、有機系難燃剤(含窒素系、含硫黄系、含珪素系、含リン系等)、無機系難燃剤(三酸化アンチモン、水酸化マグネシウム、ホウ酸亜鉛、赤リン等)が挙げられる。
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸系、アクリレート系の紫外線吸収剤が挙げられる。
 抗菌剤としては、例えば、4級アンモニウム塩、ピリジン系化合物、有機酸、有機酸エステル、ハロゲン化フェノール、有機ヨウ素が挙げられる。
 界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を挙げることができる。非イオン性界面活性剤としては、例えば、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤、ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、ソルビットもしくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン性界面活性剤が挙げられる。アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩、高級アルコールリン酸エステル塩等のリン酸エステル塩が挙げられる。カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩が挙げられる。両性界面活性剤としては、例えば、高級アルキルアミノプロピオン酸塩等のアミノ酸型両面界面活性剤、高級アルキルジメチルベタイン、高級アルキル時ヒドロキシエチルベタイン等のベタイン型両性界面活性剤が挙げられる。
 帯電防止剤としては、例えば、上記の界面活性剤、脂肪酸エステル、高分子型帯電防止剤が挙げられる。高分子型帯電防止剤としては、例えば、ポリエーテルエステルアミドが挙げられる。
 架橋剤としては、例えば、有機ペルオキシドが用いられる。有機ペルオキシドとしては、例えば、ジクミル有機ペルオキシド、ジ-tert-ブチル有機ペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイル有機ペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイル有機ペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、ジアセチル有機ペルオキシド、ラウロイル有機ペルオキシド、tert-ブチルクミル有機ペルオキシドが挙げられる。
 これらの中では、臭気性、スコーチ安定性の点で、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3,1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレートがより好適に用いられ、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼンがさらに好適に用いられる。
 有機ペルオキシドは、塩化ビニル系樹脂(A)100質量部に対して、好ましくは0.05~10質量部の割合で用いられる。
 有機ペルオキシドによる架橋処理に際し、架橋助剤として、硫黄、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、N-メチル-N-4-ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン-N,N’-m-フェニレンジマレイミドのようなペルオキシ架橋助剤、あるいはジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートのような多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートのような多官能性ビニルモノマーを配合することができる。
 上記化合物を用いることにより、均一かつ緩和な架橋反応が期待できる。特に、本発明においては、ジビニルベンゼンが好適に用いられる。ジビニルベンゼンは、取扱い易く、重合体との相容性が良好であり、かつ、有機ペルオキシドを可溶化する作用を有し、有機ペルオキシドの分散剤として働く。このため、均質な架橋効果が得られ、流動性と物性とのバランスのとれた動的熱処理物が得られる。上記架橋助剤は、塩化ビニル系樹脂(A)100質量部に対して、好ましくは0.05~10質量部の割合で用いられる。
 軟化剤としては、例えば、コールタール、コールタールピッチ等のコールタール系軟化剤、アタクチックポリプロピレン等の合成高分子物質、ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系可塑剤、ジイソドデシルカーボネート等の炭酸エステル系可塑剤などが挙げられる。
 軟化剤の量は、特に限定されないが、塩化ビニル系樹脂(A)100質量部に対して、1~200質量部の量であることが好ましい。軟化剤は、樹脂組成物を調製する際に加工を容易にするとともにカーボンブラック等の分散を助ける。
 6.物性等
 本発明の樹脂組成物のJIS K7210-1に準拠して温度200℃ 試験荷重5kgfで測定されたメルトフローレート(MFR)は、0.01~100g/10minであることが好ましく、より好ましくは0.1~95g/10minであり、さらに好ましくは1~90g/10min、特に好ましくは10~85g/10min、さらに好ましくは20~80g/10minである。樹脂組成物のMFRが上記範囲にあると、耐衝撃性、加工性と耐熱性のバランスに優れる。
 本発明の樹脂組成物のヘーズメーターによる透明性(ヘイズ)は、25%/3mm以下であることが好ましく、より好ましくは23%/3mm以下であり、さらに好ましくは20%/3mm以下である。樹脂組成物の透明性が上記範囲にあると、パイプ継手にした場合に接着剤の塗布状態やパイプの接合状態の目視確認が容易になる。
 本発明の樹脂組成物のASTM D256(A法)に準拠したIZOD衝撃強度は、20J/m以上であることが好ましく、より好ましくは25J/m以上であり、さらに好ましくは30J/m以上である。樹脂組成物の耐衝撃性が上記範囲にあると、耐衝撃性と加工性のバランスに優れる。
 7.樹脂組成物の製法
 本発明の樹脂組成物は、任意の種々の方法を利用して、ドライブレンド、あるいは溶融ブレンドして製造することができる。具体的な方法としては、例えば、塩化ビニル系樹脂(A)、ゴム系衝撃吸収材(B)、滑剤(C)および他の任意成分を、同時にまたは任意の順序で、タンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、単軸或いは二軸の押出機などでブレンドする方法が適宜用いられる。あるいは、塩化ビニル系樹脂(A)、ゴム系衝撃吸収材(B)、滑剤(C)および他の任意成分を、一度、任意の溶媒に分散、あるいは溶解させた後に、自然乾燥や加熱強制乾燥等、適宜の方法で乾燥することにより、ブレンドしても良い。
 B.成形体、パイプ
 本発明に係る成形体は、上記樹脂組成物から形成される。本発明に係る成形体は、上記樹脂組成物を従来公知の方法、例えば押出成形、圧縮成形、射出成形等により所望の形状に成形して得られる。本発明の成形体としては、パイプ、継ぎ手、平板、雨樋、サッシ、サイディング、シート、カード、ケーブル接続部品、フランジ用の成形体が挙げられるが、上記樹脂組成物は透明性に優れるため、特に、パイプ継手の製造に用いられることが好ましい。パイプ継手は一般的には射出成形により形成される。具体的なパイプ用途としては、消火用スプリンクラー用パイプ、給湯用パイプが挙げられる。
 成形体の形状は特に限定されるものではないが、最小厚みが1mm以上である成形体に上記樹脂組成物を適用すると、成形体の透明性がより高くなり好ましい。
 本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。
 1.塩化ビニル系樹脂(A)
 塩化ビニル系樹脂(A)として、株式会社カネカ製H727(塩素含有率67質量%,ビカット軟化温度120℃,荷重たわみ温度107℃,密度1570kg/m)を用いた。なお、これらの物性はそれぞれ下記条件で測定した。
 <塩素含有率>
 ISO 1158に準拠し測定した。
 <ビカット軟化温度>
 ASTM D1525に準拠し測定した。
 <荷重たわみ温度>
 ASTM D648に準拠し測定した。
 <密度>
 JIS K7112(密度勾配管法)に準拠し測定した。
 2.ゴム系衝撃吸収材(B)
 株式会社カネカ製カネエース(商品名)B513(MBS系ポリマー、ガラス転移温度-80℃、MFR20g/10分、密度1000kg/m)を用いた。なお、これらの物性はそれぞれ下記条件で測定した。
 <ガラス転移温度>
 示差走査熱量計(DSC)で測定した。
 測定方法は以下のとおりである。インジウム標準にて較正したSII社製示差走査型熱量計(X-DSC7000)を用いる。約10mgになるようにアルミニウム製DSCパン上に測定サンプルを秤量する。蓋をパンにクリンプして密閉雰囲気下とし、サンプルパンを得る。 サンプルパンをDSCセルに配置し、リファレンスとして空のアルミニウムパンを配置する。DSCセルを窒素雰囲気下にて30℃(室温)から、150℃まで10℃/分で昇温する(第一昇温過程)。次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを-100℃まで冷却する(降温過程)。降温過程で得られるエンタルピー曲線の変曲点(上に凸の曲線が下に凸の曲線に変わる点)での接線と温度を保持していたときの吸熱量との交点をガラス転移点(Tg)とする。
 <MFR>
 ISO 1133(温度200℃,荷重5kg)に準拠し測定した。
 <密度>
 JIS K7112(密度勾配管法)に準拠し測定した。
 3.滑剤(C)
 滑剤(C)として、表1に示すC1~C3およびW1を使用した。それぞれの製造方法を製造例の項に後述する。また、下記方法により分析した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、「-」はデータなしを意味する。IPTはイソプロペニルトルエン、INDはインデン、C2はエチレン、C3はプロピレン、あるいは各々に由来する構造単位を意味する。
 <重合体の組成>
 滑剤C1~C3を構成する各構造単位の含有割合(質量比)については、重合時の総モノマー供給量に対する各成分の供給量から求めた。一方、重合体W1を構成する各構造単位の量(エチレンおよびプロピレンの組成比)については、以下の条件で測定した、13C-NMRスペクトルの解析により求めた。
 <13C-NMRの測定条件>
 装置:ブルカーバイオスピン社製AVANCEIII cryo-500型核磁気共鳴装置
 測定核:13C(125MHz)
 測定モード:シングルパルスプロトンブロードバンドデカップリング
 パルス幅:45°(5.00μ秒)
 ポイント数:64k
 測定範囲:250ppm(-55~195ppm)
 繰り返し時間:5.5秒
 積算回数:128回
 測定溶媒:オルトジクロロベンゼン/ベンゼン-d6(4/1(体積比))
 試料濃度:60mg/0.6mL
 測定温度:120℃
 ウインドウ関数:exponential(BF:1.0Hz)
 ケミカルシフト基準:δδシグナル29.73ppm 
 <数平均分子量(Mn)>
 C1~C3については、数平均分子量(Mn)を、GPC測定から求めた。測定は以下の条件で行った。そして、市販の単分散標準ポリスチレンを用いた検量線から、数平均分子量(Mn)および重量平均分子量(Mw)を求め、Mw/Mnを算出した。
  装置:GPC HLC-8320(東ソー株式会社製)
  溶剤:テトラヒドロフラン
  カラム:TSKgel G7000×1、TSKgel G4000×2、TSKgel G2000×1(何れも東ソー社製)
  流速:1.0ml/分
  試料:20mg/mL テトラヒドロフラン溶液
  温度:室温
 一方、W1についても、数平均分子量Mnを、GPC測定から求めた。測定は以下の条件で行った。そして、市販の単分散標準ポリスチレンを用いた検量線から、数平均分子量(Mn)および重量平均分子量(Mw)を求め、Mw/Mnを算出した。
  装置:ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
  溶剤:o-ジクロロベンゼン
  カラム:TSKgel GMH6-HT×2、TSKgel GMH6-HTLカラム×2(何れも東ソー社製)
  流速:1.0ml/分
  試料:0.15mg/mL o-ジクロロベンゼン溶液
  温度:140℃
 <密度>
 JIS K7112(密度勾配管法)に準拠し測定した。
 <酸価>
 JIS K5902に準拠し測定した。なお、酸価11mgKOH/gが、極性基の含有率1質量%に換算される。
 <軟化点>
 JIS K2207に準拠し測定した。
 <ガラス転移温度(Tg)>
 200℃まで昇温させた試料を10℃/分の速度で-20℃まで冷却結晶化させ、10℃/分の速度で再び昇温させた際のDSC曲線をJIS K7121に準拠して解析し、ガラス転位温度を求めた。
 <溶融粘度>
 ブルックフィールド社製のB型デジタル粘度計を使用し、サンプル量約8g、C1~C3については測定温度200℃、W1については測定温度140℃で測定した。
 <不飽和度>
 H-NMR測定により次のようにして算出した。サンプル約0.10gを重水素化クロロホルム3.0mlに溶解させた。この溶液をグラスフィルターで濾過した後、内径10mmのNMRチューブに装入した。そして日本電子製ECX400P型核磁気共鳴装置を用い、50℃でH-NMR(積算回数は128回、ケミカルシフト基準はクロロホルム7.24ppm)を測定した。スペクトルから不飽和結合上の水素量は6.0~8.0ppm、飽和結合上の水素量は0.0~4.0ppmの積分強度比により不飽和度を算出した。
 [製造例1](C1(イソプロペニルトルエン・C留分共重合体)の製造)
 攪拌翼を備えた実容量1270mlのオートクレーブの1段目に、イソプロペニルトルエン、石油ナフサの熱分解によって得られるC留分、および脱水精製したトルエンの混合物(モノマーの合計/トルエン=1/1(容量比))と、脱水精製したトルエンで10倍に希釈したボロントリフロライドフェノラート錯体(フェノール1.7倍当量)と、を連続的に供給し、5℃で重合反応させた。イソプロペニルトルエンとC留分との質量比(イソプロペニルトルエン/C留分)は90/10とし、モノマーおよびトルエンの混合物の供給量は1.0リットル/時間、希釈した触媒の供給量は80ミリリットル/時間とした。
 当該反応混合物を2段目のオートクレーブに移送し、5℃で重合反応を続けさせた。そして、1段目と2段目のオートクレーブ中での合計滞留時間が1.8時間になった時点で、連続的に反応混合物をオートクレーブから排出し、滞留時間の3倍の時間(5.4時間)が経過した時点で1リットルの反応混合物を採取して重合反応を終了させた。重合終了後、採取した反応混合物に1規定のNaOH水溶液を添加し、触媒残さを脱灰させた。さらに、得られた反応混合物を多量の水で5回洗浄した後、エバポレーターで溶媒および未反応モノマーを減圧留去して、イソプロペニルトルエン・C留分共重合体(C1)を得た。
 [製造例2](C2(イソプロペニルトルエン重合体)の製造)
 攪拌翼を備えた実容量1270mlのオートクレーブの1段目に、イソプロペニルトルエン、および脱水精製したトルエンの混合物(モノマーの合計/トルエン=1/1(容量比))と、脱水精製したトルエンで10倍に希釈したボロントリフロライドフェノラート錯体(フェノール1.7倍当量)と、を連続的に供給し、5℃で重合反応させた。モノマーおよびトルエンの混合物の供給量は1.0リットル/時間、希釈した触媒の供給量は80ミリリットル/時間とした。
 当該反応混合物を2段目のオートクレーブに移送し、5℃で重合反応を続けさせた。そして、1段目と2段目のオートクレーブ中での合計滞留時間が2時間になった時点で、連続的に反応混合物をオートクレーブから排出し、滞留時間の3倍の時間(6時間)が経過した時点で1リットルの反応混合物を採取して重合反応を終了させた。重合終了後、採取した反応混合物に1規定のNaOH水溶液を添加し、触媒残さを脱灰させた。さらに、得られた反応混合物を多量の水で5回洗浄した後、エバポレーターで溶媒および未反応モノマーを減圧留去して、イソプロペニルトルエン重合体(C2)を得た。
 [製造例3](C3(イソプロペニルトルエン・インデン共重合体)の製造)
 攪拌翼を備えた実容量1270mlのオートクレーブの1段目に、イソプロペニルトルエン(IPT)と、インデン(IND)および脱水精製したトルエンの混合物(容量比:モノマーの合計/トルエン=1/1)と、脱水精製したトルエンで10倍希釈したボロントリフロライドフェノラート錯体(フェノール1.6倍当量)とを連続的に供給し、5℃で重合反応させた。イソプロペニルトルエン(IPT)とインデン(IND)との質量比(IPT/IND)は55/45とし、モノマーおよびトルエンの混合物の供給量は1.0リットル/時間、希釈した触媒の供給量は75ミリリットル/時間とした。
 当該反応混合物を2段目のオートクレーブに移送し、5℃で重合反応を続けさせた。その後、1段目と2段目のオートクレーブ中での合計滞留時間が2時間になった時点で、連続的に反応混合物をオートクレーブから排出し、滞留時間の3倍となった時点で1リットルの反応混合物を採取して、重合反応を終了させた。重合終了後、採取した反応混合物に1規定のNaOH水溶液を添加し、触媒残さを脱灰した。さらに、得られた反応混合物を多量の水で5回洗浄した後、エバポレーターで溶媒および未反応モノマーを減圧留去して、イソプロペニルトルエン・インデン共重合体(C3)を得た。
 [製造例4](変性オレフィンワックスW1の製造)
 1.触媒の調製
 内容積1.5リットルのガラス製オートクレーブにおいて、市販の無水塩化マグネシウム25gをヘキサン500mlで懸濁させた。これを30℃に保ち撹拌しながらエタノール 92mlを1時間で滴下し、さらに1時間反応させた。反応終了後、ジエチルアルミニウムモノクロリド93mlを1時間で滴下し、さらに1時間反応させた。反応終了後、四塩化チタン90mlを滴下し、反応容器を80℃に昇温して1時間反応させた。反応終了後、固体部をデカンテーションにより遊離のチタンが検出されなくなるまでヘキサンで洗浄した。このものをヘキサン懸濁液としてチタン濃度を滴定により定量し、以下の実験に供した。
 2.エチレン・プロピレン共重合体(未変性オレフィンワックスc1)の製造
 充分に窒素置換した内容積2リットルのステンレス製オートクレーブにヘキサン930mlおよびプロピレン70mlを装入し、水素を20.0kg/cm2(ゲージ圧)となるまで導入した。次いで、系内の温度を170℃に昇温した後、トリエチルアルミニウム0.1ミリモル、エチルアルミニウムセスキクロリド0.4ミリモル、上記得られた固体のヘキサン懸濁液を、チタン成分の量が原子換算で0.008ミリモルとなるようにエチレンで圧入することにより重合を開始した。
 その後、エチレンのみを連続的に供給することにより全圧を40kg/cm2(ゲージ圧)に保ち、170℃で40分間重合を行った。
 少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンおよびプロピレンをパージした。得られたポリマー溶液を、100℃減圧下で一晩乾燥しエチレン・プロピレン共重合体を得た。
 3.酸変性
 未変性オレフィンワックス(c1)500gをガラス製反応器に仕込み、窒素雰囲気下160℃にて溶融した。次いで、無水マレイン酸30g及びジ-t-ブチルペルオキシド(以下DTBPOと略す)3gとを上記反応系(温度160℃)に5時間かけて連続供給した。その後、さらに1時間加熱反応させた後、溶融状態のまま10mmHg真空中で0.5時間脱気処理して揮発分を除去し、その後冷却し、変性オレフィンワックスW1を得た。
 [実施例1~5、比較例1、2]
 (樹脂組成物の作製)
 塩化ビニル系樹脂(A)(塩素化塩化ビニル)100質量部に対して、ゴム系衝撃吸収材(B)(MBS)、各種滑材、および安定剤として、日東化成株式会社製AT-1000(メルカプト錫系安定剤)を表2に示す質量比率でポリ袋内に一括投入しドライブレンドした。ただし比較例1は、滑剤を配合しなかった。
 180℃に加熱した二本ロール(DY6-15型使用,ロールクリアランス0.7mm)を用いて、前記樹脂組成物200gを5分間かけて混練した。その後、シート状で回収した前記樹脂組成物を、加熱プレス(70トンプレス使用,設定温度195℃,予熱時間5分,加圧時間40秒,圧力15MPa)および冷却プレス(30トンプレス使用,冷却時間2分,圧力15MPa)を用いて200mm×200mm×T3mmの板状に圧縮成形した。IZOD衝撃試験片(ノッチつき)は切削加工により作成した。
 (樹脂組成物の評価)
 得られた樹脂組成物は、以下の方法で評価した。結果を表2に記載する。
 <透明性(ヘイズ)>
 樹脂組成物を圧縮成型したT3mmの試験片をヘーズメーター(日本電色工業株式会社製,NDH2000型)を用いて透明性(ヘイズ)を測定した。
 <耐熱性>
 二本ロールで樹脂組成物を5分間混練した後の着色程度を目視にて確認し、以下のように評価した。
 1:混練開始直後と比べて、殆ど黄変なし
 2:混練開始直後と比べて、やや黄変あり
 3:混練開始直後と比べて、酷く黄変あり
 <耐衝撃性>
 ASTM D256(A法)に準拠しIZOD衝撃強度を測定した。
Figure JPOXMLDOC01-appb-T000002
 実施例1~5は比較例1、2に比べてヘイズが小さく透明性に優れることがわかる。滑剤(C)として200℃における溶融粘度がより好ましい範囲にあるC1あるいはC2を用いた実施例1~4は実施例5に比べて耐熱性にも優れている。溶融粘度がより好ましい範囲にあることにより、塩化ビニル系樹脂(A)の熱分解を抑制する効果がより高かったものと推測される。
 本出願は、2017年2月3日出願の日本国出願番号2017-018924号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲および明細書に記載された内容は本出願に援用される。
 本発明の樹脂組成物は、塩化ビニル系樹脂が有する優れた耐衝撃性に加え、透明性に優れており、特にパイプ継手などの用途に好適に用いることができる。

Claims (10)

  1.  塩化ビニル系樹脂(A)100質量部に対して、ゴム系衝撃吸収材(B)3~15質量部、滑剤(C)0.1~10質量部を含み、下記要件(I)~(III)を満たす樹脂組成物。
     (I)塩化ビニル系樹脂(A)の塩素含有率が55~75質量%である
     (II)ゴム系衝撃吸収材(B)の示差走査熱量測定(DSC)におけるガラス転移温度(Tg)が0℃以下である
     (III)滑剤(C)が下記要件(i)~(iv)を満たす
     (i)200℃における溶融粘度が5~5,000mP・sである
     (ii)軟化点が60~180℃の範囲にある
     (iii)示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0~100℃の範囲にある
     (iv)分子中に、スチレン、α-メチルスチレン、インデン、ビニルトルエン、およびイソプロペニルトルエンからなる群から選ばれる少なくとも1種に由来する構造単位を50~100質量%含有する
  2.  前記要件(I)において、塩化ビニル系樹脂(A)の塩素含有率が60~75質量%である、請求項1に記載の樹脂組成物。
  3.  前記ゴム系衝撃吸収材(B)がブタジエンゴム,アクリルゴム,シリコンゴムから選ばれるゴム成分を含有する請求項1または2に記載の樹脂組成物。
  4.  前記滑剤(C)の含有量が、前記塩化ビニル系樹脂(A)100質量部に対して0.1~3質量部である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記滑剤(C)の要件(i)において、200℃における溶融粘度が5~2,000mP・sである、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記塩化ビニル系樹脂(A)の密度と前記滑剤(C)の密度の比((A)/(C))が1.70以下であり、且つ前記ゴム系衝撃吸収材(B)の密度と前記滑剤(C)の密度の比((B)/(C))が1.05以下である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の樹脂組成物から形成される成形体。
  8.  射出成形体である、請求項7に記載の成形体。
  9.  パイプ継手である、請求項7または8に記載の成形体。
  10.  最小厚みが1mm以上である、請求項7~9のいずれか一項に記載の成形体。
PCT/JP2018/001911 2017-02-03 2018-01-23 樹脂組成物、該組成物から形成される成形体 WO2018143002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880009480.4A CN110234703B (zh) 2017-02-03 2018-01-23 树脂组合物、由该组合物形成的成型体
KR1020197022666A KR102228717B1 (ko) 2017-02-03 2018-01-23 수지 조성물 및 해당 조성물로부터 형성되는 성형체
JP2018566071A JP6741796B2 (ja) 2017-02-03 2018-01-23 樹脂組成物およびパイプ継手
US16/479,875 US11453768B2 (en) 2017-02-03 2018-01-23 Resin composition and molded body formed therefrom
EP18748316.9A EP3578603A4 (en) 2017-02-03 2018-01-23 COMPOSITION OF RESIN, AND MOLDED BODY FORMED FROM IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018924 2017-02-03
JP2017-018924 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143002A1 true WO2018143002A1 (ja) 2018-08-09

Family

ID=63040537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001911 WO2018143002A1 (ja) 2017-02-03 2018-01-23 樹脂組成物、該組成物から形成される成形体

Country Status (6)

Country Link
US (1) US11453768B2 (ja)
EP (1) EP3578603A4 (ja)
JP (1) JP6741796B2 (ja)
KR (1) KR102228717B1 (ja)
CN (1) CN110234703B (ja)
WO (1) WO2018143002A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186806A (ja) * 2019-05-17 2020-11-19 積水化学工業株式会社 耐熱透明継手
JP2021032392A (ja) * 2019-08-29 2021-03-01 積水化学工業株式会社 樹脂製透明継手

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035256A (ja) * 1973-05-14 1975-04-03
JPS6178870A (ja) * 1984-09-27 1986-04-22 Hayakawa Rubber Co Ltd 粘着組成物
JPH0485353A (ja) * 1990-07-25 1992-03-18 Tokai Rubber Ind Ltd 低反発弾性熱可塑性エラストマー組成物
JPH0578537A (ja) * 1991-09-24 1993-03-30 Tosoh Corp ポリ塩化ビニル系樹脂組成物
JPH05132598A (ja) * 1991-11-13 1993-05-28 Tosoh Corp ポリ塩化ビニル系樹脂組成物
JPH05132603A (ja) 1991-02-15 1993-05-28 B F Goodrich Co:The 硬質塩素化、ポリ塩化ビニル化合物及びそれに由来する製品
JPH06228398A (ja) 1992-12-23 1994-08-16 B F Goodrich Co:The パイプ形成用後塩素化ポリ塩化ビニル化合物
JP2000204215A (ja) 1998-11-11 2000-07-25 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂組成物およびそれを押出成形してなるパイプ
JP2001003008A (ja) * 1999-06-18 2001-01-09 Toyo Chem Co Ltd 自己粘着性塩化ビニル系シート
JP2002284952A (ja) 2001-01-22 2002-10-03 Kanegafuchi Chem Ind Co Ltd サイジング押出成形用塩素化塩化ビニル系樹脂組成物およびそれを用いたサイジング成形体
JP2004143342A (ja) * 2002-10-25 2004-05-20 Toda Kogyo Corp 表面改質有機顔料及びその製造法、該表面改質有機顔料を用いた塗料、該表面改質有機顔料を用いた樹脂組成物及び該表面改質有機顔料を用いたゴム組成物
JP2005139392A (ja) * 2003-11-10 2005-06-02 Lonseal Corp 振動エネルギー吸収材
JP2005194488A (ja) 2004-01-06 2005-07-21 Yasuhara Chemical Co Ltd 新規テルペン系樹脂
CN104910561A (zh) * 2015-06-13 2015-09-16 梁胜光 一种再生橡胶密封圈
JP2017018924A (ja) 2015-07-14 2017-01-26 有限会社長崎糧機 粒体空気異物分離装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598869B2 (ja) * 1999-03-17 2004-12-08 三井化学株式会社 静電荷像現像用トナー用添加剤およびトナー
JP2003147142A (ja) * 2001-11-16 2003-05-21 C I Kasei Co Ltd 熱収縮性塩化ビニル樹脂フィルム
JP3701896B2 (ja) * 2001-11-16 2005-10-05 シーアイ化成株式会社 熱収縮性塩化ビニル樹脂フィルム
JP2008274052A (ja) * 2007-04-26 2008-11-13 Kaneka Corp 塩素化塩化ビニル系樹脂組成物
JP5132598B2 (ja) * 2009-01-30 2013-01-30 キヤノン株式会社 制御装置、プログラム、記録媒体及び画像形成システム
CN104479251A (zh) * 2014-12-22 2015-04-01 常熟市董浜镇徐市盛峰液压配件厂 多接口管接头

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035256A (ja) * 1973-05-14 1975-04-03
JPS6178870A (ja) * 1984-09-27 1986-04-22 Hayakawa Rubber Co Ltd 粘着組成物
JPH0485353A (ja) * 1990-07-25 1992-03-18 Tokai Rubber Ind Ltd 低反発弾性熱可塑性エラストマー組成物
JPH05132603A (ja) 1991-02-15 1993-05-28 B F Goodrich Co:The 硬質塩素化、ポリ塩化ビニル化合物及びそれに由来する製品
JPH0578537A (ja) * 1991-09-24 1993-03-30 Tosoh Corp ポリ塩化ビニル系樹脂組成物
JPH05132598A (ja) * 1991-11-13 1993-05-28 Tosoh Corp ポリ塩化ビニル系樹脂組成物
JPH06228398A (ja) 1992-12-23 1994-08-16 B F Goodrich Co:The パイプ形成用後塩素化ポリ塩化ビニル化合物
JP2000204215A (ja) 1998-11-11 2000-07-25 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂組成物およびそれを押出成形してなるパイプ
JP2001003008A (ja) * 1999-06-18 2001-01-09 Toyo Chem Co Ltd 自己粘着性塩化ビニル系シート
JP2002284952A (ja) 2001-01-22 2002-10-03 Kanegafuchi Chem Ind Co Ltd サイジング押出成形用塩素化塩化ビニル系樹脂組成物およびそれを用いたサイジング成形体
JP2004143342A (ja) * 2002-10-25 2004-05-20 Toda Kogyo Corp 表面改質有機顔料及びその製造法、該表面改質有機顔料を用いた塗料、該表面改質有機顔料を用いた樹脂組成物及び該表面改質有機顔料を用いたゴム組成物
JP2005139392A (ja) * 2003-11-10 2005-06-02 Lonseal Corp 振動エネルギー吸収材
JP2005194488A (ja) 2004-01-06 2005-07-21 Yasuhara Chemical Co Ltd 新規テルペン系樹脂
CN104910561A (zh) * 2015-06-13 2015-09-16 梁胜光 一种再生橡胶密封圈
JP2017018924A (ja) 2015-07-14 2017-01-26 有限会社長崎糧機 粒体空気異物分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578603A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186806A (ja) * 2019-05-17 2020-11-19 積水化学工業株式会社 耐熱透明継手
JP2021032392A (ja) * 2019-08-29 2021-03-01 積水化学工業株式会社 樹脂製透明継手
JP7444563B2 (ja) 2019-08-29 2024-03-06 積水化学工業株式会社 樹脂製透明継手

Also Published As

Publication number Publication date
KR20190097280A (ko) 2019-08-20
KR102228717B1 (ko) 2021-03-16
CN110234703A (zh) 2019-09-13
EP3578603A4 (en) 2020-11-18
JP6741796B2 (ja) 2020-08-19
CN110234703B (zh) 2021-08-03
JPWO2018143002A1 (ja) 2019-11-07
EP3578603A1 (en) 2019-12-11
US11453768B2 (en) 2022-09-27
US20210347974A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP6291612B1 (ja) 樹脂組成物、該組成物からなる成形体およびパイプ
KR101626845B1 (ko) 파네센 인터폴리머
EP1330479B1 (en) Graft-modified polymers based on novel propylene ethylene copolymers
JP6266762B2 (ja) 熱可塑性エラストマー組成物、医療容器用栓体及び医療容器
JP2000034367A (ja) ランダムプロピレンコポリマ―を使用した熱可塑性加硫ゴムの修飾
DE112015001658B4 (de) Vernetztes Copolymer und Harzzusammensetzung
JP7199672B2 (ja) ブロック共重合体組成物
JP7064909B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5417681B2 (ja) ポリプロピレン系樹脂組成物およびその成形体
JP6741796B2 (ja) 樹脂組成物およびパイプ継手
KR20020070111A (ko) 폴리프로필렌 수지 조성물 및 그의 제조 방법
JP2018090724A (ja) 樹脂組成物および成形体
JP5279138B2 (ja) 官能化ポリプロピレンベースポリマー
US20130079470A1 (en) Resin composition, method for producing the same, and molded article using the same
JP4213099B2 (ja) 変性ポリプロピレン樹脂
JP6814272B2 (ja) オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
JP2023142599A (ja) 重合体、粘着付与剤、粘着性組成物および粘着シート
JP3483175B2 (ja) 変性炭化水素樹脂及びその用途
JP2022016344A (ja) 水添ブロック共重合体、水添ブロック共重合体を含むエラストマー組成物、エラストマー組成物からなるシール部材、栓体、薬栓
JP2022141595A (ja) 樹脂組成物、成形体及びポリオレフィン樹脂用の流動性向上剤
JP2008150473A (ja) ポリプロピレン樹脂組成物
JPH0343291B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022666

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748316

Country of ref document: EP

Effective date: 20190903