WO2018122808A1 - 一种基于舒适度的自动驾驶行驶规划方法 - Google Patents

一种基于舒适度的自动驾驶行驶规划方法 Download PDF

Info

Publication number
WO2018122808A1
WO2018122808A1 PCT/IB2017/058538 IB2017058538W WO2018122808A1 WO 2018122808 A1 WO2018122808 A1 WO 2018122808A1 IB 2017058538 W IB2017058538 W IB 2017058538W WO 2018122808 A1 WO2018122808 A1 WO 2018122808A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
vehicle
driving
comfort
information
Prior art date
Application number
PCT/IB2017/058538
Other languages
English (en)
French (fr)
Inventor
杜豫川
李亦舜
刘成龙
Original Assignee
同济大学
杜豫川
许军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 杜豫川, 许军 filed Critical 同济大学
Priority to US16/474,696 priority Critical patent/US11447150B2/en
Priority to GB1905908.8A priority patent/GB2569750B/en
Priority to CN201780036525.2A priority patent/CN109415043B/zh
Publication of WO2018122808A1 publication Critical patent/WO2018122808A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0013Planning or execution of driving tasks specially adapted for occupant comfort
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3461Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3841Data obtained from two or more sources, e.g. probe vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/091Traffic information broadcasting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • H04W4/185Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals by embedding added-value information into content, e.g. geo-tagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/14Rough roads, bad roads, gravel roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/90Single sensor for two or more measurements
    • B60W2420/905Single sensor for two or more measurements the sensor being an xyz axis sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/60Traversable objects, e.g. speed bumps or curbs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/55External transmission of data to or from the vehicle using telemetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • B60W2756/10Involving external transmission of data to or from the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • G01C21/3878Hierarchical structures, e.g. layering

Definitions

  • the present invention belongs to the technical field of automatic driving technology and automatic vehicle speed control, and relates to a vehicle speed control method for ensuring passenger comfort influenced by running vibration.
  • the self-driving vehicle travels on a road with poor road quality, and there are no other social vehicles and obstacles around it. Because there is no safety hazard, the self-driving vehicle will travel at the highest speed limit, which will inevitably lead to poor driving comfort. Therefore, the present invention proposes a self-driving vehicle speed control strategy based on comfort.
  • This driving strategy is based on a safe driving strategy. While ensuring the safe speed, considering the influence of the vehicle-road effect, a speed control strategy that is more in line with the driving law is proposed.
  • the vehicle can interact with road facilities or other vehicles, so that the road surface anomaly can be perceived "in advance", so that a suitable control strategy can be selected to ensure safe and smooth passage of the vehicle.
  • the driving comfort evaluation method can be roughly divided into a subjective evaluation method and an objective evaluation method.
  • the subjective evaluation method relies on the subjective feelings of the evaluators to evaluate, which mainly considers human factors.
  • the objective evaluation method is to collect, record and process the random vibration data by means of instruments and equipment, and make an objective evaluation by comparing the relevant analysis values with the corresponding limit indicators. In recent years, the comprehensive use of the main and objective evaluation methods for the evaluation of ride comfort has made great progress and has become a focus of current research.
  • the flatness of the road surface is the mid-microscopic feature of the road surface. Unlike large obstacles, it is not easily recognized by image analysis techniques or radar technology. Therefore, it is necessary to adjust the driving speed of the vehicle through the interaction of the roads, thereby ensuring driving comfort.
  • Pavement flatness refers to the deviation of the amount of unevenness in the longitudinal direction of the road surface.
  • Road surface flatness is an important technical indicator for assessing road quality. It mainly reflects the flatness of the profile of the pavement profile. It is related to the safety and comfort of the road and the impact of the road surface. Uneven road surfaces increase driving resistance and create additional vibrational effects on the vehicle. This vibration can cause bumps in the car, affecting the speed and safety of driving, affecting the smoothness of driving and the comfort of passengers.
  • the profile curve of the pavement profile is relatively smooth, it means that the road surface is relatively flat, or the flatness is relatively good, and vice versa, the flatness is relatively poor.
  • the anti-sliding performance of the road surface is also an important factor affecting the driving safety of the vehicle, and has a significant impact on the parking and steering performance of the vehicle.
  • the smooth road surface makes the wheels lack sufficient adhesion.
  • the road surface should be flat, dense, rough, wear-resistant, with a large friction coefficient and strong anti-sliding ability.
  • the road has strong anti-sliding ability, which can shorten the braking distance of the car and reduce the frequency of traffic accidents.
  • the conventional automatic vehicle detecting device can realize the recognition of road obstacles, road marking lines and typical traffic facilities through radar, images, etc., it is impossible to detect the road performance, so it is difficult to determine the appropriate driving speed, thereby reducing driving. Safety.
  • the anti-sliding performance of the road surface is mainly reflected in the friction between the tire and the road surface. It mainly includes two aspects: adhesion and hysteresis force. As shown in Fig. 1, the former depends on the shear strength and area of the contact surface, and the latter depends on the rubber of the tire. Internal damping loss.
  • adhesion On a flat, dry road surface, the slip resistance is mainly controlled by adhesion. The adhesion comes from the bonding force with the tires and road surface molecules, and the rubber shear under the tire surface, which is mainly provided by the fine aggregate part in the road surface.
  • the slip resistance is mainly controlled by the hysteresis force. When the road surface is wet, the adhesion is significantly reduced.
  • this patent uses the machine vision method to perform data mining analysis based on the acquired images, predict the anti-sliding performance of the road surface and feed the results back to the autonomous vehicle to improve the vehicle. Driving safely.
  • Modern control strategies for vehicle speed control mainly include adaptive control, variable structure control, robust control and predictive control.
  • Adaptive control is based on continuous acquisition of control process information, determining the current actual working state of the controlled object, optimizing performance criteria, and generating adaptive control rules to adjust the controller structure or parameters in real time, so that the system is always automatic.
  • the work is in an optimal or sub-optimal operating state.
  • the adaptive strategies that are often used today include model reference adaptive control, parameter identification self-correction control, and nonlinear adaptive control. These methods can ensure that the vehicle can cope with complex traffic conditions and automatically adjust the state of the vehicle to ensure safety.
  • Variable structure control is when the state of the system traverses different continuous surfaces in the state space, the structure of the feedback controller will change according to certain rules, so that the control system has certain adaptability to the internal parameters of the controlled object and external environmental disturbances. Ensure system performance meets the desired standards.
  • Robust control is a cautious and reasonable compromise control method between control performance and robustness when solving deterministic object control problems.
  • the robust controller should allow the system to remain stable and guarantee a certain dynamic performance quality when a range of parameter uncertainties and a certain amount of unmodeled dynamics exist.
  • Predictive control is an accurate mathematical model of the object that does not need to be controlled.
  • the computational power of the digital computer is used to perform on-line rolling optimization calculation, so as to obtain a good comprehensive control effect.
  • the vehicle Since when the vehicle is traveling in the automatic mode, indicating that the driver is not required to perform the operation, the vehicle usually depends on a plurality of data sources as inputs to perform automatic driving, such as detection of surrounding vehicles, driving lanes, obstacles, data from the navigation system. Etc., these parameters are derived from different facilities, one is in-vehicle equipment, such as GPS equipment, radar, sensors, infrared devices, etc., and the other is derived from vehicle body databases, such as road map data, signal cycle data, and so on. For the latter, the update of the database has become one of the important research issues. Only by real-time updating the traffic information in the database according to the external environment can the vehicle be stably operated in the established trajectory.
  • data sources such as inputs to perform automatic driving, such as detection of surrounding vehicles, driving lanes, obstacles, data from the navigation system.
  • these parameters are derived from different facilities, one is in-vehicle equipment, such as GPS equipment, radar, sensors, infrared devices, etc., and the other is
  • the update of the vehicle information database mainly relies on the vehicle road communication technology, and the vehicle is both the transmitting end of the road environment collection and the receiving end of the traffic information.
  • the vehicle is both the transmitting end of the road environment collection and the receiving end of the traffic information.
  • the information can be transmitted to the roadside equipment, and the roadside equipment transmits the information to the next vehicle body, so that the running efficiency of the following vehicle can be improved. Avoid traffic accidents.
  • the advanced geographic information system provides a good data platform for autonomous driving technology.
  • the traffic management department can assign measured road damage, road conditions, and abnormal traffic information to the GIS layer through GPS tags.
  • Geographic Information System is a computer-based tool that analyzes and processes spatial information. GIS technology integrates the unique visual effects and geographic analysis capabilities of maps with general database operations such as query and statistical analysis. With the continuous development of GIS technology, it can combine the collected road information with the space map to collect road conditions and heresy problems into the geographic information system, and transmit the information to the self-driving vehicle through the road communication technology. In order to guide the vehicle, this method can solve the problem of limited distance of the vehicle detection system, and provide for the automatic vehicle. More advanced data for the speed decision of the next driving process.
  • GIS Global System for Mobile Communications
  • the system software adopts the GIS electronic map technology to dynamically display and play back the patrol track, and the GIS analysis can obtain the detailed information of the patrol point.
  • Patent document CN104391504A from the perspective of driver behavior habit analysis, combines the regional driving habit model and road condition model of the vehicle area to generate the current vehicle's automatic driving control strategy, so that the automatic driving control strategy is adapted to the vehicle and its driving environment. The comfort of self-driving.
  • the vehicle driving habits model includes: the vehicle speed index, the vehicle brake index, the vehicle distance index and the vehicle overtaking index;
  • the regional driving habits model includes: regional speed index, regional brake index, regional distance index and region Changeover index;
  • the road condition model includes: segment vehicle density index, road segment average speed index, road segment curve index, road segment road index, road segment accident rate index and road red light intersection index.
  • Environmental information includes: surrounding vehicle information, pedestrian information, lane line information, traffic sign information, and/or traffic signal information; active driving information includes: accelerator pedal opening, acceleration, brake deceleration, steering wheel angle, and/or vehicle yaw angle.
  • Patent document CN104583039A proposes a method and system for controlling the speed of a vehicle that can travel on a variety of different terrains and conditions, and the purpose of doing so is to improve the comfort of the occupants of the vehicle.
  • the patent analyzes the speed control system of the existing cruise control system. The system keeps the speed as close as possible to the initial set speed of the user (such as the driver), but ignores the driving environment and the occupancy of the vehicle (such as the number of vehicle occupants). And the change in their respective positions within the vehicle). When these changes are ignored, maintaining the initial set speed may significantly affect the comfort of the vehicle occupant and the stability of the vehicle.
  • the patent proposes a speed control system that limits one or more of the above disadvantages to a minimum or elimination and methods of use thereof.
  • the system takes into account the terrain in which the vehicle is traveling, the movement of the vehicle body, and the occupancy of the vehicle (such as the number of vehicle occupants and their respective positions within the vehicle).
  • the comfort level of all passengers in the vehicle it is more user-friendly than the speed control considering a single position or considering only the vibration of the vehicle body.
  • the level of division in the level of comfort is relatively vague and lacks scientific calculation methods. As a result, the speed of specific maintenance is difficult to calculate scientifically and efficiently.
  • Patent document CN105739534A proposes a multi-vehicle cooperative driving method and device for an unmanned vehicle based on a vehicle network.
  • the specific implementation manner of the method includes: acquiring current driving data and road condition information of the vehicle in real time; receiving a plurality of other driverless vehicles within a predetermined distance to transmit shared current driving data and road condition information; according to the vehicle and the The current driving data and road condition information of a plurality of other driverless vehicles are analyzed to plan the driving decision plan of the vehicle, and the driving decision plan includes driving priority and driving route; and the driving instruction of the vehicle is generated according to the driving decision plan.
  • This method enables each driverless vehicle to plan driving decisions based on the current driving data and road condition information of the vehicle and other surrounding unmanned vehicles in real time, thereby improving the public road usage rate and the driving safety level of each driverless vehicle.
  • Patent CN105679030A proposes an unmanned traffic system based on the existing road network and the central port control of the vehicle, which is composed of three parts: the vehicle remote control device, the road monitoring device and the central control system.
  • the central control system uniformly dispatches all vehicles in the entire road network through the on-board remote control equipment installed on each vehicle, and the road monitoring equipment assists in the collection and transmission of information.
  • Global automatic scheduling is progressively performed on the basis of existing road vehicles.
  • the system is retrofitted to the existing road vehicle inventory, so compared with the subway, the system has obvious cost performance advantages, and the construction cost is only 1/60 of the subway.
  • the patent proposes a unified coordination and dispatching of the whole road network, and uses road monitoring equipment to assist information collection. Although this can implement global optimization control, it ignores an important data source is the vehicle itself. The vehicle is the real user of the road and has the most accurate information on the road. If you can't make good use of the information collected by the vehicle itself, it is difficult to be accurate even if the whole network control is realized.
  • Patent CN105172791A proposes an intelligent adaptive cruise control method. It acquires vehicle driving information and driving road information through adaptive cruise system, determines road surface adhesion coefficient according to driving road information, calculates vehicle safety control parameters according to road surface adhesion coefficient and vehicle driving information, and sets vehicle control parameters according to safety control parameters. Make adjustments to achieve intelligent cruise control of the vehicle.
  • the patent In terms of vehicle driving information acquisition, it is not difficult. In terms of driving road information acquisition, the patent only deals with the information of road surface adhesion coefficient, but only mentions the use of adaptive cruise system to obtain driving road surface information through the road surface recognition sensor. The methods and techniques are not mentioned. In addition, for vehicle cruise control, the patent gives a comparison table of road surface adhesion coefficient and workshop time interval safety, but controlling the vehicle according to the table is not enough. In order to ensure the full comfort of the vehicle, the cruising speed and the shifting strategy under different road conditions are involved, rather than simply giving the acceleration threshold.
  • An object of the present invention is to provide an assisted comfort-based auto-driving vehicle speed control method, which utilizes GIS and vehicle road communication technology to obtain road conditions by analyzing the mechanism of deformation-type pavement quality and vehicle vibration.
  • Parameters based on the change of parameters, respectively design the acceleration, deceleration and uniform speed of the vehicle.
  • the GIS database data characteristics are continuously updated by the vibration of the vehicle itself, the driving comfort of the following vehicles is improved, and the driving path is optimized in combination with the vibration state of the historical vehicle to avoid road diseases, thereby improving the driving comfort of the passengers.
  • the modified pavement quality refers to the pavement quality reflected by the evaluation indexes such as pits, clumps, cracks and road roughness which directly affect the running vibration.
  • the technical problems to be specifically solved by the present invention mainly include the following seven aspects, namely:
  • the road communication technology is the basis for comfortable driving.
  • the purpose is to transmit the road condition data collected by the road management department and other vehicles to the current vehicle, thereby guiding the vehicle to travel, and reducing the influence of vehicle vibration on the passenger driving experience through speed control.
  • the vehicle road communication technology mainly relies on the background geographic information system GIS database and the short-range wireless transmission technology, as shown in FIG. 2 .
  • 1 is the roadside power input, 220V/110V AC voltage can be selected according to the actual system requirements
  • 2 is the network cable input, mainly to realize the connection between the roadside equipment and the remote database
  • 3 is the roadside communication facility, mainly including the data storage part and the short-range The wireless communication part
  • 4 is a wireless communication link, the link is two-way communication, that is, the vehicle to the facility, the facility to the vehicle can carry out data communication and communication
  • 5 is the wireless network coverage of the roadside communication facility, when the vehicle travels to the Within the scope, the short-range wireless communication facilities are automatically connected for data exchange.
  • the communication link is automatically interrupted; 6 is the automatic driving vehicle; 7, 8 are the road segments 1 and 2 respectively.
  • the segment is based on the layout distance of the adjacent two roadside communication facilities.
  • the roadside communication facilities of the urban road are respectively arranged at each intersection.
  • the communication facilities on the middle road of the expressway are arranged at a distance of 1km.
  • the arrangement spacing can be adjusted according to the actual traffic organization. .
  • the arrangement distance of the roadside communication facilities is also affected by the short-range transmission device. If the coverage of the WIFI is large, the distance between the two communication facilities is relatively long, and the coverage of the RFID is small, and the distance between the two communication facilities is small.
  • the communication process of the vehicle road communication technology is as follows: When the vehicle 6 enters the road section, the communication facility 3 and the vehicle 6 automatically establish a connection for data interaction, and the communication facility will flatten the front road section, abnormal road damage, and accident information. And so on to the vehicle 6. At the same time, the vehicle 6 transmits the processed information of the vibration information collected in the previous section to the communication facility 3, and simultaneously updates the database through the wired network 2. When the vehicle travels to the road section 2, it interacts with the new roadside facility, and the process is the same as that of the road section.
  • the short-range wireless transmission module in the roadside road communication technology can adopt technologies such as WIFI, ZIGBEE, and RFID.
  • the ZIGBEE short-range wireless transmission module is recommended in the urban road environment.
  • the ZIGBEE module can realize directional data transmission.
  • the communication connection time between the two modules is millisecond, which provides sufficient communication time for data interaction.
  • the road condition parameter refers to road information including road surface quality, road traffic condition, and abnormal condition.
  • the road quality described therein refers to the flat curve elements of the road surface, the longitudinal slope parameters, and the flatness information.
  • the abnormal conditions described therein refer to road damage such as pits, misalignments, protruding pockets, ruts, deceleration belts, and traffic accidents.
  • the vehicle comfort prediction model mainly establishes the relationship between driving comfort, speed and road quality, and adjusts the driving speed of the vehicle to adapt to different road working conditions to meet the comfort requirement.
  • the road quality described therein refers to the flatness information of the road surface.
  • Vehicle comfort detection and evaluation is the basis for the construction of predictive models.
  • the present invention uses a three-axis acceleration sensor to calculate the vibration information at different positions in the vehicle, and uses the power spectral density analysis method to calculate and calculate the weighting function provided by the international standard IS02631.
  • the weighted acceleration rms value is used as an index to evaluate the comfort of the self-driving vehicle.
  • the specific technical process is as follows: Select the test autopilot model, install the three-axis accelerometer to the center of the backrest of the vehicle seat position, the center of the seat cushion, and sit peacefully. In the state, the feet are placed at the center of the position.
  • the seat selected for installation is the main driving position. Fixing the sensor in three positions ensures no additional sloshing.
  • test vehicle is driven on the road surface of the test section with different flatness, and the three-axis vibration acceleration value of the vehicle is collected.
  • test sections are all straight segments of not less than 300 meters.
  • the road surface roughness of the test sections is lm/km, 2m/km, 3km/h, 4m/km, 5m/km, 6m/ Different gradients of km to test vehicle vibration feedback under different flatness.
  • the above six flatness gradients are all expected values, and may have certain errors when actually selected, but it is necessary to ensure that the values are between different gradients.
  • the vehicle Under the same gradient, the vehicle is driven by 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 km/h, and the vibration of the three-axis acceleration is recorded separately.
  • the sampling frequency is 100 Hz, covering the human body. In the 80 Hz range, the range is ⁇ 8 g (lg 9.8 m/s_ 2 ).
  • the comfort prediction model processing flow is shown in Figure 3.
  • the autocorrelation function of the acceleration sequence in the time series is solved, and then the power spectral density function of the vibration is obtained by solving the Fourier transform of the autocorrelation function:
  • is the power spectral density function of vibration
  • _/' is the imaginary unit. Since the human body's perception of vibration is similar between adjacent frequencies, but the difference is large in different frequency segments, a one-third octave bandpass filter is used to solve the power spectral density integral of each octave band separately. Considering that the effects of different frequencies on human comfort are not the same, a weighted average of each frequency band is obtained to obtain a uniaxially weighted acceleration rms value, as in equation (2):
  • is the integrated weighted acceleration rms value
  • V is the driving speed
  • p, q, I are the model fitting parameters.
  • v is the evaluation value of driving comfort
  • the passenger of the self-driving vehicle inputs the desired comfort level as the target comfort level as the “ v value is input into the equation (4), so the front road unevenness index is known.
  • the speed corresponding to the target comfort can be calculated.
  • the vehicle may obtain road information of the road segment from the roadside facility, including road surface roughness and abnormal working conditions, and the abnormal working condition mainly refers to difficulty in detecting and safety.
  • the characteristics of the roads with lower impact but greater influence on comfort include: bridgehead jumps (staggered bridges at the bridges and bridges), pits, ruts, speed bumps, etc.
  • the vehicle When the vehicle receives the data, it will analyze whether the vehicle needs to be shifted according to the current road information and the current driving data of the vehicle. If the flatness of the front section is within 10% of the current position flatness, and there is no abnormal condition, such as condition (5)
  • /R/ adv is the value of the road smoothness in front, /R/structure.
  • w is the current road surface flatness
  • P is the abnormal condition, and if it is 0, it does not occur, and vice versa is 1. If the condition is met ( 5) It is not necessary to adjust the speed of the vehicle, and continue to drive at a constant speed according to the upper limit of the speed obtained by the formula (4); If the difference between the flatness of the front road section and the current position flatness exceeds 10%, or there is abnormal working condition, then enter the shifting phase, that is, the condition (6) is satisfied:
  • the vehicle Since the road surface flatness is constantly changing, in order to ensure the passenger's comfort throughout the driving of the self-driving vehicle, the vehicle needs to continuously adjust the speed according to the road information ahead, and the road sections with different flatness are driven at different speeds at different speeds. In this way, the speed variation between the different sections, ie the acceleration and deceleration processes, requires a comfort-based speed profile to ensure that the perceived comfort of the user remains within a reasonable range during the process.
  • the comfort of passengers in the constant speed driving phase is mainly determined by the vertical vibration, and the longitudinal (ie driving direction;) acceleration change due to acceleration and deceleration needs to be considered in the shifting phase. Therefore, the speed profile needs to ensure that the longitudinal acceleration and the vertical vibration acceleration of the self-driving vehicle do not exceed a certain threshold during the shifting process to ensure that the rms value of the total weighted acceleration is within the desired comfort value of the corresponding type of passenger. Therefore, the speed curve model based on the hyperbolic tangent function is used to adjust the vehicle speed.
  • the hyperbolic tangent function model is as shown in equation (7).
  • the function image is shown in Fig. 3.
  • a v - ⁇ -(l - (tmh(k(t - p))f) (8)
  • is the acceleration and deceleration acceleration value. If the deceleration is too large during deceleration, it will also cause the whole Uncomfortable, it is necessary to consider the speed change of the deceleration process and the longitudinal vibration generated by the unevenness to ensure that the overall vibration condition does not exceed the comfort threshold of 0.63 ml s 2 , as in equation (9) (w k ⁇ max I a ⁇ f + (w d ⁇ max
  • the hyperbolic tangent function image (formula (7)) is shown in FIG. 4, and the process simulates the actual deceleration behavior of the driver, that is, the deceleration is gradually increased when the deceleration intention occurs, and the deceleration is gradually decreased when the deceleration process ends.
  • k 2 > k shows that the curve is more gradual. Therefore, the upper limit of the value of k is taken in the calculation.
  • the hyperbolic tangent function described in equation (7) can only infinitely approach the sum when the time approaches zero, or infinity.
  • the impact of abnormal conditions on comfort is mainly reflected in two aspects, one is the influence of the change of acceleration itself on comfort, and the other is the influence of jerk change on comfort.
  • the expected acceleration should not exceed 2.94m/s 3 .
  • the constraint (14) is an invalid constraint, and the straight process is the same as the shifting phase; if it is small, the demand solving nonlinear optimization equation group is required.
  • the velocity generation curve can be determined according to the formula 7.
  • the machine vision-based road surface anti-sliding performance detection system is mainly equipped with a self-stabilizing high-definition camera and a laser focusing device on the vehicle, and is installed at the middle of the two front lights of the vehicle, and the lens is placed downward.
  • the distance from the ground is not less than 10cm.
  • the laser focusing device (external/built-in) assists the camera to move the fixed focus to ensure the accuracy of photo shooting.
  • the self-stabilizing high-definition camera takes a sampling frequency of 0.5Hz and the pixel requirement is not less than 800. *1200 pixels, the collected dynamic photos are transmitted to the vehicle terminal via a wired connection.
  • the specific operation process is as follows:
  • each photo is converted into a local binary method (LBP) into an LBP matrix form, and the local binary method mainly includes:
  • the frequency histogram adds 16 blocks to each statistical unit, that is, the packets are 0-16, 17-32, 33-48, . . . , 241-256, as shown in FIG.
  • the probability density function of the mixed Gaussian distribution PDF characterizes the vector aj of the unknown parameter of the jth component.
  • the coefficient of the jth Gaussian component quantity, ⁇
  • the mixed Gaussian distribution contains three positional variables: the coefficient of each Gaussian component, the mean of each Gaussian component, and the variance of each Gaussian component.
  • the model parameters can be solved by the EM algorithm. The results are shown in Fig. 9.
  • Figure 9 shows the mixed Gaussian distribution model morphology under different anti-sliding performance parameters (BPN), where the higher the BPN, the better the anti-sliding performance.
  • BPN anti-sliding performance parameters
  • the mean, variance and system of two Gaussian functions in the mixed Gaussian distribution can be obtained by the method described in the step (4).
  • step (4) Feature recognition based on support vector machine.
  • the model parameters described in step (4) are input into the support vector machine model, and the actual measured road surface anti-slip performance results are used as training targets, and model training is performed to create a multi-dimensional support vector machine model.
  • the image can be subjected to the above (1) - ( 4 ) step processing in real time, and the support vector machine model of step (5) can be used to quantitatively classify the road surface anti-sliding performance, and the calculation result feedback To the unmanned vehicle computing side to assist driving decisions.
  • the pre-sensing system design of vehicle abnormality based on road vibration is mainly based on the spectrum analysis of road vibration to classify the vehicle load condition. When the vehicle overload phenomenon is detected, it is determined that the vehicle abnormal condition occurs. And with the risk of accidents.
  • the road vibration described therein refers to the Z-axis (vertical ground-up) acceleration of the road surface.
  • the relationship between road vibration and vehicle load condition is the basis of the vehicle's abnormal situation.
  • the present invention uses a three-axis acceleration sensor to collect the acceleration information of the road surface by using the power spectrum density analysis and the frequency band division method. The energy distribution of the road vibration during the passage of different vehicles is measured.
  • the support vector machine method is used to quantify the distribution of the energy of the road vibration in different frequency bands when different vehicles are classified.
  • the time axis alignment mainly performs the corresponding work of the vehicle elapsed time and the vibration data time. Since the road vibration is the response of the system under the excitation of different driving loads, it is necessary to align the time axis to ensure that the analyzed vibration data segment is the data generated by the vehicle.
  • the vehicle abnormality pre-sensing system based on road vibration is to analyze the abnormality of the vehicle by generating road vibration and then passing the road vibration, so it is necessary to eliminate the vibration generated by all non-vehicles in the video.
  • the vehicle with different loads is selected based on the video content, and the specific time of the vehicle is obtained corresponding to the vibration data, and then the next vibration analysis is performed.
  • the ⁇ formula it is the Fourier transform function of the vibration data, "is the angular frequency.
  • the vibration frequency On the basis of obtaining the power spectral density of the vibration data, it is divided into 10 segments according to the vibration frequency, and respectively calculate 0-10H Z , 10-20Hz, 20-30Hz, 30-40Hz, 40-50Hz, 60-70 Hz. , 70-80 Hz, 80-90 Hz, 90-100 Hz, the energy of the ten bands, such as the formula:
  • the support vector machine is used to establish the relational model.
  • the energy ratio in the 10 frequency bands is the independent variable, and the vehicle load is classified as the dependent variable. Thereby, the vehicle load classification based on the road vibration data is realized.
  • the system designed the early sensing function of vehicle anomalies.
  • the road vibration information passing through the vehicle is calculated in real time by arranging a three-axis acceleration sensor on the road side.
  • the system records the vehicle information and the transit time, and transmits the abnormality information to the central server and the abnormal vehicle.
  • the specific curve of the vehicle speed of the self-driving vehicle under the known road information can be obtained, so as to ensure that the passenger can feel the comfort within a reasonable range.
  • the road information of the road ahead is the basis and premise of all operations during the operation. So vehicles need to get as much road information as possible as quickly as possible.
  • road driving is a highly random process. Abnormal traffic conditions may occur at any time. Once a stable and fast transmission mechanism is required, the transmission and release of abnormal situation information is realized.
  • the abnormal traffic condition early warning mechanism consists of three parts, one is the timely discovery after the accident; the second accident information is released in time; the third is the timely release after the accident is completed.
  • the existing accident warnings are divided into two categories. One is to realize the real-time detection of the road itself and the surrounding environment based on a large number of monitoring. When an accident occurs, the accident detection or video is automatically detected to detect the road state for accident detection and early warning.
  • the second category uses a combination of qualitative and quantitative methods to describe, trace, and alert the road traffic safety development. First, establish a “road accident early warning indicator system” that can comprehensively evaluate the development of traffic accidents, and then use the statistical department data or other means of mobile phone data calculation indicators to use the model to calculate the comprehensive index for forecasting.
  • Traffic broadcasts There are eight types of existing emergencies: traffic broadcasts, speed limit signs, variable information boards, the Internet, in-vehicle terminals, SMS platforms, roadside broadcasts, and public information terminals.
  • Traffic broadcast information is wide, the scope of influence is large, the technology is simple, mature, and easy to promote.
  • it is difficult to track the dynamic changes of traffic conditions in time and place. It can be tracked in time, and the information providing time is not coordinated with the driver's need time. The content and the content required by the driver are not coordinated. It is difficult to coordinate the release of information on highways across multiple administrative districts. It is more difficult to apply to provincial highways.
  • the advantage of the speed limit sign is that the driver is familiar with the speed limit sign and can flexibly control the speed of the vehicle.
  • the release information of the speed limit sign is more suitable for a special road section of a road; the variable message board text type is easy to see and can quickly obtain the required information from it, and the graphical form is easier to understand and can provide the whole Road network service level and travel time and other information, but the disadvantage is that the amount of information that can be provided is not Large, limited information drivers are not suitable for the network environment. They can play a limited role in some urban expressways or highways with large traffic volume and complicated road network. The amount of information released by the Internet is large, and the update can meet the driving requirements.
  • the vehicle terminal provides a large amount of information, is highly targeted, and can provide information according to the needs of the driver, but its investment technology The difficulty is high; the SMS platform has a large amount of information, and can provide information according to the driver's needs, but has certain influence on driving safety, and the technical difficulty is high, still in the experimental stage; the roadside broadcast can tell the driver the reason for the speed limit, the driver This speed limit will be more important, but the initial investment is large and the maintenance cost is high; the public information terminal has a large amount of information and is updated in a timely manner, but it belongs to the information release before the trip, and the help for the driver on the road is limited.
  • the early warning mechanism for the abnormal traffic condition data of the self-driving vehicle proposed in this patent can realize early detection, early release and early resolution of the accident.
  • the vehicle early warning system can detect the accident in time through the sensor, so the accident situation, the accident vehicle information, the accident time and the vehicle GPS information are packaged and stored as an accident data label, and at the same time, the peripheral data receiving end is searched. There are three cases in the data transmission process:
  • the first category The accident vehicle is near the beginning and ending position of a section of the road. At this time, the accident vehicle is within the transmission range of the roadside communication equipment. The accident vehicle can upload the accident information label stored in the vehicle to the database of the road information through ZIGBEE to realize the accident. The rapid release of information. 6 - 2 in Figure 11: The accident vehicle is not within the transmission range of the roadside communication equipment, that is, the accident vehicle cannot directly upload the accident information to the database, but there are other vehicles nearby, as shown in Figure 12. At this time, the RFID technology is used to transmit the small-capacity accident information label to the surrounding vehicles, and the surrounding vehicles are transmitted to the surrounding vehicles, so that the circulation is transmitted through the "relay" between the vehicles.
  • RFID technology automatically identifies target objects and acquires relevant data through RF signals.
  • the identification work can be performed in various harsh environments without manual intervention.
  • the vehicle that acquires the accident information by RFID starts searching for the roadside communication device while transmitting the information, and if it is within the transmission range of the roadside communication device, uploads the information to the roadside communication device and terminates the transmission.
  • Category 3 The accident vehicle is not within the transmission range of the roadside communication equipment and there are no other vehicles nearby (here the default accident vehicle loses mobility), as shown in Figure 13.
  • the accident vehicle saves the accident information tag and continuously searches for it, and immediately transmits the accident information when it finds acceptable equipment.
  • the accident information can be quickly uploaded to the database of the roadside communication device through the corresponding processing methods of the accident vehicle in the above three different situations.
  • the vehicle communication technology is then used to transmit the accident information in the database to the vehicle traveling on the road.
  • the vehicle that obtains the accident information it is divided into two categories.
  • One is the vehicle that has not reached the starting position of the road section when the database updates the accident information.
  • Such vehicles can obtain accident information and take evasive measures through the vehicle road communication;
  • the accident information is updated, the vehicle has entered the road section.
  • This type of vehicle has completed the acquisition of the road section information, and the accident information updated in the database cannot be obtained through the roadside communication equipment. Therefore, such vehicles need to obtain accident information through the vehicle-to-vehicle RFID communication technology in the road section in order to take evasive measures in advance.
  • 6 is the first type of vehicle and 9 is the second type of vehicle.
  • Such accident information can be transmitted to every vehicle that will pass through the accident section to avoid the occurrence of a chain accident.
  • the timely release of warning information is equally important after the incident has been processed.
  • the vehicle passes the section marked by the accident information, if the difference between the in-vehicle sensor data display and the normal driving state is small, it indicates that the accident scene has been restored, and the cancellation flag is added to the received accident information label.
  • the same mechanism can be used to upload the accident cancellation information to the roadside communication device to realize the early warning release.
  • the current discrimination of traffic congestion mainly depends on the identification and processing method, and the discrimination is based on the acquisition of traffic state parameters.
  • the congestion discrimination lags behind the detection of traffic state parameters, and the accuracy of congestion discrimination is affected by the accuracy of relevant parameters.
  • the abnormal traffic condition information transmission mechanism based on this patent can realize the rapid detection and timely release of abnormal traffic conditions such as traffic accidents, severe weather and traffic congestion, as shown in Figure 16:
  • the data acquired by the GIS system is in error, and the vibration data acquired by the vehicle passing through the road can update and correct the GIS traffic information.
  • the sensor placed in the car can record the vibration data during the running of the vehicle in real time. Through the analysis and analysis of the vibration data, the working condition information of the driving road surface can be effectively restored. Therefore, the low-power short-range wireless transmission ZIGBEE technology can be utilized at the end of the road segment.
  • the vehicle transmits the vibration data to the central processor to restore the measured road condition information, and compares and filters the information of the plurality of vehicles to realize the update and correction of the GIS road condition information.
  • Pavement performance is a technical term with a wide coverage. It refers to various technical performances of the road surface, such as road driving quality, damage conditions, structural mechanical response, driving safety, and fatigue, deformation, cracking, aging, surface scattering of pavement materials.
  • road driving quality damage conditions
  • structural mechanical response structural mechanical response
  • driving safety and fatigue
  • deformation cracking
  • aging surface scattering of pavement materials.
  • the meaning of various aspects is a term that refers to the various technical expressions of pavement and materials.
  • the types of damage such as buffing, pitting and oil flooding mainly affect the form safety and noise characteristics of the road surface, while cracks, pits and deformations, and unevenness of the project affect the driving comfort of the road surface.
  • the continuous decline of pavement functional characteristics means the continuous change of pavement information.
  • the core of urban geographic information system is data.
  • the current situation of geographic information data is one of the important indicators to measure its use value. Current and accurate data are vital, but the status quo of data updates is not optimistic. According to statistics, the update rate of global topographic maps does not exceed 3%.
  • a typical example is the successful application of photogrammetry and remote sensing in land use dynamic monitoring.
  • regular and irregular pre-purchase of high-resolution remote sensing images can be used to solve the problem.
  • Relatively low cost, low-altitude platform remote sensing technology can also be used.
  • getting information In general, image data has gradually become the main source of data for basic geographic information updates, but rapid updates of massive geographic information have not yet been resolved. 3.
  • Use digital mapping which is a conventional mapping method. With the continuous development of social economy and high technology, measurement technology has gradually entered the air from the ground. Advanced technologies such as aerial photography, satellite remote sensing, and GPS positioning are gradually becoming the main means of data acquisition.
  • the accuracy of data measured by GIS has not yet met the requirements required for the calculation of comfort for autonomous vehicles. Recognized, its data accuracy includes positional accuracy, attribute accuracy, time accuracy, and so on. Position accuracy is one of the important evaluation indicators of GIS data quality.
  • the research object of vector GIS data position accuracy is mainly the geometric precision of points, lines and surfaces.
  • the errors in these data are mainly derived from the errors of the basic data in the GIS database and the errors generated in the various steps of establishing the GIS database. Therefore, this patent proposes a GIS system data rectification mechanism based on vehicle sensing data to compensate for the lack of accuracy of the original database data, thereby more accurately ensuring passenger comfort.
  • the traffic management department assigns measured road damage, road conditions, and abnormal traffic information to the GIS layer through GPS tags, etc.
  • GPS positioning measurements there are errors in GPS positioning measurements.
  • the ground receiving device receives the signal transmitted by the satellite, calculates the pseudorange between the ground receiving device and the multiple satellites at the same time, and uses the spatial distance resection method to determine the three-dimensional coordinates of the ground point. Therefore, GPS satellites, satellite signal propagation processes, and ground receiving equipment can cause errors in GPS measurements.
  • the main sources of error can be divided into errors associated with GPS satellites, errors associated with signal propagation, and errors associated with receiving equipment.
  • Satellite-related errors include satellite ephemeris errors, satellite clock errors, SA interference errors, and relativistic effects; errors associated with propagation paths include ionospheric refraction, tropospheric refraction, and multipath effects; GPS receiver-related errors This includes receiver clock error, receiver position error, and receiver antenna phase center deviation.
  • the on-board sensor can obtain data such as vibration and friction of the vehicle during driving, and these data are the response of the vehicle to the vehicle during a certain speed and direction driving. Through the response and the influence mechanism, the input of the road condition can be restored, thereby more accurately restoring the road condition information.
  • the central processing unit processes and restores the road surface information during the running of the vehicle, thereby updating and correcting the original database data.
  • the main operation consists of three parts: adding pavement information, cutting pavement information and modifying pavement information.
  • Increasing the road information occurs when the vehicle is driving the road information within the section of the road section to make a driving plan.
  • the information that does not appear in the database occurs on the road surface.
  • the vehicle records the response.
  • the vehicle position information is uploaded to the roadside communication device at the end of the road segment as the added data information.
  • the road information is deleted and the road information in the road section of the vehicle is taken to make a driving plan.
  • the original information of the database disappears in the road surface, such as the road surface.
  • the maintenance of the maintenance department repairs the damage such as cracks on the road surface.
  • the vehicle records the response and the vehicle position information, and uploads it to the roadside communication device at the end of the road segment as the cut-down data information.
  • the vehicle obtains road information at the beginning of the road segment, thereby planning to calculate the driving speed and direction.
  • the vehicle's own response R also changes. If the difference between driving and expected response is within 10%, such as condition (24)
  • ? n . w is the actual response of the vehicle through the measured response
  • ? exp is the response of the vehicle under the original road information conditions. If the condition (24) is satisfied, it is understood that the influence of the vehicle's own factors does not count on the road information change.
  • the vehicle information, the response information, and the GPS information are immediately packaged into data labels, which are defined as road surface information updates, and the packaged data is transmitted to the roadside communication facility when the range is transmitted.
  • database system When the system finds that more than one vehicle uploads update information at the same location, the response information is processed to restore the road information and update to the database system. Thereby, GIS road condition information updating and rectification based on automatic vehicle sensing data is realized.
  • the position matching degree is defined as the probability that the objects corresponding to two different GPS positioning information are in the same position in the real environment. It can be seen that the closer the two GPS positioning information is, the greater the probability that the corresponding objects are in the same position in the real environment, and the higher the position matching degree.
  • the specific position matching formula is calculated as follows:
  • GPS positioning information for the first object GPS GPS positioning information for the second object
  • the cumulative matching degree refers to the probability that an object corresponding to a plurality of different GPS positioning information is in the same position in the real environment.
  • Figure 1 is a schematic diagram of the source of road surface slip resistance
  • Figure 2 is a schematic diagram of the mechanism of the roadside communication facilities
  • Figure 3 is a flow chart for calculating the comfort prediction model.
  • Figure 4 is a schematic diagram of the speed curve of the hyperbolic function
  • Figure 5 is a schematic diagram of the acceleration change of the hyperbolic tangent function
  • Figure 6 is a flow chart of machine vision detection of road anti-sliding performance
  • Figure 7 is a schematic diagram of the LBP solution process.
  • Figure 8 is a schematic diagram of the LBP statistical histogram
  • the figure shows a schematic diagram of mixed Gaussian distribution.
  • Figure 10 is a schematic diagram of the position of the three-axis sensor
  • Figure 11 is a schematic diagram of the accident vehicle at the beginning and end of the road section.
  • Figure 12 is a schematic diagram of searching for other vehicles around the accident vehicle.
  • Figure 13 is a schematic diagram of the accident vehicle unable to search for the receiving end
  • Figure 14 is a schematic diagram of the accident information transmission mechanism
  • Figure 15 is a schematic diagram of the driving position of the vehicle when receiving the accident information.
  • Figure 16 is a schematic diagram of the rapid release of abnormal traffic state information.
  • the vehicle road communication equipment is arranged: the arrangement interval of adjacent equipment is 1000 meters, and the roadside communication equipment includes the flatness and abnormal data of the front road section, and the international flatness index of the test section is shown.
  • the IRI values are 1.2m/km and 2.7m/km, respectively, and there is a bridgehead jumping position in the second section of the road.
  • the distance of the roadside communication facilities is 100 meters, and the speed limit of the road section is 70km/h.
  • Step 1 Determine if the vehicle is in safe driving state. Using the environmental information collected by the sensors, cameras and probes of the self-driving vehicle, the traditional technology is used to generate the safe speed curve. Due to the low flow rate of the road section, the test vehicle can use the highest speed limit for full speed driving, that is, the vehicle speed is 70km/h.
  • Step 2 Auto-driving vehicle current comfort judgment
  • the driving comfort is predicted as follows:
  • the calculated weighted acceleration rms value is 0.3412 m/s 2 , which satisfies the comfort requirement of less than 0.63 m/s 2 , so the vehicle can continue at 70 km/h. travel.
  • the roadside communication system When the vehicle enters the second road, the roadside communication system will send the flatness and abnormality of the road ahead to the vehicle.
  • Speed changes are made to ensure driving comfort.
  • the comfortable upper limit of the k value obtained by the formula (9) is 0.3712.
  • the deceleration distance is only 100 meters.
  • the physical characteristics of the bridgehead will cause the vibration of the vehicle to be:

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)

Abstract

一种基于舒适度的自动驾驶行使规划方法,包含步骤:a)基于车型建立振动类路面质量与行使舒适度的关系模型, b)获取前方道路工况参数,含异常状况信息、道路平整度和路面抗滑性能;c)获取前方道路工况参数,调整车辆的预期行使轨迹;d)分别设计车辆的加速、减速与匀速过程,生成速度变化曲线;e)优化速变变化曲线。这样的方法通过解析变形类路面质量与车辆振动的作用机理和基于图像的路面抗滑系数评估技术,利用GIS与车路通讯技术获得道路工况参数,基于参数的变化情况,分别设计车辆的加速、减速和匀速过程。

Description

一种基于舒适度的自动驾驶行驶规划方法
【技术领域】 本发明属于自动驾驶技术和车速自动控制技术领域,涉及保证由行驶振动影响的乘客舒适 度的车速控制方法。
【背景技术】
21世纪,随着高速公路和汽车产业的不断扩大, 汽车成为人们出行的必备交通工具之一, 为人类的日常生产生活带来极大的方便。 但是,汽车过度使用的同时也带来了环境污染、 交通 堵塞、 交通事故等问题。 为了缓解汽车过度使用问题, 将人从交通***中脱离出来, 自动驾驶 汽车渐渐成为未来汽车发展的重要方向。 自动驾驶汽车是一种将探测、 识别、 判断、 决策、 优 化、 优选、 执行、 反馈和纠控等功能融为一体, 会学习、 会总结、 会提高技能, 集微电脑、 微 电机、 绿色环保动力***、 新型结构材料等顶尖科技成果为一体的智慧型汽车。它从根本上改 变了传统的 "人一车一路"闭环控制方式, 将不可控的驾驶员从该闭环***中请出去, 从而提 高了交通***的效率和安全性。 自动驾驶汽车尤其适合从事旅游、 应急救援、 长途高速客货运 输、 军事用途, 以发挥可靠、 安全、 便利及高效的性能优势, 减少事故, 弥补有人驾驶汽车的 不足 。 自动驾驶汽车在交通领域的应用, 从根本上改变了传统汽车的控制方式, 可大大提高 交通***的效率和安全性。
然而传统的自动驾驶策略大都利用多传感器实现车辆避撞和车道保持,却忽视了驾驶过程 中路面不平整等道路工况对于乘客的舒适度影响。传统的驾驶速度调节方式可以有效保证行车 安全和驾驶效率,但在颠簸路面行驶时,缺乏对驾驶员与乘客的舒适度考虑。据 The Motley Fool 报道, 谷歌进军无人驾驶汽车领域的主要阻碍之一是糟糕路况下(如坑洼路面)难以保证行车 的舒适度。我们都知道谷歌无人驾驶汽车在道路行驶前,都在特定的路线上进行了复杂的准备, 如对车道也进行了广泛仔细的地图测绘。从装有各种传感器的汽车里收集的大量数据要经过计 算机和人工的 "米"级的细化确认。 但是, 这些 "米"级的精确也无法预测前方路段平整与否 以及采取合适的方法驶过坑洼路段。美国目前 65岁或以上的人口已经超过 4300多万,这个数 字还在以每天 1万的幅度增加。加上美国有 79%的老年人居住在郊区和农村, 购物、 看病、 探 亲访友等出行需求离不开汽车。谷歌公司把目光瞄准了老年客户,无人驾驶汽车在技术成熟后, 在人口老龄化社会中舒适度的要求将凸显重要。
在如下场景中: 自动驾驶车辆在一路面质量较差的公路上行驶,周围无其他社会车辆及障 碍物遮挡。 由于无安全隐患, 自动驾驶车辆则会依照最高的限速进行行驶, 而这势必会造成糟 糕的行驶舒适体验。 因此, 本发明提出基于舒适度的自动驾驶车速控制策略。这种驾驶策略是 以安全驾驶策略为基础, 保证安全车速的同时, 考虑车-路作用的影响, 进而提出更符合驾驶 规律的速度控制策略。 另一方面, 当路面具有明显错台, 如桥头跳车或减速带等, 这类障碍虽然可以被车辆自动 识别, 但由于设备检测距离有限, 车辆往往缺乏足够的减速距离, 从而产生急减速或急刹车等 情况, 严重影响乘客体验。 在自动驾驶的环境下, 车辆可以与道路设施或其他车辆进行交互, 这样就可以"提前"感知路面的异常问题,从而选择合适的控制策略保证车辆安全平稳的通过。
在行车舒适性的研究方面, 主要是由汽车厂商进行主动的调整控制,通过检测车辆的振动 情况, 调整座椅的角度和方向为乘客缓解颠簸的冲击,但这种细微的调整只能在一定范围内缓 解不舒适, 当振动比较明显的时候, 仍然需要司机主动降速 /自动车辆主动减速来保证驾驶体 验。行车舒适性评价方法大致可分为主观评价法和客观评价法。主观评价法依靠评价人员乘坐 的主观感觉进行评价, 其主要考虑人的因素。客观评价法是借助于仪器设备来完成随机振动数 据的采集、 记录和处理, 通过得到相关的分析值与对应的限制指标相比较, 作出客观评价。 近 年来, 综合运用主、 客观评价方法进行平顺性评价的研究取得了很大进展, 成为当前研究的一 个重点。
路面的平整度是路面的中微观特征, 与较大的障碍物不同, 不易被图像分析技术或雷达技 术识别。 因此需通过车路的交互对车辆驾驶速度进行调整, 进而保证行车舒适性。路面平整度 指的是路表面纵向的凹凸量的偏差值。路面平整度是评定路面质量的一个重要技术指标, 主要 反映的是路面纵断面剖面曲线的平整性, 它关系到行车的安全、舒适以及路面所受冲击力的大 小。不平整的路表面会增大行车阻力, 并使车辆产生附加的振动作用。这种振动作用会造成行 车颠簸, 影响行车的速度和安全, 影响驾驶的平稳和乘客的舒适。 当路面纵断面剖面曲线相对 平滑时, 则表示路面相对平整, 或平整度相对好, 反之则表示平整度相对差。
此外, 路面抗滑性能也是影响车辆行驶安全的重要因素,对车辆的停车和转向性能都有明 显的影响。抗滑性较差的道路车辆的制动距离越长, 且随着行驶速度的提高这种摩擦力减弱的 效果更加明显, 因此会产生严重的事故风险。光滑的路表面使车轮缺乏足够的附着力, 汽车在 雨雪天行驶或紧急制动或转弯时, 车轮易产生空转或溜滑, 极有可能造成交通事故。 因此, 路 表面应平整、 密实、 粗糙、 耐磨, 具有较大的摩擦系数和较强的抗滑能力。 路面抗滑能力强, 可缩短汽车的制动距离, 降低发生交通安全事故的频率。传统的自动车辆检测装置虽然可以通 过雷达、 图像等实现路面障碍物、 道路标志标线以及典型交通设施的识别, 但是无法实现对路 面性能的检测, 因此难以判断合适的行车车速, 从而降低了驾驶安全。
路面抗滑性能主要体现在轮胎与路表的摩擦力上, 主要包括两个方面: 粘附力和滞后力, 如图 1, 前者取决于接触面剪切强度和面积, 后者取决于轮胎橡胶内阻尼损失。 在平整、 干燥 的路面上, 抗滑性主要由粘附力控制, 粘附力来自与轮胎和路表分子结合力、轮胎表面下的橡 胶剪切, 主要有路面中细集料部分提供。 在粗糙、 潮湿的路面上, 抗滑性主要由滞后力控制。 路面潮湿时, 其粘附力显著下降, 在粗糙的路面上, 轮胎不断经受压缩和松弛变形, 主要由粗 集料产生。 由于路面的纹理特征可以表征其抗滑性能, 因此, 本专利通过机器视觉的方法, 基于采集 的图像进行数据挖掘分析,预估路面的抗滑性能并将结果反馈给自动驾驶车辆, 提高车辆的行 驶安全。
用于车速控制的现代控制策略主要包括自适应控制、 变结构控制、 鲁棒控制和预测控制。 自适应控制是在***运行中,依靠不断采集控制过程信息,确定被控对象的当前实际工作状态, 优化性能准则, 产生自适应控制规律, 从而实时的调整控制器结构或参数, 使***始终自动的 工作在最优或次优的运行状态下。 目前经常使用的自适应策略有模型参考自适应控制、参数辨 识自校正控制和非线性自适应控制,这些方法可以保证车辆应对复杂的交通环境, 自动调整车 辆状态以保证安全。变结构控制是当***状态穿越状态空间不同连续曲面时, 反馈控制器的结 构将按照一定规律发生变化,使得控制***对被控对象的内在参数变化和外部环境扰动等因素 具有一定适应能力, 从而保证***性能达到期望的标准。鲁棒控制是一种在解决确定性对象控 制问题时,在控制性能和鲁棒性之间进行的谨慎而合理的折衷控制方法。鲁棒控制器应使得当 一定范围的参数不确定及一定限度的未建模动态存在时, ***仍能够保持稳定, 并保证一定的 动态性能品质。预测控制是其不需要被控对象的精确数学模型,利用数字计算机的计算能力实 行在线的滚动优化计算, 从而取得良好的综合控制效果。
这四种控制模式在自动驾驶方面的应用广泛, 同时也是生成速度曲线的主要依据。本专利 在现有控制的基础上, 加入舒适度控制模型, 结合外部环境信息输入, 在既定速度控制策略的 基础上进行改善, 保证其变化特征符合舒适性要求。
因当车辆以自动模式行驶时,表示不需要驾驶者执行操作, 车辆通常取决于作为输入的多 个数据源以执行自动驾驶, 例如周围车辆的检测、 行车车道、 障碍物、 来自导航***的数据等 等, 这些参数来源于不同的设施环境, 一类是车载设备, 如 GPS设备、 雷达、 传感器、 红外 装置等, 另一类来源于车体数据库, 如道路地图数据, 信号机周期数据等。 对于后者来说, 数 据库的更新成为了重要的研究问题之一, 只有实时的根据外部环境更新数据库中的交通信息, 才能保证车辆在既定的轨迹中稳定运营。
目前,车辆信息数据库的更新主要依靠于车路通讯技术,车辆既是道路环境采集的发送端, 又是交通信息的接收端。例如当前车在行驶过程中发现一交通事故, 就可以将这个信息传送至 路侧设备中, 路侧设备再将这个信息传送给下一辆车体中,这样就可以提高后续车辆的运行效 率, 避免交通事故。
先进的地理信息*** (GIS)为自动驾驶技术提供了良好的数据平台, 交通管理部门可以通 过 GPS标签等, 将实测的路面损坏, 道路状况, 异常交通信息等赋予 GIS图层。 地理信息系 统 (GIS) 是一种基于计算机的工具, 它可以对空间信息进行分析和处理。 GIS 技术把地图 这种独特的视觉化效果和地理分析功能与一般的数据库操作(例如査询和统计分析等)集成在 一起。 随着 GIS 技术的不断发展, 它可以将采集到的道路信息与空间地图相结合, 从而将道 路状况, 异端问题采集至地理信息***中, 通过车路通讯技术, 将这些信息传送到自动驾驶车 辆中, 进而指导车辆行驶, 这种方法可以解决车辆检测***距离有限等问题, 为自动车辆提供 更超前的数据进行下一段行驶过程的速度决策。它是在计算机硬、 软件***支持下, 对整个或 部分地球表层 (包括大气层;)空间中的有关地理分布数据进行采集、 存储、 管理、 运算、 分析、 显示和描述的技术***。 GIS通常和 GPS结合使用。 对于大范围的、 露天的巡更巡检, 巡更 人员手持 GPS巡检器, 实时接收 GPS卫星定位消息 (时间、 经纬度;), 并按预先设定的时间间 隔自动发送或者在特定地点手动发送定位信息到无线通讯前置机。无线通讯前置机在收到定位 信息后将数据传输到管理***平台, ***软件采用 GIS 电子地图技术, 动态显示和回放巡检 轨迹, 交由 GIS分析可得该巡逻点的详细信息。
现據术 1
一件美国专利 WO2016126317(l),展示了自动驾驶车辆在多种状况下的车辆控制行为,包 括车辆的制动、 转向和动力等。
其中分析了车辆行驶过程尤其是在城市道路行驶中所能遇见的多种状况, 包括限速标志、 道路维修、 交叉口信号灯等道路工况; 道路含有急救车辆、 维修车辆等车辆; 以及超车等驾驶 行为。
然而其没有给出具体可行速度控制策略即如何加减速, 匀速时怎么确定速度, 以及没有考 虑保证乘客舒适度的问题。
现據术 2
专利文件 CN104391504A从驾驶员行为习惯分析的角度出发, 结合车辆所在区域的区域 驾驶习惯模型和路况模型生成当前车辆的自动驾驶控制策略,从而使自动驾驶控制策略与车辆 及其驾驶环境相适应, 提高自动驾驶的舒适性。
其中车辆驾驶***均车速指数、 路段弯道指数、 路段路面指 数、 路段事故率指数和路段红灯路口指数。 环境信息包括: 周边车辆信息、 行人信息、 车道线 信息、 交通标示信息和 /或交通信号信息; 主动驾驶信息包括: 油门踏板开度、 加速度、 制动 减速度、 方向盘转角和 /或车辆横摆角。
然而其所建立的模型中没有涉及乘客不舒适的根本原因: 路面质量,所以不能主动地并有 针对性地保证乘客舒适。
现據术 3
专利文件 CN104583039A提出了一个用于控制能够在各种不同的地形和条件上行驶的车 辆的速度的方法和***, 并且这样做的目的是致力于提高车辆的乘员的舒适度。该专利分析了 现有的巡航控制***的车速控制***, ***尽量保持车速在用户 (例如驾驶员)初始设定的速 度附近, 却忽视了当行车环境和车辆的占用情况(例如车辆乘员的数目和他们各自在车辆内的 位置)的变化。 当忽略这些变化时, 仍保持初始设定速度则可能会显著地影响车辆乘员的舒适 度以及车辆的稳定度。于是该专利提出了一种将以上缺点的一个或更多个缺点限制到最小或消 除的速度控制***和其使用方法。 该***中考虑了车辆所行驶的地形、车辆本体的移动和车辆的占用情况(例如车辆乘员的 数目和他们各自在车辆内的位置)等诸多情况。尤其是综合考虑车内所有乘客的舒适程度, 较 考虑某一单一位置或只考虑车辆本体振动的速度控制更人性化。但是其舒适度水平中的等级划 分较模糊, 缺乏科学的计算方法。 从而导致具体保持的速度很难科学有效的计算出来。
现據术 4
专利文件 CN105739534A提出来基于车联网的无人驾驶车多车协同驾驶方法及装置。 所 述方法的具体实施方式包括: 实时获取本车当前行车数据与路况信息; 接收预定距离内的多辆 其他无人驾驶车发送共享的当前行车数据与路况信息;根据所述本车以及所述多辆其他无人驾 驶车的当前行车数据与路况信息,经过分析规划本车的行车决策方案,所述行车决策方案包括行 车优先级以及行车路线; 根据所述行车决策方案生成本车行车指令。该方法使得每辆无人驾驶 车可以实时根据本车及周围其他无人驾驶车的当前行车数据及路况信息规划行车决策方案,提 高了公共道路使用率以及各无人驾驶车的行车安全等级。
该***中考虑了在同一道路中的多辆车辆协同控制,从而提高车辆的安全性和效率性但是 多车协同的范围较小, 很难上升的全网车路协同, 无法到达全路网的统一协调控制, 无法实现 社会效益最大化。
现據术 5
专利 CN105679030A提出了一种基于现有道路路网及车辆的中央口控制的无人驾驶交通 ***, 由车载远程控制设备、 道路监控设备、 中央控制***三部分组成。 中央控制***通过安 装于每辆车上的车载远程控制设备, 统一调度整个路网里的所有车辆,道路监控设备则辅助信 息的采集和传输。在现有道路车辆基础上渐进的进行全局自动调度。该***在现有道路车辆存 量上进行改造, 所以与地铁对比, 该***具有明显的性价比优势, 建设成本仅为地铁的 1/60。
该专利提出了全路网统一协调调度, 并用道路监控设备辅助信息采集,这样虽能实行全局 优化控制, 却忽视了一个重要的数据源就是车辆本身。 车辆是道路的真正使用者, 拥有道路最 准确的资料。如果不能很好的利用车辆本身采集的信息即使实现了全路网控制也很难做到准确。
现據术 ό
专利 CN105172791A提出了一种智能自适应巡航控制方法。 它通过自适应巡航***获取 车辆驾驶信息及行车路面信息,根据行车路面信息确定路面附着系数,根据路面附着系数和车 辆驾驶信息计算车辆的安全控制参数,根据安全控制参数对设定的车辆控制参数进行调整, 实 现车辆的智能巡航控制。
然而在车辆驾驶信息获取方面早已不是难点,在行车路面信息获取方面, 该专利只涉及路 面附着系数的信息,却也只是提及利用自适应巡航***通过路面识别传感器获取行车路面信息, 对于具体获取方式与技术没有提及。此外对于车辆巡航控制, 该专利给出了路面附着系数与车 间时距安全对照表,但是根据表格对车辆进行控制是远远不够。为了保证车辆行驶全程舒适度, 不同路面条件下的巡航速度以及变速策略都要涉及, 而不是简单的给出加速度的阈值。 【发明内容】 本发明的目的在于, 提供一种辅助的基于舒适度的自动驾驶车辆速度控制方法,通过解析 变形类路面质量与车辆振动的作用机理, 利用 GIS 与车路通讯技术获得道路工况参数, 基于 参数的变化情况, 分别设计车辆的加速、 减速与匀速过程。 通过车辆自身振动情况不断更新 GIS数据库数据特征,提高后行车辆的驾驶舒适度,并结合历史车辆的振动状态优化行驶路径, 规避道路病害, 从而提高乘客的行驶舒适性。其中所述的变形类路面质量是指直接对行车振动 产生影响的坑槽、 拥包、 裂缝和路面不平整度等评价指标所反映的路面质量。
本发明具体要解决的技术问题主要包括以下七个方面, 分别为:
1) 基于车路通讯技术的车路状态交互技术;
2) 车辆行驶舒适度预测模型;
3) 基于道路工况信息的舒适速度生成策略;
4) 有限条件下的舒适速度曲线参数优化;
5 ) 基于机器视觉的路面抗滑性能检测;
6) 基于路面振动的车辆异常情况提前感知***设计;
7) 自动驾驶车辆异常交通状态数据预警机制;
8) 基于自动车辆传感数据的 GIS路况信息更新与纠偏技术。
本发明专利解决其技术问题所采用的技术方案如下所述:
车路通讯技术是实现舒适驾驶的基础,其目的是将公路管理部门以及其他车辆采集到的路 况数据发送至当前车辆,从而指导车辆行驶,通过速度控制减少车辆振动对乘客驾驶体验影响。
(1)所述的车路通讯技术主要依靠于后台地理信息*** GIS数据库和短程无线传输技术实 现, 如图 2所所示。 其中①为路侧电源输入, 根据实际***需要可选择 220V/110V交流电压; ②为网线输入, 主要为实现路侧设备与远程数据库相连; ③为路侧通讯设施, 主要包括数据储 存部分和短程无线通讯部分; ④为无线通讯链路, 该链路为双向通讯, 即车辆至设施, 设施至 车辆都可以进行数据通讯交流; ⑤为路侧通讯设施的无线网络覆盖范围, 当车辆行驶至该范围 内时,短程无线通讯设施自动连接,进行数据交换,当车辆驶过该范围外,通讯链路自动中断; ⑥为自动行驶车辆; ⑦, ⑧分别为路段一、 二, 本专利中道路分段依据相邻两个路侧通讯设施 的布设距离,城市道路中路侧通讯设施分别布置在每个交叉口位置, 高速公路中路侧通讯设施 已 1km间距布置, 根据实际交通组织情况可适当调整布置间距。 另外, 路侧通讯设施的布置 距离也受到短程传输装置影响, 如 WIFI的覆盖范围较大, 则两通讯设施间距离较远, 而 RFID 的覆盖范围较小, 则两通讯设施间的距离较小, 布置过程中需保证两通讯覆盖范围⑤不存在重 叠, 避免出现数据传输混叠, 从而造成数据失效。 所述的车路通讯技术的通讯流程为: 当车辆 ⑥驶入路段一时, 通讯设施③与车辆⑥自动搭建连接, 进行数据交互, 通讯设施将前方路段的 平整度情况、 异常路面损坏、 事故信息等发布至车辆⑥。 与此同时, 车辆⑥将上一路段采集的 振动信息经处理后的结果发送至通讯设施③中, 通过有线网络②同步更新数据库。 当车辆行驶 至路段二中, 其与新的路侧设施进行数据交互, 过程与路段一相同。 所述的路侧车路通讯技术中短程无线传输模块可采用 WIFI, ZIGBEE, RFID等技术。 在城 市道路环境中建议采用 ZIGBEE短程无线传输模块, ZIGBEE模块可以实现定向的数据传输, 同时两模块间建立通讯连接的时间为毫秒级, 为数据交互提供了足够的通讯时间。
所述的道路工况参数是指包含路面质量、道路车流状况以及异常状况在内的道路信息。其 中所述的路面质量是指路面的平曲线要素、纵坡参数以及平整度信息等。其中所述的异常状况 是指道路损坏例如坑槽、 错台、 突起拥包、 车辙、 减速带以及交通事故等状况。
(2)所述的车辆舒适度预测模型主要是建立行驶舒适度、 速度和路面质量之间的关系, 通 过调整车辆的行驶速度以适应不同的路面工况状态, 从而满足舒适度要求。其中所述的路面质 量指道路路面的平整度信息。
车辆舒适度检测与评价是进行预测模型搭建的基础,本发明采用三轴加速度传感器,通过 采集车内不同位置的振动信息, 利用功率谱密度分析的方法计算和国际标准 IS02631 所提供 的加权函数计算加权加速度均方根值作为评价自动驾驶车辆舒适度的指标,具体技术流程如下: 选定测试自动驾驶车型,将三轴加速度传感器分别安装至车辆座椅位置的靠背中心、座垫 中心, 和平坐状态下双脚摆放位置中心。所选择安装的座椅为主驾位置。将传感器固定在三个 位置保证不产生额外的晃动。
利用测试车辆在不同平整度的测试路段的路面上行驶, 采集车辆的三轴振动加速度数值。 为保证标定结果的可靠性,测试路段均采用不小于 300米的直线段,测试路段的路面平整度分 别采用 lm/km, 2m/km, 3km/h, 4m/km, 5m/km, 6m/km不同梯度, 以测试不同平整度下的车辆振 动反馈, 以上 6个平整度梯度均为期望值, 在实际选取时可具有一定误差, 但需保证数值处于 不同梯度之间。
在同一梯度下, 使车辆分另 IJ以 20,30,40,50,60,70,80,90,100,110,120 km/h行驶, 分别记录三 轴加速度的振动大小,采样频率为 100Hz,覆盖人体感知 0-80Hz区间,量程为 ±8g( lg 9.8m/s_2)。 舒适度预测模型处理流程如图 3。
首先求解时间序列下的加速度序列自相关函数,然后通过求解自相关函数的傅里叶变化获 得振动的功率谱密度函数:
Figure imgf000009_0001
式中, 是振动的自相关函数, ^)是振动的功率谱密度函数, 《是角频率, _/'为虚数 单位。 由于人体对于振动的感知在相邻频率间比较类似, 但在不同频率段中差异较大, 因此采 用三分之一倍频程带通滤波, 分别求解每个倍频带的功率谱密度积分。考虑到不同频率对于人 体舒适的影响并不相同, 因此对每个频率带进行加权平均, 获得单轴加权加速度均方根值, 如 公式 (2):
a,
Figure imgf000009_0002
(2) 式中, 。„为单轴加权加速度均方根值, Ul , 为第 i 个频率带的上下限频率值, ^为第 i 个倍频带的权重, /为频率。 在获得单轴加权加速度均方根值的基础上, 考虑不同位置, 如椅 背、 座垫、 脚踏, 以及不同轴向, 如 X, _y, z轴振动的影响, 计算综合的加权加速度均方根值, 如公式 (3):
Figure imgf000010_0001
式中, 是综合加权加速度均方根值, 《„为位置加权系数, m=l,2,3分别代表座垫、 椅背 和脚踏位置, ^为轴向加权系数, n=l,2,3分别代表 x,_y,z轴, 。„„是在 位置《轴向的单轴加 权加速度均方根值。通过公式 1-3即可获得在不同平整度测试路段及不同速度梯度下的综合加 权加速度均方根值, 作为评价舒适性的指标, 其中具体权值权重参考国际标准 IS02631-1997 中的设定。不同速度梯度的检测试验每组进行 3次,计算 3次的综合加权加速度均方根值作为 在该速度、 该平整度下的舒适性。
利用对比试验数据, 建立多元线性回归, 以路段舒适度作为因变量, 行驶速度和国际平整 度指数 IRI值作为因变量, 如式 (4)
av = p- v + q -IRI -l (4) 式中, ^为综合加权加速度均方根值, V为行驶速度, 为国际平整度指数, p, q, I为 模型拟合参数。
其中《v作为行驶舒适度的评价值,当自动驾驶车辆的乘客输入其期望达到的舒适度作为目 标舒适度作为《v值输入到方程 (4) 中, 故在已知前方道路不平整指数的前提下就可以计算出 目标舒适度对应下的速度。
(3)根据 (1)中所述车路通讯技术,车辆可以从路侧设施获得前方路段的道路信息包括路面 平整度与异常工况,所述的异常工况主要是指不易检测且安全性影响较低但舒适性影响较大的 道路自身属性, 包括: 桥头跳车 (路桥衔接处错台)、 坑槽、 车辙、 减速带等。
当车辆接收到这些数据后会根据前方道路信息情况, 结合车辆当前行驶数据, 分析是否需 要进行车辆变速。若前方路段的平整度与当前位置平整度差值在 10%范围内,且不存在异常工 况, 如条件 (5)
I TU T _ TU T I
J ~ ~ =1≤10%& Ρ = 0 (5)
IRI 式中, /R/adv为前方道路平整度数值, /R/„。w为当前路面平整度, P代表异常工况是否发生, 若为 0则不发生, 反之为 1。如果满足条件 (5)则不需要对车辆速度进行调整, 依照公式 (4)获得 的速度上限继续匀速行驶即可; 若前方路段的平整度与当前位置平整度差值超过 10%范围,或存在异常工况,则进入变速 阶段, 即满足条件 ( 6):
> 10% || = 1 (6)
IRI..
由于路面平整度在不断变化,所以为了保证乘客在自动驾驶车辆行驶全程的舒适性, 车辆 需要根据前方道路信息不断地进行速度调整, 不同平整度的路段采取不同的速度匀速行驶。这 样,在不同路段之间的速度变化,即加速与减速过程,就需要一个基于舒适度的速度变化曲线, 从而保证在过程中用户感知到的舒适性保持在合理范围内。
匀速行驶阶段乘客的舒适度主要由垂向振动决定,而在变速阶段还需考虑因加减速带来的 纵向 (即行驶方向;)加速度变化。 因此, 速度变化曲线需要保证自动驾驶车辆在变速过程中纵向 行驶加速度与垂向振动加速度不超过某一阈值,以保证总加权加速度均方根值在相应类型乘客 的期望舒适度值范围内。故采用基于双曲正切函数的速度变化曲线模型, 调整车辆速度, 双曲 正切函数模型如式 (7), 其函数图像如图 3。
v = -^tanh(k(t - p)) -→v0 (7) 式中, V是目标速度, ¾是当前车速, 6为速度差值, p为模型常量, t为时间, 为平稳 系数。 在控制策略下, 车辆行驶方向的加速度变化如式 (8), 其图像如图 4。
av = -^-(l - (tmh(k(t - p))f) (8) 式中, ^为加减速的加速度值,减速过程中,如果减速度过大,同样会造成整体的不舒适, 因此需要将减速过程的速度变化和不平整产生的纵向振动协同考虑,保证整体的振动情况不超 过舒适度阈值 0.63 ml s2, 如式 (9) (wk · max I a \f + (wd · max | ad \f ≤ 0.63 (9) 式中, 和 是减速度与振动加速度的影响权重, 为垂向的加权加速度均方根值, 可以基于公式 (4)实时速度 V以及路面状况 IRI计算而得。 解上述不等式 (9), 即可计算 值的取 值上限, 该计算过程均在自动驾驶车辆中心处理器 CPU中完成。
所述双曲正切函数图像 (公式 (7))如图 4所示, 该过程模拟了驾驶员的实际减速行为, 即出 现减速意图时逐渐增加减加速度,而减速过程结束时又逐渐减少减加速度,呈反 S型态。图中, k2 > k 可看出 曲线更为平缓, 因此, 计算时取 k值的选取上限。 在实际操作中, 公式 (7) 所述的双曲正切函数当时间趋近于 0,或无穷大时,函数因变量只能无限的趋近于 和!。- b, 因此, 在速度生成过程中加入一影响微弱的微小正变量 s =0.01, 即在计算过程时, 将初始速 度定为 v。+ s。 可获得车辆的减速时间为: artanh(— ^ ~ ) - artanh(- ~―)
ΔΓ = b± le_ (10)
k
因此, 通过求解 (9), 计算 k值的情况下, 一般取计算结果上限的 95%为实施参数, 即可 依照公式 (7)确定速度生成曲线。
( 4 ) 当检测到前方道路存在异常工况时, 例如桥头跳车现象, 则需要进行异常工况的速 度曲线生成。在这类异常工况下主要会产生一个局部明显的颠簸从而导致舒适度较大程度的下 降。 与路面平整度不同, 道路异常工况出现较为随机, 因此可能在某些情况下, 车辆减速距离 较短, 因此需要有效调整车速, 降低减速过程与振动过程共同的影响。
异常工况对于舒适性的影响主要体现在两个方面,一是加速度本身的变化对舒适度产生的 影响, 另一部分是加加速度变化对舒适度产生的影响。在行车过程中, 预期舒适程度下加加速 度不应超过 2.94m/s3, 在双曲函数变速过程中, 加加速度如式 (11) = · (1— tan 2 (k(t - p))) · (卜 3 tan 2 (k(t - p))) (11)
dt
保证式 (11)≤ 2.94m/s3, 则 k值上限为:
64
h<- (12)
保证加加速度的同时, 也要保证振动加速度在合理范围内。在加速度振动方面, 与变速阶 段采用相同的控制条件, 最低综合的加权加速度均方根值。 不同在于, 由于异常工况的随机性 效果, 可能车辆不具有足够的减速距离, 进行最佳的减速曲线设计, 因此, 通过求解非线性的 最优化方程组获得, 如式 (13)-(16) mina^ =」(wk - avf + (wd · max | ad \f (13) 约束于
Sl≥ (v0 + s) - artanh(-^— ) + - h ln(-^) ( 14)
k b + 2s 2k b + ε
v0 - b≥ (\ 5) b,k > 0 (\6)
为自动驾驶车辆离最近的异常工况的距离,如果该距离较长,则约束(14 )为无效约束, 求解 直的过程与变速阶段相同; 若 较小, 则需求解非线性最优化方程组获得 的上限。 进 而, 在求解的 k值条件下, 即可依照公式 7确定速度生成曲线。
在实际进行速度控制时, 选取不等式 (9), 不等式 (12)以及非线性规划 (13)-(16)的解的阈值 下限, 使得三种舒适度均满足驾驶要求。 (5) 所述的基于机器视觉得路面抗滑性能检测***, 主要通过在车辆上搭载自稳高清摄 像头与激光定焦装置,将其安装至车辆两前车灯中间处,镜头朝下放置,距离地面不低于 10cm, 所述激光定焦装置 (外置 /内置) 辅助摄像头移动定焦, 保证照片拍摄精度, 所述的自稳高清 摄像头拍照采样频率为 0.5Hz, 像素要求不低于 800*1200像素点, 采集到的动态照片通过有 线连接传输至车载终端中。 具体操作流程如下:
车载终端中将每张照片进行局部二值法 (LBP) 转化为 LBP矩阵形式, 所述的局部二值 法过程主要包括:
(5.1) 提取图像中任意一点, 并选取周围 3X3共 9个像素点, 以窗口中心像素为阈值, 将相邻的 8个像素的灰度值与其进行比较,若周围像素值大于中心像素值, 则该像素点的位置 被标记为 1, 否则为 0。 这样, 3*3邻域内的 8个点经比较可产生 8位二进制数 (通常转换为 十进制数即 LBP码, 共 256种), 即得到该窗口中心像素点的 LBP值, 并用这个值来反映该 区域的纹理信息。 如下图所示:
(5.2)将 LBP二进制矩阵按照顺时针顺序转化为十进制数字, 首位选择 12点种方向, 其 计算公式如下:
Figure imgf000013_0001
式中
LBP(xc,yc) 在 位置的 LBP值 P 第 p个临近点
第 p个临近点的灰度 中间元素的灰度 = ^() = 1, 当且仅当 ≥0;o其他, /) =〇
(5.3) 计算完图片中所有的元素的 LBP值后, 绘制直方图, 统计各分量所占概率密度, 其中横坐标为 0-256, 即 LBP的十进制数值, 纵坐标为概率密度函数, 对 MXN的图像处理的 计算公式如下:
M N
尋) = HfLBP(n,n),k、, k e [0, ],(18)
:1 w:l
Figure imgf000013_0002
式中
H(k) = 图像的 LBP直方图 K = 最大的 LBP值, 不超过 256
所述的频率直方图每个统计单元为 16增加分块,即分组为 0-16, 17-32,33-48, . . . ., 241-256, 如图 8所示:
( 5.4 )基于混合高斯分布模型计算第(3 )步骤中所述的 LBP直方图拟合参数。 所述的高斯 分布模型如下式: ) = (水) , (19)
Figure imgf000014_0001
式中
混合高斯分布的概率密度函数 PDF 表征第 j个组分的未知参数的向量 a j 第 j个高斯组分量的系数, έ^
Φ(y 参数 的高斯概率密度函数
j 混合高斯分布组分数量
σ μ 第 j个高斯组分的方差和均值
所述的混合高斯分布含有三个位置变量: 每个高斯组分的系数, 每个高斯组分的均值, 以及 每个高斯组分的方差。所述的模型参数可以通过 EM算法的求解。 结果如图 9所示, 图 9分别 展示了在不同抗滑性能参数上 (BPN) 下的混合高斯分布模型形态, 其中 BPN越高代表抗滑 性能越好。 通过步骤 (4 ) 所述方法可获得混合高斯分布中两个高斯函数的均值、 方差以及系
( 5.5 )基于支持向量机的特征识别。 将步骤 (4 ) 中所述的模型参数, 输入到支持向量机 模型中, 并将实际测量的路面抗滑性能结果作为训练目标, 进行模型训练, 创建多维度的支持 向量机模型。在实际应用中, 通过实时将图像进行上述(1 ) - ( 4 )步骤处理, 并利用步骤(5 ) 的支持向量机模型, 即可对路面抗滑性能进行定量分类计算, 并将计算结果反馈至无人车计算 端辅助驾驶决策。
( 6 )所述的基于路面振动的车辆异常情况提前感知***设计主要是通过对路面振动的谱分 析实现对车辆载重情况的分类, 当检测到车辆超载现象发生时, 即认定为出现车辆异常情况并 伴随着发生事故的风险。其中所述的路面振动是指道路路面的 Z轴(垂直地面向上)加速度。
路面振动与车辆载重情况关系模型是车辆异常情况提前感知的基础, 本发明采用三轴加速 度传感器,通过安放在路侧采集路面的加速度信息,利用功率谱密度分析与频带分割的方法测 量不同车辆经过时路面振动的能量分布情况,利用支持向量机的方法量化不同载重分类车辆经 过时路面振动在不同频率带上能量的分布情况, 具体技术流程如下:
选定测试路段,将三轴加速度传感器放至在路侧远离路沿石 10cm位置处, 固定传感器保证 不产生额外晃动, 测得数据真实反映路面的振动。 具体安放位置如图所示:
在模型建立阶段, 除获取路面振动信息之外还需通过视频监控获取经过车辆的载重信息。 主要完成: 车辆载重信息获取、 路面振动数据提取、 路面振动数据的功率谱密度分析、 不同频 段振动能量的分布计算以及支持向量机计算车辆载重与能量分布关系模型等五个步骤。
获取车辆通过视频后, 需要完成以下三个步骤:
1、 时间轴对准
所述的时间轴对准主要完成车辆经过时间与振动数据时间对应工作。 由于路面振动是在路 面这一***在不同行车荷载的激励下的响应,所以需要通过对准时间轴才能保证所分析的振动 数据片段为车辆经过产生的数据。
2、 干扰去除
所述的基于路面振动的车辆异常情况提前感知***是针对车辆经过产生路面振动继而通过 路面振动来分析车辆异常情况, 故需要将视频中一切非车辆经过产生的振动情况剔除。 如: 行 人、 助力车等。
3、 车辆筛选
基于视频内容选择不同载重的车辆, 获取其经过的具体时间与振动数据做对应, 继而进行 下一步的振动分析。
针对获取的路面振动信息, 以车辆经过那一秒为中心, 选取 4s为窗函数得到振动函数 /(ί) 的截尾函数 Λ(0 , 它可以表示为:
Figure imgf000015_0001
针对截尾函数计算其功率谱密度可得:
|^(^)|
ρ(ω) = lim (22)
τ 式中, 是振动数据的傅立叶变换函数, 《是角频率。 在获取振动数据的功率谱密度的基础上,将其按照振动频率均分为 10段,分别计算 0-10HZ, 10-20Hz, 20-30Hz, 30-40Hz, 40-50Hz, 60-70 Hz, 70-80 Hz, 80-90 Hz, 90-100 Hz这十个 频段的能量, 如公式:
fj (t)dt = dm (23 )
Figure imgf000015_0002
利用计算所得不同频段振动能量的分布, 采用支持向量机进行关系模型建立。 以 10个频段 上能量占比为自变量, 车辆载重分类为因变量。 从而实现基于路面振动数据的车辆载重分类。
在获取车辆载重分类模型的基础上, ***设计了车辆异常情况的提前感知功能。 通过在路 侧布设三轴加速度传感器,实时计算通过车辆时路面振动信息。当检测发现有超载车辆经过时, ***记录车辆信息以及通过时间, 并将异常信息发送给中心服务器以及异常车辆。
(7) 根据 (3 ) 中的舒适速度曲线参数优化可以获取自动驾驶车辆在道路信息已知情况下 车辆速度的具体变化曲线, 从而保证乘客能感知的舒适度在合理的范围内。对于自动驾驶车辆 来说, 前方道路的道路信息就是其运行过程中一切操作变换的基础与前提。所以车辆需要尽可 能快地获取尽可能全面的道路信息。
前面 (1 ) 中详述了车路通讯的具体细节, 主要涉及道路信息数据库的数据基础以及道路 信息的传递。但是道路行驶是一个高度随机变化的过程, 异常交通状况随时都可能发生, 一旦 发生需要一个稳定快速的传输机制实现异常状况信息的传输与发布。
异常交通状况预警机制包含三个部分, 一为事故发生之后的及时发现; 二位事故信息的及 时发布; 三为事故处理完成后的及时解除。
当道路中发生事故时, 及时发布事故信息的前提是能够及时地发现事故, 而任何被动预警 机制的检测都会晚于事故车辆自身发出信息提醒事故。现有的事故预警分为两类, 一类为基于 大量的监控实现对公路自身和周边环境的实时检测,当发生事故时通过人为分辨监控画面发现 事故或视频自动检测公路状态进行事故发现与预警; 第二类采用定性与定量相结合的方法,对 公路交通安全发展态势进行过程描述、追踪分析和警情预报。首先建立一个能够综合评价交通 事故发展状况的 "公路事故预警指标体系", 然后利用统计部门数据或其他途径手机的数据计 算指标, 运用模型计算综合指数进行预测。在定量分析的基础上结合定性分析, 综合评价公路 交通事故发展变化趋势, 当多数指标值接近警戒线时应发出警报, 实现预警。然而这些方法都 是建立在大量实时的监控基础之上的, 现仅在少数高速公路使用, 较难推广。且现有事故动态 预警通过事故发生后道路的使用状态发生改变从而发现事故,判断标准是多辆车辆受事故影响 之后的情境, 但是如果以车辆自身为主体, 则可以在第一时间发现事故并且上传事故信息。
异常交通状况发生之后, 及时地发布能够让后续的驾驶员提前采取规避措施或重新规划 路线, 从而减少二次事故的可能。 现有的突发事件的发布方式有八类: 交通广播、 限速标志、 可变信息板、 互联网、 车载终端、 ***、 路旁广播和公共信息终端。 交通广播信息面广、 影响范围大、 技术简单、 成熟、 易于推广但对于交通状况在时间和地点上的动态变化难, 可以 及时跟踪,信息的提供时间与驾驶员的需要时间不协调,信息的内容和驾驶员需要的内容不协 调,对跨越多个行政区的公路发布信息协调难度较大应用于省域公路; 限速标志的优点是驾驶 员对限速标志比较熟悉能偶灵活的进行车速控制,但是限速标志的发布信息较单一只适用于一 条公路的特殊路段; 可变信息板文字型的容易看明白, 能很快地从中获得所需信息, 图形式的 更容易理解, 能够提供整个路网的服务水平和旅行时间等信息,但是缺点是能提供的信息量不 大, 信息受用的驾驶员有限, 不适合于网络环境, 在一些交通流量大、 路网复杂的城市快速路 或高速公路中能发挥的作用有限;互联网发布的信息量大,更新及时能满足驾驶员的不同需求, 但是需要网络和计算机终端属于出行前的信息发布,对路上驾驶员帮助有限; 车载终端提供信 息量大, 针对性强, 能够根据驾驶员的需要提供信息, 但是其投资大技术难度高; ***信 息量大, 能够根据驾驶员的需要提供信息, 但是对行车安全有一定的影响, 技术难度较高, 仍 处于试验阶段; 路旁广播可以告诉驾驶员限速理由, 驾驶员会对这一限速更加重视, 但是初期 投资大, 维护成本高; 公共信息终端信息量大, 更新及时, 但是属于出行前的信息发布, 对于 路上驾驶员的帮助有限。
本专利提出的自动驾驶车辆异常交通状况数据预警机制可以实现事故的早发现、 早发布 与早解决。
当事故发生时,车载预警***能够通过传感器及时检测出发生的事故,于是将事故情况、 事故车辆信息、 事故时间和车辆 GPS信息打包保存为一个事故数据标签, 并同时开始搜索周 围数据接收端。 在数据传输过程中有以下三种情况:
第一类: 事故车辆在一段道路的始末位置附近, 此时事故车辆在路侧通讯设备传输范围 内,事故车辆可以通过 ZIGBEE将车内保存的事故信息标签上传到道路信息的数据库中,实现 事故信息的快速发布。 如图 11中的⑥- 第二类: 事故车辆不在路侧通讯设备的传输范围内, 即事故车辆无法直接将事故信息上 传到数据库中, 但附近有其余车辆, 如图 12所示。 此时利用 RFID技术将小容量的事故信息 标签传递给周围车辆, 周围车辆再传递给其周围车辆, 如此循环通过车辆相互之间 "接力 "传 递。 RFID技术通过射频信号自动识别目标对象并获取相关数据, 识别工作无须人工干预, 可 工作于各种恶劣环境。通过 RFID获取事故信息的车辆在传递信息的同时开始搜索路侧通讯设 备, 如果在道路侧通讯设备传输范围内则将信息上传至路侧通讯设备并终止传递。
第三类: 事故车辆不在路侧通讯设备的传输范围内并且附近没有其他车辆时 (此处默认 事故车辆丧失移动能力), 如图 13所示。 事故车辆保存事故信息标签, 并不断进行搜索, 当发 现可接受设备时立即传输事故信息。
通过上述三种不同情况下事故车辆的相应处理方法可以实现事故信息快速的上传至路侧 通讯设备的数据库中。之后利用车路通讯技术将数据库中的事故信息发送给在道路中行驶中的 车辆。
在获取事故信息的车辆中, 分为两类, 一为数据库更新事故信息时仍未到达该路段起始 位置的车辆,这类车辆可以通过车路通讯获取事故信息并采取规避措施; 二为数据库更新事故 信息时已进入该路段的车辆,这类车辆已经完成路段信息的获取,无法通过路侧通讯设备获取 数据库中更新的事故信息。所以这类车辆需要通过路段内的车一车 RFID通讯技术获取事故信 息以便提前采取躲避措施。 如图 15所示, ⑥为第一类车辆, ⑨为第二类车辆。 这样事故信息 就能够传输至每一辆将要经过事故路段的车辆上, 避免连环事故的发生。 在事故现场处理完毕之后, 预警信息的及时解除同样重要。 当车辆通过事故信息标注的 路段时, 车内传感器数据显示与正常行驶状态差别较小则表示事故现场已恢复, 则在收到的事 故信息标签中增加解除标记。采取同样的机制将事故解除信息上传至路侧通讯装置即可实现预 警解除。
异常交通状况除了交通事故外还有灾害类天气和交通拥堵等。
目前的交通拥堵状况的判别主要依靠识别处理方法, 且判别是以交通状态参数的获取为 前提, 拥堵判别滞后于交通状态参数的检测, 而且拥堵判别的准确性受到相关参数获取准确性 的影响。
当道路发生拥堵, 行驶在道路上的车辆行驶速度与制动会发生改变。 这些状态的变化可 以被车内检测器所记录,综合处理分析相同路段的多辆车辆行驶状态即可判断道路的拥堵状态。 利用本专利的异常交通状态传输机制即可实现交通拥堵的快速发布。
基于本专利的异常交通状况信息传输机制可实现交通事故、 灾害性天气和交通拥堵等异 常交通状况的快速检测与及时发布, 具体如图 16:
( 8) GIS***获取的数据是存在误差的, 而在道路上行驶通过的车辆所获取的振动数据可 以实现 GIS 路况信息的更新和纠偏。 安置在车内的传感器可以实时记录车辆行驶过程中的振 动数据,通过对振动数据的处理分析可以有效地还原行驶路面的工况信息, 因此可以利用低功 耗的短程无线传输 ZIGBEE技术在路段末,车辆将振动数据传输给中央处理器从而还原其测量 的路况信息, 对比筛选多辆车辆的信息从而实现对 GIS路况信息的更新和纠偏。
在 (1 ) 中我们讲到, 通过路侧通讯装置实现车路通讯技术, 在路段开始处将前方路段的 平整度情况、异常路面损坏、事故信息等发布至车辆,指导车辆提前计算行驶参数,包含速度、 方向等。 其中路段的平整度情况、 异常路面损坏等信息是由地理信息*** (GIS) 将搜集到的 道路信息与空间地图相结合而建立的数据库。
地理信息***的处理精度与更新速度是有限的。 然而路面性能却是在不断变化的。 路面 性能是一个覆盖面很宽的技术术语, 泛指路面的各种技术表现, 如路面行驶质量、 损坏状况、 结构的力学反应、 行驶安全性以及路面材料的疲劳、 变形、 开裂、 老化、 表面飞散等各方面的 含义, 是一个泛指路面和材料各种技术表现的术语。 路面的这些使用性能涵盖了两个方面, 一 方面是路面的功能性, 描述了路面的使用性能, 如路面的行驶质量(行驶舒适性)和行驶安全 性; 另一方面是路面的结构性, 描述了路面的结构状况 (潜力), 如路面的损坏状况、 结构的 力学反应等。实际上这两个方面并不是孤立的, 而是具有内在的联系; 路面结构状况的变化是 路面功能变化的内在原因。与功能性能和结构性能相对应, 路面的损坏也分为功能性损坏和结 构性损坏, 前者是指影响路面行驶质量和行车安全性的表面损坏, 后者是指影响路面结构特性 的损坏。路面的磨光、麻面和泛油等损坏类型主要影响路面的形式安全和噪声等特性,而裂缝、 坑槽和变形以及工程的不平整度则影响路面的行驶舒适性等特性。随着路面使用时间和荷载作 用次数的增加, 路面的结构状况将不断恶化。结构状况的不断恶化将反映到路面的服务水平上 来, 导致路面的功能特性不断衰减。 路面功能特性的不断衰减意味着路面信息的不断变化, 城市地理信息***的核心就是数 据,地理信息数据的现势性是衡量其使用价值的重要标志之一。现势、准确的数据才有生命力, 然而数据更新的现状却不容乐观。 据统计, 全球地形图的更新率不超过 3%。
现有的城市基础地理信息更新数据源的选择有以下三种: 1、 根据已有的规划图进行地理 信息数据更新。对照规划图的改变, 在计算机上对地理信息数据库做出相应的更新。在变更结 果最终农耕确认之前, 在电子地图的相应位置注明 "正在施工"或 "正在修建中"。 此外道路 维修养护部门对于道路的维修也会大幅度的改变道路工况信息,在维修之后由道路维修养护部 门提供维修的具体信息来对数据库***的信息进行更新。这都需要规划部门与数据库***间保 持信息同步。 2、 利用摄影与遥感数据。 近年来, 极高分辨率遥感数据成为城市 GIS数据采集 与更新的重要数据源, 典型范例是摄影测量与遥感在土地利用动态监测中的成功应用。对于城 市中人类活动影响大、环境变化较快的重点区域, 可采用定期和不定期预购高分辨率遥感影像 (如 Quickbird) 来解决, 相对来说成本并不高, 也可采用低空平台遥感技术获取信息。 总的 看来,影像数据逐渐成为基础地理信息更新的主要数据来源,但海量地理信息的快速更新尚未 解决。 3、 利用数字测图, 即常规的测绘方法。 随着社会经济与高科技的不断发展, 测量技术 逐步从地面向空中进军。航空摄影、卫星遥感、 GPS定位等先进技术正逐渐成为数据获取的主 流手段。 但是, 在一段时间内, 小区域的, 零星的数字测绘扔将在日常补测和地理信息数据更 新中起着重要作用。就目前我国城市经济技术发展水平而言,不是每个城市都能达到利用航摄、 遥感手段的程度,普通的中小城市还得依靠测绘手段来完成地理信息***的数据更新。城市中 一些常见的普通工程, 如道路改造、 小区建筑、 管道修建等引起的数据更新, 常规测绘方法更 能显出其灵活、 方便性。
此外地理信息***测量的数据精度尚未满足自动驾驶车辆计算舒适度所需的要求。 公认 的, 其数据精度包括位置精度、 属性精度、 时间精度等。 位置精度是地理信息***数据质量重 要的评价指标之一, 矢量 GIS 数据位置精度的研究对象主要是点、 线、 面的几何精度。 这些 数据的误差主要来源于 GIS数据库中各项基础数据的误差和建立 GIS数据库各个步骤中产生 的误差。 因此本专利提出了以车辆传感数据为基础的 GIS ***数据纠偏机制, 来弥补原有数 据库数据精度不足的问题, 从而更精确的保证乘客的舒适度。
前面提到交通管理部门通过 GPS标签等, 将实测的路面损坏, 道路状况, 异常交通信息 等赋予 GIS图层, 然而 GPS定位测量存在着误差。 GPS测量时通过地面接收设备接收卫星传 送来的信号,计算同一时刻地面接收设备到多颗卫星之间的伪距离,采用空间距离后方交会方 法, 来确定地面点的三维坐标。 因此, 对于 GPS卫星、 卫星信号传播过程和地面接收设备都 会对 GPS测量产生误差。 主要误差来源可分为与 GPS卫星有关的误差、 与信号传播有关的误 差、 与接收设备有关的误差。
与卫星有关的误差包括卫星星历误差, 卫星钟差、 SA干扰误差以及相对论效应的影响; 与传播途径有关的误差包括电离层折射、 对流层折射、 以及多路径效应; 与 GPS接收机有关 的误差包括接收机钟差、 接收机的位置误差以及接收机天线相位中心偏差。 在车路通讯的技术支持下, 成千上万的车辆都可以成为数据库***的数据源。 车载传感 器可以获取车辆在行驶过程中的振动、摩擦等数据, 而这些数据都是车辆在一定速度、方向行 驶过程中,道路工况在车辆上的响应。通过响应以及影响机理就可以还原出道路工况这一输入, 从而更加准确的还原出道路工况信息。
通过路段终点处车辆返回的振动信息, 中央处理器经过处理还原车辆行驶过程中的路面 信息, 从而对原有数据库数据进行更新和纠偏。 主要操作包含三个部分: 增加路面信息、 删减 路面信息和修改路面信息。
增加路面信息发生在车辆在驶入路段钱获取路段内的路面信息做出行驶规划, 当出现预 期之外的振动或响应时即为路面发生了未在数据库中出现的信息,此时车辆记录响应与车辆位 置信息, 在路段终点处上传给路侧通讯装置作为增加数据信息。
删减路面信息发生在车辆在驶入路段钱获取路段内的路面信息做出行驶规划, 当车辆行 驶在本应发生响应却未发生响应时即为数据库原有信息在路面中消失了,例如路面养护部门的 维修使路面的裂缝等损害被修补,此时车辆记录响应与车辆位置信息,在路段终点处上传给路 侧通讯装置作为删减数据信息。
车辆在路段初获取道路信息, 从而规划计算行驶速度和方向。当路面信息发生变化车辆自 身的响应 R也会发生变化。 若行驶相应与预期响应差值在 10%范围内, 如条件 (24)
Figure imgf000020_0001
式中, ?nw为车辆实际驶过测得响应, ?exp为原有路面信息条件下车辆驶过应有的响应。 如果满足条件 (24) 则理解为车辆自身因素影响不计入路面信息改变。
若车辆实际驶过测得响应与预期响应差值超过 10%, 即满足条件(25 )则表示该车测得路 面信息发生变化, 需要进行更新或纠正。
Figure imgf000020_0002
当车辆驶过发现路面信息发生变化, 则立刻将该处的车辆信息、 响应信息以及 GPS信息 打包成数据标签定义为路面信息更新,待行驶至路侧通讯设施传输范围内时将打包数据传输给 数据库***。当***发现在同一位置超过一辆车辆上传更新信息则处理响应信息还原道路信息 并更新到数据库***中。 从而实现基于自动车辆传感数据的 GIS路况信息更新与纠偏。
然而由于 GPS定位存在着误差, 所以当车辆驶过同一位置时, 定位数据也不相同, 故本 专利引入了位置匹配度来解决定位精度不准的问题。 位置匹配度定义为两个不同 GPS定位信 息所对应的物体在真实环境中处于相同位置的概率程度。可见,当两个 GPS定位信息越接近, 其对应的物体在真实环境中处于相同位置的概率程度也就越大, 其位置匹配度也越高。具*** 置匹配度计算公式如下:
s=e (26) £为位置匹配度;
为第一个物体的 GPS定位信息; Α为第二个物体的 GPS定位信息;
累积匹配度是指多个不同 GPS定位信息多对应的物体在真实环境中处于相同位置的概率 程度。 其中 n个物体的累积匹配度计算公式如下: sn = e - 一 (27、)
【附图筒要说明】
图 1为路面抗滑性来源示意图
图 2为路侧通讯设施机理示意图
图 3为舒适度预测模型计算流程图
图 4为双曲函数速度变化曲线示意图
图 5为双曲正切函数加速度变化示意图
图 6为机器视觉检测路面抗滑性能流程图
图 7为 LBP求解过程示意图
图 8为 LBP统计直方图示意图
图 为混合高斯分布示意图
图 10为三轴传感器安放位置示意图
图 11为事故车辆在路段始末位置处示意图
图 12为事故车辆周围搜索到其他车辆示意图
图 13为事故车辆无法搜索到接收端示意图
图 14为事故信息传输机制示意图
图 15为接收事故信息时车辆的行驶位置示意图
图 16为异常交通状态信息快速发布示意图
【具体实施方式】 依照专利说明要求, 布置车路通讯设备: 相邻设备的布置间距为 1000米, 路侧通讯设备 中包含前方路段的平整度和异常数据情况, 所示测试路段国际平整度指数值 IRI 分别为 1.2m/km与 2.7m/km, 且路段二中存在一处桥头跳车位置, 路侧通讯设施距离为 100米, 路段 限速 70km/h。 当车辆行驶至控制路段后, 接收路面状况数据, 进行基于舒适度的速度控制策 略。
Step 1判断车辆是否处于安全驾驶状态 利用自动驾驶车辆的传感器、摄像及探针等技术采集到的环境信息,利用传统技术生成安 全速度曲线, 由于路段流量低,测试车辆可以采用最高限速进行全速行驶, 即车速为 70km/h。
Step 2自动驾驶车辆当前舒适性判断
根据公式 (4)获得的行车舒适性、车辆速度、平整度 IRI之间的相关关系,预测行车舒适性, 如下式:
α = 0.008 · ν + 0.298 -IRI -l .246 计算可得加权加速度均方根值为 0.3412 m/s2,满足舒适度要求小于 0.63 m/s2, 因此车辆可 以以 70km/h的速度继续行驶。
Step 3道路状况改变下的速度策略
当车辆进入即将驶入第二段道路时,路侧车路通讯***会将前方道路的平整度和异常情况 发至车辆, 当车辆接收到平整度为 3.7 m/km且存在桥头跳车时, 会进行速度改变保证驾驶舒 适性。
由于舒适性计算后,发现在平整度为 3.7m/km的情况下,车辆振动的加权加速度方根值为 1.9087 m/km, 超过了舒适性的上限, 因此需要进行降速处理, 为保证舒适度在范围内, 即 av < 0.63m/s2, 则计算可得符合要求的速度不得高于 55 km/h, 则 b值为 70-55=15km/h。 < 7.2 · ^0.3969 - (wk · (0.008 · v0 + 0.298 IRI - l .246))2
b ' wd
式中, Wfc =1,^ = 0.8, 通过公式 (9)可获得 k值的舒适上限为 0.3712。 另一方面, 为了防止 加加速度超过舒适界限, 通过公式 (12)可以求得 k值的舒适上限为 0.9400, 因此双曲曲线 k值 选择 0.3712*0.95=0.3526。
另外, 由于桥头跳车距离较近, 减速距离只有 100米, 经 GIS显示, 该桥头跳车的物理 特征将导致的车辆振动大小为:
αν = 0.562 l - e0 0378'^ 将上式带入非线性规划中, 可以获得双曲正切函数最优的 k和 b 值, 6=31.05 km/h, k= 0.6762。 因此, 自动驾驶车辆通过 k=0.6762的双曲正切函数, 将速度降至 39km/h左右会实现 最佳的舒适情况。

Claims

权利要求书
1、 一种基于舒适度的自动驾驶行驶规划方法, 包含以下步骤:
a) 基于车型建立振动类路面质量与行驶舒适度的关系模型, 具体包括:
al ) 在选定车型的车辆中特定位置布设三轴加速度传感器;
a2 ) 分别以不同速度梯度在测试路段匀速行驶, 利用所述三轴加速度传感器, 采集加速度 数据;
a3 ) 基于所述加速度数据, 计算加权加速度均方根值, 作为所述行驶舒适度的评价指标; a4)将所述的测试路段采集的平整度数据作为路面质量的评价指标, 并基于所述加权加速 度均方根值与所述测试路段采集的平整度数据, 建立路面质量与行驶舒适度的多元线性回 归模型;
b) 获取前方道路工况参数, 含异常状况信息、 道路平整度和路面抗滑性能;
c) 获取前方道路工况参数, 调整车辆的预期行驶轨迹;
d) 分别设计车辆的加速、 减速与匀速过程, 生成速度变化曲线;
e) 优化所述速度变化曲线。
2、 如权利要求 1所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 a2所述的 测试路段需满足以下条件:
a21 ) 所述测试路段均为不小于 300米的直线路段;
a22 ) 所述测试路段为一组, 分别包含平整度为 lm/km, 2m/km, 3m/km, 4m/km, 5m/km, 6m/km的 6个路段。
3、 如权利要求 1所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 b ) 获取 道路工况参数的方法包含:
bl )测量得到以下道路工况信息: 实际路面损坏、 道路状况、 异常状况信息和路面抗滑性 能;
b2 ) 将测得的道路工况信息赋予 GPS标签;
b3 ) 将附有 GPS标签的测得的道路工况信息附加在 GIS图层上, 存储于 GIS数据库中; b4) 通过车路通讯技术, 将 GIS数据库中的道路工况信息传送到自动驾驶车辆中; b5 ) 所述自动驾驶车辆在行驶过程中利用车内传感器测得振动数据;
b6 ) 通过车路通讯技术将所述振动数据上传至 GIS数据库;
hi ) 分析处理所述振动数据, 对 GIS数据库中的道路工况信息进行更新与纠偏。
4、 如权利要求 3所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 bl )所述 的路面抗滑性能的获取基于已经建立的评估路面抗滑性能模型, 包含以下几个步骤: bl l ) 自动驾驶车辆通过车载摄像头获取前方路面的图像;
bl2) 将所述的前方路面的图像进行 LBP特征计算;
bl3) 将 LBP特征计算结果绘制成直方图并进行混合高斯分布拟合从而确定分布参数; bl4) 将分布参数输入到评估路面抗滑性能模型得到路面抗滑性能。
5、 如权利要求 3所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 b4)包含 以下几个步骤:
b41 ) 选取 ZIGBEE作为无线传输模块, 以 lkm为间距布设于路侧;
b42 ) 在每一路段的始末位置布设通讯设施, 该通讯设施包含数据存储部分和短程无线通 讯部分, 其中数据存储部分存储的信息为步骤 b3所述的附有 GPS标签的测得的道路工况 信息;
b43 ) 当自动驾驶车辆行驶至所述无线传输模块的传输范围内时, 通讯链路自动连接, 车 辆将上一路段采集的振动数据经处理后的结果发送至所述的数据存储部分中; 所述数据存 储部分利用所述无线传输模块将前方的道路工况信息传输给自动驾驶车辆。
6、 如权利要求 3所述的基于舒适度的自动驾驶车辆行驶规划方法, 其特征在于, 其步骤 b7) 包含以下两种情况:
b71 ) 当车辆在路段行驶过程中出现预期之外的振动时, 车辆记录此时的振动位置信息, 作为待确认数据临时保存, 若位置匹配度累积达到 2. 1时, 则 GIS数据库增加此条数据; b72 ) 当车辆在路段行驶过程中未出现预期的振动时, 车辆记录此时的振动与位置信息, 作为待删除数据临时保存, 若位置匹配度累积达到 2. 1时, 则 GIS数据库删除此条数据。
7、 如权利要求 1至 6之一所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 d) 所述的速度变化曲线以如下方式得到:
当前方道路平整度与当前道路平整度数值相差不超过 10%,且前方道路不存在异常状况时, 速度变化曲线为匀速直线; 否则, 速度变化曲线为双曲正切函数曲线; 所述的双曲正切函 数曲线包含 2个决策参数, 分别为平稳系数与速度差值, 所述的速度差值是当前速度与目 标舒适度所对应的速度的差值。
8、 如权利要求 7所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 e) 当前 方道路平整度与当前道路平整度数值相差超过 10%, 但前方道路不存在异常状况时, 所述的平 稳系数的计算包含以下步骤;
el l ) 微分所述的双曲正切函数, 求解行驶方向最大加速度;
el2 ) 基于步骤 a)所述的关系模型, 求解当前速度下的舒适度; el3 ) 求解所述行驶方向最大加速度与舒适度的加权均方根值, 使其小于舒适度阈值, 求 解不等式, 获得平稳系数取值范围, 令所述的平稳系数为范围上限。
9、 如权利要求 7所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 e ) 当前 方道路平整度与当前道路平整度数值相差未超过 10%, 但前方道路存在异常状况时, 所述的平 稳系数的计算包含以下步骤;
e21 ) 二阶微分所述的双曲正切函数, 求解行驶方向最大加加速度表达式, 使其小于加加 速度阈值, 获得平稳系数取值范围;
e22 )微分所述的双曲正切函数,求解行驶方向最大加速度;基于步骤 a)所述的关系模型, 自动驾驶车辆与异常状况发生地的距离, 建立最优化模型, 求解获得平稳系数取值范围; e23 ) 比较 e21 ) 与 e22 )所述的平稳系数取值范围, 令两个范围上限中较大者作为所述的 平稳系数的值。
10、 如权利要求 7所述的基于舒适度的自动驾驶行驶规划方法, 其特征在于, 其步骤 e ) 当前 方道路平整度与当前道路平整度数值相差超过 10%, 且前方道路存在异常状况时, 先分别计算 以下三个平稳系数:
e31 )微分所述的双曲正切函数,求解行驶方向最大加速度;基于步骤 a)所述的关系模型, 求解当前速度下的舒适度; 求解所述行驶方向最大加速度与舒适度的加权均方根值, 使其 小于舒适度阈值, 求解不等式, 获得平稳系数取值范围, 令平稳系数 1为范围上限; e32 ) 二阶微分所述的双曲正切函数, 求解行驶方向最大加加速度表达式, 使其小于加加 速度阈值, 获得平稳系数取值范围, 令平稳系数 2为范围上限;
e33 )微分所述的双曲正切函数,求解行驶方向最大加速度;基于步骤 a)所述的关系模型, 自动驾驶车辆与异常状况发生地的距离, 建立最优化模型, 求解获得平稳系数取值范围, 令平稳系数 3为范围上限;
比较 e31 )、 e32)、 e33 )所述的平稳系数 1、 平稳系数 2和平稳系数 3; 取三者中的最大值 为所述的平稳系数的值。
PCT/IB2017/058538 2016-12-30 2017-12-30 一种基于舒适度的自动驾驶行驶规划方法 WO2018122808A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/474,696 US11447150B2 (en) 2016-12-30 2017-12-30 Comfort-based self-driving planning method
GB1905908.8A GB2569750B (en) 2016-12-30 2017-12-30 Comfort-based self-driving planning method
CN201780036525.2A CN109415043B (zh) 2016-12-30 2017-12-30 一种基于舒适度的自动驾驶行驶规划方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2016/058106 WO2018122586A1 (zh) 2016-12-30 2016-12-30 一种基于舒适度的自动驾驶车速控制方法
IBPCT/IB2016/058106 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018122808A1 true WO2018122808A1 (zh) 2018-07-05

Family

ID=59713451

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/IB2016/058106 WO2018122586A1 (zh) 2016-12-30 2016-12-30 一种基于舒适度的自动驾驶车速控制方法
PCT/IB2017/058538 WO2018122808A1 (zh) 2016-12-30 2017-12-30 一种基于舒适度的自动驾驶行驶规划方法
PCT/IB2017/058537 WO2018122807A1 (zh) 2016-12-30 2017-12-30 一种基于舒适度的自动驾驶车速控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/058106 WO2018122586A1 (zh) 2016-12-30 2016-12-30 一种基于舒适度的自动驾驶车速控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/058537 WO2018122807A1 (zh) 2016-12-30 2017-12-30 一种基于舒适度的自动驾驶车速控制方法

Country Status (4)

Country Link
US (1) US11447150B2 (zh)
CN (3) CN109476310B (zh)
GB (9) GB201711409D0 (zh)
WO (3) WO2018122586A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900292A (zh) * 2019-04-03 2019-06-18 南京林业大学 一种综合舒适度和出行距离的机动车导航方法
CN109934452A (zh) * 2019-01-21 2019-06-25 上海同济检测技术有限公司 基于多源数据的道路舒适度评价方法
CN111127906A (zh) * 2018-10-15 2020-05-08 广州市市政工程试验检测有限公司 一种基于物联网的智能路面管理***及其方法
WO2020150873A1 (zh) * 2019-01-21 2020-07-30 上海同济检测技术有限公司 基于多源数据的道路舒适度评价方法
EP3690845A1 (en) * 2019-01-31 2020-08-05 StradVision, Inc. Method for providing autonomous driving service platform to be used for supporting autonomous driving of vehicles by using competitive computing and information fusion and server using the same
CN111583402A (zh) * 2020-04-09 2020-08-25 奇瑞汽车股份有限公司 路面模型建立方法及装置
CN111751118A (zh) * 2020-06-02 2020-10-09 重庆长安汽车股份有限公司 获取车辆初级舒适性指标的测试方法
CN114291094A (zh) * 2021-12-28 2022-04-08 清华大学苏州汽车研究院(相城) 一种基于自动驾驶的路面状况感知响应***及方法
CN114502445A (zh) * 2019-10-11 2022-05-13 三菱电机株式会社 适应用户驾驶偏好控制自主车辆
CN114662193A (zh) * 2022-03-22 2022-06-24 常州工学院 基于多源数据融合的减速带振动能量回收性能评价方法
WO2022149049A3 (en) * 2021-01-08 2022-12-29 Mobileye Vision Technologies Ltd. Systems and methods for common speed mapping and navigation

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476310B (zh) * 2016-12-30 2021-11-12 同济大学 一种基于舒适度的自动驾驶车速控制方法
DE102017214030A1 (de) * 2017-08-11 2019-02-14 Robert Bosch Gmbh Verfahren zum Bestimmen eines Reibwerts für einen Kontakt zwischen einem Reifen eines Fahrzeugs und einer Fahrbahn und Verfahren zum Steuern einer Fahrzeugfunktion eines Fahrzeugs
JP6946970B2 (ja) * 2017-11-23 2021-10-13 株式会社デンソー 路面状態判別装置
US10921142B2 (en) * 2017-12-14 2021-02-16 Waymo Llc Methods and systems for sun-aware vehicle routing
EP3536574A1 (en) * 2018-03-06 2019-09-11 Pablo Alvarez Troncoso Vehicle control system
US11693888B1 (en) * 2018-07-12 2023-07-04 Intuit, Inc. Intelligent grouping of travel data for review through a user interface
CN109085837B (zh) * 2018-08-30 2023-03-24 阿波罗智能技术(北京)有限公司 车辆控制方法、装置、计算机设备及存储介质
US11904863B2 (en) * 2018-10-26 2024-02-20 AutoBrains Technologies Ltd. Passing a curve
JP2020091672A (ja) * 2018-12-06 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 鞍乗型車両のライダー支援システムのための処理装置及び処理方法、鞍乗型車両のライダー支援システム、及び、鞍乗型車両
EP3893216A4 (en) * 2018-12-06 2022-01-26 NEC Corporation ROADSURVEILLANCE SYSTEM, ROADSURVEILLANCE DEVICE, ROADSURVEILLANCE METHOD AND NON-TRANSITORY COMPUTER READABLE MEDIUM
CN109737977A (zh) * 2018-12-10 2019-05-10 北京百度网讯科技有限公司 自动驾驶车辆定位方法、装置及存储介质
JP7335713B2 (ja) * 2019-03-28 2023-08-30 株式会社Subaru 路面判定装置
CN110083162B (zh) * 2019-05-17 2022-04-29 交通运输部公路科学研究所 基于混合交通流状态下的自动驾驶车辆控制方法及***
CN112014593B (zh) * 2019-05-28 2022-05-17 浙江德盛铁路器材股份有限公司 一种铁路轨道基础装备质量状况监测评估装置和方法
CN110487713B (zh) * 2019-09-02 2021-11-26 武汉科技大学 基于摩擦系数的纹理特征波长范围确定方法
CN112383829B (zh) * 2019-11-06 2022-06-24 致讯科技(天津)有限公司 一种体验质量测评方法及装置
CN110930005A (zh) * 2019-11-14 2020-03-27 华东师范大学 基于零日漏洞的自动驾驶预期功能安全危害评估方法
JP7226284B2 (ja) * 2019-12-06 2023-02-21 トヨタ自動車株式会社 情報処理装置、情報処理方法、プログラム
GB2591752B (en) * 2020-02-04 2022-02-23 Caterpillar Sarl Autonomous machine operation using vibration analysis
TWI745879B (zh) * 2020-03-06 2021-11-11 宏碁股份有限公司 自動駕駛系統以及自動駕駛方法
US11027743B1 (en) * 2020-03-31 2021-06-08 Secondmind Limited Efficient computational inference using gaussian processes
CN111540079A (zh) * 2020-04-02 2020-08-14 东软睿驰汽车技术(沈阳)有限公司 行驶状态的评价方法、装置、电子设备及存储介质
CN113537258B (zh) * 2020-04-16 2024-04-05 北京京东乾石科技有限公司 行动轨迹预测方法、装置、计算机可读介质及电子设备
CN111516692A (zh) * 2020-04-20 2020-08-11 重庆长安汽车股份有限公司 一种车辆在坑洼路面上行驶的控制***及方法
CN111597642B (zh) * 2020-05-27 2023-09-12 合肥工业大学 一种三维路面信息谱的自动获取方法
CN111650939B (zh) * 2020-06-09 2022-12-30 南京工业职业技术学院 一种用于自动驾驶的轨迹控制方法
CN111746537B (zh) * 2020-06-22 2022-05-17 重庆长安汽车股份有限公司 基于路面平整度的自适应巡航车速控制***、方法及车辆
CN111798686A (zh) * 2020-07-02 2020-10-20 重庆金康动力新能源有限公司 根据驾驶者驾驶偏好输出专属路况驾驶模式的方法及***
DE102020209231A1 (de) 2020-07-22 2022-01-27 Robert Bosch Gesellschaft mit beschränkter Haftung Erkennung ungesicherter Ladung bei automatisiert betriebenen Fahrzeugen
CN111891127B (zh) * 2020-08-11 2021-10-19 辽宁工业大学 一种用于自动驾驶车辆的安全行驶方法
CN112009199A (zh) * 2020-08-20 2020-12-01 珠海格力电器股份有限公司 车载空调控制方法、装置、车载空调及存储介质
US11919537B2 (en) 2020-08-25 2024-03-05 Baidu Usa Llc IMU feedback based HD map speed limit adjustment system
CN112265542B (zh) * 2020-09-11 2022-05-27 武汉智行者科技有限公司 一种自动驾驶会车场景处理方法及其装置、车辆
CN114312746A (zh) * 2020-09-29 2022-04-12 奥迪股份公司 辅助驾驶装置以及相应的车辆、方法、计算机设备和介质
EP3992045B1 (en) * 2020-10-27 2024-02-21 Toyota Jidosha Kabushiki Kaisha Method and system for determining a calculation model of a physical quantity representative of a state of a vehicle in operation
CN112362356B (zh) * 2020-11-02 2021-08-10 吉林大学 一种考虑乘员舒适度的智能车制动停车能力测试方法
WO2022095985A1 (zh) * 2020-11-09 2022-05-12 清华大学 一种智能驾驶汽车乘员舒适性评价方法和***
CN112353393B (zh) * 2020-11-09 2022-03-22 清华大学 一种智能驾驶汽车乘员状态检测***
CN112353392B (zh) * 2020-11-09 2022-03-15 清华大学 一种智能驾驶汽车乘员舒适性评价方法
CN112215307B (zh) * 2020-11-19 2024-03-19 薛蕾 一种应用机器学习自动检测地震仪器信号异常的方法
CN112406843B (zh) * 2020-12-16 2021-09-10 浙江力邦合信智能制动***股份有限公司 一种降低车辆急动方法及车辆制动装置
CN112578672B (zh) * 2020-12-16 2022-12-09 吉林大学青岛汽车研究院 基于底盘非线性的无人驾驶汽车轨迹控制***及其轨迹控制方法
JP7179047B2 (ja) * 2020-12-28 2022-11-28 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN112721949B (zh) * 2021-01-12 2022-07-12 重庆大学 一种自动驾驶车辆纵向驾驶拟人化程度评价方法
CN112896186B (zh) * 2021-01-30 2022-09-20 同济大学 一种车路协同环境下的自动驾驶纵向决策控制方法
CN112896170B (zh) * 2021-01-30 2022-09-20 同济大学 一种车路协同环境下的自动驾驶横向控制方法
CN113012427B (zh) * 2021-02-09 2022-05-24 上海同陆云交通科技有限公司 一种改进的车载轻量化巡检***及方法
CN112966927A (zh) * 2021-03-03 2021-06-15 北京京东乾石科技有限公司 运输设备运行管理的方法和装置
CN117377608A (zh) * 2021-03-30 2024-01-09 普利司通欧洲有限公司 国际粗糙度指标估计方法及***
CN112937588B (zh) * 2021-04-01 2022-03-25 吉林大学 一种冰雪车辙路况的车辆稳定性分析方法
CN113280788B (zh) * 2021-06-01 2022-10-11 中国科学院西北生态环境资源研究院 路基沉降监测装置及***
CN113393676B (zh) * 2021-06-09 2022-05-31 东北林业大学 一种基于无人机视觉和毫米波雷达的交通检测方法及装置
CN113340627B (zh) * 2021-06-29 2022-05-10 中车株洲电力机车有限公司 空气防滑试验方法、装置及轨道交通车辆
CN113370984A (zh) * 2021-06-30 2021-09-10 中国科学技术大学先进技术研究院 基于多指标的自动驾驶车辆舒适度综合评价方法及***
CN113445567B (zh) * 2021-06-30 2023-03-24 广西柳工机械股份有限公司 自主作业装载机行走速度控制***及控制方法
CN113320544B (zh) * 2021-06-30 2022-11-11 上海商汤临港智能科技有限公司 车辆驾驶行为的规划方法、装置、电子设备、存储介质
CN115246417B (zh) * 2021-07-29 2023-08-25 上海仙途智能科技有限公司 作业执行方法、装置、设备及计算机可读存储介质
CN113460089A (zh) * 2021-08-11 2021-10-01 北京裹智动力科技有限公司 乘坐舒适的判断方法及计算机设备
US20230085098A1 (en) * 2021-09-10 2023-03-16 Transportation Ip Holdings, Llc Vehicle Network Monitoring System
CN113984648B (zh) * 2021-09-16 2023-10-20 武汉光谷卓越科技股份有限公司 一种基于三维的路面摩擦系数测量方法
CN113702071B (zh) * 2021-09-18 2022-08-16 燕山大学 一种怠速工况下nvh评价结果预测方法
CN113954865B (zh) * 2021-09-22 2023-11-10 吉林大学 一种自动驾驶车辆冰雪环境下跟驰控制方法
CN114005286B (zh) * 2021-10-29 2022-07-08 中国标准化研究院 基于桥头路面沉降路段的驾驶员疲劳驾驶监测与提醒方法
CN114047757B (zh) * 2021-11-05 2023-05-19 季华实验室 一种多agv路径评估规划方法
CN114379582A (zh) * 2021-11-30 2022-04-22 华人运通(上海)自动驾驶科技有限公司 一种控制车辆各自动驾驶功能的方法、***及存储介质
CN114360243B (zh) * 2021-12-20 2023-03-28 同济大学 一种基于舒适性的车辆优化方法及***
CN114291073B (zh) * 2021-12-23 2024-06-04 格物汽车科技(苏州)有限公司 一种基于车辆减速度的纵向舒适性评价方法
CN114379559B (zh) * 2021-12-30 2024-01-26 武汉理工大学 一种基于车辆信息采集***的驾驶风险评价特征画像方法
CN114419892B (zh) * 2022-01-28 2023-03-14 公安部交通管理科学研究所 一种判定有疲劳驾驶交通违法风险的车辆的方法
CN114594747B (zh) * 2022-01-30 2022-11-29 江苏华东特种车辆有限公司 车辆控制参数的标定***
CN114235442B (zh) * 2022-02-23 2022-05-10 国汽智控(北京)科技有限公司 自动驾驶车辆性能测试方法、装置、设备及存储介质
CN114516328B (zh) * 2022-03-08 2024-02-27 武汉科技大学 一种智能网联环境下基于规则的车队跟驰模型方法
CN114559938A (zh) * 2022-03-17 2022-05-31 江苏大学 一种协同控制模块、自适应巡航***及其控制方法、交通工具
CN114454889B (zh) * 2022-04-14 2022-06-28 新石器慧通(北京)科技有限公司 用于远程驾驶的行驶路面状况反馈方法、装置和无人车
CN114793516A (zh) * 2022-04-21 2022-07-29 潍柴雷沃重工股份有限公司 拖拉机及农机具主动减震控制方法、***及拖拉机
CN114735013B (zh) * 2022-04-26 2024-06-04 深蓝汽车科技有限公司 整车典型工况车速曲线提取方法及***、车辆和存储介质
GB2618344A (en) * 2022-05-04 2023-11-08 Jaguar Land Rover Ltd Automatic speed control
GB2618345A (en) * 2022-05-04 2023-11-08 Jaguar Land Rover Ltd Automatic speed control
CN115107775B (zh) * 2022-06-29 2024-01-16 苏州智行众维智能科技有限公司 基于地图和定位信息的智能驾驶车辆弯道行驶控制***
CN115071682B (zh) * 2022-08-22 2023-04-07 苏州智行众维智能科技有限公司 一种适用于多路面的智能驾驶车辆驾驶***及方法
CN115079238B (zh) * 2022-08-23 2023-10-03 安徽交欣科技股份有限公司 基于rtk的公路交通智能精确定位***和方法
CN115099729B (zh) * 2022-08-25 2022-12-20 国网浙江慈溪市供电有限公司 基于导航***的输电线防外破监管方法和***
CN115195791B (zh) * 2022-09-19 2023-01-03 上海伯镭智能科技有限公司 一种基于大数据的无人驾驶速度控制方法及装置
CN115631372B (zh) * 2022-10-18 2023-06-09 菏泽市土地储备中心 基于土壤遥感数据的土地信息分类管理方法
CN115691144B (zh) * 2023-01-03 2023-03-31 西南交通大学 一种异常交通状态监测方法、装置、设备及可读存储介质
CN116534006B (zh) * 2023-05-05 2023-09-26 三安车业集团有限公司 一种车辆动力控制方法、设备及存储介质
CN117075526B (zh) * 2023-10-13 2024-01-26 江苏怀广智能交通科技有限公司 自动驾驶车辆的远程控制方法和装置
CN118010059A (zh) * 2024-04-08 2024-05-10 逸航汽车零部件无锡有限公司 基于个性化舒适度控制的路径规划***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226178A (ja) * 2005-02-17 2006-08-31 Hino Motors Ltd オートクルーズ制御装置
US20080039280A1 (en) * 2006-08-11 2008-02-14 Zf Friedrichshafen Ag Method for adjusting the clutch torque of a motor vehicle depending upon the driving resistance
CN104369703A (zh) * 2014-11-06 2015-02-25 合肥工业大学 一种基于汽车振动的公交行驶舒适度监测***
CN105172791A (zh) * 2015-10-30 2015-12-23 东风汽车公司 一种智能自适应巡航控制方法
CN105740793A (zh) * 2016-01-26 2016-07-06 哈尔滨工业大学深圳研究生院 基于路面颠簸情况和道路类型识别的自动调速方法与***

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254586B2 (ja) * 2004-03-15 2009-04-15 日産自動車株式会社 減速制御装置
CN1876461A (zh) * 2006-07-06 2006-12-13 上海交通大学 车辆跟驰驾驶的速度差-间距控制方法
JP5157544B2 (ja) * 2008-03-11 2013-03-06 株式会社アドヴィックス 車体速度制御装置
US9457811B2 (en) * 2009-09-17 2016-10-04 Ford Global Technologies, Llc Brake assisted vehicle engine restart on a road grade
US20120053805A1 (en) * 2010-08-30 2012-03-01 The University Of North Texas Methods for detection of driving conditions and habits
US20120197587A1 (en) * 2011-02-01 2012-08-02 Yiu Wah Luk Vehicle ride evaluation
EP2537727B1 (en) * 2011-06-22 2015-03-11 Volvo Car Corporation Method for estimating a speed profile for a vehicle
US20150143913A1 (en) * 2012-01-19 2015-05-28 Purdue Research Foundation Multi-modal sensing for vehicle
GB2499461B (en) * 2012-02-20 2014-08-13 Jaguar Land Rover Ltd Improvements in vehicle cruise control
JP5631367B2 (ja) * 2012-08-09 2014-11-26 本田技研工業株式会社 経路探索装置
GB2508459B (en) * 2012-08-16 2015-01-21 Jaguar Land Rover Ltd System and method for controlling vehicle speed to enhance occupant comfort
GB2505020B (en) * 2012-08-16 2015-09-09 Jaguar Land Rover Ltd Vehicle speed control system
US8996273B2 (en) * 2012-08-31 2015-03-31 GM Global Technology Operations LLC Anticipatory cruise control
DE102012017569A1 (de) * 2012-09-06 2013-03-14 Daimler Ag Verfahren zum Betrieb eines Fahrzeuges
GB201215967D0 (en) * 2012-09-06 2012-10-24 Jaguar Cars Vehicle control system and method
WO2014162169A1 (en) * 2013-04-01 2014-10-09 Qatar University Qstp-B Methods and systems for estimating road traffic
AT514754B1 (de) * 2013-09-05 2018-06-15 Avl List Gmbh Verfahren und Vorrichtung zur Optimierung von Fahrassistenzsystemen
US9187099B2 (en) * 2013-10-17 2015-11-17 Richard M. Powers Systems and methods for predicting weather performance for a vehicle
GB201318706D0 (en) * 2013-10-23 2013-12-04 Jaguar Land Rover Ltd Improvements in vehicle speed control
GB2510672A (en) * 2013-12-02 2014-08-13 Daimler Ag Maintaining ride comfort by adapting vehicle speed according to road roughness
FR3015662B1 (fr) * 2013-12-19 2016-01-15 Renault Sas Procede et dispositif de detection d'une situation de roulage d'un vehicule automobile sur mauvaise route
CN103823382B (zh) * 2014-02-27 2016-08-03 浙江省科威工程咨询有限公司 一种基于车型和车速的换道轨迹优化及可视化实现方法
SE539778C2 (sv) * 2014-05-21 2017-11-28 Scania Cv Ab Förfarande och system för anpassning av ett fordons framförande på en vägbana i samband med kurvkörning
US9475500B2 (en) * 2014-11-12 2016-10-25 GM Global Technology Operations LLC Use of participative sensing systems to enable enhanced road friction estimation
US9430944B2 (en) * 2014-11-12 2016-08-30 GM Global Technology Operations LLC Method and apparatus for determining traffic safety events using vehicular participative sensing systems
CN107368069B (zh) * 2014-11-25 2020-11-13 浙江吉利汽车研究院有限公司 基于车联网的自动驾驶控制策略的生成方法与生成装置
CN104477167B (zh) * 2014-11-26 2018-04-10 浙江大学 一种智能驾驶***及其控制方法
CA2975087A1 (en) * 2015-01-28 2016-08-04 Allstate Insurance Company Road segment safety rating
US9522586B2 (en) * 2015-02-10 2016-12-20 Ford Global Technologies, Llc Enhanced road characterization for adaptive mode drive
JP5997797B2 (ja) * 2015-03-03 2016-09-28 富士重工業株式会社 車両の地図データ処理装置
CN104792937B (zh) * 2015-04-02 2017-02-22 同济大学 一种基于车载重力加速度传感器的桥头跳车检测评价方法
CN104790283B (zh) * 2015-04-10 2016-11-02 同济大学 一种基于车载加速度计的路面平整度快速检测***
US9650043B2 (en) * 2015-04-30 2017-05-16 GM Global Technology Operations LLC Real-time anticipatory speed control
DE102015208429A1 (de) * 2015-05-06 2016-11-10 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Erkennung und Bewertung von Fahrbahnreflexionen
CN104925057A (zh) * 2015-06-26 2015-09-23 武汉理工大学 一种具有多模式切换体系的汽车自适应巡航***及其控制方法
CN105138733B (zh) * 2015-07-30 2018-01-23 河北工业大学 基于驾驶舒适性的双车道公路交通安全评价方法
CN105480231A (zh) * 2015-12-18 2016-04-13 苏州市享乐惠信息科技有限公司 一种车辆自助驾驶***
CN107525679A (zh) * 2016-06-21 2017-12-29 上汽通用汽车有限公司 用于机动车的制动抖动评价的试验方法
CN106004878B (zh) * 2016-06-22 2019-01-15 浙江吉利汽车研究院有限公司 一种自适应巡航舒适性控制***及控制方法
DE102016213031A1 (de) * 2016-07-18 2018-01-18 Ford Global Technologies, Llc Verfahren zum ruckfreien Stoppen eines Kraftfahrzeugs
US10029698B2 (en) * 2016-07-19 2018-07-24 Futurewei Technologies, Inc. Adaptive passenger comfort enhancement in autonomous vehicles
CN109476310B (zh) * 2016-12-30 2021-11-12 同济大学 一种基于舒适度的自动驾驶车速控制方法
CN108839657B (zh) * 2018-06-05 2019-08-02 吉林大学 一种基于汽车振动响应在线识别路面不平度信息的方法
CN111504436B (zh) * 2020-04-17 2021-09-17 清华大学 基于车辆振动数据的车辆载荷及道路路况监测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226178A (ja) * 2005-02-17 2006-08-31 Hino Motors Ltd オートクルーズ制御装置
US20080039280A1 (en) * 2006-08-11 2008-02-14 Zf Friedrichshafen Ag Method for adjusting the clutch torque of a motor vehicle depending upon the driving resistance
CN104369703A (zh) * 2014-11-06 2015-02-25 合肥工业大学 一种基于汽车振动的公交行驶舒适度监测***
CN105172791A (zh) * 2015-10-30 2015-12-23 东风汽车公司 一种智能自适应巡航控制方法
CN105740793A (zh) * 2016-01-26 2016-07-06 哈尔滨工业大学深圳研究生院 基于路面颠簸情况和道路类型识别的自动调速方法与***

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111127906B (zh) * 2018-10-15 2022-02-18 广州市市政工程试验检测有限公司 一种基于物联网的智能路面管理***及其方法
CN111127906A (zh) * 2018-10-15 2020-05-08 广州市市政工程试验检测有限公司 一种基于物联网的智能路面管理***及其方法
CN109934452A (zh) * 2019-01-21 2019-06-25 上海同济检测技术有限公司 基于多源数据的道路舒适度评价方法
WO2020150873A1 (zh) * 2019-01-21 2020-07-30 上海同济检测技术有限公司 基于多源数据的道路舒适度评价方法
KR102314515B1 (ko) 2019-01-31 2021-10-20 주식회사 스트라드비젼 경쟁적인 컴퓨팅 및 정보 퓨전을 이용하여 차량의 자율 주행을 지원하는데 이용될 자율 주행 서비스 플랫폼을 제공하는 방법 및 이를 이용한 서버
EP3690845A1 (en) * 2019-01-31 2020-08-05 StradVision, Inc. Method for providing autonomous driving service platform to be used for supporting autonomous driving of vehicles by using competitive computing and information fusion and server using the same
KR20200095382A (ko) * 2019-01-31 2020-08-10 주식회사 스트라드비젼 경쟁적인 컴퓨팅 및 정보 퓨전을 이용하여 차량의 자율 주행을 지원하는데 이용될 자율 주행 서비스 플랫폼을 제공하는 방법 및 이를 이용한 서버
CN111508253A (zh) * 2019-01-31 2020-08-07 斯特拉德视觉公司 提供自动行驶服务平台的方法及利用其的服务器
US10838418B2 (en) 2019-01-31 2020-11-17 StradVision, Inc. Method for providing autonomous driving service platform to be used for supporting autonomous driving of vehicles by using competitive computing and information fusion, and server using the same
CN109900292B (zh) * 2019-04-03 2022-11-04 南京林业大学 一种综合舒适度和出行距离的机动车导航方法
CN109900292A (zh) * 2019-04-03 2019-06-18 南京林业大学 一种综合舒适度和出行距离的机动车导航方法
CN114502445A (zh) * 2019-10-11 2022-05-13 三菱电机株式会社 适应用户驾驶偏好控制自主车辆
CN114502445B (zh) * 2019-10-11 2023-09-08 三菱电机株式会社 适应用户驾驶偏好控制自主车辆
CN111583402A (zh) * 2020-04-09 2020-08-25 奇瑞汽车股份有限公司 路面模型建立方法及装置
CN111583402B (zh) * 2020-04-09 2023-06-27 奇瑞汽车股份有限公司 路面模型建立方法及装置
CN111751118A (zh) * 2020-06-02 2020-10-09 重庆长安汽车股份有限公司 获取车辆初级舒适性指标的测试方法
WO2022149049A3 (en) * 2021-01-08 2022-12-29 Mobileye Vision Technologies Ltd. Systems and methods for common speed mapping and navigation
CN114291094A (zh) * 2021-12-28 2022-04-08 清华大学苏州汽车研究院(相城) 一种基于自动驾驶的路面状况感知响应***及方法
CN114291094B (zh) * 2021-12-28 2024-05-17 清华大学苏州汽车研究院(相城) 一种基于自动驾驶的路面状况感知响应***及方法
CN114662193A (zh) * 2022-03-22 2022-06-24 常州工学院 基于多源数据融合的减速带振动能量回收性能评价方法
CN114662193B (zh) * 2022-03-22 2023-10-13 常州工学院 基于多源数据融合的减速带振动能量回收性能评价方法

Also Published As

Publication number Publication date
GB2589032B (en) 2021-08-18
GB202101863D0 (en) 2021-03-24
GB201909410D0 (en) 2019-08-14
GB2569750A (en) 2019-06-26
CN109415043B (zh) 2021-02-12
CN109415043A (zh) 2019-03-01
GB202101862D0 (en) 2021-03-24
GB2589031A (en) 2021-05-19
GB2589032A (en) 2021-05-19
GB201909411D0 (en) 2019-08-14
GB2589272A (en) 2021-05-26
CN109311478A (zh) 2019-02-05
GB2589272B (en) 2021-11-17
GB2589273A (en) 2021-05-26
CN109311478B (zh) 2022-02-01
CN109476310A (zh) 2019-03-15
GB201711409D0 (en) 2017-08-30
GB2569750B (en) 2021-03-17
GB201905908D0 (en) 2019-06-12
CN109476310B (zh) 2021-11-12
WO2018122807A1 (zh) 2018-07-05
US11447150B2 (en) 2022-09-20
US20200406925A1 (en) 2020-12-31
GB202101859D0 (en) 2021-03-24
GB201909412D0 (en) 2019-08-14
GB202101861D0 (en) 2021-03-24
WO2018122586A1 (zh) 2018-07-05

Similar Documents

Publication Publication Date Title
US11447150B2 (en) Comfort-based self-driving planning method
CN108364494B (zh) 道路交通智能管理方法、***及平台
US10192442B2 (en) Determining changes in a driving environment based on vehicle behavior
WO2021135371A1 (zh) 一种自动驾驶方法、相关设备及计算机可读存储介质
CN106846863B (zh) 基于增强现实和云端智能决策的事故黑点警告***及方法
US20190170534A1 (en) Traffic lane guidance system for vehicle and traffic lane guidance method for vehicle
US9575490B2 (en) Mapping active and inactive construction zones for autonomous driving
CN104978853B (zh) 一种道路交通安全评估方法及***
US8996234B1 (en) Driver performance determination based on geolocation
CN107103775B (zh) 一种基于群智计算的道路质量检测方法
CN109377726A (zh) 一种基于车联网的高速公路团雾精确警示、诱导***及方法
CN107406079A (zh) 用于预测车辆的天气性能的***和方法
US20160293005A1 (en) Traveling environment evaluation system
CN114475573B (zh) 基于v2x与视觉融合的起伏路况识别及车辆控制方法
CN111402586A (zh) 基于车联网的公路气象环境预报预警控制***和方法
CN113748448B (zh) 基于车辆的虚拟停止线和让行线检测
DE102022100068A1 (de) Steuerung der fahrzeugleistung basierend auf daten im zusammenhang mit einer atmosphärischen bedingung
RU2725569C1 (ru) Способ управления движением беспилотных транспортных средств (БТС) в колонне и/или отдельных БТС и мониторинга интеллектуальной транспортной инфраструктурой (ИТИ) сети автомобильных дорог
US11928962B2 (en) Location risk determination and ranking based on vehicle events and/or an accident database
CN116255996A (zh) 一种汽车立体导航方法、***、装置及介质
CN112053570B (zh) 一种城市交通路网运行状态监测评价方法及***
DE102021130986A1 (de) Verfahren und systeme zur fahrtzeitschätzung
Shi et al. V2X and Vision Fusion Based Undulating Road Recognition and Intelligent Vehicle Control
Olsson Condition of bicycle paths-The importance of full-width measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201905908

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20171230

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17886145

Country of ref document: EP

Kind code of ref document: A1