WO2018138872A1 - 誘導加熱調理器 - Google Patents

誘導加熱調理器 Download PDF

Info

Publication number
WO2018138872A1
WO2018138872A1 PCT/JP2017/002954 JP2017002954W WO2018138872A1 WO 2018138872 A1 WO2018138872 A1 WO 2018138872A1 JP 2017002954 W JP2017002954 W JP 2017002954W WO 2018138872 A1 WO2018138872 A1 WO 2018138872A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power receiving
coil
induction heating
heating cooker
Prior art date
Application number
PCT/JP2017/002954
Other languages
English (en)
French (fr)
Inventor
吉野 勇人
郁朗 菅
文屋 潤
雄一郎 伊藤
岳秋 飯田
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to CN201780078198.7A priority Critical patent/CN110199570B/zh
Priority to US16/344,954 priority patent/US11324081B2/en
Priority to EP17894319.7A priority patent/EP3576493A4/en
Priority to JP2018564045A priority patent/JP6727343B2/ja
Priority to PCT/JP2017/002954 priority patent/WO2018138872A1/ja
Priority to EP20200003.0A priority patent/EP3799528B1/en
Publication of WO2018138872A1 publication Critical patent/WO2018138872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1236Cooking devices induction cooking plates or the like and devices to be used in combination with them adapted to induce current in a coil to supply power to a device and electrical heating devices powered in this way
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to an induction heating cooker that performs magnetic resonance type non-contact power transmission.
  • This induction heating cooker includes a first coil disposed on the lower surface side of the top plate and a second coil provided in the temperature detection means. When the second coil is disposed opposite to the first coil, the first coil and the second coil are coupled by electromagnetic induction coupling. Thereby, electric power is supplied from the first coil to the second coil.
  • the present invention is made to solve the above-described problems, and in an induction heating cooker in which power is transmitted from the main body to the power receiving device, induction heating that can reduce restrictions on the installation position of the power receiving device. You will get a cooker.
  • An induction heating cooker includes a top plate on which an object to be heated is placed, a heating coil that is disposed below the top plate and induction-heats the object to be heated, and supplies power to the heating coil.
  • a main body having a drive circuit that transmits power by magnetic resonance, a power transmission circuit that supplies power to the power transmission coil, a power reception coil that receives power from the power transmission coil by magnetic resonance, and the power reception coil And a power receiving device having a load circuit that operates by the received power.
  • the induction heating cooker according to the present invention includes a main body having a power transmission coil that transmits power by magnetic resonance, and a power reception device having a power reception coil that receives power from the power transmission coil by magnetic resonance. For this reason, the restriction
  • FIG. 6 is a specific circuit diagram of the configuration of FIG. 5.
  • FIG. 1 It is a perspective view which shows the modification 1 of the power receiving apparatus of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. 2 is a schematic diagram which shows the modification 2 of the power receiving apparatus of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. 2 is a schematic diagram which shows the modification 3 of the power receiving apparatus of the induction heating cooking appliance which concerns on Embodiment 1.
  • FIG. It is a disassembled perspective view which shows the main body of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. 1 It is a block diagram which shows the structure of the main body of an induction heating cooking appliance which concerns on Embodiment 2, and a power receiving apparatus. It is a perspective view which shows the modification of the power receiving apparatus of the induction heating cooking appliance which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 4.
  • FIG. (Constitution) 1 is an exploded perspective view showing a main body of an induction heating cooker according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view showing a main body and a power receiving device of the induction heating cooker according to the first embodiment. As shown in FIG.1 and FIG.2, it has the top plate 4 in which the to-be-heated materials 5, such as a pan, are mounted in the upper part of the main body 100 of an induction heating cooking appliance.
  • a power receiving device 200 to which power is transmitted from the main body 100 is detachably mounted on the top plate 4.
  • the power receiving device 200 includes a temperature sensor that detects the temperature of the object to be heated 5. Details will be described later.
  • the top plate 4 of the main body 100 includes a first heating port 1, a second heating port 2, and a third heating port 3 as heating ports for induction heating of the object to be heated 5.
  • a first heating means 11, a second heating means 12, and a third heating means 13 are provided.
  • the main body 100 is capable of performing induction heating by placing the article to be heated 5 on each heating port.
  • the first heating means 11 and the second heating means 12 are provided side by side on the front side of the main body 100, and the third heating means 13 is provided at substantially the center on the back side of the main body 100.
  • positioning of each heating port is not restricted to this.
  • three heating ports may be arranged side by side in a substantially straight line.
  • the number of heating ports is not limited to this, and may be one or two, or may have four or more heating ports.
  • the entire top plate 4 is made of a material that transmits infrared rays, such as heat-resistant tempered glass, crystallized glass, borosilicate glass, and the like. Fixed in a watertight state.
  • the top plate 4 has a circular shape indicating a rough placement position of the pan corresponding to the heating range (heating port) of the first heating means 11, the second heating means 12, and the third heating means 13.
  • the pan position indication is formed by applying paint or printing.
  • an operation unit 40a, an operation unit 40b, and an operation unit 40c are provided as input devices for setting a water heating mode, a fried food mode, and the like. Further, in the vicinity of the operation unit 40, a display unit 41a, a display unit 41b, and a display unit 41c (hereinafter collectively referred to as a display unit 41) for displaying the operation state of the main body 100, the input / operation contents from the operation unit 40, and the like. In some cases).
  • the operation units 40a to 40c and the display units 41a to 41c are not particularly limited, for example, when the operation units 40a and 41c are provided for each heating port, or when the operation unit 40 and the display unit 41 are provided collectively.
  • the operation units 40a to 40c are configured by mechanical switches such as push switches and tact switches, touch switches for detecting input operations based on changes in electrode capacitance, and the like.
  • the display units 41a to 41c are configured by, for example, an LCD (Liquid Crystal Device), an LED, or the like.
  • LCD Liquid Crystal Device
  • the operation display unit 43 is configured by, for example, a touch panel in which touch switches are arranged on the upper surface of the LCD.
  • a first heating means 11, a second heating means 12, and a third heating means 13 are provided below the top plate 4 and inside the main body 100, and each heating means is constituted by a heating coil.
  • each heating means is constituted by a heating coil.
  • at least one of the first heating means 11, the second heating means 12, and the third heating means 13 is, for example, an electric heater (for example, a nichrome wire, a halogen heater, or a radial heater) that is heated by radiation. It may be configured.
  • the heating coil is configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) coated with an insulating film.
  • a high frequency magnetic field is generated from each heating coil by supplying high frequency power to each heating coil by the drive circuit 50.
  • a driving circuit 50 for supplying high frequency power to the heating coils of the first heating means 11, the second heating means 12, and the third heating means 13, and the driving circuit 50.
  • a control unit 45 for controlling the operation of the whole induction heating cooker.
  • a power transmission coil 65 that sends power to the power receiving device 200 by magnetic resonance.
  • the power transmission coil 65 is configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) coated with an insulating film.
  • the power transmission coil 65 is configured to have a smaller inductance than the heating coil. As shown in FIG. 1, the power transmission coil 65 is disposed along the edge of the top plate 4, for example.
  • the power transmission coil 65 is provided so as to surround the first heating unit 11, the second heating unit 12, and the third heating unit 13 in a plan view.
  • positioned among the top plates 4 can be enlarged.
  • positioning of the power transmission coil 65 are not limited to this.
  • the power transmission coil 65 may be provided so as to surround one heating means (heating coil) in plan view.
  • a plurality of power transmission coils 65 may be provided.
  • FIG. 3 is a block diagram illustrating the configuration of the main body of the induction heating cooker and the power receiving device according to the first embodiment.
  • the heated object 5 is placed on the heating port on the top plate 4 of the main body 100 of the induction heating cooker, and the power receiving device 200 is placed on a region other than the heating port on the top plate 4. Is shown.
  • the main body 100 of the induction heating cooker that functions as a non-contact power transmission device and the power receiving device 200 constitute a non-contact power transmission system.
  • the main body 100 of the induction heating cooker includes a heating coil 11a, an operation display unit 43, a control unit 45, a main body side communication device 47, a drive circuit 50, a power transmission circuit 60, and a power transmission coil 65. Has been.
  • the control unit 45 includes a microcomputer or a DSP (digital signal processor).
  • the control unit 45 controls the drive circuit 50 based on the operation content from the operation display unit 43 and the communication information received from the main body side communication device 47.
  • the control unit 45 performs display on the operation display unit 43 according to the operation state.
  • the main body side communication device 47 is configured by a wireless communication interface adapted to an arbitrary communication standard such as a wireless LAN, Bluetooth (registered trademark), infrared communication, NFC (Near Field Communication).
  • the main body side communication device 47 performs wireless communication with the power receiving side communication device 85 of the power receiving device 200.
  • the power transmission circuit 60 supplies power to the power transmission coil 65. Details will be described later.
  • the power receiving device 200 is placed on the top plate 4, for example, and receives power from the main body 100 in a non-contact manner.
  • the power receiving device 200 includes a power receiving coil 80, a power receiving circuit 81, a power receiving side control unit 83, a power receiving side communication device 85, and a temperature sensor 90 that is a load circuit.
  • the power receiving coil 80 receives power from the power transmitting coil 65 by magnetic resonance.
  • the power receiving circuit 81 supplies the power received by the power receiving coil 80 to the load. Details will be described later.
  • the power receiving side control unit 83, the power receiving side communication device 85, and the temperature sensor 90 are operated by the power supplied from the power receiving circuit 81.
  • the temperature sensor 90 is configured by, for example, an infrared sensor, and detects the temperature of the side surface of the object to be heated 5 placed on the top plate 4 in a non-contact manner.
  • the temperature sensor 90 may be constituted by a contact type sensor such as a thermistor. The temperature sensor 90 outputs a voltage signal corresponding to the detected temperature to the power receiving side control unit 83.
  • the power receiving side control unit 83 includes a microcomputer or a DSP (digital signal processor).
  • the power receiving side control unit 83 causes the power receiving side communication device 85 to transmit information on the temperature detected by the temperature sensor 90.
  • the power receiving side communication device 85 is configured by a wireless communication interface that conforms to the communication standard of the main body side communication device 47.
  • the power receiving side communication device 85 performs wireless communication with the main body side communication device 47.
  • the temperature sensor 90 in the first embodiment constitutes a “load circuit” in the present invention.
  • the power receiving side communication device 85 corresponds to the “first communication device” in the present invention.
  • the main body side communication device 47 corresponds to the “second communication device” in the present invention.
  • FIG. 4 is a diagram illustrating a drive circuit of the induction heating cooker according to the first embodiment.
  • the drive circuit 50 is provided for every heating means, the circuit structure may be the same and may be changed for every heating means. In FIG. 4, only one drive circuit 50 is shown.
  • the drive circuit 50 includes a DC power supply circuit 22, an inverter circuit 23, and a resonance capacitor 24.
  • the input current detection means 25 is composed of, for example, a current sensor, detects a current input from the AC power supply (commercial power supply) 21 to the DC power supply circuit 22, and outputs a voltage signal corresponding to the input current value to the control unit 45. .
  • the DC power supply circuit 22 includes a diode bridge 22a, a reactor 22b, and a smoothing capacitor 22c, converts an AC voltage input from the AC power supply 21 into a DC voltage, and outputs the DC voltage to the inverter circuit 23.
  • the inverter circuit 23 is a so-called half-bridge type inverter in which IGBTs 23 a and 23 b as switching elements are connected in series to the output of the DC power supply circuit 22.
  • diodes 23c and 23d are connected in parallel with the IGBTs 23a and 23b, respectively, as flywheel diodes.
  • the IGBT 23 a and the IGBT 23 b are driven on and off by a drive signal output from the control unit 45.
  • the control unit 45 turns off the IGBT 23b while turning on the IGBT 23a, turns on the IGBT 23b while turning off the IGBT 23a, and outputs a drive signal that turns on and off alternately.
  • the inverter circuit 23 converts the DC power output from the DC power supply circuit 22 into AC power having a specified frequency, and supplies power to the resonance circuit including the heating coil 11 a and the resonance capacitor 24.
  • the AC power of the specified frequency is, for example, high-frequency AC power of 20 kHz or more and less than 100 kHz.
  • the resonance capacitor 24 is connected in series to the heating coil 11a, and this resonance circuit has a resonance frequency corresponding to the inductance of the heating coil 11a, the capacity of the resonance capacitor 24, and the like.
  • the inductance of the heating coil 11a changes according to the characteristics of the metal load when the object to be heated 5 (metal load) is magnetically coupled, and the resonance frequency of the resonance circuit changes according to the change in the inductance.
  • a high-frequency current of about several tens of A flows through the heating coil 11a, and the high-frequency magnetic flux generated by the flowing high-frequency current is placed on the top plate 4 immediately above the heating coil 11a.
  • the heated object 5 is induction-heated.
  • the IGBTs 23a and 23b which are switching elements, are composed of, for example, a silicon-based semiconductor, but may be configured using a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
  • a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
  • the coil current detection means 26 is connected to a resonance circuit composed of the heating coil 11a and the resonance capacitor 24.
  • the coil current detection means 26 is composed of, for example, a current sensor, detects a current flowing through the heating coil 11a, and outputs a voltage signal corresponding to the coil current value to the control unit 45.
  • FIG. 4 shows a half-bridge drive circuit
  • a full-bridge drive circuit composed of four IGBTs and four diodes may be used.
  • FIG. 5 is a diagram illustrating a configuration of the main body of the induction heating cooker and the power receiving device according to the first embodiment.
  • FIG. 6 is a specific circuit diagram of the configuration of FIG. 5 and 6 show a configuration related to power transmission by the magnetic resonance method of the main body 100 and the power receiving device 200 of the induction heating cooker.
  • the main body 100 of the induction heating cooker and the power receiving device 200 constitute a non-contact power transmission system of a magnetic resonance method (resonance coupling type) that performs power transmission using resonance characteristics. That is, the main body 100 of the induction heating cooker constitutes a resonant power transmission device that transmits power to the power receiving device 200 by magnetic resonance.
  • the power receiving device 200 constitutes a resonant power receiving device that receives power from the main body 100 by magnetic resonance.
  • the power transmission circuit 60 of the main body 100 includes a resonant power source 60 a and a matching circuit 60 b.
  • the resonance type power supply 60a controls the supply of power to the power transmission coil 65, and converts DC or AC input power into AC having a predetermined frequency and outputs it.
  • the resonance type power supply 60a is constituted by a power supply circuit using a resonance switching method, and has an output impedance Zo, a resonance frequency fo, and a resonance characteristic value Qo.
  • the resonance frequency fo of the resonance type power supply 60a is set to a frequency in the MHz band.
  • the resonance frequency fo is, for example, 6.78 MHz.
  • the resonance frequency fo is not limited to this, and may be a frequency that is an integral multiple of 6.78 MHz in the MHz band.
  • the matching circuit 60b performs impedance matching between the output impedance Zo of the resonance type power supply 60a and the pass characteristic impedance Zt of the power transmission coil 65.
  • the matching circuit 60b is composed of a ⁇ -type or L-type filter including an inductor L and a capacitor C, and has its pass characteristic impedance Zp.
  • the power transmission coil 65 receives the AC power from the resonance type power supply 60a via the matching circuit 60b, performs a resonance operation, and generates a non-radiation type electromagnetic field in the vicinity, thereby causing the power reception coil 80 of the power reception device 200 to receive power. On the other hand, power transmission is performed.
  • the power transmission coil 65 forms a resonance circuit by the coil and the capacitor C5, and functions as a resonance antenna.
  • the power transmission coil 65 has a pass characteristic impedance Zt, a resonance frequency ft, and a resonance characteristic value Qt.
  • the resonance frequency fo and the resonance characteristic value Qo of the resonance type power supply 60a are determined from the output impedance Zo of the resonance type power supply 60a and the pass characteristic impedance Zp of the matching circuit 60b.
  • the resonance frequency ft and the resonance characteristic value Qt of the power transmission coil 65 are determined from the transmission characteristic impedance Zt of the transmission coil 65 and the transmission characteristic impedance Zp of the matching circuit 60b.
  • the main body 100 of the induction heating cooker has the resonance characteristic value Qtx of the following equation (1).
  • the power receiving circuit 81 of the power receiving device 200 includes a rectifier circuit 81a and a conversion circuit 81b.
  • the power receiving coil 80 receives power by performing a resonance coupling operation with a non-radiating electromagnetic field from the power transmitting coil 65 and outputs AC power.
  • the power receiving coil 80 forms a resonance circuit by the coil and the capacitor C11, and functions as a resonance antenna.
  • the power receiving coil 80 has a pass characteristic impedance Zr.
  • the rectifier circuit 81a has a rectifying function that converts AC power from the power receiving coil 80 into DC power, and a matching function that performs impedance matching between the pass characteristic impedance Zr of the power receiving coil 80 and the input impedance ZRL of the conversion circuit 81b.
  • This is a matching rectifier circuit.
  • the matching function is configured by a ⁇ -type or L-type filter including an inductor L and a capacitor C.
  • the rectifier circuit 81a has a pass characteristic impedance Zs.
  • the rectifier circuit 81a has a rectification function and a matching function.
  • the rectification circuit 81a is not limited to this, and may be configured with only the rectification function although the rectification efficiency is lowered.
  • the conversion circuit 81b receives DC power from the rectifier circuit 81a, converts it to a predetermined voltage, and supplies it to a load circuit (temperature sensor 90 or the like).
  • the conversion circuit 81b includes an LC filter (smoothing filter) for smoothing the high-frequency voltage ripple, a DC / DC converter for converting the high-frequency voltage ripple into a predetermined voltage, and the like, and has an input impedance ZRL.
  • the resonance characteristic value Qr and the resonance frequency fr of the power receiving device 200 are determined from the passing characteristic impedance Zr of the receiving coil 80, the passing characteristic impedance Zs of the rectifier circuit 81a, and the input impedance ZRL of the conversion circuit 81b.
  • the three resonance characteristic values that is, the resonance characteristic value Qo of the resonance type power supply 60a, the resonance characteristic value Qt of the power transmission coil 65, and the resonance characteristic value Qr of the power receiving device 200 are correlated as described above.
  • the reduction in power transmission efficiency can be suppressed. Therefore, the power transmission by the magnetic resonance method (resonance coupling type) can increase the distance between the power transmission coil 65 and the power receiving coil 80 as compared with the power transmission by the electromagnetic induction method (electromagnetic induction coupling type). .
  • the user places the object to be heated 5 such as a pan on the heating port of the top plate 4 of the main body 100.
  • the user places the power receiving device 200 on the top plate 4.
  • the temperature sensor 90 of the power receiving apparatus 200 is a non-contact sensor such as an infrared sensor
  • the user places the power receiving apparatus 200 at an arbitrary position on the top plate 4.
  • the temperature sensor 90 of the power receiving device 200 is a contact type sensor such as a thermistor
  • the user places the power receiving device 200 on the top plate 4 in contact with the side surface of the object to be heated 5. Place.
  • power transmission by the magnetic resonance method (resonance coupling type) has a long distance that enables power transmission, and thus the power receiving device 200 does not have to be disposed at a position facing the power transmission coil 65.
  • the control unit 45 controls the inverter circuit 23 according to the set power (thermal power).
  • a high-frequency drive signal of, for example, about 20 kHz to 100 kHz is input to the IGBTs 23a and 23b of the inverter circuit 23, and the IGBTs 23a and 23b are alternately switched on and off to form a resonance circuit composed of the heating coil 11a and the resonance capacitor 24. Supply high frequency current.
  • control unit 45 operates the power transmission circuit 60 to start supplying power to the power transmission coil 65. Thereby, electric power is supplied from the power transmission coil 65 to the power receiving coil 80 of the power receiving device 200 by magnetic resonance.
  • the power received by the power receiving coil 80 is supplied from the power receiving circuit 81 to the power receiving side control unit 83, the power receiving side communication device 85, and the temperature sensor 90.
  • the temperature sensor 90 of the power receiving device 200 detects the temperature of the object to be heated 5.
  • the power receiving side control unit 83 causes the power receiving side communication device 85 to transmit information on the temperature detected by the temperature sensor 90.
  • the main body side communication device 47 of the main body 100 receives the temperature information transmitted from the power receiving side communication device 85 and outputs it to the control unit 45.
  • the control unit 45 of the main body 100 controls the driving of the driving circuit 50 according to the temperature information acquired from the temperature sensor 90 of the power receiving device 200.
  • the main body 100 is arranged on the top plate 4 on which the object to be heated 5 is placed, and the heating coil 11a that is disposed below the top plate 4 and induction-heats the object to be heated 5.
  • a drive circuit 50 that supplies power to the heating coil 11a, a power transmission coil 65 that transmits power by magnetic resonance, and a power transmission circuit 60 that supplies power to the power transmission coil 65.
  • the power receiving apparatus 200 includes a power receiving coil 80 that receives power from the power transmitting coil 65 by magnetic resonance, and a load circuit that operates by the power received by the power receiving coil 80. For this reason, compared with the electric power transmission by electromagnetic induction coupling, the restriction
  • the freedom degree of the installation position of the power receiving apparatus 200 mounted on the top plate 4 can be improved, and usability can be improved.
  • the power receiving device 200 is mounted on the top plate by configuring the distance between the power transmission coil 65 and the power receiving coil 80 so that power transmission is possible at a distance that is half or more of the width or depth of the top plate 4. Power transmission can be performed stably no matter where it is installed. For this reason, the induction heating cooking appliance with a high degree of freedom of the installation position of the power receiving apparatus 200 can be obtained.
  • the power transmission from the main body 100 to the power receiving device 200 is the coil current that flows through the heating coil 11a. It is not affected by the magnetic field. For this reason, induction heating of the object to be heated 5 and power transmission to the power receiving device 200 can be performed simultaneously.
  • the power transmission coil 65 is provided so that a several heating means may be enclosed in planar view.
  • the power transmission coil 65 is disposed below the top plate 4 and along the edge of the top plate 4. For this reason, the range in which one power transmission coil 65 is arrange
  • the resonance frequency of power transmission by magnetic resonance and the driving frequency of the heating coil 11a are greatly different, even if the power transmission coil 65 is provided so as to surround the heating coil 11a, the main body 100 is connected to the power receiving device 200. The power transmission is not affected by the magnetic field due to the coil current flowing through the heating coil 11a.
  • the frequency of the coil current flowing to the heating coil is close to the frequency of power transmission, so the power transmission from the main body to the power receiving device Be susceptible. Therefore, when performing power transmission by electromagnetic inductive coupling, it is necessary to install a power transmission coil in a position where no heating coil exists, and the installation location of the power transmission coil is restricted.
  • the induction heating cooker according to the first embodiment since power transmission is performed by magnetic resonance, restrictions on the installation location of the power transmission coil 65 can be reduced.
  • the resonance frequency of magnetic resonance is a frequency in the MHz band.
  • the drive frequency of the drive circuit 50 is 20 kHz or more and less than 100 kHz, and the resonance frequency of magnetic resonance is 6.78 MHz or an integer multiple of 6.78 MHz.
  • the resonance frequency of power transmission by magnetic resonance and the frequency of the coil current flowing through the heating coil 11a are greatly different, the power transmission from the main body 100 to the power receiving device 200 is a magnetic field due to the coil current flowing through the heating coil 11a. Will not be affected. Therefore, power transmission can be performed stably regardless of the magnitude of the coil current, that is, the magnitude of the input power.
  • the conductor (metal) placed on the top 4 is not induction-heated by the magnetic field generated from the power transmission coil 65.
  • the conductor (metal) placed on the top 4 is not induction-heated by the magnetic field generated from the power transmission coil 65.
  • induction heating is not performed by the magnetic field generated from the power transmission coil 65.
  • the resonance frequency of magnetic resonance is extremely high compared to the frequency of the high-frequency current flowing through the heating coil 11a
  • the inductance of the power transmission coil 65 can be made extremely small compared to the heating coil 11a. Therefore, it is not necessary to provide a magnetic body such as ferrite in the power transmission coil 65. Therefore, the main body 100 can be reduced in size and an inexpensive induction heating cooker can be obtained.
  • the power receiving device 200 includes the power receiving side communication device 85 that transmits information on the temperature detected by the temperature sensor 90 that detects the temperature of the object 5 to be heated.
  • the main body 100 also includes a main body side communication device 47 that receives temperature information transmitted from the power receiving side communication device 85, and a control unit 45 that controls driving of the drive circuit 50 in accordance with the temperature information.
  • limiting of the installation position of the temperature sensor 90 which detects the temperature of the to-be-heated material 5 can be eased, and the freedom degree of the installation position of the temperature sensor 90 mounted in the top plate 4 can be improved. Therefore, the installation position of the temperature sensor 90 can be arbitrarily changed according to the shape and size of the article 5 to be heated. Therefore, usability can be improved.
  • the temperature sensor 90 is configured by a contact-type sensor such as a thermistor and the power receiving device 200 is disposed at a position in contact with the side surface of the object 5 to be heated, the temperature sensor 90 is connected to the power receiving device 200 from the main body 100.
  • the power transmission is not affected by the magnetic field due to the coil current flowing through the heating coil 11a. Therefore, by attaching the temperature sensor 90 directly to the side surface of the article 5 to be heated, the side surface temperature can be directly detected, and an induction heating cooker with high temperature detection accuracy can be obtained.
  • the induction heating cooker according to the first embodiment transmits power by magnetic resonance, it is less susceptible to the influence of the metal part of the object to be heated 5 and can transmit power.
  • FIG. 7 is a perspective view showing a first modification of the power receiving device of the induction heating cooker according to the first embodiment. As illustrated in FIG. 7, a configuration including a plurality of power receiving devices 200 may be used. Even in such a configuration, each of the plurality of power receiving devices 200 receives power from one power transmission coil 65.
  • the power receiving side control units 83 of the plurality of power receiving devices 200 each transmit the temperature information acquired from the temperature sensor 90 to the power receiving side communication device 85.
  • the control unit 45 of the main body 100 acquires temperature information from each of the plurality of power receiving apparatuses 200 and controls driving of the drive circuit 50 using the plurality of temperature information.
  • the control unit 45 calculates an average temperature, a maximum temperature, a minimum temperature, or the like from the received information on a plurality of temperatures, and controls driving of the drive circuit 50 based on the calculated values.
  • a plurality of power receiving devices 200 may be provided for each heating port.
  • Each of the power receiving side control units 83 of the plurality of power receiving apparatuses 200 adds identification information indicating a heating port to the temperature information acquired from the temperature sensor 90 and transmits the information to the power receiving side communication apparatus 85.
  • the control unit 45 of the main body 100 acquires temperature information from each of the plurality of power receiving devices 200 together with identification information.
  • the control part 45 acquires the temperature of the to-be-heated material 5 mounted in each heating port from the received information of several temperature, and controls the drive of the drive circuit 50 of each heating means, respectively.
  • the accuracy of temperature detection is improved, the temperature variation of the heated object 5 can be suppressed, and an easy-to-use induction heating cooker is provided. Obtainable.
  • the temperature of each to-be-heated object 5 can be detected simultaneously, and a user-friendly induction heating cooker can be obtained.
  • FIG. 8 is a schematic diagram illustrating a second modification of the power receiving device of the induction heating cooker according to the first embodiment.
  • a vibration sensor 90 b may be provided as a load circuit of the power receiving device 200.
  • the power receiving apparatus 200 may be provided with a vibration sensor 90b instead of the above-described temperature sensor 90, or may be provided with a vibration sensor 90b in addition to the temperature sensor 90.
  • the vibration sensor 90b operates with the electric power supplied from the power receiving circuit 81.
  • the vibration sensor 90b detects vibration from the measurement target.
  • the vibration sensor 90b constitutes the “load circuit” in the present invention.
  • the vibration sensor 90b detects the vibration of the object to be heated 5 by arranging the power receiving device 200 at a position in contact with the side surface of the object to be heated 5. For example, when water in the article to be heated 5 is heated and the water boils, the water bubbles burst and the vibration of the article to be heated 5 changes.
  • the vibration sensor 90 b outputs a voltage signal corresponding to the detected vibration to the power receiving side control unit 83.
  • the power receiving side control unit 83 of the power receiving device 200 causes the power receiving side communication device 85 to transmit the vibration information acquired from the vibration sensor 90b.
  • the control unit 45 of the main body 100 controls driving of the driving circuit 50 using the vibration information acquired from the power receiving device 200.
  • the control unit 45 determines that the water of the article to be heated 5 has boiled, for example, when the amount of change in vibration detected by the vibration sensor 90b exceeds a threshold value. And the control part 45 performs control which lowers
  • boiling can be detected by providing the vibration sensor 90b. Moreover, since boiling can be maintained even if input thermal power (input electric power) is lowered after boiling, input electric power can be reduced. By reducing the input power, useless power input can be suppressed, and an induction heating cooker that achieves power saving can be obtained.
  • FIG. 9 is a schematic diagram illustrating a third modification of the power receiving device of the induction heating cooker according to the first embodiment.
  • the power receiving device 200 may include a holding unit 210 that holds the power receiving device 200 on the side surface of the object to be heated 5.
  • the power transmission by the magnetic resonance method increases the distance between the power transmission coil 65 and the power receiving coil 80 as compared with the power transmission by the electromagnetic induction method (electromagnetic induction coupling type). be able to. Therefore, as shown in FIG. 9, even when the power receiving device 200 is arranged above the top plate 4 (in the direction floating from the top plate), it is possible to transmit power and obtain an easy-to-use induction heating cooker. Can do.
  • Embodiment 2 a configuration including an operation display unit 43 as a load circuit of the power receiving device will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
  • FIG. 10 is an exploded perspective view showing the main body of the induction heating cooker according to the second embodiment.
  • FIG. 11 is a perspective view showing a main body and a power receiving device of the induction heating cooker according to the second embodiment.
  • FIG. 12 is a block diagram illustrating the configuration of the main body of the induction heating cooker and the power receiving device according to the second embodiment.
  • the main body 101 of the induction heating cooker according to the second embodiment includes an operation unit 40, a display unit 41, and an operation display unit in which the operation unit 40 and the display unit 41 are integrated. 43 is not provided.
  • Other configurations of the main body 101 are the same as those of the main body 100 of the first embodiment described above.
  • the power receiving apparatus 201 of the induction heating cooker according to the second embodiment includes an operation display unit 43 as a load circuit.
  • the operation display unit 43 of the power receiving device 201 operates with the power supplied from the power receiving circuit 81.
  • the operation display unit 43 is configured integrally with an operation unit 40 that performs an input operation on the main body 101 of the induction heating cooker and a display unit 41 that performs display related to the operation of the main body 101.
  • Other configurations of the power receiving apparatus 201 are the same as those of the power receiving apparatus 200 according to Embodiment 1 described above.
  • the operation unit 40, the display unit 41, and the operation display unit 43 in the second embodiment constitute a “load circuit” in the present invention.
  • the power receiving side control unit 83 causes the power receiving side communication device 85 to transmit information on the input operation from the operation display unit 43.
  • the information of this input operation is, for example, setting information such as the input heating power (input power) and the cooking menu when heating the article 5 to be heated.
  • the control unit 45 of the main body 101 controls driving of the drive circuit 50 according to the input operation information received by the main body side communication device 47.
  • control unit 45 causes the main body side communication device 47 to transmit display information regarding the operation of the main body 101.
  • the power receiving side control unit 83 of the power receiving device 201 causes the operation display unit 43 to display the display information received by the power receiving side communication device 85.
  • This display information is, for example, information such as the setting of the heating power (input power) and cooking menu when heating the article 5 to be heated, and the operation state.
  • power reception device 201 is configured integrally with operation unit 40 that performs an input operation on main body 101 of the induction heating cooker and display unit 41 that performs display related to the operation of main body 101.
  • An operation display unit 43 is provided.
  • the freedom degree of the installation position of the operation display part 43 can be improved, and usability can be improved.
  • the main body 101 does not include the operation unit 40, the display unit 41, and the operation display unit 43 configured integrally with the operation unit 40 and the display unit 41, the configuration of the main body 101 can be simplified. Miniaturization can be realized.
  • the power receiving apparatus 201 includes the operation display unit 43 in which the operation unit 40 and the display unit 41 are integrally configured has been described.
  • the power receiving apparatus 201 may have only one of the operation unit 40 or the display unit 41.
  • the configuration in which the operation unit 40, the display unit 41, and the operation display unit 43 are not provided in the main body 101 has been described.
  • the present invention is not limited to this.
  • One of the operation unit 40 and the display unit 41 may be provided in the main body 101.
  • the operation unit 40 and the display unit 41 may be provided in both the main body 101 and the power receiving device 201.
  • the structure provided with a part of operation part 40 and the display part 41 may be sufficient.
  • FIG. 13 is a perspective view showing a modification of the power receiving device of the induction heating cooker according to the second embodiment.
  • the main body 101 of the induction heating cooker is installed in kitchen furniture 300 provided with a sink or the like. Inside the kitchen furniture 300, an accommodating portion (not shown) into which the main body 101 of the induction heating cooker is fitted is formed, and a flat work table 301 is provided on the top surface of the kitchen furniture 300.
  • the top plate 4 of the induction heating cooker is exposed on the work table 301.
  • the work table 301 of the kitchen furniture 300 is made of an insulating (non-metallic) material such as wood, resin (for example, artificial marble), stone, and the like.
  • the power receiving apparatus 201 having the operation display unit 43 may be placed on the work table 301 of the kitchen furniture 300. Since power is transmitted from the main body 101 of the induction heating cooker to the power receiving device 201 by magnetic resonance, power transmission is possible even when the power transmission coil 65 and the power receiving coil 80 are not arranged to face each other. Further, since the work table 301 is made of an insulating material, the gap between the power transmission coil 65 and the power reception coil 80 is not shielded. For this reason, even when the power receiving apparatus 201 is placed on the work table 301, power transmission from the main body 101 is possible. Therefore, the power receiving device 201 can be placed on the work table 301 and the operation display unit 43 can be operated and displayed, and the usability of the induction heating cooker can be improved.
  • Embodiment 3 a configuration including a heater as a load circuit of the power receiving device will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
  • FIG. 14 is a schematic diagram illustrating a configuration of the induction heating cooker according to the third embodiment. Note that FIG. 14 schematically illustrates a longitudinal section of the main body 100 and the power receiving device 202 as viewed from the front side.
  • the power receiving device 202 of the induction heating cooker according to Embodiment 3 includes an upper surface heater 91 as a load circuit.
  • the upper surface heater 91 is connected to the power receiving coil 80 via a power receiving circuit 81 (not shown).
  • the upper surface heater 91 is configured by a heating element that generates heat by the power received by the power receiving coil 80.
  • a sheathed heater that is a resistance heating element is used as the upper surface heater 91.
  • the upper surface heater 91 is not limited to a specific configuration, and an arbitrary heating element such as a halogen heater or a far infrared heater can be used.
  • the upper surface heater 91 is supported above the object to be heated 5 by the support means 220.
  • the support unit 220 is formed by, for example, a housing that forms an outer shell of the power receiving device 202.
  • the support means 220 is formed in an L-shaped cross section that extends upward from the bottom surface portion that houses the power receiving coil 80 and then extends in the horizontal direction. That is, the support means 220 supports the upper surface heater 91 so that the upper surface heater 91 is positioned above the heating coil 11 a and the article to be heated 5 when the power receiving device 202 is placed on the top plate 4.
  • the distance between the top plate 4 and the upper surface heater 91 when the power receiving apparatus 202 is disposed on the top plate 4 is set to be higher than the height of a pan, a frying pan, or the like assumed as the article to be heated 5.
  • the support means 220 may be configured to drive the upper surface heater 91 in the vertical direction.
  • the upper surface heater 91 in the third embodiment constitutes a “load circuit” in the present invention.
  • the control unit 45 of the main body 100 operates the power transmission circuit 60 to start supplying power to the power transmission coil 65. Thereby, electric power is supplied from the power transmission coil 65 to the power receiving coil 80 of the power receiving device 200 by magnetic resonance. The power received by the power receiving coil 80 is supplied from the power receiving circuit 81 to the upper surface heater 91.
  • the upper surface heater 91 heats the cooking object 5b in the heated object 5 from the upper surface by heat radiation. That is, cooking by induction heating and cooking by non-contact power transmission can be performed simultaneously. Moreover, cooking by induction heating and cooking by non-contact power transmission can be individually controlled. Therefore, an induction heating cooker that can be deliciously cooked in a short time can be obtained. That is, since the drive circuit 50 and the power transmission circuit 60 can individually control the induction heating by the heat from the object to be heated 5 and the upper surface heating by the upper surface heater 91, the induction heating can be cooked deliciously in a short time. You can get a cooker.
  • Embodiment 4 FIG. In this Embodiment 4, the structure provided with the stirring apparatus as a load circuit of a power receiving apparatus is demonstrated.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
  • FIG. 15 is a schematic diagram illustrating a configuration of the induction heating cooker according to the fourth embodiment. Note that FIG. 15 schematically shows a longitudinal section of the main body 100 and the power receiving device 203 as viewed from the front side.
  • the power receiving device 203 of the induction heating cooker includes a stirring device 92 as a load circuit.
  • the stirring device 92 includes a motor 92a, a shaft 92b, and a blade portion 92c.
  • the stirring device 92 is supported above the article to be heated 5 by the support means 220. For example, when a heated object 5 such as a pan or a frying pan into which a cooked object 5b such as stew or fried food is placed is placed on the heating port of the top plate 4, the blade portion 92c of the stirring device 92 is heated. 5 is arranged.
  • the motor 92a is provided, for example, in the upper part of the housing of the power receiving device 203, and is rotationally driven by the power received by the power receiving coil 80.
  • the shaft 92b has a rotating shaft arranged in the vertical direction, and one end is connected to the motor 92a to transmit the driving force of the motor 92a.
  • wing part 92c is attached to the shaft 92b, and stirs the to-be-cooked item 5b by the rotational drive of the shaft 92b.
  • stirring device 92 in the fourth embodiment constitutes a “load circuit” in the present invention.
  • the control unit 45 of the main body 100 operates the power transmission circuit 60 to start supplying power to the power transmission coil 65. Thereby, electric power is supplied from the power transmission coil 65 to the power receiving coil 80 of the power receiving device 200 by magnetic resonance. The power received by the power receiving coil 80 is supplied from the power receiving circuit 81 to the stirring device 92.
  • heating cooking by induction heating and stirring cooking by non-contact power transmission can be performed simultaneously.
  • heating cooking by induction heating and stirring cooking by non-contact power transmission can be individually controlled. Therefore, an induction heating cooker that can be deliciously cooked in a short time can be obtained.
  • the case where the power receiving device has one type of load circuit has been described.
  • a plurality of load circuits in the first to fourth embodiments may be combined.
  • a configuration in which a plurality of power receiving devices are provided and the type of at least one of the load circuits is different from the other types may be employed.
  • the load circuit of the power receiving apparatus is not limited to the examples in the first to fourth embodiments, and may be a cooking device (such as a fryer, a steamer, a roaster, or a toaster) that cooks food.
  • the load circuit of the power receiving apparatus may be a cooking device (such as a blender, a mixer, a mill, a frother, a food processor, or the like) that prepares and prepares dishes.
  • the load circuit of the power receiving device may be a component detection sensor that is disposed in the object to be heated 5 and detects food components (for example, salt content, sugar content, etc.).
  • FIG. 16 is a diagram illustrating a top plate and a power transmission coil of the induction heating cooker according to the fifth embodiment.
  • FIG. 16A is a plan view seen from the back side of the top plate 4
  • FIG. 16B is a side view of the top plate 4.
  • the power transmission coil 65 may be disposed in contact with the back surface (lower surface) side of the top plate 4.
  • the power transmission coil 65 may be provided on the back surface of the top 4 by printed wiring.
  • the main body 100 can be reduced in size.
  • the assembly process of the main body 100 is simplified, and an inexpensive induction heating cooker can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

本発明に係る誘導加熱調理器は、被加熱物が載置される天板と、前記天板の下方に配置され、前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルに電力を供給する駆動回路と、磁気共鳴により電力を送る送電コイルと、前記送電コイルに電力を供給する送電回路と、を有する本体と、前記送電コイルから磁気共鳴により電力を受ける受電コイルと、前記受電コイルが受電した電力によって動作する負荷回路と、を有する受電装置と、を備えた。

Description

誘導加熱調理器
 本発明は、磁気共鳴方式の非接触電力伝送を行う誘導加熱調理器に関するものである。
 従来の誘導加熱調理器においては、トッププレート上に配置される温度検出手段を備えるものが提案されている。この誘導加熱調理器は、トッププレートの下面側に配置された第1のコイルと、温度検出手段に設けられた第2のコイルとを備える。第2のコイルが第1のコイルと対向配置されると、第1のコイルと第2のコイルとが電磁誘導結合によって結合する。これにより、第1のコイルから第2のコイルへ電力が供給される。
特開2010-49959号公報
 従来の誘導加熱調理器では、電磁誘導結合により電力供給を行っている。このため、電力供給用の送電コイル(第1のコイル)と、受電装置(温度検出手段)に設けた受電コイル(第2のコイル)とが対向するように設置する必要があり、受電装置の設置位置が制約される、という課題がある。
 本発明は、上記のような課題を解決するためになされるもので、本体から受電装置へ電力が伝送される誘導加熱調理器において、受電装置の設置位置の制約を軽減することができる誘導加熱調理器を得るものである。
 本発明に係る誘導加熱調理器は、被加熱物が載置される天板と、前記天板の下方に配置され、前記被加熱物を誘導加熱する加熱コイルと、前記加熱コイルに電力を供給する駆動回路と、磁気共鳴により電力を送る送電コイルと、前記送電コイルに電力を供給する送電回路と、を有する本体と、前記送電コイルから磁気共鳴により電力を受ける受電コイルと、前記受電コイルが受電した電力によって動作する負荷回路と、を有する受電装置と、を備えたものである。
 本発明に係る誘導加熱調理器は、磁気共鳴により電力を送る送電コイルを有する本体と、送電コイルから磁気共鳴により電力を受ける受電コイルを有する受電装置とを備える。このため、受電装置の設置位置の制約を軽減することができる。
実施の形態1に係る誘導加熱調理器の本体を示す分解斜視図である。 実施の形態1に係る誘導加熱調理器の本体と受電装置を示す斜視図である。 実施の形態1に係る誘導加熱調理器の本体及び受電装置の構成を示すブロック図である。 実施の形態1に係る誘導加熱調理器の駆動回路を示す図である。 実施の形態1に係る誘導加熱調理器の本体及び受電装置の構成を示す図である。 図5の構成の具体的な回路図である。 実施の形態1に係る誘導加熱調理器の受電装置の変形例1を示す斜視図である。 実施の形態1に係る誘導加熱調理器の受電装置の変形例2を示す模式図である。 実施の形態1に係る誘導加熱調理器の受電装置の変形例3を示す模式図である。 実施の形態2に係る誘導加熱調理器の本体を示す分解斜視図である。 実施の形態2に係る誘導加熱調理器の本体と受電装置を示す斜視図である。 実施の形態2に係る誘導加熱調理器の本体及び受電装置の構成を示すブロック図である。 実施の形態2に係る誘導加熱調理器の受電装置の変形例を示す斜視図である。 実施の形態3に係る誘導加熱調理器の構成を示す模式図である。 実施の形態4に係る誘導加熱調理器の構成を示す模式図である。 実施の形態5に係る誘導加熱調理器の天板と送電コイルを示す図である。
実施の形態1.
(構成)
 図1は、実施の形態1に係る誘導加熱調理器の本体を示す分解斜視図である。
 図2は、実施の形態1に係る誘導加熱調理器の本体と受電装置を示す斜視図である。
 図1及び図2に示すように、誘導加熱調理器の本体100の上部には、鍋等の被加熱物5が載置される天板4を有している。また、天板4上には、本体100から電力が伝送される受電装置200が着脱可能に載置される。本実施の形態1に係る誘導加熱調理器においては、受電装置200は、被加熱物5の温度を検知する温度センサを備えている。詳細は後述する。
 本体100の天板4には、被加熱物5を誘導加熱するための加熱口として、第1の加熱口1、第2の加熱口2、第3の加熱口3とを備え、各加熱口に対応して、第1の加熱手段11、第2の加熱手段12、第3の加熱手段13を備えている。本体100は、それぞれの加熱口に対して被加熱物5を載置して誘導加熱を行うことができるものである。
 本実施の形態1では、本体100の手前側に左右に並べて第1の加熱手段11と第2の加熱手段12が設けられ、本体100の奥側ほぼ中央に第3の加熱手段13が設けられている。なお、各加熱口の配置はこれに限るものではない。例えば、3つの加熱口を略直線状に横に並べて配置しても良い。また、第1の加熱手段11の中心と第2の加熱手段12の中心との奥行き方向の位置が異なるように配置しても良い。また、加熱口の個数もこれに限るものではなく、1つや2つの場合でも良く、あるいは4つ以上の加熱口を有していても良い。
 天板4は、全体が耐熱強化ガラスや結晶化ガラスやホウケイ酸ガラス等の赤外線を透過する材料で構成されており、本体100の上面開口外周との間にゴム製パッキンやシール材を介して水密状態に固定される。天板4には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13の加熱範囲(加熱口)に対応して、鍋の大まかな載置位置を示す円形の鍋位置表示が、塗料の塗布や印刷等により形成されている。
 天板4の手前側には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13で被加熱物5を加熱する際の投入火力(投入電力)や調理メニュー(湯沸しモード、揚げ物モード等)を設定するための入力装置として、操作部40a、操作部40b、及び操作部40c(以下、操作部40と総称する場合がある)が設けられている。また、操作部40の近傍には、本体100の動作状態や操作部40からの入力・操作内容等を表示する表示部41a、表示部41b、及び表示部41c(以下、表示部41と総称する場合がある)が設けられている。
 なお、操作部40a~40cと表示部41a~41cは加熱口毎に設けられている場合や、加熱口を一括して操作部40と表示部41を設ける場合など、特に限定するものではない。なお、操作部40a~40cは、例えばプッシュスイッチやタクトスイッチなどの機械的なスイッチや、電極の静電容量の変化により入力操作を検知するタッチスイッチなどにより構成されている。また、表示部41a~41cは、例えばLCD(Liquid Crystal Device)やLED等で構成されている。
 なお、以下の説明においては、操作部40と表示部41とを一体に構成した操作表示部43を設ける場合について説明する。操作表示部43は、例えば、LCDの上面にタッチスイッチを配置したタッチパネルなどによって構成される。
 天板4の下方であって本体100の内部には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13を備えており、各々の加熱手段は加熱コイルで構成されている。なお、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13の少なくとも1つを、例えば輻射によって加熱するタイプの電気ヒータ(例えばニクロム線やハロゲンヒータ、ラジエントヒータ)で構成しても良い。
 加熱コイルは、絶縁皮膜された任意の金属(例えば銅、アルミニウムなど)からなる導電線を巻き付けることにより構成される。駆動回路50により高周波電力が各加熱コイルに供給されることで、各加熱コイルからは高周波磁界が発生される。
 誘導加熱調理器の本体100の内部には、第1の加熱手段11、第2の加熱手段12、及び第3の加熱手段13の加熱コイルに高周波電力を供給する駆動回路50と、駆動回路50を含め誘導加熱調理器全体の動作を制御するための制御部45とが設けられている。
 本体100の天板4の下方には、磁気共鳴により、受電装置200へ電力を送る送電コイル65が設けられている。送電コイル65は、絶縁皮膜された任意の金属(例えば銅、アルミニウムなど)からなる導電線を巻き付けることにより構成される。送電コイル65は、インダクタンスが加熱コイルと比較して小さく構成される。
 図1に示すように、送電コイル65は、例えば、天板4の縁に沿うように配置されている。また、送電コイル65は、平面視において、第1の加熱手段11、第2の加熱手段12及び第3の加熱手段13を囲むように設けられている。これにより、天板4のうち加熱手段が配置されていない領域に、一つの送電コイル65が配置される範囲を大きくすることができる。
 なお、送電コイル65の形状及び配置はこれに限定されるものではない。例えば、送電コイル65を、平面視において1つの加熱手段(加熱コイル)を囲むように設けても良い。また、送電コイル65を複数設けても良い。
 図3は、実施の形態1に係る誘導加熱調理器の本体及び受電装置の構成を示すブロック図である。
 この図3は、誘導加熱調理器の本体100の天板4上の加熱口に被加熱物5が載置され、天板4の加熱口以外の領域に受電装置200が載置されている状態を示している。
 非接触電力伝送装置として機能する誘導加熱調理器の本体100と、受電装置200とにより非接触電力伝送システムを構成する。
 図3に示すように、誘導加熱調理器の本体100には、加熱コイル11a、操作表示部43、制御部45、本体側通信装置47、駆動回路50、送電回路60、及び送電コイル65が配置されている。
 制御部45は、マイコン又はDSP(デジタルシグナルプロセッサ)等で構成される。制御部45は、操作表示部43からの操作内容及び本体側通信装置47から受信した通信情報に基づいて、駆動回路50を制御する。また、制御部45は、動作状態などに応じて、操作表示部43への表示を行う。
 本体側通信装置47は、例えば、無線LAN、Bluetooth(登録商標)、赤外線通信、NFC(Near Field Communication:近距離無線通信)など、任意の通信規格に適合した無線通信インターフェースによって構成される。本体側通信装置47は、受電装置200の受電側通信装置85と無線通信を行う。
 送電回路60は、送電コイル65に電力を供給する。詳細は後述する。
 受電装置200は、例えば天板4の上に載置され、本体100から非接触で電力を受電する。受電装置200は、受電コイル80、受電回路81、受電側制御部83、受電側通信装置85、及び負荷回路である温度センサ90を備えている。
 受電コイル80は、磁気共鳴により、送電コイル65から電力を受ける。受電回路81は、受電コイル80が受けた電力を負荷へ供給する。詳細は後述する。
 受電側制御部83、受電側通信装置85、及び温度センサ90は、受電回路81から供給された電力によって動作する。
 温度センサ90は、例えば赤外線センサにより構成され、天板4の上に載置された被加熱物5の側面の温度を非接触で検知する。なお、温度センサ90は、例えばサーミスタなどの接触式のセンサで構成しても良い。温度センサ90は、検知した温度に相当する電圧信号を受電側制御部83へ出力する。
 受電側制御部83は、マイコン又はDSP(デジタルシグナルプロセッサ)等で構成される。受電側制御部83は、温度センサ90が検知した温度の情報を、受電側通信装置85に送信させる。
 受電側通信装置85は、本体側通信装置47の通信規格に適合した無線通信インターフェースによって構成される。受電側通信装置85は、本体側通信装置47と無線通信を行う。
 なお、本実施の形態1における温度センサ90は、本発明における「負荷回路」を構成する。
 受電側通信装置85は、本発明における「第1通信装置」に相当する。
 本体側通信装置47は、本発明における「第2通信装置」に相当する。
(駆動回路)
 図4は、実施の形態1に係る誘導加熱調理器の駆動回路を示す図である。
 なお、駆動回路50は加熱手段毎に設けられているが、その回路構成は同一であっても良いし、加熱手段毎に変更しても良い。図4では1つの駆動回路50のみを図示する。図4に示すように、駆動回路50は、直流電源回路22と、インバータ回路23と、共振コンデンサ24とを備える。
 入力電流検出手段25は、例えば電流センサで構成され、交流電源(商用電源)21から直流電源回路22へ入力される電流を検出し、入力電流値に相当する電圧信号を制御部45へ出力する。
 直流電源回路22は、ダイオードブリッジ22a、リアクタ22b、平滑コンデンサ22cを備え、交流電源21から入力される交流電圧を直流電圧に変換して、インバータ回路23へ出力する。
 インバータ回路23は、スイッチング素子としてのIGBT23a、23bが直流電源回路22の出力に直列に接続された、いわゆるハーフブリッジ型のインバータである。インバータ回路23は、フライホイールダイオードとしてダイオード23c、23dがそれぞれIGBT23a、23bと並列に接続されている。IGBT23aとIGBT23bは、制御部45から出力される駆動信号によりオンオフ駆動される。制御部45は、IGBT23aをオンさせている間はIGBT23bをオフ状態にし、IGBT23aをオフさせている間はIGBT23bをオン状態にし、交互にオンオフする駆動信号を出力する。これにより、インバータ回路23は、直流電源回路22から出力される直流電力を規定周波数の交流電力に変換して、加熱コイル11aと共振コンデンサ24とからなる共振回路に電力を供給する。なお、規定周波数の交流電力とは、例えば、20kHz以上100kHz未満の高周波の交流電力である。
 共振コンデンサ24は、加熱コイル11aに直列接続されており、この共振回路は加熱コイル11aのインダクタンス及び共振コンデンサ24の容量等に応じた共振周波数を有する。なお、加熱コイル11aのインダクタンスは被加熱物5(金属負荷)が磁気結合した際に金属負荷の特性に応じて変化し、このインダクタンスの変化に応じて共振回路の共振周波数が変化する。
 このように駆動回路50を構成することで、加熱コイル11aには数十A程度の高周波電流が流れ、流れる高周波電流により発生する高周波磁束によって加熱コイル11aの直上の天板4上に載置された被加熱物5を誘導加熱する。
 なお、スイッチング素子であるIGBT23a、23bは、例えばシリコン系からなる半導体で構成されているが、炭化珪素、あるいは窒化ガリウム系材料などのワイドバンドギャップ半導体を用いた構成でも良い。スイッチング素子にワイドバンドギャップ半導体を用いることで、スイッチング素子の通電損失を減らすことができ、またスイッチング周波数(駆動周波数)を高周波(高速)にしても駆動回路50の放熱が良好であるため、駆動回路50の放熱フィンを小型にすることができ、駆動回路50の小型化及び低コスト化を実現することができる。
 コイル電流検出手段26は、加熱コイル11aと共振コンデンサ24とからなる共振回路に接続されている。コイル電流検出手段26は、例えば、電流センサで構成され、加熱コイル11aに流れる電流を検出し、コイル電流値に相当する電圧信号を制御部45に出力する。
 なお、図4では、ハーフブリッジ駆動回路を示したが、4つのIGBTと4つのダイオードから構成されるフルブリッジ駆動回路でも良いことは言うまでもない。
(磁気共鳴方式による電力伝送)
 図5は、実施の形態1に係る誘導加熱調理器の本体及び受電装置の構成を示す図である。図6は、図5の構成の具体的な回路図である。
 なお、図5及び図6は、誘導加熱調理器の本体100及び受電装置200の、磁気共鳴方式による電力伝送に関する構成を示している。
 誘導加熱調理器の本体100と受電装置200とは、共振特性を利用して電力伝送を行う磁気共鳴方式(共振結合型)の非接触電力伝送システムを構成する。即ち、誘導加熱調理器の本体100は、磁気共鳴によって受電装置200へ電力を送電する共振型電力送電装置を構成する。また、受電装置200は、磁気共鳴によって本体100から電力を受電する共振型電力受電装置を構成する。
 図5及び図6に示すように、本体100の送電回路60は、共振型電源60a及び整合回路60bにより構成されている。
 共振型電源60aは、送電コイル65への電力の供給を制御するものであり、直流又は交流の入力電力を所定の周波数の交流に変換して出力するものである。この共振型電源60aは、共振スイッチング方式による電源回路で構成され、出力インピーダンスZo、共振周波数fo及び共振特性値Qoを有する。
 また、共振型電源60aの共振周波数foは、MHz帯域の周波数に設定されている。
共振周波数foは、例えば、6.78MHzである。なお、共振周波数foは、これに限らず、MHz帯域において、6.78MHzの整数倍の周波数としても良い。
 整合回路60bは、共振型電源60aの出力インピーダンスZoと送電コイル65の通過特性インピーダンスZtとの間のインピーダンス整合を行うものである。この整合回路60bは、インダクタL及びキャパシタCによるπ型やL型のフィルタで構成され、その通過特性インピーダンスZpを有する。
 送電コイル65は、整合回路60bを介した共振型電源60aからの交流電力を入力して共振動作を行い、非放射型の電磁界を近傍に発生させることで、受電装置200の受電コイル80に対して電力伝送を行うものである。この送電コイル65は、コイルとキャパシタC5とにより共振回路が形成され、共振型のアンテナとして機能する。送電コイル65は、通過特性インピーダンスZt、共振周波数ft及び共振特性値Qtを有する。
 また、共振型電源60aの共振周波数fo及び共振特性値Qoは、共振型電源60aの出力インピーダンスZoと整合回路60bの通過特性インピーダンスZpから決まる。送電コイル65の共振周波数ft及び共振特性値Qtは、送電コイル65の通過特性インピーダンスZtと整合回路60bの通過特性インピーダンスZpから決まる。
 そして、この2つの共振特性値Qo、Qtから、誘導加熱調理器の本体100は、下式(1)の共振特性値Qtxを有することになる。
[数1]
  Qtx=√(Qo・Qt)          (1)
 受電装置200の受電回路81は、整流回路81a及び変換回路81bにより構成されている。
 受電コイル80は、送電コイル65からの非放射型の電磁界と共振結合動作を行うことで電力を受電し、交流電力を出力するものである。この受電コイル80は、コイルとキャパシタC11とにより共振回路が形成され、共振型のアンテナとして機能する。受電コイル80は、通過特性インピーダンスZrを有する。
 整流回路81aは、受電コイル80からの交流電力を直流電力に変換する整流機能と、受電コイル80の通過特性インピーダンスZrと変換回路81bの入力インピーダンスZRLとの間のインピーダンス整合を行う整合機能を有する整合型整流回路である。整合機能は、インダクタL及びキャパシタCによるπ型やL型のフィルタで構成される。また、整流回路81aは、通過特性インピーダンスZsを有する。なおここでは、整流回路81aが整流機能及び整合機能を有するものとしたが、これに限るものではなく、整流効率は下がるが整流機能のみで構成してもよい。
 変換回路81bは、整流回路81aからの直流電力を入力し、所定の電圧へ変換して負荷回路(温度センサ90等)へ供給するものである。この変換回路81bは、高周波電圧リップルを平滑するためのLCフィルタ(平滑フィルタ)と、所定の電圧へ変換するためのDC/DCコンバータ等で構成され、その入力インピーダンスZRLを有している。なお、DC/DCコンバータを設けず、平滑フィルタのみで構成してもよい。
 また、受電装置200の共振特性値Qr及び共振周波数frは、受電コイル80の通過特性インピーダンスZrと、整流回路81aの通過特性インピーダンスZsと、変換回路81bの入力インピーダンスZRLから決まる。
 そして、共振型電源60aの共振特性値Qo、送電コイル65の共振特性値Qt及び受電装置200の共振特性値Qrに相関関係を持たせるように、各機能部の特性インピーダンスを設定する。すなわち、本体100の共振特性値Qtx(=√(Qo・Qt))と受電装置200の共振特性値Qrとを近づける(下式(2))。
 具体的には下式(3)の範囲内が望ましい。
[数2]
  √(Qo・Qt)≒Qr           (2)
[数3]
  0.5Qr≦√(Qo・Qt)≦1.5Qr  (3)
 このように、共振型電源60aの共振特性値Qo、送電コイル65の共振特性値Qt及び受電装置200の共振特性値Qrという3つの共振特性値に、上記のような相関関係を持たせることにより、電力伝送効率の低減を抑制することができる。したがって、磁気共鳴方式(共振結合型)による電力伝送は、電磁誘導方式(電磁誘導結合型)による電力伝送と比較して、送電コイル65と受電コイル80との間の距離を長くすることができる。
(動作)
 次に、本実施の形態1における誘導加熱調理器の動作について説明する。
 使用者は、鍋などの被加熱物5を本体100の天板4の加熱口に載置する。
 また、使用者は、受電装置200を天板4の上に載置する。例えば、受電装置200の温度センサ90が、赤外線センサなどの非接触式のセンサで有る場合、使用者は、受電装置200を天板4上の任意の位置に載置する。また例えば、受電装置200の温度センサ90が、サーミスタなどの接触式のセンサで有る場合、使用者は、受電装置200を、天板4上であって被加熱物5の側面と接触する位置に載置する。上述したように、磁気共鳴方式(共振結合型)による電力伝送は、電力伝送が可能となる距離が長いため、受電装置200を送電コイル65と対向する位置に配置しなくても良い。
 次に、使用者は、操作表示部43により加熱開始(火力投入)の操作を行う。
 制御部45は、設定された電力(火力)に応じて、インバータ回路23を制御する。インバータ回路23のIGBT23a及び23bに、例えば20kHz~100kHz程度の高周波の駆動信号を入力し、IGBT23a及び23bを交互にオンオフのスイッチングをさせることで加熱コイル11aと共振コンデンサ24で構成される共振回路に高周波電流を供給する。加熱コイル11aに高周波電流が流れると高周波磁界が発生し、被加熱物5の底には磁束変化を打ち消す方向に渦電流が流れ、その流れる渦電流の損失よって被加熱物5が加熱される。
 また、制御部45は、送電回路60を動作させ、送電コイル65への電力の供給を開始させる。これにより、磁気共鳴によって送電コイル65から受電装置200の受電コイル80へ電力が供給される。受電コイル80が受電した電力は、受電回路81から、受電側制御部83、受電側通信装置85、及び温度センサ90へ供給される。
 受電装置200の温度センサ90は、被加熱物5の温度を検知する。受電側制御部83は、温度センサ90が検知した温度の情報を、受電側通信装置85に送信させる。
 本体100の本体側通信装置47は、受電側通信装置85から送信された温度の情報を受信し、制御部45へ出力する。本体100の制御部45は、受電装置200の温度センサ90から取得した温度の情報に応じて、駆動回路50の駆動を制御する。
(効果)
 以上のように本実施の形態1においては、本体100は、被加熱物5が載置される天板4と、天板4の下方に配置され、被加熱物5を誘導加熱する加熱コイル11aと、加熱コイル11aに電力を供給する駆動回路50と、磁気共鳴により電力を送電する送電コイル65と、送電コイル65に電力を供給する送電回路60とを有する。また、受電装置200は、送電コイル65から磁気共鳴により電力を受電する受電コイル80と、受電コイル80が受電した電力によって動作する負荷回路とを有する。
 このため、電磁誘導結合による電力伝送と比較して、誘導加熱調理器の本体100から電力が伝送される受電装置200の、設置位置の制約を軽減することができる。
 また、誘導加熱調理器の本体100から受電装置200へ、磁気共鳴により電力が伝送されるので、送電コイル65と受電コイル80とが対向配置されていない状態であっても電力伝送が可能となる。よって、天板4に載置する受電装置200の設置位置の自由度を向上することができ、使い勝手を向上することができる。例えば、送電コイル65と受電コイル80との間の距離が、天板4の幅又は奥行の半分以上の距離において、電力伝送を可能とするように構成することで、受電装置200を天板上のどこに設置しても安定して電力伝送を行うことができるようになる。このため、受電装置200の設置位置の自由度の高い、使い勝手の良い誘導加熱調理器を得ることができる。
 また、送電コイル65と受電コイル80とが対向配置されていない状態であっても電力伝送が可能となるので、受電装置200を載置する位置毎に複数の送電コイル65を設ける必要がなくなり、安価な誘導加熱調理器を得ることができる。
 また、磁気共鳴による電力伝送の共振周波数と、誘導加熱を行う加熱コイル11aに流れるコイル電流の周波数とは大きく異なるので、本体100から受電装置200への電力伝送が、加熱コイル11aに流れるコイル電流による磁界の影響を受けることがない。このため、被加熱物5の誘導加熱と受電装置200への電力伝送とを同時に行うことが可能となる。
 例えば電磁誘導結合による電力伝送の場合、電力伝送の周波数と加熱コイル11aに流れるコイル電流の周波数とが近似するため、電磁誘導結合による電力伝送の磁界と加熱コイル11aから生じた磁界とが干渉して誤動作することがある。このため、電磁誘導結合による電力伝送の場合、誘導加熱と電力伝送とを同時に行うことが困難となる。よって、電磁誘導結合による電力伝送では、対策として、誘導加熱の投入電力を低下させたり、あるいは一旦停止させる必要がある。
 一方、本実施の形態1の誘導加熱調理器においては、磁気共鳴による電力伝送を行うので、誘導加熱を低下又は停止させる必要がない。よって、短時間で調理が可能な、使い勝手の良い誘導加熱調理器を得ることができる。
 また、例えば電磁誘導結合による電力伝送の場合、送電コイルの位置と受電コイルの位置とにずれが生じると、電力伝送の効率が大きく低下する。このため、電磁誘導結合による電力伝送では、送電コイルに流れる電流が過大となり、送電コイルの発熱が大きくなる。更に位置ずれが大きくなると受電装置へ電力伝送をすることができなくなる。
 一方、本実施の形態1の誘導加熱調理器においては、磁気共鳴による電力伝送を行うので、送電コイル65の位置と受電コイル80の位置とにずれが生じても、つまり対向配置されていなくても、安定して電力伝送を行うことができる。
 また、本実施の形態1においては、送電コイル65は、平面視において、複数の加熱手段を囲むように設けられている。例えば、送電コイル65は、天板4の下方であって、天板4の縁に沿うように配置されている。
 このため、天板4のうち加熱手段が配置されていない領域に、一つの送電コイル65が配置される範囲を大きくすることができる。また、磁気共鳴による電力伝送の共振周波数と、加熱コイル11aの駆動周波数とは大きく異なるので、加熱コイル11aを囲むように送電コイル65を設ける構成であっても、本体100から受電装置200への電力伝送が、加熱コイル11aに流れるコイル電流による磁界の影響を受けることがない。
 例えば電磁誘導結合による電力伝送を行う場合、加熱コイルへ流れるコイル電流の周波数と、電力伝送の周波数とが近似するため、本体から受電装置への電力伝送が、加熱コイルに流れるコイル電流による磁界の影響を受けやすくなる。そのため、電磁誘導結合による電力伝送を行う場合には、加熱コイルの存在しない位置に電力伝送の送電コイルを設置する必要があり、送電コイルの設置箇所が制約されてしまう。
 一方、本実施の形態1の誘導加熱調理器においては、磁気共鳴による電力伝送を行うので、送電コイル65の設置箇所の制約を軽減することができる。
 また、本実施の形態1においては、磁気共鳴の共振周波数は、MHz帯域の周波数である。例えば、駆動回路50の駆動周波数は、20kHz以上100kHz未満であり、磁気共鳴の共振周波数は、6.78MHz又は6.78MHzの整数倍である。
 このように、磁気共鳴による電力伝送の共振周波数と、加熱コイル11aに流れるコイル電流の周波数とは大きく異なるので、本体100から受電装置200への電力伝送が、加熱コイル11aに流れるコイル電流による磁界の影響を受けることがない。そのため、コイル電流の大小、すなわち投入電力の大小によらず、安定して電力伝送を行うことができる。
 また、送電コイル65から発生した磁界によって、天板4上に載置された導電体(金属)が誘導加熱されることがない。例えば金属製の調理器具などが天板4上に載置された場合であっても、送電コイル65から発生した磁界によって誘導加熱されることがない。
 また、磁気共鳴の共振周波数は、加熱コイル11aに流れる高周波電流の周波数と比較して極めて高いため、送電コイル65のインダクタンスを加熱コイル11aと比較して極めて小さくすることができる。よって、送電コイル65にフェライトなどの磁性体を設ける必要が無い。したがって、本体100を小型化することができ、安価な誘導加熱調理器を得ることができる。
 また、本実施の形態1においては、受電装置200は、被加熱物5の温度を検知する温度センサ90が検知した温度の情報を送信する受電側通信装置85を備える。また、本体100は、受電側通信装置85から送信された温度の情報を受信する本体側通信装置47と、温度の情報に応じて、駆動回路50の駆動を制御する制御部45とを備える。
 このため、被加熱物5の温度を検知する温度センサ90の設置位置の制約を軽減することができ、天板4に載置する温度センサ90の設置位置の自由度を向上することができる。よって、被加熱物5の形状や大きさなどに応じて、温度センサ90の設置位置を任意に変更することができる。したがって、使い勝手を向上することができる。
 また、温度センサ90を、例えばサーミスタなどの接触式のセンサで構成し、受電装置200を被加熱物5の側面に接触する位置に配置した場合であっても、本体100から受電装置200への電力伝送が、加熱コイル11aに流れるコイル電流による磁界の影響を受けることがない。
 よって、温度センサ90を直接、被加熱物5の側面に取り付けることで、側面温度を直接検知することができ、温度検知精度の高い誘導加熱調理器を得ることができる。
 例えば電磁誘導結合による電力伝送の場合、金属製の被加熱物の側面に受電装置を取り付けると、電磁誘導で発生した磁束が、被加熱物の側面の金属部に鎖交することで、磁界が遮蔽されてしまい、電力伝送を行うことができない。
 一方、本実施の形態1の誘導加熱調理器は、磁気共鳴により電力が伝送されるので、被加熱物5の金属部の影響を受けにくくなり、電力伝送が可能となる。
(変形例1)
 図7は、実施の形態1に係る誘導加熱調理器の受電装置の変形例1を示す斜視図である。
 図7に示すように、受電装置200を複数備える構成でも良い。このような構成においても、複数の受電装置200は、それぞれ、1つの送電コイル65から電力を受電する。
 複数の受電装置200の受電側制御部83は、それぞれ、温度センサ90から取得した温度の情報を受電側通信装置85に送信させる。本体100の制御部45は、複数の受電装置200のそれぞれから温度の情報を取得し、複数の温度の情報を用いて、駆動回路50の駆動を制御する。
 例えば、1つの被加熱物5の温度を、複数の受電装置200の温度センサ90によって検知する。そして、制御部45は、受信した複数の温度の情報から、平均温度、最大温度、又は最低温度などを算出し、算出した値に基づいて、駆動回路50の駆動を制御する。
 また例えば、複数の受電装置200を、加熱口ごとに設けても良い。複数の受電装置200の受電側制御部83は、それぞれ、温度センサ90から取得した温度の情報に、加熱口を示す識別情報を付して受電側通信装置85に送信させる。本体100の制御部45は、複数の受電装置200のそれぞれから温度の情報を、識別情報と共に取得する。そして、制御部45は、受信した複数の温度の情報から、各加熱口に載置されている被加熱物5の温度を取得し、各加熱手段の駆動回路50の駆動をそれぞれ制御する。
 以上のように、温度センサ90を有する受電装置200を複数設けることで、温度検知の精度が高くなり、被加熱物5の温度ばらつきを抑制することが可能となり、使い勝手の良い誘導加熱調理器を得ることができる。また、複数の被加熱物5を同時に加熱する場合においても、それぞれの被加熱物5の温度を同時に検知することができ、使い勝手の良い誘導加熱調理器を得ることができる。
(変形例2)
 図8は、実施の形態1に係る誘導加熱調理器の受電装置の変形例2を示す模式図である。
 図8に示すように、受電装置200の負荷回路として振動センサ90bを設けても良い。なお、受電装置200は、上述した温度センサ90に代えて振動センサ90bを設けても良いし、温度センサ90に加えて振動センサ90bを設けても良い。
 振動センサ90bは、受電回路81から供給された電力によって動作する。振動センサ90bは、測定対象からの振動を検知するものである。
 なお、振動センサ90bは、本発明における「負荷回路」を構成する。
 このような構成において、受電装置200が被加熱物5の側面に接触する位置に配置されることで、振動センサ90bは、被加熱物5の振動を検知する。例えば、被加熱物5内の水を加熱し、水が沸騰すると、水泡が破裂することで被加熱物5の振動が変化する。振動センサ90bは、検知した振動に相当する電圧信号を受電側制御部83へ出力する。
 受電装置200の受電側制御部83は、振動センサ90bから取得した振動の情報を受電側通信装置85に送信させる。本体100の制御部45は、受電装置200から取得した振動の情報を用いて、駆動回路50の駆動を制御する。
 制御部45は、例えば、振動センサ90bが検知した振動の変化量がしきい値を超えた場合、被加熱物5の水が沸騰したと判定する。そして、制御部45は、沸騰を判定した場合には、投入火力を下げる制御を行う。また、制御部45は、操作表示部43に沸騰した旨の報知をしても良い。
 このように、振動センサ90bを設けることで、沸騰を検知することができる。また、沸騰後は投入火力(投入電力)を低くしても、沸騰を維持することができるため、投入電力を下げることが可能となる。投入電力を下げることで、無駄な電力投入を抑制することができ、省電力を実現する誘導加熱調理器を得ることができる。
(変形例3)
 図9は、実施の形態1に係る誘導加熱調理器の受電装置の変形例3を示す模式図である。
 図9に示すように、受電装置200に、当該受電装置200を被加熱物5の側面に保持する保持手段210を備えても良い。
 上述したように、磁気共鳴方式(共振結合型)による電力伝送は、電磁誘導方式(電磁誘導結合型)による電力伝送と比較して、送電コイル65と受電コイル80との間の距離を長くすることができる。
 したがって、図9に示すように、受電装置200を天板4より上側(天板から浮かした方向)に配置した場合においても、電力伝送が可能であり、使い勝手の良い誘導加熱調理器を得ることができる。
実施の形態2.
 本実施の形態2においては、受電装置の負荷回路として操作表示部43を備えた構成について説明する。
 なお、以下の説明では、上記実施の形態1と同一部分には同一の符号を付し、実施の形態1との相違点を中心に説明する。
 図10は、実施の形態2に係る誘導加熱調理器の本体を示す分解斜視図である。
 図11は、実施の形態2に係る誘導加熱調理器の本体と受電装置を示す斜視図である。
 図12は、実施の形態2に係る誘導加熱調理器の本体及び受電装置の構成を示すブロック図である。
 図10~図12に示すように、実施の形態2に係る誘導加熱調理器の本体101は、操作部40、表示部41、及び操作部40と表示部41とを一体に構成した操作表示部43を備えていない。本体101のその他の構成は、上述した実施の形態1の本体100と同様である。
 本実施の形態2に係る誘導加熱調理器の受電装置201は、負荷回路として操作表示部43を備えている。
 受電装置201の操作表示部43は、受電回路81から供給された電力によって動作する。操作表示部43は、誘導加熱調理器の本体101に対する入力操作を行う操作部40と本体101の動作に関する表示を行う表示部41とを一体に構成したものである。受電装置201のその他の構成は、上述した実施の形態1の受電装置200と同様である。
 なお、本実施の形態2における操作部40、表示部41、及び操作表示部43は、本発明における「負荷回路」を構成する。
 このような構成において、受電側制御部83は、操作表示部43からの入力操作の情報を、受電側通信装置85に送信させる。この入力操作の情報は、例えば、被加熱物5を加熱する際の投入火力(投入電力)や調理メニューなどの設定情報である。
 本体101の制御部45は、本体側通信装置47が受信した入力操作の情報に応じて、駆動回路50の駆動を制御する。
 また、制御部45は、本体101の動作に関する表示情報を、本体側通信装置47に送信させる。受電装置201の受電側制御部83は、受電側通信装置85が受信した表示情報を、操作表示部43に表示させる。この表示情報は、例えば、被加熱物5を加熱する際の投入火力(投入電力)や調理メニューなどの設定、及び動作状態などの情報である。
 以上のように本実施の形態2においては、受電装置201は、誘導加熱調理器の本体101に対する入力操作を行う操作部40と本体101の動作に関する表示を行う表示部41とを一体に構成した操作表示部43を備えている。
 このため、上記実施の形態1の効果に加え、操作表示部43の設置位置の自由度を向上することができ、使い勝手を向上することができる。
 また、本体101に、操作部40、表示部41、及び操作部40と表示部41とを一体に構成した操作表示部43を備えていないので、本体101の構成を簡素化することができ、小型化を実現できる。
 なお、本実施の形態2では、操作部40と表示部41とを一体に構成した操作表示部43を受電装置201に備える構成を説明したが、本発明はこれに限定されない。操作部40又は表示部41の一方のみを受電装置201に備える構成でも良い。
 また、本実施の形態2では、本体101に、操作部40、表示部41、及び操作表示部43を備えない構成を説明したが、本発明はこれに限定されない。操作部40又は表示部41の一方を、本体101に備える構成でも良い。また、操作部40及び表示部41を、本体101と受電装置201の両方に備える構成でも良い。また、操作部40及び表示部41の一部を備える構成でも良い。
(変形例)
 図13は、実施の形態2に係る誘導加熱調理器の受電装置の変形例を示す斜視図である。
 図13に示すように、誘導加熱調理器の本体101は、シンクなどが設けられたキッチン家具300に設置される。キッチン家具300の内部には、誘導加熱調理器の本体101が嵌め込まれる収容部(図示せず)が形成され、キッチン家具300の天面には平板状の作業台301が設けられている。誘導加熱調理器の本体101がキッチン家具300に組み込まれた状態において、作業台301の上に誘導加熱調理器の天板4が露出している。キッチン家具300の作業台301は、例えば木材、樹脂(例えば、人工大理石など)、石材など絶縁性(非金属)の材質で形成されている。
 このような構成において、操作表示部43を有する受電装置201は、キッチン家具300の作業台301に載置されても良い。
 誘導加熱調理器の本体101から受電装置201へ、磁気共鳴により電力が伝送されるので、送電コイル65と受電コイル80とが対向配置されていない状態であっても電力伝送が可能である。また、作業台301は絶縁性の材質であるため、送電コイル65と受電コイル80との間が遮蔽されることはない。
 このため、受電装置201を作業台301に載置した場合であっても、本体101からの電力伝送が可能となる。よって、受電装置201を作業台301に載置して操作表示部43の操作及び表示を行うことができ、誘導加熱調理器の使い勝手を向上することができる。
実施の形態3.
 本実施の形態3においては、受電装置の負荷回路としてヒータを備えた構成について説明する。
 なお、以下の説明では、上記実施の形態1と同一部分には同一の符号を付し、実施の形態1との相違点を中心に説明する。
 図14は、実施の形態3に係る誘導加熱調理器の構成を示す模式図である。
 なお、図14においては、本体100及び受電装置202を前面側から見た縦断面を模式的に示している。
 図14に示すように、実施の形態3に係る誘導加熱調理器の受電装置202は、負荷回路として上面ヒータ91を備えている。
 上面ヒータ91は、受電回路81(図示省略)を介して受電コイル80と接続されている。上面ヒータ91は、受電コイル80が受電した電力によって発熱する発熱体によって構成される。上面ヒータ91は、例えば、抵抗発熱体であるシーズヒータを用いている。なお、上面ヒータ91は、具体的構成はこれに限らず、ハロゲンヒータや遠赤外線ヒータなど任意の発熱体を用いることができる。また、上面ヒータ91は、支持手段220によって、被加熱物5の上方に支持される。
 支持手段220は、例えば、受電装置202の外郭を構成する筐体によって形成される。支持手段220は、受電コイル80を収納する底面部から上方向に延びたあと水平方向に延びる、断面L字形に形成されている。即ち、支持手段220は、受電装置202を天板4上に載置した際に、上面ヒータ91が加熱コイル11a及び被加熱物5の上方に位置するように、上面ヒータ91を支持する。
 なお、受電装置202を天板4上に配置した際の、天板4と上面ヒータ91との距離は、被加熱物5として想定される鍋やフライパンなどの高さよりも高くなるように設定する。なお、支持手段220は、上面ヒータ91を上下方向に駆動可能な構成としても良い。
 なお、本実施の形態3における上面ヒータ91は、本発明における「負荷回路」を構成する。
 このような構成において、本体100の制御部45は、送電回路60を動作させ、送電コイル65への電力の供給を開始させる。これにより、磁気共鳴によって送電コイル65から受電装置200の受電コイル80へ電力が供給される。受電コイル80が受電した電力は、受電回路81から上面ヒータ91へ供給される。
 これにより、上面ヒータ91は、被加熱物5内の被調理物5bを上面から熱輻射により加熱する。つまり、誘導加熱による調理と非接触電力伝送による調理とを同時に行うことができる。また、誘導加熱による調理と非接触電力伝送による調理とを個別に制御することができる。したがって、短時間で美味しく調理することが可能な誘導加熱調理器を得ることができる。即ち、駆動回路50と送電回路60によって、被加熱物5からの熱による誘導加熱と上面ヒータ91による上面加熱とを個別制御することができるため、短時間で美味しく調理することが可能な誘導加熱調理器を得ることができる。
実施の形態4.
 本実施の形態4においては、受電装置の負荷回路として攪拌装置を備えた構成について説明する。
 なお、以下の説明では、上記実施の形態1と同一部分には同一の符号を付し、実施の形態1との相違点を中心に説明する。
 図15は、実施の形態4に係る誘導加熱調理器の構成を示す模式図である。
 なお、図15においては、本体100及び受電装置203を前面側から見た縦断面を模式的に示している。
 図15に示すように、実施の形態4に係る誘導加熱調理器の受電装置203は、負荷回路として攪拌装置92を備えている。
 攪拌装置92は、モータ92aと、シャフト92bと、羽根部92cとを備えている。攪拌装置92は、支持手段220によって、被加熱物5の上方に支持される。例えばシチューや炒め物などの被調理物5bが投入された鍋やフライパンなどの被加熱物5が、天板4の加熱口に載置されると、攪拌装置92の羽根部92cが被加熱物5内に配置される。
 モータ92aは、例えば受電装置203の筐体の上部に設けられ、受電コイル80が受電した電力によって回転駆動する。シャフト92bは、回転軸が上下方向に配置され、一端がモータ92aに接続されてモータ92aの駆動力を伝達する。羽根部92cは、シャフト92bに取り付けられ、シャフト92bの回転駆動によって被調理物5bを攪拌する。
 なお、本実施の形態4における攪拌装置92は、本発明における「負荷回路」を構成する。
 このような構成において、本体100の制御部45は、送電回路60を動作させ、送電コイル65への電力の供給を開始させる。これにより、磁気共鳴によって送電コイル65から受電装置200の受電コイル80へ電力が供給される。受電コイル80が受電した電力は、受電回路81から攪拌装置92へ供給される。
 これにより、誘導加熱による加熱調理と非接触電力伝送による攪拌調理とを同時に行うことができる。また、誘導加熱による加熱調理と非接触電力伝送による攪拌調理とを個別に制御することができる。したがって、短時間で美味しく調理することが可能な誘導加熱調理器を得ることができる。
 なお、上記実施の形態1~4においては、受電装置の負荷回路が一種類である場合を説明したが、上記実施の形態1~4の負荷回路を複数組み合わせても良い。つまり、複数の受電装置を備え、そのうちの少なくとも1つの負荷回路の種類を他の種類と異ならせる構成であっても良い。
 また、受電装置の負荷回路は、上記実施の形態1~4の例に限らず、例えば、食品の調理を行う調理機器(フライヤー、蒸し器、ロースター、トースター等)でも良い。また例えば、受電装置の負荷回路は、料理の下準備及び下拵え等を行う調理機器(ブレンダー、ミキサー、ミル、泡だて器、フードプロセッサー等)でも良い。また例えば、受電装置の負荷回路は、被加熱物5内に配置され食品の成分(例えば、塩分、糖度など)を検知する成分検知センサでも良い。
実施の形態5.
 図16は、実施の形態5に係る誘導加熱調理器の天板と送電コイルを示す図である。
 図16(a)は、天板4の裏面側から見た平面図であり、図16(b)は、天板4の側面図である。
 図16に示すように、送電コイル65は、天板4の裏面(下面)側に接触して配置されても良い。例えば、送電コイル65は、プリント配線によって天板4の裏面に設けても良い。
 このような構成により、本体100を小型化することができる。また、本体100の組立工程が簡易になり、安価な誘導加熱調理器を得ることができる。
 1 第1の加熱口、2 第2の加熱口、3 第3の加熱口、4 天板、5 被加熱物、5b 被調理物、11 第1の加熱手段、11a 加熱コイル、12 第2の加熱手段、13 第3の加熱手段、21 交流電源、22 直流電源回路、22a ダイオードブリッジ、22b リアクタ、22c 平滑コンデンサ、23 インバータ回路、23a IGBT、23b IGBT、23c ダイオード、23d ダイオード、24 共振コンデンサ、25 入力電流検出手段、26 コイル電流検出手段、40 操作部、40a 操作部、40b 操作部、40c 操作部、41 表示部、41a 表示部、41b 表示部、41c 表示部、43 操作表示部、45 制御部、47 本体側通信装置、50 駆動回路、60 送電回路、60a 共振型電源、60b 整合回路、65 送電コイル、80 受電コイル、81 受電回路、81a 整流回路、81b 変換回路、83 受電側制御部、85 受電側通信装置、90 温度センサ、90b 振動センサ、91 上面ヒータ、92 攪拌装置、92a モータ、92b シャフト、92c 羽根部、100 本体、101 本体、200 受電装置、201 受電装置、202 受電装置、203 受電装置、210 保持手段、220 支持手段、300 キッチン家具、301 作業台。

Claims (16)

  1.  被加熱物が載置される天板と、
     前記天板の下方に配置され、前記被加熱物を誘導加熱する加熱コイルと、
     前記加熱コイルに電力を供給する駆動回路と、
     磁気共鳴により電力を送る送電コイルと、
     前記送電コイルに電力を供給する送電回路と、
     を有する本体と、
     前記送電コイルから磁気共鳴により電力を受ける受電コイルと、
     前記受電コイルが受電した電力によって動作する負荷回路と、
     を有する受電装置と、を備えた
     誘導加熱調理器。
  2.  前記受電装置を複数備え、
     複数の前記受電装置は、それぞれ、1つの前記送電コイルから電力を受電する
     請求項1に記載の誘導加熱調理器。
  3.  前記送電コイルは、平面視において前記加熱コイルを囲むように設けられた
     請求項1又は2に記載の誘導加熱調理器。
  4.  前記加熱コイルを複数備え、
     前記送電コイルは、平面視において、複数の前記加熱コイルを囲むように設けられた
     請求項1又は2に記載の誘導加熱調理器。
  5.  前記送電コイルは、前記天板の下方であって、前記天板の縁に沿うように配置された
     請求項1~4の何れか一項に記載の誘導加熱調理器。
  6.  前記磁気共鳴の共振周波数は、MHz帯域の周波数である
     請求項1~5の何れか一項に記載の誘導加熱調理器。
  7.  前記駆動回路の駆動周波数は、20kHz以上100kHz未満であり、
     前記磁気共鳴の共振周波数は、6.78MHz又は6.78MHzの整数倍である
     請求項6に記載の誘導加熱調理器。
  8.  前記負荷回路は、前記被加熱物の温度を検知する温度センサであり、
     前記受電装置は、前記温度センサが検知した温度の情報を送信する第1通信装置を備え、
     前記本体は、
     前記第1通信装置から送信された前記温度の情報を受信する第2通信装置と、
     前記温度の情報に応じて、前記駆動回路の駆動を制御する制御装置と、を備えた
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  9.  前記負荷回路は、前記被加熱物の振動を検知する振動センサであり、
     前記受電装置は、前記振動センサが検知した振動の情報を送信する第1通信装置を備え、
     前記本体は、
     前記第1通信装置から送信された前記振動の情報を受信する第2通信装置と、
     前記振動の情報に応じて、前記駆動回路の駆動を制御する制御装置と、を備えた
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  10.  前記負荷回路は、前記本体に対する入力操作を行う操作部であり、
     前記受電装置は、前記操作部の前記入力操作の情報を送信する第1通信装置を備え、
     前記本体は、
     前記第1通信装置から送信された前記入力操作の情報を受信する第2通信装置と、
     前記入力操作の情報に応じて、前記駆動回路の駆動を制御する制御装置と、を備えた
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  11.  前記負荷回路は、前記本体の動作に関する表示を行う表示部であり、
     前記受電装置は、前記表示部に表示させる情報を受信する第1通信装置を備え、
     前記本体は、
     前記表示部に表示させる情報を送信する第2通信装置を備えた
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  12.  前記負荷回路は、前記受電コイルが受電した電力によって発熱し、前記被加熱物を加熱するヒータである
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  13.  前記負荷回路は、前記受電コイルが受電した電力によって回転駆動し、前記被加熱物に入れられた被調理物を攪拌させる攪拌装置である
     請求項1~7の何れか一項に記載の誘導加熱調理器。
  14.  前記受電装置を複数備え、
     複数の前記受電装置のうち少なくとも1つは、前記負荷回路の種類が異なる
     請求項1~13の何れか一項に記載の誘導加熱調理器。
  15.  前記受電装置は、前記天板に着脱可能に載置される
     請求項1~14の何れか一項に記載の誘導加熱調理器。
  16.  前記受電装置は、当該受電装置を前記被加熱物の側面に保持する保持手段を備えた
     請求項1~15の何れか一項に記載の誘導加熱調理器。
PCT/JP2017/002954 2017-01-27 2017-01-27 誘導加熱調理器 WO2018138872A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780078198.7A CN110199570B (zh) 2017-01-27 2017-01-27 感应加热烹调器
US16/344,954 US11324081B2 (en) 2017-01-27 2017-01-27 Inductive heating cooker
EP17894319.7A EP3576493A4 (en) 2017-01-27 2017-01-27 INDUCTION HEATING COOKER
JP2018564045A JP6727343B2 (ja) 2017-01-27 2017-01-27 誘導加熱調理器
PCT/JP2017/002954 WO2018138872A1 (ja) 2017-01-27 2017-01-27 誘導加熱調理器
EP20200003.0A EP3799528B1 (en) 2017-01-27 2017-01-27 Inductive heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002954 WO2018138872A1 (ja) 2017-01-27 2017-01-27 誘導加熱調理器

Publications (1)

Publication Number Publication Date
WO2018138872A1 true WO2018138872A1 (ja) 2018-08-02

Family

ID=62979393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002954 WO2018138872A1 (ja) 2017-01-27 2017-01-27 誘導加熱調理器

Country Status (5)

Country Link
US (1) US11324081B2 (ja)
EP (2) EP3799528B1 (ja)
JP (1) JP6727343B2 (ja)
CN (1) CN110199570B (ja)
WO (1) WO2018138872A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172413B1 (ko) * 2017-10-11 2020-10-30 엘지전자 주식회사 유도 가열 장치
JP6840260B2 (ja) * 2017-10-12 2021-03-10 三菱電機株式会社 誘導加熱調理器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049959A (ja) 2008-08-22 2010-03-04 Mitsubishi Electric Corp 誘導加熱調理器
JP2012200136A (ja) * 2011-03-10 2012-10-18 Semiconductor Energy Lab Co Ltd 受電装置、受電装置を具備する非接触給電システム、及び受電装置を具備する無線通信システム
WO2015125276A1 (ja) * 2014-02-21 2015-08-27 富士通株式会社 送電装置
JP2016134355A (ja) * 2015-01-22 2016-07-25 三菱電機株式会社 非接触給電機能付き誘導加熱調理器およびその制御方法
JP5992131B1 (ja) * 2015-10-16 2016-09-14 三菱電機株式会社 誘導加熱調理装置、複合調理装置、およびこれらを備えた誘導加熱調理システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363239B2 (ja) * 1994-03-23 2003-01-08 三菱電機株式会社 電磁誘導加熱装置
PL1913622T3 (pl) * 2005-08-03 2010-12-31 Access Business Group Int Llc Lampa wyładowcza zasilana indukcyjnie
EP2252129B1 (en) * 2008-03-10 2022-05-04 Panasonic Corporation Induction cooking device
DE102010043840A1 (de) 2010-11-12 2012-05-16 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät und Verfahren zum Betreiben eines Haushaltsgeräts
US10182472B2 (en) * 2011-12-29 2019-01-15 Arcelik Anonim Sirketi Wireless kitchen appliance operated on induction heating cooker
TWI575838B (zh) * 2012-01-08 2017-03-21 通路實業集團國際公司 感應式烹調系統及其無線電力裝置
CN107370249B (zh) * 2012-03-14 2020-06-09 索尼公司 电力发送装置以及非接触电力提供***
WO2014033773A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 誘導加熱調理器
WO2014068647A1 (ja) * 2012-10-30 2014-05-08 三菱電機株式会社 誘導加熱調理器
JP6092017B2 (ja) * 2013-06-25 2017-03-08 ルネサスエレクトロニクス株式会社 送電装置、非接触給電システム、及び制御方法
KR101532150B1 (ko) * 2013-12-09 2015-06-26 삼성전기주식회사 직교형 플럭스게이트 센서
US10158254B2 (en) 2014-09-02 2018-12-18 Mitsubishi Electric Engineering Company, Limited Resonant coupling power transmission system, resonance type power transmission device, and resonance type power reception device
WO2016054019A1 (en) 2014-09-29 2016-04-07 Aaron Watts Wireless heat devices
US10455647B2 (en) * 2014-11-26 2019-10-22 Samsung Electronics Co., Ltd. Cooking apparatus and method for controlling the same
JP6109207B2 (ja) 2015-01-08 2017-04-05 三菱電機株式会社 温度センサプローブ、及び加熱調理器
GB201518809D0 (en) * 2015-10-23 2015-12-09 The Technology Partnership Plc Temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049959A (ja) 2008-08-22 2010-03-04 Mitsubishi Electric Corp 誘導加熱調理器
JP2012200136A (ja) * 2011-03-10 2012-10-18 Semiconductor Energy Lab Co Ltd 受電装置、受電装置を具備する非接触給電システム、及び受電装置を具備する無線通信システム
WO2015125276A1 (ja) * 2014-02-21 2015-08-27 富士通株式会社 送電装置
JP2016134355A (ja) * 2015-01-22 2016-07-25 三菱電機株式会社 非接触給電機能付き誘導加熱調理器およびその制御方法
JP5992131B1 (ja) * 2015-10-16 2016-09-14 三菱電機株式会社 誘導加熱調理装置、複合調理装置、およびこれらを備えた誘導加熱調理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576493A4

Also Published As

Publication number Publication date
JP6727343B2 (ja) 2020-07-22
CN110199570A (zh) 2019-09-03
EP3799528A1 (en) 2021-03-31
US11324081B2 (en) 2022-05-03
CN110199570B (zh) 2021-08-13
JPWO2018138872A1 (ja) 2019-11-07
EP3799528B1 (en) 2023-05-10
EP3576493A4 (en) 2020-04-22
US20200084842A1 (en) 2020-03-12
EP3576493A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2017064803A1 (ja) 加熱調理システム、誘導加熱調理器、及び電気機器
JP6403808B2 (ja) 非接触電力伝送装置、及び非接触電力伝送システム
JP6591049B2 (ja) 加熱調理システム及び調理装置
EP3820248B1 (en) Table-type cooking device
JP6636168B2 (ja) 非接触電力伝送装置、及び非接触電力伝送システム
JP6727343B2 (ja) 誘導加熱調理器
WO2015159353A1 (ja) 誘導加熱調理器
JP6840260B2 (ja) 誘導加熱調理器
JP2017183020A (ja) 加熱調理システム、受電装置、及び誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894319

Country of ref document: EP

Effective date: 20190827