WO2018105847A1 - 원통형 이차전지 모듈 - Google Patents

원통형 이차전지 모듈 Download PDF

Info

Publication number
WO2018105847A1
WO2018105847A1 PCT/KR2017/008253 KR2017008253W WO2018105847A1 WO 2018105847 A1 WO2018105847 A1 WO 2018105847A1 KR 2017008253 W KR2017008253 W KR 2017008253W WO 2018105847 A1 WO2018105847 A1 WO 2018105847A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
cylindrical secondary
bus bar
cell
battery module
Prior art date
Application number
PCT/KR2017/008253
Other languages
English (en)
French (fr)
Inventor
유재욱
윤지수
강달모
문정오
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018557045A priority Critical patent/JP6824288B2/ja
Priority to EP17878447.6A priority patent/EP3419083A4/en
Priority to US16/087,899 priority patent/US20190109313A1/en
Priority to CN201780018283.4A priority patent/CN108780863B/zh
Publication of WO2018105847A1 publication Critical patent/WO2018105847A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cylindrical secondary battery module, and more particularly, to a cylindrical secondary battery module that can disconnect the electrical connection of the secondary battery cell when an abnormal phenomenon occurs in any one of a plurality of interconnected cylindrical secondary battery cells. .
  • Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes a secondary battery cell in which a positive electrode plate and a negative electrode plate coated with such a positive electrode active material and a negative electrode active material are disposed with a separator interposed therebetween, and an exterior material for sealing and storing the secondary battery cell together with an electrolyte, that is, a battery case.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween, and a lithium ion battery (LIB), a lithium polymer battery (Polymer Lithium Ion Battery) depending on which of the positive electrode active material and the negative electrode active material are used. , PLIB) and the like.
  • the electrode of these lithium secondary batteries is formed by apply
  • the secondary battery may be classified into a cylindrical shape, a square shape, or a pouch type according to the shape of the exterior material in which the battery is accommodated.
  • the cylindrical secondary battery may be used in the form of a secondary battery module by connecting a plurality of secondary battery cells in series or in parallel.
  • an abnormal phenomenon such as overpressure or overheating occurs in any one of the plurality of secondary battery cells connected to each other, other secondary battery cells which are normally operating also become unstable.
  • an object of the present invention is to provide a cylindrical secondary battery module that can disconnect the electrical connection of the secondary battery cell when an abnormal phenomenon such as overpressure or overheating occurs in any one of the plurality of cylindrical secondary battery cells connected to each other.
  • the second member is provided to disconnect the electrical connection in the event of an abnormal phenomenon to provide a cylindrical secondary battery module that can be maintained from an external vibration or shock.
  • a cylindrical secondary battery cell having a battery case that is accommodated in the electrode assembly and the electrolyte and a cell cap coupled to the positive terminal of the battery case; A bus bar in which hollows are formed and interconnecting a plurality of cylindrical secondary battery cells; And disposed in the hollow of the bus bar, coupled to the cylindrical secondary battery cell and electrically connected to the bus bar, and separated from the bus bar when an abnormality occurs in the cylindrical secondary battery cell, between the plurality of cylindrical secondary battery cells.
  • Cylindrical secondary battery modules including a disconnection unit configured to be disconnected from the electrical connection may be provided.
  • disconnection portion may be coupled to the cell cap of the cylindrical secondary battery cell.
  • An insulating member may be interposed between the bus bar and the cylindrical secondary battery cell.
  • the disconnection portion the first member disposed in the hollow of the bus bar coupled to the cell cap; And a second member electrically connected to the first member and the bus bar, respectively.
  • the second member may include a first connection point connected to the first member; A second connection point connected to the bus bar; And a round part connected to the second connection point to be rounded from the first connection point.
  • the second member may have a width in a predetermined range so that the connection to the bus bar may be disconnected by a predetermined range of pressure.
  • the second member may have a width in a preset range so that the connection with the bus bar may be disconnected at a temperature in a predetermined range.
  • the second member may be made of copper or aluminum so as to break when overheating.
  • Embodiments of the present invention have an effect that the secondary battery cell can be electrically disconnected by a short circuit provided in the secondary battery cell when an abnormal phenomenon such as overpressure or overheating occurs in any one of the plurality of secondary battery cells connected to each other. .
  • FIG. 1 is a partial cross-sectional view of a cylindrical secondary battery cell in a cylindrical secondary battery module according to a first embodiment of the present invention.
  • FIG. 2 is a schematic overall perspective view of a cylindrical secondary battery module according to a first embodiment of the present invention.
  • FIG 3 is a plan view of a cylindrical secondary battery module according to a first embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating a state in which a cell cap and a single unit are separated from a cylindrical secondary battery cell in the cylindrical secondary battery module according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of a cylindrical secondary battery module according to a second embodiment of the present invention.
  • FIG. 6 is a plan view of a cylindrical secondary battery module according to a third embodiment of the present invention.
  • the term 'bonding' or 'connection' is used indirectly or indirectly coupled to another member through a joint member as well as when one member and the other member are directly joined or directly connected. It also includes the case where it is connected.
  • FIG. 1 is a partial cross-sectional view of a cylindrical secondary battery cell in a cylindrical secondary battery module according to a first embodiment of the present invention
  • Figure 2 is a schematic overall perspective view of a cylindrical secondary battery module according to a first embodiment of the present invention
  • 3 is a plan view of a cylindrical secondary battery module according to a first embodiment of the present invention
  • Figure 4 shows a state in which the cell cap and the disconnection unit is separated from the cylindrical secondary battery cell in the cylindrical secondary battery module according to the first embodiment of the present invention.
  • the cylindrical secondary battery module 10 according to the first exemplary embodiment of the present invention includes a cylindrical secondary battery cell 100, a bus bar 200, and an electrical power unit 300. do.
  • the cylindrical secondary battery cell 100 includes an electrode assembly 110, for example, a jelly-roll type electrode assembly 110, and a cylindrical battery case in which an electrolyte is accommodated together with the electrode assembly 110. And a cell cap 130 coupled to, for example, the positive terminal 121 of the upper part of the battery case 120.
  • an electrode assembly 110 for example, a jelly-roll type electrode assembly 110
  • a cylindrical battery case in which an electrolyte is accommodated together with the electrode assembly 110.
  • a cell cap 130 coupled to, for example, the positive terminal 121 of the upper part of the battery case 120.
  • the electrode assembly 110 may have a structure in which a separator 112 is interposed between the positive electrode 111 and the negative electrode 113 to be wound in a jelly-roll shape, and a positive electrode lead may be formed on the positive electrode 111. Is attached to the positive electrode terminal 121 of the upper part of the battery case 120, for example, and a negative electrode lead (not shown) is attached to the negative electrode 113 to the negative electrode terminal of the lower part of the battery case 120. Is connected to.
  • a cylindrical center pin (not shown) may be inserted into the center of the electrode assembly 110. The center pin (not shown) may function as a passage for fixing and supporting the electrode assembly 110 and releasing gas generated by an internal reaction during charging and discharging and operation.
  • the battery case 120 for example, the lower part of the cell cap 130, a safety vent (not shown) for rupturing due to a rise in pressure inside the battery case 120, and for discharging gas, and the cell cap 130 and safety Safety element (not shown) in the form of a PTC element (Positive Temperature Coefficient element) interposed between the vent (not shown), the upper one side is in contact with the safety vent (not shown) and the lower one side of the anode lead of the electrode assembly 110
  • a current blocking member (not shown) connected to (not shown) may be provided.
  • the positive electrode 111 of the electrode assembly 110 is connected to a positive electrode lead (not shown), a current blocking member (not shown), a safety vent (not shown), and a safety device (not shown) under normal operating conditions. It may be connected to the cell cap 130 and energized via.
  • the internal pressure may increase, in this case a safety vent (not shown).
  • the cell cap 130 coupled to the positive electrode terminal 121 may be separated by the pressure of the gas.
  • the cell cap 130 is provided to be separated by the pressure of the gas generated inside the battery case 120.
  • the plurality of cylindrical secondary battery cells 100 may be used in direct connection or in parallel by a variety of ways.
  • the bus bar 200 may be connected to each of the positive electrode terminal 121 and the negative electrode terminal of the cylindrical secondary battery cell 100 to be connected directly or in parallel.
  • the positive electrode terminal 121 and the negative electrode terminal of the plurality of cylindrical secondary battery cells 100 are connected in parallel through the bus bar 200 will be described.
  • the scope of the present embodiment Is not limited thereto.
  • the bus bar 200 interconnects the plurality of cylindrical secondary battery cells 100 and a hollow 210 is formed.
  • the disconnection unit 300 may be disposed in the hollow 210 of the bus bar 200 and may be connected to the bus bar 200. Detailed description thereof will be described later.
  • the bus bar 200 may be provided in plural in a plate shape as shown in FIG. 2, or the plurality of cylindrical secondary battery cells 100 may be connected by one plate.
  • the bus bar 200 is made of a conductive material to electrically connect the plurality of cylindrical secondary battery cells 100.
  • the bus bar 200 may be made of, for example, a material made of aluminum, copper, or nickel coated copper.
  • an insulating member 400 may be interposed between the bus bar 200 and the cylindrical secondary battery cell 100.
  • the cell cap 130 coupled to the positive electrode terminal 121 may be separated.
  • the cell cap 130 coupled to the cell cap 130 may be separated.
  • the whole 300 is separated from the bus bar 200 and disconnected (see FIG. 4).
  • the cylindrical secondary battery cell 100 in which an abnormal phenomenon such as overpressure or overheating occurs is normally operated. It may still be electrically connected to the secondary battery cells 100.
  • the insulating member 400 is electrically connected to the cylindrical secondary battery cells 100 that are normally operating with the cylindrical secondary battery cells 100 having abnormalities when the disconnection unit 300 is separated from the bus bar 200. It may be interposed between the bus bar 200 and the cylindrical secondary battery cell 100 to block the connection.
  • the insulating member 400 may be made of various electrical insulating materials.
  • the insulating member 400 is not necessarily limited thereto, and only the disconnection part 300 is coupled to the cell cap 130 through a structural shape change and is electrically connected thereto.
  • the other part of the bus bar 200 may be provided so as not to be electrically connected away from the cylindrical secondary battery cell 100.
  • the disconnection unit 300 may be disposed in the hollow 210 of the bus bar 200.
  • the disconnection unit 300 electrically interconnects the bus bar 200 and the cylindrical secondary battery cell 100. That is, the disconnection unit 300 is disposed in the hollow 210 of the bus bar 200, is coupled to the cylindrical secondary battery cell 100, and electrically connected to the bus bar 200. Therefore, when the disconnection unit 300 is separated from the bus bar 200 when an abnormal phenomenon such as overpressure or overheat occurs in the cylindrical secondary battery cell 100, the cylindrical secondary battery cell 100 operates normally. Electrical connection between the other cylindrical secondary battery cells 100 may be broken.
  • the cylindrical secondary battery cell 100 in which an abnormal phenomenon occurs may be formed of another normal cylindrical secondary battery cell ( 100 and the electrical connection is completely disconnected, other secondary battery cells in normal operation can continue to operate stably.
  • the disconnection unit 300 may be coupled to the cell cap 130 of the cylindrical secondary battery cell 100. As described above, when gas is generated in the cylindrical secondary battery cell 100 to increase the internal pressure, the gas inside the battery case 120 moves to the cell cap 130 side, thereby separating the cell cap 130 by the pressure of the gas. In this case, the disconnection unit 300 coupled to the cell cap 130 may also be separated from the bus bar 200 by the pressure of the gas (see FIG. 4). To this end, the portion where the power unit 300 and the bus bar 200 are connected, for example, the second member 320 of the power unit 300 to be described later, has a width that can be cut at a predetermined pressure.
  • the second member 320 may have a cylindrical shape.
  • the power unit 300 may have a width enough to be separated by the gas pressure generated in the secondary battery cell 100.
  • the pressure of the gas generated in the cylindrical secondary battery cell 100 may also vary depending on various conditions such as the overall size of the cylindrical secondary battery cell 100 and the degree of electrolyte contained in the battery case 120. May be experimentally preset, and the range of the width of the second member 320 may also be preset by experiment to correspond to each pressure range.
  • the second member 320 of the disconnection part 300 when the cylindrical secondary battery cell 100 is overheated beyond the preset temperature range, the second member 320 of the disconnection part 300, for example, the disconnection part 300 may be replaced with the bus bar 200. It has a predefined range of widths so that the connection can be broken. That is, when the width of the second member 320 is narrow, the unit area decreases to increase the resistance per unit area, and when overheating occurs, relatively higher heat is generated by the higher resistance and the width of the second member 320 is narrower. The part may be broken by high temperature. To this end, the second member 320 may be made of copper or aluminum so as to break when overheating. And, the width of the second member 320 can be set experimentally as in the pressure range. That is, the range of the width of the second member 320 may also be preset by experiment so as to correspond to the temperature range set by overheating.
  • the power unit 300 may include a first member 310 and a second member 320.
  • the first member 310 is disposed in the hollow 210 of the bus bar 200 and coupled to the cell cap 130.
  • the first member 310 may be formed in a shape corresponding to the shape of the cell cap 130. For example, if the cross section of the cell cap 130 is circular, the first member 310 may be formed in a circular cross-sectional view of the first member 310.
  • the shape of the cell cap 130 and the shape of the first member 310 do not necessarily need to be the same, and the first member 310 may have various shapes.
  • the first member 310 may be coupled to the cell cap 130 by various methods, for example, welding, in which case the first member 310 may be electrically coupled to the cell cap 130.
  • the first member 310 may be generally disposed at the center of the bus bar 200, but is not limited thereto.
  • the second member 320 is electrically connected to the first member 310 and the bus bar 200 in various ways or shapes.
  • the second member 320 may include a first connection point 321, a second connection point 322, and a round part 323.
  • the first connection point 321 is connected to the first member 310. That is, the first connection point 321 may be coupled to any wall surface of the first member 310.
  • the second connection point 322 is connected to the bus bar 200. That is, the second connection point 322 may be coupled to any wall of the bus bar 200.
  • the round part 323 may be connected to the second connection point 322 to be rounded from the first connection point 321.
  • the round part 323 may be configured to rotate roundly along an outer edge of the first member 310, such as a coil spring, from the first connection point 321 to the second connection point 322.
  • the second member 320 may have a structure formed by winding the coil spring in a round shape, whereby the second member 320 may be maintained from external vibration or impact. That is, the second member 320 is configured to be cut off from the bus bar 200 when an abnormal phenomenon such as overpressure or overheating occurs in the cylindrical secondary battery cell 100, but when the cylindrical secondary battery cell 100 operates normally, the bus bar ( 200) to maintain the electrical connection. However, when external vibration or shock is transmitted to the second member 320, the second member 320 having a narrow width may be cut off. To this end, the second member 320 is formed in a shape that rotates so as to have an elastic property such as a coil spring, so that the second member 320 can be maintained without being disconnected from external vibration or impact.
  • the cylindrical secondary battery module 10 is a plurality of cylindrical secondary battery cells 100 are electrically connected through the bus bar 200. At this time, an abnormal phenomenon such as overpressure or overheating may occur in at least one of the plurality of cylindrical secondary battery cells 100, and in this case, since it may adversely affect other cylindrical secondary battery cells 100 that operate normally, the normal operation may occur. It is necessary to disconnect the electrical connection between the cylindrical secondary battery cells 100 and the cylindrical secondary battery cells 100 in which an abnormal phenomenon occurs.
  • the disconnection part 300 may include a first member 310 and a second member 320, and the first member 310 may be disposed in the hollow 210 formed in the bus bar 200 so as to provide a battery case (
  • the second member 320 is coupled to the cell cap 130 coupled to the positive terminal 121 of the 120, and the second member 320 rotates in a circular shape along the circumference of the first member 310 and the bus bar. Electrically connect the 200.
  • an insulating member 400 is interposed between the bus bar 200 and the cylindrical secondary battery cell 100.
  • the second member 320 has a width in a predetermined range so as to break when overpressure or overheating, and may be made of copper or aluminum.
  • the second member 320 When an abnormal phenomenon such as overpressure or overheat occurs in at least one of the cylindrical secondary battery cells 100, the second member 320 is disconnected from the bus bar 200 due to gas pressure or high temperature. Since the insulating member 400 is interposed between the bus bar 200 and the cylindrical secondary battery cell 100, the cylindrical secondary battery cell 100 in which an abnormal phenomenon occurs and the cylindrical secondary battery cells 100 in normal operation. The electrical connection of the is cut off, thus the battery stability of the cylindrical secondary battery module 10 as a whole has the effect that can be maintained.
  • FIG. 5 is a plan view of a cylindrical secondary battery module according to a second embodiment of the present invention
  • Figure 6 is a plan view of a cylindrical secondary battery module according to a third embodiment of the present invention.
  • the shape of the second member 320 is different from that of the first embodiment.
  • the second embodiment of FIG. 5 includes a second member 320 rounded in that the first member 310 and the bus bar 200 are connected by one linear second member 320.
  • the first embodiment of FIG. 6 differs from the first embodiment, and the second member 320 of the second embodiment includes two linear second members 320 and faces the first member 310 and the bus bar at a position opposite to each other. 200 is different from the first and second embodiments in that it is connected.
  • the power cut part 300 includes a second member 320 roundly formed so as to correspond to external vibrations or shocks, but the installation place of the cylindrical secondary battery module 10 is provided. In some cases, the degree of vibration or impact is not strong.
  • the disconnection part 300 including the linear second member 320 may be provided as in the second to third embodiments.
  • the linear second member 320 of the second and third embodiments is advantageous in terms of cost because it is easier to process and can be manufactured with less material than the second member 320 of the first embodiment in which the round is formed.
  • the number of the linear second members 320 included in the disconnection part 300 is not limited to the second embodiment or the third embodiment, and although not shown in the drawings, the linear second members ( The number and arrangement of 320 may vary.
  • the present invention relates to a cylindrical secondary battery module, in particular, it can be used in the industry related to secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

원통형 이차전지 모듈이 개시된다. 본 발명의 일 실시예에 따른 원통형 이차전지 모듈은, 전극 조립체 및 전해액이 수용되는 전지 케이스와 전지 케이스의 양극 단자에 형성된 셀캡을 구비하는 원통형 이차전지 셀; 복수의 원통형 이차전지 셀들을 상호 연결하며 중공이 형성된 버스 바; 및 버스 바의 중공에서 버스 바에 결합되어 원통형 이차전지에 연결되며, 원통형 이차전지 셀에 이상 현상 발생시 버스 바로부터 분리되어 복수의 원통형 이차전지 셀들간의 전기적 연결이 끊어지도록 구성되는 단전부를 포함한다.

Description

원통형 이차전지 모듈
본 출원은 2016년 12월 05일자로 출원된 한국 특허 출원번호 제10-2016-0164607호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은, 원통형 이차전지 모듈에 관한 것으로서, 보다 상세하게는, 상호 연결된 복수의 원통형 이차전지 셀들 중 어느 하나에 이상 현상 발생시 해당 이차전지 셀의 전기적 연결을 끊을 수 있는 원통형 이차전지 모듈에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지 수요가 급격히 증가하고 있으며, 종래 이차 전지로서 니켈카드뮴 전지 또는 수소이온 전지가 사용되었으나, 최근에는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충전 및 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 리튬 이차 전지가 많이 사용되고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 이차 전지 셀과, 이차 전지 셀을 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
리튬 이차 전지는 양극, 음극 및 이들 사이에 개재되는 세퍼레이터 및 전해질로 이루어지며, 양극 활물질과 음극 활물질을 어떤 것을 사용하느냐에 따라 리튬 이온 전지(Lithium Ion Battery, LIB), 리튬 폴리머 전지(Polymer Lithium Ion Battery, PLIB) 등으로 나누어진다. 통상, 이들 리튬 이차 전지의 전극은 알루미늄 또는 구리 시트(sheet), 메시(mesh), 필름(film), 호일(foil) 등의 집전체에 양극 또는 음극 활물질을 도포한 후 건조시킴으로써 형성된다.
일반적으로, 이차 전지는 배터리가 수용되는 외장재의 형상에 따라 원통형, 각형 또는 파우치형으로 분류될 수 있다.
원통형 이차전지는 복수의 이차전지 셀들을 직렬 또는 병렬 연결하여 이차전지 모듈 형태로 사용될 수 있다. 그런데, 상호 연결된 복수의 이차전지 셀들 중 어느 하나에 과압 내지 과열 등의 이상 현상 발생시 정상적으로 작동 중인 다른 이차전지 셀들도 불안정해지는 문제가 있다.
따라서, 본 발명이 이루고자 하는 기술적 과제는, 상호 연결된 복수의 원통형 이차전지 셀들 중 어느 하나에 과압 내지 과열 등의 이상 현상 발생시 해당 이차전지 셀의 전기적 연결을 끊을 수 있는 원통형 이차전지 모듈을 제공하는 것이다.
또한, 이상 현상 발생된 이차전지 셀의 전기적 연결을 끊음으로써 다른 이차전지 셀들이 안정적으로 계속 작동할 수 있는 원통형 이차전지 모듈을 제공하는 것이다.
또한, 이상 현상 발생시 전기적 연결을 끊도록 마련되는 제2 부재가 외부의 진동 또는 충격으로부터 유지될 수 있는 원통형 이차전지 모듈을 제공하는 것이다.
본 발명의 일 측면에 따르면, 전극 조립체 및 전해액이 수용되는 전지 케이스와 상기 전지 케이스의 양극 단자에 결합된 셀캡을 구비하는 원통형 이차전지 셀; 복수의 원통형 이차전지 셀들을 상호 연결하며 중공이 형성된 버스 바; 및 상기 버스 바의 상기 중공에 배치되어 상기 원통형 이차전지 셀에 결합되고 상기 버스 바에 전기적으로 연결되며, 상기 원통형 이차전지 셀에 이상 현상 발생시 상기 버스 바로부터 분리되어 상기 복수의 원통형 이차전지 셀들간의 전기적 연결이 끊어지도록 구성되는 단전부를 포함하는 원통형 이차전지 모듈이 제공될 수 있다.
또한, 상기 단전부는 상기 원통형 이차전지 셀의 상기 셀캡에 결합될 수 있다.
그리고, 상기 버스 바와 상기 원통형 이차전지 셀 사이에 절연부재가 개재될 수 있다.
또한, 상기 단전부는, 상기 버스 바의 중공에 배치되어 상기 셀캡에 결합되는 제1 부재; 및 상기 제1 부재와 상기 버스 바에 각각 전기적으로 연결되는 제2 부재를 포함할 수 있다.
그리고, 상기 제2 부재는, 상기 제1 부재에 연결되는 제1 연결지점; 상기 버스 바에 연결되는 제2 연결지점; 및 상기 제1 연결지점으로부터 라운드지도록 상기 제2 연결지점에 연결되는 라운드부를 포함할 수 있다.
또한, 상기 제2 부재는 소정 범위의 압력에 의해 상기 버스 바와의 연결이 끊어질 수 있도록 미리 설정된 범위의 폭을 가질 수 있다.
그리고, 상기 제2 부재는 소정 범위의 온도에서 상기 버스 바와의 연결이 끊어질 수 있도록 미리 설정된 범위의 폭을 가질 수 있다.
또한, 상기 제2 부재는 과열시 끊어질 수 있도록 구리 또는 알루미늄 재질로 마련될 수 있다.
본 발명의 실시예들은, 상호 연결된 복수의 이차전지 셀들 중 어느 하나에 과압 내지 과열 등의 이상 현상 발생시 이차전지 셀에 구비된 단락부에 의해 해당 이차전지 셀의 전기적 연결을 끊을 수 있는 효과가 있다.
또한, 이상 현상 발생된 이차전지 셀의 전기적 연결을 끊음으로써 다른 이차전지 셀들이 안정적으로 계속 작동할 수 있는 효과가 있다.
또한, 이상 현상 발생시 전기적 연결을 끊도록 마련되는 제2 부재가 라운드지게 형성되므로, 외부의 진동 또는 충격으로부터 유지될 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈에서 원통형 이차전지 셀의 부분 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈의 개략적인 전체 사시도이다.
도 3은 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈의 평면도이다.
도 4는 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈에서 셀캡과 단전부가 원통형 이차전지 셀로부터 분리된 모습을 도시한 사시도이다.
도 5는 본 발명의 제2 실시예에 따른 원통형 이차전지 모듈의 평면도이다.
도 6은 본 발명의 제3 실시예에 따른 원통형 이차전지 모듈의 평면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 원통형 이차전지 모듈에 대하여 상세히 설명하기로 한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
본 명세서에서 사용되는 '결합' 또는 '연결'이라는 용어는, 하나의 부재와 다른 부재가 직접 결합되거나, 직접 연결되는 경우뿐만 아니라 하나의 부재가 이음부재를 통해 다른 부재에 간접적으로 결합되거나, 간접적으로 연결되는 경우도 포함한다.
도 1은 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈에서 원통형 이차전지 셀의 부분 단면도이고, 도 2는 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈의 개략적인 전체 사시도이며, 도 3은 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈의 평면도이고, 도 4는 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈에서 셀캡과 단전부가 원통형 이차전지 셀로부터 분리된 모습을 도시한 사시도이다.
도 1 내지 도 4를 참조하면, 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈(10)은, 원통형 이차전지 셀(100)과, 버스 바(200)와, 단전부(300)를 포함한다.
도 1을 참조하면, 원통형 이차전지 셀(100)은 전극 조립체(110), 예를 들어 젤리-롤 형태의 전극 조립체(110)와, 전극 조립체(110)와 함께 전해액이 수용되는 원통형의 전지 케이스(120)와, 전지 케이스(120)의 예를 들어 상부의 양극 단자(121)에 결합된 셀캡(130)을 구비한다.
전극 조립체(110)는 양극(111)과 음극(113) 사이에 세퍼레이터(112)가 개재된 상태로 적층되어 젤리-롤 형태로 감긴 구조일 수 있으며, 양극(111)에는 양극 리드(미도시)가 부착되어 전지 케이스(120)의 예를 들어 상부의 양극 단자(121)에 접속되고, 음극(113)에는 음극 리드(미도시)가 부착되어 전지 케이스(120)의 예를 들어 하부의 음극 단자에 접속된다. 그리고 전극 조립체(110)의 중심부에는 원통형의 센터핀(미도시)이 삽입될 수 있다. 이러한 센터핀(미도시)은 전극 조립체(110)를 고정 및 지지하고, 충방전 및 작동시 내부 반응에 의해 발생되는 가스를 방출하는 통로로 기능할 수 있다.
전지 케이스(120) 내부, 예를 들어, 셀캡(130)의 하부에는 전지 케이스(120) 내부의 압력 상승에 의해 파열되어 가스를 배출시키기 위한 안전벤트(미도시)와, 셀캡(130)과 안전벤트(미도시) 사이에 개재된 PTC 소자(Positive Temperature Coefficient element) 형태의 안전소자(미도시)와, 상부 일측이 안전벤트(미도시)에 접촉되고 하부 일측이 전극 조립체(110)의 양극 리드(미도시)에 연결된 전류차단부재(미도시)가 구비될 수 있다.
이러한 원통형 이차전지 셀(100)은 정상적인 작동조건에서 전극 조립체(110)의 양극(111)이 양극 리드(미도시), 전류차단부재(미도시), 안전벤트(미도시) 및 안전소자(미도시)를 경유하여 셀캡(130)에 연결되어 통전될 수 있다. 그러나, 원통형 이차전지 셀(100)의 과충전 또는 원통형 이차전지 셀(100)을 충전 및 방전하는 과정에서 이차 전지 셀 내부에 가스가 발생하는 경우 내압이 증가할 수 있으며, 이 경우 안전벤트(미도시)가 파단 내지 파열되면서 전지 케이스(120) 내부의 가스가 셀캡(130)측으로 이동한다. 그리고, 가스의 압력에 의해 양극 단자(121)에 결합된 셀캡(130)이 분리될 수 있다. 여기서, 셀캡(130)은 전지 케이스(120) 내부에 발생된 가스의 압력에 의해 분리되도록 마련된다.
한편, 복수의 원통형 이차전지 셀(100)은 다양한 방식에 의해 직결 내지 병렬 연결되어 사용될 수 있다. 예를 들어, 원통형 이차전지 셀(100)의 양극 단자(121)와 음극 단자 각각에 버스 바(200)가 연결되어 직결 내지 병렬 연결될 수 있다. 이하에서는 설명의 편의를 위해 복수의 원통형 이차전지 셀(100)의 양극 단자(121)와 음극 단자 각각이 버스 바(200)를 통해 병렬 연결된 경우에 한정하여 설명하며, 다만, 본 실시예의 권리범위가 이에 한정되는 것은 아니다.
도 2 내지 도 4를 참조하면, 버스 바(200)는 복수의 원통형 이차전지 셀(100)들을 상호 연결하며 중공(210)이 형성된다. 버스 바(200)의 중공(210)에는 단전부(300)가 배치되어 버스 바(200)에 연결될 수 있다. 이에 대한 상세한 설명은 후술한다.
버스 바(200)는 도 2에 도시된 바와 같이 플레이트 형상으로 복수로 마련될 수도 있고, 또는 하나의 플레이트에 의해 복수의 원통형 이차전지 셀(100)들이 연결될 수도 있다. 버스 바(200)는 복수의 원통형 이차전지 셀(100)들을 전기적으로 연결할 수 있도록 도전성 재질로 제작된다. 버스 바(200)는 예들 들어, 알루미늄, 구리 또는 니켈이 코팅된 구리의 재질이 사용될 수 있다.
도 2 및 도 4를 참조하면, 버스 바(200)와 원통형 이차전지 셀(100) 사이에는 절연부재(400)가 개재될 수 있다. 예를 들어, 원통형 이차전지 셀(100)에 과압 내지 과열 등의 이상 현상이 발생한 경우 양극 단자(121)에 결합된 셀캡(130)이 분리될 수 있으며, 이 경우 셀캡(130)에 결합된 단전부(300)가 버스 바(200)로부터 분리되어 연결이 끊어진다(도 4 참조). 이때, 버스 바(200)와 원통형 이차전지 셀(100) 사이에 절연부재(400)가 개재되어 있지 않다면 과압 내지 과열 등의 이상 현상이 발생한 원통형 이차전지 셀(100)이 정상적으로 작동하고 있는 다른 원통형 이차전지 셀(100)들과 여전히 전기적으로 연결될 수 있다. 따라서, 절연부재(400)는 단전부(300)가 버스 바(200)로부터 분리된 경우, 이상 현상이 발생한 원통형 이차전지 셀(100)과 정상적으로 작동하고 있는 다른 원통형 이차전지 셀(100)들의 전기적 연결을 차단하기 위해 버스 바(200)와 원통형 이차전지 셀(100) 사이에 개재될 수 있다. 여기서, 절연부재(400)는 다양한 전기적 절연 재질로 제작될 수 있다.다만, 반드시 이에 한정되는 것은 아니며, 구조적인 형상 변경을 통해 단전부(300)만이 셀캡(130)에 결합되어 전기적으로 연결되고 버스 바(200)의 다른 부분은 원통형 이차전지 셀(100)로부터 떨어져 전기적으로 연결되지 않도록 마련될 수도 있다.
도 1 내지 도 4를 참조하면, 단전부(300)는 버스 바(200)의 중공(210)에 배치될 수 있다. 그리고, 단전부(300)는 버스 바(200)와 원통형 이차전지 셀(100)을 전기적으로 상호 연결한다. 즉, 단전부(300)는 버스 바(200)의 중공(210)에 배치되어 원통형 이차전지 셀(100)에 결합되고 버스 바(200)에 전기적으로 연결된다. 따라서, 원통형 이차전지 셀(100)에 예를 들어 과압 또는 과열 등의 이상 현상 발생시 단전부(300)가 버스 바(200)로부터 분리되면 이상 현상이 발생한 원통형 이차전지 셀(100)과 정상적으로 작동하고 있는 다른 원통형 이차전지 셀(100)들간의 전기적 연결이 끊어질 수 있다. 이때 전술한 바와 같이 버스 바(200)와 원통형 이차전지 셀(100) 사이에는 절연부재(400)가 개재될 수 있으므로, 이상 현상이 발생한 원통형 이차전지 셀(100)은 다른 정상적 원통형 이차전지 셀(100)들과 전기적 연결이 완전히 끊어지며, 정상 작동하고 있는 다른 이차전지 셀들은 안정적으로 계속 작동할 수 있다.
단전부(300)는 원통형 이차전지 셀(100)의 셀캡(130)에 결합될 수 있다. 전술한 바와 같이, 원통형 이차전지 셀(100) 내부에 가스가 발생하여 내압이 증가하는 경우 전지 케이스(120) 내부의 가스가 셀캡(130)측으로 이동하여 가스의 압력에 의해 셀캡(130)이 분리될 수 있으며, 이때, 셀캡(130)에 결합된 단전부(300)도 가스의 압력에 의해 함께 버스 바(200)로부터 분리될 수 있다(도 4 참조). 이를 위해, 단전부(300)와 버스 바(200)가 연결되는 부분, 예를 들어 후술하는 단전부(300)의 제2 부재(320)는 소정 압력에 끊어질 수 있는 폭을 가진다. 즉, 단전부(300)와 버스 바(200)의 연결 부분이 너무 두꺼우면 전지 케이스(120) 내부의 가스압에 의해 단전부(300)가 분리되지 않을 수 있으므로, 제2 부재(320)는 원통형 이차전지 셀(100) 내부에 발생한 가스압에 의해 단전부(300)가 분리될 수 있을 정도의 폭을 가진다. 다만, 원통형 이차전지 셀(100)의 전체 크기, 전지 케이스(120)에 수용된 전해액의 정도 등 다양한 조건에 따라 원통형 이차전지 셀(100) 내부에서 발생되는 가스의 압력도 달라질 수 있으므로 가스의 압력 범위가 실험적으로 미리 설정될 수 있으며, 각 압력 범위에 대응되도록 제2 부재(320)의 폭의 범위도 실험에 의해 미리 설정될 수 있다.
한편, 단전부(300), 예를 들어 후술하는 단전부(300)의 제2 부재(320)는 원통형 이차전지 셀(100)이 미리 설정된 온도 범위를 초과하여 과열되는 경우 버스 바(200)와의 연결이 끊어질 수 있도록 미리 설정된 범위의 폭을 가진다. 즉, 제2 부재(320)의 폭이 좁으면 단위 면적이 감소하여 단위 면적당 저항이 높아지며 과열이 발생되는 경우 높은 저항에 의해 상대적으로 더 높은 열이 발생하면서 제2 부재(320)의 폭이 좁은 부분이 고온에 의해 끊어질 수 있다. 이를 위해 제2 부재(320)는 과열시 끊어질 수 있도록 구리 또는 알루미늄 재질로 마련될 수 있다. 그리고, 제2 부재(320)의 폭은 압력 범위에서와 마찬가지로 실험적으로 설정될 수 있다. 즉, 과열로 설정된 온도 범위에 대응되도록 제2 부재(320)의 폭의 범위도 실험에 의해 미리 설정될 수 있다.
단전부(300)는 제1 부재(310)와, 제2 부재(320)를 포함할 수 있다. 제1 부재(310)는 버스 바(200)의 중공(210)에 배치되어 셀캡(130)에 결합된다. 제1 부재(310)는 셀캡(130)의 형상에 대응되는 형상으로 형성될 수 있으며, 예를 들어 셀캡(130)의 단면이 원형이라면 제1 부재(310)의 단면도 원형으로 형성될 수 있다. 다만, 셀캡(130)의 형상과 제1 부재(310)의 형상이 반드시 동일할 필요는 없으며, 제1 부재(310)는 다양한 형상을 가질 수 있다. 그리고, 제1 부재(310)는 셀캡(130)에 다양한 방식, 예를 들어 용접에 의해 결합될 수 있으며, 이 경우 제1 부재(310)는 셀캡(130)에 통전가능하게 결합된다. 제1 부재(310)는 도 3 및 도 4에서와 같이 대체로 버스 바(200)의 중심부에 배치될 수 있으며, 다만 이에 한정되는 것은 아니다. 제2 부재(320)는 다양한 방식 내지 형상을 통해 제1 부재(310)와 버스 바(200)에 각각 전기적으로 연결된다. 예를 들어, 제2 부재(320)는 제1 연결지점(321)과, 제2 연결지점(322)과, 라운드부(323)를 포함하여 구성될 수 있다. 제1 연결지점(321)은 제1 부재(310)에 연결된다. 즉, 제1 연결지점(321)은 제1 부재(310)의 임의의 벽면에 결합될 수 있다. 제2 연결지점(322)은 버스 바(200)에 연결된다. 즉, 제2 연결지점(322)은 버스 바(200)의 임의의 벽면에 결합될 수 있다. 그리고, 라운드부(323)는 제1 연결지점(321)으로부터 라운드지도록 제2 연결지점(322)에 연결될 수 있다. 예를 들어, 라운드부(323)는 제1 연결지점(321)으로부터 제2 연결지점(322)까지 코일 스프링과 같이 제1 부재(310)의 외측 가장자리를 따라 둥글게 회전하는 형상으로 구성될 수 있다. 이와 같이 제2 부재(320)는 코일 스프링과 같이 둥글게 감아서 형성되는 구조를 가질 수 있으며, 이에 의해 외부의 진동 또는 충격으로부터 유지될 수 있는 효과가 있다. 즉, 제2 부재(320)는 원통형 이차전지 셀(100)에 과압 또는 과열과 같은 이상 현상 발생시 버스 바(200)에서 끊어지도록 구성되지만 원통형 이차전지 셀(100)이 정상적으로 작동할 때는 버스 바(200)에 결합되어 전기적 연결을 유지할 필요가 있다. 하지만, 외부의 진동이나 충격이 제2 부재(320)에 전달되면 좁은 폭을 가지는 제2 부재(320)가 끊어질 수도 있다. 이를 위해 제2 부재(320)를 코일 스프링과 같이 탄성적 성질을 가질 수 있도록 둥글게 회전하는 형상으로 형성하여 외부의 진동이나 충격으로부터 연결이 끊어지지 않고 유지될 수 있는 효과가 있다.
이하, 도면을 참조하여 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈(10)의 작용 및 효과에 대해 설명한다.
원통형 이차전지 모듈(10)은 복수의 원통형 이차전지 셀(100)들이 버스 바(200)를 통해 전기적으로 연결된다. 이때, 복수의 원통형 이차전지 셀(100)들 중 적어도 하나에 과압 또는 과열 등의 이상 현상이 발생할 수 있으며, 이 경우 정상 작동하는 다른 원통형 이차전지 셀(100)들에 악영향을 미칠 수 있으므로 정상 작동 중인 원통형 이차전지 셀(100)들과 이상 현상이 발생한 원통형 이차전지 셀(100)의 전기적 연결을 끊을 필요가 있다.
단전부(300)는 제1 부재(310)와 제2 부재(320)를 포함할 수 있으며, 제1 부재(310)는 버스 바(200)에 형상된 중공(210)에 배치되어 전지 케이스(120)의 양극 단자(121)에 결합된 셀캡(130)에 결합되고, 제2 부재(320)는 제1 부재(310)의 둘레를 따라 원형으로 둥글게 회전하면서 제1 부재(310)와 버스 바(200)를 전기적으로 연결한다. 그리고, 버스 바(200)와 원통형 이차전지 셀(100) 사이에는 절연부재(400)가 개재되어 있다. 여기서, 제2 부재(320)는 과압 또는 과열시 끊어질 수 있도록 미리 설정된 범위의 폭을 가지며, 또한 구리 또는 알루미늄 재질로 마련될 수 있다. 원통형 이차전지 셀(100)들 중 적어도 하나에 과압 또는 과열 등의 이상 현상이 발생한 경우 제2 부재(320)는 가스 압력 또는 고온에 의해 버스 바(200)와의 연결 부분이 끊어진다. 그리고, 버스 바(200)와 원통형 이차전지 셀(100) 사이에는 절연부재(400)가 개재되어 있으므로 이상 현상이 발생한 원통형 이차전지 셀(100)과 정상 작동 중인 원통형 이차전지 셀(100)들과의 전기적 연결이 끊어지며, 따라서 전체적으로 원통형 이차전지 모듈(10)의 배터리 안정성이 유지될 수 있는 효과가 있다.
도 5는 본 발명의 제2 실시예에 따른 원통형 이차전지 모듈의 평면도이고, 도 6은 본 발명의 제3 실시예에 따른 원통형 이차전지 모듈의 평면도이다.
이하, 도면을 참조하여 본 발명의 제2 실시예 및 제3 실시예에 따른 원통형 이차전지 모듈(10)의 작용 및 효과에 대해 설명하되, 본 발명의 제1 실시예에 따른 원통형 이차전지 모듈(10)에서 설명한 내용과 공통되는 부분은 전술한 설명으로 대체한다.
본 발명의 제2 실시예 및 제3 실시예의 경우 제2 부재(320)의 형상에서 제1 실시예와 차이가 있다.
도 5의 제2 실시예는 제1 부재(310)와 버스 바(200)가 직선 형상의 1개의 제2 부재(320)에 의해 연결된다는 점에서 라운드가 형성된 제2 부재(320)를 포함하는 제1 실시예와 차이가 있고, 도 6의 제3 실시예는 제2 실시예의 직선 형상의 제2 부재(320)가 2개 구비되어 서로 대향되는 위치에서 제1 부재(310)와 버스 바(200)를 연결한다는 점에서 제1 실시예 및 제2 실시예와 차이가 있다.
즉, 제1 실시예에서 상술한 바와 같이 단전부(300)는 외부의 진동이나 충격에 대응할 수 있도록 라운드지게 형성되는 제2 부재(320)를 포함하지만, 원통형 이차전지 모듈(10)의 설치 장소에 따라 진동이나 충격 정도가 강하지 않은 경우도 있다. 이러한 환경에서 사용되는 원통형 이차전지 모듈(10)의 경우 제2 실시예 내지 제3 실시예와 같이 직선 형상의 제2 부재(320)를 포함하는 단전부(300)가 구비될 수 있다. 제2 실시예 및 제3 실시예의 직선 형상의 제2 부재(320)는 라운드가 형성된 제1 실시예의 제2 부재(320)보다 가공이 용이하고 적은 재료로 제작이 가능하여 비용 측면에서 유리하다. 따라서, 외부의 진동이나 충격정도에 따라 제1 실시예와, 제2 실시예와, 제3 실시예 중 적절히 선택할 수 있다. 다만, 단전부(300)에 포함되는 직선 형상의 제2 부재(320)의 개수는 제2 실시예 또는 제3 실시예에 한정되는 것은 아니며, 도면에 도시되지는 않았지만 직선 형상의 제2 부재(320)의 개수와 배열은 보다 다양할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명은 원통형 이차전지 모듈에 관한 것으로서, 특히, 이차전지와 관련된 산업에 이용 가능하다.

Claims (8)

  1. 전극 조립체 및 전해액이 수용되는 전지 케이스와 상기 전지 케이스의 양극 단자에 결합된 셀캡을 구비하는 원통형 이차전지 셀;
    복수의 원통형 이차전지 셀들을 상호 연결하며 중공이 형성된 버스 바; 및
    상기 버스 바의 상기 중공에 배치되어 상기 원통형 이차전지 셀에 결합되고 상기 버스 바에 전기적으로 연결되며, 상기 원통형 이차전지 셀에 이상현상 발생시 상기 버스 바로부터 분리되어 상기 복수의 원통형 이차전지 셀들간의 전기적 연결이 끊어지도록 구성되는 단전부를 포함하는 원통형 이차전지 모듈.
  2. 제1항에 있어서,
    상기 단전부는 상기 원통형 이차전지 셀의 상기 셀캡에 결합된 것을 특징으로 하는 원통형 이차전지 모듈.
  3. 제1항에 있어서,
    상기 버스 바와 상기 원통형 이차전지 셀 사이에 절연부재가 개재된 것을 특징으로 하는 원통형 이차전지 모듈.
  4. 제2항에 있어서,
    상기 단전부는,
    상기 버스 바의 중공에 배치되어 상기 셀캡에 결합되는 제1 부재; 및
    상기 제1 부재와 상기 버스 바에 각각 전기적으로 연결되는 제2 부재를 포함하는 원통형 이차전지 모듈.
  5. 제4항에 있어서,
    상기 제2 부재는,
    상기 제1 부재에 연결되는 제1 연결지점;
    상기 버스 바에 연결되는 제2 연결지점; 및
    상기 제1 연결지점으로부터 라운드지도록 상기 제2 연결지점에 연결되는 라운드부를 포함하는 것을 특징으로 하는 원통형 이차전지 모듈.
  6. 제4항에 있어서,
    상기 제2 부재는 소정 범위의 압력에 의해 상기 버스 바와의 연결이 끊어질 수 있도록 미리 설정된 범위의 폭을 가지는 것을 특징으로 하는 원통형 이차전지 모듈.
  7. 제4항에 있어서,
    상기 제2 부재는 소정 범위의 온도에서 상기 버스 바와의 연결이 끊어질 수 있도록 미리 설정된 범위의 폭을 가지는 것을 특징으로 하는 원통형 이차전지 모듈.
  8. 제7항에 있어서,
    상기 제2 부재는 과열시 끊어질 수 있도록 구리 또는 알루미늄 재질로 마련되는 것을 특징으로 하는 원통형 이차전지 모듈.
PCT/KR2017/008253 2016-12-05 2017-07-31 원통형 이차전지 모듈 WO2018105847A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018557045A JP6824288B2 (ja) 2016-12-05 2017-07-31 円筒型二次電池モジュール
EP17878447.6A EP3419083A4 (en) 2016-12-05 2017-07-31 CYLINDRICAL SECONDARY BATTERY MODULE
US16/087,899 US20190109313A1 (en) 2016-12-05 2017-07-31 Cylindrical secondary battery module
CN201780018283.4A CN108780863B (zh) 2016-12-05 2017-07-31 圆柱形二次电池模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160164607A KR102085343B1 (ko) 2016-12-05 2016-12-05 원통형 이차전지 모듈
KR10-2016-0164607 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018105847A1 true WO2018105847A1 (ko) 2018-06-14

Family

ID=62490948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008253 WO2018105847A1 (ko) 2016-12-05 2017-07-31 원통형 이차전지 모듈

Country Status (6)

Country Link
US (1) US20190109313A1 (ko)
EP (1) EP3419083A4 (ko)
JP (1) JP6824288B2 (ko)
KR (1) KR102085343B1 (ko)
CN (1) CN108780863B (ko)
WO (1) WO2018105847A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350459B1 (ko) 2017-12-07 2022-01-11 주식회사 엘지에너지솔루션 원통형 이차전지 모듈
KR20200073042A (ko) * 2018-12-13 2020-06-23 주식회사 엘지화학 전지 모듈
KR20210035520A (ko) * 2019-09-24 2021-04-01 주식회사 엘지화학 버스바 플레이트를 포함하는 배터리 모듈, 그것을 포함하는 배터리 팩, 및 전자 디바이스
WO2021071113A1 (ko) * 2019-10-11 2021-04-15 주식회사 엘지화학 버스바 플레이트를 포함하는 배터리 모듈, 그것을 포함하는 배터리 팩, 및 전자 디바이스
KR20210070078A (ko) * 2019-12-04 2021-06-14 주식회사 엘지에너지솔루션 배터리 모듈 및 배터리 팩
KR20210103090A (ko) * 2020-02-13 2021-08-23 주식회사 엘지에너지솔루션 레일형 소켓이 구비된 전지 모듈 및 이를 포함하는 전지 팩
KR20220018735A (ko) 2020-08-07 2022-02-15 주식회사 엘지에너지솔루션 바이메탈을 이용한 전류차단장치를 가진 배터리 팩 및 그 작동 방법
JP3239502U (ja) * 2020-08-31 2022-10-20 中山市小万能源科技有限公司 電池
EP4220802A4 (en) * 2020-09-25 2024-02-28 SANYO Electric Co., Ltd. BATTERY MODULE
CN114520400A (zh) * 2020-11-20 2022-05-20 比亚迪股份有限公司 智能连接片、电池包及车辆
CN114300810A (zh) * 2021-08-27 2022-04-08 嘉兴模度新能源有限公司 一种电池组、电池包及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116424A (ko) * 2005-05-10 2006-11-15 주식회사 엘지화학 안전 시스템을 구비한 중대형 전지팩
KR20130043154A (ko) * 2010-08-06 2013-04-29 파나소닉 주식회사 전지 모듈
JP2013134828A (ja) * 2011-12-26 2013-07-08 Panasonic Corp 電池モジュール
JP2016066455A (ja) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 蓄電装置
KR20160134272A (ko) * 2015-05-15 2016-11-23 삼성에스디아이 주식회사 배터리 모듈
JP2017084603A (ja) * 2015-10-28 2017-05-18 トヨタ自動車株式会社 電池モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775182A (en) 1972-02-25 1973-11-27 Du Pont Tubular electrochemical cell with coiled electrodes and compressed central spindle
US7923144B2 (en) 2007-03-31 2011-04-12 Tesla Motors, Inc. Tunable frangible battery pack system
US20100291426A1 (en) 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Flexible fusible link, systems, and methods
EP2339672B1 (en) * 2009-07-17 2013-09-11 Panasonic Corporation Battery module and battery pack using same
KR101219233B1 (ko) 2010-11-19 2013-01-09 삼성에스디아이 주식회사 배터리 어레이 및 이를 구비한 배터리 팩
JP6006134B2 (ja) 2013-02-08 2016-10-12 トヨタ自動車株式会社 接続部材
WO2014156022A1 (ja) * 2013-03-29 2014-10-02 三洋電機株式会社 電池ブロック
KR20150089464A (ko) * 2014-01-28 2015-08-05 주식회사 엘지화학 전지모듈
CN205452409U (zh) * 2015-12-31 2016-08-10 深圳市沃特玛电池有限公司 电动汽车的电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116424A (ko) * 2005-05-10 2006-11-15 주식회사 엘지화학 안전 시스템을 구비한 중대형 전지팩
KR20130043154A (ko) * 2010-08-06 2013-04-29 파나소닉 주식회사 전지 모듈
JP2013134828A (ja) * 2011-12-26 2013-07-08 Panasonic Corp 電池モジュール
JP2016066455A (ja) * 2014-09-24 2016-04-28 トヨタ自動車株式会社 蓄電装置
KR20160134272A (ko) * 2015-05-15 2016-11-23 삼성에스디아이 주식회사 배터리 모듈
JP2017084603A (ja) * 2015-10-28 2017-05-18 トヨタ自動車株式会社 電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419083A4 *

Also Published As

Publication number Publication date
EP3419083A4 (en) 2019-06-05
EP3419083A1 (en) 2018-12-26
US20190109313A1 (en) 2019-04-11
CN108780863B (zh) 2021-07-09
KR20180064221A (ko) 2018-06-14
CN108780863A (zh) 2018-11-09
JP6824288B2 (ja) 2021-02-03
KR102085343B1 (ko) 2020-03-05
JP2019515448A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018105847A1 (ko) 원통형 이차전지 모듈
WO2019156324A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
JP7041810B2 (ja) ベンティングガスを用いてコネクターを破断する構造を有するバッテリーモジュール
WO2018021680A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
JP7037019B2 (ja) コネクター破断装置を備えるバッテリーモジュール
WO2019074193A1 (ko) 원통형 이차전지 모듈 및 원통형 이차전지 모듈 생산 방법
WO2012053688A1 (ko) 캡 조립체 및 이를 이용한 이차 전지
WO2009157676A2 (ko) 안전성이 향상된 중대형 전지팩
WO2019054619A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018093038A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2012050343A2 (ko) 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지
WO2012077967A2 (ko) 캡 조립체 및 이를 이용한 이차 전지
WO2011037335A2 (ko) 이차 전지 및 그 제조 방법
WO2017061709A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2013100446A1 (ko) 제조공정성이 향상된 캡 어셈블리 및 이를 포함하는 원통형 전지
WO2018216872A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018030836A1 (en) Cap assembly for secondary battery and secondary battery including the cap assembly
WO2016122129A1 (ko) 전지팩
WO2019031702A1 (ko) 배터리 셀 프레임 및 이를 포함하는 배터리 모듈
WO2017061707A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
CN107710458B (zh) 电极引线和具有该电极引线的二次电池
WO2019112197A1 (ko) 원통형 이차전지 모듈
WO2019212134A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017099347A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2016039503A1 (ko) 과전류 차단수단이 구비된 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017878447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017878447

Country of ref document: EP

Effective date: 20180921

ENP Entry into the national phase

Ref document number: 2018557045

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE