WO2018103563A1 - 一种锂电池的金属锂负极 - Google Patents

一种锂电池的金属锂负极 Download PDF

Info

Publication number
WO2018103563A1
WO2018103563A1 PCT/CN2017/113586 CN2017113586W WO2018103563A1 WO 2018103563 A1 WO2018103563 A1 WO 2018103563A1 CN 2017113586 W CN2017113586 W CN 2017113586W WO 2018103563 A1 WO2018103563 A1 WO 2018103563A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
metal
battery
carbonate
Prior art date
Application number
PCT/CN2017/113586
Other languages
English (en)
French (fr)
Inventor
张强
程新兵
闫崇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018103563A1 publication Critical patent/WO2018103563A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a metal lithium negative electrode, belonging to the technical field of metal lithium batteries using metal lithium as a negative electrode.
  • Lithium-sulfur batteries (2600Wh/kg) and lithium-air batteries (3500Wh/kg) with lithium metal as the negative electrode are regarded as an important choice for next-generation energy storage batteries due to their extremely high energy density.
  • the metal lithium battery has obvious advantages, but in practical applications, it has encountered the problem of dendritic growth of the negative electrode.
  • metallic lithium is used as a negative electrode of a secondary battery
  • metallic lithium is reversibly deposited, causing dendrite growth.
  • the dendrite pierces the diaphragm, causing a short circuit in the battery, which is likely to cause a safety accident.
  • Inhibiting dendrite growth is the key to achieving high-energy-density lithium metal batteries (such as lithium-sulfur batteries, lithium-oxygen batteries, etc.).
  • high-energy-density lithium metal batteries such as lithium-sulfur batteries, lithium-oxygen batteries, etc.
  • LiF electrolyte additive
  • the surface energy of lithium ions on the surface of LiF is large and the diffusion energy is small, so that lithium ions are more easily diffused into uniform lithium ions around LiF, thereby achieving uniform distribution of lithium ions.
  • Lu et al. used copper nanowires as a current collector of metallic lithium to reduce the current density of the negative electrode, thereby extending the sand's time and inhibiting dendrite growth (Nano Letters 2016, 16, 4431). Zhao Chenxi et al.
  • the object of the invention is to change the current low cycle life of the negative electrode of the metal lithium battery, and to introduce a high-efficiency solid electrolyte interface film on the surface of the lithium plate by electrochemical pretreatment of the conventional lithium plate negative electrode, thereby suppressing the metal lithium negative electrode. Dendritic growth reduces side reactions of electrolyte and lithium metal, improving battery utilization and cycle life.
  • the technical solution of the present invention is: a lithium metal negative electrode of a lithium battery, characterized in that: the surface of the metal lithium negative electrode comprises a solid electrolyte protective layer, and the solid electrolyte protective layer is prepared by the following electroplating method:
  • the current of the electroplating process is 1 ⁇ A cm -2 to 100 mA cm -2 , and after the surface of the lithium sheet is plated with a solid electrolyte protective film, the lithium sheet is taken out, that is, as a metal Lithium negative electrode.
  • the electrolyte solution further contains an additive, which is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide.
  • an additive which is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide.
  • an additive which is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide.
  • concentration of the additive is 0.001 to 1 mol L -1 .
  • the lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium difluoroxaluminate and two (three) One or a combination of lithium fluoromethylsulfonyl).
  • the organic solvent is ethylene carbonate, propylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetic acid.
  • ethyl ester acrylonitrile, methyl formate, methacrylate, tetrahydrofuran, sulfolane, 1,3-dioxolane and tetraethylene glycol dimethyl ether.
  • the plating treatment time is 1 s to 1000 h, and the number of treatments is 1-1000 times.
  • the thickness of the solid electrolyte protective film on the surface of the lithium sheet obtained by electroplating is 2 nm to 200 ⁇ m.
  • the invention adopts a plating method to compact chemical pretreatment of the lithium sheet, and the surface of the lithium electrode contains a stable solid electrolyte protective layer, which is not only simple and feasible, but also It can effectively inhibit the dendrite growth of the lithium metal anode, reduce the side reaction of the electrolyte and the metal lithium, and significantly improve the utilization rate and cycle life of the battery; experimental research shows that the metal lithium anode has no branches in the 10 to 8000 battery cycle. The crystal appears; the metal lithium negative electrode can increase the utilization rate of the lithium battery negative electrode to 80 to 99.9999%.
  • the invention provides a metal lithium negative electrode of a lithium battery, wherein the metal lithium negative electrode surface comprises a solid electrolyte protective layer, and the solid electrolyte protective layer is prepared by an electroplating method.
  • the electrolyte solution used for electroplating contains a certain concentration of a lithium salt and an organic solvent.
  • the lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium difluoroxaluminate and lithium bis(trifluoromethylsulfonyl)
  • the lithium salt molar concentration is generally between 0.1 and 10 mol L -1 .
  • the organic solvent is ethylene carbonate, propylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, ethyl acetate, acrylonitrile, formic acid
  • ester methacrylate, tetrahydrofuran, sulfolane, 1,3-dioxolane and tetraethylene glycol dimethyl ether.
  • the electrolyte solution may further contain an additive, and the additive is lithium nitrate, lithium polysulfide, lithium carbonate, fluoroethylene carbonate, vinylene carbonate, propylene sulfite, vinyl sulfite, lithium halide, sulfur dioxide, carbon dioxide, and the like. One or more of them have a molar concentration of 0.001 to 1 mol L -1 .
  • the current in the electroplating process is generally 1 ⁇ A cm -2 to 100 mA cm -2 , the treatment time is 1 s to 1000 h, and the number of treatments is 1-1000 times.
  • the thickness of the solid electrolyte protective film on the surface of the lithium sheet obtained by electroplating is preferably 2 nm to 200 um.
  • Example 1 A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium nitrate (0.001 mol L -1 ) - 1,3- Oxolane/dimethoxyethane, electroplating once, current density is 1 ⁇ A cm -2 , time is 1000h, the thickness of the protective film obtained on the surface of the lithium sheet is 200um, the lithium sheet is taken out, and assembled with the sulfur positive electrode Lithium-sulfur battery, after testing, found that the lithium-sulfur battery can achieve a coulombic efficiency of 99% and a cycle life of 5,000 cycles.
  • Example 2 A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-fluoroethylene carbonate (0.01 mol L -1 ) - ethylene carbonate / two Ethyl carbonate, electroplating 50 times, current density is 4mA cm -2 , time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 100um, the lithium sheet is taken out, assembled into a lithium empty battery, after testing, it is found that lithium The battery has a Coulomb efficiency of 92% and a cycle life of 500 laps.
  • Example 3 A lithium sheet was placed in an electrolytic bath using an electrolyte of lithium bisfluoroxaluminate (5 mol L -1 ) - vinylene carbonate (0.1 mol L -1 ) - dimethyl sulfoxide, electroplating 100 The current density is 100 mA cm -2 for 1 s. The thickness of the protective film obtained on the surface of the lithium sheet is 50 um. The lithium sheet is taken out and assembled into a battery together with the ternary material. After testing, the coulombic efficiency of the battery can be found. Up to 80%, the cycle life can reach 100 laps.
  • Example 4 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (1 mol L -1 ) - lithium polysulfide (0.5 mol L -1 ) - tetraethylene glycol dimethyl ether, electroplated 20 times, current The density is 0.5 mA cm -2 , the time is 0.5 h, the thickness of the protective film obtained on the surface of the lithium sheet is 10 um, the lithium sheet is taken out, and assembled into a battery together with lithium cobaltate. After testing, the coulombic efficiency of the battery can be achieved. 99.9999%, cycle life can reach 2000 laps.
  • Example 5 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium perchlorate (0.1 mol L -1 )-propylene carbonate, electroplated 800 times, current density was 0.2 mA cm -2 , time was 1 h
  • the protective film obtained on the surface of the lithium sheet has a thickness of 5 um, and the lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. After testing, the battery has a Coulomb efficiency of 90% and a cycle life of 5,000 cycles.
  • Example 6 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluoroarsenate (2.5 mol L -1 )-tetrahydrofuran, electroplated 10 times, current density was 8 mA cm -2 , time was 30 s, The thickness of the protective film obtained on the surface of the lithium sheet is 1 um. The lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 laps.
  • Example 7 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluorooxalate borate (2.5 mol L -1 ) - propylene sulfite (1 mol L -1 ) - ethylene carbonate / diethyl carbonate Ester/methyl ethyl carbonate, electroplated 400 times, current density is 100 ⁇ A cm -2 , time is 30s, the thickness of the protective film obtained on the surface of the lithium sheet is 20um, the lithium sheet is taken out, and assembled into a battery together with lithium manganate. The test found that the battery has a Coulomb efficiency of 99.5% and a cycle life of 1500 cycles.
  • Example 8 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-fluoroethylene carbonate (0.5 mol L -1 )-dimethyl carbonate /Diethyl carbonate, electroplating 50 times, current density is 40mA cm -2 , time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 500nm, the lithium sheet is taken out, assembled into a lithium battery, after testing, Lithium batteries have a Coulombic efficiency of 92% and a cycle life of 500 laps.
  • Example 9 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(dicarboxylate) (0.1 mol L -1 )-ethylene carbonate/ethyl acetate, electroplated 50 times, and a current density of 0.1 mA cm. -2 , the time is 10h, the thickness of the protective film obtained on the surface of the lithium sheet is 100nm, the lithium sheet is taken out and assembled into a lithium empty battery. After testing, the coulombic efficiency of the lithium empty battery can reach 97%, and the cycle life can reach 500. ring.
  • Example 10 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium perchlorate (0.1 mol L -1 )-acrylonitrile, electroplated 800 times, current density was 5 mA cm -2 , time was 1 h, The protective film obtained on the surface of the lithium sheet has a thickness of 50 nm. The lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. After testing, the battery has a coulombic efficiency of 85% and a cycle life of 5,000 cycles.
  • the electrolyte used was lithium perchlorate (0.1 mol L -1 )-acrylonitrile, electroplated 800 times, current density was 5 mA cm -2 , time was 1 h,
  • the protective film obtained on the surface of the lithium sheet has a thickness of 50 nm.
  • the lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. After testing, the battery has a coulombic efficiency of 85% and a cycle life of 5,000 cycles.
  • Example 11 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (2.5 mol L -1 )-methyl formate, electroplated 10 times, current density was 8 A cm -2 , time was 30 s, in lithium tablets
  • the surface of the protective film has a thickness of 10 nm.
  • the lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 cycles.
  • Example 12 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium hexafluorophosphate (1 mol L -1 ) - methacrylate, electroplated 20 times, current density was 0.5 A cm -2 , time was 0.5 h, The thickness of the protective film obtained on the surface of the lithium sheet is 5 nm. The lithium sheet is taken out and assembled into a battery together with lithium cobaltate. After testing, the battery has a Coulomb efficiency of 99.996% and a cycle life of 2000 cycles.
  • Example 13 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium bis(dicarboxylate) borate (2.5 mol L -1 )-sulfolane, electroplated 10 times, current density was 3 mA cm -2 , time was 30 s, The protective film obtained on the surface of the lithium sheet has a thickness of 2 nm. The lithium sheet is taken out and assembled into a battery together with sulfur dioxide. After testing, the battery has a coulombic efficiency of 82% and a cycle life of 150 cycles.
  • Example 14 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium hexafluoroborate (0.1 mol L -1 ) - fluoroethylene carbonate (0.005 mol L -1 ) - dimethyl carbonate / two Ethyl carbonate, electroplating 50 times, current density 4 mA cm -2 , time 10 h, the thickness of the protective film obtained on the surface of the lithium sheet is 20 nm, the lithium sheet is taken out, assembled into a lithium empty battery, after testing, it is found that lithium empty The battery has a Coulomb efficiency of 92% and a cycle life of 500 laps.
  • Example 15 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium carbonate (0.05 mol L -1 ) - 1,3- Oxolane/dimethoxyethane, electroplated 1000 times, current density is 40 ⁇ A cm -2 , time is 1h, the thickness of the protective film obtained on the surface of the lithium sheet is 60nm, the lithium sheet is taken out, and assembled with the sulfur positive electrode Lithium-sulfur battery, after testing, found that the lithium-sulfur battery can achieve a coulombic efficiency of 99% and a cycle life of 5,000 cycles.
  • Example 16 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluorooxalate borate (2.5 mol L -1 ) - vinyl sulfite (0.5 mol L -1 ) - ethylene carbonate, electroplating 400 times The current density is 10 mA cm -2 for 15 min. The thickness of the protective film obtained on the surface of the lithium sheet is 200 nm. The lithium sheet is taken out and assembled into a battery together with lithium manganate. After testing, the coulombic efficiency of the battery can be achieved. 99.9%, cycle life can reach 1500 laps.
  • Example 17 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (2 mol L -1 ) - lithium fluoride (0.8 mol L -1 ) - 1,3- Dioxolane/dimethoxyethane, electroplating 300 times, current density 300 ⁇ A cm -2 , time 10h, protective film thickness on the surface of lithium sheet is 800nm, lithium sheet is taken out, assembled with sulfur positive electrode Lithium-sulfur battery has been tested and found that the lithium-sulfur battery can achieve a coulombic efficiency of 99.91% and a cycle life of 5000 cycles.
  • Example 18 A lithium sheet was placed in an electrolytic cell, and the electrolyte used was lithium bisfluoroxaluminate (5 mol L -1 )-vinylene carbonate, and sulfur dioxide was flushed into the electrolytic cell, electroplating 10 times, current density is a 0.1mA cm -2, time was 5h, the film thickness of the protective sheet on the surface of the lithium obtained was 50 nm, the lithium sheet removed, together with the ternary material is assembled into a battery, tested and found coulombic efficiency of the battery can reach 80% The cycle life can reach 100 laps.
  • the electrolyte used was lithium bisfluoroxaluminate (5 mol L -1 )-vinylene carbonate, and sulfur dioxide was flushed into the electrolytic cell, electroplating 10 times, current density is a 0.1mA cm -2, time was 5h, the film thickness of the protective sheet on the surface of the lithium obtained was 50 nm, the lithium sheet removed, together with the ternary material is assembled into a battery,
  • Example 19 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium bis(trifluoromethylsulfonyl) (1 mol L -1 )-ethylene carbonate/ethyl acetate and flushed into an electrolytic cell. Sulfur dioxide, electroplating 50 times, current density is 40mA cm -2 , time is 10s, the thickness of the protective film obtained on the surface of the lithium sheet is 40 ⁇ m, the lithium sheet is taken out, and assembled with the sulfur positive electrode into a battery, after testing, the battery is found Coulomb efficiency can reach 99.95%, cycle life can reach 10 laps.
  • Example 20 A lithium sheet was placed in an electrolytic cell using an electrolyte of lithium difluoroxaluminate (4 mol L -1 )-1,3-dioxolane/dimethoxyethane and directed to an electrolytic cell.
  • the carbon dioxide is poured into the carbon dioxide, electroplated twice, the current density is 0.8 mA cm -2 , the time is 4.5 h, and the thickness of the protective film obtained on the surface of the lithium sheet is 15 ⁇ m.
  • the lithium sheet is taken out and assembled into a battery together with lithium iron phosphate. The test found that the battery can achieve a coulombic efficiency of 89.9% and a cycle life of 8,000 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂电池的金属锂负极,该金属锂负极表面含有一层固态电解质保护层。本发明通过对锂负极进行电化学预处理,在锂片表面引入一层高效、稳定的固态电解质界面膜;在锂离子反复沉积和脱出过程中,该固态电解质保护层一方面可以抑制枝晶的出现,提高电池的安全性能,另一方面也可以隔绝电解液和金属锂,保护锂金属免受电解液的腐蚀;通过电镀工艺和电解液种类的筛选,实现金属锂负极的有效保护,提高锂金属电池的循环寿命。相比于没有处理的锂负极,经过固态电解质层保护的金属锂负极可以有效的抑制枝晶状锂沉积物的出现,减少电解液和金属锂的副反应,提高电池的循环效率和循环稳定性,从而提高以金属锂为负极的锂金属电池的循环寿命。

Description

一种锂电池的金属锂负极 技术领域
本发明涉及一种金属锂负极,属于以金属锂为负极的金属锂电池技术领域。
背景技术
能源与人民的生活息息相关,而电池的出现让能源的利用更加方便和快捷。上世纪九十年代,索尼公司开发了可安全利用的石墨负极,带来了锂离子电池在个人电子设备等领域的规模应用。但是,随着高端电子设备和电动汽车的需求增加,基于传统氧化物正极和石墨负极的锂离子电池逐渐难以满足需求,发展更高能量密度的储能***已经迫在眉睫。在已知电极材料中,锂金属负极以3860mAh·g-1的高容量和最负的电势(-3.040V vs.标准氢电极)而成为储能界的“圣杯”,受到研究人员的关注(Energy Environ.Sci.2014,7,513)。以金属锂为负极的锂硫电池(2600Wh/kg)和锂空电池(3500Wh/kg)以其极高的能量密度,而被视为下一代储能电池的重要选择。
金属锂电池优势明显,但是在实际应用中却遇到了负极枝晶生长的问题。当金属锂作为二次电池负极时,金属锂可逆沉积,造成枝晶生长。枝晶刺穿隔膜,造成电池短路,容易带来安全事故。抑制枝晶生长是实现高能量密度锂金属电池(如锂硫电池、锂氧电池等)规模应用的关键。为了抑制枝晶生长,提高锂金属电池的安全性、利用率和循环寿命,在过去的半个世纪里,科学家提出多种解决方案。Lynden A.Archer教授使用LiF作为电解液添加剂(Nature Materials 2014,13,961)。锂离子在LiF表面的表面能大而扩散能小,使得锂离子在LiF周围更容易扩散成均匀的锂离子,从而实现锂离子的均匀分布。Lu等将铜纳米线作为金属锂的集流体,可以降低负极的电流密度,从而延长Sand’s time,抑制枝晶生长(Nano Letters 2016,16,4431)。赵辰孜等使用多硫化物和硝酸锂的复合电解液添加剂实现了负极表面固态电解质界面膜的稳定性,从而抑制枝晶的生长,提高电池的安全性能(公开号:CN 201610252402)。这些方法提供许多抑制枝晶的新思路,但是在应用过程中却受到很多条件的限制,比如某种添加剂只能应用在某种特定的溶剂中,三维纳米骨架会带来较多的副反应等等。如何对金属锂进行定向改造,获得可抑制枝晶生长的、可应用在多种电解液和电池***的锂金属负极将具有巨大意义。因此对目前的锂片进行处理,使其能够具备抑制枝晶生长的能力,将会实现同一种锂片在不同电池和电解液***的应用,实现以金属锂为负极的金属锂电池的实际应用。
发明内容
本发明的目的在于改变目前金属锂电池负极循环寿命低的问题,通过对常规的锂片负极进行电化学预处理,在锂片表面引入一层高效的固态电解质界面膜,从而抑制金属锂负极的枝晶生长,减少电解液和金属锂的副反应,提高电池的利用率和循环寿命。
本发明的技术方案是:一种锂电池的金属锂负极,其特征在于:该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用以下电镀方法制备:
1)配制锂盐与有机溶剂的混合溶液作为电解质溶液,其锂盐的摩尔浓度为0.1~10mol/L;
2)将锂片浸入到该电解质溶液中进行电镀,电镀过程的电流为1μA cm-2~100mA cm-2,待锂片表面电镀上一层固态电解质保护膜后,取出锂片,即作为金属锂负极。
上述技术方案中,所述的电解质溶液还含有添加剂,该添加剂为硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫和二氧化碳中的一种或几种,添加剂的浓度在0.001~1mol L-1
上述技术方案中,所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂的一种或几种的组合。
上述技术方案中,所述的有机溶剂为碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种。
所述的电镀处理时间为1s~1000h,处理次数是1-1000次。电镀获得的锂片表面的固态电解质保护膜的厚度为2nm~200um。
本发明相比现有技术,具有如下优点及突出性效果:本发明采用电镀的方法对锂片紧凑化学预处理,使锂电极表面含有一层稳定的固态电解质保护层,不仅方法简单可行,且可有效抑制金属锂负极的枝晶生长,减少电解液和金属锂的副反应,显著提高了电池的利用率和循环寿命;实验研究表明,该金属锂负极在10~8000次电池循环中没有枝晶出现;该金属锂负极可以将该锂电池负极的利用率提高至80~99.9999%。
具体实施方式:
本发明提供的一种锂电池的金属锂负极,该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用电镀方法制备。用于电镀的电解质溶液包含一定浓度的锂盐和有机溶剂。锂盐是六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂的一种或几种,锂盐摩尔浓度一般在是0.1~10mol L-1之间。有机溶剂采用碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种。该电解质溶液还可以含有添加剂,添加剂是硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫、二氧化碳等中的一种或几种,其摩尔浓度为0.001~1mol L-1。电镀过程的电流一般为1μA cm-2~100mA cm-2,处理时间是1s~1000h,处理次数是1-1000次,电镀获得的锂片表面的固态电解质保护膜的厚度优选为2nm~200um。
从以下实施例可进一步理解本发明,但本发明不仅仅局限于以下实施例。
实施例1:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)-硝酸锂(0.001mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀1次,电流密度为1μA cm-2,时间为1000h,在锂片表面得到的保护膜厚度为200um,将锂片取出,与硫正极一起组装成锂硫电池,经过测试 发现,锂硫电池的库伦效率可以达到99%,循环寿命可以达到5000圈。
实施例2:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.01mol L-1)-碳酸乙烯酯/二乙基碳酸酯,电镀50次,电流密度为4mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为100um,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。
实施例3:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(5mol L-1)-碳酸亚乙烯酯(0.1mol L-1)-二甲基亚砜,电镀100次,电流密度为100mA cm-2,时间为1s,在锂片表面得到的保护膜厚度为50um,将锂片取出,与三元材料一起组装成电池,经过测试发现,该电池的库伦效率可以达到80%,循环寿命可以达到100圈。
实施例4:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(1mol L-1)-多硫化锂(0.5mol L-1)-四乙二醇二甲醚,电镀20次,电流密度为0.5mA cm-2,时间为0.5h,在锂片表面得到的保护膜厚度为10um,将锂片取出,与钴酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.9999%,循环寿命可以达到2000圈。
实施例5:将锂片置于电解槽中,采用的电解液为高氯酸锂(0.1mol L-1)-碳酸丙烯酯,电镀800次,电流密度为0.2mA cm-2,时间为1h,在锂片表面得到的保护膜厚度为5um,将锂片取出,与磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到90%,循环寿命可以达到5000圈。
实施例6:将锂片置于电解槽中,采用的电解液为六氟砷酸锂(2.5mol L-1)-四氢呋喃,电镀10次,电流密度为8mA cm-2,时间为30s,在锂片表面得到的保护膜厚度为1um,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。
实施例7:将锂片置于电解槽中,采用的电解液为二氟草酸硼酸锂(2.5mol L-1)-亚硫酸丙烯酯(1mol L-1)-碳酸乙烯酯/二乙基碳酸酯/甲乙基碳酸酯,电镀400次,电流密度为100μA cm-2,时间为30s,在锂片表面得到的保护膜厚度为20um,将锂片取出,与锰酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.5%,循环寿命可以达到1500圈。
实施例8:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.5mol L-1)-二甲基碳酸酯/二乙基碳酸酯,电镀50次,电流密度为40mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为500nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。
实施例9:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(0.1mol L-1)-碳酸乙烯酯/乙酸乙酯,电镀50次,电流密度为0.1mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为100nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到97%,循环寿命可以达到500圈。
实施例10:将锂片置于电解槽中,采用的电解液为高氯酸锂(0.1mol L-1)-丙烯腈,电镀800次,电流密度为5mA cm-2,时间为1h,在锂片表面得到的保护膜厚度为50nm,将锂片取出,与 磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到85%,循环寿命可以达到5000圈。
实施例11:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(2.5mol L-1)-甲酸甲酯,电镀10次,电流密度为8A cm-2,时间为30s,在锂片表面得到的保护膜厚度为10nm,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。
实施例12:将锂片置于电解槽中,采用的电解液为六氟磷酸锂(1mol L-1)–甲基丙烯酸酯,电镀20次,电流密度为0.5A cm-2,时间为0.5h,在锂片表面得到的保护膜厚度为5nm,将锂片取出,与钴酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.996%,循环寿命可以达到2000圈。
实施例13:将锂片置于电解槽中,采用的电解液为双乙二酸硼酸锂(2.5mol L-1)-环丁砜,电镀10次,电流密度为3mA cm-2,时间为30s,在锂片表面得到的保护膜厚度为2nm,将锂片取出,与二氧化硫一起组装成电池,经过测试发现,该电池的库伦效率可以达到82%,循环寿命可以达到150圈。
实施例14:将锂片置于电解槽中,采用的电解液为六氟硼酸锂(0.1mol L-1)-氟代碳酸乙烯酯(0.005mol L-1)-二甲基碳酸酯/二乙基碳酸酯,电镀50次,电流密度为4mA cm-2,时间为10h,在锂片表面得到的保护膜厚度为20nm,将锂片取出,组装成锂空电池,经过测试发现,锂空电池的库伦效率可以达到92%,循环寿命可以达到500圈。
实施例15:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)-碳酸锂(0.05mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀1000次,电流密度为40μA cm-2,时间为1h,在锂片表面得到的保护膜厚度为60nm,将锂片取出,与硫正极一起组装成锂硫电池,经过测试发现,锂硫电池的库伦效率可以达到99%,循环寿命可以达到5000圈。
实施例16:将锂片置于电解槽中,采用的电解液为二氟草酸硼酸锂(2.5mol L-1)-亚硫酸乙烯酯(0.5mol L-1)-碳酸乙烯酯,电镀400次,电流密度为10mA cm-2,时间为15min,在锂片表面得到的保护膜厚度为200nm,将锂片取出,与锰酸锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.9%,循环寿命可以达到1500圈。
实施例17:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(2mol L-1)–氟化锂(0.8mol L-1)-1,3-二氧戊环/二甲氧基乙烷,电镀300次,电流密度为300μA cm-2,时间为10h,在锂片表面得到的保护膜厚度为800nm,将锂片取出,与硫正极一起组装成锂硫电池,经过测试发现,锂硫电池的库伦效率可以达到99.91%,循环寿命可以达到5000圈。
实施例18:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(5mol L-1)-碳酸亚乙烯酯,并向电解槽中冲入二氧化硫,电镀10次,电流密度为0.1mA cm-2,时间为5h,在锂片表面得到的保护膜厚度为50nm,将锂片取出,与三元材料一起组装成电池,经过测试发现,该电池的库伦效率可以达到80%,循环寿命可以达到100圈。
实施例19:将锂片置于电解槽中,采用的电解液为二(三氟甲基磺酰)锂(1mol L-1)-碳酸乙烯 酯/乙酸乙酯,并向电解槽中冲入二氧化硫,电镀50次,电流密度为40mA cm-2,时间为10s,在锂片表面得到的保护膜厚度为40μm,将锂片取出,与硫正极一起组装成电池,经过测试发现,该电池的库伦效率可以达到99.95%,循环寿命可以达到10圈。
实施例20:将锂片置于电解槽中,采用的电解液为双氟黄酰亚胺锂(4mol L-1)-1,3-二氧戊环/二甲氧基乙烷,并向电解槽中冲入二氧化碳,电镀2次,电流密度为0.8mA cm-2,时间为4.5h,在锂片表面得到的保护膜厚度为15μm,将锂片取出,与磷酸铁锂一起组装成电池,经过测试发现,该电池的库伦效率可以达到89.9%,循环寿命可以达到8000圈。

Claims (6)

  1. 一种锂电池的金属锂负极,其特征在于:该金属锂负极表面含有一层固态电解质保护层,该固体电解质保护层采用以下电镀方法制备:
    1)配制锂盐与有机溶剂的混合溶液作为电解质溶液,其锂盐的摩尔浓度为0.1~10mol/L;
    2)将锂片浸入到该电解质溶液中进行电镀,电镀过程的电流为1μA cm-2~100mA cm-2,待锂片表面电镀上一层固态电解质保护膜后,取出锂片,即作为金属锂负极。
  2. 按照权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述的电解质溶液含有添加剂,该添加剂为硝酸锂、多硫化锂、碳酸锂、氟代碳酸乙烯酯、碳酸亚乙烯酯、亚硫酸丙烯酯、亚硫酸乙烯酯、卤化锂、二氧化硫和二氧化碳中的一种或几种,添加剂的摩尔浓度在0.001~1mol L-1
  3. 根据权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂中的一种或几种的组合。
  4. 根据权利要求1所述的一种锂电池的金属锂负极,其特征在于:所述的有机溶剂为碳酸乙烯酯、碳酸丙烯酯、二甲基亚砜、二甲基碳酸酯、二乙基碳酸酯、甲乙基碳酸酯、二甲氧基乙烷、乙酸乙酯、丙烯腈、甲酸甲酯、甲基丙烯酸酯、四氢呋喃、环丁砜、1,3-二氧戊环和四乙二醇二甲醚中的一种或几种的组合。
  5. 按照权利要求1-4任一权利要求所述的一种锂电池的金属锂负极,其特征在于:电镀处理时间为1s~1000h,处理次数是1-1000次。
  6. 按照权利要求1-4任一权利要求所述的一种锂电池的金属锂负极,其特征在于:电镀获得的锂片表面的固态电解质保护膜的厚度为2nm~200um。
PCT/CN2017/113586 2016-12-09 2017-11-29 一种锂电池的金属锂负极 WO2018103563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611129703.X 2016-12-09
CN201611129703.XA CN107068971A (zh) 2016-12-09 2016-12-09 一种锂电池的金属锂负极

Publications (1)

Publication Number Publication Date
WO2018103563A1 true WO2018103563A1 (zh) 2018-06-14

Family

ID=59619630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113586 WO2018103563A1 (zh) 2016-12-09 2017-11-29 一种锂电池的金属锂负极

Country Status (2)

Country Link
CN (1) CN107068971A (zh)
WO (1) WO2018103563A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561915A4 (en) * 2016-12-23 2020-03-25 Posco LITHIUM METAL ANODE, MANUFACTURING METHOD THEREOF, AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
CN113206293A (zh) * 2021-04-14 2021-08-03 华中科技大学 一种锂金属电池电解液及其制备方法与应用
CN113789074A (zh) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 锂负极保护层及其制备方法和应用
CN114204102A (zh) * 2021-10-29 2022-03-18 同济大学 防水、隔空气、抑制枝晶全固态锂金属保护膜及其构筑策略
CN114628785A (zh) * 2022-01-27 2022-06-14 华南理工大学 一种双功能锂硫电池电解液及其制备方法与应用
CN114628709A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种锂/氟化碳电池用分相电解液及其应用
CN114813616A (zh) * 2022-06-29 2022-07-29 四川富临新能源科技有限公司 检测磷酸铁锂中碳含量的设备和方法
CN114864913A (zh) * 2022-06-15 2022-08-05 中原工学院 一种PEG-CeF3@Zn耐腐蚀复合金属负极及其制备方法和应用

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068971A (zh) * 2016-12-09 2017-08-18 清华大学 一种锂电池的金属锂负极
CN107845757A (zh) * 2017-10-12 2018-03-27 合肥国轩高科动力能源有限公司 一种复合锂膜及隔膜的锂离子电池极片及其制备方法
KR102258758B1 (ko) 2017-12-14 2021-06-07 주식회사 엘지에너지솔루션 리튬 금속 전극의 표면에 부동태막을 형성하는 리튬 이차전지의 연속 제조 방법 및 이의 제조 방법으로 제조된 리튬 이차전지
CN108461715B (zh) * 2018-03-16 2021-10-26 山东大学 一种固态电池锂负极的制备方法
CN108321355A (zh) * 2018-03-28 2018-07-24 中能中科(天津)新能源科技有限公司 锂金属负极预制件及其制备方法、锂金属负极和锂金属二次电池
PL3694042T3 (pl) * 2018-05-10 2024-01-29 Lg Energy Solution, Ltd. Litowo-metalowa bateria akumulatorowa o poprawionym bezpieczeństwie i zawierający ją moduł akumulatorowy
CN108565398A (zh) * 2018-06-01 2018-09-21 哈尔滨工业大学 具有无机保护涂层的锂负极及其制备方法
CN108987684B (zh) * 2018-06-05 2021-07-16 燕山大学 一种可在空气中稳定放置的金属锂的制备方法
CN109065832B (zh) * 2018-06-25 2021-07-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种在二次锂电池金属负极表面生长保护层的方法
CN108832131B (zh) * 2018-06-28 2021-08-27 苏州清陶新能源科技有限公司 一种锂金属负极的制备方法
CN110707287B (zh) * 2018-07-09 2023-05-26 郑州宇通集团有限公司 一种金属锂负极及其制备方法和锂电池
CN110858650B (zh) * 2018-08-22 2022-11-18 哈尔滨工业大学 一种预置稳定保护膜的金属锂负极及其制备方法
CN109037764A (zh) * 2018-08-29 2018-12-18 浙江工业大学 一种稳定锂金属负极的固态电解质的制备方法
CN110880618B (zh) * 2018-09-06 2021-10-15 中南大学 一种锂金属电池、负极、电解液及其制备
CN109273761A (zh) * 2018-09-17 2019-01-25 浙江大学 一种在锂金属表面制备固态电解质界面膜的方法
US10938028B2 (en) * 2018-10-19 2021-03-02 GM Global Technology Operations LLC Negative electrode for lithium secondary battery and method of manufacturing
CN109786692A (zh) * 2018-12-25 2019-05-21 中国电子科技集团公司第十八研究所 一种金属锂电极的表面氮化修饰方法及获得的金属锂负极和用途
CN109698396B (zh) * 2019-01-09 2021-02-19 山东大学 一种基于锂合金负极的锂空气电池
CN109786708B (zh) * 2019-01-18 2022-03-01 中国科学院宁波材料技术与工程研究所 一种锂金属负极、其制备方法及金属锂二次电池
CN110048174B (zh) * 2019-04-29 2020-09-22 中南大学 一种凝胶电池电解质膜及其制备方法和应用
CN110299513B (zh) * 2019-06-26 2020-12-08 中南大学 一种亲锂性负极的制备方法、亲锂性负极和锂电池
CN110444735A (zh) * 2019-07-17 2019-11-12 湖南立方新能源科技有限责任公司 一种锂金属电池负极的表面改性方法及锂金属电池
CN110391409A (zh) * 2019-07-25 2019-10-29 昆山宝创新能源科技有限公司 锂电池负极材料及其制备方法和锂电池
CN110718684B (zh) * 2019-08-26 2021-07-06 浙江工业大学 一种金属锂表面稳定化方法
CN110534706B (zh) * 2019-09-06 2021-06-25 燕山大学 一种钝化锂粉及其制备方法和应用
CN111816843A (zh) * 2020-06-30 2020-10-23 傲普(上海)新能源有限公司 固态电池及其制作方法
CN112072076B (zh) * 2020-07-22 2021-07-27 宁波大学 一种锂金属电池负极表面的改性方法
CN112687953B (zh) * 2020-12-24 2022-04-01 中国电子新能源(武汉)研究院有限责任公司 二次电池电解液及其制备方法和电池
CN113224385A (zh) * 2021-01-15 2021-08-06 中国科学院金属研究所 一种低温电池电解液用复合添加剂及其应用
CN113461848B (zh) * 2021-06-08 2022-07-29 杭州师范大学 一种锂电池负极保护聚甲基丙烯磺酸锂的制备及应用
CN113481502B (zh) * 2021-06-25 2023-01-06 天津中能锂业有限公司 金属锂带的表面保护方法、其产品和应用以及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606188A (zh) * 2004-03-19 2005-04-13 谷亦杰 一种提高锂离子电池容量的方法
US20130045427A1 (en) * 2011-08-19 2013-02-21 Nanoteck Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
CN106159200A (zh) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 一种具有保护涂层的金属锂负极及其制备和应用
CN107068971A (zh) * 2016-12-09 2017-08-18 清华大学 一种锂电池的金属锂负极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606188A (zh) * 2004-03-19 2005-04-13 谷亦杰 一种提高锂离子电池容量的方法
US20130045427A1 (en) * 2011-08-19 2013-02-21 Nanoteck Instruments, Inc. Prelithiated current collector and secondary lithium cells containing same
CN106159200A (zh) * 2016-07-29 2016-11-23 中国科学院青岛生物能源与过程研究所 一种具有保护涂层的金属锂负极及其制备和应用
CN107068971A (zh) * 2016-12-09 2017-08-18 清华大学 一种锂电池的金属锂负极

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561915A4 (en) * 2016-12-23 2020-03-25 Posco LITHIUM METAL ANODE, MANUFACTURING METHOD THEREOF, AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
CN114628709A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种锂/氟化碳电池用分相电解液及其应用
CN113206293A (zh) * 2021-04-14 2021-08-03 华中科技大学 一种锂金属电池电解液及其制备方法与应用
CN113789074A (zh) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 锂负极保护层及其制备方法和应用
CN113789074B (zh) * 2021-07-28 2022-08-26 南京同宁新材料研究院有限公司 锂负极保护层及其制备方法和应用
CN114204102A (zh) * 2021-10-29 2022-03-18 同济大学 防水、隔空气、抑制枝晶全固态锂金属保护膜及其构筑策略
CN114204102B (zh) * 2021-10-29 2023-11-14 同济大学 防水、隔空气、抑制枝晶全固态锂金属保护膜及其构筑策略
CN114628785A (zh) * 2022-01-27 2022-06-14 华南理工大学 一种双功能锂硫电池电解液及其制备方法与应用
CN114864913A (zh) * 2022-06-15 2022-08-05 中原工学院 一种PEG-CeF3@Zn耐腐蚀复合金属负极及其制备方法和应用
CN114864913B (zh) * 2022-06-15 2023-12-22 中原工学院 一种PEG-CeF3@Zn耐腐蚀复合金属负极及其制备方法和应用
CN114813616A (zh) * 2022-06-29 2022-07-29 四川富临新能源科技有限公司 检测磷酸铁锂中碳含量的设备和方法

Also Published As

Publication number Publication date
CN107068971A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018103563A1 (zh) 一种锂电池的金属锂负极
CN107768741B (zh) 低共熔体电解质及其在二次锌电池中的应用
WO2019174161A1 (zh) 一种固态复合金属锂负极
JP5956175B2 (ja) マグネシウム二次電池、電解液のマグネシウム二次電池における使用方法、及びマグネシウム二次電池用電解液
CN110190243A (zh) 一种具有复合膜的锂金属负极的制备及应用
CN109728291A (zh) 一种高比能锂金属电池
CN108550858A (zh) 一种抑制锂枝晶的铜锌合金集流体
WO2017020860A1 (zh) 电池、电池组以及不间断电源
JP6928093B2 (ja) リチウム金属負極、その製造方法およびこれを含むリチウム二次電池
CN111354939B (zh) 一种多孔硅复合材料及其制备方法和用途
CN111342028B (zh) 一种石墨基负极的锂离子电池的化成方法
WO2020114050A1 (zh) 金属锂支撑体及其制备方法与应用
CN109546089B (zh) 一种硅基薄膜复合极片及其制备方法、锂离子电池
CN210074037U (zh) 复合极片及锂离子电池
CN108417843A (zh) 一种抑制钠枝晶的多孔铝集流体
Chang et al. Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode
CN102332570B (zh) 一种锂离子电池锡锑镍合金负极材料的制备方法
CN105870502A (zh) 一种电解液添加剂及其应用
CN111900333A (zh) 一种碳纳米管膜直接复合熔融锂金属的无锂枝晶阳极及其制备方法
Xie et al. Advancements in achieving high reversibility of zinc anode for alkaline zinc‐based batteries
Chen et al. Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries
CN109980158A (zh) 一种长循环锂二次电池
CN102054981A (zh) 加掺氢碳元素的负极材料及其制备方法
CN108878890B (zh) 一种锂离子电池导电膜/金属锂/导电基体三层结构复合电极及其制备方法
CN113314773A (zh) 一种水系锌离子电池电解质及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877871

Country of ref document: EP

Kind code of ref document: A1