WO2018124232A1 - エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法 - Google Patents

エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法 Download PDF

Info

Publication number
WO2018124232A1
WO2018124232A1 PCT/JP2017/047093 JP2017047093W WO2018124232A1 WO 2018124232 A1 WO2018124232 A1 WO 2018124232A1 JP 2017047093 W JP2017047093 W JP 2017047093W WO 2018124232 A1 WO2018124232 A1 WO 2018124232A1
Authority
WO
WIPO (PCT)
Prior art keywords
evoh
content
pellets
pellet
ethylene
Prior art date
Application number
PCT/JP2017/047093
Other languages
English (en)
French (fr)
Inventor
拓也 中島
山本 信行
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016255856A external-priority patent/JP6702179B2/ja
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to CN201780074648.5A priority Critical patent/CN110050017B/zh
Priority to EP17885599.5A priority patent/EP3564293B1/en
Priority to BR112019009910-7A priority patent/BR112019009910B1/pt
Priority to RU2019115667A priority patent/RU2743821C2/ru
Publication of WO2018124232A1 publication Critical patent/WO2018124232A1/ja
Priority to US16/445,320 priority patent/US11267941B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons

Definitions

  • the present invention relates to pellets of an ethylene-vinyl alcohol copolymer (hereinafter sometimes referred to as “EVOH”) composition that can provide a film with less fish eye generation when film-formed.
  • EVOH ethylene-vinyl alcohol copolymer
  • the present invention relates to an EVOH composition pellet that adjusts the content of a boron compound present on the surface of the pellet and contains a predetermined amount of a specific component, and a method for producing the same.
  • EVOH is an excellent gas barrier, including oxygen barrier properties, because hydroxyl groups contained in molecular chains are strongly hydrogen bonded to form crystal parts, and these crystal parts prevent the entry of gases such as oxygen from the outside. Can show gender. Taking advantage of such characteristics, EVOH is used after being formed into a film or sheet of food packaging material, pharmaceutical packaging material, industrial chemical packaging material, agricultural chemical packaging material or the like, or a packaging container such as a bottle.
  • the EVOH is usually formed and processed into a film shape, a sheet shape, a bottle shape, a cup shape, a tube shape, a pipe shape or the like by melt molding and is put to practical use. Therefore, the formability and workability of EVOH are important.
  • Patent Document 1 discloses boric acid or a salt thereof from the viewpoint of film moldability of a melt-formable vinyl alcohol copolymer such as EVOH, in particular, prevention of surging during film formation.
  • a blended composition it is disclosed that it is effective to melt-mold a composition having an increased melt viscosity.
  • Patent Document 2 EVOH treated with a boron compound is coextruded with polyolefin to obtain a laminate having excellent adhesion between the EVOH layer and the polyolefin layer, which is suitable in a field requiring gas barrier performance. It is disclosed that a simple packaging material can be provided.
  • the boron compound treatment of Patent Document 2 is performed by adding a boron compound to an EVOH solution or dispersion, and EVOH pellets containing a boron component are used as an extrusion molding raw material.
  • Patent Document 3 finds that the boron-containing EVOH pellets obtained by performing the treatment of adding a boron compound to EVOH have a relationship with the generation of fish eyes with a moisture content of the pellet of less than 0.1 mm, and the moisture content is 0. It is disclosed that the generation of fish eyes of less than 0.1 mm can be suppressed by drying to 0.0001 to 2% by weight and then contacting with water.
  • EVOH pellets subjected to boron compound addition treatment were immersed in water and then dried to adjust the content and water content of the boron compound EVOH pellets [water content 0.13 to 0 .4 wt%, boron content 0.015 to 0.039 parts by weight (150 to 390 ppm) with respect to 100 parts by weight of EVOH], and the EVOH pellets were fed to a multilayer extrusion apparatus, A laminate is manufactured (Examples 1, 3, and 4).
  • the evaluation of fish eyes of the obtained multilayer structure is performed by counting the number of fish eyes having a diameter of 0.01 to 0.1 mm by visual observation (paragraphs [0038]-[ 0041]).
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide an EVOH pellet containing a boron compound and a specific component, which can suppress the generation of fisheye even with an EVOH monolayer film, and its It is to provide a manufacturing method.
  • the present inventors have reduced the content of boron compounds in the surface layer portion of EVOH pellets as compared with the prior art, and used cinnamic acids, alkali metals, conjugated polyenes, lubricants and alkalis.
  • Fish at the time of melt molding by setting the content of at least one component selected from the group consisting of earth metals (hereinafter, collectively referred to as “fish eye suppression component”) to a predetermined amount I found the eye to decrease.
  • the film (including layers and films) obtained by using the EVOH composition pellets of the present invention is excellent in formability and appearance even if it is a single layer film. Therefore, the present invention can naturally be applied to a multilayer structure in which other resin layers are laminated.
  • the present invention is an EVOH composition pellet containing a boron compound, the boron compound content of the pellet surface layer portion being 1.7 ppm or less per pellet weight in terms of boron, and the following (A) The EVOH composition pellets containing at least one component (fish eye suppressing component) selected from the group consisting of (E) is a first gist. (A) Cinnamic acids having a content of 0.0001 to 0.05% by weight based on the weight of the EVOH composition pellets. (B) The alkali metal whose content rate with respect to the said EVOH composition pellet is 500 ppm or less on a weight basis.
  • (C) Conjugated polyene whose content rate with respect to the said EVOH composition pellet is 0.06 weight% or less on a weight basis.
  • (D) A lubricant having a content of 0.001 to 0.15% by weight based on the weight of the EVOH composition pellets.
  • the present invention includes a step of bringing a boron compound into contact with a boron compound by contacting the EVOH pellet, cleaning the EVOH pellet containing the boron compound, and determining the boron compound content of the pellet surface layer portion in terms of boron.
  • a method for producing an EVOH composition pellet comprising a step of 1.7 ppm or less per pellet weight and at least one step selected from the group consisting of the following (A ′) to (E ′):
  • the EVOH composition wherein the cleaning of the process is to contact dry EVOH pellets with a water / alcohol mixed solution or alcohol having a weight ratio of water to alcohol (water / alcohol) of 80/20 to 0/100 or alcohol Let the manufacturing method of a pellet be a 2nd summary.
  • a ′ A step of bringing EVOH pellets and cinnamic acid into contact with each other such that the cinnamic acid content in the EVOH composition is 0.0001 to 0.05% by weight based on the weight.
  • (B ′) A step of bringing the EVOH pellets into contact with the alkali metal so that the alkali metal content relative to the EVOH composition is 500 ppm or less on a weight basis.
  • (C ′) A step of bringing the EVOH pellets into contact with the conjugated polyene such that the content of the conjugated polyene with respect to the EVOH composition is 0.06% by weight or less on a weight basis.
  • (D ′) a step of bringing the EVOH pellets into contact with the lubricant such that the content of the lubricant with respect to the EVOH composition is 0.001 to 0.15 wt% on a weight basis.
  • (E ′) A step of bringing the EVOH pellets into contact with the alkaline earth metal so that the alkaline earth metal content relative to the EVOH composition is 100 ppm or less on a weight basis.
  • the content of the boron compound in the pellet surface layer portion is 1.7 ppm or less per pellet weight in terms of boron, and contains a specific amount of a specific fish eye suppressing component. Therefore, the EVOH composition pellet of the present invention is excellent in the effect of suppressing the generation of fish eyes while ensuring melt moldability.
  • the viscosity is suitable for film formation, and the film formation performance is improved. And thus excellent in the effect of suppressing the generation of fish eyes.
  • the weight ratio of the boron compound content (boron conversion) of the pellet surface layer part to the total boron compound content (boron conversion) of the whole EVOH composition pellet surface layer part boron compound content /
  • the total boron compound content is 1.38 ⁇ 10 ⁇ 2 or less, the effect of suppressing the generation of fish eyes is further improved, and the film appearance can be improved.
  • the water content of the EVOH composition pellets is 0.01 to 1% by weight, the effect of suppressing the generation of fish eyes is further improved, and the film appearance is improved. Can do.
  • the present invention includes a step of bringing a boron compound into contact with a boron compound by contacting the EVOH pellet, cleaning the EVOH pellet containing the boron compound, and determining the boron compound content of the pellet surface layer portion in terms of boron.
  • the EVOH composition pellet manufacturing method includes a step of containing not more than 1.7 ppm per pellet weight and a predetermined amount of at least one fish eye suppressing component, wherein the cleaning in the cleaning step includes dried EVOH pellets, Since the weight ratio of water to alcohol (water / alcohol) is in contact with a water / alcohol mixed solution having 80/20 to 0/100 or alcohol, the EVOH composition pellets obtained have a predetermined amount of fish eye suppression.
  • E containing the components and reducing the boron compound content in the surface layer It can be OH composition pellets. And the melt-molded article using the said pellet becomes the thing excellent in the melt-moldability and the effect which suppresses generation
  • EVOH constituting the EVOH composition pellet of the present invention is a resin obtained by saponifying a copolymer of ethylene and a vinyl ester monomer (ethylene-vinyl ester copolymer). These are water-insoluble thermoplastic resins called saponified ethylene-vinyl alcohol copolymers and ethylene-vinyl ester copolymers.
  • the polymerization method can also be carried out using any known polymerization method such as solution polymerization, suspension polymerization, and emulsion polymerization. Generally, however, solution polymerization using a lower alcohol such as methanol, particularly preferably methanol as a solvent. Is used.
  • EVOH produced in this manner mainly comprises ethylene-derived structural units and vinyl alcohol structural units, and usually contains some vinyl ester structural units that remain without being saponified as necessary.
  • vinyl ester-based monomer vinyl acetate is typically used because it is easily available from the market and has high efficiency in treating impurities during production.
  • examples of other vinyl ester monomers include vinyl formate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl versatate, etc.
  • aliphatic vinyl esters having 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, particularly preferably 4 to 7 carbon atoms are used. Can do. These are usually used alone, but a plurality of them may be used simultaneously as necessary.
  • the ethylene and the vinyl ester monomer are usually petroleum-derived raw materials such as naphtha, but natural gas-derived raw materials such as shale gas, sugars and starches contained in sugar cane, sugar beet, corn, potato, etc. Or a monomer derived from a plant-derived raw material purified from a component such as cellulose contained in rice, wheat, millet, grass plant or the like.
  • the ethylene structural unit content of EVOH used in the present invention is a value measured based on ISO14663, and is usually 20 to 60 mol%, preferably 25 to 50 mol%, particularly preferably 27 to 48 mol%. When the content is too low, the gas barrier property and melt moldability under high humidity tend to be lowered, and when it is too high, the gas barrier property tends to be lowered.
  • the saponification degree of the vinyl ester component in the EVOH is a value measured based on JIS K6726 (however, water / methanol is used as a solvent), and is usually 90 to 100 mol%, preferably 95 to 100 mol%, particularly preferably. Is 99 to 100 mol%.
  • degree of saponification is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to decrease.
  • the melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 2 to 35 g / 10 minutes. It is. If the MFR is too large, the film formability tends to be unstable, and if it is too small, the viscosity becomes too high and melt extrusion tends to be difficult.
  • the EVOH used in the present invention may further contain structural units derived from the following comonomer within a range not inhibiting the effects of the present invention (for example, 10 mol% or less).
  • Examples of the comonomer include olefins such as propylene, 1-butene and isobutene, 3-buten-1-ol, 3-butene-1,2-diol, 4-penten-1-ol, and 5-hexene-1,2.
  • olefins such as propylene, 1-butene and isobutene, 3-buten-1-ol, 3-butene-1,2-diol, 4-penten-1-ol, and 5-hexene-1,2.
  • Hydroxyl-containing ⁇ -olefins such as diols and esterified products thereof, hydroxyalkylvinylidenes such as 2-methylenepropane-1,3-diol and 3-methylenepentane-1,5-diol; 1,3-diacetoxy-2 -Derivatives such as hydroxyalkylvinylidene diacetates and acylated products such as methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, 1,3-dibutyronyloxy-2-methylenepropane; acrylic acid, methacrylic acid , Crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, etc.
  • Japanese acids or salts thereof or mono- or dialkyl esters having 1 to 18 carbon atoms acrylamide, N-alkyl acrylamide, N, N-dimethylacrylamide, 2-acrylamidopropanesulfonic acid or salts thereof, acrylamidopropyl Acrylamides such as dimethylamine or acid salts thereof or quaternary salts thereof; methacrylamide, N-alkyl methacrylamide having 1 to 18 carbon atoms, N, N-dimethylmethacrylamide, 2-methacrylamide propanesulfonic acid or salts thereof, Methacrylamide such as methacrylamidopropyldimethylamine or its acid salt or quaternary salt thereof; N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide; Vinyl cyanides such as ril and methacrylonitrile; vinyl ethers such as alkyl vinyl ethers having 1 to 18 carbon atoms, hydroxyal
  • Vinyl silanes such as trimethoxyvinyl silane; allyl halide compounds such as allyl acetate and allyl chloride; allyl alcohols such as allyl alcohol and dimethoxyallyl alcohol; trimethyl- (3-acrylamido-3-dimethyl) And a comonomer such as propyl) -ammonium chloride and acrylamido-2-methylpropanesulfonic acid. These may be used alone or in combination of two or more.
  • EVOH copolymerized with a hydroxy group-containing ⁇ -olefin is preferable from the viewpoint of good secondary moldability, and EVOH having a primary hydroxyl group in the side chain, particularly a 1,2-diol structure in the side chain. EVOH contained in is preferable.
  • EVOH having a 1,2-diol structure in the side chain includes a 1,2-diol structural unit in the side chain.
  • the 1,2-diol structural unit is specifically a structural unit represented by the following general formula (1).
  • R 1 to R 6 each independently represent a hydrogen atom or an organic group, and X represents a single bond or a bonded chain.
  • Examples of the organic group in the 1,2-diol structural unit represented by the general formula (1) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • a saturated hydrocarbon group such as a group; an aromatic hydrocarbon group such as a phenyl group and a benzyl group; a halogen atom, a hydroxyl group, an acyloxy group, an alkoxycarbonyl group, a carboxyl group, and a sulfonic acid group.
  • R 1 to R 3 are usually a saturated hydrocarbon group or a hydrogen atom having 1 to 30 carbon atoms, particularly 1 to 15 carbon atoms, more preferably 1 to 4 carbon atoms, and most preferably a hydrogen atom.
  • R 4 to R 6 are preferably an alkyl group having 1 to 30 carbon atoms, particularly 1 to 15 carbon atoms, more preferably 1 to 4 carbon atoms, or a hydrogen atom, and most preferably a hydrogen atom. In particular, it is most preferable that R 1 to R 6 are all hydrogen atoms.
  • X in the structural unit represented by the general formula (1) is typically a single bond.
  • X may be a bond chain.
  • Such a bond chain is not particularly limited, but for example, a hydrocarbon chain such as alkylene, alkenylene, alkynylene, phenylene, naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, bromine, etc.)
  • Other structures containing an ether bond site such as —O—, — (CH 2 O) m—, — (OCH 2 ) m—, — (CH 2 O) mCH 2 —, etc .; —CO—, —COCO—, — A structure containing a carbonyl group such as CO (CH 2 ) mCO— or —CO (C 6 H 4 ) CO—; a structure containing a sulfur atom such as —S—, —CS—, —SO— or —
  • m is a natural number, and is usually 1 to 30, preferably 1 to 15, and more preferably 1 to 10.
  • —CH 2 OCH 2 — and a hydrocarbon chain having 1 to 10 carbon atoms are preferable, and a hydrocarbon chain having 1 to 6 carbon atoms, particularly 1 carbon atom, is preferable in terms of stability during production or use. It is preferable that
  • the most preferred structure in the 1,2-diol structural unit represented by the general formula (1) is one in which R 1 to R 6 are all hydrogen atoms and X is a single bond. That is, the structural unit represented by the following general formula (1a) is most preferable.
  • the content is usually 0.1 to 20 mol%, further 0.1 to 15 mol%, particularly 0.1 Those with ⁇ 10 mol% are preferred.
  • EVOH used in the present invention
  • EVOH that has been “post-modified” such as urethanization, acetalization, cyanoethylation, oxyalkyleneation and the like can also be used.
  • ⁇ Boron compound> As one of the causes of the generation of fish eyes, it is considered that aggregates of boron compounds present in EVOH pellets containing boron compounds cause local thickening of EVOH. In addition, when EVOH pellets containing a boron compound are formed into a single layer, the boron compound existing in the pellet surface layer portion that comes into contact with the metal of the molding machine is likely to aggregate, which is one of the causes of fish eye generation. Conceivable. Therefore, the present invention has the effect of preventing the aggregation of the boron compound and suppressing the generation of fish eyes by setting the boron compound content in the surface layer portion of the EVOH composition pellet to a specific amount or less.
  • the boron compound content in the pellet surface layer portion of the EVOH composition pellet of the present invention is 1.7 ppm or less, preferably 1.6 ppm or less, more preferably 1.5 ppm or less, in terms of boron.
  • the lower limit is not particularly limited, but when the total content of boron compound in the EVOH composition pellet (in terms of boron) is within the range described below, it is usually 1 ppb or more, preferably 50 ppb or more, more preferably 100 ppb or more. is there. If the boron compound content (in terms of boron) in the surface layer portion is too large, fish eyes are likely to be generated, the film appearance is lowered, and the film formability is also lowered.
  • the “boron compound content in the pellet surface layer portion” refers to the amount of the boron compound present near the surface among the boron compounds contained in the EVOH composition pellets. 4 g of EVOH composition pellets were immersed in 20 mL of methanol at 30 ° C. for 6 hours, and then the boron content in the obtained methanol solution was measured using an inductively coupled plasma mass spectrometer (ICP-MS). Divided by the weight of EVOH composition pellets (4 g).
  • the “boron compound in the pellet surface layer portion” includes a boron compound only attached to the pellet surface, a boron compound bleeded on the surface, and the like.
  • the “boron compound content in the pellet surface layer” is distinguished from the boron compound content contained in the EVOH composition pellet (“total boron compound content in the pellet”).
  • the total content of boron compounds in the EVOH composition pellets of the present invention is preferably 10 to 1000 ppm, more preferably 20 to 500 ppm, still more preferably 30 to 140 ppm per weight of the pellets in terms of boron. . If the boron compound content contained in the EVOH composition pellets is too small, the melt viscosity tends to be low and the film forming performance tends to be lowered, and in particular, inflation film formation tends to be difficult. Therefore, it is preferable to contain the boron compound so that the boron content is at least about 10 ppm.
  • the amount of boron compound contained in the EVOH composition pellets [total boron compound content (in terms of boron)] is obtained by adding pure water to a solution obtained by treating the pellets with concentrated nitric acid by a microwave decomposition method.
  • the sample solution is obtained by measuring the boron contained in the test solution with an inductively coupled plasma emission spectrometer (ICP-AES).
  • the EVOH composition pellet of the present invention is a weight ratio of the boron compound content (boron conversion) in the surface layer part to the total boron compound content (boron conversion) in the EVOH composition pellet (boron compound content / boron compound in the surface layer part).
  • the total content) is preferably 1.38 ⁇ 10 ⁇ 2 or less, more preferably 1.35 ⁇ 10 ⁇ 2 or less, and further preferably 1.30 ⁇ 10 ⁇ 2 or less. If the ratio is too high, fish eyes are likely to be generated, and the film appearance tends to deteriorate.
  • the lower limit is usually 1 ⁇ 10 ⁇ 7 .
  • Examples of the boron compound used in the present invention include boric acid or a metal salt thereof such as sodium borate (sodium metaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate).
  • boric acid or a metal salt thereof such as sodium borate (sodium metaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate).
  • potassium borate potassium borate (potassium metaborate, potassium tetraborate, potassium pentaborate, potassium hexaborate, potassium octaborate, etc.), lithium borate (lithium metaborate, lithium tetraborate, lithium pentaborate) Etc.), calcium borate, barium borate (barium orthoborate, barium metaborate, barium diborate, barium tetraborate, etc.), magnesium borate (magnesium orthoborate, magnesium diborate, magnesium metaborate, tetraborate) Trimagnesium acid, pentamagnesium tetraborate) Manganese (manganese borate, manganese metaborate, manganese tetraborate, etc.), cobalt borate, zinc borate (zinc tetraborate, zinc metaborate, etc.), cadmium borate (cadmium orthoborate, cadmium tetraborate) ), Silver borate (silver metabor
  • alkali metal salt or alkaline earth metal salt of a boron compound when contained, the content thereof is included in the content of the alkali metal or alkaline earth metal in the EVOH composition pellets of the present invention.
  • the EVOH composition pellet of the present invention is characterized in that it contains at least one component selected from the following (A) to (E) as a fish eye suppressing component together with the boron compound.
  • C Conjugated polyene whose content rate with respect to the said EVOH composition pellet is 0.06 weight% or less on a weight basis.
  • D A lubricant having a content of 0.001 to 0.15% by weight based on the weight of the EVOH composition pellets.
  • the cinnamic acid content in the EVOH composition pellets of the present invention is 0.0001 to 0.05% by weight, preferably 0.001 to 0.04% by weight, more preferably 0.005 to 0% of the whole pellets. 0.035% by weight. If the content is too small, the effect of suppressing the generation of fish eyes is reduced. If the content is too large, the EVOH is excessively thickened. Conversely, the generation of fish eyes and other extrusion moldability are reduced.
  • the cinnamic acid used in the present invention is not limited to cinnamic acid, and examples thereof include cinnamic acid esters, cinnamic acid having an alkoxy group, cinnamic acid amide, and cinnamic acid derivatives. These may be used alone or in combination of two or more. Among these, cinnamic acid is preferable.
  • the content of cinnamic acid when using multiple types of cinnamic acids is the total content of all cinnamic acids.
  • the “content of cinnamic acids” in the EVOH composition pellets of the present invention means the amount of cinnamic acids contained on the surface, inside, or both of the EVOH composition pellets, for example, measured as follows. can do. ⁇ Measurement method of cinnamic acid content> When cinnamic acids are contained only on the surface of the EVOH composition pellets, the amount of cinnamic acids added to the EVOH composition pellet surface may be the content, and when cinnamic acids are contained inside the EVOH composition pellets, Then, 1 g of EVOH composition pellets is immersed in 9 mL of an extract at 25 ° C. (for example, methanol in the case of cinnamic acid), and the extract obtained by sonication for 2 hours is measured by LC / MS / MS analysis. Can be obtained.
  • an extract for example, methanol in the case of cinnamic acid
  • the added alkali metal interacts with a boron compound having a specific amount or less present on the surface of the EVOH composition pellet, it suppresses the aggregation of the boron compound, so that the generation of fish eyes derived from the boron compound can be suppressed. Guessed.
  • the alkali metal content in the EVOH composition pellets of the present invention is 500 ppm or less per pellet weight, preferably 400 ppm or less, more preferably 300 ppm or less.
  • the minimum of the amount of alkali metals is 10 ppm. If the alkali metal content is too low, the effect of suppressing the generation of fish eyes by reducing the viscosity of EVOH is reduced, and if it is too high, the alkali metal salt that has become insufficiently dispersed in EVOH aggregates to cause fish. When the eye is increased or the decomposition of EVOH proceeds excessively, EVOH is colored or odor is generated.
  • alkali metal used in the present invention examples include lithium, sodium, potassium, rubidium, and cesium. These may be used alone or in combination of two or more. Of these, sodium and potassium are preferable, and sodium is particularly preferable.
  • content of the alkali metal in this invention is a metal conversion amount, and when using 2 or more types together, content is the value which totaled the metal conversion amount of all the alkali metals.
  • alkali metal source for containing the alkali metal in the EVOH composition pellets of the present invention examples include alkali metal compounds such as alkali metal oxides, alkali metal hydroxides, and alkali metal salts. These are preferably water-soluble. Of these, alkali metal salts are preferred from the viewpoint of dispersibility.
  • the alkali metal compound used in the present invention is preferably free from inorganic layered compounds and double salts from the viewpoints of economy and dispersibility.
  • the alkali metal compound may exist in an ionized state or in the form of a complex having a resin or other ligand, in addition to the case where the alkali metal compound exists as an alkali metal salt.
  • the alkali metal salt include inorganic salts such as carbonate, bicarbonate, phosphate, borate, sulfate, chloride; acetate, butyrate, propionate, enanthate, capric acid C2-C11 monocarboxylates such as salts; C2-C11 dicarboxylates such as oxalate, malonate, succinate, adipate, suberate, sebate; EVOH And carboxylates such as carboxylate with a polymerization terminal carboxyl group.
  • a carboxylate is preferable, a carboxylate having 2 to 11 carbon atoms is more preferable, an aliphatic carboxylate having 2 to 11 carbon atoms is more preferable, and a carbon number is more preferable. 2 to 6 aliphatic monocarboxylates, particularly preferably acetate.
  • the molecular weight of the alkali metal compound is usually 20 to 10000, preferably 20 to 1000, particularly preferably 20 to 500.
  • the “alkali metal content” in the EVOH composition pellets of the present invention means the amount of alkali metals contained on the surface of the EVOH composition pellets, inside, or both, and is measured, for example, as follows. be able to. ⁇ Measurement method of alkali metal content> When the alkali metal is contained on the EVOH composition pellet surface, the addition amount of the alkali metal compound converted to the alkali metal may be used.
  • the alkali metal is contained inside the EVOH composition pellet, for example, in the dry state
  • EVOH composition pellets are incinerated, dissolved in an aqueous hydrochloric acid solution, measured with an inductively coupled plasma optical emission spectrometer (ICP-AES), and obtained by a method such as quantifying the content of alkali metal from a standard solution calibration curve It can obtain
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • conjugated polyene is used as a fish eye suppressing component.
  • conjugated polyene contains a plurality of double bonds in the molecule, and thus has a function of capturing radicals that cause EVOH degradation.
  • conjugated polyene is a structure containing a double bond, its polarity as a molecule is relatively low.
  • the interaction with the highly polar EVOH is relatively weak, and the conjugated polyene bleeds to the EVOH surface so as to be discharged from the inside of the EVOH during film formation. It is presumed that this bleed conjugated polyene prevents aggregation of boron compounds present in the vicinity of the surface layer of the EVOH composition pellets, thereby suppressing fish eyes derived from boron compounds.
  • the conjugated polyene content in the EVOH composition pellets of the present invention is 0.06% by weight or less, preferably 0.05% by weight or less, more preferably 0.04% by weight or less of the whole pellets.
  • the lower limit of the amount of conjugated polyene is 0.001% by weight. If the amount of conjugated polyene is too small, the effect of suppressing the generation of fish eyes by scavenging radicals is reduced, and if it is too large, the amount of conjugated polyene that bleeds into the surface of the pellet increases, resulting in poor pH balance in the surface of the pellet. By becoming stable, the fish eye in the film is increased.
  • the conjugated polyene used in the present invention is a so-called conjugated polyene having a structure in which carbon-carbon double bonds and carbon-carbon single bonds are alternately connected, and the number of carbon-carbon double bonds is two or more. It is a compound having a double bond.
  • Conjugated polyenes are conjugated dienes that have a structure in which two carbon-carbon double bonds and one carbon-carbon single bond are alternately connected, three carbon-carbon double bonds, and two carbon-carbons. It may be a conjugated triene having a structure in which single bonds are alternately connected, or a conjugated polyene having a structure in which a larger number of carbon-carbon double bonds and carbon-carbon single bonds are alternately connected.
  • the molded product may be colored by the color of the conjugated polyene itself, so the number of conjugated carbon-carbon double bonds is 7 or less.
  • a polyene is preferred.
  • a plurality of conjugated double bonds composed of two or more carbon-carbon double bonds may be present in one molecule without being conjugated to each other.
  • a compound having three conjugated trienes in the same molecule such as tung oil is also included in the conjugated polyene.
  • conjugated polyenes include isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-tert-butyl-1,3-butadiene, 1, 3-pentadiene, 2,3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2, 4-hexadiene, 1,3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-phenyl-1,3-butadiene, 1,4-diphenyl-
  • Conjugated trienes such as cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid and the like conjugated polyene having a conjugated structure of 4 or more carbon-carbon double bonds . Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Two or more kinds of such conjugated polyenes can be used in combination.
  • a conjugated polyene having a carboxyl group is preferable because of its high affinity with water, and sorbic acids, particularly sorbic acid is particularly preferable.
  • the conjugated polyene content in the EVOH composition pellets of the present invention can be measured, for example, by the following method.
  • Examples of the method for measuring the content of the conjugated polyene include a method in which EVOH composition pellets are pulverized and extracted with an appropriate solvent, and the amount of the conjugated polyene in the extraction solvent is quantified by liquid chromatography. .
  • the friction between the EVOH pellets and the screw surface is reduced, and the EVOH pellets are easily supplied to the extruder. Therefore, the EVOH that is thermally deteriorated is reduced, resulting in the generation of fish eyes. It is estimated that it can be suppressed. Further, while EVOH pellets are not bitten into the screw, the surface portion where the boron compound is present is preferentially heated, so that the boron compound is likely to aggregate and the generation of fish eyes is assumed to be more prominent.
  • the content of the lubricant in the EVOH composition pellets is 0.001 to 0.15% by weight, preferably 0.003 to 0.12% by weight, more preferably 0.001% by weight of the EVOH composition pellets. 005 to 0.10% by weight. If the content is too small, the friction between the screw surface of the extruder and the EVOH composition pellets becomes strong, and stable pellets cannot be supplied, resulting in an increase in fish eyes. In addition, if the content is too large, the lubricant that has become insufficiently dispersed may agglomerate to cause an increase in fish eye, or the friction between the EVOH composition pellets and the screw surface will decrease, and stable pellet supply will be achieved. Inability to do so causes an increase in fish eyes.
  • Examples of the lubricant used in the present invention include higher fatty acids, for example, higher fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid; aluminum salts, calcium salts of these higher fatty acids, Metal salts of higher fatty acids such as zinc salts, magnesium salts and barium salts; esters of higher fatty acids such as methyl esters, isopropyl esters, butyl esters and octyl esters of the above higher fatty acids; saturated higher fatty acids such as stearic acid amide and behenic acid amide Higher fatty acids such as unsaturated higher fatty acid amides such as amide, oleic acid amide, erucic acid amide, bis higher fatty acid amides such as ethylene bisstearic acid amide, ethylene bis oleic acid amide, ethylene biserucic acid amide, ethylene bis lauric acid amide
  • the amide is
  • low molecular weight polyolefins such as low molecular weight polyethylene having a molecular weight of about 500 to 10,000, low molecular weight polypropylene, or acid-modified products thereof; higher alcohols, ester oligomers, fluorinated ethylene resins, and the like can be mentioned. These may be used alone or in combination of two or more.
  • higher fatty acids are preferable from the viewpoint of extrusion stability and market availability, and the number of carbon atoms in one molecule of the higher fatty acids is usually 12 to 25 carbon atoms, preferably 12 carbon atoms. To 23, particularly preferably 15 to 20 carbon atoms.
  • the valence of the higher fatty acids is usually 1 to 5, preferably 1 to 3, and particularly preferably 1 to 2 from the viewpoint of extrusion stability and market availability. Value.
  • the valence means the number of higher fatty acid-derived structures in one molecule of the compound used for the lubricant.
  • bis stearamide when used as the lubricant, it is derived from a higher fatty acid molecule having 18 carbon atoms. Since the structure has two in one molecule, it is an amide of a higher fatty acid having 18 carbon atoms, and the valence of the higher fatty acid is bivalent.
  • higher fatty acids higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides are preferred, higher fatty acid metal salts, higher fatty acid amides are more preferred, and extrusion stability is more preferred. From the viewpoint of properties, it is an amide of a higher fatty acid.
  • the form of the lubricant is of any property such as solid (powder, fine powder, flakes, etc.), semi-solid, liquid, paste, solution, emulsion (water dispersion), etc. Can be used. Of these, powder is preferable.
  • the particle size of the powdery lubricant is usually 0.1 to 100 ⁇ m, preferably 1 to 75 ⁇ m, particularly preferably 5 to 50 ⁇ m.
  • “Lubricant content” in the EVOH composition pellets of the present invention means the content of the lubricant contained on the surface of the EVOH composition pellets, inside, or both, and is measured, for example, by the following method. be able to. ⁇ Measurement method of lubricant content> When a lubricant is attached to the EVOH composition pellet surface, the amount of lubricant added can be regarded as the content. In addition, when the lubricant is contained in the EVOH composition pellets, if the lubricant is, for example, a higher fatty acid amide, the total nitrogen amount in the EVOH composition pellets is measured using a trace total nitrogen analyzer and converted to the lubricant content. Thus, the content of the lubricant in the EVOH composition pellet can be measured.
  • the added alkaline earth metal interacts with the boron compound on the surface of the EVOH composition pellet to suppress aggregation of the boron compound that may be present on the surface of the EVOH composition pellet. It is speculated that it can also be suppressed.
  • the alkaline earth metal content in the EVOH composition pellets of the present invention is 100 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less per pellet weight.
  • the lower limit of the amount of alkaline earth metal is 1 ppm. If the amount of alkaline earth metal is too small, the effect of suppressing the generation of fish eyes by reducing the viscosity of EVOH is reduced. If the amount is too large, alkaline earth metal salts that are insufficiently dispersed in EVOH are aggregated. Therefore, there is a tendency that fish eyes are increased, EVOH is colored, and odor is generated.
  • alkaline earth metal used in the present invention examples include beryllium, magnesium, calcium, strontium, barium, and radium. These may be used alone or in combination of two or more. Of these, calcium is preferred.
  • the content of alkaline earth metal in the present invention is a metal conversion amount, and the content when two or more types are used in combination is a value obtained by summing up the metal conversion amounts of all alkaline earth metals.
  • alkaline earth metal salt examples include inorganic salts such as carbonates, hydrogen carbonates, phosphates, borates, sulfates, chlorides; acetates, butyrate, propionate, C2-C11 monocarboxylates such as enanthates and caprates, oxalates, malonates, succinates, adipates, suberates, sebates, etc.
  • Organic acid salts such as monocarboxylates having 12 or more carbon atoms such as dicarboxylate, laurate, palmitate, stearate, 12 hydroxystearate, behenate and montanate It is done. These can be used alone or in combination of two or more. Of these, phosphate is preferable.
  • the content of alkaline earth metal when a plurality of types of alkaline earth metals is used is a total content of all alkaline earth metals.
  • the “alkaline earth metal content” in the EVOH composition pellet of the present invention means the content of the alkaline earth metal contained on the surface of the EVOH composition pellet, or inside, or both, for example, It can be measured by the following method. ⁇ Measurement method of alkaline earth metal content> When the alkaline earth metal is attached to the EVOH composition pellet surface, the amount of the alkaline earth metal added can be regarded as the content.
  • the dried EVOH composition pellets are incinerated, dissolved in an aqueous hydrochloric acid solution, and measured by an inductively coupled plasma emission spectrometer (ICP-AES). And the value obtained by a method such as quantifying the content of alkaline earth metal from the calibration curve of the standard solution is converted to the content of the whole pellet.
  • a method for producing pellets from EVOH a conventionally known method can be adopted, for example, a) A hot-cut method in which EVOH in a molten state is extruded from a discharge port of an extruder, cut in a molten state, and then cooled and solidified to produce pellets. b) A strand cutting method in which EVOH in a molten state is extruded into a coagulation bath, and EVOH strands obtained by cooling and solidification are cut. There are two methods.
  • EVOH used as a raw material for pellets is obtained by saponifying an ethylene-vinyl ester copolymer solution in the production of ( ⁇ ) EVOH.
  • the obtained EVOH solution or slurry, or EVOH water-containing composition hereinafter sometimes referred to as “EVOH solution / water-containing composition”); or ( ⁇ ) EVOH (dried EVOH) pellets are melted and the molten state EVOH can be used.
  • the above-mentioned EVOH water-containing composition is obtained by appropriately adjusting the water content of the EVOH solution or slurry using a solvent, and the concentration of EVOH in the EVOH water-containing composition is usually 20 to 60% by weight.
  • alcohol water / alcohol mixed solvent or the like
  • a water / alcohol mixed solvent is preferred.
  • the alcohol include aliphatic alcohols having 1 to 10 carbon atoms such as methanol, ethanol, propanol, n-butanol, and t-butanol, and methanol is particularly preferable.
  • the water / alcohol mixing weight ratio is preferably 80/20 to 5/95.
  • the EVOH hydrous composition preferably contains 0 to 10 parts by weight of alcohol and 10 to 500 parts by weight of water with respect to 100 parts by weight of EVOH.
  • the method for adjusting the moisture content of the EVOH solution or slurry is not particularly limited.
  • the EVOH solution or slurry is sprayed with the solvent, the EVOH solution or slurry, and the above-described method.
  • a method of mixing with a solvent, a method of bringing a solution or slurry of EVOH into contact with the above-mentioned solvent vapor, and the like can be employed.
  • the EVOH solution or slurry may be appropriately dried.
  • the EVOH solution or slurry may be dried using a fluid hot air dryer or a stationary hot air dryer.
  • the temperature of the EVOH solution / water-containing composition in the extruder is preferably 70 to 170 ° C, more preferably 80 to 170 ° C. More preferably, it is 90 to 170 ° C.
  • the temperature of the EVOH solution / water-containing composition is too low, EVOH tends not to melt completely, and when it is too high, EVOH tends to be susceptible to thermal degradation.
  • the temperature of the dry EVOH in the extruder is preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and further preferably 170 to 250 ° C.
  • the temperature of the EVOH solution / water-containing composition and dry EVOH refers to a temperature detected in the vicinity of the discharge port at the tip of the extruder by a temperature sensor installed in the extruder cylinder.
  • the EVOH solution / water-containing composition extruded from the die of the extruder that is, the EVOH in a molten state is cut before being cooled and solidified.
  • the cut method may be either a hot cut method that cuts in the atmosphere (air hot cut method) or an underwater cut method that is extruded into a cutter installation container filled with cooling water and cut in cooling water.
  • the temperature of the cooling water in the underwater cutting method is such that EVOH extruded in the molten state does not instantly solidify (solidify), and the temperature of the cooling water when the EVOH solution / water-containing composition is used as a raw material is ⁇
  • the temperature is preferably 20 to 50 ° C, more preferably -5 to 30 ° C.
  • dry EVOH is used as a raw material, it is easier to solidify than when an EVOH solution / water-containing composition is used as a raw material, so the temperature of the cooling water in the underwater cutting method is when the EVOH solution / water-containing composition is used as a raw material.
  • the cooling water is not limited to water, but a water / alcohol mixed solution; aromatic hydrocarbons such as benzene; ketones such as acetone and methyl ethyl ketone; ethers such as dipropyl ether; methyl acetate, ethyl acetate, propionic acid Organic esters such as methyl can also be used.
  • aromatic hydrocarbons such as benzene
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as dipropyl ether
  • methyl acetate, ethyl acetate, propionic acid Organic esters such as methyl can also be used.
  • water or a water / alcohol mixed solution is used because it is easy to handle.
  • the water / alcohol (weight ratio) is usually 90/10 to 99/1.
  • lower alcohols such as methanol, ethanol, propanol, can be used, and methanol is used preferably industrially.
  • the temperature of the EVOH extruded into the coagulation bath is usually 10 to 100 ° C, and the temperature of the coagulation bath is determined by the extruded EVOH.
  • the temperature at which it can be cooled and solidified is usually ⁇ 10 to 40 ° C., and the residence time is usually about 10 to 400 seconds.
  • the temperature at which EVOH is extruded into the coagulation bath is usually 150 to 300 ° C.
  • the temperature of the coagulation bath is usually 0 to 90 ° C.
  • the residence time is 2 to It is about 400 seconds.
  • the same solution as the above-described hot cut type cooling water can be employed.
  • a porous pellet having a plurality of pores inside the pellet from the viewpoint of the boron compound containing treatment described later.
  • the pore size of the porous pellet is not particularly limited as long as the boron compound can penetrate into the pore.
  • Such porous pellets usually use the above-mentioned EVOH water-containing composition as a pellet raw material, and the EVOH concentration in the EVOH water-containing composition, the type of solvent, the temperature during extrusion, the temperature of the coagulation bath, the residence time, etc. It can be obtained by adjusting
  • the water content of the porous pellet is preferably 20 to 80% by weight.
  • the porous pellet having the water content can uniformly and rapidly contain a boron compound in the step of containing a boron compound described later.
  • the shape of the EVOH pellets usually depends on the method of producing the pellets, and various shapes can be used.
  • the shape of the EVOH pellets obtained by the above methods and the EVOH composition pellets of the present invention is arbitrary. is there.
  • As the shape of the pellet for example, there are a spherical shape, an oval shape, a cylindrical shape, a cubic shape, a rectangular parallelepiped shape, an indeterminate shape, etc., but it is usually an oval shape or a cylindrical shape, and its size is used as a molding material later.
  • the major axis is usually 1 to 10 mm, preferably 2 to 7 mm
  • the minor axis is usually 1 to 6 mm, and preferably 2 to 5 mm.
  • the diameter is usually 1 to 10 mm, preferably 2 to 7 mm
  • the length is usually 1 to 10 mm, preferably 3 to 8 mm.
  • the EVOH pellets used in the present invention may be a mixture with other different EVOH pellets.
  • the other EVOH pellets have different ethylene structural unit contents and different saponification degrees. Those having different melt flow rates (MFR), those having different copolymerization components, such as those having different contents of the 1,2-diol structural unit represented by the general formula (1), and the like. it can.
  • the EVOH composition pellet of the present invention can be obtained by adding a predetermined amount of a boron compound and a fish eye suppressing component to the EVOH pellet.
  • a boron compound and a fish eye suppressing component can be added to the EVOH pellet.
  • the EVOH composition pellet of the present invention is a step of bringing a boron compound into contact with a boron compound and an EVOH pellet, washing the EVOH pellet containing the boron compound, and reducing the boron compound content in the pellet surface layer portion. And at least one step selected from the group consisting of the following (A ′) to (E ′) (a step of containing a fish eye suppressing component): Obtainable.
  • (B ′) A step of bringing the EVOH pellets into contact with the alkali metal so that the alkali metal content relative to the EVOH composition is 500 ppm or less on a weight basis.
  • (C ′) A step of bringing the EVOH pellets into contact with the conjugated polyene such that the content of the conjugated polyene with respect to the EVOH composition is 0.06% by weight or less on a weight basis.
  • (D ′) a step of bringing the EVOH pellets into contact with the lubricant such that the content of the lubricant with respect to the EVOH composition is 0.001 to 0.15 wt% on a weight basis.
  • Step of containing boron compound The step of containing the boron compound is carried out by bringing the EVOH pellets into contact with the boron compound.
  • a method of bringing the EVOH pellets into contact with the boron compound for example, (1-1) A method of bringing EVOH into contact with a boron compound in the EVOH pellet manufacturing stage, (1-2) A method of bringing a pellet of EVOH prepared in advance into contact with a boron compound, Etc.
  • a boron compound is added to a pellet raw material (EVOH solution / water-containing composition, dry EVOH), or a boron compound is added.
  • a boron compound may be added to the EVOH solution / water-containing composition.
  • a dry EVOH contains a boron compound previously, when a dry EVOH pellet is fuse
  • the EVOH water-containing composition to which the boron compound is added is extruded into a coagulating liquid in the form of a strand, and the resulting strand is cut.
  • a method of bringing the EVOH pellet prepared in advance in (1-2) above into contact with the boron compound a method of spraying a solution containing a boron compound onto the pellet of EVOH; A method of immersing; a method of charging EVOH pellets while stirring a solution containing a boron compound, and the like.
  • a method of introducing EVOH pellets while stirring a solution containing a boron compound is preferably used in that the boron compound can be efficiently contained even inside the pellet.
  • the solvent of the solution containing the boron compound for example, water; lower alcohols such as methanol, ethanol, propanol, etc .; water / alcohol mixing solution, and the like can be used.
  • the water / alcohol mixed solution the water / alcohol (weight ratio) is usually 90/10 to 10/90.
  • the concentration of the boron compound in the solution containing the boron compound is usually 0.001 to 1% by weight, preferably 0.003 to 0.5% by weight. If the concentration is too low, it tends to be difficult to contain a predetermined amount of boron compound, and if it is too high, the appearance of the finally obtained molded product tends to be lowered.
  • the boron compound amount in the EVOH pellets (the total boron compound content in the EVOH pellets) is the concentration of the boron compound in the solution containing the boron compound, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment, It is possible to control by changing the moisture content of the EVOH pellets to be treated.
  • the EVOH pellets and the boron compound prepared in advance in (1-2) can be applied to various pellets and have excellent versatility.
  • the method of contacting with is preferable. More preferably, the porous pellet is contacted with a solution containing a boron compound.
  • EVOH pellets containing a boron compound obtained by the step of containing such a boron compound [the boron compound content in the pellet surface layer portion is not adjusted, and hereinafter, this pellet is referred to as “EVOH pellet before surface layer boron adjustment”]
  • the boron compound content (total content of boron compounds in EVOH pellets) is usually 10 to 10,000 ppm, preferably 20 to 5000 ppm, more preferably 30 to 3000 ppm per weight of the pellet in terms of boron. is there. If the content is too small, the effect of adding the boron compound tends to decrease, and if it is too large, the appearance of the finally obtained molded product tends to decrease.
  • the EVOH pellets before surface layer boron adjustment obtained by the above steps may be subjected to the next step as they are, but usually the pellets are dried.
  • a known method can be employed.
  • a gas such as nitrogen gas at 80 to 150 ° C. through the dryer, the gas can be efficiently dried without affecting the EVOH pellets before adjusting the surface layer boron.
  • EVOH pellet before the surface layer part boron adjustment is dependent on the total content of the boron compound contained in the pellet and the content of the boron compound in the pellet surface part, but the content of the boron compound in the pellet surface part by the cleaning treatment Can be adjusted.
  • the cleaning treatment is performed by bringing the cleaning treatment liquid into contact with the EVOH pellets before surface layer boron adjustment.
  • Examples of the contact method include a method of immersing and stirring the EVOH pellets before surface layer boron adjustment in a cleaning treatment liquid, a method of circulating the EVOH pellets before surface layer boron adjustment in a cleaning treatment liquid, and a surface layer portion It can be performed by a method of spraying a cleaning treatment liquid onto the EVOH pellets before boron adjustment. In the above immersion method, it is also effective to apply vibrations such as ultrasonic waves during immersion.
  • the cleaning treatment is preferably performed by bringing it into contact with a cleaning treatment solution.
  • the cleaning treatment liquid is preferably a water / alcohol mixed solution or alcohol, and more preferably a water / alcohol mixed solution.
  • Examples of the alcohol include 1 to 8 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, and 2-methyl-2-propanol. In particular, it is preferable to use 1 to 5, more preferably 1 to 3, alcohols. Of these, methanol is particularly preferably used because it is easily available and inexpensive.
  • the water / alcohol (weight ratio) is 80/20 to 0/100, preferably 65/35 to 15/85, particularly preferably 50 / 50-20 / 80. Even if there is too much water or the alcohol concentration becomes too high, the effect of adjusting the boron compound content in the surface layer portion tends to decrease, so a water / alcohol mixed solution in the above range is preferred.
  • solubility of a boron compound is higher in alcohol than in water, alcohol is usually used as a cleaning treatment liquid used to adjust the boron content.
  • alcohol is usually used as a cleaning treatment liquid used to adjust the boron content.
  • the boron compound can be more efficiently eluted from the EVOH pellet before surface layer boron adjustment. I found.
  • the solubility of the boron compound in 10 g of water at 23 ° C. is about 0.1 to 10% by weight, and the solubility in 10 g of methanol at 23 ° C. is about 15 to 30% by weight.
  • the contact time of the EVOH pellets before surface layer boron adjustment and the cleaning treatment liquid is not particularly limited as long as the boron content reaches a predetermined concentration, but it is usually 5 minutes to 48 hours, more preferably 10 minutes to 24. Time is preferable, and the temperature of the cleaning treatment liquid is usually 10 to 80 ° C., more preferably 20 to 60 ° C.
  • the EVOH pellet containing the boron compound after the washing treatment may be dried as necessary. Specifically, it is preferable to dry to a water content of about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight.
  • the drying method the same method as the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • the content of the boron compound in the pellet surface layer portion can be reduced by the above washing treatment, and the boron compound content in the pellet surface layer portion, which is the first feature of the present invention, is reduced to 1.7 ppm or less in terms of boron.
  • EVOH pellets containing boron compounds are obtained.
  • At least one component selected from the group consisting of cinnamic acids, alkali metals, conjugated polyenes, lubricants and alkaline earth metals, which is the second feature of the present invention, is EVOH in a specific ratio. The process of making it contain in this pellet is demonstrated.
  • EVOH pellets containing cinnamic acids can be produced by bringing cinnamic acids into contact with the EVOH pellets.
  • a method of bringing the EVOH pellets into contact with cinnamic acid for example, (I) a method of contacting with cinnamic acid in the pellet production stage; (Ii) a method of bringing a previously prepared EVOH pellet and cinnamic acid into contact with each other; Etc.
  • Examples of the method of contacting the cinnamic acid in the above-mentioned (i) pellet production stage include, for example, a method of adding cinnamic acid to a pellet raw material (EVOH solution / water-containing composition, dry EVOH), or a solution containing cinnamic acid, The method used for the coagulation liquid at the time of extrusion molding is mentioned.
  • a method of adding cinnamic acid to a pellet raw material EVOH solution / water-containing composition, dry EVOH
  • a solution containing cinnamic acid may be added to the EVOH solution / water-containing composition.
  • cinnamic acids may be contained in advance in the dried EVOH.
  • the cinnamic acid is added to the EVOH solution / water-containing composition.
  • (Ii) As a method of bringing the previously prepared EVOH pellets into contact with cinnamic acids, a method of spraying a cinnamic acid-containing solution onto EVOH pellets; a method of immersing EVOH pellets in a solution containing cinnamic acids; Examples include a method of adding EVOH pellets while stirring a cinnamic acid-containing solution; a method of adding cinnamic acid powders directly to EVOH pellets, and mixing them. Among these, a method in which cinnamic acid powders are directly added to EVOH pellets and mixed is preferably used because cinnamic acids can be efficiently contained.
  • the concentration of cinnamic acid in the solution is usually 0.01 to 20% by weight, preferably 0.05 to 15% by weight.
  • the concentration of cinnamic acid in the solution is usually 0.0001. From 0.05 to 0.05% by weight, preferably from 0.001 to 0.04% by weight.
  • the concentration is too low, it tends to be difficult to contain a predetermined amount of cinnamic acid, and when it is too high, the appearance of the finally obtained molded product tends to deteriorate.
  • the solution containing cinnamic acid the thing similar to the solvent of the solution containing the said boron compound can be used.
  • cinnamon depends on the concentration of cinnamic acid in the solution, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment, the moisture content of the EVOH pellets to be treated, It is possible to control the content of acids.
  • the amount of cinnamic acid can be added to the content of cinnamic acids, and the amount of cinnamic acids to be added is usually 0.0001 to It is 0.05% by weight, preferably 0.001 to 0.04% by weight, and more preferably 0.005 to 0.035% by weight.
  • the method of contacting EVOH pellets prepared in advance with cinnamic acids in (ii) is preferable in that it can be applied to various pellets and is excellent in versatility.
  • a method of adding cinnamic acid powder directly to EVOH pellets and mixing them is particularly preferred.
  • the EVOH pellets containing cinnamic acid obtained by the above steps may be dried as necessary. Specifically, it is preferable to dry to a moisture content of about 0.01 to 1% by weight, particularly about 0.05 to 0.5% by weight.
  • a method similar to the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • An EVOH pellet containing an alkali metal can be produced by adding an alkali metal to the EVOH pellet.
  • Examples of the method of adding alkali metal to the EVOH pellets include: (Iii) A method of contacting with an alkali metal in the EVOH pellet manufacturing stage, (Iv) A method of bringing a previously prepared EVOH pellet into contact with an alkali metal, (V) a method of leaving an alkali metal salt generated in a saponification step when producing EVOH, Etc.
  • the dry EVOH pellets are melted, and the molten EVOH and the alkali metal compound may be melt-kneaded with an extruder.
  • the alkali metal compound is dispersed in the EVOH solution / water-containing composition.
  • the method of bringing the EVOH pellets prepared in advance into contact with the alkali metal is a method of spraying a solution containing an alkali metal onto the EVOH pellet; a method of immersing the EVOH pellet in a solution containing an alkali metal
  • a method of adding EVOH pellets while stirring an alkali metal-containing solution a method of directly adding powder of an alkali metal compound to EVOH pellets and mixing them.
  • a method of charging EVOH pellets while stirring a solution containing an alkali metal is preferably used in that an alkali metal can be efficiently contained.
  • the concentration of alkali metal in the above solution containing alkali metal is usually 0.001 to 1% by weight, preferably 0.01 to 0.1% by weight. If the concentration is too low, it tends to be difficult to contain a predetermined amount of alkali metal, and if it is too high, the appearance of the finally obtained molded product tends to deteriorate.
  • lifted the thing similar to the solution containing the said boron compound is mention
  • lifted is a solvent of the solution containing an alkali metal.
  • the alkali metal concentration in the solution In the contact method using the alkali metal-containing solution, the alkali metal concentration in the solution, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment, the moisture content of the EVOH pellets to be treated, etc. It is possible to control the metal content.
  • the addition amount can be the content of alkali metal, and the amount of alkali metal compound to be added is usually converted to alkali metal per EVOH pellet weight. It is 500 ppm or less, preferably 400 ppm or less, more preferably 300 ppm or less. In addition, the minimum of the amount of alkali metals is 10 ppm. If the amount of alkali metal is too small, the fish eye reduction effect by reducing the viscosity of EVOH tends to decrease, and if it is too large, the alkali metal salt that has become insufficiently dispersed in EVOH aggregates to cause fish eye to aggregate. When EVOH is increased or the decomposition of EVOH proceeds excessively, EVOH tends to be colored or odor tends to be generated.
  • EVOH is generally produced using an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide as a saponification catalyst.
  • the alkali metal contained in such a saponification catalyst is inevitably contained in EVOH as an alkali metal acetate formed as a by-product during saponification or by forming a salt with a carboxyl group generated in a small amount at the polymer chain end of EVOH.
  • the amount of alkali metal present in EVOH is usually about 3000 ppm per EVOH weight in an unwashed state.
  • the alkali metal content is adjusted to a specific minute amount defined in the present invention by washing EVOH further than usual. Specifically, it is difficult to remove the alkali metal to a specific trace concentration only by washing with water. Therefore, when EVOH produced by saponification is used, it is preferable to use EVOH washed with an acid washing solution such as acetic acid and then washed with water. In particular, the alkali metal bonded to the carboxyl group at the end of the EVOH polymer chain can be efficiently removed by washing with an acid washing solution.
  • an acid washing solution such as acetic acid
  • Examples of the acid used in the acid cleaning solution include water-soluble weak acids such as acetic acid, propionic acid, and butyric acid, and among these, acetic acid is preferably used.
  • cleaning liquid the water from which the metal ion as an impurity was removed, such as ion-exchange water, distilled water, filtered water, is preferable.
  • a method of contacting EVOH pellets prepared in advance with an alkali metal is preferable in that it can be applied to various pellets and is excellent in versatility.
  • a method of charging EVOH pellets while stirring a solution containing an alkali metal is particularly preferable.
  • EVOH pellets EVOH pellets from which alkali metals generated in the saponification step are removed in accordance with the method (v) described above, because the alkali metal content can be easily adjusted. preferable.
  • the EVOH pellet containing the above alkali metal may be dried as necessary. Specifically, it is preferable to dry to a moisture content of about 0.01 to 1% by weight, particularly about 0.05 to 0.5% by weight.
  • the drying method the same method as the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • the EVOH pellet containing an alkali metal is obtained by the above process.
  • EVOH pellets containing conjugated polyene can be produced by adding conjugated polyene to the EVOH pellets.
  • the conjugated polyene As a method of bringing the conjugated polyene into contact with the EVOH in the pellet production stage, for example, the conjugated polyene is added to a solution or slurry of an ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and a vinyl ester monomer.
  • a method of adding, a method of adding a conjugated polyene to pellet raw materials (EVOH hydrous composition, dry EVOH), a method of using a solution containing a conjugated polyene in a strand type coagulating liquid at the time of extrusion molding of the EVOH pellets, etc. Is given.
  • conjugated polyene When conjugated polyene is added to an ethylene-vinyl ester copolymer solution or slurry obtained by copolymerizing ethylene and a vinyl ester monomer, the ethylene-vinyl ester copolymer is used in an amount of 100 parts by weight. It is preferable to add 0.02 to 0.1 parts by weight of conjugated polyene.
  • the conjugated polyene may be added as a powder or may be added as a solution.
  • an alcohol solution is preferable from the viewpoint of good dispersibility of EVOH in a solution or slurry, and a methanol solution is particularly preferable.
  • the conjugated polyene concentration in the solution is preferably 1 to 20% by weight, more preferably 3 to 10% by weight.
  • the conjugated polyene concentration of the solution is less than 1% by weight, the resin content of the ethylene-vinyl ester copolymer solution or slurry tends to decrease depending on the added solution, and if it is 20% by weight or more, the dispersion of the conjugated polyene in the paste Tend to decrease.
  • the conjugated polyene when an EVOH hydrous composition is used as the pellet raw material, the conjugated polyene may be dispersed in the EVOH hydrous composition.
  • the dry EVOH When dry EVOH is used as the pellet raw material, the dry EVOH pellets are melted, and the molten EVOH and the conjugated polyene are melt-kneaded with an extruder.
  • the amount of the conjugated polyene is usually 0.06% by weight or less, preferably 0.05% by weight or less of the whole EVOH pellets. More preferably, it is 0.04% by weight or less.
  • the lower limit of the amount of conjugated polyene is 0.001% by weight. If the amount of conjugated polyene is too small, there is a tendency that the fish eye reduction effect due to scavenging radicals cannot be obtained, and if it is too large, the amount of conjugated polyene that bleeds into the pellet surface layer increases and the pH balance of the resin in the pellet surface layer portion When the is destabilized, the fish eyes in the film formed tend to increase.
  • the concentration of the conjugated polyene in the coagulation liquid is usually 0.0001 to 0.5% by weight, preferably 0.001 to 0.1% by weight. It is. If the concentration is too low, it tends to be difficult to contain a predetermined amount of conjugated polyene, and if it is too high, the appearance of the finally obtained molded product tends to deteriorate.
  • (Vii) As a method of bringing the EVOH pellets and the conjugated polyene into contact with each other, a method of spraying a solution containing the conjugated polyene onto the EVOH pellets; a method of immersing the EVOH pellets in the solution containing the conjugated polyene; Examples include a method of adding EVOH pellets while stirring a solution containing a conjugated polyene; a method of directly adding a conjugated polyene powder to EVOH pellets and mixing them. Among them, a method of charging EVOH pellets while stirring a solution containing a conjugated polyene is preferable.
  • a method of contacting with a conjugated polyene in the EVOH pellet manufacturing stage is preferable, and ethylene- is particularly preferable because it can be applied to various pellets and has excellent versatility.
  • a conjugated polyene is added to a solution or slurry of a vinyl ester copolymer.
  • a method of adding conjugated polyene to EVOH a plurality of the above methods may be combined.
  • the conjugated polyene concentration In the contact method using the solution containing the conjugated polyene, the conjugated polyene concentration, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment, the moisture content of the EVOH pellets to be treated, etc. It is possible to control the polyene content.
  • the EVOH pellet containing the above conjugated polyene may be dried as necessary. Specifically, it is preferable to dry to a water content of about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight.
  • the drying method the same method as the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • the EVOH pellet containing the conjugated polyene is obtained by the above process.
  • EVOH pellets containing a conjugated polyene can be produced by incorporating a lubricant into the EVOH pellets.
  • a method of incorporating a lubricant into EVOH pellets for example, (Viii) a method of contacting with a lubricant in the EVOH pellet manufacturing stage; (Ix) A method of bringing a previously prepared EVOH pellet into contact with a lubricant, Etc.
  • Examples of the method of contacting with the lubricant in the EVOH pellet manufacturing stage include, for example, a method of adding the lubricant to the pellet raw material (EVOH solution / water-containing composition, dry EVOH), and a method of using the lubricant solution in the coagulation liquid. Etc.
  • a lubricant may be dispersed in the EVOH solution / water-containing composition.
  • dry EVOH dry EVOH pellets are melted and the molten EVOH and lubricant are melt-kneaded with an extruder.
  • the above (ix) EVOH pellets prepared in advance and the lubricant are brought into contact with each other by spraying a solution or dispersion containing the lubricant onto the EVOH pellets; EVOH pellets are applied to the solution or dispersion containing the lubricant.
  • a method in which the lubricant powder is directly added to the EVOH pellets and mixed is preferably used in that the lubricant can be efficiently contained.
  • the concentration of the lubricant in the solution or dispersion containing the lubricant is usually 1 to 80% by weight, preferably 20 to 70% by weight. If the concentration is too low, it tends to be difficult to contain a predetermined amount of lubricant, and if it is too high, the appearance of the finally obtained molded product tends to deteriorate.
  • a solvent in the case of using the solution containing a lubricant or a dispersing agent the thing similar to what was used for the solution containing the said boron compound can be used.
  • the concentration of the lubricant in the solution or dispersion containing the lubricant, the amount added, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment and the treatment are performed. It is possible to adjust the lubricant content by changing the moisture content of the EVOH pellets.
  • the above (ix) a method of bringing a previously prepared EVOH pellet into contact with a lubricant is applicable to various pellets and is excellent in versatility.
  • the addition amount can be the content of the lubricant, and the amount of the lubricant to be added is usually 0.001 to 0.15% by weight with respect to the pellets. Preferably, it is 0.003 to 0.12% by weight, and more preferably 0.005 to 0.10% by weight. If the amount is too small, the friction between the screw surface of the extruder and the pellets of EVOH is strong, so there is a tendency to cause an increase in fish eyes due to the inability to supply stable pellets. On the contrary, there is a tendency to cause an increase in fish eyes, or a decrease in friction between the EVOH pellets and the screw surface, resulting in an inability to stably supply pellets, resulting in an increase in fish eyes.
  • the EVOH pellet containing the above-mentioned lubricant may be dried as necessary. Specifically, it is preferable to dry to a water content of about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight.
  • the drying method the same method as the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • the EVOH pellet containing a lubricant is obtained by the above process.
  • EVOH pellets containing alkaline earth metal can be produced by adding alkaline earth metal to the EVOH pellets.
  • Examples of a method for adding alkaline earth metal to EVOH pellets include: (X) a method of contacting with an alkaline earth metal in the EVOH pellet manufacturing stage; (Xi) A method of contacting a previously prepared EVOH pellet with an alkaline earth metal, Etc.
  • Examples of the method of contacting with an alkaline earth metal in the EVOH pellet manufacturing stage include a method of adding an alkaline earth metal compound to a pellet raw material (EVOH solution / water-containing composition, dry EVOH), alkaline earth metal And the like, and the like.
  • the alkaline earth metal compound may be dispersed in the EVOH solution / water-containing composition.
  • dry EVOH is used as the pellet raw material, the dry EVOH pellets are melted, and the molten EVOH and the alkaline earth metal compound may be melt-kneaded with an extruder.
  • a method of dispersing an alkaline earth metal compound in an EVOH solution / water-containing composition is preferable.
  • EVOH pellets prepared in advance and alkaline earth metal are brought into contact with each other by spraying a solution containing alkaline earth metal onto the EVOH pellets; A method of immersing pellets; a method of adding EVOH pellets while stirring a solution containing alkaline earth metal; and a method of directly adding alkaline earth metal compound powder to EVOH pellets and mixing them. .
  • a method in which an alkaline earth metal compound powder is directly added to an EVOH pellet and mixed is preferably used in that an alkaline earth metal can be efficiently contained.
  • the concentration of the alkaline earth metal in the solution containing the alkaline earth metal is usually 0.01 to 20% by weight, preferably 0.05 to 15% by weight. If the concentration is too low, it tends to be difficult to contain a predetermined amount of alkaline earth metal, and if it is too high, the appearance of the finally obtained molded product tends to deteriorate.
  • the same solvent as the boron compound solution can be used.
  • the alkaline earth metal concentration, the amount added, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment in the solution containing the alkaline earth metal is possible to adjust the content of alkaline earth metal by changing the moisture content of the EVOH pellets to be treated.
  • the amount added can be the content of alkaline earth metal, and the amount of alkaline earth metal added is usually EVOH pellets. It is 100 ppm or less per weight, preferably 80 ppm or less, more preferably 50 ppm or less.
  • the lower limit of the amount of alkaline earth metal is 1 ppm. If the amount of alkaline earth metal is too small, the fish eye reduction effect by reducing the viscosity of EVOH tends not to be obtained. If the amount is too large, dispersion in EVOH is insufficient and the alkaline earth metal salt aggregates. There is a tendency to increase fish eyes, color EVOH, and odor.
  • the EVOH pellets prepared in advance and the alkaline earth metals are brought into contact with each other in that they can be applied to various pellets and have excellent versatility.
  • the method is preferable, and the method of adding an alkaline earth metal compound powder directly to EVOH pellets and mixing them is particularly preferable.
  • the EVOH pellet containing the above alkaline earth metal may be dried as necessary. Specifically, it is preferable to dry to a water content of about 0.01 to 1% by weight, preferably about 0.05 to 0.5% by weight.
  • the drying method the same method as the method for drying the EVOH pellets before adjusting the surface layer boron can be adopted.
  • the EVOH pellet containing alkaline earth metal is obtained by the above process.
  • the EVOH composition pellets of the present invention undergo a process of containing a boron compound by bringing the boron compound and EVOH pellets into contact with each other, a process of washing the EVOH pellets, and a process of containing a fish eye suppressing component. Obtainable.
  • a step of containing a boron compound by bringing a boron compound and EVOH pellets into contact with each other, followed by a step of washing the EVOH pellets, and finally fish eye. It is preferable from the viewpoint of workability to perform the step of containing the inhibitory component (cinnamic acid).
  • conjugated polyene As a fish eye suppression component, the process of containing a fish eye suppression component (conjugated polyene) is performed, and the process of containing a conjugated polyene next by making the pellet of conjugated polyene and EVOH contact. Finally, it is preferable from the viewpoint of workability to perform a step of washing the EVOH pellets.
  • the process of containing a boron compound by making a boron compound and EVOH pellet contact, and the process of containing a fish eye suppression component (alkali metal) are performed simultaneously.
  • the solution containing the boron compound and the alkali metal is brought into contact with the EVOH pellets. Just do it.
  • a step of containing a boron compound by bringing the boron compound into contact with an EVOH pellet is performed, and then a step of washing the EVOH pellet, and finally a fish eye suppression. It is preferable from the viewpoint of workability to perform a step of containing a component (lubricant).
  • an alkaline earth metal is used as a fish eye suppressing component
  • a step of containing a boron compound by bringing the boron compound into contact with a pellet of EVOH is performed, and then a step of cleaning the pellet of EVOH is performed. It is preferable from the viewpoint of workability to perform a step of containing a fish eye suppressing component (alkaline earth metal).
  • the manufacturing method of the EVOH composition pellet of this invention may include another process between the said process, and the pellet of EVOH which the said last process was completed to another process. May be provided.
  • the water content of the EVOH composition pellets of the present invention is usually 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight. If the water content is too small, EVOH plasticization due to water molecules will not occur, and EVOH composition pellets will be difficult to melt during extrusion molding, and it will tend to cause fish eye defects due to unmelted materials. A foaming phenomenon occurs during molding, and the appearance of the molded product tends to deteriorate.
  • a resin other than EVOH generally used for EVOH compositions is mixed within a range that does not impair the effects of the present invention (for example, 20% by weight or less, preferably 10% by weight or less).
  • the resin composition obtained in this way can also be included.
  • the EVOH composition pellets of the present invention are generally formulated with EVOH within a range that does not impair the effects of the present invention, such as heat stabilizers, antioxidants, antistatic agents, colorants, and UV absorbers.
  • Plasticizer, light stabilizer, surfactant, antibacterial agent, drying agent, antiblocking agent, flame retardant, crosslinking agent, curing agent, foaming agent, crystal nucleating agent, antifogging agent, biodegradation additive, silane cup A ring agent, an oxygen absorbent, etc. may be contained. These may be used alone or in combination of two or more.
  • the heat stabilizer is an organic acid such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, behenic acid, or an alkali thereof for the purpose of improving various physical properties such as heat stability during melt molding.
  • Metal salts sodium, potassium, etc.
  • alkaline earth metal salts calcium, magnesium, etc.
  • zinc salts etc .
  • inorganic acids such as sulfuric acid, sulfurous acid, carbonic acid, phosphoric acid, or alkali metal salts thereof (sodium) , Potassium, etc.), alkaline earth metal salts (calcium, magnesium, etc.), zinc salts and the like;
  • acetic acid, acetate, and phosphate may be used alone or in combination of two or more.
  • an alkali metal salt or alkaline earth metal salt is blended, it is included in the content of alkali metal or alkaline earth metal in the EVOH composition pellets of the present invention.
  • the blending may be usually carried out at any stage before the contact treatment of the boron compound or the fish eye suppressing component and the EVOH pellet, together with the contact treatment, or after the contact treatment. It is preferable to carry out with the contact treatment in that the influence on the boron compound or the fish eye suppressing component is small.
  • the blending method of other components is not particularly limited, it can usually be carried out by bringing EVOH pellets into contact with a solution containing these compounding agents. Therefore, if it is before the contact treatment with the boron compound or the fish eye suppressing component, the solution containing at least one of the boron compound and the fish eye suppressing component by immersing the EVOH pellets in the solution containing the above compounding agent It can mix
  • the melt-formed product of the EVOH composition pellets of the present invention is excellent in moldability and appearance even if it is a single layer film of the EVOH composition, but from the viewpoint of water resistance, strength, etc., if necessary, A multilayer structure in which other resin layers are laminated may be used.
  • Examples of such a molded product include a single-layer film molded using the EVOH composition pellets of the present invention, and a practical use as a multilayer structure having at least one layer molded using the EVOH composition pellets of the present invention. Can be used.
  • another substrate is laminated on one side or both sides of a layer formed using the EVOH composition pellets of the present invention.
  • a method of melt extrusion laminating another substrate to a film, sheet or the like formed using the EVOH composition pellets of the present invention and conversely, EVOH composition pellets of the present invention to other substrates
  • Examples thereof include a method of dry laminating a material (layer) with a known adhesive such as an organic titanium compound, an isocyanate compound, a polyester compound, and a polyurethane compound.
  • the melt molding temperature at the time of melt extrusion is often selected from the range of 150 to 300
  • thermoplastic resins are useful. Specifically, linear low density polyethylene, low density polyethylene, ultra-low density polyethylene, medium density polyethylene, high density polyethylene and other various polyethylenes, ethylene- Vinyl acetate copolymer, ionomer, ethylene-propylene (block or random) copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polypropylene, propylene- ⁇ -olefin (4 to 20 carbon atoms) ⁇ -olefin) copolymers, polyolefins such as polybutene and polypentene, or copolymers thereof, or polyolefins in a broad sense such as those obtained by graft-modifying these olefins alone or copolymers with unsaturated carboxylic acids or esters thereof Resin, polyester resin, polyamide Resin (including copolyamide), polyvinyl chloride, polyvinylidene chloride, acrylic resin, polyst
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • base materials are extrusion-coated on molded articles such as films and sheets formed using the EVOH composition pellets of the present invention, and films and sheets of other base materials are used with an adhesive.
  • any substrate paper, metal foil, uniaxial or biaxially stretched plastic film or sheet and its inorganic deposit, woven fabric, non-woven fabric) Metal cotton strips, wood, etc. can also be used.
  • the layer structure of the multilayer structure includes a (a1, a2,%) Layer formed using the EVOH composition pellets of the present invention, and another substrate, for example, a thermoplastic resin layer, b (b1, (b2,...), with the a layer as the innermost layer, not only a two-layer structure of [inside] a / b [outside] (hereinafter the same), but also, for example, a / b / a, Any combination such as a1 / a2 / b, a / b1 / b2, a1 / b1 / a2 / b2, a1 / b1 / b2 / a2 / b2 / b1, etc.
  • R is a regrind layer made of a mixture of pellets and thermoplastic resin, for example, a / R / b, a / R / a / b, a / b / R / a / R / b, a / b / A / R / a / b, a / b / R / a / R / a / R / b, etc. are also possible.
  • an adhesive resin layer can be provided between the respective layers as necessary.
  • Various adhesive resins can be used.
  • an unsaturated carboxylic acid or an anhydride thereof is an olefin polymer (in the above-mentioned broad sense) in that a multilayer structure having excellent stretchability can be obtained.
  • maleic anhydride graft-modified polyethylene maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block and random) copolymer, maleic anhydride graft-modified ethylene-ethyl acrylate copolymer, anhydrous
  • the amount of the unsaturated carboxylic acid or anhydride thereof contained in the thermoplastic resin is preferably 0.001 to 3% by weight, more preferably 0.01 to 1% by weight, and particularly preferably 0.03%. 0.5% by weight. If the amount of modification in the modified product is too small, the adhesiveness tends to decrease, and conversely if too large, a crosslinking reaction occurs and the moldability tends to decrease.
  • these adhesive resins are blended with EVOH derived from the EVOH composition pellets of the present invention, other EVOH, rubber / elastomer components such as polyisobutylene, ethylene-propylene rubber, and the resin of the b layer. It is also possible. In particular, blending a polyolefin resin different from the base polyolefin resin of the adhesive resin is useful because the adhesiveness may be improved.
  • each layer of the multilayer structure cannot be generally specified depending on the layer configuration, the type of b layer, the use and form of the molded product, the required physical properties, etc.
  • the a layer is 5 to 500 ⁇ m, preferably 10 to The thickness is selected from the range of about 200 ⁇ m
  • the b layer is 10 to 5000 ⁇ m, preferably 30 to 1000 ⁇ m
  • the adhesive resin layer is about 5 to 400 ⁇ m, preferably about 10 to 150 ⁇ m.
  • the multilayer structure is used in various shapes as it is, but it is also preferable to perform a heat stretching treatment in order to improve the physical properties of the multilayer structure.
  • the “heat stretching treatment” means a film, a sheet, and a parison-like laminate that have been heated uniformly and uniformly by a molding means such as a chuck, a plug, a vacuum force, a pneumatic force, a blow, and the like. It means an operation for uniformly forming a tube or film.
  • Such stretching may be either uniaxial stretching or biaxial stretching, and it is better to perform stretching at as high a magnification as possible, and pinholes and cracks, stretching unevenness, uneven thickness, and delamination during stretching.
  • a stretched molded article excellent in gas barrier properties that does not cause (delamination: delamination) or the like is obtained.
  • a roll stretching method As the stretching method of the multilayer structure, a roll stretching method, a tenter stretching method, a tubular stretching method, a stretching blow method, a vacuum / pressure forming method, or the like having a high stretching ratio can be employed.
  • biaxial stretching both a simultaneous biaxial stretching method and a sequential biaxial stretching method can be employed.
  • the stretching temperature is selected from the range of about 60 to 170 ° C, preferably about 80 to 160 ° C. It is also preferable to perform heat setting after the end of stretching.
  • the heat setting can be carried out by a known means, and heat setting can be performed by heat-treating the stretched film at 80 to 170 ° C., preferably 100 to 160 ° C. for about 2 to 600 seconds while maintaining a tension state. it can.
  • the film when used for heat shrink packaging applications such as raw meat, processed meat, cheese, etc., after heat stretching after stretching, it is a product film, and after storing the above raw meat, processed meat, cheese, etc. in the film,
  • the film is heat-shrinked at 50 to 130 ° C., preferably 70 to 120 ° C. for about 2 to 300 seconds, so that the film is heat-shrinked to be tightly packed.
  • the shape of the multilayer structure obtained in this manner may be any shape, and examples thereof include films, sheets, tapes, and modified cross-section extrudates.
  • the above multi-layered structure may be subjected to heat treatment, cooling treatment, rolling treatment, printing treatment, dry laminating treatment, solution or melt coating treatment, bag making processing, deep drawing processing, box processing, tube processing, split processing as necessary. Etc. can be performed.
  • Containers and lids made of bags, cups, trays, tubes, bottles, etc. made of films, sheets, stretched films, and the like obtained as described above are seasonings such as mayonnaise and dressing, miso, etc. It is useful as a container for various packaging materials for fermented foods, fats and oils such as salad oil, beverages, cosmetics, and pharmaceuticals.
  • Cinnamic acid content of pellets Regarding the cinnamic acid content in the EVOH composition pellets, when cinnamic acids are added directly to the EVOH pellet surface, the addition amount can be regarded as the content.
  • LC / MS / MS liquid chromatography mass spectrometry
  • Cinnamic acid (10.89 mg) was weighed into a 10 mL volumetric flask and dissolved in methanol to give a 10 mL solution (standard stock solution; 1089 ⁇ g / mL). Subsequently, the prepared standard stock solution was diluted with methanol, and each mixed standard (0.109 ⁇ g / mL, 0.218 ⁇ g / mL, 0.545 ⁇ g / mL, 1.09 ⁇ g / mL, 2.18 ⁇ g / mL) was mixed. A solution was prepared. LC / MS / MS analysis was performed using these mixed standard solutions, and a calibration curve was prepared.
  • sample solution After weighing EVOH composition pellets (1 g) into a 10 mL volumetric flask, 9 mL of methanol was added, sonication was performed for 120 minutes, and the mixture was allowed to cool at room temperature (25 ° C.). Methanol was added to this solution, and the volume was adjusted to 10 mL to obtain sample solution 1. Moreover, 1 mL of this sample solution 1 was sampled into a 10 mL volumetric flask, and made up to 10 mL with methanol to obtain sample solution 2. The liquid obtained by filtering the sample solution 1 or the sample solution 2 with a PTFE filter (0.45 ⁇ m) was subjected to LC / MS / MS analysis as a measurement solution.
  • the alkali metal content in this sample solution was measured using an inductively coupled plasma optical emission spectrometer (ICP-AES) (manufactured by Agilent Technologies, Model 720-ES). Finally, the alkali metal content in the EVOH composition pellet of the sample was converted from the alkali metal concentration in the solution. Moreover, when adding an alkali metal compound directly to the pellet surface of EVOH, the addition amount converted into the metal was considered as content.
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • Alkaline earth metal content of pellets Regarding the alkaline earth metal content in the EVOH composition pellets, when adding alkaline earth metals directly to the EVOH pellet surface, the content in terms of metal content is added. Considered. When alkaline earth metal was present inside the EVOH composition pellets, 2 g of EVOH composition pellets were collected in a platinum dish, and several mL of sulfuric acid was added and heated with a gas burner. After confirming that the pellets were carbonized and free of white sulfuric acid smoke, a few drops of sulfuric acid was added and heated again. This operation was repeated until there was no organic matter, and it was completely incinerated.
  • the container after incineration was allowed to cool, and 1 mL of hydrochloric acid was added and dissolved.
  • the hydrochloric acid solution was washed with ultrapure water, and the volume was adjusted to 50 mL to obtain a sample solution.
  • the alkaline earth metal content in the sample solution was measured by an inductively coupled plasma optical emission spectrometer (ICP-AES) (Agilent Technology, 720-ES type). Finally, the alkali metal earth content in the EVOH composition pellets was converted from the alkaline earth metal concentration in the sample solution.
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • Moisture content of pellets (%) Volatile matter was determined from the weight of EVOH pellets before drying and the weight of EVOH pellets after drying at 150 ° C. for 5 hours, and this was used as the moisture content of the EVOH pellets. Specifically, the moisture content is represented by the following formula. This measurement evaluation method is applied to EVOH pellets, EVOH pellets before preparation of surface layer boron, and EVOH composition pellets. Water content (%) [(EVOH pellet weight before drying ⁇ EVOH pellet weight after drying) / EVOH pellet weight before drying] ⁇ 100
  • the measurement of fish eye is about 100 cm 2 (size: 10 cm x 10 cm), with one fish eye being the part (diameter 0.1 to 0.2 mm) where light was applied from the lower surface of the single-layer film. This was done by counting the number of fish eyes. In addition, the reading speed at the time of measurement is 3 m / min.
  • porous EVOH pellets 100 parts were put into 200 parts of 0.0054% boric acid aqueous solution and stirred at 30 ° C. for 5 hours. After stirring, the porous EVOH pellets before adjusting the surface layer boron were collected. This EVOH pellet before surface layer boron adjustment was dried to a moisture content of 20% by passing nitrogen gas at 75 ° C. for 3 hours in a batch tower type fluidized bed dryer. Next, using a batch type box-type aerated dryer, nitrogen gas at 125 ° C. was passed through for 18 hours to dry the moisture content to 0.3%. The EVOH pellets before the surface layer boron adjustment after drying obtained as described above were subjected to the following cleaning treatment.
  • the EVOH pellets containing the obtained boron compound were measured for the total content of the boron compound, the boron compound content of the surface layer part, and the water content by the above-described methods.
  • the total boron compound content (in terms of boron) was 128.8 ppm, and the boron compound content (in terms of boron) in the surface layer portion was 1.1 ppm (water content 0.10%).
  • cinnamic acid was dry blended to 0.03% to obtain EVOH composition pellets in which the boron compound content and the cinnamic acid content were adjusted.
  • the obtained EVOH composition pellets were formed into a film at a maximum temperature of 210 ° C. and a screw rotation speed of 20 rpm by the above method using a single layer T-die extrusion apparatus to produce a single layer film having a thickness of 30 ⁇ m.
  • production number of fish eyes was investigated by the said method. The results are shown in Table 1.
  • Example 2 the total content of boron compounds, the boron compound content in the surface layer part, and the cinnamic acid content were adjusted as shown in Table 1 below to obtain EVOH composition pellets. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (the moisture content was 0.15% in Example 2 and 0.15% in Example 3). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 1, and the generation of fish eyes was evaluated. The results are shown in Table 1 below.
  • EVOH composition pellets were produced in the same manner as in Example 1 except that the cleaning treatment liquid was changed to water. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.13%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 1, and the generation of fish eyes was evaluated. The results are shown in Table 1 below.
  • EVOH composition pellets were produced in the same manner as in Example 1 except that no washing with the washing treatment liquid was performed and cinnamic acid was not used. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.09%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 1, and the generation of fish eyes was evaluated. The results are shown in Table 1 below.
  • EVOH composition pellets were produced in the same manner as in Example 1 except that the cinnamic acid content was adjusted to the content shown in Table 1 below. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (both water contents were 0.10%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 1, and the generation of fish eyes was evaluated. The results are shown in Table 1 below.
  • the product pellets were able to significantly suppress the generation of fish eyes compared to the comparative example.
  • EVOH pellets 100 parts were put into 200 parts of an aqueous solution containing 0.0054% boric acid and 0.0407% sodium acetate, and stirred at 30 ° C. for 5 hours to adjust the surface part boron containing an alkali metal.
  • the previous EVOH pellet was collected.
  • the EVOH pellets before adjustment of the surface layer boron containing the alkali metal were dried to a moisture content of 20% by passing nitrogen gas at 75 ° C. for 3 hours in a batch tower type fluidized bed dryer. Next, using a batch type box-type aerated dryer, nitrogen gas at 125 ° C. was passed through for 18 hours to dry the moisture content to 0.3%.
  • the EVOH pellet before adjusting the surface layer boron containing the alkali metal after drying obtained as described above was subjected to the following washing treatment.
  • a stainless steel container containing 5 parts of EVOH pellets before adjustment of the surface layer containing boron metal after drying and 10 parts of water / methanol mixed solvent [water / methanol 3/7 (weight ratio)] as a cleaning treatment liquid And stirred at 35 ° C. for 1 hour. Thereafter, the pellets were taken out and dried under a nitrogen stream at 120 ° C. for 16 hours. As described above, EVOH composition pellets were obtained.
  • the obtained EVOH composition pellets were measured for the total content of boron compounds, the boron compound content of the surface layer part, the alkali metal content, and the moisture content by the above-described measurement evaluation method.
  • the total boron compound content (in terms of boron) was 128.8 ppm
  • the boron compound content (in terms of boron) in the surface layer portion was 1.1 ppm
  • the alkali metal content was 240 ppm
  • the water content was 0.13% by weight.
  • the obtained EVOH composition pellets were formed into a film at a maximum temperature of 210 ° C. and a screw rotation speed of 20 rpm using a single-layer T-die extrusion apparatus to produce a single-layer film having a thickness of 30 ⁇ m.
  • the number of fish eyes generated was examined by the above-described measurement evaluation method.
  • a pellet was prepared.
  • the boron total compound content of the obtained EVOH composition pellet, the boron compound content of the surface layer part, and the alkali metal content were measured (moisture content 0.10%).
  • a single layer film was produced in the same manner as in Example 4, and the generation of fish eyes was evaluated. The results are shown in Table 2 below.
  • Example 6 the alkali metal content was adjusted to the content shown in Table 2 below to obtain EVOH composition pellets. Moreover, the boron total compound content of the obtained EVOH composition pellet, the boron compound content of the surface layer part, and the alkali metal content were measured (water content 0.15%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 4, and the generation of fish eyes was evaluated. The results are shown in Table 2 below.
  • EVOH composition pellets were produced in the same manner as in Example 4 except that the cleaning treatment liquid was changed to water. Further, the total content of boron compounds in the EVOH composition pellets, the boron compound content in the surface layer portion, and the alkali metal content were measured (water content 0.13%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 4, and the generation of fish eyes was evaluated. The results are shown in Table 2 below.
  • EVOH composition pellets were produced in the same manner as in Example 4 except that the cleaning with the cleaning treatment liquid was not performed. Further, the total content of boron compounds in the EVOH composition pellets, the boron compound content in the surface layer portion, and the alkali metal content were measured (water content 0.09%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 4, and the generation of fish eyes was evaluated. The results are shown in Table 2 below.
  • EVOH composition pellets were produced in the same manner as in Example 5 except that the alkali metal content was adjusted to the content shown in Table 2 below. Moreover, the boron compound total content of the obtained EVOH composition pellet, the boron compound content of the surface layer part, and the alkali metal content were measured (water content 0.09%). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 4, and the generation of fish eyes was evaluated. The results are shown in Table 2 below.
  • the EVOH composition pellets of Examples 4 to 6 in which the boron compound content in the surface layer part is 1.7 ppm or less per pellet weight in terms of boron and the alkali metal content is 500 ppm or less per pellet weight are compared. Compared to the example, the occurrence of fish eyes could be significantly suppressed.
  • EVOH pellets containing porous conjugated polyene 100 parts were put into 200 parts of 0.0054% boric acid aqueous solution and stirred at 30 ° C. for 5 hours. After stirring, the EVOH pellets before adjusting the surface layer boron containing the conjugated polyene were collected. The EVOH pellets before adjusting the surface layer boron containing this conjugated polyene were dried to a moisture content of 20% by passing nitrogen gas at 75 ° C. for 3 hours in a batch tower type fluidized bed dryer. Next, using a batch type box-type aerated dryer, nitrogen gas at 125 ° C. was passed through for 18 hours to dry the moisture content to 0.3%. The EVOH pellet before adjusting the surface layer boron containing the conjugated polyene after drying obtained as described above was subjected to the following washing treatment.
  • Stainless steel containing 5 parts of EVOH pellets before preparation of boron containing the conjugated polyene after drying and 10 parts of water / methanol mixed solvent [water / methanol 1/1 (weight ratio)] as a treatment liquid for cleaning. It put into the container and stirred at 35 degreeC for 1 hour. Thereafter, the pellets were taken out and dried under a nitrogen stream at 120 ° C. for 16 hours. As described above, EVOH composition pellets were obtained.
  • the obtained EVOH composition pellets were measured for the total content of boron compounds, the content of boron compounds in the surface layer, and the content of conjugated polyenes by the above-described measurement evaluation method.
  • the total boron compound content (in terms of boron) is 128.8 ppm
  • the boron compound content in the surface layer in terms of boron
  • the content of sorbic acid (conjugated polyene) is 0.0478%
  • the water content is 0.8. 10%.
  • the obtained EVOH composition pellets were formed into a film at a maximum temperature of 210 ° C. and a screw rotation speed of 20 rpm using a single-layer T-die extrusion apparatus to produce a single-layer film having a thickness of 30 ⁇ m.
  • the number of fish eyes generated was examined by the above-described measurement evaluation method. The results are shown in Table 3 below.
  • Example 7 the total boron compound content, the boron compound content in the surface layer part, and the conjugated polyene content were adjusted as shown in Table 3 below to obtain EVOH composition pellets. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (the moisture content was 0.18% in Example 8 and 0.18% in Example 9). Subsequently, using this pellet, a single layer film was produced in the same manner as in Example 7, and the generation of fish eyes was evaluated. The results are shown in Table 3 below.
  • EVOH composition pellets were produced in the same manner as in Example 7 except that the washing treatment liquid was changed to water and the sorbic acid (conjugated polyene) content was adjusted to the content shown in Table 3 below.
  • the total boron compound content of the obtained EVOH composition pellets, the boron compound content of the surface layer part, and the sorbic acid (conjugated polyene) content were measured (water content 0.13%).
  • a single layer film was produced in the same manner as in Example 7, and the generation of fish eyes was evaluated. The results are shown in Table 3 below.
  • EVOH composition pellets were produced in the same manner as in Example 7, except that the sorbic acid (conjugated polyene) content was adjusted to the content shown in Table 3 below without washing with the washing treatment liquid.
  • the total content of boron compounds in the obtained EVOH composition pellets, the boron compound content in the surface layer portion, and the sorbic acid (conjugated polyene) content were measured (water content 0.09%).
  • a single layer film was produced in the same manner as in Example 7, and the generation of fish eyes was evaluated. The results are shown in Table 3 below.
  • EVOH composition pellets were produced in the same manner as in Example 7 except that the sorbic acid (conjugated polyene) content was adjusted to the content shown in Table 3 below.
  • the total content of boron compounds in the obtained EVOH composition pellets, the boron compound content in the surface layer part, and the sorbic acid (conjugated polyene) content were measured (moisture content was 0.10%).
  • a single layer film was produced in the same manner as in Example 7, and the generation of fish eyes was evaluated. The results are shown in Table 3 below.
  • EVOH compositions of Examples 7 to 9 in which the boron compound content in the surface layer part is 1.7 ppm or less per pellet weight in terms of boron and the conjugated polyene content is 0.06% by weight or less of the whole pellet
  • the product pellets were able to significantly suppress the generation of fish eyes compared to the comparative example.
  • the EVOH pellets (water content: 0.3%, total boron compound content: 130 ppm) obtained after the drying and thus prepared before the surface layer portion boron were subjected to the following washing treatment.
  • a lubricant (ethylene bis-stearic acid amide: Alfro H-50T, manufactured by NOF Corporation) is added to the EVOH pellets containing the boron compound so as to be 0.0054% so as to be uniform. Shake into.
  • the obtained EVOH composition pellets were measured for the total content of boron compounds and the content of boron compounds in the surface layer by the above-described measurement evaluation method.
  • the total boron compound content was 128.8 ppm, and the boron compound content in the surface layer portion was 1.1 ppm (moisture content 0.10%).
  • the obtained EVOH composition pellets were formed into a film at a maximum temperature of 210 ° C. and a screw rotation speed of 20 rpm using a single-layer T-die extrusion apparatus to produce a single-layer film having a thickness of 30 ⁇ m.
  • the number of fish eyes generated was examined by the above-described measurement evaluation method. The results are shown in Table 4 below.
  • Example 10 EVOH composition pellets were produced in the same manner as in Example 10 except that the lubricant content in the EVOH composition pellets was adjusted to the contents shown in Table 4 below. 0.10%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • Example 13 In Example 10, calcium stearate was used as the lubricant, and the total content of the boron compound, the boron compound content in the surface layer part, and the lubricant content were adjusted to the contents shown in Table 4 below to obtain EVOH composition pellets. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.15%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • Example 14 In Example 10, magnesium stearate was used as the lubricant, and the total content of the boron compound, the boron compound content in the surface layer part, and the lubricant content were adjusted to the contents shown in Table 4 below to obtain EVOH composition pellets. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.15%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • EVOH composition pellets were produced in the same manner as in Example 10 except that the washing treatment liquid was changed to water and the lubricant content was adjusted to the content shown in Table 4 below. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.13%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • EVOH composition pellets were produced in the same manner as in Example 10 except that no washing with the washing treatment liquid was performed and no lubricant was added. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (water content 0.09%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • EVOH composition pellets were produced in the same manner as in Example 10 except that the lubricant content was adjusted to the content shown in Table 4 below. Moreover, the boron compound total content of the obtained EVOH composition pellet and the boron compound content of the surface layer part were measured (both water contents were 0.10%). Next, using this pellet, a single layer film was produced in the same manner as in Example 10, and the generation of fish eyes was evaluated. The results are shown in Table 4 below.
  • the EVOH composition pellets of Examples 10 to 14 having a boron compound content in the surface layer portion of 1.7 ppm or less and containing a lubricant in an amount of 0.001 to 0.15% by weight of the pellets were compared to the comparative example.
  • the generation of eyes could be greatly suppressed. That is, when Example 11 and Comparative Example 11 are compared, the boron compound content in the pellet surface layer is reduced even when the boron compound content of the entire pellet is the same level and the lubricant content is the same. It can be seen that the amount of fish eyes generated in the film of Example 12 when the film was produced was significantly smaller.
  • porous EVOH pellets 100 parts were put into 200 parts of 0.0054% boric acid aqueous solution and stirred at 30 ° C. for 5 hours. After stirring, EVOH pellets before surface layer boron adjustment were collected. This EVOH pellet before surface layer boron adjustment was dried to a moisture content of 20% by passing nitrogen gas at 75 ° C. for 3 hours in a batch tower type fluidized bed dryer. Next, using a batch type box-type aerated dryer, nitrogen gas at 125 ° C. was passed through for 18 hours to dry the moisture content to 0.3%. The EVOH pellets before the surface layer boron adjustment after drying obtained as described above were subjected to the following cleaning treatment.
  • the obtained EVOH composition pellets were measured for the total content of boron compounds, the boron compound content of the surface layer, the alkaline earth metal content, and the water content by the above-described measurement evaluation method.
  • the total boron compound content (in terms of boron) was 128.8 ppm
  • the boron compound content (in terms of boron) in the surface layer portion was 1.1 ppm
  • the alkaline earth metal content was 30 ppm
  • the water content was 0.10% by weight. It was.
  • the obtained boron compound and alkaline earth metal-containing EVOH composition pellets were formed into a film at a maximum temperature of 210 ° C. and a screw rotation speed of 20 rpm using a single-layer T-die extrusion device to produce a single-layer film having a thickness of 30 ⁇ m. .
  • the number of fish eyes generated was examined by the above-described measurement evaluation method. The results are shown in Table 5 below.
  • EVOH composition pellets were produced in the same manner as in Example 15 except that the cleaning treatment liquid was changed to water. Moreover, the boron compound total content of the obtained EVOH composition pellet, the boron compound content of the surface layer part, and the alkaline earth metal content were measured (water content is 0.13%). Next, using this pellet, a single layer film was produced in the same manner as in Example 15, and the generation of fish eyes was evaluated. The results are shown in Table 5 below.
  • EVOH composition pellets were produced in the same manner as in Example 15 except that the alkaline earth metal content was adjusted to the content shown in Table 5 below without washing with the washing treatment liquid. Moreover, the boron compound total content of the obtained EVOH composition pellet, the boron compound content of the surface layer part, and the alkaline earth metal content were measured (moisture content was 0.10%). Next, using this pellet, a single layer film was produced in the same manner as in Example 15, and the generation of fish eyes was evaluated. The results are shown in Table 5 below.
  • Example 15 The EVOH composition pellets of Example 15 in which the boron compound content in the surface layer part is 1.7 ppm or less per pellet weight in terms of boron and the alkaline earth metal content is 100 ppm or less per pellet weight are compared. Compared with Examples 15 and 16, the generation of fish eyes could be significantly suppressed.
  • the EVOH composition pellet of the present invention reduces the content of the boron compound in the surface layer of the pellet and contains a predetermined amount of fish eye suppressing component, the appearance can be improved without impairing moldability. And, it can be suitably used in fields where appearance requirements as packaging materials are stricter than conventional EVOH pellets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

エチレン-ビニルアルコール系共重合体の単層膜でも、フィッシュアイの発生を抑制できるエチレン-ビニルアルコール系共重合体ペレットとして、ホウ素化合物含有するエチレン-ビニルアルコール系共重合体組成物ペレットであって、当該ペレット表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ特定割合のフィッシュアイ抑制成分を少なくとも一つ含有するエチレン-ビニルアルコール系共重合体組成物ペレットを提供する。

Description

エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法
 本発明は、フィルム成形したときに、フィッシュアイの発生が少ないフィルムを提供できるエチレン-ビニルアルコール系共重合体(以下、「EVOH」と称することがある)組成物のペレットに関し、さらに詳しくは、ペレット表面に存在するホウ素化合物の含有量を調整し、かつ特定の成分を所定量含有するEVOH組成物ペレットおよびその製造方法に関する。
 EVOHは、分子鎖に含まれる水酸基が強固に水素結合して結晶部を形成し、かかる結晶部が外部からの酸素等の気体の侵入を防止するため、酸素バリア性をはじめとして、優れたガスバリア性を示すことができる。このような特性を生かして、EVOHは、食品包装材料、医薬品包装材料、工業薬品包装材料、農薬包装材料等のフィルムやシート、あるいはボトル等の包装容器等に成形されて利用されている。
 上記EVOHは、通常、溶融成形によって、フィルム状、シート状、ボトル状、カップ状、チューブ状、パイプ状等の形状に成形、加工されて、実用に供される。したがって、EVOHの成形性、加工性は重要である。
 そこで、溶融成形性の改善にあたり、特許文献1には、EVOH等の溶融成形可能なビニルアルコール系共重合体の膜成形性、特に成膜時のサージング防止の観点から、ホウ酸またはその塩を配合した組成物として、溶融粘度を高めたものを溶融成形することが有効であることが開示されている。
 また、特許文献2には、ホウ素化合物で処理したEVOHを、ポリオレフィンと共押出することにより、EVOH層とポリオレフィン層との接着性に優れた積層体が得られ、ガスバリア性能を要する分野において、好適な包装材を提供できることが開示されている。
 特許文献2の、ホウ素化合物処理は、EVOH溶液または分散液にホウ素化合物を添加することにより行われ、ホウ素成分を含有したEVOHペレットを押出成形原料として用いている。
 ところで、包装材料としてのEVOHフィルムまたは多層構造体の外観に対する昨今の要求の高まりから、0.1mm未満の小さなフィッシュアイについても、改善が求められるようになっている。
 特許文献3では、EVOHにホウ素化合物を含有させる処理を行って得られるホウ素含有EVOHペレットについて、ペレットの含水率が0.1mm未満のフィッシュアイの発生と関係があることを見出し、含水率が0.0001~2重量%となるように乾燥させた後、水と接触させることにより、0.1mm未満のフィッシュアイの発生を抑制できることが開示されている。
 特許文献3の実施例では、ホウ素化合物の添加処理を施したEVOHペレットを水に浸漬した後、乾燥させて、ホウ素化合物の含有量および含水率を調整したEVOHペレット〔含水率0.13~0.4重量%、EVOH100重量部に対するホウ素含有量0.015~0.039重量部(150~390ppm)〕を製造し、このEVOHペレットを、多層押出装置に供給して、3種5層の多層積層体を製造している(実施例1,3,4)。そして、得られた多層構造体のフィッシュアイの評価は、目視による観察で、直径0.01~0.1mmのフィッシュアイの発生の個数をカウントすることにより行っている(段落〔0038〕-〔0041〕)。
日本国特公昭62-3866号公報 日本国特公平3-11270号公報 日本国特開2000-44756号公報
 近年、包装材料の外観に対する要求は益々厳しくなっており、成形時のサージング防止等の溶融成形性を確保しつつ、さらなるフィッシュアイの発生を抑制することが望まれている。特に、EVOHを単層成膜した場合、多層構造体の場合よりも、大きなフィッシュアイが発生しやすく、また発生個数も多くなる傾向があるため、EVOHの単層膜でも、フィッシュアイの発生が抑制されたEVOHペレットが求められるようになっており、上記特許文献1~3の開示技術では、まだまだ満足のいくものではなかった。
 本発明は、以上のような事情に鑑みてなされたものであり、その目的とするところは、EVOH単層膜でもフィッシュアイの発生を抑制できる、ホウ素化合物および特定成分を含有するEVOHペレットおよびその製造方法を提供することにある。
 本発明者らは、上記の事情に鑑み鋭意研究を重ねた結果、EVOHペレットの表層部のホウ素化合物の含有量を従来よりも少なくし、かつ、桂皮酸類、アルカリ金属、共役ポリエン、滑剤およびアルカリ土類金属からなる群から選択される少なくとも一つの成分(以下、これらを総称して「フィッシュアイ抑制成分」ということがある)の含有量を所定量とすることにより、溶融成形した際のフィッシュアイが減少することを見出した。
 なお、本発明のEVOH組成物ペレットを用いて得られる膜(層、フィルムを含む)は、単層膜であっても成形性に優れ、外観に優れているので、耐水性、強度等の観点から、他の樹脂層を積層した多層構造体においても、当然に適用できるものである。
 すなわち、本発明は、ホウ素化合物を含有するEVOH組成物ペレットであって、当該ペレット表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ下記の(A)~(E)からなる群から選択される少なくとも一つの成分(フィッシュアイ抑制成分)を含有するEVOH組成物ペレットを第1の要旨とする。
(A)上記EVOH組成物ペレットに対する含有割合が重量基準で0.0001~0.05重量%である桂皮酸類。
(B)上記EVOH組成物ペレットに対する含有割合が重量基準で500ppm以下であるアルカリ金属。
(C)上記EVOH組成物ペレットに対する含有割合が重量基準で0.06重量%以下である共役ポリエン。
(D)上記EVOH組成物ペレットに対する含有割合が重量基準で0.001~0.15重量%である滑剤。
(E)上記EVOH組成物ペレットに対する含有割合が重量基準で100ppm以下であるアルカリ土類金属。
 また、本発明は、EVOHのペレットをホウ素化合物と接触させることによりホウ素化合物を含有させる工程、ホウ素化合物を含有するEVOHのペレットを洗浄して、ペレット表層部のホウ素化合物含有量を、ホウ素換算で当該ペレット重量あたり1.7ppm以下にする工程、および下記の(A’)~(E’)からなる群から選択される少なくとも一つの工程を備えるEVOH組成物ペレットの製造方法であって、上記洗浄工程の洗浄が、乾燥したEVOHのペレットと、水のアルコールに対する重量比(水/アルコール)が80/20~0/100の水/アルコール混合溶液またはアルコールとを接触させることである、EVOH組成物ペレットの製造方法を第2の要旨とする。
(A’)上記EVOH組成物に対する桂皮酸類の含有量が、重量基準で0.0001~0.05重量%となるようにEVOHのペレットと桂皮酸類とを接触させる工程。
(B’)上記EVOH組成物に対するアルカリ金属の含有量が、重量基準で500ppm以下となるようにEVOHのペレットとアルカリ金属とを接触させる工程。
(C’)上記EVOH組成物に対する共役ポリエンの含有量が、重量基準で0.06重量%以下となるようにEVOHのペレットと共役ポリエンとを接触させる工程。
(D’)上記EVOH組成物に対する滑剤の含有量が、重量基準で0.001~0.15重量%となるようにEVOHのペレットと滑剤とを接触させる工程。
(E’)上記EVOH組成物に対するアルカリ土類金属の含有量が、重量基準で100ppm以下となるようにEVOHのペレットとアルカリ土類金属とを接触させる工程。
 本発明のEVOH組成物ペレットは、当該ペレット表層部のホウ素化合物の含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ特定のフィッシュアイ抑制成分を所定量含んでいる。そのため、本発明のEVOH組成物ペレットは、溶融成形性を確保しつつ、フィッシュアイの発生を抑制する効果に優れる。
 また、本発明のなかでも、特に、EVOH組成物ペレット全体のホウ素化合物全含有量が、ホウ素換算で上記ペレット重量あたり10~1000ppmであると、成膜に適した粘度となり、成膜性能を向上させることができ、ひいてはフィッシュアイの発生を抑制する効果に優れるものとなる。
 さらに、本発明のなかでも、特に、EVOH組成物ペレット全体のホウ素化合物全含有量(ホウ素換算)に対する上記ペレット表層部のホウ素化合物含有量(ホウ素換算)の重量比(表層部ホウ素化合物含有量/ホウ素化合物全含有量)が、1.38×10-2以下であると、よりフィッシュアイの発生を抑制する効果に優れるものとなり、またフィルム外観を向上させることができる。
 そして、本発明のなかでも、特に、EVOH組成物ペレットの含水率が0.01~1重量%であると、よりフィッシュアイの発生を抑制する効果に優れるものとなり、またフィルム外観を向上させることができる。
 また、本発明は、EVOHのペレットをホウ素化合物と接触させることによりホウ素化合物を含有させる工程、ホウ素化合物を含有するEVOHのペレットを洗浄して、ペレット表層部のホウ素化合物含有量を、ホウ素換算で当該ペレット重量あたり1.7ppm以下に、および少なくとも一つのフィッシュアイ抑制成分を所定量含有させる工程を備えるEVOH組成物ペレットの製造方法であり、上記洗浄工程の洗浄が、乾燥したEVOHのペレットと、水のアルコールに対する重量比(水/アルコール)が80/20~0/100の水/アルコール混合溶液またはアルコールとを接触させることであるため、得られるEVOH組成物ペレットは、所定量のフィッシュアイ抑制成分を含有し、かつ表層部のホウ素化合物含有量を減じたEVOH組成物ペレットとすることができる。そして、当該ペレットを用いた溶融成形品は、溶融成形性が良好で、フィッシュアイの発生が抑制する効果に優れたものとなる。
 以下、本発明を詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、これらの内容に特定されるものではない。
 なお、本明細書において、EVOH組成物ペレットにおけるホウ素化合物のホウ素換算で測定された含有量については、「ホウ素化合物(全)含有量(ホウ素換算)」または単に「ホウ素含有量」と称する。
 以下、本発明のEVOH組成物ペレットの説明に先立って、各構成成分、および、ホウ素化合物とフィッシュアイ抑制成分とを含有させる前のEVOHペレットの製造方法について説明する。
<EVOH>
 本発明のEVOH組成物ペレットを構成するEVOHは、通常、エチレンとビニルエステル系モノマーとの共重合体(エチレン-ビニルエステル系共重合体)をケン化させることにより得られる樹脂であり、一般的にエチレン-ビニルアルコール系共重合体やエチレン-ビニルエステル系共重合体ケン化物と称される非水溶性の熱可塑性樹脂である。重合法も公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合を用いて行うことができるが、一般的にはメタノール等の低級アルコール、特に好ましくはメタノールを溶媒とする溶液重合が用いられる。得られたエチレン-ビニルエステル系共重合体のケン化も公知の方法で行い得る。
 このようにして製造されるEVOHは、エチレン由来の構造単位とビニルアルコール構造単位を主とし、必要に応じてケン化されずに残存した若干量のビニルエステル構造単位を通常含む。
 上記ビニルエステル系モノマーとしては、市場からの入手のしやすさや製造時の不純物の処理効率がよい点から、代表的には酢酸ビニルが用いられる。他のビニルエステル系モノマーとしては、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル;安息香酸ビニル等の芳香族ビニルエステル等があげられ、通常炭素数3~20、好ましくは炭素数4~10、特に好ましくは炭素数4~7の脂肪族ビニルエステルを用いることができる。これらは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。
 上記エチレンおよび上記ビニルエステル系モノマーは、通常、ナフサ等の石油由来の原料が用いられているが、シェールガス等天然ガス由来の原料や、さとうきび、テンサイ、トウモロコシ、ジャガイモ等に含まれる糖、デンプン等の成分、またはイネ、麦、キビ、草植物等に含まれるセルロース等の成分から精製した植物由来の原料からのモノマーを用いてもよい。
 本発明で用いられるEVOHのエチレン構造単位の含有量は、ISO14663に基づいて測定した値で、通常20~60モル%、好ましくは25~50モル%、特に好ましくは27~48モル%である。かかる含有量が低すぎる場合は、高湿下のガスバリア性、溶融成形性が低下する傾向があり、逆に高すぎる場合は、ガスバリア性が低下する傾向がある。
 上記EVOHにおけるビニルエステル成分のケン化度は、JIS K6726(ただし、溶媒として水/メタノールを使用)に基づいて測定した値で、通常90~100モル%、好ましくは95~100モル%、特に好ましくは99~100モル%である。かかるケン化度が低すぎる場合にはガスバリア性、熱安定性、耐湿性等が低下する傾向がある。
 また、上記EVOHのメルトフローレート(MFR)(210℃、荷重2160g)は、通常0.5~100g/10分であり、好ましくは1~50g/10分、特に好ましくは2~35g/10分である。かかるMFRが大きすぎる場合には、成膜性が不安定となる傾向があり、小さすぎる場合には粘度が高くなり過ぎて溶融押出しが困難となる傾向がある。
 本発明で用いられるEVOHには、本発明の効果を阻害しない範囲(例えば10モル%以下)で、以下に示すコモノマーに由来する構造単位が、さらに含まれていてもよい。
 上記コモノマーとしては、プロピレン、1-ブテン、イソブテン等のオレフィン類、3-ブテン-1-オール、3-ブテン-1,2-ジオール、4-ペンテン-1-オール、5-ヘキセン-1,2-ジオール等の水酸基含有α-オレフィン類やそのエステル化物、2-メチレンプロパン-1,3-ジオール、3-メチレンペンタン-1,5-ジオール等のヒドロキシアルキルビニリデン類;1,3-ジアセトキシ-2-メチレンプロパン、1,3-ジプロピオニルオキシ-2-メチレンプロパン、1,3-ジブチロニルオキシ-2-メチレンプロパン等のヒドロキシアルキルビニリデンジアセテート類、アシル化物等の誘導体;アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1~18のモノまたはジアルキルエステル類;アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類;メタアクリルアミド、炭素数1~18のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド類;アクリルニトリル、メタクリルニトリル等のシアン化ビニル類;炭素数1~18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル化合物類;トリメトキシビニルシラン等のビニルシラン類;酢酸アリル、塩化アリル等のハロゲン化アリル化合物類;アリルアルコール、ジメトキシアリルアルコール等のアリルアルコール類;トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸等のコモノマーがあげられる。これらは単独でもしくは2種以上併せて用いることができる。
 特に、ヒドロキシ基含有α-オレフィン類を共重合したEVOHは、二次成形性が良好になる点で好ましく、中でも側鎖に1級水酸基を有するEVOH、特には1,2-ジオール構造を側鎖に有するEVOHが好ましい。
 かかる1,2-ジオール構造を側鎖に有するEVOHは、側鎖に1,2-ジオール構造単位を含むものである。かかる1,2-ジオール構造単位とは、具体的には下記一般式(1)で示される構造単位である。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)式中、R1~R6はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示す。
 上記一般式(1)で表される1,2-ジオール構造単位における有機基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の飽和炭化水素基;フェニル基、ベンジル基等の芳香族炭化水素基;ハロゲン原子、水酸基、アシルオキシ基、アルコキシカルボニル基、カルボキシル基、スルホン酸基等があげられる。
 R1~R3は、通常炭素数1~30、特には炭素数1~15、さらには炭素数1~4の飽和炭化水素基または水素原子が好ましく、水素原子が最も好ましい。R4~R6は、通常炭素数1~30、特には炭素数1~15、さらには炭素数1~4のアルキル基または水素原子が好ましく、水素原子が最も好ましい。特に、R1~R6がすべて水素原子であるものが最も好ましい。
 また、上記一般式(1)で表わされる構造単位中のXは、代表的には単結合である。
 なお、本発明の効果を阻害しない範囲であれば、Xは結合鎖であってもよい。かかる結合鎖としては特に限定されないが、例えば、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素鎖(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、-O-、-(CH2O)m-、-(OCH2)m-、-(CH2O)mCH2-等のエーテル結合部位を含む構造;-CO-、-COCO-、-CO(CH2)mCO-、-CO(C64)CO-等のカルボニル基を含む構造;-S-、-CS-、-SO-、-SO2-等の硫黄原子を含む構造;-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-等の窒素原子を含む構造;-HPO4-等のリン原子を含む構造等のヘテロ原子を含む構造;-Si(OR)2-、-OSi(OR)2-、-OSi(OR)2O-等の珪素原子を含む構造;-Ti(OR)2-、-OTi(OR)2-、-OTi(OR)2O-等のチタン原子を含む構造;-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等のアルミニウム原子を含む構造等の金属原子を含む構造等があげられる。
 なお、mは自然数であり、通常1~30、好ましくは1~15、さらに好ましくは1~10である。その中でも製造時あるいは使用時の安定性の点で-CH2OCH2-、および炭素数1~10の炭化水素鎖が好ましく、さらには炭素数1~6の炭化水素鎖、特には炭素数1であることが好ましい。
 上記一般式(1)で表される1,2-ジオール構造単位における最も好ましい構造は、R1~R6がすべて水素原子であり、Xが単結合であるものである。すなわち、下記一般式(1a)で示される構造単位が最も好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1a)で表される1,2-ジオール構造単位を含有する場合、その含有量は通常0.1~20モル%、さらには0.1~15モル%、特には0.1~10モル%のものが好ましい。
 また、本発明で用いるEVOHは、さらに、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の「後変性」されたEVOHを用いることもできる。
<ホウ素化合物>
 フィッシュアイの発生原因の一つとして、ホウ素化合物を含有するEVOHペレットに存在するホウ素化合物の凝集体が、EVOHの局所的増粘を引き起こすことが考えられる。また、ホウ素化合物を含有するEVOHペレットを単層成膜する場合、成形機の金属と接することになるペレット表層部に存在するホウ素化合物が凝集しやすくなることも、フィッシュアイの発生原因の一つと考えられる。そこで、本発明は、EVOH組成物ペレットの表層部のホウ素化合物含有量を特定量以下とすることにより、ホウ素化合物の凝集を防ぎ、フィッシュアイの発生を抑制するという効果を奏する。
 本発明のEVOH組成物ペレットのペレット表層部におけるホウ素化合物含有量は、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、好ましくは1.6ppm以下、より好ましくは1.5ppm以下である。下限は、特に限定しないが、EVOH組成物ペレット中のホウ素化合物全含有量(ホウ素換算)が下記で説明する範囲内である場合、通常、1ppb以上、好ましくは50ppb以上、より好ましくは100ppb以上である。
 表層部のホウ素化合物含有量(ホウ素換算)が多くなりすぎると、フィッシュアイが発生しやすくなり、フィルム外観が低下することとなり、また、成膜性も低下することとなる。
 本発明において、「ペレット表層部のホウ素化合物含有量」とは、EVOH組成物ペレットが含有するホウ素化合物のうち、表面近くに存在しているホウ素化合物の量をいい、具体的には、本発明のEVOH組成物ペレット4gを30℃のメタノール20mLに6時間静置浸漬した後、得られたメタノール溶液中のホウ素含有量を誘導結合プラズマ質量分析計(ICP-MS)を用いて測定し、上記EVOH組成物ペレットの重量(4g)で除したものである。この「ペレット表層部のホウ素化合物」には、ペレット表面に付着しているだけのホウ素化合物、表面にブリードしてきたホウ素化合物等が含まれる。
 そして、「ペレット表層部のホウ素化合物含有量」は、EVOH組成物ペレット中に含有されているホウ素化合物含有量(「ペレットのホウ素化合物全含有量」)とは区別されるものである。
 また、本発明のEVOH組成物ペレットにおける、ホウ素化合物の全含有量は、ホウ素換算で当該ペレット重量あたり10~1000ppmであることが好ましく、より好ましくは20~500ppm、さらに好ましくは30~140ppmである。EVOH組成物ペレットに含有されるホウ素化合物含有量が少なすぎると、溶融粘度が低くなり、成膜性能が低下する傾向があり、特にインフレーション成膜が困難となる傾向がある。したがって、少なくともホウ素含有量が10ppm程度となるように、ホウ素化合物を含有させることが好ましい。
 上記EVOH組成物ペレット中に含有されるホウ素化合物の量〔ホウ素化合物全含有量(ホウ素換算)〕は、ペレットを濃硝酸とともにマイクロウェーブ分解法にて処理して得られた溶液に、純水を加えて定容したものを検液とし、この検液に含まれるホウ素を誘導結合プラズマ発光分析計(ICP-AES)で測定することにより得られる。
 本発明のEVOH組成物ペレットは、EVOH組成物ペレット中のホウ素化合物全含有量(ホウ素換算)に対する表層部のホウ素化合物含有量(ホウ素換算)の重量比(表層部のホウ素化合物含有量/ホウ素化合物全含有量)を、1.38×10-2以下とすることが好ましく、より好ましくは1.35×10-2以下、さらに好ましくは1.30×10-2以下である。当該比率が高くなりすぎると、フィッシュアイが発生しやすくなり、フィルム外観が低下する傾向にある。なお、下限値は、通常1×10-7である。
 本発明で用いるホウ素化合物としては、ホウ酸またはその金属塩、例えば、ホウ酸ナトリウム(メタホウ酸ナトリウム、二ホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等)、ホウ酸カリウム(メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム等)、ホウ酸リチウム(メタホウ酸リチウム、四ホウ酸リチウム、五ホウ酸リチウム等)、ホウ酸カルシウム、ホウ酸バリウム(オルトホウ酸バリウム、メタホウ酸バリウム、二ホウ酸バリウム、四ホウ酸バリウム等)、ホウ酸マグネシウム(オルトホウ酸マグネシウム、二ホウ酸マグネシウム、メタホウ酸マグネシウム、四ホウ酸三マグネシウム、四ホウ酸五マグネシウム等)、ホウ酸マンガン(ホウ酸第1マンガン、メタホウ酸マンガン、四ホウ酸マンガン等)、ホウ酸コバルト、ホウ酸亜鉛(四ホウ酸亜鉛、メタホウ酸亜鉛等)、ホウ酸カドミウム(オルトホウ酸カドミウム、四ホウ酸カドミウム等)、ホウ酸銀(メタホウ酸銀、四ホウ酸銀等)、ホウ酸銅(ホウ酸第2銅、メタホウ酸銅、四ホウ酸銅等)、ホウ酸ニッケル(オルトホウ酸ニッケル、二ホウ酸ニッケル、四ホウ酸ニッケル、八ホウ酸ニッケル等)、ホウ酸アルミニウム・カリウム、ホウ酸アンモニウム(メタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウム等)、ホウ酸鉛(メタホウ酸鉛、六ホウ酸鉛等)、ホウ酸ビスマス等の他、ホウ砂、カーナイト、インヨーアイト、コトウ石、スイアン石、ザイベリ石等のホウ酸塩鉱物等があげられ、好適にはホウ砂、ホウ酸があげられる。これらは単独でもしくは2種以上併せて用いることができる。ここでホウ素化合物のアルカリ金属塩またはアルカリ土類金属塩を含有した場合、その含有量は、本発明のEVOH組成物ペレット中のアルカリ金属またはアルカリ土類金属の含有量に含まれる。
 本発明のEVOH組成物ペレットは、上記ホウ素化合物と共に、さらに、フィッシュアイ抑制成分として、下記の(A)~(E)から選択される少なくとも一つの成分を含有することを特徴とする。
(A)上記EVOH組成物ペレットに対する含有割合が重量基準で0.0001~0.05重量%である桂皮酸類。
(B)上記EVOH組成物ペレットに対する含有割合が重量基準で500ppm以下であるアルカリ金属。
(C)上記EVOH組成物ペレットに対する含有割合が重量基準で0.06重量%以下である共役ポリエン。
(D)上記EVOH組成物ペレットに対する含有割合が重量基準で0.001~0.15重量%である滑剤。
(E)上記EVOH組成物ペレットに対する含有割合が重量基準で100ppm以下であるアルカリ土類金属。
<<(A)フィッシュアイ抑制成分として桂皮酸類を用いる態様>>
 本発明において、フィッシュアイ抑制成分として桂皮酸類を用いる態様について説明する。
 一般的に溶融成形時にEVOHが押出機内部に滞留すると、EVOHの劣化やゲル化が進み、この滞留物が排出されるとフィッシュアイの発生へとつながる。桂皮酸類はEVOHを適度に架橋させて粘度を上げる性質があるため、所定量の桂皮酸類をEVOHに含有させて成膜すると、押出機内部でEVOHの粘度が適度に上昇し、EVOHが押出機内部で滞留する前に、直ちに後続の粘度の高いEVOHによって排出される。そのためフィッシュアイの発生を抑制することができるものと推測される。
 なお、桂皮酸類を過剰添加すると、極端に架橋反応が促進され、EVOHが増粘しすぎるため、フィッシュアイが増加する。
 本発明のEVOH組成物ペレットにおける桂皮酸類含有量は、当該ペレット全体の0.0001~0.05重量%であり、好ましくは0.001~0.04重量%、さらに好ましくは0.005~0.035重量%である。かかる含有量が少なすぎると、フィッシュアイの発生を抑制する効果が低下し、多すぎるとEVOHが増粘しすぎてしまい、逆にフィッシュアイの発生およびその他の押出成形性が低下する。
 本発明で用いる桂皮酸類としては、桂皮酸に限らず、例えば、桂皮酸エステル、アルコキシ基を有する桂皮酸、桂皮酸アミド、桂皮酸塩等の桂皮酸誘導体があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、桂皮酸が好ましい。なお、複数種の桂皮酸類を用いた時の桂皮酸類の含有量は、全桂皮酸類を合計した含有量である。
 本発明のEVOH組成物ペレットにおける「桂皮酸類の含有量」とは、EVOH組成物ペレットの表面、または内部、またはその両方に含有する桂皮酸類の量を意味し、例えば、つぎのようにして測定することができる。
<桂皮酸類の含有量の測定方法>
 EVOH組成物ペレットの表面にのみ桂皮酸類を含有する場合は、EVOH組成物ペレット表面への桂皮酸類の添加量を含有量としてもよく、また、EVOH組成物ペレット内部に桂皮酸類を含有する場合は、EVOH組成物ペレット1gを25℃の抽出液(例えば、桂皮酸の場合はメタノール)9mLに浸漬し、2時間超音波処理して得られた抽出液をLC/MS/MS分析にて測定することにより得られる。
<<(B)フィッシュアイ抑制成分としてアルカリ金属を用いる態様>>
 つぎに、本発明において、フィッシュアイ抑制成分としてアルカリ金属を用いる態様について説明する。
 上述のようにEVOHが押出機内部に滞留すると劣化やゲル化が進み、この滞留物が排出されるとフィッシュアイの発生へとつながる。アルカリ金属はEVOHに対して減粘作用をもつため、EVOHが押出機内部で滞留した際の架橋による増粘を緩和し、結果としてフィッシュアイの発生を抑制できるものと推測される。
 さらに、添加したアルカリ金属がEVOH組成物ペレット表面に存在する特定量以下のホウ素化合物と相互作用することで、ホウ素化合物の凝集を抑制するため、ホウ素化合物由来のフィッシュアイの発生を抑制できるものと推測される。
 本発明のEVOH組成物ペレットにおけるアルカリ金属含有量は、当該ペレット重量あたり500ppm以下であり、好ましくは400ppm以下、さらに好ましくは300ppm以下である。なお、アルカリ金属量の下限は10ppmである。かかるアルカリ金属含有量が少なすぎるとEVOHを減粘させることによるフィッシュアイの発生を抑制する効果が低下し、多すぎるとEVOH中で分散が不充分となったアルカリ金属塩が凝集することでフィッシュアイを増加させたり、EVOHの分解が過度に進行することで、EVOHが着色したり、臭気が発生する。
 本発明に用いられるアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムがあげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのうち、好ましくはナトリウムおよびカリウムであり、特に好ましくはナトリウムである。なお、本発明におけるアルカリ金属の含有量とは金属換算量であり、2種以上併せて用いた時の含有量は、全アルカリ金属の金属換算量を合計した値である。
 本発明のEVOH組成物ペレットに上記アルカリ金属を含有させるためのアルカリ金属源としては、アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ金属塩等のアルカリ金属化合物があげられる。これらは水溶性であることが好ましい。なかでも、分散性の点からアルカリ金属塩が好ましい。
 本発明に用いるアルカリ金属化合物は、経済性と分散性の点から、無機層状化合物や複塩を除くことが好ましい。
 上記アルカリ金属化合物は、例えばアルカリ金属塩として存在する場合の他、イオン化した状態、あるいは樹脂や他の配位子とした錯体の状態で存在していてもよい。
 アルカリ金属塩としては、例えば、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、硫酸塩、塩化物塩等の無機塩;酢酸塩、酪酸塩、プロピオン酸塩、エナント酸塩、カプリン酸塩等の炭素数2~11のモノカルボン酸塩;シュウ酸塩、マロン酸塩、コハク酸塩、アジピン酸塩、スベリン酸塩、セバチン酸塩等の炭素数2~11のジカルボン酸塩;EVOHの重合末端カルボキシル基とのカルボン酸塩等のカルボン酸塩等があげられる。これらは単独でもしくは2種類以上併せて用いることができる。
 これらのなかでも、好ましくはカルボン酸塩であり、さらに好ましくは炭素数2~11のカルボン酸塩であり、さらに好ましくは炭素数2~11の脂肪族カルボン酸塩であり、さらに好ましくは炭素数2~6の脂肪族モノカルボン酸塩であり、特に好ましくは酢酸塩である。
 また、アルカリ金属化合物の分子量としては、通常20~10000、好ましくは20~1000、特に好ましくは20~500である。
 本発明のEVOH組成物ペレットにおける「アルカリ金属含有量」とは、EVOH組成物ペレットの表面、または内部、またはその両方に含有するアルカリ金属の量を意味し、例えば、つぎのようにして測定することができる。
<アルカリ金属の含有量の測定方法>
 EVOH組成物ペレット表面にアルカリ金属を含有する場合は、アルカリ金属換算したアルカリ金属化合物の添加量を含有量としてもよく、EVOH組成物ペレット内部にアルカリ金属を含有する場合は、例えば、乾燥状態のEVOH組成物ペレットを灰化後、塩酸水溶液に溶解して、誘導結合プラズマ発光分析計(ICP-AES)によって測定を行い、標準液の検量線からアルカリ金属の含有量を定量する方法等により得られた値をEVOH組成物ペレット全体の含有量に換算することにより求めることができる。
<<(C)フィッシュアイ抑制成分として共役ポリエンを用いる態様>>
 つぎに、本発明において、フィッシュアイ抑制成分として共役ポリエンを用いる態様について説明する。
 一般的に、押出機内部でEVOHが高温に加熱されると、EVOH分子内にラジカルが発生することでEVOHの劣化を招き、フィッシュアイの発生につながることが知られている。一方、共役ポリエンは分子内に二重結合を複数含むため、EVOHの劣化原因であるラジカルを捕捉する働きを持つ。また、共役ポリエンは二重結合を含む構造であるため分子としての極性は比較的低い。そのため、極性が高いEVOHとの相互作用は比較的弱く、成膜中に共役ポリエンはEVOH内部から排斥されるようにEVOH表面へとブリードしていく。このブリードした共役ポリエンがEVOH組成物ペレット表層付近に存在するホウ素化合物の凝集を防ぐことで、ホウ素化合物由来のフィッシュアイも抑制できるものと推測される。
 本発明のEVOH組成物ペレットにおける共役ポリエン含有量は、当該ペレット全体の0.06重量%以下であり、好ましくは0.05重量%以下、さらに好ましくは0.04重量%以下である。なお、共役ポリエン量の下限は0.001重量%である。共役ポリエン量が少なすぎるとラジカルを捕捉することによるフィッシュアイの発生を抑制する効果が低下し、多すぎるとペレット表層部にブリードする共役ポリエンの量が多くなり、ペレット表層部のpHバランスが不安定となることで、成膜フィルム中のフィッシュアイが増加する。
 本発明で用いられる共役ポリエンとは、炭素-炭素二重結合と炭素-炭素単結合が交互に繋がってなる構造であって、炭素-炭素二重結合の数が2個以上である、いわゆる共役二重結合を有する化合物である。共役ポリエンは、2個の炭素-炭素二重結合と1個の炭素-炭素単結合が交互に繋がってなる構造である共役ジエン、3個の炭素-炭素二重結合と2個の炭素-炭素単結合が交互に繋がってなる構造である共役トリエン、あるいはそれ以上の数の炭素-炭素二重結合と炭素-炭素単結合が交互に繋がってなる構造である共役ポリエンであってもよい。ただし、共役する炭素-炭素二重結合の数が8個以上になると共役ポリエン自身の色により成形物が着色する懸念があるため、共役する炭素-炭素二重結合の数が7個以下であるポリエンであることが好ましい。また、2個以上の炭素-炭素二重結合からなる上記共役二重結合が互いに共役せずに1分子中に複数組あってもよい。例えば、桐油のように共役トリエンが同一分子内に3個ある化合物も共役ポリエンに含まれる。
 このような共役ポリエンとしては、例えば、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-tert-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩等のソルビン酸類、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造からなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造からなる共役ポリエン等があげられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いてもよい。かかる共役ポリエンは2種類以上のものを併用することもできる。
 これらのうち、カルボキシル基を有する共役ポリエンが、水との親和性が高いことから好ましく、特にはソルビン酸類、とりわけソルビン酸が好ましい。
 本発明の、EVOH組成物ペレットにおける共役ポリエンの含有量は、例えば、以下の方法により測定することができる。
<共役ポリエンの含有量の測定方法>
 上記共役ポリエンの含有量の測定方法としては、例えば、EVOH組成物ペレットを粉砕し、適当な溶媒で抽出して、抽出溶媒中の共役ポリエン量を液体クロマトグラフィーで定量する等の方法があげられる。
<<(D)フィッシュアイ抑制成分として滑剤を用いる態様>>
 つぎに、本発明において、フィッシュアイ抑制成分として滑剤を用いる態様について説明する。
 一般的に、滑剤を添加していないEVOHのペレットを押出機に供給すると、ペレット表面の摩擦力が高いためにスクリューへの噛み込みが悪くなり、押出機へ次第に供給が滞りやすい。そして、EVOHのペレットは供給されない間は常に高温に曝され続けるため、熱劣化しやすくなり、結果としてフィッシュアイの増加を引き起こすと考えられる。したがって、EVOHのペレットに滑剤を添加することにより、EVOHのペレットとスクリュー表面との摩擦が低減され、押出機へ供給されやすくなるため、熱劣化するEVOHが少なくなり、結果としてフィッシュアイの発生を抑制できるものと推測される。また、EVOHのペレットがスクリューへ噛み込まない間は、ホウ素化合物が存在する表面部が優先して加熱されるため、ホウ素化合物の凝集が起こりやすくなり、フィッシュアイの発生はより顕著になると推測される。
 本発明において、EVOH組成物ペレットにおける滑剤の含有量は、EVOH組成物ペレット重量あたり0.001~0.15重量%であり、好ましくは0.003~0.12重量%、さらに好ましくは0.005~0.10重量%である。かかる含有量が少なすぎると押出機のスクリュー表面とEVOH組成物ペレットとの摩擦が強くなり、安定したペレット供給ができなくなることでフィッシュアイの増加を引き起こす。また、含有量が多すぎると分散が不充分となった滑剤が凝集することで逆にフィッシュアイの増加を引き起こしたり、EVOH組成物ペレットとスクリュー表面との摩擦が低下し、安定したペレット供給ができなくなることでフィッシュアイの増加を引き起こす。
 本発明に用いられる滑剤としては、高級脂肪酸類があげられ、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、オレイン酸等の高級脂肪酸;これら高級脂肪酸のアルミニウム塩、カルシウム塩、亜鉛塩、マグネシウム塩、バリウム塩等の高級脂肪酸の金属塩;上記高級脂肪酸のメチルエステル、イソプロピルエステル、ブチルエステル、オクチルエステル等の高級脂肪酸のエステル;ステアリン酸アミド、ベヘニン酸アミド等の飽和高級脂肪酸アミド、オレイン酸アミド、エルカ酸アミド等の不飽和高級脂肪酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリン酸アミド等のビス高級脂肪酸アミド等の高級脂肪酸のアミドがあげられる。また、分子量500~10000程度の低分子量ポリエチレン、低分子量ポリプロピレン、またはこれらの酸変性品等の低分子量ポリオレフィン;高級アルコール、エステルオリゴマー、フッ化エチレン樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。上記滑剤に用いる化合物において、押出安定性と市場入手性の観点で、高級脂肪酸類が好ましく、上記高級脂肪酸類の1分子における炭素数は通常、炭素数12~25であり、好ましくは炭素数12~23であり、特に好ましくは炭素数15~20である。また、上記滑剤に用いる化合物において、上記高級脂肪酸類の価数は押出し安定性と市場入手性の観点から通常1~5価であり、好ましくは1~3価であり、特に好ましくは1~2価である。このとき、かかる価数とは、上記滑剤に用いる化合物1分子に有する高級脂肪酸由来の構造の数を意味し、例えば滑剤としてビスステアリン酸アミドを用いる場合、炭素数18の高級脂肪酸分子に由来する構造を1分子内に2か所有するため、炭素数18の高級脂肪酸のアミドであり、高級脂肪酸の価数は2価であるとする。これらのなかでも、好ましくは高級脂肪酸、高級脂肪酸の金属塩、高級脂肪酸のエステル、高級脂肪酸のアミドであり、特に好ましくは高級脂肪酸の金属塩、高級脂肪酸のアミドであり、さらに好ましくは、押出安定性の観点から、高級脂肪酸のアミドである。
 そして、上記滑剤の形態としては、例えば、固形状(粉末、微粉末、フレーク等)、半固体状、液体状、ペースト状、溶液状、エマルジョン状(水分散液)等の任意の性状のものを用いることができる。なかでも粉末状であることが好ましい。粉末状の滑剤の粒径は、通常0.1~100μm、好ましくは1~75μm、特に好ましくは5~50μmである。
 本発明の、EVOH組成物ペレットにおける「滑剤の含有量」とは、EVOH組成物ペレットの表面、または内部、またはその両方に含有する滑剤の含有量を意味し、例えば、以下の方法により測定することができる。
<滑剤の含有量の測定方法>
 滑剤をEVOH組成物ペレット表面に添着させる場合は、滑剤の添加量を含有量とみることができる。また、滑剤をEVOH組成物ペレット内に含有させる場合、滑剤が例えば高級脂肪酸アミドであれば、微量全窒素分析装置を用いてEVOH組成物ペレット中の全窒素量を測定し、滑剤含有量に換算することでEVOH組成物ペレット中の滑剤の含有量を測定することができる。
<<(E)フィッシュアイ抑制成分としてアルカリ土類金属を用いる態様>>
 つぎに、本発明において、フィッシュアイ抑制成分としてアルカリ土類金属を用いる態様について説明する。
 上述のように溶融成形する際にEVOHが押出機内部に滞留すると劣化やゲル化が進み、この滞留物が排出されるとフィッシュアイの発生へとつながる。しかし、アルカリ土類金属はEVOHに対して減粘作用をもつため、EVOHが押出機内部で滞留した際の架橋による増粘を緩和し、結果としてフィッシュアイ発生を抑制できるものと推測される。また、添加したアルカリ土類金属は、EVOH組成物ペレット表面のホウ素化合物と相互作用することで、EVOH組成物ペレット表面に存在し得るホウ素化合物の凝集を抑制するため、ホウ素化合物由来のフィッシュアイ発生も抑制できるものと推測される。
 本発明のEVOH組成物ペレットにおけるアルカリ土類金属含有量は、当該ペレット重量あたり100ppm以下であり、好ましくは80ppm以下、さらに好ましくは50ppm以下である。なお、アルカリ土類金属量の下限は1ppmである。アルカリ土類金属量が少なすぎるとEVOHを減粘させることによるフィッシュアイの発生を抑制する効果が低下し、多すぎるとEVOH中での分散が不充分となったアルカリ土類金属塩が凝集することでフィッシュアイを増加させたり、EVOHが着色したり、臭気が発生する傾向がある。
 本発明で用いられるアルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムがあげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのうち、好ましくはカルシウムである。また、本発明におけるアルカリ土類金属の含有量とは金属換算量であり、2種以上併せて用いた時の含有量は、全アルカリ土類金属の金属換算量を合計した値である。
 本発明のEVOH組成物ペレットに上記のアルカリ土類金属を含有させるためのアルカリ土類金属源としては、アルカリ土類金属酸化物、アルカリ土類金属水酸化物、アルカリ土類金属塩等のアルカリ土類金属化合物があげられる。なかでも分散性の点からアルカリ土類金属塩が好ましい。また、本発明に用いるアルカリ土類金属化合物は、経済性と分散性の点から、無機層状化合物や複塩を除くことが好ましい。
 上記のアルカリ土類金属塩の塩としては、例えば、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、硫酸塩、塩化物塩等の無機塩;酢酸塩、酪酸塩、プロピオン酸塩、エナント酸塩、カプリン酸塩等の炭素数2~11のモノカルボン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、アジピン酸塩、スベリン酸塩、セバチン酸塩等の炭素数2~11のジカルボン酸塩、ラウリン酸塩、パルミチン酸塩、ステアリン酸塩、12ヒドロキシステアリン酸塩、ベヘン酸塩、モンタン酸塩等の炭素数12以上のものモノカルボン酸塩等の有機酸塩等があげられる。これらは単独でもしくは2種類以上併せて用いることができる。これらの中で好ましくは、リン酸塩である。また、複数種のアルカリ土類金属を用いた時場合のアルカリ土類金属の含有量は、全アルカリ土類金属を合計した含有量である。
 本発明の、EVOH組成物ペレットにおける「アルカリ土類金属の含有量」とは、EVOH組成物ペレットの表面、または内部、またはその両方に含有するアルカリ土類金属の含有量を意味し、例えば、以下の方法により測定することができる。
<アルカリ土類金属の含有量の測定方法>
 アルカリ土類金属をEVOH組成物ペレット表面に添着させる場合は、アルカリ土類金属の添加量を含有量とみることができる。EVOH組成物ペレット内部にアルカリ土類金属を含有させる場合は、例えば、乾燥状態のEVOH組成物ペレットを灰化後、塩酸水溶液に溶解して、誘導結合プラズマ発光分析計(ICP-AES)によって測定を行い、標準液の検量線からアルカリ土類金属の含有量を定量する等の方法により得られた値をペレット全体の含有量に換算することにより得られる。
 つぎにEVOHのペレットを製造する方法および本発明のEVOH組成物ペレットを製造する方法について説明する。
<EVOHのペレットの製造>
 EVOHからペレットを製造する方法としては、従来公知の方法を採用でき、例えば、
a)溶融状態のEVOHを押出機の吐出口から押出し、溶融状態でカットした後、冷却固化してペレットを作製するホットカット方式、
b)溶融状態のEVOHを凝固浴中に押出し、冷却固化により得られたEVOHストランドをカットするストランドカット方式、
の二つの方式があげられる。
 上記a)ホットカット方式、b)ストランドカット方式のいずれにおいても、ペレット原料として使用するEVOHとしては、(α)EVOHの製造において、エチレン-ビニルエステル系共重合体の溶液をケン化することにより得られたEVOHの溶液またはスラリー、またはEVOH含水組成物(以下、「EVOH溶液・含水組成物」と称することがある);あるいは(β)EVOH(乾燥EVOH)のペレットを溶融し、かかる溶融状態のEVOHを用いることができる。
 上記EVOH含水組成物とは、上記EVOHの溶液またはスラリーの含水率を、溶媒を用いて適宜調整したものであり、EVOH含水組成物中におけるEVOHの濃度は、通常20~60重量%である。
 上記の溶媒としては、アルコール、水/アルコール混合溶媒等を用いることができる。これらのうち、水/アルコール混合溶媒が好ましい。上記アルコールとしては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、t-ブタノール等の炭素数1~10の脂肪族アルコールを用いることができ、特にメタノールが好ましい。また、水/アルコール混合重量比は、80/20~5/95が好ましい。
 また、上記EVOH含水組成物としては、通常EVOH100重量部に対し、アルコールを0~10重量部、水を10~500重量部含有することが好ましい。
 上記EVOHの溶液またはスラリーの含水率を調整する方法としては特に限定しないが、含水率を上げるためには、EVOHの溶液またはスラリーに上記の溶媒をスプレーする方法、EVOHの溶液またはスラリーと上記の溶媒とを混合する方法、EVOHの溶液またはスラリーを上記の溶媒の蒸気と接触させる方法等を採用できる。含水率を下げるためには、EVOHの溶液またはスラリーを適宜乾燥すればよく、例えば流動式熱風乾燥機あるいは静置式熱風乾燥機を用いて乾燥することができる。
 つぎに、a)ホットカット方式および、b)ストランドカット方式について説明する。
a)ホットカット方式
 EVOH溶液・含水組成物をペレット原料として押出機に投入する場合、押出機内でのEVOH溶液・含水組成物の温度は、70~170℃が好ましく、より好ましくは80~170℃、さらに好ましくは90~170℃である。EVOH溶液・含水組成物の温度が低すぎる場合は、EVOHが完全に溶融しない傾向があり、高すぎる場合は、EVOHが熱劣化を受けやすくなる傾向がある。
 また、乾燥EVOHをペレット原料として押出機に投入する場合、押出機内での乾燥EVOHの温度は150~300℃が好ましく、より好ましくは160~280℃、さらに好ましくは170~250℃である。
 なお、上記EVOH溶液・含水組成物および乾燥EVOHの温度とは、押出機シリンダーに設置した温度センサーにより押出機先端部吐出口付近で検出した温度をいう。
 押出機のダイスから押し出されるEVOH溶液・含水組成物、すなわち溶融状態にあるEVOHは、冷却固化する前にカットされる。カット方式は、大気中でカットするホットカット方式(空中ホットカット方式)、冷却水で満たされたカッター設置容器内に押出され冷却水中でカットする水中カット方式のいずれでもよい。
 上記水中カット方式における冷却水の温度は、溶融状態で押し出されたEVOHが瞬時に固化(凝固)しない程度の温度であり、EVOH溶液・含水組成物を原料として用いる場合の冷却水の温度は-20~50℃とすることが好ましく、より好ましくは-5~30℃である。
 また、乾燥EVOHを原料とする場合、EVOH溶液・含水組成物を原料として用いる場合よりも凝固しやすいことから、水中カット方式における冷却水の温度は、EVOH溶液・含水組成物を原料とする場合よりも高く、通常0~90℃であり、好ましくは20~70℃である。
 上記冷却水は、水に限定されず、水/アルコール混合溶液;ベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン等のケトン類;ジプロピルエーテル等のエーテル類;酢酸メチル、酢酸エチル、プロピオン酸メチル等の有機エステル類等も用いることができる。これらのうち、取扱い性が容易という点から、水、または水/アルコール混合溶液が用いられる。水/アルコール混合溶液において、水/アルコール(重量比)は通常90/10~99/1である。なお、上記アルコールとしては、メタノール、エタノール、プロパノール等の低級アルコールを用いることができ、工業上、メタノールが好ましく用いられる。
b)ストランドカット方式
 EVOH溶液・含水組成物をペレット原料として押出機に投入する場合、凝固浴に押し出されるEVOHの温度は、通常、10~100℃、凝固浴の温度は、押し出されたEVOHが冷却固化できる温度で、通常、-10~40℃であり、滞留時間は、通常、10~400秒間程度である。
 また、乾燥EVOHをペレット原料として押出機に投入する場合、凝固浴にEVOHが押し出される温度は、通常、150~300℃、凝固浴の温度は通常0~90℃であり、滞留時間は2~400秒間程度である。
 凝固浴に用いる凝固液としては、上記a)ホットカット方式の冷却水と同様の溶液を採用することができる。
 このようにして、EVOHのペレットが得られる。
 以上のようなEVOHのペレットのうち、後述するホウ素化合物の含有処理の点から、ペレット内部に複数の孔を有する多孔質ペレットを用いることが好ましい。この孔内へホウ素化合物を浸透させることで、ホウ素化合物をペレット中に保持しやすくなり、効率的にホウ素化合物をペレット内部へ取り込ませることができる。上記、多孔質ペレットの孔の大きさは、その孔内へホウ素化合物が浸透できる範囲であればよく、特に限定されない。
 このような多孔質ペレットは、通常、ペレット原料として、上記EVOH含水組成物を使用し、当該EVOH含水組成物中のEVOH濃度、溶媒の種類、押し出し時の温度、凝固浴の温度、滞留時間等を調整することで、得ることができる。
 また、多孔質ペレットの含水率は20~80重量%が好ましい。当該含水率の多孔質ペレットは、後述のホウ素化合物の含有させる工程において、ホウ素化合物を均一かつ迅速に含有させることができる。
 EVOHのペレットの形状は、通常、ペレットの製造方法に依存し、種々の形状のものを用いることができ、上記各方法によって得られるEVOHのペレットおよび本発明のEVOH組成物ペレットの形状は任意である。ペレットの形状としては、例えば、球形、オーバル形、円柱形、立方体形、直方体形、不定形等があるが、通常、オーバル形、または円柱形であり、その大きさは、後に成形材料として用いる場合の利便性の観点から、オーバル形の場合は長径が通常1~10mm、好ましくは2~7mmであり、短径は通常1~6mm、好ましくは2~5mmであり、円柱形の場合は底面の直径が通常1~10mm、好ましくは2~7mmであり、長さは通常1~10mm、好ましくは3~8mmである。
 また、本発明で用いるEVOHのペレットは、異なる他のEVOHのペレットとの混合物であってもよく、上記他のEVOHのペレットとしては、エチレン構造単位の含有量が異なるもの、ケン化度が異なるもの、メルトフローレート(MFR)が異なるもの、他の共重合成分が異なるもの、例えば、前記一般式(1)で表わされる1,2-ジオール構造単位の含有量が異なるもの等をあげることができる。
 本発明のEVOH組成物ペレットは、上記EVOHのペレットに所定量のホウ素化合物およびフィッシュアイ抑制成分を含有させることにより得られる。この、EVOH組成物ペレットの製造方法は、特に限定されるものではないが、以下に代表的な製造方法について説明する。
<EVOH組成物ペレットの製造>
 本発明のEVOH組成物ペレットは、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程、ホウ素化合物を含有するEVOHのペレットを洗浄して、ペレット表層部のホウ素化合物含有量を、ホウ素換算で当該ペレット重量あたり1.7ppm以下にする工程、および下記の(A’)~(E’)からなる群から選択される少なくとも一つの工程(フィッシュアイ抑制成分を含有させる工程)によって得ることができる。
(A’)上記EVOH組成物に対する桂皮酸類の含有量が、重量基準で0.0001~0.05重量%となるようにEVOHのペレットと桂皮酸類とを接触させる工程。
(B’)上記EVOH組成物に対するアルカリ金属の含有量が、重量基準で500ppm以下となるようにEVOHのペレットとアルカリ金属とを接触させる工程。
(C’)上記EVOH組成物に対する共役ポリエンの含有量が、重量基準で0.06重量%以下となるようにEVOHのペレットと共役ポリエンとを接触させる工程。
(D’)上記EVOH組成物に対する滑剤の含有量が、重量基準で0.001~0.15重量%となるようにEVOHのペレットと滑剤とを接触させる工程。
(E’)上記EVOH組成物に対するアルカリ土類金属の含有量が、重量基準で100ppm以下となるようにEVOHのペレットとアルカリ土類金属とを接触させる工程。
 以下、各工程について説明する。
<ホウ素化合物を含有させる工程>
 上記ホウ素化合物を含有させる工程は、前記EVOHのペレットとホウ素化合物とを接触させることにより行う。
 上記EVOHのペレットとホウ素化合物とを接触させる方法としては、例えば、
(1-1)EVOHのペレット製造段階でEVOHとホウ素化合物とを接触させる方法、
(1-2)予め作製したEVOHのペレットとホウ素化合物とを接触させる方法、
等により行うことができる。
 上記(1-1)のEVOHのペレット製造段階でEVOHとホウ素化合物とを接触させる方法としては、例えば、ペレット原料(EVOH溶液・含水組成物、乾燥EVOH)にホウ素化合物を添加、あるいはホウ素化合物を含有する溶液を、ペレット製造する際の凝固液に使用する方法等があげられる。
 ペレット原料としてEVOH溶液・含水組成物を用いる場合には、当該EVOH溶液・含水組成物にホウ素化合物を添加すればよい。また、乾燥EVOHペレットを溶融し、かかる溶融状態のEVOHを原料として用いる場合、乾燥EVOHに予めホウ素化合物を含有させればよい。
 好ましくは、ホウ素化合物を添加したEVOH含水組成物を、凝固液中にストランド状に押し出し、得られたストランドを切断する方法である。
 上記(1-2)の予め作製したEVOHのペレットとホウ素化合物とを接触させる方法としては、ホウ素化合物を含有する溶液をEVOHのペレットに噴霧する方法;ホウ素化合物を含有する溶液にEVOHのペレットを浸漬する方法;ホウ素化合物を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法等があげられる。これらのうち、ホウ素化合物をペレット内部にまで効率よく含有させることができる点で、ホウ素化合物を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法が好ましく用いられる。
 上記ホウ素化合物を含有する溶液の溶媒としては、例えば、水;メタノール、エタノール、プロパノール等の低級アルコール;水/アルコール混合用液等を使用することができる。なお、水/アルコール混合溶液において、水/アルコール(重量比)は通常90/10~10/90である。
 また、上記ホウ素化合物を含有する溶液におけるホウ素化合物の濃度は、通常0.001~1重量%、好ましくは0.003~0.5重量%である。かかる濃度が低すぎると、所定量のホウ素化合物を含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。
 上記EVOHのペレット中のホウ素化合物量(EVOHのペレット中のホウ素化合物全含有量)は、ホウ素化合物を含有する溶液におけるホウ素化合物の濃度、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等を変更することにより、コントロールすることが可能である。
 以上のようなEVOHのペレットとホウ素化合物とを接触させる方法のうち、種々のペレットに適用でき、汎用性に優れているという点で、(1-2)の予め作製したEVOHのペレットとホウ素化合物とを接触させる方法が好ましい。より好ましくは、前記の多孔質ペレットを、ホウ素化合物を含有する溶液と接触させる方法である。
 このようなホウ素化合物を含有させる工程によって得られるホウ素化合物を含有するEVOHペレット〔ペレット表層部におけるホウ素化合物含有量については未調整であり、以下、このペレットを「表層部ホウ素調整前EVOHペレット」という〕に含有されるホウ素化合物量(EVOHのペレット中のホウ素化合物全含有量)は、ホウ素換算で当該ペレット重量あたり、通常10~10000ppmであり、好ましくは20~5000ppm、さらに好ましくは30~3000ppmである。かかる含有量が少なすぎると、ホウ素化合物の添加効果が低下する傾向があり、多すぎると最終的に得られる成形物の外観が低下する傾向がある。
 上記の工程によって得られる表層部ホウ素調整前EVOHペレットは、そのまま次の工程に供してもよいが、通常、ペレットの乾燥を行う。かかる乾燥に際しては公知の方法を採用することができ、例えば、円筒・溝型撹拌乾燥器、円筒乾燥器、回転乾燥器、流動層乾燥器、振動流動層乾燥器、円錐回転型乾燥器等を用いた流動乾燥や回分式箱型乾燥器、バンド乾燥器、トンネル乾燥器、竪型サイロ乾燥器等を用いた静置乾燥等により乾燥すればよい。80~150℃の窒素ガス等の気体を、乾燥器内を通過させることで、表層部ホウ素調整前EVOHペレットに影響を及ぼさないで、効率よく乾燥させることができる。
<EVOHのペレットを洗浄する工程>
 つぎにEVOHのペレットを洗浄する工程について説明する。
 上記表層部ホウ素調整前EVOHペレットは、当該ペレットに含まれるホウ素化合物の全含有量、およびペレット表層部のホウ素化合物の含有量にもよるが、洗浄処理によって、ペレット表層部におけるホウ素化合物の含有量を調整することができる。
 上記洗浄処理は、洗浄用処理液と上記表層部ホウ素調整前EVOHペレットとを接触させることにより行われる。上記接触させる方法としては、例えば、洗浄用処理液に上記表層部ホウ素調整前EVOHペレットを浸漬し撹拌する方法、洗浄用処理液中で上記表層部ホウ素調整前EVOHペレットを循環する方法、表層部ホウ素調整前EVOHペレットに洗浄用処理液を吹き付ける方法等により行うことができる。また、上記浸漬する方法においては、浸漬中に超音波等の振動を与えることも有効である。上記の方法のなかでも、工業上、好適には表層部ホウ素調整前EVOHペレットを洗浄用処理液に浸漬させて撹拌する方法、洗浄用処理液中で表層部ホウ素調整前EVOHペレットを循環する方法が用いられる。
 上記洗浄処理は、洗浄用処理液と接触させることにより行うことが好ましい。上記洗浄用処理液としては、水/アルコール混合溶液またはアルコールが好ましく、より好ましくは水/アルコール混合溶液である。
 上記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール等の炭素数1~8、特には1~5、さらには1~3のアルコールを用いることが好ましく、これらのうち、入手容易かつ安価の点で、メタノールが特に好ましく用いられる。
 上記洗浄用処理液として水/アルコール混合溶液またはアルコールを用いる場合は、水/アルコール(重量比)が、80/20~0/100、好ましくは65/35~15/85、特に好ましくは50/50~20/80である。水が多すぎても、アルコール濃度が高くなりすぎても、表層部のホウ素化合物含有量調整効果が低下する傾向があることから、上記範囲の水/アルコール混合溶液が好ましい。
 一般にホウ素化合物の溶解度は、水よりもアルコールの方が高いため、ホウ素含有量を調整するために用いる洗浄用処理液としては、アルコールを用いることが通常である。しかし、本発明においては、意外にも、洗浄用処理液としてアルコール単独よりも水/アルコール混合溶液を用いることにより、より効率的に表層部ホウ素調整前EVOHペレットからホウ素化合物を溶出させることができることを見出した。なお、ホウ素化合物の23℃の水10gに対する溶解度は、0.1~10重量%程度であり、23℃のメタノール10gに対する溶解度は15~30重量%程度である。
 上記表層部ホウ素調整前EVOHペレットと洗浄用処理液との接触時間は、ホウ素含有量が所定の濃度となる時間であれば特に限定されないが、通常5分間~48時間、さらには10分間~24時間が好ましく、洗浄用処理液の温度は、通常10~80℃、さらには20~60℃とすることが好ましい。
 上記洗浄処理後のホウ素化合物を含有するEVOHペレットは、必要に応じて乾燥してもよい。具体的には、含水率0.01~1重量%程度、好ましくは0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、上記表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記洗浄処理により、ペレット表層部のホウ素化合物の含有量を減じることができ、本発明の第1の特徴であるペレット表層部のホウ素化合物含有量が、ホウ素換算で1.7ppm以下に低減されたホウ素化合物を含有するEVOHペレットが得られる。
 つぎに、本発明の第2の特徴である、桂皮酸類、アルカリ金属、共役ポリエン、滑剤およびアルカリ土類金属からなる群から選ばれる少なくとも一つの成分(フィッシュアイ抑制成分)を特定の割合でEVOHのペレットに含有させる工程について説明する。
<(A’)桂皮酸類を含有させる工程>
 桂皮酸類を含有するEVOHペレットは、前記EVOHのペレットに桂皮酸類を接触させることにより製造することができる。
 EVOHのペレットと桂皮酸類との接触させる方法としては、例えば、
(i)ペレット製造段階で桂皮酸類と接触させる方法、
(ii)予め作製したEVOHのペレットと桂皮酸類とを接触させる方法、
等により行うことができる。
 上記(i)ペレット製造段階で桂皮酸類と接触させる方法としては、例えば、ペレット原料(EVOH溶液・含水組成物、乾燥EVOH)に桂皮酸類を添加する方法、あるいは桂皮酸類を含有する溶液を、ペレットを押出成形する際の凝固液に使用する方法があげられる。
 ペレット原料としてEVOH溶液・含水組成物を用いる場合には、当該EVOH溶液・含水組成物に桂皮酸類を添加すればよい。乾燥EVOHペレットを溶融し、かかる溶融状態のEVOHを原料として用いる場合、乾燥EVOHに予め桂皮酸類を含有させればよい。
 好ましくは、EVOH溶液・含水組成物に桂皮酸類を添加する方法である。
 上記(ii)予め作製したEVOHのペレットと桂皮酸類を接触させる方法としては、桂皮酸類を含有する溶液をEVOHのペレットに噴霧する方法;桂皮酸類を含有する溶液にEVOHのペレットを浸漬する方法;桂皮酸を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法;桂皮酸類の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法等があげられる。これらのうち、桂皮酸類を効率よく含有させることができる点で、桂皮酸類の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法が好ましく用いられる。
 上記桂皮酸類を含有する溶液をEVOHのペレットに噴霧する場合における溶液中の桂皮酸類の濃度は、通常0.01~20重量%、好ましくは0.05~15重量%である。また、桂皮酸類を含有する溶液にEVOHのペレットを浸漬する場合、および桂皮酸類を含有する溶液を撹拌しながら、EVOHのペレットを投入する場合における溶液中の桂皮酸類の濃度は、通常0.0001~0.05重量%であり、好ましくは0.001~0.04重量%である。かかる濃度が低すぎると、所定量の桂皮酸類を含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。なお、桂皮酸類を含有する溶液を用いる場合は、前記ホウ素化合物を含有する溶液の溶媒と同様のものを用いることができる。
 上記桂皮酸類を含有する溶液を用いる接触方法においては、溶液中の桂皮酸類の濃度、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等により、桂皮酸類の含有量をコントロールすることが可能である。
 上記、桂皮酸類の粉末をEVOHのペレットに直接添加する場合は、添加量を桂皮酸類の含有量とすることができ、添加する桂皮酸類量は、EVOHのペレットに対して、通常0.0001~0.05重量%であり、好ましくは0.001~0.04重量%、さらに好ましくは0.005~0.035重量%である。
 以上のような桂皮酸類との接触処理のうち、種々のペレットに適用でき、汎用性に優れているという点で、(ii)の予め作製したEVOHのペレットと桂皮酸類とを接触させる方法が好ましく、桂皮酸類の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法が特に好ましい。
 上記の工程により得られた桂皮酸類を含有するEVOHペレットは、必要に応じて、乾燥してもよい。具体的には、含水率0.01~1重量%程度、特には0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、前記表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記工程により、桂皮酸類を含有するEVOHペレットが得られる。
<(B’)アルカリ金属を含有させる工程>
 アルカリ金属を含有するEVOHペレットは、前記EVOHのペレットにアルカリ金属を含有させることにより製造することができる。
 上記EVOHのペレットにアルカリ金属を含有させる方法としては、例えば、
(iii)EVOHのペレット製造段階でアルカリ金属と接触させる方法、
(iv)予め作製したEVOHのペレットとアルカリ金属とを接触させる方法、
(v)EVOHを製造する際のケン化工程で生じたアルカリ金属塩を残存させる方法、
等により行うことができる。
 (iii)EVOHのペレット製造段階でアルカリ金属と接触させる方法としては、例えば、ペレット原料(EVOH溶液・含水組成物、乾燥EVOH)にアルカリ金属化合物を添加する方法;アルカリ金属を含有する溶液を、ペレットを押出成形する際の凝固液に使用する方法等があげられる。
 ペレット原料としてEVOH溶液・含水組成物を用いる場合には、当該EVOH溶液・含水組成物にアルカリ金属化合物を分散させればよい。一方、乾燥EVOHを用いる場合には、乾燥EVOHペレットを溶融させ、かかる溶融状態のEVOHとアルカリ金属化合物とを押出機で溶融混練すればよい。
 好ましくは、EVOH溶液・含水組成物にアルカリ金属化合物を分散させる方法である。
 (iv)の予め作製したEVOHのペレットとアルカリ金属とを接触させる方法としては、アルカリ金属を含有する溶液をEVOHのペレットに噴霧する方法;アルカリ金属を含有する溶液にEVOHのペレットを浸漬する方法;アルカリ金属を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法;アルカリ金属化合物の粉末をEVOHペレットに直接添加して混ぜ合わせる方法等があげられる。これらのうち、アルカリ金属を効率よく含有させることができる点で、アルカリ金属を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法が好ましく用いられる。
 上記、アルカリ金属を含有する溶液におけるアルカリ金属の濃度は、通常0.001~1重量%、好ましくは0.01~0.1重量%である。かかる濃度が低すぎると、所定量のアルカリ金属を含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。なお、アルカリ金属を含有する溶液の溶媒としては、前記ホウ素化合物を含有する溶液と同様のものがあげられる。
 上記アルカリ金属を含有する溶液を用いる接触方法においては、溶液中のアルカリ金属の濃度、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等により、アルカリ金属の含有量をコントロールすることが可能である。
 また、アルカリ金属化合物の粉末をEVOHペレットに直接添加する場合は、添加量をアルカリ金属の含有量とすることができ、添加するアルカリ金属化合物量は、アルカリ金属換算で、通常、EVOHペレット重量あたり500ppm以下であり、好ましくは400ppm以下、さらに好ましくは300ppm以下である。なお、アルカリ金属量の下限は10ppmである。アルカリ金属量が少なすぎるとEVOHを減粘させることによるフィッシュアイ低減効果が低下する傾向があり、多すぎるとEVOH中での分散が不充分となったアルカリ金属塩が凝集することでフィッシュアイを増加させたり、EVOHの分解が過度に進行することで、EVOHが着色したり、臭気が発生する傾向がある。
 (v)EVOHの製造する際のケン化工程で生じたアルカリ金属塩を残存させる方法について説明する。EVOHは一般に、水酸化ナトリウムや水酸化カリウムといった、アルカリ金属の水酸化物をケン化触媒に用いて製造されている。このようなケン化触媒中に含まれるアルカリ金属は、ケン化時に副生する酢酸アルカリ金属塩として、あるいはEVOHのポリマー鎖末端に微量発生するカルボキシル基と塩を構成することにより、EVOH中に必然的に存在する。ちなみに、EVOH中に存在するアルカリ金属量は、未洗浄の状態では、EVOHの重量あたり、通常3000ppm程度である。
 このように、EVOHのペレット中にアルカリ金属が所定量以上に残存しているときには、通常よりもさらにEVOHを洗浄することにより、アルカリ金属の含有量を、本発明で規定する特定微量に調整する。具体的に説明すると、水洗のみでは、特定微量濃度にまでアルカリ金属を除去することは困難である。したがって、ケン化により製造されるEVOHを用いる場合、酢酸等の酸洗浄液で洗浄した後、水洗したEVOHを用いることが好ましい。特に、EVOHのポリマー鎖末端のカルボキシル基と結合しているアルカリ金属については、酸洗浄液で洗浄することにより効率よく除去することができる。
 上記酸洗浄液に用いる酸としては、酢酸、プロピオン酸、酪酸等の水溶性の弱酸が挙げられ、これらのうち酢酸が好ましく用いられる。また、洗浄液に使用する水としては、イオン交換水、蒸留水、濾過水など、不純物としての金属イオンを除去した水が好ましい。
 上記EVOHのペレットにアルカリ金属を含有させる方法のうち、種々のペレットに適用でき、汎用性に優れているという点で、(iv)予め作製したEVOHのペレットとアルカリ金属とを接触させる方法が好ましく、アルカリ金属を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法が特に好ましい。
 また、上記EVOHのペレットとしては、上記(v)の方法に準じて、ケン化工程中で生じたアルカリ金属を除去したEVOHのペレットを用いることが、アルカリ金属の含有量を調整しやすい点で好ましい。
 上記のアルカリ金属を含有するEVOHペレットは、必要に応じて、乾燥してもよい。具体的には、含水率0.01~1重量%程度、特には0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記工程により、アルカリ金属を含有するEVOHペレットが得られる。
<(C’)共役ポリエンを含有させる工程>
 共役ポリエンを含有するEVOHペレットは、前記EVOHのペレットに共役ポリエンを含有させることにより製造することができる。
 EVOHのペレットに共役ポリエンを含有させる方法としては、例えば、
(vi)EVOHのペレット製造段階で共役ポリエンと接触させる方法、
(vii)予め作製したEVOHのペレットと共役ポリエンとを接触させる方法、
等により行うことができる。
 (vi)EVOHのペレット製造段階で共役ポリエンと接触させる方法としては、例えば、エチレンとビニルエステルモノマーとを共重合して得られたエチレン-ビニルエステル系共重合体の溶液またはスラリーに共役ポリエンを添加する方法、ペレット原料(EVOH含水組成物、乾燥EVOH)に共役ポリエンを添加する方法;前記のEVOHのペレットの押出成形時に、ストランド方式の凝固液に共役ポリエンを含有する溶液を使用する方法等があげられる。
 上記エチレンとビニルエステルモノマーとを共重合して得られたエチレン-ビニルエステル系共重合体の溶液またはスラリーに共役ポリエンを添加する場合には、エチレン-ビニルエステル系共重合体100重量部に対して共役ポリエンを0.02~0.1重量部添加することが好ましい。また、共役ポリエンは紛体で添加してもよいし、溶液にして添加してもよい。溶液としては、EVOHの溶液またはスラリーへの分散性が良好な点でアルコール溶液が好ましく、特にはメタノール溶液が好ましい。溶液の共役ポリエン濃度としては1~20重量%が好ましく、更に好ましくは3~10重量%である。溶液の共役ポリエン濃度が、1重量%未満では添加した溶液によりエチレン-ビニルエステル系共重合体の溶液またはスラリーの樹脂分が低下する傾向があり、20重量%以上ではペースト中の共役ポリエンの分散性が低下する傾向がある。
 また、上記ペレット原料に共役ポリエンを添加する方法において、ペレット原料としてEVOH含水組成物を用いる場合には、当該EVOH含水組成物に共役ポリエンを分散させればよい。また、ペレット原料として乾燥EVOHを用いる場合には、乾燥EVOHのペレットを溶融し、かかる溶融状態のEVOHと共役ポリエンとを押出機で溶融混練すればよい。
 上記、ペレット原料(EVOH含水組成物、乾燥EVOH)に共役ポリエンを添加する場合の共役ポリエン量は、通常、EVOHのペレット全体の0.06重量%以下であり、好ましくは0.05重量%以下、さらに好ましくは0.04重量%以下である。なお、共役ポリエン量の下限は0.001重量%である。共役ポリエン量が少なすぎるとラジカルを捕捉することによるフィッシュアイ低減効果が得られなくなる傾向があり、多すぎるとペレット表層部にブリードする共役ポリエンの量が多くなり、ペレット表層部の樹脂のpHバランスが不安定化することで、成膜フィルム中のフィッシュアイが増加する傾向がある。
 また、上記共役ポリエンを含有する溶液を凝固液に使用する方法における、凝固液中の共役ポリエンの濃度は、通常0.0001~0.5重量%、好ましくは0.001~0.1重量%である。かかる濃度が低すぎると、所定量の共役ポリエンを含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。
 (vii)予め作製したEVOHのペレットと共役ポリエンとを接触させる方法としては、共役ポリエンを含有する溶液をEVOHのペレットに噴霧する方法;共役ポリエンを含有する溶液にEVOHのペレットを浸漬する方法;共役ポリエンを含有する溶液を撹拌しながら、EVOHのペレットを投入する方法;共役ポリエンの粉末をEVOHのペレットに直接添加して混ぜ合わせる方法等があげられる。
 なかでも好ましくは、共役ポリエンを含有する溶液を撹拌しながら、EVOHのペレットを投入する方法である。
 以上のような方法のなかでも、種々のペレットに適用でき、汎用性に優れているという点で、(vi)EVOHのペレット製造段階で共役ポリエンと接触させる方法が好ましく、特に好ましくは、エチレン-ビニルエステル系共重合体の溶液またはスラリーに共役ポリエンを添加する方法である。
 また、EVOHに共役ポリエンを添加する方法としては、上記の方法を複数組み合わせてもよい。
 上記共役ポリエンを含有する溶液を用いる接触方法においては、溶液中の共役ポリエンの濃度、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等により、共役ポリエンの含有量をコントロールすることが可能である。
 上記の共役ポリエンを含有するEVOHペレットは、必要に応じて、乾燥してもよい。具体的には、含水率0.01~1重量%程度、好ましくは0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記工程により、共役ポリエンを含有するEVOHペレットが得られる。
<(D’)滑剤を含有させる工程>
 共役ポリエンを含有するEVOHペレットは、前記EVOHのペレットに滑剤を含有させることにより製造することができる。
 EVOHのペレットに滑剤を含有させる方法としては、例えば、
(viii)EVOHのペレット製造段階で滑剤と接触させる方法、
(ix)予め作製したEVOHのペレットと滑剤とを接触させる方法、
等により行うことができる。
 上記(viii)EVOHのペレット製造段階で滑剤と接触させる方法としては、例えば、ペレット原料(EVOH溶液・含水組成物、乾燥EVOH)に滑剤を添加する方法、滑剤の溶液を凝固液に使用する方法等があげられる。
 ペレット原料としてEVOH溶液・含水組成物を用いる場合には、例えば、EVOH溶液・含水組成物に滑剤を分散させればよい。また、乾燥EVOHを用いる場合には、乾燥EVOHのペレットを溶融し、かかる溶融状態のEVOHと滑剤とを押出機で溶融混練すればよい。
 上記(ix)予め作製したEVOHのペレットと滑剤とを接触させる方法としては、滑剤を含有する溶液または分散液をEVOHのペレットに噴霧する方法;滑剤を含有する溶液または分散液にEVOHのペレットを浸漬する方法;滑剤を含有する溶液または分散液を撹拌しながら、EVOHのペレットを投入する方法;滑剤の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法等があげられる。これらのうち、滑剤を効率よく含有させることができる点で、滑剤の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法が好ましく用いられる。
 上記滑剤を含有する溶液または分散液における滑剤の濃度は、通常1~80重量%、好ましくは20~70重量%である。かかる濃度が低すぎると、所定量の滑剤を含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。なお、滑剤を含有する溶液または分散剤を用いる場合の溶媒としては、前記ホウ素化合物を含有する溶液に用いたものと同様のものを用いることができる。
 また、上記滑剤を含有する溶液または分散液を用いる方法においては、滑剤を含有する溶液または分散液における滑剤の濃度、添加量、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等を変更することにより、滑剤含有量を調整することが可能である。
 以上のようなEVOHと滑剤とを接触させる方法のうち、種々のペレットに適用でき、汎用性に優れているという点で、上記(ix)予め作製したEVOHのペレットと滑剤とを接触させる方法が好ましく、特に好ましくは、滑剤の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法である。
 滑剤の粉末をEVOHのペレットに直接添加する場合は、添加量を滑剤の含有量とすることができ、添加する滑剤量は、当該ペレットに対して、通常、0.001~0.15重量%であり、好ましくは0.003~0.12重量%、さらに好ましくは0.005~0.10重量%である。少なすぎると押出機のスクリュー表面とEVOHのペレットとの摩擦が強いために、安定したペレット供給ができなくなることでフィッシュアイの増加を引き起こす傾向があり、多すぎると分散が不充分な滑剤が凝集することで逆にフィッシュアイの増加を引き起こしたり、EVOHのペレットとスクリュー表面との摩擦が低下し、安定したペレット供給ができなくなることでフィッシュアイの増加を引き起こす傾向がある。
 上記の滑剤を含有するEVOHペレットは、必要に応じて、乾燥してもよい。具体的には、含水率0.01~1重量%程度、好ましくは0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記工程により、滑剤を含有するEVOHペレットが得られる。
<(E’)アルカリ土類金属を含有させる工程>
 アルカリ土類金属を含有するEVOHペレットは、前記EVOHのペレットにアルカリ土類金属を含有させることにより製造することができる。
 EVOHのペレットにアルカリ土類金属を含有させる方法としては、例えば、
(x)EVOHのペレット製造段階でアルカリ土類金属と接触させる方法、
(xi)予め作製したEVOHのペレットとアルカリ土類金属とを接触させる方法、
等により行うことができる。
 (x)EVOHのペレット製造段階でアルカリ土類金属と接触させる方法としては、例えば、ペレット原料(EVOH溶液・含水組成物、乾燥EVOH)にアルカリ土類金属化合物を添加する方法、アルカリ土類金属を含有する溶液をペレットの押出成形時の凝固液に使用する方法等があげられる。
 上記ペレット原料にアルカリ土類金属化合物を添加する方法において、ペレット原料としてEVOH溶液・含水組成物を用いる場合には、当該EVOH溶液・含水組成物にアルカリ土類金属化合物を分散させればよい。また、ペレット原料として乾燥EVOHを用いる場合には、乾燥EVOHペレットを溶融し、かかる溶融状態のEVOHとアルカリ土類金属化合物とを押出機で溶融混練すればよい。
 なかでも好ましくは、EVOH溶液・含水組成物にアルカリ土類金属化合物を分散させる方法である。
 (xi)予め作製したEVOHのペレットとアルカリ土類金属とを接触させる方法としては、アルカリ土類金属を含有する溶液をEVOHのペレットに噴霧する方法;アルカリ土類金属を含有する溶液にEVOHのペレットを浸漬する方法;アルカリ土類金属を含有する溶液を撹拌しながら、EVOHのペレットを投入する方法;アルカリ土類金属化合物の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法等があげられる。これらのうち、アルカリ土類金属を効率よく含有させることができる点で、アルカリ土類金属化合物の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法が好ましく用いられる。
 上記アルカリ土類金属を含有する溶液のアルカリ土類金属の濃度は、通常0.01~20重量%、好ましくは0.05~15重量%である。かかる濃度が低すぎると、所定量のアルカリ土類金属を含有させることが困難となる傾向があり、高すぎると最終的に得られる成形物の外観が低下する傾向にある。なお、アルカリ土類金属の溶液を用いる場合は、前記ホウ素化合物の溶液の溶媒と同様のものを用いることができる。
 また、上記アルカリ土類金属を含有する溶液を用いる方法においては、アルカリ土類金属を含有する溶液中のアルカリ土類金属濃度、添加量、接触処理時間、接触処理温度、接触処理時の撹拌速度や処理されるEVOHのペレットの含水率等を変更することにより、アルカリ土類金属の含有量を調整することが可能である。
 上記、アルカリ土類金属化合物の粉末をEVOHのペレットに直接添加する場合は、添加量をアルカリ土類金属の含有量とすることができ、添加するアルカリ土類金属量は、通常、EVOHのペレット重量あたり100ppm以下であり、好ましくは80ppm以下、さらに好ましくは50ppm以下である。なお、アルカリ土類金属量の下限は1ppmである。アルカリ土類金属量が少なすぎるとEVOHを減粘させることによるフィッシュアイ低減効果が得られなくなる傾向があり、多すぎるとEVOH中での分散が不充分となりアルカリ土類金属塩が凝集することでフィッシュアイを増加させたり、EVOHが着色したり、臭気が発生する傾向がある。
 以上のようなアルカリ土類金属との接触処理のうち、種々のペレットに適用でき、汎用性に優れているという点で、(xi)予め作製したEVOHのペレットとアルカリ土類金属とを接触させる方法が好ましく、特に好ましくは、アルカリ土類金属化合物の粉末をEVOHのペレットに直接添加して混ぜ合わせる方法である。
 上記のアルカリ土類金属を含有するEVOHペレットは、必要に応じて、乾燥してもよい。具体的には、含水率0.01~1重量%程度、好ましくは0.05~0.5重量%程度まで乾燥することが好ましい。乾燥方法は、表層部ホウ素調整前EVOHペレットの乾燥方法と同様の方法を採用することができる。
 上記工程により、アルカリ土類金属を含有するEVOHペレットが得られる。
 本発明のEVOH組成物ペレットは、上記ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程、EVOHのペレットを洗浄する工程、およびフィッシュアイ抑制成分を含有させる工程を経ることにより得ることができる。
 なかでもフィッシュアイ抑制成分として、桂皮酸類を用いる場合は、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程を行い、つぎにEVOHのペレットを洗浄する工程、最後にフィッシュアイ抑制成分(桂皮酸類)を含有させる工程を行うことが作業性の点から好ましい。
 また、フィッシュアイ抑制成分として、共役ポリエンを用いる場合は、フィッシュアイ抑制成分(共役ポリエン)を含有させる工程を行い、つぎに共役ポリエンとEVOHのペレットとを接触させることにより共役ポリエンを含有させる工程、最後にEVOHのペレットを洗浄する工程を行うことが作業性の点から好ましい。
 また、フィッシュアイ抑制成分として、アルカリ金属を用いる場合は、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程、およびフィッシュアイ抑制成分(アルカリ金属)を含有させる工程を同時に行い、つぎにEVOHのペレットを洗浄する工程を行うことが作業性の点から好ましい。なお、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程と、アルカリ金属を含有させる工程を同時に行うには、ホウ素化合物およびアルカリ金属を含有する溶液をEVOHのペレットに接触させればよい。
 また、フィッシュアイ抑制成分として、滑剤を用いる場合は、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程を行い、つぎにEVOHのペレットを洗浄する工程、最後にフィッシュアイ抑制成分(滑剤)を含有させる工程を行うことが作業性の点から好ましい。
 また、フィッシュアイ抑制成分として、アルカリ土類金属を用いる場合は、ホウ素化合物とEVOHのペレットとを接触させることによりホウ素化合物を含有させる工程を行い、つぎにEVOHのペレットを洗浄する工程、最後にフィッシュアイ抑制成分(アルカリ土類金属)を含有させる工程を行うことが作業性の点から好ましい。
 また、本発明のEVOH組成物ペレットの製造方法は、上記工程と工程との間に、別の工程が入っていてもよいし、上記最後の工程が終わったEVOHのペレットをさらに別の工程に供してもよい。
<EVOH組成物ペレット>
 本発明のEVOH組成物ペレットの含水率は、通常0.01~1重量%、好ましくは0.05~0.5重量%である。含水率が少なすぎると水分子によるEVOHの可塑化が起こらず、押出成形時にEVOH組成物ペレットが溶融しづらくなり、未溶融物によるフィッシュアイの欠点が生じやすくなる傾向があり、多すぎると押出成形時に発泡現象が起こり、成形物の外観が悪化しやすくなる傾向がある。
〔その他の成分〕
 本発明のEVOH組成物ペレットには、本発明の効果を阻害しない範囲(例えば20重量%以下、好ましくは10重量%以下)で、一般的にEVOH組成物に用いられるEVOH以外の樹脂を混合して得られる樹脂組成物も含むことができる。
 また、本発明のEVOH組成物ペレットには、本発明の効果を阻害しない範囲において、一般にEVOHに配合する配合剤、例えば、熱安定剤、酸化防止剤、帯電防止剤、着色剤、紫外線吸収剤、可塑剤、光安定剤、界面活性剤、抗菌剤、乾燥剤、アンチブロッキング剤、難燃剤、架橋剤、硬化剤、発泡剤、結晶核剤、防曇剤、生分解用添加剤、シランカップリング剤、酸素吸収剤等が含有されていてもよい。これらは単独でもしくは2種以上併せて用いることができる。
 上記熱安定剤としては、溶融成形時の熱安定性等の各種物性を向上させる目的で、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸類またはこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)、亜鉛塩等の塩;または、硫酸、亜硫酸、炭酸、リン酸等の無機酸類、またはこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)、亜鉛塩等の塩;等の添加剤を添加してもよい。これらのうち、特に、酢酸、酢酸塩、リン酸塩を配合することが好ましい。これらは単独でもしくは2種以上併せて用いることができる。ここでアルカリ金属塩またはアルカリ土類金属塩が配合された場合、本発明のEVOH組成物ペレット中のアルカリ金属またはアルカリ土類金属の含有量に算入される。
 これらの成分を配合する場合、その配合は、通常、ホウ素化合物またはフィッシュアイ抑制成分とEVOHのペレットとの接触処理前、または接触処理とともに、あるいは接触処理後のいずれの段階で行ってもよい。好ましくはホウ素化合物またはフィッシュアイ抑制成分への影響が少ないという点で、接触処理とともに行うことが好ましい。
 その他の成分の配合方法は特に限定しないが、通常、これらの配合剤を含有する溶液にEVOHのペレットを接触させることにより行うことができる。したがって、ホウ素化合物またはフィッシュアイ抑制成分との接触処理前であれば、EVOHのペレットを上記配合剤を含有する溶液に浸漬することにより、あるいはホウ素化合物およびフィッシュアイ抑制成分の少なくとも一方を含有する溶液に上記配合剤も含有させることにより、配合することができる。
 本発明のEVOH組成物ペレットの溶融成形品は、EVOH組成物の単層膜であっても成形性に優れ、外観に優れているが、耐水性、強度等の観点から、必要に応じて、他の樹脂層を積層した多層構造体としてもよい。
 かかる成形物としては、本発明のEVOH組成物ペレットを用いて成形された単層フィルムをはじめとして、本発明のEVOH組成物ペレットを用いて成形された層を少なくとも1層有する多層構造体として実用に供することができる。
 以下、かかる多層構造体について説明する。
 上記の多層構造体を製造するにあたっては、本発明のEVOH組成物ペレットを用いて成形された層の片面または両面に、他の基材(熱可塑性樹脂等)を積層するのであるが、積層方法としては、例えば、本発明のEVOH組成物ペレット等を用いて成形されたフィルム、シート等に他の基材を溶融押出ラミネートする方法、逆に他の基材に本発明のEVOH組成物ペレット等を溶融押出ラミネートする方法、本発明のEVOH組成物ペレット等と他の基材とを共押出する方法、本発明のEVOH組成物ペレット等を用いてなるフィルム、シート等(層)と他の基材(層)とを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物、ポリウレタン化合物等の公知の接着剤を用いてドライラミネートする方法等があげられる。上記の溶融押出時の溶融成形温度は、150~300℃の範囲から選ぶことが多い。
 かかる他の基材としては、熱可塑性樹脂が有用で、具体的には、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等の各種ポリエチレン、エチレン-酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン(ブロックまたはランダム)共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリプロピレン、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独または共重合体、あるいはこれらのオレフィンの単独または共重合体を不飽和カルボン酸またはそのエステルでグラフト変性したもの等の広義のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂(共重合ポリアミドも含む)、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン系樹脂、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族または脂肪族ポリケトン、さらにこれらを還元して得られるポリアルコール類、さらには本発明に用いられるEVOH以外の他のEVOH等があげられる。多層構造体の物性(特に強度)等の実用性の点から、ポリプロピレン、エチレン-プロピレン(ブロックまたはランダム)共重合体、ポリアミド系樹脂、ポリエチレン系樹脂、エチレン-酢酸ビニル共重合体、ポリスチレン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が好ましく用いられる。
 さらに、本発明のEVOH組成物ペレット等を用いて成形されたフィルムやシート等の成形物に、他の基材を押出コートしたり、他の基材のフィルム、シート等を、接着剤を用いてラミネートしたりする場合、かかる基材としては、前記の熱可塑性樹脂以外に、任意の基材(紙、金属箔、一軸または二軸延伸プラスチックフィルムまたはシートおよびその無機物蒸着物、織布、不織布、金属綿条、木質等)も使用可能である。
 上記多層構造体の層構成は、本発明のEVOH組成物ペレットを用いて成形された層をa(a1、a2、・・・)、他の基材、例えば熱可塑性樹脂層をb(b1、b2、・・・)とするとき、かかるa層を最内層とする構成で、[内側]a/b[外側](以下同様)の二層構造のみならず、例えば、a/b/a、a1/a2/b、a/b1/b2、a1/b1/a2/b2、a1/b1/b2/a2/b2/b1等任意の組み合わせが可能であり、さらには、少なくとも本発明のEVOH組成物ペレット等と熱可塑性樹脂の混合物からなるリグラインド層をRとするとき、例えば、a/R/b、a/R/a/b、a/b/R/a/R/b、a/b/a/R/a/b、a/b/R/a/R/a/R/b等とすることも可能である。
 なお、上記の層構成において、それぞれの層間には、必要に応じて接着性樹脂層を設けることができる。かかる接着性樹脂としては、種々のものを使用することができるが、延伸性に優れた多層構造体が得られる点において、例えば不飽和カルボン酸またはその無水物をオレフィン系重合体(上述の広義のポリオレフィン系樹脂)に付加反応やグラフト反応等により化学的に結合させて得られる、カルボキシル基を含有する変性オレフィン系重合体をあげることができる。
 具体的には、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン-プロピレン(ブロックおよびランダム)共重合体、無水マレイン酸グラフト変性エチレン-エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン-酢酸ビニル共重合体等から選ばれた1種または2種以上の混合物が好適なものとしてあげられる。このときの、熱可塑性樹脂に含有される不飽和カルボン酸またはその無水物の量は、0.001~3重量%が好ましく、さらに好ましくは0.01~1重量%、特に好ましくは0.03~0.5重量%である。該変性物中の変性量が少なすぎると接着性が低下する傾向があり、逆に多すぎると架橋反応を起こし、成形性が低下する傾向がある。
 また、これらの接着性樹脂には、本発明のEVOH組成物ペレットに由来するEVOH、他のEVOH、ポリイソブチレン、エチレン-プロピレンゴム等のゴム・エラストマー成分、さらにはb層の樹脂等をブレンドすることも可能である。特に、接着性樹脂の母体のポリオレフィン系樹脂と異なるポリオレフィン系樹脂をブレンドすることにより、接着性が向上することがあり有用である。
 多層構造体の各層の厚みは、層構成、b層の種類、用途や成形物の形態、要求される物性等により一概にいえないが、通常は、a層は5~500μm、好ましくは10~200μm、b層は10~5000μm、好ましくは30~1000μm、接着性樹脂層は5~400μm、好ましくは10~150μm程度の範囲から選択される。
 多層構造体は、そのまま各種形状のものに使用されるが、上記多層構造体の物性を改善するためには加熱延伸処理を施すことも好ましい。ここで、「加熱延伸処理」とは、熱的に均一に加熱されたフィルム、シート、パリソン状の積層体をチャック、プラグ、真空力、圧空力、ブロー等の成形手段により、カップ、トレイ、チューブ、フィルム状に均一に成形する操作を意味する。そして、かかる延伸については、一軸延伸、二軸延伸のいずれであってもよく、できるだけ高倍率の延伸を行ったほうが物性的に良好で、延伸時にピンホールやクラック、延伸ムラや偏肉、デラミ(delamination:層間剥離)等の生じない、ガスバリア性に優れた延伸成形物が得られる。
 上記多層構造体の延伸方法としては、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法、真空圧空成形等のうち延伸倍率の高いものも採用できる。二軸延伸の場合は同時二軸延伸方式、逐次二軸延伸方式のいずれの方式も採用できる。延伸温度は60~170℃、好ましくは80~160℃程度の範囲から選ばれる。延伸が終了した後、熱固定を行うことも好ましい。熱固定は周知の手段で実施可能であり、上記延伸フィルムを、緊張状態を保ちながら80~170℃、好ましくは100~160℃で2~600秒間程度熱処理することによって、熱固定を行うことができる。
 また、生肉、加工肉、チーズ等の熱収縮包装用途に用いる場合には、延伸後の熱固定は行わずに製品フィルムとし、上記の生肉、加工肉、チーズ等を該フィルムに収納した後、50~130℃、好ましくは70~120℃で、2~300秒間程度の熱処理を行って、該フィルムを熱収縮させて密着包装をする。
 このようにして得られる多層構造体の形状としては、任意のものであってよく、フィルム、シート、テープ、異型断面押出物等が例示される。また、上記多層構造体は、必要に応じて、熱処理、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液または溶融コート処理、製袋加工、深絞り加工、箱加工、チューブ加工、スプリット加工等を行うことができる。
 上記の如く得られたフィルム、シート、延伸フィルムからなる袋およびカップ、トレイ、チューブ、ボトル等からなる容器や蓋材は、一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品等の各種の包装材料容器として有用である。
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、実施例の記載に限定されるものではない。
 なお、例中「部」、「%」とあるのは、重量基準を意味する。
 まず実施例および比較例で用いるペレットの測定評価方法について説明する。
〔測定評価方法〕
(1)ペレット中のホウ素化合物全含有量(ホウ素換算)
 EVOHペレット0.1gを濃硝酸とともにマイクロウェーブ分解法にて処理して得られる溶液を純水にて定容(0.75mg/mL)したものを検液とし、誘導結合プラズマ発光分析計(ICP-AES)(アジレント・テクノロジー社製、720-ES型)で測定した。当該測定されるホウ素含有量は、ホウ素化合物に由来するホウ素量に該当する。なお、かかる測定評価方法は、表層部ホウ素調整前EVOHペレットおよび、EVOH組成物ペレットに適用する。
(2)ペレット表層部のホウ素化合物含有量(ホウ素換算)
 EVOH組成物ペレット4gを、メタノール(30℃)20mLに6時間静置浸漬し、得られたメタノール溶液を測定用試料として用いた。この測定用試料について、誘導結合プラズマ質量分析計(ICP-MS)(パーキンエルマー社製、ELAN DRCII)を用いてホウ素含有量を測定し、上記EVOH組成物ペレット重量(4g)で除してペレット表層部のホウ素含有量を求めた。当該測定されるホウ素含有量は、ホウ素化合物に由来するホウ素量に該当する。
(3)ペレットの桂皮酸類含有量
 EVOH組成物ペレット中の桂皮酸類の含有量について、桂皮酸類をEVOHのペレット表面に直接添加する場合は添加量を含有量とみなすことができるが、桂皮酸がEVOH組成物ペレットの内部に存在する場合は、液体クロマトグラフィー質量分析法(LC/MS/MS)を用いて、下記手順に基づいて評価した。なお、下記手順は桂皮酸類として桂皮酸を用いた場合を例にして記載するが、桂皮酸以外の桂皮酸塩等についても同様の手順にて行なわれる。
[標準溶液の調製]
 桂皮酸(10.89mg)を10mLメスフラスコに秤量し、メタノールに溶解して10mL溶液とした(標準原液;1089μg/mL)。ついで、調製した標準原液をメタノールで希釈して、複数濃度(0.109μg/mL、0.218μg/mL、0.545μg/mL、1.09μg/mL、2.18μg/mL)の各混合標準溶液を調製した。これら混合標準溶液を用いてLC/MS/MS分析を実施し、検量線を作成した。
[試料溶液の調製]
 EVOH組成物ペレット(1g)を10mLメスフラスコに秤量後、メタノール9mLを加え、超音波処理を120分間実施後、室温(25℃)で放冷した。この溶液にメタノールを加えて、10mLに定容し試料溶液1とした。また、この試料溶液1を10mLのメスフラスコに1mL採取し、メタノールで10mLに定容し試料溶液2とした。
 上記試料溶液1または試料溶液2をPTFEフィルタ(0.45μm)で濾過した液体を測定溶液としてLC/MS/MS分析に供した。
[LC/MS/MS測定条件]
LCシステム:     LC-20A[島津製作所社製]
質量分析計:      API4000[AB/MDS Sciex]
分析カラム:      Scherzo SM-C18 (3.0×75mm、3μm)
カラム温度:      45℃
移動相:        A 10mmol/L 酢酸アンモニウム 水溶液
            B メタノール
タイムプログラム:   0.0→5.0min   B%=30%→95%
            5.0→10.0min  B%=95%
            10.1→15.0min B%=30%
流量:         0.4mL/min
切り替えバルブ:    2.0 to 6.0min: to MS
注入量:        5μL
イオン化:       ESI法
検出:         負イオン検出(SRM法)
モニターイオン:    Q1=147.0 → Q3=102.9(CE: -15eV)
 なお、上記タイムプログラムにおける「%」は、体積%を意味する。
 上記LC/MS/MS分析で検出されたピーク面積値と、標準溶液の検量線から桂皮酸の検出濃度を算出し、検出濃度からEVOH組成物ペレット中の桂皮酸含有量を算出した。
(4)ペレットのアルカリ金属含有量
 EVOH組成物ペレット2gを白金皿に採取し、硫酸を数mL添加してガスバーナーで加熱した。ペレットが炭化して硫酸白煙がなくなるのを確認したら、数滴硫酸を添加して再び加熱した。この操作を有機物がなくなるまで繰り返し、完全に灰化させた。灰化が終わった容器を放冷し、塩酸を1mL添加して溶解させた。この塩酸溶液を超純水で洗いこみ、50mLに定容した。このサンプル溶液中のアルカリ金属含有量を誘導結合プラズマ発光分析計(ICP-AES)(アジレント・テクノロジー社製、720-ES型)を用いて測定した。最終的に、溶液中のアルカリ金属濃度から、試料のEVOH組成物ペレット中のアルカリ金属含有量として換算した。また、アルカリ金属化合物をEVOHのペレット表面に直接添加する場合は、金属換算した添加量を含有量とみなした。
(5)ペレットのソルビン酸(共役ポリエン)含有量
 EVOH組成物ペレットを凍結粉砕したもの1gに対して、メタノール/水=1/1(容比)の抽出溶媒8mLを添加した。この溶液を温度20℃、静置状態で超音波処理を1時間行い、樹脂中のソルビン酸を抽出し、冷却後に抽出溶媒で10mLに定容した。この溶液をろ過後、液体クロマトグラフ-紫外分光検出器で抽出溶液中のソルビン酸を定量した。
[HPLC測定条件]
LCシステム  :Agilent1260/1290[Agilent Technologies社製]
検出器     :Agilent1260 infinity ダイオードアレイ検出器[Agilent Technologies社製]
カラム     :Cadenza CD-C18(100×3.0mm、3μm)[Imtakt社製]
カラム温度   :40℃
移動相A    :0.05%ギ酸含有 5%アセトニトリルの水溶液
移動相B    :0.05%ギ酸含有 95%アセトニトリルの水溶液
タイムプログラム:0.0→5.0min   B%=30%
         5.0→8.0min   B%=30%→50%
         8.0→10.0min  B%=50%
         10.0→13.0min B%=50%→30%
         13.0→15.0min B%=30%
流量      :0.2mL/min
UV検出波長  :190~400nm
定量波長    :262nm
 得られた溶液中のソルビン酸量をEVOH組成物ペレット中のソルビン酸量に換算した。また、上記HPLC測定条件における「%」は、体積%を意味する。
(6)ペレットの滑剤含有量
 滑剤をEVOHのペレット表面に直接添加する場合は、添加量を含有量とみなした。
(7)ペレットのアルカリ土類金属含有量
 EVOH組成物ペレット中のアルカリ土類金属の含有量について、アルカリ土類金属をEVOHのペレット表面に直接添加する場合は、金属換算した添加量を含有量とみなした。また、アルカリ土類金属がEVOH組成物ペレットの内部に存在する場合は、EVOH組成物ペレット2gを白金皿に採取し、硫酸を数mL添加してガスバーナーで加熱した。ペレットが炭化して硫酸白煙がなくなるのを確認し、数滴硫酸を添加して再び加熱した。この操作を有機物がなくなるまで繰り返し、完全に灰化させた。その後、灰化が終わった容器を放冷し、塩酸を1mL添加して溶解させた。この塩酸溶液を超純水で洗いこんで、50mLに定容し試料溶液とした。この試料溶液中のアルカリ土類金属含有量を誘導結合プラズマ発光分析計(ICP-AES)(アジレント・テクノロジー社製、720-ES型)によって測定した。最終的に、試料溶液中のアルカリ土類金属濃度から、EVOH組成物ペレット中のアルカリ金属土類含有量を換算した。
(8)ペレットの含水率(%)
 乾燥前のEVOHのペレットの重量と、温度150℃、5時間乾燥後のEVOHのペレットの重量から揮発分を求め、これをEVOHのペレットの含水率とした。具体的には含水率は、下記式で表わされる。なお、かかる測定評価方法は、EVOHのペレット、表層部ホウ素調製前EVOHペレットおよび、EVOH組成物ペレットに適用する。
 含水率(%)=〔(乾燥前のEVOHのペレット重量-乾燥後のEVOHのペレット重量)/乾燥前のEVOHのペレット重量〕×100
(9)フィッシュアイ
 EVOH組成物ペレットを用いて下記条件で、厚み30μmの単層フィルムを成膜した。
 (成膜条件)
押出機:直径(D)40mm、L/D=28
スクリュー:フルフライトタイプ圧縮比=2.5
スクリーンパック:60/90/60メッシュ
ダイ:幅450mm、コートハンガータイプ
設定温度:C1/C2/C3/C4/A/D=190/200/210/210/210/210℃
スクリュー回転数:20rpm
ロール温度:80℃
 厚み30μmの単層フィルムについて、デジタル欠陥検査装置(マミヤオーピー社製、GX-70LT)を用いて、フィッシュアイを計測した。
 フィッシュアイの計測は、単層フィルムの下面から光を当て、光透過しなかった部分(直径0.1~0.2mm)をフィッシュアイ1個として、100cm2(サイズ:10cm×10cm)のあたりのフィッシュアイ個数をカウントすることにより行った。
 なお、計測時の読み取り速度は3m/分である。
<<(A)フィッシュアイ抑制成分として桂皮酸類を用いた実施例>>
〈実施例1〉
 EVOH〔エチレン含有量:44モル%、ケン化度:99.6モル%、MFR:3.8g/10分(210℃、荷重2160g)〕を水/メタノール混合溶媒〔水/メタノール=20/80(重量比)〕に溶解した溶液(60℃、EVOH濃度40%)を、5℃に維持した水を収容した水槽内にストランド状に押出して凝固させた後、カッターで切断して、円柱状(直径4mm、長さ4mm)のペレットを得た。ついで、このEVOHのペレットを、30℃の温水に投入し、4時間撹拌して、含水率50%の多孔質のEVOHペレットを得た。
 多孔質のEVOHペレット100部を、0.0054%のホウ酸水溶液200部に投入し、30℃で5時間撹拌した。撹拌後、多孔質の表層部ホウ素調整前EVOHペレットを回収した。
 この表層部ホウ素調整前EVOHペレットを、回分式塔型流動層乾燥器にて、75℃の窒素ガスを3時間通過させることにより、含水率20%まで乾燥した。
 ついで、回分式箱型通気式乾燥器を用いて、125℃の窒素ガスを18時間通過させて、含水率0.3%にまで乾燥させた。
 上記のようにして得られた、乾燥後の表層部ホウ素調整前EVOHペレットを、以下の洗浄処理に供した。
 乾燥後の表層部ホウ素調整前EVOHペレット5部と、洗浄用処理液として水/メタノール混合溶媒(水/メタノール=1/1(重量比))10部とを、ステンレス製容器に入れ、35℃で1時間撹拌した。その後、ペレットを取り出し、120℃、16時間、窒素気流下で乾燥させた。以上のようにして、ホウ素化合物を含有するEVOHペレットを得た。
 得られたホウ素化合物を含有するEVOHペレットを、前記方法によりホウ素化合物全含有量、表層部のホウ素化合物含有量、含水率を測定した。ホウ素化合物全含有量(ホウ素換算)は128.8ppm、表層部のホウ素化合物含有量(ホウ素換算)は1.1ppm(含水率0.10%)であった。
 このホウ素化合物を含有するEVOHペレットに対して、0.03%になるように桂皮酸をドライブレンドし、ホウ素化合物含有量ならびに桂皮酸含有量を調整した、EVOH組成物ペレットを得た。
 得られたEVOH組成物ペレットを、単層Tダイ押出装置を用いて、上記方法にて最高温度210℃、スクリュー回転数20rpmで成膜し、厚み30μmの単層フィルムを製造した。この単層フィルムについて、上記方法によりフィッシュアイの発生個数を調べた。結果を表1に示す。
〈実施例2,3〉
 実施例1において、ホウ素化合物全含有量、表層部のホウ素化合物含有量および、桂皮酸含有量を下記表1のように調整し、EVOH組成物ペレットを得た。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率は実施例2が0.15%、実施例3が0.15%)。
 ついで、このペレットを用いて、実施例1と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表1に示す。
〈比較例1〉
 洗浄処理液を水に変更した以外は、実施例1と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.13%)。
 ついで、このペレットを用いて、実施例1と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表1に示す。
〈比較例2〉
 洗浄処理液による洗浄を行わず、桂皮酸を用いなかった以外は、実施例1と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.09%)。
 ついで、このペレットを用いて、実施例1と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表1に示す。
〈比較例3,4〉
 桂皮酸含有量を下記表1の含有量に調整した以外は、実施例1と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率はともに0.10%)。
 ついで、このペレットを用いて、実施例1と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ桂皮酸を当該ペレット全体の0.0001~0.05重量%含有する実施例1~3のEVOH組成物ペレットは、比較例に比べてフィッシュアイの発生を大幅に抑制することができた。
<<(B)フィッシュアイ抑制成分としてアルカリ金属を用いた実施例>>
〈実施例4〉
 EVOH〔エチレン含有量:44モル%、ケン化度:99.6モル%、MFR:3.8g/10分(210℃、荷重2160g)〕を水/メタノール混合溶媒〔水/メタノール=20/80(重量比)〕に溶解した溶液(60℃、EVOH濃度40%)を、5℃に維持した水を収容した水槽内にストランド状に押出して凝固させた後、カッターで切断して、円柱状(直径4mm、長さ4mm)のペレットを得た。ついで、このEVOHのペレットを、30℃の温水に投入し、4時間撹拌して、含水率50%の多孔質のEVOHペレットを得た。
 このEVOHのペレット100部を0.0054%のホウ酸および0.0407%の酢酸ナトリウムを含む水溶液200部に投入し、30℃で5時間撹拌することで、アルカリ金属を含有する表層部ホウ素調整前EVOHペレットを回収した。
 このアルカリ金属を含有する表層部ホウ素調整前EVOHペレットを、回分式塔型流動層乾燥器にて、75℃の窒素ガスを3時間通過させることにより、含水率20%まで乾燥させた。
 ついで、回分式箱型通気式乾燥器を用いて、125℃の窒素ガスを18時間通過させて、含水率0.3%にまで乾燥させた。
 上記のようにして得られた、乾燥後のアルカリ金属を含有する表層部ホウ素調整前EVOHペレットを、以下の洗浄処理に供した。
 乾燥後のアルカリ金属を含有する表層部ホウ素調整前EVOHペレット5部と、洗浄用処理液として水/メタノール混合溶媒〔水/メタノール=3/7(重量比)〕10部とを、ステンレス製容器に入れ、35℃で1時間撹拌した。その後、ペレットを取り出し、120℃、16時間、窒素気流下で乾燥した。以上のようにして、EVOH組成物ペレットを得た。
 得られたEVOH組成物ペレットを、上記測定評価方法によりホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ金属含有量、含水率を測定した。ホウ素化合物全含有量(ホウ素換算)は128.8ppm、表層部のホウ素化合物含有量(ホウ素換算)は1.1ppm、アルカリ金属の含有量は240ppm、含水率は0.13重量%であった。
 得られたEVOH組成物ペレットを、単層Tダイ押出装置を用いて、最高温度210℃、スクリュー回転数20rpmで成膜し、厚み30μmの単層フィルムを製造した。この単層フィルムについて、上記測定評価方法によりフィッシュアイの発生個数を調べた。
〈実施例5〉
 洗浄用処理液の組成を水/メタノール=1/1(重量比)に変更し、アルカリ金属含有量を下記表2の含有量に調整した以外は、実施例4と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素全化合物含有量、表層部のホウ素化合物含有量、アルカリ金属含有量を測定した(含水率0.10%)。
 ついで、このペレットを用いて、実施例4と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表2に示す。
〈実施例6〉
 実施例5において、アルカリ金属含有量を下記表2の含有量に調整し、EVOH組成物ペレットを得た。また、得られたEVOH組成物ペレットのホウ素全化合物含有量、表層部のホウ素化合物含有量、アルカリ金属含有量を測定した(含水率0.15%)。
 ついで、このペレットを用いて、実施例4と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表2に示す。
〈比較例5〉
 洗浄用処理液を水に変更した以外は、実施例4と同様にして、EVOH組成物ペレットを作製した。また、EVOH組成物ペレット中のホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ金属含有量を測定した(含水率0.13%)。
 ついで、このペレットを用いて、実施例4と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表2に示す。
〈比較例6〉
 洗浄処理液による洗浄を行わない以外は、実施例4と同様にして、EVOH組成物ペレットを作製した。また、EVOH組成物ペレット中のホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ金属含有量を測定した(含水率0.09%)。
 ついで、このペレットを用いて、実施例4と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表2に示す。
〈比較例7〉
 アルカリ金属含有量を下記表2の含有量に調整した以外は、実施例5と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ金属含有量を測定した(含水率0.09%)。
 ついで、このペレットを用いて、実施例4と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつアルカリ金属含有量を当該ペレット重量あたり500ppm以下含有する実施例4~6のEVOH組成物ペレットは、比較例に比べてフィッシュアイの発生を大幅に抑制することができた。
<<(C)フィッシュアイ抑制成分として共役ポリエンを用いた実施例>>
〈実施例7〉
 エチレンと酢酸ビニルを重合後、エチレン酢酸ビニル共重合のメタノールペーストに共役ポリエンとしてソルビン酸のメタノール溶液を、EVOH中のソルビン酸量が下記表3の含有量になるように添加した。このソルビン酸を含むEVOHペーストをケン化することで共役ポリエンを含有するEVOH〔エチレン含有量:44モル%、ケン化度:99.6モル%、MFR:3.8g/10分(210℃、荷重2160g)〕を得た。この共役ポリエンを含有するEVOHを水/メタノール混合溶媒〔水/メタノール=20/80(重量比)〕に溶解させ(60℃、EVOH濃度40%)、5℃に維持した水を収容した水槽内にストランド状に押出して凝固させた後、カッターで切断して、円柱状(直径4mm、長さ4mm)のペレットを得た。ついで、この共役ポリエンを含有するEVOHペレットを、30℃の温水に投入し、4時間撹拌して、含水率50%の多孔質の共役ポリエンを含有するEVOHペレットを得た。
 多孔質の共役ポリエンを含有するEVOHペレット100部を、0.0054%のホウ酸水溶液200部に投入し、30℃で5時間撹拌した。撹拌後、共役ポリエンを含有する表層部ホウ素調整前EVOHペレットを回収した。
 この共役ポリエンを含有する表層部ホウ素調整前EVOHペレットを、回分式塔型流動層乾燥器にて、75℃の窒素ガスを3時間通過させることにより、含水率20%まで乾燥させた。
 ついで、回分式箱型通気式乾燥器を用いて、125℃の窒素ガスを18時間通過させて、含水率0.3%にまで乾燥させた。
 上記のようにして得られた、乾燥後の共役ポリエンを含有する表層部ホウ素調整前EVOHペレットを、以下の洗浄処理に供した。
 乾燥後の共役ポリエンを含有する表層部ホウ素調整前EVOHペレット5部と、洗浄用処理液としての水/メタノール混合溶媒〔水/メタノール=1/1(重量比)〕10部とを、ステンレス製容器に入れ、35℃で1時間撹拌した。その後、ペレットを取り出し、120℃、16時間、窒素気流下で乾燥した。以上のようにして、EVOH組成物ペレットを得た。
 得られたEVOH組成物ペレットを、上記測定評価方法によりホウ素化合物全含有量、表層部のホウ素化合物含有量、共役ポリエン含有量を測定した。ホウ素化合物全含有量(ホウ素換算)は128.8ppm、表層部のホウ素化合物含有量(ホウ素換算)は1.1ppm、ソルビン酸(共役ポリエン)の含有量は0.0478%、含水率は0.10%であった。
 得られたEVOH組成物ペレットを、単層Tダイ押出装置を用いて、最高温度210℃、スクリュー回転数20rpmで成膜し、厚み30μmの単層フィルムを製造した。この単層フィルムについて、上記測定評価方法によりフィッシュアイの発生個数を調べた。結果を下記表3に示す。
〈実施例8,9〉
 実施例7において、ホウ素化合物全含有量、表層部のホウ素化合物含有量および、共役ポリエン含有量を下記表3のように調整し、EVOH組成物ペレットを得た。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率は実施例8が0.18%、実施例9が0.18%)。
 ついで、このペレットを用いて、実施例7と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表3に示す。
〈比較例8〉
 洗浄処理液を水に変更し、ソルビン酸(共役ポリエン)含有量を下記表3の含有量に調整した以外は、実施例7の場合と同様にして、EVOH組成物ペレットを作製した。得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、ソルビン酸(共役ポリエン)含有量を測定した(含水率0.13%)。
 ついで、このペレットを用いて、実施例7と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表3に示す。
〈比較例9〉
 洗浄処理液による洗浄を行わず、ソルビン酸(共役ポリエン)含有量を下記表3の含有量に調整した以外は、実施例7の場合と同様にして、EVOH組成物ペレットを作製した。得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、ソルビン酸(共役ポリエン)含有量を測定した(含水率0.09%)。
 ついで、このペレットを用いて、実施例7と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表3に示す。
〈比較例10〉
 ソルビン酸(共役ポリエン)含有量を下記表3の含有量に調整した以外は、実施例7の場合と同様にして、EVOH組成物ペレットを作製した。得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、ソルビン酸(共役ポリエン)含有量を測定した(含水率は0.10%)。
 ついで、このペレットを用いて、実施例7と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ共役ポリエンの含有量が当該ペレット全体の0.06重量%以下である実施例7~9のEVOH組成物ペレットは、比較例に比べてフィッシュアイの発生を大幅に抑制することができた。
<<(D)フィッシュアイ抑制成分として滑剤を用いた実施例>>
〈実施例10〉
 EVOH〔エチレン含有量:44モル%、ケン化度:99.6モル%、MFR:3.8g/10分(210℃、荷重2160g)〕を水/メタノール混合溶媒〔水/メタノール=20/80(重量比)〕に溶解させた溶液(60℃、EVOH濃度40%)を、5℃に維持した水を収容した水槽内にストランド状に押出して凝固させた後、カッターで切断して、円柱状(直径4mm、長さ4mm)のペレットを得た。ついで、このEVOHのペレットを、30℃の温水に投入し、4時間撹拌して、含水率50%の多孔質のEVOHのペレットを得た。
 多孔質のEVOHのペレット100部を、0.0054%のホウ酸水溶液200部に投入し、30℃で5時間撹拌した。撹拌後、表層部ホウ素調整前EVOHペレットを回収した。
 この表層部ホウ素調整前EVOHペレットを、回分式塔型流動層乾燥器にて、75℃の窒素ガスを3時間通過させることにより、含水率20%まで乾燥させた。
 ついで、回分式箱型通気式乾燥器を用いて、125℃の窒素ガスを18時間通過させて、含水率0.3%にまで乾燥させた。乾燥後の表層部ホウ素調整前EVOHペレットのホウ素化合物全含有量を、前記測定評価方法により測定したところ、130ppmであった。
 上記のようにして得られた、乾燥後の表層部ホウ素調整前EVOHペレット(含水率0.3%、ホウ素化合物全含有量130ppm)を、以下の洗浄処理に供した。
 乾燥後の表層部ホウ素調整前EVOHペレット5部と、洗浄用処理液として水/メタノール混合溶媒(水/メタノール=1/1(重量比))10部とを、ステンレス製容器に入れ、35℃で1時間撹拌した。その後、ペレットを取り出し、120℃、16時間、窒素気流下で乾燥した。以上のようにして、ホウ素化合物を含有するEVOHペレットを得た。
 続いて、上記のホウ素化合物を含有するEVOHペレットに対して、滑剤(エチレンビスステアリン酸アミド:日油社製、アルフローH-50T)を0.0054%になるように添加して均一になるように振り混ぜた。
 得られたEVOH組成物ペレットを、上記測定評価方法によりホウ素化合物全含有量、表層部のホウ素化合物含有量、を測定した。ホウ素化合物全含有量は128.8ppm、表層部のホウ素化合物含有量は1.1ppm(含水率0.10%)であった。
 得られたEVOH組成物ペレットを、単層Tダイ押出装置を用いて、最高温度210℃、スクリュー回転数20rpmで成膜し、厚み30μmの単層フィルムを製造した。この単層フィルムについて、上記測定評価方法によりフィッシュアイの発生個数を調べた。結果を下記表4に示す。
〈実施例11,12〉
 実施例10においてEVOH組成物ペレット中の滑剤含有量を、下記表4の含有量に調整した以外は、実施例10の場合と同様にして、EVOH組成物ペレットを作製した(含水率はいずれも0.10%)。
 ついで、このペレットを用いて、実施例10と同様にして、単層フィルムを作製し、フィッシュアイの発生について評価した。その結果を下記表4に示す。
〈実施例13〉
 実施例10において滑剤としてステアリン酸カルシウムを用い、ホウ素化合物全含有量、表層部のホウ素化合物含有量および滑剤含有量を、下記表4の含有量に調整し、EVOH組成物ペレットを得た。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.15%)。
 ついで、このペレットを用いて、実施例10と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表4に示す。
〈実施例14〉
 実施例10において滑剤としてステアリン酸マグネシウムを用い、ホウ素化合物全含有量、表層部のホウ素化合物含有量および滑剤含有量を、下記表4の含有量に調整し、EVOH組成物ペレットを得た。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.15%)。
 ついで、このペレットを用いて、実施例10と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表4に示す。
〈比較例11〉
 洗浄処理液を水に変更し、滑剤含有量を下記表4の含有量に調整した以外は、実施例10の場合と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.13%)。
 ついで、このペレットを用いて、実施例10と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表4に示す。
〈比較例12〉
 洗浄処理液による洗浄を行わず、滑剤を添加しなかった以外は、実施例10の場合と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率0.09%)。
 ついで、このペレットを用いて、実施例10と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表4に示す。
〈比較例13,14〉
 滑剤含有量を下記表4の含有量に調整した以外は、実施例10の場合と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量を測定した(含水率はいずれも0.10%)。
 ついで、このペレットを用いて、実施例10と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表層部のホウ素化合物含有量が1.7ppm以下であり、かつ滑剤を当該ペレットの0.001~0.15重量%含有する実施例10~14のEVOH組成物ペレットは、比較例に比べてフィッシュアイの発生を大幅に抑制することができた。すなわち、実施例11と比較例11とを対比すると、ペレット全体のホウ素化合物含有量が同じレベルであり、かつ、滑剤含有量が同じであっても、ペレット表層のホウ素化合物含有量を低減した実施例12のペレットの方がフィルム作製した際のフィルムのフィッシュアイ発生量が大幅に少ないことが分かる。
<<(E)フィッシュアイ抑制成分としてアルカリ土類金属を用いた実施例>>
〈実施例15〉
 EVOH〔エチレン含有量:44モル%、ケン化度:99.6モル%、MFR:3.8g/10分(210℃、荷重2160g)〕を水/メタノール混合溶媒〔水/メタノール=20/80(重量比)〕に溶解させた溶液(60℃、EVOH濃度40%)を、5℃に維持した水を収容した水槽内にストランド状に押出して凝固させた後、カッターで切断して、円柱状(直径4mm、長さ4mm)のペレットを得た。ついで、このEVOHのペレットを、30℃の温水に投入し、4時間撹拌して、含水率50%の多孔質のEVOHのペレットを得た。
 多孔質のEVOHのペレット100部を、0.0054%のホウ酸水溶液200部に投入し、30℃で5時間撹拌した。撹拌後、表層部ホウ素調整前EVOHペレットを回収した。
 この表層部ホウ素調整前EVOHペレットを、回分式塔型流動層乾燥器にて、75℃の窒素ガスを3時間通過させることにより、含水率20%まで乾燥させた。
 ついで、回分式箱型通気式乾燥器を用いて、125℃の窒素ガスを18時間通過させて、含水率0.3%にまで乾燥させた。
 上記のようにして得られた、乾燥後の表層部ホウ素調整前EVOHペレットを、以下の洗浄処理に供した。
 乾燥後の表層部ホウ素調整前EVOHペレット5部と、洗浄用処理液として水/メタノール混合溶媒(水/メタノール=1/1(重量比))10部とを、ステンレス製容器に入れ、35℃で1時間撹拌した。その後、ペレットを取り出し、120℃、16時間、窒素気流下で乾燥した。以上のようにして、ホウ素化合物を含有するEVOHペレットを得た。
 得られたホウ素化合物を含有するEVOHペレットに対して、アルカリ土類金属としてカルシウム量が30ppmになるように、ビス(リン酸二水素)カルシウム・1水和物を添加して均一になるように振り混ぜ、EVOH組成物ペレットを得た。
 得られたEVOH組成物ペレットを、上記測定評価方法によりホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ土類金属含有量、含水率を測定した。ホウ素化合物全含有量(ホウ素換算)は128.8ppm、表層部のホウ素化合物含有量(ホウ素換算)は1.1ppm、アルカリ土類金属の含有量は30ppm、含水率は0.10重量%であった。
 得られたホウ素化合物およびアルカリ土類金属含有EVOH組成物ペレットを、単層Tダイ押出装置を用いて、最高温度210℃、スクリュー回転数20rpmで成膜し、厚み30μmの単層フィルムを製造した。この単層フィルムについて、上記測定評価方法によりフィッシュアイの発生個数を調べた。結果を下記表5に示す。
〈比較例15〉
 洗浄用処理液を水に変更した以外は、実施例15の場合と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ土類金属含有量を測定した(含水率は0.13%)。
 ついで、このペレットを用いて、実施例15と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表5に示す。
〈比較例16〉
 洗浄処理液による洗浄を行わず、アルカリ土類金属含有量を下記表5の含有量に調整した以外は、実施例15の場合と同様にして、EVOH組成物ペレットを作製した。また、得られたEVOH組成物ペレットのホウ素化合物全含有量、表層部のホウ素化合物含有量、アルカリ土類金属含有量を測定した(含水率は0.10%)。
 ついで、このペレットを用いて、実施例15と同様にして単層フィルムを作製し、フィッシュアイの発生について評価した。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつアルカリ土類金属含有量を当該ペレット重量あたり100ppm以下含有する実施例15のEVOH組成物ペレットは、比較例15および16に比べてフィッシュアイの発生を大幅に抑制することができた。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のEVOH組成物ペレットは、ペレット表層部のホウ素化合物の含有量を減少させ、かつ所定量のフィッシュアイ抑制成分を含有するため、成形性を損なうことなく、外観を向上させることができるため、従来のEVOHペレットよりも包装材料としての外観要求が厳しい分野に好適に利用することができる。

Claims (5)

  1.  ホウ素化合物を含有するエチレン-ビニルアルコール系共重合体組成物ペレットであって、
     当該ペレット表層部のホウ素化合物含有量が、ホウ素換算で当該ペレット重量あたり1.7ppm以下であり、かつ下記の(A)~(E)からなる群から選択される少なくとも一つの成分を含有することを特徴とするエチレン-ビニルアルコール系共重合体組成物ペレット。
    (A)上記エチレン-ビニルアルコール系共重合体組成物ペレットに対する含有割合が重量基準で0.0001~0.05重量%である桂皮酸類。
    (B)上記エチレン-ビニルアルコール系共重合体組成物ペレットに対する含有割合が重量基準で500ppm以下であるアルカリ金属。
    (C)上記エチレン-ビニルアルコール系共重合体組成物ペレットに対する含有割合が重量基準で0.06重量%以下である共役ポリエン。
    (D)上記エチレン-ビニルアルコール系共重合体組成物ペレットに対する含有割合が重量基準で0.001~0.15重量%である滑剤。
    (E)上記エチレン-ビニルアルコール系共重合体組成物ペレットに対する含有割合が重量基準で100ppm以下であるアルカリ土類金属。
  2.  上記エチレン-ビニルアルコール系共重合体組成物ペレット全体のホウ素化合物全含有量が、ホウ素換算で上記ペレット重量あたり10~1000ppmであることを特徴とする請求項1記載のエチレン-ビニルアルコール系共重合体組成物ペレット。
  3.  上記エチレン-ビニルアルコール系共重合体組成物ペレット全体のホウ素化合物全含有量(ホウ素換算)に対する上記ペレット表層部のホウ素化合物含有量(ホウ素換算)の重量比(表層部ホウ素化合物含有量/ホウ素化合物全含有量)が、1.38×10-2以下であることを特徴とする請求項1または2記載のエチレン-ビニルアルコール系共重合体組成物ペレット。
  4.  上記エチレン-ビニルアルコール系共重合体組成物ペレットの含水率が0.01~1重量%であることを特徴とする請求項1~3のいずれか一項に記載のエチレン-ビニルアルコール系共重合体組成物ペレット。
  5.  エチレン-ビニルアルコール系共重合体のペレットをホウ素化合物と接触させることによりホウ素化合物を含有させる工程、ホウ素化合物を含有するエチレン-ビニルアルコール系共重合体のペレットを洗浄して、ペレット表層部のホウ素化合物含有量を、ホウ素換算で当該ペレット重量あたり1.7ppm以下にする工程、および下記の(A’)~(E’)からなる群から選択される少なくとも一つの工程を備えるエチレン-ビニルアルコール系共重合体組成物ペレットの製造方法であって、
     上記洗浄工程の洗浄が、乾燥したエチレン-ビニルアルコール系共重合体のペレットと、水のアルコールに対する重量比(水/アルコール)が80/20~0/100の水/アルコール混合溶液またはアルコールとを接触させることを特徴とするエチレン-ビニルアルコール系共重合体組成物ペレットの製造方法。
    (A’)上記エチレン-ビニルアルコール系共重合体組成物に対する桂皮酸類の含有量が、重量基準で0.0001~0.05重量%となるようにエチレン-ビニルアルコール系共重合体のペレットと桂皮酸類とを接触させる工程。
    (B’)上記エチレン-ビニルアルコール系共重合体組成物に対するアルカリ金属の含有量が、重量基準で500ppm以下となるようにエチレン-ビニルアルコール系共重合体のペレットとアルカリ金属とを接触させる工程。
    (C’)上記エチレン-ビニルアルコール系共重合体組成物に対する共役ポリエンの含有量が、重量基準で0.06重量%以下となるようにエチレン-ビニルアルコール系共重合体のペレットと共役ポリエンとを接触させる工程。
    (D’)上記エチレン-ビニルアルコール系共重合体組成物に対する滑剤の含有量が、重量基準で0.001~0.15重量%となるようにエチレン-ビニルアルコール系共重合体のペレットと滑剤とを接触させる工程。
    (E’)上記エチレン-ビニルアルコール系共重合体組成物に対するアルカリ土類金属の含有量が、重量基準で100ppm以下となるようにエチレン-ビニルアルコール系共重合体のペレットとアルカリ土類金属とを接触させる工程。
PCT/JP2017/047093 2016-12-28 2017-12-27 エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法 WO2018124232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780074648.5A CN110050017B (zh) 2016-12-28 2017-12-27 乙烯-乙烯醇系共聚物组合物粒料、及乙烯-乙烯醇系共聚物组合物粒料的制造方法
EP17885599.5A EP3564293B1 (en) 2016-12-28 2017-12-27 Ethylene-vinyl alcohol copolymer composition pellet, and production method thereof
BR112019009910-7A BR112019009910B1 (pt) 2016-12-28 2017-12-27 Péletes com composição de copolímero de etileno-álcool vinílico e método de produção de péletes com composição de copolímero de etileno-álcool vinílico
RU2019115667A RU2743821C2 (ru) 2016-12-28 2017-12-27 Гранулы из композиции сополимера этилена с виниловым спиртом и способ изготовления гранул из композиции сополимера этилена с виниловым спиртом
US16/445,320 US11267941B2 (en) 2016-12-28 2019-06-19 Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-255852 2016-12-28
JP2016255856A JP6702179B2 (ja) 2016-12-28 2016-12-28 エチレン−ビニルエステル系共重合体ケン化物ペレットおよびその製造方法
JP2016-255856 2016-12-28
JP2016-255855 2016-12-28
JP2016255853 2016-12-28
JP2016255852 2016-12-28
JP2016-255854 2016-12-28
JP2016-255853 2016-12-28
JP2016255855 2016-12-28
JP2016255854 2016-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/445,320 Continuation US11267941B2 (en) 2016-12-28 2019-06-19 Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets

Publications (1)

Publication Number Publication Date
WO2018124232A1 true WO2018124232A1 (ja) 2018-07-05

Family

ID=62710853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047093 WO2018124232A1 (ja) 2016-12-28 2017-12-27 エチレン-ビニルアルコール系共重合体組成物ペレットおよび、エチレン-ビニルアルコール系共重合体組成物ペレットの製造方法

Country Status (7)

Country Link
US (1) US11267941B2 (ja)
EP (1) EP3564293B1 (ja)
CN (1) CN110050017B (ja)
BR (1) BR112019009910B1 (ja)
RU (1) RU2743821C2 (ja)
TW (1) TWI757397B (ja)
WO (1) WO2018124232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105512A (ja) * 2018-12-26 2020-07-09 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
WO2024024768A1 (ja) * 2022-07-29 2024-02-01 三菱ケミカル株式会社 樹脂組成物、成形品、多層構造体、および樹脂組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251144B2 (ja) 2017-11-22 2023-04-04 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体組成物、溶融成形用材料および多層構造体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623866B2 (ja) 1978-07-08 1987-01-27 Nippon Synthetic Chem Ind
JPH0311270B2 (ja) 1983-04-18 1991-02-15 Kuraray Co
JP2000044756A (ja) 1998-07-27 2000-02-15 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物組成物の製造法
JP2002060499A (ja) * 2000-06-06 2002-02-26 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
JP2002284811A (ja) * 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
JP2011202052A (ja) * 2010-03-26 2011-10-13 Kuraray Co Ltd 変性エチレン−ビニルアルコール共重合体およびそれを含有する組成物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623866A (ja) 1985-06-28 1987-01-09 Kawasaki Steel Corp スプレイ鋳造法
IT1233599B (it) * 1989-05-30 1992-04-06 Butterfly Srl Composizioni polimeriche per la produzione di articoli di materiale plastico biodegradabile e procedimenti per la loro preparazione
JPH0311270A (ja) 1989-06-09 1991-01-18 Yoshikage Oda 極低温蓄冷器
WO1998043775A1 (en) 1997-03-28 1998-10-08 Nippon Steel Corporation Method and apparatus for butt welding of hot rolled billet with laser beam
US6174949B1 (en) 1997-07-25 2001-01-16 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Resin composition, process for preparing the same, and laminate containing layer of said resin composition
JP3895010B2 (ja) 1997-07-25 2007-03-22 日本合成化学工業株式会社 樹脂組成物およびその積層体
JP2000043040A (ja) 1998-07-27 2000-02-15 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物組成物ペレットの製造法
US6686405B1 (en) * 1999-07-23 2004-02-03 Kuraray Co., Ltd. Process for producing ethylene-vinyl alcohol copolymer resin, process for producing pellets and resin pellets
JP4864196B2 (ja) 1999-11-18 2012-02-01 株式会社クラレ アルコキシル基含有エチレン−酢酸ビニル共重合体けん化物及びその成形物
CA2326557C (en) * 1999-11-18 2006-03-14 Kuraray Co., Ltd. Saponified, alkoxyl group-containing ethylene-vinyl acetate copolymer, and its processed products
EP1162215B1 (en) 2000-06-06 2004-12-01 Kuraray Co., Ltd. Method for producing ethylene-vinyl alcohol copolymer resin composition
JP4447753B2 (ja) 2000-08-11 2010-04-07 株式会社カネカ ブロック共重合体を含有する硬化性組成物
JP3954290B2 (ja) 2000-08-24 2007-08-08 株式会社クラレ エチレン−酢酸ビニル共重合体ケン化物の製造方法
US6838029B2 (en) * 2001-01-19 2005-01-04 Kuraray Co., Ltd. Method for producing ethylene-vinyl alcohol copolymer resin
JP3596872B2 (ja) 2001-10-31 2004-12-02 日本合成化学工業株式会社 エチレン−酢酸ビニル共重合体ケン化物ペレットの製造方法
JP5095795B2 (ja) 2009-10-07 2012-12-12 日本合成化学工業株式会社 エチレン−ビニルアルコール系共重合体の製造方法
CN103097129B (zh) * 2010-03-31 2016-09-07 可乐丽股份有限公司 多层结构体、层叠体及其制造方法
US9951199B2 (en) * 2011-07-07 2018-04-24 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer resin composition and method for producing same
US10066095B2 (en) * 2012-06-13 2018-09-04 Kuraray Co., Ltd. Ethylene-vinyl alcohol resin composition, multilayer structure, multilayer sheet, container, and packaging material
RU148548U1 (ru) * 2014-05-20 2014-12-10 Общество с ограниченной ответственностью ООО "Стерильные материалы" Многослойная ламинированная термоформуемая барьерная полимерная пленка
RU2555040C1 (ru) * 2014-08-12 2015-07-10 РОССИЙСКАЯ ФЕДЕРАЦИЯ в лице Федерального агентства по государственным резервам (РОСРЕЗЕРВ) Многослойная пленка и способ ее изготовления
JP6684474B2 (ja) 2015-10-28 2020-04-22 三菱ケミカル株式会社 エチレン−ビニルエステル系共重合体ケン化物ペレット及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623866B2 (ja) 1978-07-08 1987-01-27 Nippon Synthetic Chem Ind
JPH0311270B2 (ja) 1983-04-18 1991-02-15 Kuraray Co
JP2000044756A (ja) 1998-07-27 2000-02-15 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物組成物の製造法
JP2002060499A (ja) * 2000-06-06 2002-02-26 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
JP2002284811A (ja) * 2001-01-19 2002-10-03 Kuraray Co Ltd エチレン−ビニルアルコール共重合体樹脂の製造方法
JP2011202052A (ja) * 2010-03-26 2011-10-13 Kuraray Co Ltd 変性エチレン−ビニルアルコール共重合体およびそれを含有する組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564293A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105512A (ja) * 2018-12-26 2020-07-09 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
JP7388184B2 (ja) 2018-12-26 2023-11-29 三菱ケミカル株式会社 エチレン-ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
WO2024024768A1 (ja) * 2022-07-29 2024-02-01 三菱ケミカル株式会社 樹脂組成物、成形品、多層構造体、および樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP3564293B1 (en) 2023-01-18
TW201835169A (zh) 2018-10-01
CN110050017B (zh) 2022-07-22
RU2743821C2 (ru) 2021-02-26
EP3564293A1 (en) 2019-11-06
BR112019009910A2 (pt) 2019-08-13
TWI757397B (zh) 2022-03-11
BR112019009910B1 (pt) 2022-12-06
RU2019115667A (ru) 2021-01-29
RU2019115667A3 (ja) 2021-01-29
CN110050017A (zh) 2019-07-23
EP3564293A4 (en) 2019-12-18
US20190315933A1 (en) 2019-10-17
US11267941B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US9453094B2 (en) Resin composition containing ethylene-vinyl alcohol copolymer
US11884806B2 (en) Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure
US10336885B2 (en) Saponified ethylene-vinyl ester copolymer composition and multilayered structure using said composition
US11015029B2 (en) Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets
JP6702179B2 (ja) エチレン−ビニルエステル系共重合体ケン化物ペレットおよびその製造方法
JP6684474B2 (ja) エチレン−ビニルエステル系共重合体ケン化物ペレット及びその製造方法
US10611894B2 (en) Resin composition and multilayer structure using same, and method of improving long-run stability
US11267941B2 (en) Ethylene-vinyl alcohol copolymer composition pellets, and production method for ethylene-vinyl alcohol copolymer composition pellets
JP2015071709A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP2015071711A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP2018109169A (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
TWI808979B (zh) 乙烯-乙烯醇系共聚物組成物、丸粒及多層結構體
JP2018109171A (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP6915529B2 (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP6915528B2 (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、エチレン−ビニルアルコール系共重合体ペレットの製造方法
JP7031303B2 (ja) エチレン-ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよび滑剤を含有するエチレン-ビニルアルコール系共重合体ペレットの製造方法
JP2018141169A (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2018141171A (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2018109174A (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ金属を含有するエチレン−ビニルアルコール系共重合体ペレットの製造方法
JP2015071710A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885599

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009910

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885599

Country of ref document: EP

Effective date: 20190729

ENP Entry into the national phase

Ref document number: 112019009910

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190515