WO2018131256A1 - 照明装置、制御装置、および制御方法 - Google Patents

照明装置、制御装置、および制御方法 Download PDF

Info

Publication number
WO2018131256A1
WO2018131256A1 PCT/JP2017/038530 JP2017038530W WO2018131256A1 WO 2018131256 A1 WO2018131256 A1 WO 2018131256A1 JP 2017038530 W JP2017038530 W JP 2017038530W WO 2018131256 A1 WO2018131256 A1 WO 2018131256A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light sources
temperature
target temperature
Prior art date
Application number
PCT/JP2017/038530
Other languages
English (en)
French (fr)
Inventor
村松 広隆
古川 昭夫
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/471,198 priority Critical patent/US11031748B2/en
Priority to JP2018561818A priority patent/JP7059941B2/ja
Publication of WO2018131256A1 publication Critical patent/WO2018131256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/54Cooling arrangements using thermoelectric means, e.g. Peltier elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02453Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present disclosure relates to a lighting device, a control device, and a control method.
  • an illumination device that emits white light by combining light from a plurality of laser light sources has been developed as an illumination device such as an endoscope or a microscope.
  • the light output characteristics of the laser light source vary depending on the element temperature. Further, in the laser light source, when the temperature of the element becomes extremely high, the deterioration of the element rapidly proceeds. Therefore, when a laser light source is used for the illumination device, a temperature control function for the laser light source is generally provided in order to keep the temperature of the element of the laser light source constant.
  • Patent Document 1 includes a plurality of laser light sources and a plurality of thermoelectric elements provided for each laser light source, and individually controlling heating and cooling by each thermoelectric element, An optical output device that maintains a constant temperature is disclosed.
  • a plurality of light sources a plurality of cooling units provided for each of the light sources, each of which cools the light sources, a target temperature of each of the light sources, and a measured temperature of each of the light sources or the environment
  • a driving control unit that switches control to each of the light sources based on the comparison.
  • At least control of a plurality of cooling units provided for each light source is included based on a comparison between a target temperature of each of the plurality of light sources and a measured temperature of each of the light sources or the environment.
  • a drive control unit that switches control to each of the light sources.
  • At least control of a plurality of cooling units provided for each of the light sources is included based on a comparison between a target temperature of each of the plurality of light sources and a measured temperature of each of the light sources or the environment. Switching control to each of the light sources is provided.
  • a control circuit that controls driving of each heating unit can be omitted.
  • the light output of a plurality of light sources can be controlled to be constant even with a more simplified temperature control circuit.
  • FIG. 1 is an explanatory diagram showing an overall configuration of an observation apparatus 1 including an illumination apparatus according to the present embodiment.
  • the observation device 1 includes a light source unit 10, an endoscope unit 20, an information processing device 30, a display device 31, and an input device 32.
  • the illumination device according to the present embodiment corresponds to the light source unit 10, for example.
  • the light source unit 10 includes a plurality of light sources, and generates illumination light obtained by combining lights emitted from the plurality of light sources.
  • the illumination light generated by the light source unit 10 is guided to the lens barrel 222 from the light guide end portion 135 through the light guide 136, and is irradiated onto the observation target 40 from the tip of the lens barrel 222.
  • the light source unit 10 includes a first light source 110, a first collimating optical system 111, a first half mirror 112, a first photodetector 114, a control unit 100, a second Light source 120, second collimating optical system 121, second half mirror 122, second photodetector 124, diffusing member 131, third collimating optical system 132, dichroic mirror 133, And a condenser optical system 134.
  • the light emitted from the first light source 110 passes through the first collimating optical system 111 and enters the dichroic mirror 133 as substantially parallel light. Further, part of the light emitted from the first light source 110 is demultiplexed by the first half mirror 112 and enters the first photodetector 114.
  • the light emitted from the second light source 120 sequentially passes through the second collimating optical system 121, the diffusing member 131, and the third collimating optical system 132, thereby becoming substantially parallel light and entering the dichroic mirror 133. Incident. Further, a part of the light emitted from the second light source 120 is demultiplexed by the second half mirror 122 and enters the second photodetector 124.
  • the dichroic mirror 133 multiplexes the light emitted from the first light source 110 and the second light source 120.
  • the combined light enters the light guide end portion 135 via the condenser optical system 134 as illumination light.
  • the first light source 110 is composed of, for example, a white light source and emits white light.
  • the type of the white light source constituting the first light source 110 is not particularly limited.
  • the first light source 110 may be a white LED (Light Emitting Diode), a laser-excited phosphor, a xenon lamp, or a halogen. It may be constituted by a lamp or the like. Specifically, it may be constituted by a so-called phosphor type white LED using a phosphor excited by a blue LED.
  • the first collimating optical system 111 converts the white light emitted from the first light source 110 into a parallel light beam and has a direction different from that of the light that has passed through the third collimating optical system 132 (for example, the optical axes of each other are The light is incident on the dichroic mirror 133 from a substantially orthogonal direction. Note that the light that has passed through the first collimating optical system 111 does not have to be a completely parallel light beam, and may be a diverging light in a state close to the parallel light beam.
  • the first half mirror 112 is provided between the first light source 110 and the dichroic mirror 133, for example, and demultiplexes a part of the light emitted from the first light source 110.
  • the demultiplexed light is incident on the first photodetector 114.
  • the first half mirror 112 is an example of a demultiplexing member, and other demultiplexing members may be used instead of the first half mirror 112.
  • the first photodetector 114 detects the intensity of the light emitted from the first light source 110 and outputs the detected light intensity to the first light source drive control unit 101. Thereby, the 1st light source drive control part 101 can control the intensity of the light emitted from the 1st light source 110 based on the intensity of the detected light, for example.
  • the first photodetector 114 may be a known photodetector such as a photodiode or a color sensor.
  • the second light source 120 includes at least one laser light source that emits light of a predetermined wavelength band.
  • the second light source 120 is a red laser light source that emits red band laser light (for example, laser light having a center wavelength of about 638 nm), or green band laser light (for example, laser light having a center wavelength of about 532 nm).
  • a blue laser light source that emits blue band laser light (for example, laser light having a center wavelength of about 450 nm).
  • the second light source 120 includes a red laser light source, a green laser light source, and a blue laser light source that emit light in each wavelength band corresponding to the three primary colors of light, thereby combining the laser light emitted from each laser light source. By doing so, white light can be generated.
  • the second light source 120 can also adjust the color temperature of the combined white light by appropriately adjusting the light quantity ratio of the red laser light source, the green laser light source, and the blue laser light source.
  • the red laser light source, the green laser light source, and the blue laser light source may be configured by various known laser light sources such as a semiconductor laser or a solid-state laser.
  • the center wavelength of the red laser light source, the green laser light source, and the blue laser light source may be controlled by a combination with a wavelength conversion mechanism.
  • the laser light source is a light source whose light output characteristics change depending on the temperature.
  • the laser light source may increase in temperature due to the oscillation of the laser light, and the lifetime may be shortened if the temperature of the laser light source increases excessively. Therefore, the laser light source is provided with a cooling unit in order to suppress an increase in the temperature of the laser light source. Specific methods of temperature control for these laser light sources will be described later.
  • the second collimating optical system 121 converts the light emitted from the second light source 120 (that is, the light obtained by combining the light from each laser light source) into a parallel light flux.
  • the second collimating optical system 121 facilitates control of the diffusion state of light in the diffusing member 131 by converting the light incident on the diffusing member 131 provided in the subsequent stage into a parallel light beam. Note that the light that has passed through the second collimating optical system 121 does not have to be a completely parallel light beam, and may be a divergent light that is close to a parallel light beam.
  • the second half mirror 122 is provided between the second collimating optical system 121 and the diffusing member 131, for example, and demultiplexes a part of the light emitted from the second light source 120. Note that the demultiplexed light is incident on the second photodetector 124.
  • the second half mirror 122 is an example of a demultiplexing member, and other demultiplexing members may be used instead of the second half mirror 122.
  • the second light detector 124 detects the intensity of the light emitted from the second light source 120 and outputs the detected light intensity to the second light source drive control unit 102. Thereby, the 2nd light source drive control part 102 can control the intensity of the light emitted from the 2nd light source 120 based on the intensity of the detected light, for example.
  • the second photodetector 124 may be a known photodetector such as a photodiode or a color sensor, for example.
  • the diffusing member 131 is provided in the vicinity of the focal position of the second collimating optical system 121 (for example, a range of about 10% of the focal length before and after the focal position), and is emitted from the second collimating optical system 121. Diffuse light. Thereby, the light emission end of the diffusing member 131 can be regarded as a secondary light source. Since the light combined from the light emitted from the plurality of laser light sources may vary in the divergence angle for each combined light, the light is combined by being converted to the secondary light source through the diffusion member 131. Unify the divergence angle of the emitted light.
  • the size of the secondary light source generated by the diffusing member 131 can be controlled by the focal length of the second collimating optical system 121. Further, the NA (numerical aperture) of the emitted light of the secondary light source generated by the diffusing member 131 can be controlled by the diffusion angle of the diffusing member 131. Therefore, the diffusing member 131 can independently control both the size of the focused spot when coupled to the light guide end portion 135 and the incident NA.
  • the type of the diffusion member 131 is not particularly limited, and various known diffusion elements can be used.
  • the diffusing member 131 may be a frosted frosted glass, an opal diffusing plate in which a light diffusing substance is dispersed in the glass, or a holographic diffusing plate.
  • the holographic diffusion plate can arbitrarily set the diffusion angle of the emitted light by the holographic pattern applied on the substrate.
  • the third collimating optical system 132 converts the light from the diffusing member 131 (that is, the light from the secondary light source) into a parallel light beam and makes it incident on the dichroic mirror 133.
  • the light that has passed through the third collimating optical system 132 does not have to be a completely parallel light beam, and may be a divergent light in a state close to the parallel light beam.
  • the dichroic mirror 133 multiplexes the light emitted from the first light source 110 and the light emitted from the second light source 120 incident from directions in which the optical axes are substantially orthogonal to each other.
  • the dichroic mirror 133 may be designed to transmit only light in a wavelength band corresponding to the light from the second light source 120 and reflect light in other wavelength bands.
  • the light emitted from the second light source 120 passes through the dichroic mirror 133 and enters the condenser optical system 134.
  • the light emitted from the first light source 110 is reflected by the dichroic mirror 115 only on components other than the wavelength band of the light emitted from the second light source 120 and enters the condenser optical system 134.
  • the dichroic mirror 133 can multiplex the light emitted from the first light source 110 and the light emitted from the second light source 120.
  • the dichroic mirror 133 is an example of a multiplexing member that combines the light emitted from the first light source 110 and the second light source 120, and other multiplexing members may be used.
  • the light source unit 10 may combine a plurality of lights with wavelengths by using a dichroic prism as a combining member, and may use a polarization beam splitter as a combining member to generate a plurality of lights with polarization. May be combined, and a plurality of lights may be combined with amplitude by using a beam splitter as a combining member.
  • the condenser optical system 134 is composed of, for example, a condenser lens, and focuses the light combined by the dichroic mirror 133 on the light guide end 135 with a predetermined paraxial lateral magnification.
  • the light guide 136 guides the light emitted from the light source unit 10 to the lens barrel 222.
  • the light guide 136 may be configured by, for example, an optical fiber.
  • the type of the optical fiber constituting the light guide 136 is not particularly limited, and a known multimode optical fiber (for example, a step index type multimode fiber) can be used.
  • the core diameter of the optical fiber is not particularly limited.
  • the core diameter of the optical fiber may be about 1 mm.
  • the imaging magnification of the third collimating optical system 132 and the condenser optical system 134 is (focal length of the condenser optical system 134) / (focal length of the third collimating optical system 132). It can be set.
  • the imaging magnification by the third collimating optical system 132 and the condenser optical system 134 is set so that the size and divergence angle of the secondary light source match the core diameter and incident NA of the light guide 136.
  • the imaging magnification of the first collimating optical system 111 and the condenser optical system 134 can be set by (focal length of the condenser optical system 134) / (focal length of the first collimating optical system 111).
  • the imaging magnification by the first collimating optical system 111 and the condenser optical system 134 is such that the light from the first light source 110 matches the core diameter and incident NA of the light guide 136, and the light guide end portion 135 is highly efficient. Set to be combined.
  • the control unit 100 is a control circuit that controls each component of the light source unit 10.
  • the control unit 100 includes a first light source drive control unit 101 that controls each configuration of the first light source 110 and a second light source drive control unit 102 that controls each configuration of the second light source 120.
  • the control unit 100 includes, for example, a processor such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor), and these processors execute arithmetic processing according to a predetermined program. Realize various functions.
  • the first light source drive control unit 101 controls the light emission output of the first light source 110.
  • the first light source drive control unit 101 may control the light emission output of the first light source 110 by changing the drive current of the first light source 110 (for example, a white LED light source).
  • the second light source drive control unit 102 controls the light emission output of the second light source 120.
  • the second light source drive control unit 102 controls the light emission output of the second light source 120 by changing the drive current of the second light source 120 (for example, a plurality of laser light sources corresponding to each color of RGB). May be.
  • the second light source drive control unit 102 uses a laser in order to keep the oscillation wavelength and light output characteristics of the laser light sources constant. Control may be performed to keep the temperature of the light source constant.
  • the second light source drive control unit 102 controls the driving of the cooling element based on the temperature information of the second light source 120 measured by the temperature measuring element, thereby configuring the second light source 120. Control of keeping the temperature constant may be performed. Details of such temperature control of the light source will be described later.
  • the endoscope unit 20 includes a lens barrel 222 and an imaging unit 210.
  • the light guide 136 extends to the tip, and guides the illumination light emitted from the light source unit 10 to the observation target 40.
  • the lens barrel 222 guides the light reflected by the observation target 40 to the imaging unit 210.
  • the lens barrel 222 may be configured in a hard, substantially cylindrical shape, or may be configured in a flexible tube shape.
  • the image pickup unit 210 includes an image pickup device 211 capable of acquiring a color image, and photoelectrically converts light from the observation target 40 by the image pickup device 211 and converts the light into an electric signal. Note that the electrical signal photoelectrically converted by the imaging element 211 is output to the information processing apparatus 30.
  • the imaging device 211 may be a variety of known imaging devices such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor.
  • the information processing apparatus 30 generates a captured image (observation image) of the observation target 40 based on the electrical signal photoelectrically converted by the imaging unit 210.
  • the information processing apparatus 30 includes an image generation unit 310 and an input unit 320.
  • the information processing apparatus 30 may be a personal computer or the like equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the image generation unit 310 generates an observation image of the observation target 40 based on the electrical signal from the image sensor 211.
  • the observation image generated by the image generation unit 310 is output to the display device 31, for example, and is visually recognized by the user.
  • the input unit 320 generates an input signal based on an input to the input device 32 by the user, and outputs the input signal to the control unit 100 or the like. For example, the input unit 320 may output an input signal for changing control to the first light source 110 or the second light source 120 to the first light source drive control unit 101 or the second light source drive control unit 102. Good.
  • the display device 31 displays the observation image generated by the image generation unit 310 of the information processing device 30.
  • the display device 31 may be, for example, a CRT (Cathode Ray Tube) display device, a liquid crystal display device, a plasma display device, or an organic EL display device.
  • the input device 32 is an input interface that accepts user input operations.
  • the input device 32 is an input device to which information such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever is input.
  • the user can operate the input device 32 to control the observation device 1 and change, for example, the magnification of the observation image, the amount of light, and the like.
  • the observation apparatus 1 having the above configuration can be used as, for example, an endoscope apparatus or a microscope apparatus.
  • the control method of the lighting apparatus according to the present embodiment will be described separately for the first to third control methods.
  • the second light source 120 including a plurality of laser light sources corresponding to each color of RGB (Red, Green, Blue) and the second light source 120 are controlled.
  • a description will be given using the second light source drive control unit 102.
  • the second light source 120 is also referred to as a light source
  • the second light source drive control unit 102 is also referred to as a drive control unit.
  • FIG. 2 is a block diagram illustrating each configuration of the illumination device according to the first control method.
  • each laser light source includes a cooling unit, but does not include a heating unit. Therefore, in the lighting device according to the first control method, it is possible to reduce the number of parts of the control circuit that controls the heating unit. However, since each laser light source does not include a heating unit, the light amount of each laser light source may fluctuate when the temperature of each laser light source of the illumination device is lower than the target temperature for stabilization.
  • the first control method provides a control method for keeping the light quantity of the illumination device constant even in such a case.
  • the illumination device includes a red light source 120R, a green light source 120G, and a blue light source 120B (collectively referred to as the light source 120), a red light source cooling unit 140R, and a green light source cooling.
  • 140G, blue light source cooling section 140B (collectively referred to as cooling section 140), optical samplers 161R, 161G, 161B (collectively referred to as optical sampler 161), red light detection section 160R, green light detection section 160G and blue light detection unit 160B (collectively referred to as light detection unit 160), a multiplexing module composed of mirror 171, dichroic mirrors 173 and 175, and drive control unit 1021.
  • the red light source 120R is a laser light source that emits light in a wavelength range of 630 nm to 645 nm, for example, and may be configured by a semiconductor laser such as an AlGaInP quantum well structure laser diode.
  • the green light source 120G is a laser light source that emits light in the wavelength range of 510 nm to 540 nm, for example, and may be composed of a solid-state laser that is excited by a semiconductor laser, and a wavelength conversion filter for a semiconductor laser that emits light in a different wavelength range You may comprise by mounting
  • the blue light source 120B is a laser light source that emits light in a wavelength region of 435 nm to 465 nm, for example, and may be configured by a semiconductor laser such as a GaInN quantum well structure laser diode.
  • the lighting device 120R, green light source 120G, and blue light source 120B are an example to the last, and the several light source with which the illuminating device which concerns on this embodiment is provided is not limited above.
  • the lighting device according to the present embodiment may include light sources corresponding to colors other than RGB, may include a plurality of light sources of one color, or may include a plurality of light sources of two colors. A plurality of light sources having four or more colors may be provided. The plurality of light sources may be white light sources.
  • a laser light source can adjust a light amount of emitted light by controlling a driving current or a driving voltage applied to the laser light source.
  • a red light source cooling unit 140R, a green light source cooling unit 140G, and a blue light source cooling unit 140B are provided for each light source 120 in order to suppress the temperature rise of the laser light source.
  • the fluctuation factor of the temperature of the laser light source include heat generated by driving the laser light source and the environmental temperature of the space in which the illumination device is installed.
  • the red light source cooling unit 140R, the green light source cooling unit 140G, and the blue light source cooling unit 140B cool each of the light sources 120.
  • the red light source cooling unit 140R, the green light source cooling unit 140G, and the blue light source cooling unit 140B are provided for each of the red light source 120R, the green light source 120G, and the blue light source 120B, and the red light source 120R, the green light source 120G, The blue light source 120B is cooled.
  • the cooling unit 140 may be a thermoelectric element such as a Peltier element, for example.
  • the Peltier element is an element that performs both functions of cooling and heating by reversing the polarity of the flowing current.
  • the Peltier element has the light source 120. It is configured to perform only the cooling function.
  • the Peltier element constituting the cooling unit 140 is provided only with a circuit that allows current to flow in the direction of cooling the light source 120, and is not provided with a circuit that allows current to flow in the direction of heating the light source 120.
  • the optical samplers 161R, 161G, and 161B demultiplex a part of the light emitted from the light source 120.
  • the optical samplers 161R, 161G, and 161B are provided between the red light source 120R, the green light source 120G, and the blue light source 120B, and the mirror 171 and the dichroic mirrors 173 and 175, and the red light source 120R, the green light source 120G, And part of the light emitted from the blue light source 120B is demultiplexed.
  • the outgoing light demultiplexed by the optical samplers 161R, 161G, and 161B is incident on the red light detection unit 160R, the green light detection unit 160G, and the blue light detection unit 160B. Accordingly, the red light detection unit 160R, the green light detection unit 160G, and the blue light detection unit 160B can detect the amounts of red light, green light, and blue light, respectively.
  • the red light detection unit 160R, the green light detection unit 160G, and the blue light detection unit 160B detect the amount of light emitted from the light source 120. Specifically, the red light detection unit 160R, the green light detection unit 160G, and the blue light detection unit 160B detect the amounts of light emitted from the red light source 120R, the green light source 120G, and the blue light source 120B, respectively. In addition, the light detection unit 160 converts the amount of light received from each of the light sources 120 into an electrical signal and outputs the electrical signal to the drive control unit 1021.
  • the light detection unit 160 may be configured by a photodiode or a color sensor including a spectral color filter.
  • the multiplexing module 170 combines the red light, the green light, and the blue light emitted from the red light source 120R, the green light source 120G, and the blue light source 120B, respectively, and generates illumination light that irradiates the observation target 40.
  • the multiplexing module 170 includes a mirror 171 and dichroic mirrors 173 and 175.
  • the dichroic mirrors 173 and 175 are mirrors that reflect light having a specific wavelength and transmit light having a wavelength other than the reflected light.
  • the mirror 171 reflects the red light emitted from the red light source 120R and causes the reflected red light to enter the dichroic mirror 173.
  • the dichroic mirror 173 reflects the green light emitted from the green light source 120G so that the reflected green light is incident on the dichroic mirror 175 and transmits red light incident from a direction orthogonal to the incident direction of the green light. By doing so, the transmitted red light is made incident on the dichroic mirror 175.
  • the dichroic mirror 173 combines the red light and the green light guided on the same optical axis, and enters the dichroic mirror 175.
  • the dichroic mirror 175 reflects the blue light emitted from the blue light source 120B so that the reflected blue light is emitted from the multiplexing module 170, and red light incident from a direction orthogonal to the incident direction of the blue light and By transmitting the green light, the transmitted red light and green light are emitted from the multiplexing module 170.
  • the multiplexing module 170 can combine and emit the red light, the green light, and the blue light guided on the same optical axis.
  • the light emitted from the multiplexing module 170 is guided to, for example, the second collimating optical system 121.
  • the drive control unit 1021 controls the driving of each of the red light source cooling unit 140R, the green light source cooling unit 140G, and the blue light source cooling unit 140B based on the measured temperature and the target temperature of each light source 120.
  • the drive control unit 1021 controls the driving of each of the red light source 120R, the green light source 120G, and the blue light source 120B based on the light amount detected by the light detection unit 160 and the target light amount of each of the light sources 120.
  • FIG. 3 is a graph showing the temperature rise associated with the driving of the light source 120.
  • FIG. 4 shows the light emitted from each of the light sources 120 when the temperature of the light source 120 rises according to the driving time as shown in FIG. It is the graph which showed the light quantity change of the combined light which combined.
  • the temperature of the light source 120 is kept constant at the target temperature.
  • the target temperature is a temperature at which heat generated by driving the light source 120 and cooling by the cooling unit 140 can be balanced and are suitable for light emission of the light source 120.
  • the heating unit that heats the light source 120 is not provided, and only the cooling unit 140 that cools the light source 120 is provided. Therefore, when the temperature of the light source 120 is higher than the target temperature, the temperature of the light source 120 can be controlled to the target temperature by cooling the light source 120 by the cooling unit 140.
  • each temperature of the light source 120 is almost the same as the environmental temperature immediately after the start of driving.
  • the drive control unit 1021 cannot actively control the temperature of the light source 120 to the target temperature.
  • the temperature of each light source 120 rises due to heat generated by driving as the driving time becomes longer.
  • the amount of emitted light decreases as the temperature of the laser light source increases. Therefore, when the temperature of each of the light sources 120 rises as shown in FIG. 3, the amount of illumination light combined with the light emitted from each of the light sources 120 gradually decreases as shown in FIG. .
  • the light source 120 has a different amount of heat generation for each light source corresponding to each color, the temperature rise rate of the laser light source is different as shown in FIG. For this reason, even if the illumination light which combined the light radiate
  • the drive control unit 1021 calculates the current applied to the light source 120 so that the light amount of the light source 120 is constant. Control.
  • the drive control unit 1021 preferentially executes the light amount control of the light source 120 based on the light amount detected by the light detection unit 160.
  • the drive control unit 1021 can actively control the temperature of the light source 120 to the target temperature by cooling by the cooling unit 140. The temperature control by the unit 140 is preferentially executed.
  • FIG. 5 is a flowchart for explaining the flow of the operation in the first control example.
  • each of the light sources 120 is turned on to start driving the light sources 120 (S101).
  • the temperature of each of the light sources 120 is measured (S103), and it is determined whether or not the measured temperature of each of the light sources 120 is higher than the target temperature (S105).
  • the drive control unit 1021 controls the cooling unit 140 that cools the light source 120 so that each temperature of the light source 120 becomes the target temperature. (S107).
  • the drive control unit 1021 determines the amount of current applied to the light source 120 so that the light amount of each light source 120 is constant. Control is performed (S109).
  • the drive controller 1021 can keep the light amount of the light source 120 constant by controlling the current applied to the light source 120 even when the temperature of the light source 120 is not controlled to be constant.
  • the comparison between the measured temperature of the light source 120 and the target temperature may be performed for each light source 120, and the drive control unit 1021 may make a different determination for each light source 120. For example, when the measured temperature of the red light source 120R is higher than the target temperature and the measured temperatures of the green light source 120G and the blue light source 120B are equal to or lower than the target temperature, the drive control unit 1021 controls the temperature of the red light source 120R to the target temperature. Alternatively, the light amounts of the green light source 120G and the blue light source 120B may be controlled to be constant.
  • controlling the current applied to the light source 120 based on the light amount detected by the light detection unit 160 so that the light amount of the light source 120 is constant is, for example, constant power control (Auto Power Control: APC). Also called.
  • APC Auto Power Control
  • driving the light source 120 such that the current applied to the light source 120 is constant is also referred to as constant current control (ACC), for example.
  • FIG. 6 is a graph showing the change in the amount of combined light obtained by combining the light emitted from each of the light sources 120 controlled by APC or ACC when the temperature of the light source 120 rises according to the driving time as shown in FIG. FIG.
  • the lighting device switches between the cooling control and the constant output control by comparing each measured temperature of the light source 120 with the target temperature without providing a heating unit for each light source 120.
  • the amount of light emitted from each of the light sources 120 can be kept constant.
  • FIG. 7 is a block diagram illustrating each configuration of the illumination device according to the second control method.
  • each laser light source includes a cooling unit, but does not include a heating unit, as in the illumination device according to the first control method. Therefore, in the illuminating device according to the second control method, the number of parts of the control circuit that controls the heating unit can be reduced as in the illuminating device according to the first control method. However, since each laser light source does not include a heating unit, the temperature of each laser light source may fluctuate when the temperature of each laser light source of the illumination device is lower than the target temperature for stabilization.
  • the second control method provides a control method that keeps the temperature of the lighting device constant even in such a case.
  • the configuration of the illumination device according to the second control method is substantially the same as the configuration of the illumination device according to the first control method, except that the optical sampler 161 and the light detection unit 160 are not provided.
  • the description here will be omitted.
  • the illumination device according to the second control method may include the light sampler 161 and the light detection unit 160.
  • FIG. 8 is a graph showing a temperature rise associated with the driving of the light source 120.
  • the temperature of the light source 120 is kept constant at the target temperature. Good.
  • each temperature of the light source 120 is almost the same as the environmental temperature immediately after the start of driving. It takes time for each temperature of the light source 120 to reach the target temperature due to heat generation.
  • the drive control unit 1022 controls the temperature of the light source 120 by the cooling unit 140 by lowering the target temperature. Control as possible.
  • the drive control unit 1022 sets the cooling unit 140 that cools the light source 120 so that the temperature of the light source 120 becomes the initial target temperature. Control.
  • each temperature of the light source 120 is also assumed to be lower than the target temperature. At this time, it may take a very long time for the temperature of the light source 120 to reach the target temperature due to heat generated by driving. Therefore, as shown in FIG. 8, the drive control unit 1022 can control the temperature of the light source 120 to the target temperature by cooling by the cooling unit 140 and heat generated by driving by reducing the target temperature to the vicinity of the measured temperature of the environment. To be.
  • the drive control unit 1022 may set the target temperature after the reduction based on the measured temperature of the environment. For example, as shown in FIG. 8, the drive control unit 1022 may set the measured temperature of the environment as the target temperature after being lowered. Further, the drive control unit 1022 may set a temperature that is higher than the measured temperature of the environment by a predetermined value as the target temperature after the reduction. The predetermined value may be determined by a temperature rise curve estimated from the electro-optical conversion efficiency of the light source 120 and a required specification of time until the output light amount is stabilized. Further, the drive control unit 1022 may set a temperature closest to the measured temperature of the environment from among a plurality of temperatures set in advance at predetermined intervals as the target temperature after the reduction.
  • the drive control unit 1022 does not lower the target temperature below the measured temperature of the environment. Since the light source 120 generates heat by driving, the drive control unit 1022 controls the temperature of the light source 120 to the target temperature after the temperature is lowered by the cooling unit 140 when the target temperature is lowered to at least the measured temperature of the environment. Because it can. For example, when the drive control unit 1022 lowers the target temperature to a temperature lower than the measured temperature of the environment, the cooling unit 140 performs excessive cooling, and thus power consumption increases.
  • the drive controller 1022 lowers the target temperature, the light output characteristic of the light source 120 at the target temperature after the reduction varies from the light output characteristic of the light source 120 at the original target temperature.
  • the light output characteristics of each of the light sources 120 may fluctuate, so that the color of the illumination light combined with the light emitted from each of the light sources 120 may fluctuate.
  • the drive control unit 1022 stores in advance the light output characteristics of the light source 120 at each temperature, and controls the current applied to the light source 120 based on the light output characteristics of the light source 120 at the target temperature after the reduction. Also good. Further, when a plurality of temperatures at a predetermined interval are set as target temperatures after reduction, the drive control unit 1022 stores in advance the light output characteristics of the light source 120 at the plurality of temperatures set as target temperatures after reduction. The current applied to the light source 120 may be controlled based on the light output characteristics.
  • the drive control unit 1022 uses the light source 120 so as to obtain a desired light amount based on the light amount of the light of the light source 120 detected by the light detection unit 160. You may control the electric current applied to.
  • FIG. 9 is a flowchart for explaining the flow of the operation in the second control example.
  • each of the light sources 120 is turned on to start driving of each of the light sources 120 (S201).
  • the environmental temperature where the lighting device is installed is measured (S203).
  • the drive control unit 1022 lowers the target temperature based on the measured environmental temperature (S207).
  • the drive control unit 1022 controls the temperature of the light source 120 by the cooling unit 140. It becomes possible to control to the target temperature after the reduction. Further, the drive control unit 1022 controls the current applied to the light source 120 based on the light output characteristics of the light source 120 at the lowered target temperature (S209), so that the temperature of the light source 120 becomes the lowered target temperature. Next, the cooling by the cooling unit 140 is controlled (S211).
  • the drive control unit 1022 controls the cooling of the light source 120 by the cooling unit 140 so that the temperature of the light source 120 becomes the target temperature ( S211). At this time, since the temperature of the light source 120 is assumed to be substantially equal to or higher than the target temperature, the drive control unit 1022 causes the cooling unit 140 to set the temperature of the light source 120 to the target temperature. It is possible to control.
  • each temperature of the light source 120 is reduced by lowering the target temperature by comparing the measured environmental temperature with the target temperature. Can be kept constant. According to this, the lighting device can keep the light quantity of the light emitted from the light source 120 constant by keeping the temperature of each light source 120 constant.
  • FIG. 10 is a block diagram illustrating each configuration of the illumination device according to the third control method.
  • each laser light source includes a cooling unit, but does not include an individually controlled heating unit.
  • the illumination device according to the third control method includes a heating unit that heats each laser light source at once. Therefore, in the illuminating device according to the third control method, the control circuit for the heating unit provided individually for each laser light source can be omitted, and the control circuit for the heating unit that collectively heats each laser light source can be integrated. . Therefore, according to the 3rd control method, the number of parts of a control circuit can be reduced in an illuminating device.
  • the configuration of the lighting device according to the third control method is the same as that of the lighting device according to the second control method except that a heating unit 150 that heats each of the light sources 120 is provided.
  • the configuration is substantially the same. Therefore, description here is abbreviate
  • the heating unit 150 may be, for example, a resistor or a thermoelectric element such as a Peltier element. However, when a Peltier element is used for the heating unit 150, the Peltier element is configured to perform only the function of heating the light source 120. Specifically, the Peltier element constituting the heating unit 150 is provided only with a circuit that allows current to flow in the direction of heating the light source 120, and is not provided with a circuit that allows current to flow in the direction of cooling the light source 120.
  • the heating unit 150 may be composed of a plurality of resistors or a plurality of Peltier elements. Specifically, the heating unit 150 may include a plurality of resistors connected in series, and each of the plurality of resistors may be provided in the vicinity of each of the light sources 120. Even in such a case, the plurality of resistors constituting the heating unit 150 are not provided with a control circuit for individually controlling the plurality of resistors, and heating or non-heating is controlled by the same control circuit. The number of parts of the control circuit can be reduced.
  • the drive control unit 1023 drives the heating unit 150 so that all the temperatures of the light sources 120 are equal to or higher than the target temperature.
  • the temperature of the light source 120 is controlled.
  • the drive control unit 1023 can raise the temperature of the light source 120 by heating each of the light sources 120 in a lump, so that the temperature of the light source 120 can be controlled by the cooling unit 140.
  • the drive control unit 1023 controls the cooling unit 140 so that the temperatures of the light sources 120 become the target temperatures.
  • the drive control unit 1023 can cause the light source 120 to emit light at the initially set target temperature, the light source 120 can emit light more efficiently.
  • the oscillation wavelength of the laser light source may shift depending on the temperature, the drive control unit 1023 emits light having a desired wavelength spectrum from the light source 120 by causing the light source 120 to emit light at the initially set target temperature.
  • FIG. 11 is a flowchart for explaining the flow of operation of the third control example.
  • each of the light sources 120 is turned on to start driving of each of the light sources 120 (S301).
  • the temperature of each light source 120 is measured (S303).
  • the drive control unit 1023 causes each of the light sources 120 by the heating unit 150 until the measured temperatures of all the light sources 120 become equal to or higher than the target temperature. Is heated (S307).
  • the drive control part 1023 controls cooling by the cooling unit 140 so that each temperature of the light source 120 becomes the target temperature (S309).
  • the drive control unit 1023 controls the cooling by the cooling unit 140 so that each temperature of the light source 120 becomes the target temperature. (S309). At this time, since the temperatures of all the light sources 120 are equal to or higher than the target temperature, the drive control unit 1023 can control each temperature of the light sources 120 to the target temperature by the cooling unit 140.
  • the illuminating device collects all the light sources 120 in the heating unit 150 that collectively heats, whereby the heating unit provided for each light source 120 can be omitted. According to this, in the lighting device, it is possible to reduce the number of parts of the control circuit that controls the individual heating units.
  • each of the light sources 120 can emit light at the initially set target temperature, so that emitted light having a desired wavelength spectrum can be obtained from the light source 120 more efficiently.
  • the control circuit can be simplified by omitting a circuit that controls individual heating for each of the plurality of light sources. It is possible to reduce the number of parts of the control circuit. According to this, it is possible to reduce the manufacturing cost of the lighting device as the number of circuit parts is reduced, and it is possible to improve the reliability of the lighting device as the configuration is simplified.
  • Multiple light sources A plurality of cooling units which are provided for each of the light sources and respectively cool the light sources; A drive controller that switches control to each of the light sources based on a comparison between each target temperature of the light sources and a measured temperature of each of the light sources or the environment; A lighting device.
  • a plurality of light detection units that are provided for each of the light sources and detect the light amounts of the light sources, When the measured temperature of each of the light sources is higher than the target temperature, the drive control unit controls the cooling unit so that the temperature of the light source becomes the target temperature, and the measured temperature of each of the light sources is The illumination device according to (1), wherein when the temperature is equal to or lower than a target temperature, the light amount of the light source is controlled to be constant based on the light amount of the light source detected by the light detection unit. (3) The lighting device according to (1), wherein the drive control unit lowers the target temperature when the measured temperature of the environment is lower than the target temperature.
  • the target temperature after being lowered by the drive control unit is the lighting device according to (3), which is equal to or higher than the measured temperature of the environment.
  • the said drive control part is an illuminating device as described in said (4) which determines the said target temperature after reduction
  • the drive control unit controls the current to be applied to each of the light sources based on the light output characteristics of each of the light sources at the target temperature after being lowered, any one of (3) to (5) The lighting device described in 1.
  • a plurality of light detection units that are provided for each of the light sources and detect the light amounts of the light sources, The illumination according to any one of (3) to (5), wherein the drive control unit controls the light amount of each light source to be constant based on the light amount of the light source detected by the light detection unit. apparatus.
  • the lighting device according to any one of (7) to (7).
  • the illumination device according to any one of (1) to (8), wherein the plurality of light sources are a plurality of laser light sources having different wavelength spectra of emitted light.
  • the lighting device according to any one of (1) to (9), wherein the lighting device is not provided with an individual heating unit controlled for each of the plurality of light sources.
  • control of each of the light sources including at least control of a plurality of cooling units provided for each of the light sources is performed.
  • a drive control unit for switching comprising: (12) Based on the comparison between the target temperature of each of the plurality of light sources and the measured temperature of each of the light sources or the environment, control of each of the light sources including at least control of a plurality of cooling units provided for each of the light sources is performed.
  • Switching Including a control method.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Endoscopes (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】より簡略化された温度制御回路にて複数の光源の出力を一定に制御可能な照明装置、制御装置、および制御方法を提供する。【解決手段】複数の光源と、前記光源ごとに設けられ、前記光源をそれぞれ冷却する複数の冷却部と、前記光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源の各々への制御を切り替える駆動制御部と、を備える、照明装置。

Description

照明装置、制御装置、および制御方法
 本開示は、照明装置、制御装置、および制御方法に関する。
 近年、内視鏡または顕微鏡等の患者の術野を観察する観察装置において、複数の光源から発せられた光を合波して照明に用いることが一般的になっている。例えば、内視鏡または顕微鏡等の照明装置として、複数のレーザ光源からの光を合波して白色光を射出する照明装置が開発されている。
 ただし、レーザ光源は、素子の温度によって光出力特性が変動してしまう。また、レーザ光源は、素子の温度が極めて高くなった場合、素子の劣化が急激に進行してしまう。そのため、照明装置にレーザ光源を用いる場合、レーザ光源の素子の温度を一定に保つために、レーザ光源の温度制御機能が設けられることが一般的である。
 例えば、下記の特許文献1には、複数のレーザ光源と、レーザ光源ごとに設けられた複数の熱電素子とを備え、各熱電素子による加熱および冷却を個別に制御することで、各レーザ光源の温度を一定に維持する光出力装置が開示されている。
特開2011-199004号公報
 しかし、上記の特許文献1に開示された光出力装置では、レーザ光源ごとに設けられた熱電素子において、加熱および冷却を個別に制御する必要があるため、制御回路が複雑化し、制御回路の部品点数が増加していた。このような場合、回路の部品点数の増加に伴って、製造コストの上昇、および信頼性の低下が生じてしまう。
 そこで、温度制御回路を簡略化し、回路の部品点数を削減した場合でも、複数の光源の光出力を一定に制御可能な照明装置、制御装置、および制御方法が求められていた。
 本開示によれば、複数の光源と、前記光源ごとに設けられ、前記光源をそれぞれ冷却する複数の冷却部と、前記光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源の各々への制御を切り替える駆動制御部と、を備える、照明装置が提供される。
 また、本開示によれば、複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替える駆動制御部と、を備える、制御装置が提供される。
 さらに、本開示によれば、複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替えることと、を含む、制御方法が提供される。
 本開示によれば、複数の光源ごとに制御される個別の加熱部が設けられないため、各加熱部の駆動を制御する制御回路を省略することができる。
 以上説明したように本開示によれば、より簡略化された温度制御回路であっても、複数の光源の光出力を一定に制御することが可能である。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る照明装置を含む観察装置の全体構成を示す説明図である。 第1の制御方法に係る照明装置の各構成を説明するブロック図である。 光源の駆動に伴う温度上昇を示したグラフ図である。 光源の温度が駆動時間に従って上昇する場合に、光源から出射される光の光量変化を示したグラフ図である。 第1の制御例の動作の流れを説明するフローチャート図である。 光源の温度が駆動時間に従って上昇する場合に、APCまたはACCで制御された光源から出射される光の光量変化を示したグラフ図である。 第2の制御方法に係る照明装置の各構成を説明するブロック図である。 光源の駆動に伴う温度上昇を示したグラフ図である。 第2の制御例の動作の流れを説明するフローチャート図である。 第3の制御方法に係る照明装置の各構成を説明するブロック図である。 第3の制御例の動作の流れを説明するフローチャート図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.照明装置を含む観察装置の全体構成
 2.照明装置の制御方法
  2.1.第1の制御例
  2.2.第2の制御例
  2.3.第3の制御例
 3.まとめ
 <1.照明装置を含む観察装置の全体構成>
 まず、図1を参照して、本開示の一実施形態に係る照明装置を含む観察装置の全体構成について説明する。図1は、本実施形態に係る照明装置を含む観察装置1の全体構成を示す説明図である。
 図1に示すように、観察装置1は、光源部10と、内視鏡部20と、情報処理装置30と、表示装置31と、入力装置32とを備える。なお、本実施形態に係る照明装置は、例えば、光源部10に対応する。
 (光源部10)
 光源部10は、複数の光源を備え、複数の光源から出射された光を合波した照明光を生成する。光源部10によって生成された照明光は、ライトガイド端部135からライトガイド136を介して鏡筒222に導かれ、鏡筒222の先端から観察対象40へ照射される。
 具体的には、光源部10は、第1の光源110と、第1のコリメート光学系111と、第1のハーフミラー112と、第1の光検出器114と、制御部100と、第2の光源120と、第2のコリメート光学系121と、第2のハーフミラー122と、第2の光検出器124と、拡散部材131と、第3のコリメート光学系132と、ダイクロイックミラー133と、コンデンサ光学系134とを備える。
 第1の光源110から出射された光は、第1のコリメート光学系111を通過することで、略平行光となってダイクロイックミラー133に入射する。また、第1の光源110から出射された光の一部は、第1のハーフミラー112にて分波されて、第1の光検出器114に入射する。
 一方、第2の光源120から出射された光は、第2のコリメート光学系121、拡散部材131および第3のコリメート光学系132を順に通過することで、略平行光となってダイクロイックミラー133に入射する。また、第2の光源120から出射された光の一部は、第2のハーフミラー122にて分波されて、第2の光検出器124に入射する。
 ダイクロイックミラー133は、第1の光源110および第2の光源120から射出された光を合波する。合波された光は、照明光として、コンデンサ光学系134を介してライトガイド端部135に入射する。
 第1の光源110は、例えば、白色光源で構成され、白色光を出射する。第1の光源110を構成する白色光源の種類は、特に限定されるものではないが、例えば、第1の光源110は、白色LED(Light Emitting Diode)、レーザ励起蛍光体、キセノンランプ、またはハロゲンランプなどで構成されてもよく、具体的には、青色LEDによって励起される蛍光体を用いた、いわゆる蛍光体方式の白色LEDで構成されてもよい。
 第1のコリメート光学系111は、第1の光源110から出射された白色光を平行光束に変換し、第3のコリメート光学系132を通過した光とは異なる方向(例えば、互いの光軸が略直交する方向)からダイクロイックミラー133に入射させる。なお、第1のコリメート光学系111を通過した光は、完全な平行光線である必要はなく、平行光線に近い状態の発散光であってもよい。
 第1のハーフミラー112は、例えば、第1の光源110と、ダイクロイックミラー133との間に設けられ、第1の光源110から出射された光の一部を分波する。分波された光は、第1の光検出器114に入射する。なお、第1のハーフミラー112は、分波部材の一例であり、他の分波部材が第1のハーフミラー112の替わりに用いられてもよい。
 第1の光検出器114は、第1の光源110から出射された光の強度を検出し、検出した光の強度を第1光源駆動制御部101に出力する。これにより、第1光源駆動制御部101は、例えば、検出された光の強度に基づいて第1の光源110から出射される光の強度を制御することができる。第1の光検出器114は、例えば、フォトダイオードまたはカラーセンサなどの公知の光検出器で構成されてもよい。
 第2の光源120は、所定の波長帯域の光を射出するレーザ光源を少なくとも1つ以上備える。例えば、第2の光源120は、赤色帯域のレーザ光(例えば、中心波長が約638nmのレーザ光)を出射する赤色レーザ光源、緑色帯域のレーザ光(例えば、中心波長が約532nmのレーザ光)を出射する緑色レーザ光源、および青色帯域のレーザ光(例えば、中心波長が約450nmのレーザ光)を出射する青色レーザ光源を備えていてもよい。
 第2の光源120は、光の三原色に対応する各波長帯域の光を出射する赤色レーザ光源、緑色レーザ光源、および青色レーザ光源を備えることにより、各レーザ光源から出射されるレーザ光を合波することで、白色光を生成することができる。また、第2の光源120は、赤色レーザ光源、緑色レーザ光源、および青色レーザ光源の光量比を適宜調整することで、合波された白色光の色温度を調整することも可能である。
 なお、赤色レーザ光源、緑色レーザ光源、および青色レーザ光源は、半導体レーザまたは固体レーザ等の公知の各種レーザ光源にて構成されてもよい。また、赤色レーザ光源、緑色レーザ光源、および青色レーザ光源は、波長変換機構との組み合わせによって中心波長が制御されてもよい。
 なお、レーザ光源は、温度によって光出力特性が変化してしまう光源である。また、レーザ光源は、レーザ光の発振によって温度が上昇し、レーザ光源の温度が過度に上昇した場合、寿命が短くなってしまうことがある。そのため、レーザ光源には、レーザ光源の温度の上昇を抑制するために冷却部が設けられる。これらのレーザ光源に対する温度制御の具体的な方法については、後述する。
 第2のコリメート光学系121は、第2の光源120から出射された光(すなわち、各レーザ光源の光を合波した光)を平行光束へと変換する。第2のコリメート光学系121は、後段に設けられた拡散部材131に入射する光を平行光束に変換することで、拡散部材131での光の拡散状態の制御を容易にする。なお、第2のコリメート光学系121を通過した光は、完全な平行光線である必要はなく、平行光線に近い状態の発散光であってもよい。
 第2のハーフミラー122は、例えば、第2のコリメート光学系121と、拡散部材131との間に設けられ、第2の光源120から出射された光の一部を分波する。なお、分波された光は、第2の光検出器124に入射する。なお、第2のハーフミラー122は、分波部材の一例であり、他の分波部材が第2のハーフミラー122の替わりに用いられてもよい。
 第2の光検出器124は、第2の光源120から出射された光の強度を検出し、検出した光の強度を第2光源駆動制御部102に出力する。これにより、第2光源駆動制御部102は、例えば、検出された光の強度に基づいて第2の光源120から出射される光の強度を制御することができる。第2の光検出器124は、例えば、フォトダイオードまたはカラーセンサなどの公知の光検出器で構成されてもよい。
 拡散部材131は、第2のコリメート光学系121の焦点位置の近傍範囲(例えば、焦点位置から前後に焦点距離の10%程度の範囲)に設けられ、第2のコリメート光学系121から出射された光を拡散させる。これにより、拡散部材131における光の出射端は、2次光源と見なせるようになる。複数のレーザ光源から出射された光を合波した光は、合波された光ごとに発散角にばらつきが存在することがあるため、拡散部材131を通して2次光源に変換することで、合波された光の発散角を統一する。
 拡散部材131により生成される2次光源の大きさは、第2のコリメート光学系121の焦点距離によって制御することが可能である。また、拡散部材131により生成される2次光源の出射光のNA(開口数)は、拡散部材131の拡散角度によって制御することが可能である。したがって、拡散部材131は、ライトガイド端部135に結合する際の集光スポットのサイズ、および入射NAの両方を独立に制御することが可能である。
 拡散部材131の種類は特に限定されるものではなく、公知の各種拡散素子を用いることが可能である。例えば、拡散部材131は、フロスト型のすりガラス、ガラス内に光拡散物質を分散させたオパール型の拡散板、またはホログラフィック拡散板などであってもよい。なお、ホログラフィック拡散板は、基板上に施されたホログラフィックパターンによって、出射光の拡散角度を任意に設定することも可能である。
 第3のコリメート光学系132は、拡散部材131からの光(すなわち、2次光源からの光)を平行光束に変換し、ダイクロイックミラー133に入射させる。なお、第3のコリメート光学系132を通過した光は、完全な平行光線である必要はなく、平行光線に近い状態の発散光であってもよい。
 ダイクロイックミラー133は、互いに光軸が略直交する方向から入射する第1の光源110から出射された光と、第2の光源120から出射された光とを合波する。
 例えば、ダイクロイックミラー133は、第2の光源120からの光に対応する波長帯域の光のみを透過させ、それ以外の波長帯域の光を反射するように設計されていてもよい。このような場合、例えば、ダイクロイックミラー133において、第2の光源120から出射された光は、ダイクロイックミラー133を透過してコンデンサ光学系134に入射する。また、第1の光源110から出射された光は、第2の光源120から出射された光の波長帯域以外の成分のみダイクロイックミラー115にて反射されて、コンデンサ光学系134に入射する。これにより、ダイクロイックミラー133は、第1の光源110から出射された光と、第2の光源120から出射された光とを合波することができる。
 なお、ダイクロイックミラー133は、第1の光源110、および第2の光源120からそれぞれ出射された光を合波する合波部材の一例であり、他の合波部材を用いることも可能である。例えば、光源部10では、ダイクロイックプリズムを合波部材として用いることで、波長にて複数の光を合波してもよく、偏光ビームスプリッタを合波部材として用いることで、偏光にて複数の光を合波してもよく、ビームスプリッタを合波部材として用いることで、振幅にて複数の光を合波してもよい。
 コンデンサ光学系134は、例えば、集光レンズによって構成され、ダイクロイックミラー133によって合波された光を所定の近軸横倍率でライトガイド端部135に結像させる。
 ライトガイド136は、光源部10から出射された光を鏡筒222に導く。ライトガイド136は、例えば、光ファイバにて構成されてもよい。ただし、ライトガイド136を構成する光ファイバの種類は特に限定されるものではなく、公知のマルチモード光ファイバ(例えば、ステップインデックス型マルチモードファイバなど)を用いることが可能である。また、光ファイバのコア径も特に限定されるものではなく、例えば、光ファイバのコア径は、1mm程度であればよい。
 上記の光源部10において、第3のコリメート光学系132と、コンデンサ光学系134とによる結像倍率は、(コンデンサ光学系134の焦点距離)/(第3のコリメート光学系132の焦点距離)によって設定可能である。第3のコリメート光学系132と、コンデンサ光学系134とによる結像倍率は、2次光源の大きさおよび発散角がライトガイド136のコア径および入射NAにマッチングするように設定される。
 また、第1のコリメート光学系111と、コンデンサ光学系134とによる結像倍率は、(コンデンサ光学系134の焦点距離)/(第1のコリメート光学系111の焦点距離)によって設定可能である。第1のコリメート光学系111と、コンデンサ光学系134とによる結像倍率は、第1の光源110からの光がライトガイド136のコア径および入射NAにマッチングし、高効率でライトガイド端部135に結合されるように設定される。
 制御部100は、光源部10の各構成を制御する制御回路である。具体的には、制御部100は、第1の光源110の各構成を制御する第1光源駆動制御部101、および第2の光源120の各構成を制御する第2光源駆動制御部102を含む。制御部100は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、またはDSP(Digital Signal Pocessor)等のプロセッサによって構成され、これらのプロセッサが所定のプログラムに従って演算処理を実行することで、各種機能を実現する。
 具体的には、第1光源駆動制御部101は、第1の光源110の発光出力を制御する。例えば、第1光源駆動制御部101は、第1の光源110(例えば、白色LED光源)の駆動電流を変化させることにより、第1の光源110の発光出力を制御してもよい。
 また、第2光源駆動制御部102は、第2の光源120の発光出力を制御する。例えば、第2光源駆動制御部102は、第2の光源120(例えば、RGBの各色に対応する複数のレーザ光源)の駆動電流を変化させることにより、第2の光源120の発光出力を制御してもよい。
 ここで、第2の光源120が少なくとも1つ以上のレーザ光源で構成される場合、第2光源駆動制御部102は、レーザ光源の発振波長、および光出力特性を一定に維持するために、レーザ光源の温度を一定に保つ制御を行ってもよい。例えば、第2光源駆動制御部102は、測温素子によって測定された第2の光源120の温度情報に基づいて、冷却素子の駆動を制御することで、第2の光源120を構成するレーザ光源の温度を一定に保つ制御を行ってもよい。なお、このような光源の温度制御の詳細については、後述する。
 (内視鏡部20)
 内視鏡部20は、鏡筒222と、撮像ユニット210とを備える。
 鏡筒222は、ライトガイド136が先端部まで延伸されており、光源部10から出射された照明光を観察対象40まで導く。また、鏡筒222は、観察対象40にて反射された光を撮像ユニット210まで導く。鏡筒222は、硬性の略円筒形状にて構成されてもよく、可撓性を有するチューブ状にて構成されてもよい。
 撮像ユニット210は、カラー画像を取得可能な撮像素子211を備え、観察対象40からの光を撮像素子211によって光電変換し、電気信号に変換する。なお、撮像素子211によって光電変換された電気信号は、情報処理装置30へ出力される。撮像素子211は、CCD(Charge Coupled Device)イメージセンサ、またはCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ等の公知の各種撮像素子であってもよい。
 (情報処理装置30)
 情報処理装置30は、撮像ユニット210にて光電変換された電気信号に基づいて、観察対象40の撮像画像(観察画像)を生成する。具体的には、情報処理装置30は、画像生成部310と、入力部320とを備える。なお、情報処理装置30は、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Ramdom Acess Memory)などを搭載したパーソナルコンピュータ等であってもよい。
 画像生成部310は、撮像素子211からの電気信号に基づいて、観察対象40の観察画像を生成する。画像生成部310によって生成された観察画像は、例えば、表示装置31に出力されることで、ユーザに視認されるようになる。
 入力部320は、ユーザによる入力装置32への入力に基づいて、入力信号を生成し、制御部100等に出力する。入力部320は、例えば、第1の光源110、または第2の光源120への制御を変更する入力信号を、第1光源駆動制御部101、または第2光源駆動制御部102に出力してもよい。
 (表示装置31)
 表示装置31は、情報処理装置30の画像生成部310によって生成された観察画像を表示する。表示装置31は、例えば、CRT(Cathode Ray Tube)表示装置、液晶表示装置、プラズマ表示装置、または有機EL表示装置等であってよい。
 (入力装置32)
 入力装置32は、ユーザの入力操作を受け付ける入力インターフェースである。入力装置32は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロホン、スイッチおよびレバーなどの情報が入力される入力装置である。ユーザは、入力装置32を操作することで、観察装置1を制御し、例えば、観察画像の倍率、および光量などを変更することができる。
 以上の構成を備える観察装置1は、例えば、内視鏡装置、顕微鏡装置として用いることが可能である。
 <2.照明装置の制御方法>
 次に、図2~図11を参照して、本実施形態に係る照明装置の制御方法について、第1~第3の制御方法に分けて説明する。なお、以下では、本実施形態に係る照明装置の一例として、RGB(Red、Green、Blue)の各色に対応する複数のレーザ光源を備える第2の光源120と、第2の光源120を制御する第2光源駆動制御部102とを用いて説明を行う。また、簡略化のため、第2の光源120は、光源とも称し、第2光源駆動制御部102は、駆動制御部とも称する。
 (2.1.第1の制御方法)
 まず、図2~図6を参照して、照明装置の第1の制御方法について説明する。図2は、第1の制御方法に係る照明装置の各構成を説明するブロック図である。
 第1の制御方法に係る照明装置では、各レーザ光源は、それぞれ冷却部を備える一方で、加熱部を備えない。したがって、第1の制御方法に係る照明装置では、加熱部を制御する制御回路の部品点数を削減することができる。ただし、各レーザ光源が加熱部を備えないことにより、照明装置の各レーザ光源の温度が安定化のための目標温度よりも低い場合、各レーザ光源の光量が変動してしまうことがある。第1の制御方法では、このような場合でも、照明装置の光量を一定に保つ制御方法を提供する。
 図2に示すように、第1の制御方法に係る照明装置は、赤色光源120R、緑色光源120G、および青色光源120B(まとめて、光源120とも称する)と、赤色光源冷却部140R、緑色光源冷却部140G、および青色光源冷却部140B(まとめて、冷却部140とも称する)と、光サンプラ161R、161G、161B(まとめて、光サンプラ161とも称する)と、赤色光検出部160R、緑色光検出部160G、および青色光検出部160B(まとめて、光検出部160とも称する)と、ミラー171、ダイクロイックミラー173および175からなる合波モジュールと、駆動制御部1021とを備える。
 赤色光源120Rは、例えば、630nm~645nmの波長域の光を発するレーザ光源であり、AlGaInP量子井戸構造レーザダイオード等の半導体レーザで構成されてもよい。緑色光源120Gは、例えば、510nm~540nmの波長域の光を発するレーザ光源であり、半導体レーザによって励起される固体レーザで構成されてもよく、異なる波長域の光を発する半導体レーザに波長変換フィルタを装着することで構成されてもよい。青色光源120Bは、例えば、435nm~465nmの波長域の光を発するレーザ光源であり、GaInN量子井戸構造レーザダイオード等の半導体レーザで構成されてもよい。
 なお、上記の赤色光源120R、緑色光源120G、および青色光源120Bは、あくまで一例であり、本実施形態に係る照明装置が備える複数の光源は、上記に限定されない。例えば、本実施形態に係る照明装置は、RGB以外の色に対応した光源を備えていてもよく、1色の光源を複数備えていてもよく、2色の複数の光源を備えていてもよく、4色以上の複数の光源を備えていてもよい。また、複数の光源は、白色光源であってもよい。
 レーザ光源は、キセノンランプまたはハロゲンランプ等のランプ光源とは異なり、レーザ光源に印加される駆動電流または駆動電圧を制御することで、出射光の光量を調整することが可能である。ただし、レーザ光源は、温度によって光出力特性が変動してしまうことがあるため、印加電流が一定であっても、出射される光の光量、および発振波長などが温度によって変動してしまうことがある。そのため、本実施形態に係る照明装置では、レーザ光源の温度上昇を抑制するために、光源120ごとにそれぞれ赤色光源冷却部140R、緑色光源冷却部140G、および青色光源冷却部140Bが設けられる。なお、レーザ光源の温度の変動要因としては、レーザ光源の駆動による発熱、および照明装置が設置された空間の環境温度などを例示することができる。
 赤色光源冷却部140R、緑色光源冷却部140G、および青色光源冷却部140Bは、光源120の各々を冷却する。具体的には、赤色光源冷却部140R、緑色光源冷却部140G、および青色光源冷却部140Bは、赤色光源120R、緑色光源120G、および青色光源120Bごとに設けられ、赤色光源120R、緑色光源120G、および青色光源120Bをそれぞれ冷却する。冷却部140は、例えば、ペルティエ素子などの熱電素子であってもよい。
 なお、ペルティエ素子は、流れる電流の極性を反転させることで、冷却および加熱の双方の機能を実行する素子であるが、冷却部140にペルティエ素子が用いられる場合、該ペルティエ素子は、光源120を冷却する機能のみを実行するように構成される。具体的には、冷却部140を構成するペルティエ素子には、光源120を冷却する方向に電流を流す回路のみが設けられ、光源120を加熱する方向に電流を流す回路は設けられない。
 光サンプラ161R、161G、161Bは、光源120から出射された光の一部を分波する。具体的には、光サンプラ161R、161G、161Bは、赤色光源120R、緑色光源120Gおよび青色光源120Bと、ミラー171およびダイクロイックミラー173、175との間に設けられ、赤色光源120R、緑色光源120G、および青色光源120Bからの出射光の一部をそれぞれ分波する。光サンプラ161R、161G、161Bによって分波された出射光は、赤色光検出部160R、緑色光検出部160G、および青色光検出部160Bに入射する。これにより、赤色光検出部160R、緑色光検出部160G、および青色光検出部160Bは、赤色光、緑色光および青色光の光量をそれぞれ検出することができる。
 赤色光検出部160R、緑色光検出部160G、および青色光検出部160Bは、光源120から出射される光の光量を検出する。具体的には、赤色光検出部160R、緑色光検出部160G、および青色光検出部160Bは、赤色光源120R、緑色光源120G、および青色光源120Bから出射される光の光量をそれぞれ検出する。また、光検出部160は、光源120の各々から受光した光の光量を電気信号に変換して駆動制御部1021に出力する。例えば、光検出部160は、フォトダイオードで構成されてもよく、分光用のカラーフィルタを備えたカラーセンサで構成されてもよい。
 合波モジュール170は、赤色光源120R、緑色光源120G、および青色光源120Bからそれぞれ出射された赤色光、緑色光、および青色光を合波し、観察対象40に照射する照明光を生成する。具体的には、合波モジュール170は、ミラー171、ダイクロイックミラー173および175を備える。なお、ダイクロイックミラー173、175は、それぞれ特定の波長の光を反射し、反射光以外の波長の光を透過させるミラーである。
 合波モジュール170では、ミラー171は、赤色光源120Rから出射された赤色光を反射し、反射した赤色光をダイクロイックミラー173に入射させる。また、ダイクロイックミラー173は、緑色光源120Gから出射された緑色光を反射することで、反射した緑色光をダイクロイックミラー175に入射させ、緑色光の入射方向と直交する方向から入射した赤色光を透過させることで、透過させた赤色光をダイクロイックミラー175に入射させる。これにより、ダイクロイックミラー173は、同じ光軸上に導かれた赤色光および緑色光を合波して、ダイクロイックミラー175に入射させる。さらに、ダイクロイックミラー175は、青色光源120Bから出射された青色光を反射することで、反射した青色光を合波モジュール170から出射させ、青色光の入射方向と直交する方向から入射した赤色光および緑色光を透過させることで、透過させた赤色光および緑色光を合波モジュール170から出射させる。これにより、合波モジュール170は、同じ光軸上に導かれた赤色光、緑色光、および青色光を合波して、出射することができる。合波モジュール170から出射された光は、例えば、第2のコリメート光学系121等に導かれる。
 駆動制御部1021は、光源120の各々の測定温度、および目標温度に基づいて、赤色光源冷却部140R、緑色光源冷却部140G、および青色光源冷却部140Bの各々の駆動を制御する。また、駆動制御部1021は、光検出部160にて検出した光量、および光源120の各々の目標光量に基づいて、赤色光源120R、緑色光源120G、および青色光源120Bの各々の駆動を制御する。
 ここで、駆動制御部1021による制御について、図3~図5を参照して、より具体的に説明する。図3は、光源120の駆動に伴う温度上昇を示したグラフ図であり、図4は、図3のように光源120の温度が駆動時間に従って上昇する場合に、光源120の各々からの出射光を合波した合波光の光量変化を示したグラフ図である。
 本実施形態に係る照明装置において、赤色光源120R、緑色光源120G、および青色光源120Bから出射される光の光量を安定させるためには、例えば、光源120の温度を目標温度に一定に保てばよい。ここで、目標温度とは、光源120の駆動による発熱と、冷却部140による冷却とを平衡させることができ、かつ光源120の発光に適切となる温度である。
 本実施形態に係る照明装置では、光源120を加熱する加熱部が設けられず、光源120を冷却する冷却部140のみが設けられる。そのため、光源120の温度が目標温度よりも高い場合、冷却部140によって光源120を冷却することで、光源120の温度を目標温度に制御することが可能である。
 一方で、図3に示すように、照明装置が設置された空間の環境温度が目標温度以下である場合、光源120の各々の温度は、駆動開始直後は、環境温度とほぼ同じであるため、駆動制御部1021は、能動的には、光源120の温度を目標温度に制御し得ない。一方で、光源120の各々の温度は、駆動時間が長くなるにつれて、駆動にて生じる発熱によって上昇する。また、レーザ光源では、レーザ光源の温度が上昇するほど、出射される光の光量は、減少する。したがって、図3のように光源120の各々の温度が上昇した場合、図4で示すように、光源120の各々から出射された光を合波した照明光の光量は、徐々に低下してしまう。
 また、光源120は、各色に対応する光源ごとにそれぞれ発熱量が異なるため、図3で示すように、レーザ光源の温度の上昇速度が異なる。このため、光源120の各々から出射された光を合波した照明光は、光量が変動しない場合であっても、駆動時間によって光源120の各々から出射される光の光量比が変動してしまう。このような場合、照明光が所望の白色光にならず、色味を持った光になってしまう可能性がある。
 そこで、第1の制御例では、光源120の各々の測定温度が目標温度以下である場合、駆動制御部1021は、該光源120の光量が一定になるように該光源120に印加される電流を制御する。
 具体的には、光源120の測定温度が目標温度以下である場合、駆動の発熱によって光源120の温度が目標温度に達するまでに時間がかかる、または光源120の温度が目標温度に達しない可能性があるため、駆動制御部1021は、光検出部160にて検出した光量に基づいた光源120の光量制御を優先的に実行する。一方で、光源120の測定温度が目標温度よりも高い場合、駆動制御部1021は、冷却部140による冷却によって、光源120の温度を能動的に目標温度に制御することが可能であるため、冷却部140による温度制御を優先的に実行する。
 ここで、図5を参照して、上述した第1の制御例の具体的な動作の流れについて、説明する。図5は、第1の制御例の動作の流れを説明するフローチャート図である。
 図5に示すように、まず、光源120の各々が点灯されることで、光源120の駆動が開始される(S101)。次に、光源120の各々の温度が測定され(S103)、光源120の各々の測定温度が目標温度よりも高いか否かが判断される(S105)。光源120の各々の測定温度が目標温度よりも高い場合(S105/Yes)、駆動制御部1021は、光源120の各々の温度が目標温度になるように、光源120を冷却する冷却部140を制御する(S107)。
 一方、光源120の各々の測定温度が目標温度以下である場合(S105/No)、駆動制御部1021は、光源120の各々の光量が一定になるように、光源120に印加される電流量を制御する(S109)。駆動制御部1021は、光源120への印加電流を制御することにより、光源120の温度が一定に制御されない場合でも、光源120の光量を一定に保つことができる。
 光源120の測定温度と、目標温度との比較は、光源120ごとに行われてもよく、駆動制御部1021は、光源120ごとに異なる判断を行ってもよい。例えば、赤色光源120Rの測定温度が目標温度よりも高く、緑色光源120Gおよび青色光源120Bの測定温度が目標温度以下である場合、駆動制御部1021は、赤色光源120Rの温度を目標温度に制御してもよく、緑色光源120Gおよび青色光源120Bの光量を一定に制御してもよい。
 なお、光検出部160にて検出した光量に基づいて、光源120の光量が一定になるように光源120に印加される電流を制御することは、例えば、定出力制御(Auto Power Control:APC)とも称される。一方、光源120に印加される電流が一定になるように光源120を駆動させることは、例えば、定電流制御(Auto Current Control:ACC)とも称される。
 ここで、図6を参照して、定出力制御(APC)および定電流制御(ACC)のそれぞれの制御における光源120の光量変化について説明する。図6は、図3のように光源120の温度が駆動時間に従って上昇する場合に、APCまたはACCで制御された光源120の各々からの出射光を合波した合波光の光量変化を示したグラフ図である。
 図6に示すように、定電流制御(ACC)では、駆動時間が長くなるにつれて光源120の温度が上昇するため、光源120の光出力特性の変動によって、出射される合波光の光量が減少してしまう。一方で、定出力制御(APC)では、駆動時間に伴って光源120の温度が上昇した場合でも、出射される合波光の光量を一定に保つことが可能である。
 第1の制御方法によれば、照明装置は、光源120ごとに加熱部を備えなくとも、光源120の各々の測定温度と、目標温度との比較によって、冷却制御と定出力制御とを切り替えることで、光源120の各々から出射される光の光量を一定に保つことが可能である。
 なお、光源120の各々の測定温度が目標温度を越えている場合に、光源120の各々を定出力制御することは、消費電力を増大させてしまうことになる。そのため、光源120の各々の測定温度と、目標温度との比較に基づいて、光源120の各々に対する冷却制御と定電流制御とを切り替える第1の制御方法によれば、消費電力を低減することが可能である。
 (2.2.第2の制御方法)
 次に、図7~図9を参照して、照明装置の第2の制御方法について説明する。図7は、第2の制御方法に係る照明装置の各構成を説明するブロック図である。
 第2の制御方法に係る照明装置では、第1の制御方法に係る照明装置と同様に、各レーザ光源は、それぞれ冷却部を備える一方で、加熱部を備えない。したがって、第2の制御方法に係る照明装置では、第1の制御方法に係る照明装置と同様に、加熱部を制御する制御回路の部品点数を削減することができる。ただし、各レーザ光源が加熱部を備えないことにより、照明装置の各レーザ光源の温度が安定化のための目標温度よりも低い場合、各レーザ光源の温度が変動してしまうことがある。第2の制御方法では、このような場合でも、照明装置の温度を一定に保つ制御方法を提供する。
 図7に示すように、第2の制御方法に係る照明装置の構成は、光サンプラ161、および光検出部160を備えない点以外は、第1の制御方法に係る照明装置の構成と実質的に同様であるため、ここでの説明は省略する。ただし、第2の制御方法に係る照明装置は、光サンプラ161、および光検出部160を備えていてもよいことは言うまでもない。
 ここで、駆動制御部1022による制御について、図8を参照して、より具体的に説明する。図8は、光源120の駆動に伴う温度上昇を示したグラフ図である。
 本実施形態に係る照明装置において、赤色光源120R、緑色光源120G、および青色光源120Bから出射される光の光量を安定させるためには、例えば、光源120の温度を目標温度に一定に保てばよい。ただし、図8に示すように、照明装置が設置された空間の環境温度が目標温度以下である場合、駆動開始直後、光源120の各々の温度は、環境温度とほぼ同じであるため、駆動による発熱によって光源120の各々の温度が目標温度に達するには時間がかかってしまう。
 そこで、第2の制御例では、照明装置が設置された環境の測定温度が目標温度よりも低い場合、駆動制御部1022は、目標温度を引き下げることで、冷却部140によって光源120の温度制御が可能となるように制御する。なお、照明装置が設置された環境の測定温度が目標温度以上である場合、駆動制御部1022は、光源120の温度が当初の目標温度となるように、該光源120を冷却する冷却部140を制御する。
 具体的には、環境の測定温度が目標温度よりも低い場合、光源120の各々の温度も同様に、目標温度よりも低いと想定される。このとき、駆動の発熱によって光源120の温度を目標温度に到達させるには、非常に時間がかかってしまう場合がある。そのため、図8に示すように、駆動制御部1022は、目標温度を環境の測定温度近傍に引き下げることで、冷却部140による冷却、および駆動の発熱によって光源120の温度を目標温度に制御可能となるようにする。
 駆動制御部1022は、引き下げ後の目標温度を、環境の測定温度に基づいて設定してもよい。例えば、図8に示すように、駆動制御部1022は、環境の測定温度を引き下げ後の目標温度として設定してもよい。また、駆動制御部1022は、引き下げ後の目標温度として、環境の測定温度から所定の値だけ高い温度を設定してもよい。所定の値は、光源120の電気光変換効率から推測される温度上昇カーブと、出力光量が安定するまでの時間の要求仕様によって決められてもよい。また、駆動制御部1022は、引き下げ後の目標温度として、所定の間隔であらかじめ設定した複数の温度のうちから環境の測定温度に最も近い温度を設定してもよい。
 ただし、環境の測定温度が目標温度よりも低く、目標温度を引き下げる場合、駆動制御部1022は、目標温度を環境の測定温度未満には、引き下げない。これは、光源120は、駆動によって発熱するため、駆動制御部1022は、少なくとも環境の測定温度まで目標温度を引き下げれば、冷却部140によって、光源120の温度を引き下げ後の目標温度に制御することができるためである。例えば、駆動制御部1022は、環境の測定温度よりも低い温度まで目標温度を引き下げた場合、冷却部140によって過度に冷却を行うことになるため、消費電力が増大してしまう。
 なお、駆動制御部1022が目標温度を引き下げた場合、引き下げ後の目標温度における光源120の光出力特性は、当初の目標温度における光源120の光出力特性とは変動してしまう。このような場合、光源120の各々の光出力特性が変動してしまうことで、光源120の各々から出射された光を合波した照明光の色味が変動してしまう可能性がある。
 そのため、駆動制御部1022は、各温度における光源120の光出力特性をあらかじめ記憶しておき、引き下げ後の目標温度における光源120の光出力特性に基づいて、光源120に印加する電流を制御してもよい。また、所定の間隔の複数の温度が引き下げ後の目標温度として設定されている場合、駆動制御部1022は、引き下げ後の目標温度として設定された複数の温度における光源120の光出力特性をあらかじめ記憶し、該光出力特性に基づいて、光源120に印加する電流を制御してもよい。
 また、照明装置が光サンプラ161、および光検出部160を備える場合、駆動制御部1022は、光検出部160が検出した光源120の光の光量に基づいて、所望の光量となるように光源120に印加する電流を制御してもよい。
 ここで、図9を参照して、上述した第2の制御例の具体的な動作の流れについて、説明する。図9は、第2の制御例の動作の流れを説明するフローチャート図である。
 図9に示すように、まず、光源120の各々が点灯されることで、光源120の各々の駆動が開始される(S201)。次に、照明装置が設置された環境温度が測定される(S203)。続いて、測定された環境温度が目標温度よりも低いか否かが判断される(S205)。測定された環境温度が目標温度よりも低い場合(S205/Yes)、駆動制御部1022は、測定された環境温度に基づいて、目標温度を引き下げる(S207)。
 これにより、光源120の温度は、引き下げ後の目標温度に対して、ほぼ同等またはより高い状態となっていると想定されるため、駆動制御部1022は、冷却部140によって、光源120の温度を引き下げ後の目標温度に制御することが可能となる。また、駆動制御部1022は、引き下げ後の目標温度における光源120の光出力特性に基づいて、光源120に印加する電流を制御し(S209)、光源120の温度が引き下げ後の目標温度になるように、冷却部140による冷却を制御する(S211)。
 一方、測定された環境温度が目標温度以上である場合(S205/No)、駆動制御部1022は、光源120の温度が目標温度になるように、冷却部140による光源120の冷却を制御する(S211)。このとき、光源120の温度は、目標温度に対して、ほぼ同等またはより高い状態となっていると想定されるため、駆動制御部1022は、冷却部140によって、光源120の温度を目標温度に制御することが可能である。
 第2の制御方法によれば、照明装置は、光源120ごとに加熱部を備えなくとも、測定された環境温度と、目標温度との比較によって目標温度を引き下げることで、光源120の各々の温度を一定に保つことが可能である。これによれば、照明装置は、光源120の各々の温度を一定に保つことで、光源120から出射される光の光量を一定に保つことが可能である。
 (2.3.第3の制御方法)
 次に、図10および図11を参照して、照明装置の第3の制御方法について説明する。図10は、第3の制御方法に係る照明装置の各構成を説明するブロック図である。
 第3の制御方法に係る照明装置では、第1の制御方法に係る照明装置と同様に、各レーザ光源は、それぞれ冷却部を備える一方で、個別に制御される加熱部を備えない。ただし、第3の制御方法に係る照明装置では、各レーザ光源を一括で加熱する加熱部を備える。したがって、第3の制御方法に係る照明装置では、レーザ光源ごとに個別に設けられた加熱部の制御回路を省略し、各レーザ光源を一括で加熱する加熱部の制御回路に集約することができる。よって、第3の制御方法によれば、照明装置において、制御回路の部品点数を削減することができる。
 図10に示すように、第3の制御方法に係る照明装置の構成は、光源120の各々を一括で加熱する加熱部150が設けられた点以外は、第2の制御方法に係る照明装置の構成と実質的に同様である。そのため、第2の制御方法に係る照明装置の構成と実質的に同様の構成については、ここでの説明は省略する。
 加熱部150は、照明装置に1つだけ設けられ、赤色光源120R、緑色光源120G、および青色光源120Bを一括で加熱する。加熱部150は、例えば、抵抗器、またはペルティエ素子など熱電素子であってもよい。ただし、加熱部150にペルティエ素子が用いられる場合、該ペルティエ素子は、光源120を加熱する機能のみを実行するように構成される。具体的には、加熱部150を構成するペルティエ素子には、光源120を加熱する方向に電流を流す回路のみが設けられ、光源120を冷却する方向に電流を流す回路は設けられない。
 なお、加熱部150は、複数の抵抗器、または複数のペルティエ素子にて構成されてもよい。具体的には、加熱部150は、直列で接続された複数の抵抗器で構成され、複数の抵抗器の各々は、光源120の各々の近傍にそれぞれ設けられてもよい。このような場合であっても、加熱部150を構成する複数の抵抗器は、複数の抵抗器を個別に制御する制御回路が設けられず、加熱または非加熱が同じ制御回路で制御されるため、制御回路の部品点数を削減することができる。
 第3の制御例では、光源120の各々のいずれかの温度が目標温度よりも低い場合、駆動制御部1023は、加熱部150を駆動させることで、光源120のすべての温度が目標温度以上になるように光源120の温度を制御する。これにより、駆動制御部1023は、光源120の各々を一括で加熱することで、光源120の温度を上昇させることができるため、冷却部140によって光源120の温度を制御することが可能となる。なお、光源120の各々のすべての温度が目標温度以上の場合、駆動制御部1023は、光源120の各々の温度が目標温度となるように、冷却部140を制御する。
 このような場合、駆動制御部1023は、光源120を当初設定された目標温度で発光させることができるため、より効率的に光源120を発光させることができる。また、レーザ光源は、温度によって発振波長がシフトすることがあるため、駆動制御部1023は、光源120を当初設定された目標温度で発光させることで、光源120から所望の波長スペクトルの出射光を得ることができる。
 ここで、図11を参照して、上述した第3の制御例の具体的な動作の流れについて、説明する。図11は、第3の制御例の動作の流れを説明するフローチャート図である。
 図11に示すように、まず、光源120の各々が点灯されることで、光源120の各々の駆動が開始される(S301)。次に、光源120の各々の温度が測定される(S303)。続いて、すべての光源120の測定温度が目標温度以上か否かが判断される(S305)。いずれかの光源120の測定温度が目標温度よりも低い場合(S305/No)、駆動制御部1023は、すべての光源120の測定温度が目標温度以上になるまで、加熱部150によって光源120の各々を加熱する(S307)。これにより、すべての光源120の温度を目標温度以上とすることができるため、駆動制御部1023は、冷却部140によって、光源120の各々の温度を目標温度に制御することが可能となる。その後、駆動制御部1023は、光源120の各々の温度が目標温度になるように、冷却部140による冷却を制御する(S309)。
 一方、すべての光源120の測定温度が目標温度以上である場合(S305/No)、駆動制御部1023は、光源120の各々の温度が目標温度になるように、冷却部140による冷却を制御する(S309)。このとき、すべての光源120の温度は、目標温度以上となっているため、駆動制御部1023は、冷却部140によって、光源120の各々の温度を目標温度に制御することが可能である。
 第3の制御方法によれば、照明装置は、すべての光源120を一括で加熱する加熱部150に集約することで、光源120ごとに個別に設けられた加熱部を省略することができる。これによれば、照明装置において、個別の加熱部を制御する制御回路の部品点数を削減することができる。
 また、第3の制御方法によれば、光源120の各々を当初設定された目標温度で発光させることができるため、より効率的に光源120から所望の波長スペクトルの出射光を得ることができる。
 <3.まとめ>
 以上説明したように、本開示の一実施形態に係る照明装置によれば、複数の光源の各々に対する個別の加熱を制御する回路を省略することで、制御回路を簡略化することができるため、制御回路の部品点数を削減することが可能である。これよれば、回路の部品点数の削減に伴って、照明装置の製造コストを低減することができ、かつ構成の簡略化に伴って、照明装置の信頼性を向上させることが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 複数の光源と、
 前記光源ごとに設けられ、前記光源をそれぞれ冷却する複数の冷却部と、
 前記光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源の各々への制御を切り替える駆動制御部と、
を備える、照明装置。
(2)
 前記光源ごとに設けられ、前記光源の光量をそれぞれ検出する複数の光検出部をさらに備え、
 前記駆動制御部は、前記光源の各々の測定温度が前記目標温度よりも高い場合、該光源の温度が前記目標温度となるように前記冷却部を制御し、前記光源の各々の測定温度が前記目標温度以下である場合、前記光検出部が検出した該光源の光量に基づいて、前記光源の光量を一定に制御する、前記(1)に記載の照明装置。
(3)
 前記駆動制御部は、前記環境の測定温度が前記目標温度よりも低い場合、前記目標温度を引き下げる、前記(1)に記載の照明装置。
(4)
 前記駆動制御部による引き下げ後の目標温度は、前記環境の測定温度以上である、前記(3)に記載の照明装置。
(5)
 前記駆動制御部は、前記環境の測定温度に基づいて、引き下げ後の前記目標温度を決定する、前記(4)に記載の照明装置。
(6)
 前記駆動制御部は、引き下げ後の前記目標温度における前記光源の各々の光出力特性に基づいて、前記光源の各々に印加する電流を制御する、前記(3)~(5)のいずれか一項に記載の照明装置。
(7)
 前記光源ごとに設けられ、前記光源の光量をそれぞれ検出する複数の光検出部をさらに備え、
 前記駆動制御部は、前記光検出部が検出した前記光源の光量に基づいて、前記光源の各々の光量を一定に制御する、前記(3)~(5)のいずれか一項に記載の照明装置。
(8)
 前記複数の光源を一括で加熱する加熱部をさらに備え、
 前記駆動制御部は、前記光源のいずれかの測定温度が前記目標温度よりも低い場合、前記複数の光源のすべての温度が前記目標温度以上になるように前記加熱部を制御する、前記(1)~(7)のいずれか一項に記載の照明装置。
(9)
 前記複数の光源は、出射する光の波長スペクトルが互いに異なる複数のレーザ光源である、前記(1)~(8)のいずれか一項に記載の照明装置。
(10)
 前記照明装置には、前記複数の光源ごとに制御される個別の加熱部が設けられない、前記(1)~(9)のいずれか一項に記載の照明装置。
(11)
 複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替える駆動制御部と、
を備える、制御装置。
(12)
 複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替えることと、
を含む、制御方法。
 1    観察装置
 10   光源部
 20   内視鏡部
 30   情報処理装置
 31   表示装置
 32   入力装置
 40   観察対象
 100  制御部
 120  光源
 140  冷却部
 150  加熱部
 160  光検出部
 161  光サンプラ
 170  合波モジュール
 171  ミラー
 173、175  ダイクロイックミラー
 1021、1022、1023  駆動制御部

Claims (12)

  1.  複数の光源と、
     前記光源ごとに設けられ、前記光源をそれぞれ冷却する複数の冷却部と、
     前記光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源の各々への制御を切り替える駆動制御部と、
    を備える、照明装置。
  2.  前記光源ごとに設けられ、前記光源の光量をそれぞれ検出する複数の光検出部をさらに備え、
     前記駆動制御部は、前記光源の各々の測定温度が前記目標温度よりも高い場合、該光源の温度が前記目標温度となるように前記冷却部を制御し、前記光源の各々の測定温度が前記目標温度以下である場合、前記光検出部が検出した該光源の光量に基づいて、前記光源の光量を一定に制御する、請求項1に記載の照明装置。
  3.  前記駆動制御部は、前記環境の測定温度が前記目標温度よりも低い場合、前記目標温度を引き下げる、請求項1に記載の照明装置。
  4.  前記駆動制御部による引き下げ後の目標温度は、前記環境の測定温度以上である、請求項3に記載の照明装置。
  5.  前記駆動制御部は、前記環境の測定温度に基づいて、引き下げ後の前記目標温度を決定する、請求項4に記載の照明装置。
  6.  前記駆動制御部は、引き下げ後の前記目標温度における前記光源の各々の光出力特性に基づいて、前記光源の各々に印加する電流を制御する、請求項3に記載の照明装置。
  7.  前記光源ごとに設けられ、前記光源の光量をそれぞれ検出する複数の光検出部をさらに備え、
     前記駆動制御部は、前記光検出部が検出した前記光源の光量に基づいて、前記光源の各々の光量を一定に制御する、請求項3に記載の照明装置。
  8.  前記複数の光源を一括で加熱する加熱部をさらに備え、
     前記駆動制御部は、前記光源のいずれかの測定温度が前記目標温度よりも低い場合、前記複数の光源のすべての温度が前記目標温度以上になるように前記加熱部を制御する、請求項1に記載の照明装置。
  9.  前記複数の光源は、出射する光の波長スペクトルが互いに異なる複数のレーザ光源である、請求項1に記載の照明装置。
  10.  前記照明装置には、前記複数の光源ごとに制御される個別の加熱部が設けられない、請求項1に記載の照明装置。
  11.  複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替える駆動制御部と、
    を備える、制御装置。
  12.  複数の光源の各々の目標温度と、前記光源の各々または環境の測定温度との比較に基づいて、前記光源ごとに設けられた複数の冷却部の制御を少なくとも含む前記光源の各々への制御を切り替えることと、
    を含む、制御方法。
PCT/JP2017/038530 2017-01-16 2017-10-25 照明装置、制御装置、および制御方法 WO2018131256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/471,198 US11031748B2 (en) 2017-01-16 2017-10-25 Illumination device, control device, and control method
JP2018561818A JP7059941B2 (ja) 2017-01-16 2017-10-25 照明装置、観察システム、および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004980 2017-01-16
JP2017-004980 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131256A1 true WO2018131256A1 (ja) 2018-07-19

Family

ID=62839332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038530 WO2018131256A1 (ja) 2017-01-16 2017-10-25 照明装置、制御装置、および制御方法

Country Status (3)

Country Link
US (1) US11031748B2 (ja)
JP (1) JP7059941B2 (ja)
WO (1) WO2018131256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023058A (zh) * 2019-12-27 2020-04-17 无锡溥汇机械科技有限公司 一种双通道灯箱冷却***
WO2023166710A1 (ja) * 2022-03-04 2023-09-07 オリンパスメディカルシステムズ株式会社 光源装置、観察システムおよびカラーバランス補正方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216576A1 (ja) * 2017-05-23 2018-11-29 スタンレー電気株式会社 車両用前照灯
JP7087096B2 (ja) * 2018-09-27 2022-06-20 オリンパス株式会社 光源装置、内視鏡システム、及び、光源装置の制御方法
US11474029B2 (en) * 2020-08-03 2022-10-18 Shimadzu Corporation Spectrophotometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056600A (ja) * 2013-09-13 2015-03-23 日本精機株式会社 レーザ光源制御装置および車両用表示装置
JP2016164922A (ja) * 2015-03-06 2016-09-08 株式会社リコー 温度制御装置、画像表示装置、車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228384A (ja) * 2003-01-23 2004-08-12 Sumitomo Electric Ind Ltd 発光モジュール及び通電制御方法
JP2006162653A (ja) 2004-12-02 2006-06-22 Olympus Corp 光源装置及びプロジェクタ
JP5394958B2 (ja) 2010-03-19 2014-01-22 日本オクラロ株式会社 光出力装置、及び光出力装置の制御方法
US20140293239A1 (en) * 2013-03-29 2014-10-02 Funai Electric Co., Ltd. Projector and head-up display device
CN105102085B (zh) * 2014-03-06 2018-10-09 华为技术有限公司 控制光组件的工作温度的方法、装置、光组件和光网络***
WO2015166728A1 (ja) * 2014-05-01 2015-11-05 ソニー株式会社 照明装置及び照明装置の制御方法並びに画像取得システム
JP5995292B2 (ja) 2014-12-12 2016-09-21 Necディスプレイソリューションズ株式会社 投写型表示装置および投写表示方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056600A (ja) * 2013-09-13 2015-03-23 日本精機株式会社 レーザ光源制御装置および車両用表示装置
JP2016164922A (ja) * 2015-03-06 2016-09-08 株式会社リコー 温度制御装置、画像表示装置、車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023058A (zh) * 2019-12-27 2020-04-17 无锡溥汇机械科技有限公司 一种双通道灯箱冷却***
WO2023166710A1 (ja) * 2022-03-04 2023-09-07 オリンパスメディカルシステムズ株式会社 光源装置、観察システムおよびカラーバランス補正方法

Also Published As

Publication number Publication date
JPWO2018131256A1 (ja) 2019-11-21
JP7059941B2 (ja) 2022-04-26
US11031748B2 (en) 2021-06-08
US20190379178A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018131256A1 (ja) 照明装置、制御装置、および制御方法
US8699138B2 (en) Multi-wavelength multi-lamp radiation sources and systems and apparatuses incorporating same
US9509967B2 (en) Light source device and projector
US20050248839A1 (en) Microscope fluorescence illumination apparatus
JP5749633B2 (ja) 内視鏡用光源装置
US11076106B2 (en) Observation system and light source control apparatus
US8998468B2 (en) Solid state light source with hybrid optical and electrical intensity control
JP2013111176A (ja) 内視鏡用光源装置
WO2018003241A1 (ja) 照明装置、照明装置の制御方法、および撮像システム
JP2007068699A (ja) 光源装置
JP2015077335A (ja) 光源装置
US11278183B2 (en) Light source device and imaging system
US20050259437A1 (en) Apparatus, systems and methods relating to illumination for microscopes
JP2010286835A (ja) 医用光学観察装置の照明デバイス用の光源構成
WO2018003263A1 (ja) 観察装置、および観察装置の制御方法
JP2005148296A (ja) 顕微鏡の光源装置
US20090161358A1 (en) Illumination apparatus for cellular analysis apparatus
Uhl Arc lamps and monochromators for fluorescence microscopy
JP6731784B2 (ja) 光源装置および映像表示装置
KR102166400B1 (ko) 상이한 파장대 및 픽셀 사이즈에서의 최적의 파워 출력을 위한 전환 가능한 레이저 및 파이버 기반의 램프하우스
JP2010276959A (ja) 画像表示装置
JP2015134230A (ja) 内視鏡用光源装置
JP2023093211A (ja) 内視鏡用プロセッサ、内視鏡システム
WO2020149071A1 (ja) 医療用光源装置、医療用照明光の生成方法及び医療用観察システム
JP2016128871A (ja) 光源装置および投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891521

Country of ref document: EP

Kind code of ref document: A1