WO2018100800A1 - 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム - Google Patents

情報処理装置及び情報処理方法、並びにコンピュータ・プログラム Download PDF

Info

Publication number
WO2018100800A1
WO2018100800A1 PCT/JP2017/027786 JP2017027786W WO2018100800A1 WO 2018100800 A1 WO2018100800 A1 WO 2018100800A1 JP 2017027786 W JP2017027786 W JP 2017027786W WO 2018100800 A1 WO2018100800 A1 WO 2018100800A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
output
information
displacement
control unit
Prior art date
Application number
PCT/JP2017/027786
Other languages
English (en)
French (fr)
Inventor
辰志 梨子田
真範 三上
山崎 達也
高橋 巨成
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to PCT/JP2017/042690 priority Critical patent/WO2018101279A1/ja
Priority to CN201780072301.7A priority patent/CN109997097A/zh
Priority to JP2018554167A priority patent/JP7159870B2/ja
Priority to EP17876048.4A priority patent/EP3550404B1/en
Priority to US16/348,846 priority patent/US11683471B2/en
Publication of WO2018100800A1 publication Critical patent/WO2018100800A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0605Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0638Displaying moving images of recorded environment, e.g. virtual environment
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0638Displaying moving images of recorded environment, e.g. virtual environment
    • A63B2071/0644Displaying moving images of recorded environment, e.g. virtual environment with display speed of moving landscape controlled by the user's performance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/065Visualisation of specific exercise parameters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0655Tactile feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • A63B2220/52Weight, e.g. weight distribution
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/72Temperature
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/75Humidity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/806Video cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/807Photo cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/75Measuring physiological parameters of the user calorie expenditure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/04Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for small-room or indoor sporting games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the technology disclosed in this specification relates to an information processing apparatus, an information processing method, and a computer program that control output according to a user instruction.
  • the free viewpoint video is a video in which the user can arbitrarily change the viewpoint position and the line-of-sight direction. For example, when viewing a free viewpoint video on a stationary display device, an instruction for a viewpoint position and a line-of-sight direction is input using a controller or a console. Also, when viewing a free viewpoint video using a head mounted display (HMD), the video is shot by changing the viewpoint position and the line of sight based on the result of detecting the movement of the user's head. It is possible to give the user an experience as if they were actually searching for the space.
  • HMD head mounted display
  • An object of the technology disclosed in the present specification is to provide an excellent information processing apparatus, information processing method, and computer program capable of suitably controlling output according to a user instruction.
  • a displacement information acquisition unit that acquires displacement information corresponding to a three-dimensional displacement of a predetermined part of a predetermined object on which the user is riding according to the user's physical movement; based on position information of the predetermined part; , And an output control unit that controls the output unit to perform a predetermined output based on the acquired displacement information.
  • the second aspect of the technology disclosed in this specification is: A displacement information acquisition step for acquiring displacement information corresponding to a three-dimensional displacement of the predetermined part of the predetermined object on which the user is riding according to the user's physical movement, based on the position information of the predetermined part; , And an output control step of controlling the output unit to perform a predetermined output based on the acquired displacement information.
  • a displacement information acquisition unit that acquires displacement information corresponding to a three-dimensional displacement of the predetermined part of the predetermined object on which the user is riding according to the user's physical movement, based on the positional information of the predetermined part;
  • the computer program is written in a computer-readable format so that the computer functions as an output control unit that controls the output unit to perform a predetermined output based on the acquired displacement information.
  • FIG. 1 is a diagram illustrating a configuration example of a dome type display 100.
  • FIG. 2 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 3 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 4 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 5 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 6 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 7 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 8 is a diagram illustrating a configuration example of the dome type display 100.
  • FIG. 9 is a diagram illustrating a configuration example of a system that realizes an interaction with a user.
  • FIG. 9 is a diagram illustrating a configuration example of a system that realizes an interaction with a user.
  • FIG. 10A is a schematic diagram illustrating an example in which a user sitting on a chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 10B is a schematic diagram illustrating an example in which a user sitting on the chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 11A is a schematic diagram illustrating an example in which a user sitting on a chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 11B is a schematic diagram illustrating an example in which a user sitting on the chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 12A is a schematic diagram illustrating an example in which a user sitting on a chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 12B is a schematic diagram illustrating an example in which a user sitting on the chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 13 is a diagram illustrating a configuration example using a commercially available subwoofer 935 and a speaker 936.
  • FIG. 14 is a diagram illustrating a configuration example in which the subwoofer 935 is embedded in the support 102.
  • FIG. 15 is a diagram illustrating a configuration example in which the subwoofer 935 is embedded in the support body 102.
  • FIG. 16 is a diagram illustrating a configuration example in which the subwoofer 935 and the speaker 936 are embedded in the support body 102 and installed.
  • FIG. 13 is a diagram illustrating a configuration example using a commercially available subwoofer 935 and a speaker 936.
  • FIG. 14 is a diagram illustrating a configuration example in which the subwoofer 935 is embedded in the support 102.
  • FIG. 15 is a diagram illustrating a configuration example in which the subwoo
  • FIG. 17 is a diagram illustrating a configuration example in which a chair 1000 includes a headrest speaker 934 and a rear speaker 937.
  • FIG. 18 is a perspective view of a configuration example in which the chair 1000 is provided with a headrest speaker 934.
  • FIG. 19 is a diagram illustrating a chair 1000 as an example of an object that acquires displacement information according to a user's body movement.
  • FIG. 20 is a diagram illustrating video processing for adding a left-right change in motion parallax to a free viewpoint video.
  • FIG. 21 is a diagram exemplifying video processing for adding a forward / backward tilt angle change of motion parallax to a free viewpoint video.
  • FIG. 22 is a diagram exemplifying video processing for adding a left-right tilt angle change of motion parallax to a free viewpoint video and changing the viewpoint position to the left and right.
  • FIG. 23 is a diagram illustrating a state where a user leaning on the seat back wakes up using the springiness of the seat back of the chair.
  • FIG. 24 is a diagram illustrating a treadmill 1500 as an example of an object that acquires displacement information according to the user's body movement.
  • FIG. 25 is a diagram showing a fitness bike 1600 as an example of an object that acquires displacement information according to a user's body movement.
  • FIG. 26 is a diagram showing a state where the front wheel rotates while the user hits the pedal of the fitness bike 1600.
  • FIG. 27 is a diagram illustrating a state where the user stands up on the fitness bike 1600.
  • FIG. 28 is a diagram showing how a user falls down on the fitness bike 1600 and falls on the left and right.
  • FIG. 29 is a diagram illustrating a state in which a user is watching a video displayed on a ceiling or a wall surface of a room while sitting on a chair.
  • FIG. 30 is a diagram illustrating a state in which the user is sitting on a chair with a hood.
  • FIG. 31 is a diagram illustrating a state in which the user is seated on a chair with a hood (a state in which the hood is closed and an image is viewed).
  • FIG. 32 is a diagram illustrating a state in which the user is seated on a passenger car seat.
  • FIG. 33 is a diagram illustrating a state where the user is lying on the bed.
  • FIG. 34 is a diagram showing a state where the user is lying on the bed.
  • FIG. 35 is a diagram illustrating an example of the body motion on the bed of the user.
  • FIG. 36 is a diagram illustrating an example of the body motion on the user's bed.
  • FIG. 37 is a diagram showing how the UI menu and content are controlled on the free viewpoint video.
  • FIG. 38 is a flowchart showing a processing procedure for controlling the interaction with the user based on the displacement information of the object according to the user's body movement.
  • FIG. 39 is a flowchart showing a processing procedure for automatically determining the type of object based on the movement of the marker and acquiring displacement information.
  • FIG. 38 is a flowchart showing a processing procedure for automatically determining the type of object based on the movement of the marker and acquiring displacement information.
  • FIG. 40 is a flowchart illustrating a processing procedure for automatically determining the type of an object based on a unique marker and acquiring displacement information.
  • FIG. 41 is a diagram illustrating a configuration example of an embodiment having a visualizer function for displaying an image corresponding to an acoustic signal.
  • FIG. 42 is a diagram showing only the dome type screen 101 in the configuration shown in FIG.
  • FIG. 43 shows the field of view of the user shown in FIG. 41 at a viewpoint that faces the dome-shaped screen 101 substantially directly.
  • FIG. 44 shows an example of a change in the effect image displayed on the dome type screen 101.
  • FIG. 45 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 41 is a diagram illustrating a configuration example of an embodiment having a visualizer function for displaying an image corresponding to an acoustic signal.
  • FIG. 42 is a diagram showing only the dome type screen 101 in the configuration shown in FIG.
  • FIG. 46 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 47 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 48 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 49 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 50 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 51 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 52 is a diagram showing an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 53 is a diagram showing an example of a change in the effect image displayed on the dome type screen 101.
  • FIG. 54 is a diagram illustrating an example of a change in the effect image displayed on the dome-shaped screen 101.
  • FIG. 55 shows only some of the particles included in the effect image.
  • FIG. 56 shows only some of the particles included in the effect image.
  • FIG. 57 is a diagram showing only some of the particles included in the effect image.
  • FIG. 58 is a diagram showing only some of the particles included in the effect image.
  • FIG. 59 shows only some of the particles included in the effect image.
  • FIG. 60 shows only some of the particles included in the effect image.
  • FIG. 61 shows only some of the particles included in the effect image.
  • FIG. 62 is a diagram showing only some of the particles included in the effect image.
  • FIG. 63 is a perspective view of a configuration example in which the user terminal 700 is arranged.
  • FIG. 64 is a diagram illustrating a configuration example of the user terminal 700.
  • FIG. 65 is a diagram illustrating a configuration example in which the system 900 includes a user terminal 700.
  • FIGS. 1 and 2 show a configuration example of a dome type display 100 that can be applied to the display of a free viewpoint video and a VR video. The user can observe the projected image when entering the dome.
  • FIG. 1 shows a cross section of the dome-shaped screen 101 cut along the frontal plane
  • FIG. 2 shows a cross section of the dome-shaped screen 101 cut along the sagittal plane.
  • the illustrated dome type display 100 includes a dome type screen 101, a support body 102 that supports the dome type screen 101, and two projectors 103 and 104. Each projector 103 and 104 projects an image toward the dome-shaped screen 101 based on the baseband image signal.
  • a chair 106 on which a user who observes the projected image is seated is installed in the space formed by the dome-shaped screen 101.
  • the inner periphery of the dome-shaped screen 101 is a display surface for a projected image.
  • the dome-shaped screen 101 is made of a resin such as lightweight FRP (Fiber Reinforced Plastics), metal, glass, acrylic, or the like.
  • the inner peripheral surface of the dome-shaped screen 101 is preferably subjected to painting, coating, or other surface treatment for preventing irregular reflection of light (projected image).
  • the inner periphery of the dome-shaped screen 101 has a spherical or hemispherical shape. When the dome-shaped screen 101 having a spherical or hemispherical shape is used, it is possible to project a realistic image with a wide viewing angle in the horizontal direction and the vertical direction.
  • the outer shape of the dome type screen 101 is not particularly limited. For example, a foldable or retractable dome type screen (not shown) may be used.
  • the support body 102 includes a pair of shaft portions 102A and 102B whose rotational axes coincide with each other, and the pair of shaft portions 102A and 102B supports the dome-shaped screen 101 so as to be rotatable around the horizontal axis within the sagittal plane. .
  • the structure is not limited to the structure supported by the pair of shaft portions 102A and 102B.
  • the support 102 may also include a mechanism for supporting the dome screen 101 so as to be rotatable about a vertical axis.
  • the support body 102 may have a structure that supports the dome-shaped screen 101 so as to have a degree of freedom other than rotation, such as vertical movement.
  • the two projectors 103 and 104 each project the video signal (wide viewing angle video signal) supplied from the video decoding unit 105 onto the inner periphery of the dome-shaped screen 101.
  • Each projector 103 and 104 can project an image with high chroma and good color reproducibility onto the dome-shaped screen 101 using a laser, LED, mercury lamp, xenon lamp or the like as a light source.
  • Each projector 103 and 104 has a relative position and posture with respect to the dome-shaped screen 101 in the vicinity of the edge of the dome-shaped screen 101 so that the projected image of each other can cover the entire display surface on the inner periphery of the dome-shaped screen 101. It is fixed.
  • Each projector 103 and 104 is fixed to the dome-shaped screen 101 via a table (not shown) having, for example, three axis directions and six degrees of freedom around each axis, and can finely adjust each optical axis (projection direction). And When the dome-shaped screen 101 is rotated around the horizontal axis (described later), the projectors 103 and 104 also move together.
  • a wide viewing angle image can be presented on the dome-shaped screen 101 by performing a stitching process on a joint portion between images projected on the dome-shaped screen 101 from the projectors 103 and 104.
  • Any algorithm can be applied to the stitching process.
  • a wide viewing angle image may be presented on the dome-shaped screen 101 by performing geometric correction, edge blending, or the like on a joint portion between projected images.
  • any algorithm can be applied to the geometric correction and the edge blending process.
  • the projected images from the projectors 103 and 104 each have a resolution of 4K (around 4000 ⁇ 2000 in length).
  • the distortion of the wide viewing angle video due to the optical distortion of each of the projectors 103 and 104, the deformation of the inner periphery of the dome-shaped screen 101 (including change over time), or the like may be corrected by image processing.
  • each of the projectors 103 and 104 projects a test pattern having a known shape onto the dome screen 101 and cancels the distortion of the projected image of the test pattern.
  • a test pattern having a known shape is projected from each projector 103 and 104 onto the dome-shaped screen 101, a test pattern projected by an external camera or the like is photographed, and a test is performed based on the photographed image.
  • Image processing that cancels the distortion of the pattern projection image may be performed.
  • three-dimensional measurement results such as position and orientation estimation of the projectors 103 and 104 and shape estimation of the dome type screen 101 may be used for image processing for canceling distortion.
  • the distortion of the projected image caused by the positioning error when the projectors 103 and 104 are fixed to the dome type screen 101 may be corrected by image processing.
  • GUI Graphic User Interface
  • menus and buttons may be superimposed and displayed on the all-round images projected from the projectors 103 and 104.
  • These GUIs may be operated by various input means such as hand gesture input and line-of-sight input.
  • the dome type screen 101 is rotatably supported by a support body 102.
  • a 360-degree all-around image in the horizontal direction can be presented on the display surface of the dome-shaped screen 101.
  • FIGS. 3 and 4 when the dome-shaped screen 101 is rotated about the rotation axis of the shaft portions 102A and 102B by 90 degrees around the horizontal axis in the sagittal plane, the display of the dome-shaped screen 101 is displayed.
  • a 360-degree omnidirectional image can be presented on the screen in the vertical direction. For example, when observing a wide viewing angle image assuming the sky, high-rises, etc., as shown in FIGS.
  • dome-shaped screen 101 if the dome-shaped screen 101 is rotated by 90 degrees, an image below (for example, the ground) is also presented. can do. Further, as shown in FIGS. 1 to 4, not only the dome type screen 101 is installed in the horizontal direction or the vertical direction, but also the dome type screen 101 is arranged in the sagittal plane as shown in FIGS.
  • the dome type display 100 can be used by tilting it at an arbitrary angle of 0 to 90 degrees around the horizontal axis.
  • the dome type display 100 includes the two projectors 103 and 104, but may be configured to install three or more projectors.
  • FIG. 7 shows a configuration example of the dome type display 100 in which two projectors 108 and 109 are attached to the dome type screen 101 in addition to the projectors 103 and 104.
  • FIG. 8 shows a state in which a large number of pico projectors are installed on the dome type screen 101. Increasing the number of projectors installed can improve the brightness, contrast, and resolution of projected images.
  • a projection image from a certain projector may be blocked by a user's protruding hand, but it can be supplemented with a projection image from another projector.
  • power consumption increases. Therefore, instead of driving all the installed projectors at the same time, only the required number of projectors may be partially operated as appropriate.
  • a projector whose projected image does not become a shadow may be selected and controlled so as to be partially driven according to the posture of the user's body or the position of the hand in the dome-shaped screen 101.
  • a camera, distance sensor, etc. are installed for each projector to detect whether there is an obstacle between each projector and the surface of the screen 101 or a shadow is formed on the projected image, and turn off the projector where the image is not projected well. Instead, the adjacent projector may be turned on. In FIG. 8, the pico projector displayed in white is on and the pico projector displayed in gray is off.
  • the projected image on the dome-shaped screen 101 has an advantage that the user can easily feel the scale feeling of the subject as compared with the case where the enlarged virtual image is observed with the HMD.
  • the inner diameter of the dome-shaped screen 101 is set to about 1.5 to 2 meters, an image of a subject (person or the like) that the user feels life-size can be displayed, and the reality is increased.
  • the user has a realistic experience where the person in the video is in contact with his / her eyes (in eye contact) be able to.
  • the dome type display 100 has a feeling of release compared to the HMD, but the immersive feeling increases by presenting the 360-degree all-around video in the horizontal direction.
  • the projected image on the dome-shaped screen 101 is an enclosed image that is closer to reality. Further, by combining the dome-shaped display 100 with speakers and headphones and stereophonic sound using signal processing, the user is at or participates in a place where video and audio are recorded. A feeling like that can be given.
  • HMD can also be cited as a display device that allows viewing of free viewpoint video and VR video.
  • the HMD is small and has no restrictions on the installation location, and can be used anywhere.
  • the HMD since the HMD is in close contact with the user's skin, there is a problem that the device is damaged by perspiration.
  • the user's face and field of view are hidden when the HMD is worn, it is difficult for the user to use with other input devices, the facial expression cannot be read, and there is a risk that the limb will hit an obstacle when moving. There is also a problem.
  • the dome type display 100 since the user is not wearing anything, there is an advantage that there is a feeling of release and it is easy to endure use for a long time.
  • the user in the dome-shaped screen 101 can be observed with a photographed image of the camera, and face recognition (personal authentication) and facial expression recognition can be performed.
  • face recognition personal authentication
  • facial expression recognition since a plurality of people enter the dome-shaped screen 101 at the same time, it is easy to share a viewing image and realize collaborative work.
  • the dome type display 100 may include a multimodal interface using a space closed by the dome.
  • the multi-modal interface for example, adjusts the temperature and humidity in the dome, generates odors, blows wind (light breeze, headwind, air blast) and sprays (water blast) to the user, Applying tactile sensations (pricking the back, feeling of touching your neck or feet) and vibration / swaying (impact from the bottom of the chair 106, swaying, etc.), giving a smell or smell Or a means for freely controlling the environment of the viewing space. Since the work space and the outside world are partitioned by the dome-shaped screen 101, a multi-modal interaction can be applied to provide a realistic experience similar to the virtual reality space.
  • the dome type display 100 is installed indoors, but of course, it may be installed outdoor. Further, a moving part such as a caster may be attached to the lower end of the support 102 so that the installation location can be easily moved. Further, not only one dome type display 100 is used by one person but also a plurality of persons and use in B2B (Business to Business) are assumed. Alternatively, it is also conceivable to display a free viewpoint image or a VR image using a ceiling or wall surface of a room or a wall surface of a passenger car cabin as a projection surface instead of a dome shape (described later).
  • the dome-type display 100 can change the viewpoint position and the line-of-sight direction of the free viewpoint video and can display a stereoscopically visible video.
  • the movement of the viewpoint position is, for example, continuous movement realized by moving a mobile device equipped with a multi-viewpoint camera or a wide-angle camera that captures a free-viewpoint image (see FIG. 22), or far away. It is assumed to include discontinuous movement of instantaneously moving (jumping) between distant viewpoint positions.
  • the viewpoint position moves continuously, the image projected on the dome type screen 101 also changes continuously.
  • the viewpoint position moves discontinuously, the image projected on the dome type screen 101 is the next.
  • at least a part of the video at the viewpoint position that has moved instantaneously may be a VR video or a CG video instead of a live-action video.
  • the change in the line-of-sight direction corresponds to, for example, changing the direction of the camera that is capturing the free viewpoint video (about at least one of roll, pitch, and yaw) (see FIG. 22). thing).
  • the line-of-sight direction changes, for example, an image (view angle) displayed in the front direction of the user on the dome-shaped screen 101 moves in a direction that cancels the change in the line-of-sight direction (when the line of sight moves in the right direction, the display image is The image area displayed on the right side of the user before the change is now displayed in front.
  • FIG. 9 shows a configuration example of a system 900 that displays an image and realizes interaction with the user on the dome type display 100.
  • the interaction realized by the illustrated system 900 can be applied not only to the dome-type display 100 but also to various types of display devices that display free viewpoint video and VR video. I want to be. That is, at least the output system of the system 900 can be replaced by the HMD.
  • the system 900 has an advantage that interaction can be realized even when the user is not wearing anything, and a dedicated controller is not required at all. Details of this point will be described later.
  • the illustrated system 900 relates to a video display system that displays video on a display screen such as the dome-shaped screen 101, a sound output system that outputs sound in accordance with the displayed video, and a user who views these video and sound in the dome.
  • An input system for inputting sensor information and an output system for outputting feedback according to the input information from the input system are provided, and the operation of each system is controlled by the control unit 910 in an integrated manner.
  • the control unit 910 is configured by an integrated circuit such as SoC (System-on-a-Chip). On the SoC as the control unit 910, a main controller 911, a main memory 912, a communication unit 913, a video digital signal processing unit (Video DSP) 914, and an acoustic digital signal processing unit (Aidio DSP) 915 A plurality of circuit modules for realizing each function such as are mounted.
  • SoC System-on-a-Chip
  • the main controller 911 controls the output of video and sound in the dome-shaped screen 101, and also controls the feedback output based on the sensor information about the user.
  • the main controller 911 controls the feedback output based on the displacement information of the object according to the user's body motion in order to realize the interaction (described later) according to the user's body motion. It also functions as a “control unit”. Further, the main controller 911 may control the output of the video according to the output sound as an output control unit.
  • the main memory 912 is configured by an SDRAM such as a flash memory or DDR (Double-Data-Rate), and is used as a working memory of the main controller 911.
  • SDRAM such as a flash memory or DDR (Double-Data-Rate)
  • the communication unit 913 includes wireless communication modules such as Wi-Fi (Wireless Fidelity), Bluetooth (registered trademark), and NFC (Near Field Communication). For example, it is possible to receive free viewpoint video and stereophonic audio that are distributed in a streaming manner by the communication unit 913 and reproduce them on the dome type display 100.
  • the source of video and audio is not limited to streaming, and video and audio recorded on a medium such as a BD (Blu-ray Disc) can be reproduced and output on the dome-type display 100.
  • an audio signal from an audio player 944 described later may be received by the communication unit 913.
  • the video DSP 914 has a memory (frame memory) inside.
  • the video DSP 914 performs digital signal processing on the video signal received by the communication unit 913.
  • the system 900 includes two or more projectors 103, 104,... That project an image on the dome-shaped screen 101 as an image display system.
  • the video DSP 914 corresponds to the video decoding unit 105 of the dome type display 100 shown in FIG. 1 and outputs RGB video signals after signal processing to the projectors 103, 104,.
  • the acoustic DSP 915 digitally processes an acoustic signal received by the communication unit 913 or an audio interface (not shown), and outputs the signal to an acoustic output system while buffering it in an internal memory.
  • the system 900 includes at least one of a headphone 933, a headrest speaker 934, or a subwoofer 935 as a sound output system.
  • the sound signal processed by the DSP 915 When the sound signal processed by the DSP 915 is read from the internal memory, it is output via an interface such as I 2 C (Inter-Integrated Circuit), converted to an analog signal by a DAC (Digital to Analog Converter) 931, and After being amplified by the amplifying unit (AMP) 932, sound is output from any of the speaker 936, the headphone 933, the headrest speaker 934, or the subwoofer 935.
  • I 2 C Inter-Integrated Circuit
  • the system 900 includes a displacement sensor 941, a head detection camera 942, and an external sensor 943 as an input system.
  • the displacement sensor 941 detects position information of a predetermined part of the object used by the user in a state where nothing is worn, and a displacement corresponding to the three-dimensional displacement of the predetermined part according to the user's body movement Get information.
  • Objects are, for example, furniture and fitness equipment used in daily life.
  • Displacement information is acquired by motion capture of markers attached to the surface of these objects and feature points that can be extracted by image recognition processing. Is done. Details of the method for acquiring the displacement information will be described later.
  • the acquired displacement information is taken into the control unit 910 via an interface such as SPI (Serial Peripheral Interface), and used for feedback output control according to the movement of the user's body.
  • the displacement sensor 941 functions as a “displacement information acquisition unit” in realizing the interaction according to the movement of the user's body.
  • the head detection camera 942 is installed, for example, in front of the user within the dome-shaped screen 101, and detects the user's head using, for example, a skeleton detection or voice recognition function, and images the user's head image captured. Are output to the control unit 910 as RGB.
  • a known motion capture sensor or information processing apparatus having an RGB camera, a depth sensor, or the like may be used. Based on the video input from the head detection camera 942, the user's line-of-sight information can be acquired.
  • the external sensor 943 is various sensors externally connected to the dome type display 100, and outputs a detection signal of the sensor to the control unit 910 via an interface such as SPI.
  • the external sensor 943 detects the viewing environment of the user in the dome, for example, starting with temperature and humidity.
  • the external sensor 943 is a vehicle that is captured via ODB2 (On Board Diagnostics second generation).
  • ODB2 On Board Diagnostics second generation
  • the audio player 944 is connected to, for example, the dome-type display 100 wirelessly or by wire, and outputs an acoustic signal to the control unit 910 via the communication unit 913 or an audio interface (not shown) such as a phone jack.
  • the audio player 944 may store, for example, music data or output music data from a medium such as a CD (Compact Disc) in order to output an acoustic signal.
  • a CD Compact Disc
  • the output system included in the system 900 outputs feedback according to input information from the input system as described above.
  • the output system functions as an “output unit” that performs output based on displacement information of a predetermined part of the object according to the user's body motion.
  • the system 900 includes a drive system output unit 951, an external output unit 952, and a display UI unit 953 as a feedback output system, and further includes the headphone 933, the headrest speaker 934, and the subwoofer 935 described above.
  • the sound output unit such as can be used as a feedback output system.
  • the MCOM 950 controls outputs from these feedback output systems in accordance with instructions from the control unit 910 via an interface such as SPI.
  • the drive system output unit 951 and the external output unit 952 constitute a multimodal interface, adjust the temperature and humidity in the dome, and provide the user with wind (light wind, headwind, air blast) and splash (water blast) , Touching the user's body (pricking the back, feeling that something touches the neck and feet), vibration / swing, light electrical stimulation, etc.
  • wind wind, headwind, air blast
  • splash water blast
  • Touching the user's body prricking the back, feeling that something touches the neck and feet
  • vibration / swing light electrical stimulation
  • the drive system output unit 951 includes an actuator or the like that applies vibration or swing to an object used by a user such as the chair 106 or tilts the object.
  • the MCOM 950 controls the output from the drive system output unit 951 via an interface such as an SPI.
  • the external output unit 952 includes devices such as an air conditioner and a humidifier.
  • an air conditioner ECU Electronic Control Unit
  • the MCOM 950 controls the output from the external output unit 952 via an interface such as an SPI. It also includes device control via a network.
  • the display UI unit 953 corresponds to a UI menu displayed on the dome-shaped screen 101 so as to be superimposed on content such as a free viewpoint video, CG, OSD, and Picture in Picture.
  • An interaction is performed between the MCOM 950 and the display UI unit 953 via an interface such as I 2 C, for example.
  • the MCOM 950 can control the DAC 931 or the amplifier 932 via an interface such as I 2 C, for example, to control the feedback output by sound.
  • FIG. 10 to FIG. 10A and 10B are schematic diagrams illustrating an example in which a user sitting on a chair 1000 views an image projected on the dome-shaped screen 101.
  • FIG. 10A and 10B show a cross section of the dome-shaped screen 101 cut by a sagittal plane.
  • the angle of the seat back (backrest) of the reclining chair is generally said to be about 30 degrees.
  • the angle between the chair 1000 and the seat back is 28 degrees (see FIG. 10A).
  • 10A shows a state where the user's head is located along the seat back of the chair 1000
  • FIG. 10B shows a state where the user pulls his chin and keeps his line of sight horizontal.
  • the installation angle of the speaker 936 is examined.
  • the speaker 936 may be, for example, a sound bar speaker.
  • the higher the frequency and the smaller the size of the cone speaker used the sharper the speaker directivity.
  • the angle between the straight line directly facing the vibration direction of the speaker 936 and the floor surface intersecting the user's face is 35 when the user's head is positioned along the seat back as shown in FIG. 10A.
  • the speaker 936 is desirably installed so that an angle formed by a straight line facing the vibration direction of the speaker 936 and the floor surface is an angle of about 35 degrees to 40 degrees.
  • the speaker 936 is installed so that the angle formed by the straight line facing the vibration direction of the speaker 936 and the floor surface is 35 degrees to 40 degrees, and the speaker 936 has an elevation angle of 35 degrees to 40 degrees. It may be expressed that it is installed at.
  • the support of the dome-shaped screen 101 may have a configuration for installing the speaker 936, or the speaker for installing the speaker 936.
  • a stand may be prepared separately.
  • the dome-shaped screen 101 is installed at an angle of 45 degrees with respect to the floor surface.
  • each configuration be arranged so that is 1.2 meters or more.
  • the reflection of the sphere is collected at the center of the sphere, it is desirable that the user's viewing position is separated from the center of the dome-shaped screen 101 in order to avoid the problem of standing waves due to acoustic reflection.
  • the inner diameter of the dome type screen 101 is set to 2 meters. Yes.
  • the center position of the diameter of the dome-shaped screen 101 is desirably about 1.3 meters as shown in FIGS. 10A and 10B.
  • the dome-shaped screen 101 and the chair 1000 are arranged as shown in FIGS. 10A and 10B.
  • the mold screen 101 can cover the user's upper viewing angle of 50 degrees.
  • the dome-shaped screen 101 when the dome-shaped screen 101 is installed at 45 degrees with respect to the floor surface, it is difficult to cover the user's downward viewing angle of 75 degrees. Therefore, in order to cover the lower viewing angle of 75 degrees as much as possible, for example, as shown in FIGS. 11A and 11B, the dome-shaped screen 101 can be installed at 60 degrees with respect to the floor surface.
  • FIG. 11A and FIG. 11B are schematic diagrams showing an example in which a user sitting on a chair 1000 views an image projected on a dome-shaped screen 101 installed at 60 degrees with respect to the floor surface. Note that various values not shown in FIGS. 11A and 11B may be the same as the examples shown in FIGS. 10A and 10B.
  • 11A shows a state where the user's head is located along the seat back of the chair 1000
  • FIG. 11B shows a state where the user pulls his chin and keeps his line of sight horizontal.
  • the speaker 936 is installed at an elevation angle of 35 to 40 degrees so that a straight line facing the vibration direction of the speaker 936 intersects the user's face.
  • a straight line that faces the vibration direction of the speaker 936 is blocked by the dome-shaped screen 101.
  • the speaker 936 is installed so that the straight line directly facing the vibration direction of the speaker 936 is not blocked by the dome screen 101, the speaker 936 is installed inside the dome screen 101. It will be an obstacle.
  • a method of vibrating the dome type screen 101 with an actuator a method of using a transmission type screen, or the like can be considered.
  • problems such as standing waves due to acoustic reflections, problems with the strength of the screen, image quality deterioration due to transmission, and the like are considered unrealistic.
  • the dome type screen 101 is installed at about 50 degrees with respect to the floor surface, and the speaker 936 is installed immediately below the lower end of the dome type screen 101.
  • the dome-shaped screen 101 does not block the straight line that faces the vibration direction of the speaker 936 between the speaker 936 and the user's face while covering a greater part of the lower viewing angle of 75 degrees. Is possible.
  • the speaker 936 may be a sound bar speaker including an array speaker in which a plurality of speakers are arranged. Then, the sound may be controlled using an array speaker so that sound waves emitted from a plurality of speakers uniformly reach the viewing area, and the spread of the wrapped sound and a wide listening spot are realized.
  • a subwoofer 935 that outputs low-frequency sound in addition to the speaker 936.
  • the subwoofer 935 outputs low-frequency sound and has low directivity, since the sound pressure is inversely proportional to the square of the distance, the user feels directionality due to the sound pressure at a short distance of about 1 meter, for example. There is a case. Therefore, it is desirable that the subwoofer 935 is installed directly behind the speaker 936 so that the distance to the user is secured, and the arrival phase at the viewing position is matched. Further, if the subwoofer 935 is installed inside the dome-shaped screen 101, direct sound may be reflected. Therefore, it is desirable to install the subwoofer 935 at a position where the direct sound does not reach the dome-shaped screen 101. .
  • FIG. 12A and FIG. 12B show examples of desirable configurations based on the above-described examination.
  • 12A and 12B are schematic diagrams illustrating an example in which a user sitting on a chair 1000 views an image projected on the dome-shaped screen 101 installed at 50 degrees with respect to the floor surface.
  • Various values not shown in FIGS. 12A and 12B may be the same as those shown in FIGS. 10A and 10B.
  • 12A shows a state in which the user's head is located along the seat back of the chair 1000
  • FIG. 12B shows a state in which the user pulls his chin and keeps his line of sight horizontal.
  • the speaker 936 has an elevation angle of 35 degrees to 40 degrees. It may be installed at a degree.
  • FIG. 13 shows a perspective view of the configuration example shown in FIGS. 12A and 12B.
  • the subwoofer 935 is installed directly behind the speaker 936 (sound bar speaker).
  • the subwoofer 935 and the speaker 936 may be commercially available products that are widely used.
  • FIG. 14 shows a configuration example in which the subwoofer 935 is embedded in the support 102.
  • 15 shows a configuration example in which the subwoofer 935 is embedded in the support body 102 and the speaker 936 is installed on the support body 102 so as to be concentrically curved along the curve of the dome-shaped screen 101 viewed from the vertical direction.
  • FIG. 16 shows a configuration example in which the subwoofer 935 and the speaker 936 are embedded in the support body 102 and installed.
  • the speaker 936 is preferably installed at an elevation angle of 35 to 40 degrees.
  • FIGS. 12 to 16 show examples in which the subwoofer 935 and the speaker 936 are provided as the sound output system, the present embodiment is not limited to such an example.
  • a headrest speaker or a rear speaker may be provided as a further sound output system.
  • FIG. 17 shows a configuration example in which a chair 1000 is provided with a headrest speaker 934 and a rear speaker 937.
  • the configuration example illustrated in FIG. 17 is the same as the configuration example illustrated in FIG. 12A except that the chair 1000 includes a headrest 1040, a headrest speaker 934, and a rear speaker 937.
  • the chair 1000 includes a headrest 1040, a headrest speaker 934, and a rear speaker 937.
  • FIG. 17 shows an example in which the rear speaker 937 is provided, but instead of providing the rear speaker 937, a desired position (for example, the position of the rear speaker 937 shown in FIG. 17) is obtained by performing sound field correction by signal processing. ), The sound sources may be rearranged virtually.
  • FIG. 18 is a perspective view of a configuration example in which the chair 1000 is provided with the headrest speaker 934.
  • both the subwoofer 935 and the speaker 936 (sound bar speaker) or only the speaker 936 are provided with headrests provided on the left and right sides of the user.
  • a speaker 934 can be substituted.
  • the user who has entered the dome-shaped screen 101 is seated on the chair 106, but the interaction of the dome-shaped display 100
  • the method of use is not limited to this. Even when an object other than a chair is used, the user can enter the dome-shaped screen 101 and view a free viewpoint video or a VR video. For example, objects such as existing furniture used in daily life such as sofas and beds, fitness equipment such as fitness bikes and treadmills, etc. are installed in the dome-shaped screen 101, and the user uses any of these objects.
  • the video projected on the dome-shaped screen 101 can be viewed.
  • the state in which the user is using the object is sitting on a chair and leaning against a seat back, stroking a pedal across a fitness bike, or running or walking on a treadmill Or lying on a sofa or bed. In either state, the user is not wearing anything. Basically, the user's body is in a released state that is not restrained by the object in use, but the user's body touches the object, such as riding on the object. For this reason, when the user's body such as the trunk or the upper body moves, the three-dimensional position information such as rotation and translation of the predetermined part of the object is displaced accordingly.
  • the movement of the user's trunk or upper body is derived directly or indirectly based on the displacement information of the object used by the user, and no dedicated sensor is attached.
  • a predetermined part of the object is displaced three-dimensionally according to the user's body movement. Therefore, based on the position information of the predetermined part of the object, the displacement information of the predetermined part is acquired, and the operation of the user's trunk, upper body, etc. is directly or indirectly derived.
  • the output of the dome type display 100 includes video display on the dome type screen 101.
  • video feedback can be given to the user by controlling the brightness and resolution of the video, the display position (view angle), transition direction, motion parallax, and the like in the free viewpoint video based on the displacement information.
  • the output of the dome display 100 includes an acoustic output.
  • the head position of a user who is viewing a free viewpoint video is estimated based on displacement information, and sound feedback is given to the user by controlling sound image localization and reverberation toward the head position. Can do.
  • so-called foveal rendering may be applied to rendering of the dome display 100 according to the user's line-of-sight information.
  • the output of the dome type display 100 is the environmental change in the dome such as temperature, wind, humidity, smell, sound effect, etc. using a multimodal interface, tactile and tilt applied to the user, acceleration feeling, gravity direction feeling, vibration , Rocking, light electrical stimulation, etc.
  • a multimodal interface such as temperature, wind, humidity, smell, sound effect, etc.
  • tactile and tilt applied to the user such as acceleration feeling, gravity direction feeling, vibration , Rocking, light electrical stimulation, etc.
  • the predetermined part of the object is, for example, a characteristic part existing on the surface of the object.
  • the characteristic part of the object is a light emitting element that emits invisible light such as infrared rays or visible light, and is attached to a predetermined place or an arbitrary place on the surface of the object.
  • the characteristic portion may be a static visual marker including a known two-dimensional graphic pattern, instead of an active marker such as a light emitting element.
  • the displacement information of the feature portion can be acquired by tracking (motion capture) such a feature portion with one or two or more cameras equipped with a wide-angle lens or the like.
  • the feature portion of the object does not need to be a marker attached to the surface of the object, and may be a feature point that can be extracted from the captured image of the object using image recognition processing, edge processing, or the like.
  • the displacement of two or more characteristic portions existing on the surface of the object can be measured, and three-dimensional displacement information corresponding to the user's body movement such as the trunk and upper body can be derived.
  • Displacement information can be acquired.
  • first displacement information corresponding to the three-dimensional rotational displacement of the surface formed by these at least three feature locations can be acquired. it can.
  • the first displacement information corresponding to the rotational displacement of the object directly or indirectly represents the three-dimensional displacement of the trunk of the user who uses the object. Then, based on the rotation direction of the object acquired as the first displacement information and the displacement amount (or rotation angular velocity or rotation angular acceleration) in the rotation direction, the video display of the dome type display 100 or the multimodal interface is displayed. By performing feedback control of the output and the like, it is possible to realize an interaction according to the movement of the user's body in a state where no dedicated sensor is worn.
  • second displacement information corresponding to the three-dimensional translational displacement of the surface formed by these at least three feature locations can be acquired. it can.
  • third displacement information corresponding to the three-dimensional reciprocal translational displacement of the surface formed by these at least three characteristic locations can also be acquired.
  • the second displacement information corresponding to the translational displacement of the object and the third displacement information corresponding to the reciprocal translational displacement of the object directly or indirectly represent the physical motion of the user who uses the object. .
  • Examples of objects used by the user include existing furniture used in daily life such as chairs, sofas, and beds, and fitness equipment such as fitness bikes and treadmills. Many of the objects are placed on the floor (specifically, directly below the dome-shaped screen 101), and are used in such a form that the user gets on the floor. In such a usage pattern, even if the user performs a physical motion, the object does not substantially move relative to the floor (or the user performs a physical motion that moves the object relative to the floor). No) can be imposed. Under such constraint conditions, the first displacement information corresponding to the rotational displacement of the object, the second displacement information corresponding to the translational displacement of the object, or the third displacement information corresponding to the reciprocating translational displacement of the object. Based on the above, feedback control such as video display of the dome type display 100 and output of the multimodal interface may be performed.
  • the interaction technology disclosed in the present specification does not require the user to wear any dedicated sensor and does not need to operate an input device such as a controller or a console. There is a feature in the point.
  • various objects used by users such as existing furniture used in daily life such as chairs, sofas and beds, fitness equipment such as fitness bikes and treadmills, etc. may be widely used commercial products. It is possible to install a plurality of characteristic locations by attaching invisible light or visible light emitting elements or visual markers to the surface of these commercially available objects, or to extract them by image recognition processing. By using the feature points as the feature locations, it is possible to acquire displacement information related to the rotational displacement and translational displacement of the object in accordance with the body movement such as the user's trunk. That is, according to the technology disclosed in the present specification, various commercial products that are commercially available or widely used are taken in and used as objects that are displaced according to the user's body motion, and according to the user's body motion. Interaction is possible, and no dedicated controller is required.
  • the dome-shaped display 100 itself can reproduce the sense of being in the place and the sense of participating in the place by combining the enclosed image and the sound environment (as described above), and the user does not bother to go to the site. But you can realize the experience of visiting various places. Furthermore, by utilizing the interaction technique proposed in this specification, it is possible to reproduce the sensation of participation by the dome display 100 on the spot.
  • the interaction technology proposed in this specification can detect a user's body movement such as the displacement of the trunk through furniture used in daily life such as a chair or a bed, and can substitute for input. It can also be developed as an alternative input function that replaces the controller and console for the disabled.
  • the interaction technique proposed in this specification can be used not only in general households but also in facilities such as hospitals and rehabilitation. For example, if the user is using a wheelchair, various external devices such as detecting the three-dimensional displacement of the wheelchair, opening / closing the door, raising / lowering the reclining bed, turning on / off the lighting, nurse call, opening / closing the curtain, etc.
  • the external device to be controlled may be connected to the camera that detects the three-dimensional displacement of the wheelchair via the network.
  • the interaction technique proposed in this specification can be used even in a mobile body with limited space such as an airplane, a train, a bus, and a passenger car that supports automatic driving.
  • FIG. 19 illustrates a chair 1000 on which the user is seated as an object for acquiring displacement information according to the user's body movement.
  • the illustrated chair 1000 is assumed to have a seat back and an armrest.
  • the chair 1000 is installed under the dome-shaped screen 101, and the user can sit on the chair 1000 and watch an image projected on the dome-shaped screen 101.
  • Markers 1011 to 1014 are attached to the four corners of the seat back 1010 of the chair 1000, respectively.
  • Each of the markers 1011 to 1014 may be an element that emits invisible light such as infrared rays or visible light, or a visual marker made of a known graphic pattern.
  • a plurality of feature points that can be extracted by image recognition processing may be used instead of the markers.
  • cameras 1021 and 1022 are installed on the left and right sides of the chair 1000, respectively.
  • the displacement sensor 941 serving as a displacement information acquisition unit detects the images of the markers 1011 to 1014 from the captured images of the cameras 1021 and 1022, the three-dimensional of the markers 1011 to 1014 is determined based on the principle of triangulation. Position information can be calculated.
  • the three-dimensional position information of each of the markers 1011 to 1014 changes mainly according to the movement of the trunk and the tilting movement of the upper body, such as leaning against the seat back 1010 while the user is sitting on the chair 1000.
  • a displacement sensor 941 serving as a displacement information acquisition unit inputs captured images of the cameras 1021 and 1022 and keeps track of the position information of the markers 1011 to 1014, whereby each of the markers 1011 to 1011 corresponding to the user's physical movements. 1014 three-dimensional displacement information can be acquired.
  • a marker may be attached to the seating part of the chair 1000 or the armrest 1030.
  • the three-dimensional displacement information of the part to which the marker on the armrest 1030 is attached according to the user's body movement such as putting an elbow on the armrest 1030 can be acquired.
  • the displacement sensor 941 as the displacement information acquisition unit corresponds to a three-dimensional rotational displacement of a straight line formed by any two markers attached to the seat back 1010 of the chair 1000 in accordance with the user's body movement.
  • the first displacement information to be acquired can be acquired.
  • the displacement sensor 941 obtains first displacement information corresponding to a three-dimensional rotational displacement corresponding to a user's body movement on a surface formed by three or more markers attached to the seat back 1010 of the chair 1000. Can be acquired.
  • the first displacement information corresponding to the three-dimensional rotational displacement includes, for example, the rotational direction, the rotational displacement amount in the rotational direction, the rotational displacement amount (or rotational angular velocity) per unit time, and the rotation as the first displacement information corresponding to the three-dimensional rotational displacement.
  • Get information such as angular acceleration.
  • the rotational displacement amount, rotational angular velocity, and rotational angular acceleration relating to the tilt angle of the seat back 1010 can be acquired.
  • the displacement information on the seat back 1010 and the seat surface rotation angle of the chair 1000 (when the chair 1000 has a seat surface rotation function) and the tilt angle in the front-rear or left-right direction is acquired and output. It can input into the control part 910 as a control part.
  • the displacement sensor 941 includes second displacement information corresponding to translational displacement according to the user's body movement, at least one of the markers 1011 to 1014 attached to the seat back 1010 of the chair 1000, and the user's
  • the third displacement information corresponding to the reciprocal translational displacement corresponding to the body motion can be acquired.
  • the displacement sensor 941 uses, for example, a translation direction, a translation amount in the translation direction, a translation displacement amount per unit time (or as the second displacement information and the third displacement information corresponding to the translational displacement or the reciprocating translational displacement. , Translation speed) and translation acceleration. For example, it is possible to acquire displacement information related to the movement of the chair 1000 in the up / down, front / rear, and left / right directions and input it to the control unit 910 as an output control unit.
  • Table 1 below illustrates the correspondence between the detection method of the markers 1011 to 1014 attached to the chair 1000 by the displacement sensor 941 and the displacement information input to the control unit 910.
  • the displacement sensor 941 detects the amount of vertical movement per unit time of the chair 1000 by detecting the displacement information of the three-dimensional position of at least one of the markers 1011 to 1014, and displays the result of detecting the chair 1000. Is input to the control unit 910 as the vertical movement amount.
  • the amount of vertical movement of the chair 1000 corresponds to the operation in the height direction when the user is seated on the chair 1000. Note that the amount of movement of the chair 1000 in the vertical direction can be detected not based on the markers 1011 to 1014 attached to the seat back 1010 but based on markers (not shown) attached to the seating part and the armrest 1030.
  • the displacement sensor 941 detects displacement information of the three-dimensional position of at least one of the markers 1011 to 1014, thereby detecting the result of detecting the left-right rotation angle per unit time of the chair 1000. As the left / right rotation angle (when the chair 1000 has a seat surface rotation function).
  • the displacement sensor 941 detects displacement information corresponding to a three-dimensional rotational displacement of a surface formed by at least any three of the markers 1011 to 1014, whereby the front-rear direction per unit time of the chair 1000 is detected.
  • the result of detecting the tilt angle is input to the control unit 910 as the tilt angle in the front-rear direction of the chair 1000.
  • the tilt angle in the front-rear direction of the chair 1000 corresponds to an operation of leaning on the seat back 1010 when the user is seated on the chair 1000 or getting up.
  • the displacement sensor 941 is used when the user leaning against the seat back 1010 wakes up (see FIG. 23). It is also possible to detect a falling angular angular velocity that exceeds a predetermined threshold for return and input this to the control unit 910.
  • the displacement sensor 941 detects displacement information corresponding to a three-dimensional rotational displacement of a surface formed by at least any three of the markers 1011 to 1014, so that the horizontal direction per unit time of the chair 1000 is detected.
  • the result of detecting the tilt angle is input to the control unit 910 as the tilt angle of the chair 1000 in the left-right direction.
  • the tilt angle in the left-right direction of the chair 1000 corresponds to an operation of leaning on or rising from the armrest when the user is seated on the chair 1000.
  • the displacement sensor 941 detects the amount of movement of the chair 1000 per unit time in the front-rear and left-right directions by detecting the displacement information of the three-dimensional position of at least one of the markers 1011 to 1014. Is input to the control unit 910 as the amount of movement in the front-rear and left-right directions of the chair 1000.
  • the movement of the chair 1000 in the front-rear direction and the left-right direction corresponds to an operation in which the user sits on the chair 1000 with casters and aligns the position with the feet in the front-rear and left-right directions.
  • the chair 1000 It is also possible to detect the amount of movement of the chair 1000 in the front-rear and left-right directions based not on the markers 1011 to 1014 attached to the seat back 1010 but based on markers (not shown) attached to the seating part and the armrest 1030. it can. Further, the swing and vibration when the user swings the chair 1000 can also be detected as the amount of movement of the chair 1000 in the front-rear and left-right directions.
  • control unit 910 serving as an output control unit controls the image processing, the sound processing, and further the output of the multimodal interface based on the displacement information of the chair 1000 input from the displacement sensor 941, whereby the chair 1000.
  • the interaction according to the body movement of the user who sits down is realized.
  • Table 2 The correspondence relationship between the displacement information of the chair 1000 corresponding to the user's body movement and the output control executed by the control unit 910 is illustrated in Table 2 below.
  • Table 2 mainly describes output control related to video processing and audio processing as output control.
  • an image is displayed on an omnidirectional display such as the dome-shaped screen 101, and sound is reproduced by a surround audio system.
  • you may make it combine effects, such as blowing the wind according to the movement of a viewpoint position or a gaze direction using a multimodal interface.
  • the parallax range of the video may be controlled based on the user's line-of-sight information detected from the head detection camera 942 or the like.
  • the control unit 910 serving as an output control unit has a movement amount proportional to the vertical movement amount per unit time.
  • Video processing such as adding or changing motion parallax to the free viewpoint video is executed.
  • the control unit 910 estimates the user's head position based on the amount of vertical movement per unit time, and surrounds sound that matches the viewpoint position of the video (camera imaging position) toward the head position.
  • An acoustic process such as controlling the vertical change of the field (hereinafter referred to as “SSF”) is executed.
  • control unit 910 does not continuously change the video processing and the sound processing according to the vertical movement amount of the chair 1000, but performs the first output when the movement amount reaches the first value, Stepwise output control may be performed such that when the movement amount reaches a second value larger than the first value, a second output different from the first output is performed.
  • the control unit 910 when the left / right rotation angle is input as the displacement information of the chair 1000 on which the user is seated, the control unit 910 as the output control unit is viewing at the same angle as the rotation angle per unit time and at an angle proportional thereto. Video processing is performed such that the left-right change of motion parallax is added to the free viewpoint video (see FIG. 20). Also, video processing such as moving the UI menu cursor to the left or right in conjunction with the left-right rotation may be executed (see FIG. 37). In addition, the control unit 910 estimates the user's head position based on the left / right rotation angle per unit time, and toward the head position, the left and right sides of the SSF are aligned with the video viewpoint position (camera imaging position).
  • Stepwise output control may be performed such that when the rotation angle reaches a second value larger than the first value, a second output different from the first output is performed.
  • the control unit 910 serving as the output control unit has the same angle as the front-rear tilt angle per unit time and an angle proportional thereto. Then, video processing is performed such that a change in tilt angle of motion parallax is added to the free viewpoint video being viewed (see FIG. 21). In addition, video processing such as moving the cursor of the UI menu in conjunction with the forward and backward tilt angles may be executed (see FIG. 37).
  • the control unit 910 performs the first output when the first tilt angle is input, and differs from the first output when the second tilt angle larger than the first tilt angle is input. You may control to perform 2 outputs.
  • control unit 910 estimates the user's head position based on the front and back tilt angles per unit time, and toward the head position, the SSF adjusted to the video viewpoint position (camera imaging position). An acoustic process such as controlling the change in the forward / backward tilt angle is executed. Note that the control unit 910 does not continuously change the image processing and the sound processing according to the angle in the front-rear direction of the chair 1000, but performs the first output when the angle in the front-rear direction reaches the first value. Stepwise output control is performed such that when the angle in the front-rear direction reaches a second value larger than the first value, a second output different from the first output is performed. Also good.
  • the control unit 910 serving as an output control unit instantaneously moves to a free viewpoint video (or VR video) at a different viewpoint position or a cursor selection in the UI menu, based on a firing condition that a predetermined threshold is exceeded. ) May be executed (see FIG. 37).
  • the control unit 910 performs an acoustic process such as generating an SSF sound effect that matches the angular acceleration of the tilt angle before and after causing the instantaneous movement (content switching) of the viewpoint position of the free viewpoint video.
  • the control unit 910 serving as an output control unit has the same angle as the horizontal tilt angle per unit time and a proportional angle.
  • the viewpoint position is changed to the left and right (for example, the moving direction of the mobile device equipped with the camera capturing the free viewpoint video is changed to the left and right) Video processing (see FIG. 22).
  • the control unit 910 may control the brightness of the video at the same angle as the left / right tilt angle and an angle proportional thereto.
  • control unit 910 estimates the user's head position based on the left and right tilt angles per unit time, and toward the head position, the SSF adjusted to the video viewpoint position (camera imaging position). An acoustic process such as controlling a change in the tilt angle is performed. Note that the control unit 910 does not continuously change the image processing and the sound processing according to the angle in the left and right direction of the chair 1000, but performs the first output when the angle in the left and right direction reaches the first value. Stepwise output control is performed such that when the left-right angle reaches a second value larger than the first value, a second output different from the first output is performed. Also good.
  • the control unit 910 When the amount of movement in the front-rear and left-right directions is input as the displacement information of the chair 1000 on which the user is seated, the control unit 910 as an output control unit moves the same amount as the amount of movement in the front-rear and left-right directions per unit time. Video processing is performed such that the motion viewpoint parallax is added before and after the motion parallax and left and right changes to the free viewpoint video being viewed with the amount and the proportional movement amount. In addition, the control unit 910 estimates the user's head position based on the amount of movement before and after and per unit time, and matches the viewpoint position of the video (image capturing position of the camera) toward the head position.
  • An acoustic process such as controlling the front / rear / left / right change of the SSF is executed.
  • the control unit 910 responds to an operation in which the user swings the chair 1000.
  • the output control may be performed.
  • FIG. 24 illustrates a treadmill 1500 as an object for acquiring displacement information according to the user's body movement.
  • the illustrated treadmill 1500 includes a step 1510 and an operation panel 1520.
  • the endless belt 1511 rotates and the user can run or walk on the endless belt 1511.
  • the operation panel 1520 is disposed at a position where the user on the endless belt 1511 faces. The user can adjust the inclination of the step 1510 and the traveling speed of the endless belt 1511 via the operation panel 1520.
  • exercise information such as travel distance, average speed, heart rate, and calorie consumption is displayed.
  • Handrail frames 1521 and 1522 that can be gripped by the user extend from the left and right ends of the operation panel 1520 in the moving direction of the endless belt 1511.
  • the treadmill 1500 is installed under the dome-shaped screen 101, and the user can view an image projected on the dome-shaped screen 101 while running or walking on the endless belt 1511.
  • the user may travel or walk on the endless belt 1511 while shifting the center of gravity to either the left or right.
  • the user may support the body by gripping the left and right handrail frames 1521 and 1522 while traveling or walking on the endless belt 1511.
  • the interval between the markers 1531, 1532,... May be arbitrary, but it is preferable that at least one marker 1531 is exposed on the upper surface of the step platform 1510 at any circumferential position of the endless belt 1511.
  • markers 1541 and 1542 are attached to the left and right ends of the operation panel 1520, respectively. Of course, three or more markers may be attached on the operation panel 1520.
  • the markers 1531, 1532,..., And 1541, 1542 are visual markers made up of elements that emit invisible light such as infrared rays or visible light, and known graphic patterns, for example.
  • cameras 1551 and 1552 are installed obliquely behind the left and right of the treadmill 1500, respectively.
  • the displacement sensor 941 as the displacement information acquisition unit detects the images of the markers 1531, 1532,..., And 1541, 1542 from the captured images of the cameras 1551 and 1552, each of the sensors is based on the principle of triangulation, etc.
  • the three-dimensional position information of the markers 1531, 1532, ..., and 1541, 1542 can be calculated.
  • the displacement sensor 941 as a displacement information acquisition unit acquires the speed at which the user runs or walks on the endless belt 1511 based on the amount of movement of each marker 1531, 1532,... On the endless belt 1511 per unit time. can do.
  • the system 900 is electrically connected to the treadmill 1500 simply by installing a commercially available treadmill 1500 under the dome-shaped screen 101 and attaching markers 1531, 1532,... On the endless belt 1511. The information regarding a user's running or walking speed can be acquired without doing.
  • the treadmill 1500 is placed on the floor surface and has a property that it does not substantially move relative to the floor even if there is a user's body movement.
  • the left-right direction of the treadmill 1500 is defined as X
  • the up-down direction is defined as Y
  • the front-rear direction advancing direction of the endless belt 1511
  • Z each of the markers 1531, 1532,.
  • Translational displacement information can be acquired.
  • the Y direction is not fixed because, for example, the user's pace can be detected by the displacement
  • the Z direction is not fixed because the endless belt 1511 moves in that direction.
  • the user when the user is running or walking on the endless belt 1511 while shifting the center of gravity to either the left or right, the user supports the body by gripping the left or right handrail frames 1521 and 1522.
  • the treadmill 1500 is tilted to the left or right. Such a left / right inclination may indicate an intention of the user to change the moving direction in the video to the left / right.
  • the displacement sensor 941 serving as a displacement information acquisition unit tilts the operation panel 1520 or the treadmill 1500 main body to the left or right based on the three-dimensional position information of the markers 1541 and 1542 attached to the left and right ends of the operation panel 1520, respectively.
  • the angle When the angle is detected, it can be input to the control unit 910 as an output control unit as information intended to change the left and right traveling directions.
  • the left and right tilt angles are detected when the moving direction of the video is fixed in a predetermined direction, it may be considered that the user intends to end the training.
  • the rotation around the Y axis is fixed. Displacement information related to the rotation of the markers 1541 and 1542 can be acquired. Further, for example, the user's front / rear position can be detected by the rotational displacement around the X axis, and therefore, the position is not fixed.
  • FIG. 25 illustrates a fitness bike 1600 as an object for acquiring displacement information corresponding to the user's body movement.
  • the illustrated fitness bike 1600 includes a saddle 1610, a handle 1620, and a front wheel 1630.
  • the fitness bike 1600 is installed under the dome-shaped screen 101, and the user can view an image projected on the dome-shaped screen 101 while running on the fitness bike 1600.
  • the user When the user straddles the saddle 1610, the user assumes a forward leaning posture and holds the handle 1620 with both hands.
  • the user strides a pedal (not shown) across the saddle 1610, but the front wheel 1630 also rotates in conjunction with the rotation of the pedal (see FIG. 26).
  • the user performs a standing-up operation to increase the running speed of the fitness bike 1600 (see FIG. 27), or performs an operation of falling to the left or right to take a cornering posture that makes a curve (see FIG. 27). It is assumed that the user takes various postures such as FIG.
  • markers 1641 are attached to the side surface of the front wheel 1630 of the Fit Nebike 1600 in the rotational direction.
  • a marker may be attached to at least one of the left and right pedals instead of the front wheel 1630.
  • a pair of markers 1651 and 1652 are attached to the left and right of the rear edge of the saddle 1610.
  • a pair of markers may be attached to the left and right ends of the handle 1620 instead of the saddle 1610.
  • Each marker 1641,..., 1651, 1652 is a visual marker composed of an element that emits invisible light such as infrared rays or visible light, or a known graphic pattern.
  • cameras 1661 and 1662 are installed diagonally behind the left and right of the fitness bike 1600, respectively.
  • the displacement sensor 941 serving as a displacement information acquisition unit detects the images of the markers 1641,..., And 1651, 1652 from the captured images of the cameras 1661 and 1662, the markers 1641 are based on the principle of triangulation. ,... And three-dimensional position information 1651 and 1652 can be calculated.
  • Table 3 below shows the correspondence between the detection method of the markers 1641,..., 1651, 1652 attached to the fitness bike 1600 by the displacement sensor 941 and the displacement information of the fitness bike 1600 input to the control unit 910. To do.
  • the displacement sensor 941 detects the rotation number of the front wheel 1630 per unit time by detecting the three-dimensional position information of the markers 1641 attached to the side surface of the front wheel 1630.
  • the rotation speed is input to the control unit 910.
  • the rotational speed of the front wheels 1630 can be converted into the running speed of the fitness bike 1600.
  • the running speed of the fitness bike 1600 can be acquired based on the three-dimensional position information of the marker attached to the pedal instead of the front wheel 1630.
  • the fitness bike 1600 is placed on the floor surface and has a property that it does not substantially move relative to the floor even when the user's body movements.
  • the left-right direction of the fitness bike 1600 is defined as X
  • the up-down direction is defined as Y
  • the front-rear direction is defined as Z
  • the displacement information of each marker 1641, ..., and 1651, 1652 is acquired under the constraint that the X direction is fixed. be able to.
  • the Y direction is not fixed because the weight of the user sitting on the saddle 1610 can be detected by the displacement, for example.
  • the user moves in the Z direction according to the pedaling posture, and the tilt angle in the front-rear direction of the fitness bike 1600 changes accordingly.
  • the displacement sensor 941 detects the amount of vertical movement of the saddle 1610 per unit time by detecting the three-dimensional position information of at least one of the markers 1651 and 1652 attached to the rear edge of the saddle 1610. The result is input to the control unit 910 as the amount of vertical movement of the fitness bike 1600 associated with the user's standing motion.
  • the displacement sensor 941 detects the three-dimensional position information of at least one of the markers 1651 and 1652 attached to the rear edge of the saddle 1610, thereby determining the left and right tilt angles per unit time of the saddle 1610.
  • the detected result is input to the control unit 910 as a tilt angle associated with the user's cornering. Even if the fitness bike 1600 is placed on the floor surface and does not substantially move relative to the floor even if the user's physical movement is taken into account, the XYZ axis is not fixed around the displacement. Information should be obtained.
  • the front-rear position where the user sits on the saddle 1610 can be detected based on the rotational displacement around the X-axis of the fitness bike 1600 main body.
  • the rotation (twist) of the user's body can be detected by the rotational displacement around the Y axis of the fitness bike 1600 main body.
  • control unit 910 serving as an output control unit uses the fitness bike 1600 by controlling video processing, audio processing, and output of a multimodal interface based on displacement information input from the displacement sensor 941. The interaction according to the movement of the user's body is realized.
  • Table 4 illustrates the correspondence relationship between the displacement information of the fitness bike 1600 corresponding to the user's body movement and the output control executed by the control unit 910.
  • Table 4 mainly describes output control related to video processing and audio processing as output control.
  • an image is displayed on an omnidirectional display such as the dome-shaped screen 101, and sound is reproduced by a surround audio system.
  • you may make it combine effects, such as blowing the wind according to the movement of a viewpoint position or a gaze direction using a multimodal interface.
  • the parallax range of the video may be controlled based on the user's line-of-sight information detected from the head detection camera 942 or the like.
  • the control unit 910 serving as an output control unit travels the fitness bike 1600 converted from the rotation speed of the front wheel 1630.
  • Video processing is performed such as adding a change before and after motion parallax to the free viewpoint video being viewed at the same speed as the speed and proportional speed.
  • the control unit 910 changes the viewpoint position of the free viewpoint image being viewed to the front and rear or the left and right at the same speed as and in proportion to the converted traveling speed of the fitness bike 1600 (for example, capturing a free viewpoint image).
  • Video processing is performed (see FIG. 22).
  • control unit 910 estimates the user's head position based on the running speed of the fitness bike 1600 converted from the rotational speed of the front wheels 1630, and toward the head position, the viewpoint position of the video (camera imaging).
  • the acoustic processing is performed such as controlling the front-rear and left-right change of the SSF in accordance with the position.
  • the control unit 910 does not continuously change the video processing and the sound processing according to the rotational speed of the front wheels 1630, but outputs the first output when the rotational speed of the front wheels 1630 reaches the first value.
  • Stepwise output control is performed such that when the rotational speed of the front wheels 1630 reaches a second value greater than the first value, a second output different from the first output is performed. Also good.
  • the control unit 910 serving as an output control unit is viewing and watching with a movement amount proportional to the vertical movement amount per unit time.
  • Video processing is performed such that motion parallax changes are added to the free viewpoint video.
  • the control unit 910 estimates the user's head position based on the vertical movement amount per unit time, and moves the SSF up and down according to the video viewpoint position (camera imaging position) toward the head position. Perform acoustic processing such as controlling changes.
  • the control unit 910 does not continuously change the image processing and the sound processing according to the vertical movement amount of the fitness bike 1600, but outputs the first output when the vertical movement amount reaches the first value.
  • Stepwise output control may be performed such that when the vertical movement amount reaches a second value larger than the first value, a second output different from the first output is performed. .
  • the control unit 910 when the left / right tilt angle is input as the displacement information of the fitness bike 1600 used by the user, the control unit 910 as the output control unit displays the same angle as the left / right tilt angle per unit time and a proportional angle. Thus, video processing is performed such that the left-right tilt angle of motion parallax is added to the free viewpoint video being viewed. Further, the control unit 910 changes the traveling direction of the viewpoint position of the currently viewed free viewpoint video to the left and right at the same angle as the left / right tilt angle per unit time and a proportional angle (for example, capturing the free viewpoint video). Video processing is executed (see FIG. 22).
  • control unit 910 estimates the user's head position based on the left and right tilt angles per unit time, and toward the head position, the SSF that matches the video viewpoint position (camera imaging position). An acoustic process such as controlling a change in the tilt angle between the left and right is executed. Note that the control unit 910 does not continuously change the video processing and the sound processing according to the left and right tilt angles of the fitness bike 1600, but outputs the first output when the tilt angle reaches the first value. Stepwise output control may be performed such that when the tilt angle reaches a second value larger than the first value, a second output different from the first output is performed.
  • control unit 910 as the output control unit is configured so that the running or walking speed of the user on the treadmill 1500, Based on the displacement information such as the vertical movement amount and the horizontal tilt angle, the feedback output similar to Table 4 can be performed to the user.
  • FIG. 29 shows a state in which the user is watching the video displayed on the ceiling or wall surface 2000 of the room while sitting on the chair 1000.
  • the displacement information of the chair 1000 corresponding to the user's body movement can be acquired by detecting the three-dimensional position information of the marker attached to the chair 1000 by the same method as described in the first embodiment. Further, in accordance with the acquired displacement information, the same video processing and sound processing as in the first embodiment may be performed.
  • FIG. 30 and 31 show a situation where the user is seated on a chair 2100 with a hood 2101.
  • the hood 2101 can be opened and closed, and a free viewpoint image or a VR image can be projected using the inner wall surface of the closed hood 2101 as a screen as shown in FIG. Therefore, the user can sit on the chair 2100 and close the hood 2101 to view the video displayed on the inner wall surface of the hood 2101.
  • a plurality of markers 2111, 2112,... are attached to the armrest 2102 of the chair 2100.
  • Each of the markers 2111, 1122,... May be an element that emits invisible light such as infrared rays or visible light, or a visual marker made of a known graphic pattern.
  • a camera 2120 is installed facing the armrest 2102. When the displacement sensor 941 serving as a displacement information acquisition unit detects the images of the markers 2111, 2112,... From the captured image of the camera 2120, it calculates the three-dimensional position information of the markers 2111, 1122,. The displacement information of the chair 2100 according to the body movement of the user who is viewing can be acquired.
  • a marker is attached to the seat back of the chair 2100, and a camera that captures the marker is installed so that the user can adjust the tilt angle in the front-and-rear direction, the tilt angular velocity, the tilt angular acceleration, etc. Displacement information corresponding to the body movement can be acquired.
  • control unit 910 serving as an output control unit controls the video processing, the acoustic processing, and further the output of the multimodal interface based on the displacement information of the chair 2100 input from the displacement sensor 941, so that the chair 2100.
  • the interaction according to the body movement of the user who sits down is realized.
  • FIG. 32 shows a situation where the user is seated on a seat 2301 in the passenger compartment 2300 of the passenger car.
  • the passenger car is, for example, a vehicle that supports automatic driving, and can project a free viewpoint image or a VR image using the wall surface of the passenger compartment 2300 as a screen, or a display (not shown) that displays an image in the passenger compartment 2300. It shall be brought in.
  • the user can sit on the seat 2301 and view the displayed video.
  • a plurality of markers 2311 are attached to the seat 2301.
  • Each marker 2311 May be an element that emits invisible light such as infrared rays or visible light, or a visual marker made of a known graphic pattern.
  • a camera 2320 is installed on the ceiling of the passenger compartment 2300.
  • the displacement sensor 941 serving as a displacement information acquisition unit detects the image of each marker 2311... From the captured image of the camera 2120, the displacement sensor 941 calculates the three-dimensional position information of each marker 2311.
  • the displacement information of the seat 2301 corresponding to the body motion of the user can be acquired.
  • control unit 910 serving as an output control unit controls the image processing, the sound processing, and further the output of the multimodal interface based on the displacement information of the seat 2300 input from the displacement sensor 941, thereby enabling the seat 2300.
  • the interaction according to the body movement of the user who sits down is realized.
  • the control unit 910 may perform the same video processing and acoustic processing as in the first embodiment according to the acquired displacement information.
  • the control unit 910 serving as an output control unit outputs video processing so as not to be a shadow of all users or to irradiate the user's face. May be controlled.
  • FIG. 33 and FIG. 34 show a situation where the user is lying on the bed 2400 or 2500, respectively. Users often lie on their beds or lie on their backs and watch videos. In the example shown in FIG. 33, it is assumed that a lying user is watching a video on a display (not shown). Further, in the example shown in FIG. 34, the reclining 2501 of the bed 2500 is raised and the video on the display 2510 installed in front of the bed 2500 is viewed.
  • the user performs various body movements on the bed. For example, the user performs physical movements such as turning over, stretching while lying down, and adjusting the position and height of the pillow. Similarly, when the user is wearing an elbow pillow or arm pillow, an operation for adjusting the position and height of the pillow is performed. Further, as shown in FIG. 34, when the bed 2500 with the reclining 2501 is used, an operation for adjusting the height of the reclining 2501 is performed.
  • the surface of the bed moves up and down, or moves back and forth and left and right.
  • a plurality of markers can be attached to the surface of the bed, and bed displacement information corresponding to the user's body movement can be acquired based on the three-dimensional position information of each marker.
  • a plurality of markers 2401, 2402,... are attached on the surface of the bed 2400, and the surface of the bed 2400 is imaged by two cameras 2411 and 2412 installed above the bed 2400.
  • a plurality of markers 2521, 2522,... are attached to the reclining 2501 of the bed 2500, and the two cameras 2531 and 2532 installed above the bed 2500 include the reclining 2501. The surface of the bed 2500 is imaged.
  • the markers 2401, 4022,... And the markers 2521, 2522,... May be elements that emit invisible light such as infrared rays or visible light, or visual markers made of known graphic patterns.
  • the displacement sensor 941 serving as a displacement information acquisition unit detects the images of the markers 2401, 2402,... From the captured images of the cameras 2411, 2412, the displacement sensor 941 calculates the three-dimensional position information of the markers 2401, 2402,.
  • the displacement information of the bed 2400 according to the physical motion of the user who is viewing the video can be acquired.
  • the displacement sensor 941 detects the images of the markers 2521, 2522,... From the captured images of the cameras 2531, 2532
  • the displacement sensor 941 calculates the three-dimensional position information of the markers 2521, 2522,.
  • the displacement information of the bed 2500 according to the body motion of the user who is viewing the video can be acquired.
  • Table 5 below illustrates the correspondence between the detection method of the marker attached to the surface of the bed by the displacement sensor 941 and the displacement information of the bed input to the control unit 910.
  • the displacement sensor 941 inputs the result of detecting the amount of vertical movement of the bed surface per unit time to the control unit 910 by detecting the three-dimensional position information of the marker attached to the bed surface. To do.
  • the displacement sensor 941 controls the result of detecting the amount of movement of the front / rear or left / right direction of the bed surface per unit time by detecting the three-dimensional position information of the marker attached to the bed surface. To the part 910.
  • control unit 910 serving as an output control unit controls the image processing, the sound processing, and further the output of the multimodal interface based on the displacement information of the seat 2300 input from the displacement sensor 941, thereby enabling the seat 2300.
  • the interaction according to the body movement of the user who sits down is realized.
  • Table 6 The correspondence relationship between the bed displacement information corresponding to the user's body movement and the output control executed by the control unit 910 is illustrated in Table 6 below.
  • Table 6 mainly describes output control related to video processing and audio processing as output control.
  • an image is displayed on an omnidirectional display such as the dome-shaped screen 101, and sound is reproduced by a surround audio system.
  • you may make it combine effects, such as blowing the wind according to the movement of a viewpoint position or a gaze direction using a multimodal interface.
  • the parallax range of the video may be controlled based on the user's line-of-sight information detected from the head detection camera 942 or the like.
  • the control unit 910 serving as an output control unit displays the free viewpoint image being viewed with a movement amount proportional to the vertical movement amount per unit time.
  • Video processing such as adding a vertical change in motion parallax is executed (see FIG. 22).
  • the control unit 910 as an output control unit performs cursor selection on the UI menu or the like on the basis of the ignition condition that the vertical movement acceleration when the user hits the surface using the spring property of the bed exceeds a predetermined threshold.
  • video processing see FIG. 37
  • instantaneous movement (content switching) to a free viewpoint video (or VR video) at another viewpoint position may be executed.
  • control unit 910 estimates the user's head position and front direction based on the amount of front / rear / left / right movement combined with the amount of vertical movement per unit time, and the video viewpoint position (camera) is directed toward the head position. Acoustic processing such as controlling the vertical change of the SSF in accordance with the imaging position). Note that the control unit 910 does not continuously change the image processing and the sound processing according to the amount of vertical movement of the bed, but performs a first output when the amount of vertical movement reaches the first value, Stepwise output control may be performed such that when the vertical movement amount reaches a second value larger than the first value, a second output different from the first output is performed. In addition, when displacement information regarding vertical movement caused by the user hitting the bed is input, the control unit 910 may perform output control corresponding to the operation of the user hitting the bed.
  • the control unit 910 determines the user's head from the front / rear / left / right movement amount combined with the up / down movement amount per unit time.
  • Image processing such as estimating the position and front direction, and adding the position and angle change of motion parallax to the free viewpoint image being viewed with the same movement amount and movement angle and proportional movement amount and movement angle (see FIG. 22) )).
  • control unit 910 as the output control unit estimates the user's head position and front direction from the front / rear / left / right movement amount combined with the up / down movement amount per unit time, and has the same movement amount, movement angle, and proportional movement.
  • Video processing such as moving the cursor of the UI menu and moving the display position of the UI menu and contents by changing the left and right traveling directions of the viewpoint position of the free viewpoint video being viewed by the amount and the moving angle (see FIG. 37) ) May be executed.
  • the control unit 910 may control the orientation of the video based on the input displacement information so as to match the orientation of the head when the user lies on the bed or turns over. .
  • control unit 910 estimates the user's head position and front direction based on the amount of front / rear / left / right movement combined with the amount of vertical movement per unit time, and the video viewpoint position (camera) is directed toward the head position. Acoustic processing such as controlling the position and angle change of the SSF in accordance with the imaging position).
  • control unit 910 does not continuously change the video processing and the sound processing according to the amount of movement of the bed in the front-rear direction, the right-left direction, and outputs the first output when the amount of movement in the front-rear direction
  • Stepwise output control may be performed, such as when a second output different from the first output is performed when the amount of forward / backward / left / right movement reaches a second value greater than the first value. Good.
  • the bed is furniture that can acquire displacement information according to the user's body movement, like the chair.
  • the bed can be said to be an important piece of furniture that can be applied to the technology disclosed in this specification as long as it is used as long as the chair or longer. Furthermore, the technology disclosed in this specification can be developed even in hospitals and rehabilitation facilities where beds are used.
  • FIG. 38 shows a processing procedure for controlling the interaction with the user based on the displacement information of the object according to the user's body movement in the system 900 in the form of a flowchart.
  • a processing procedure limited to video-related interactions is shown.
  • the displacement sensor 941 serving as the displacement information acquisition unit can detect the movement of the marker from the object used by the user (Yes in step S2901), first, detection of the vertical movement of the marker per unit time is detected. Is attempted (step S2902). When the vertical movement of the marker can be detected (Yes in step S2902), the displacement sensor 941 calculates displacement information such as the movement amount, movement speed, and movement acceleration related to the vertical movement of the marker (step S2903). ) And output to the control unit 910 as an output control unit as displacement information of the object according to the user's body movement.
  • Step S2904 When the displacement sensor 941 cannot detect the vertical movement of the marker (No in step S2902), the displacement sensor 941 subsequently tries to detect left and right pan rotations per unit time.
  • Step S2904 When the left and right pan rotation of the marker can be detected (Yes in step S2904), the displacement sensor 941 calculates displacement information such as a rotation angle, a rotation angular velocity, and a rotation angular acceleration related to the left and right pan rotation of the marker. Then (step S2905), it outputs to the control part 910 as an output control part as the displacement information of the object according to a user's body movement.
  • Step S2906 When the displacement sensor 941 cannot detect the left and right pan rotation of the marker (No in step S2904), the displacement sensor 941 subsequently detects the tilt angle in the front-rear direction per unit time of the marker.
  • Step S2906 When the tilt angle in the front-rear direction of the marker can be detected (Yes in step S2906), the displacement sensor 941 displays displacement information such as a rotation angle, a rotation angular velocity, and a rotation angular acceleration related to the tilt angle in the front-rear direction of the marker. Is calculated (step S2907), it outputs to the control part 910 as an output control part as the displacement information of the object according to a user's body movement.
  • step S2906 When the displacement sensor 941 cannot detect the tilt angle in the front-rear direction of the marker (No in step S2906), the displacement sensor 941 further detects the roll angle in the left-right direction per unit time of the marker. An attempt is made (step S2908).
  • the displacement sensor 941 calculates displacement information such as a rotation angle, a rotation angular velocity, and a rotation angular acceleration related to the left-right roll of the marker. Then (step S2909), it inputs into the control part 910 as an output control part as the displacement information of the object according to a user's body movement.
  • the control unit 910 serving as an output control unit estimates the position of the head of the user using the object based on the displacement information of the object input from the displacement sensor 941, and displays the free viewpoint video that the user is viewing.
  • a projection vector for conversion to an image seen from the head position is generated (step S2910), and the image converted by the projection vector is displayed (projected from the projector) (step S2911).
  • control unit 910 estimates the user's head position based on the displacement information of the object, and controls the change of the SSF according to the viewpoint position of the video,
  • the output of the multimodal interface may be controlled based on the displacement information of the object.
  • the type of displacement information of the object to be acquired from the movement of the marker (in other words, displacement information used to control feedback output to the user) is different.
  • the object is a chair, mainly get displacement information about the front / back / up / down / left / right movement of the seatback and the forward / backward tilt angle
  • the object is a fitness equipment such as a fitness bike or treadmill
  • the running direction and speed are mainly It is necessary to acquire displacement information related to acceleration and traveling direction
  • the object is a bed, it is necessary to acquire displacement information related to the vertical direction of the bed as well as the front, rear, left and right plane directions.
  • the displacement sensor 941 serving as the displacement information acquisition unit identifies the type of the object
  • the displacement sensor 941 corresponds to the identified type of the object from the information on the three-dimensional position of each marker detected from the object (that is, the movement of the marker).
  • the displacement information may be calculated and input to the control unit 910 serving as an output control unit.
  • examples of a method for specifying the type of an object include a method for automatically discriminating based on the movement of a marker attached to the object, and a method for using a unique marker unique to the type of object.
  • a method for specifying the type of an object include a method for automatically discriminating based on the movement of a marker attached to the object, and a method for using a unique marker unique to the type of object.
  • an operator of the system 900 or a user using the object may manually input the object type into the system 900.
  • the type of the object may be specified without using the marker from the image data of the object using machine learning or deep learning.
  • FIG. 39 shows a processing procedure in the form of a flowchart for the displacement sensor 941 as the displacement information acquisition unit to automatically determine the type of the object based on the movement of the marker and acquire the displacement information.
  • the displacement sensor 941 can detect the movement of the marker from the captured image of the camera capturing the object (Yes in step S3001), it tries to calculate the three-dimensional position information of each marker (step S3002). ). Then, the three-dimensional position information of the marker that can be calculated is accumulated (step S3003).
  • the displacement sensor 941 tries to detect the type of marker movement from the accumulated three-dimensional position information (step S3004).
  • the displacement sensor 941 determines the type of the object based on the detected movement (step S3005).
  • the object is a chair
  • the movement of the marker corresponding to the front / back / up / down / left / right movement of the seat back and the forward / backward tilt angle can be mainly detected.
  • the object is a fitness bike
  • the object is a treadmill, it is possible to detect mainly the movement of the endless belt in the front-rear direction and the movement of the marker corresponding to the tilt angle of the operation panel or the front-back, left-right, left-right.
  • step S3005 the displacement sensor 941 determines whether the movement of the marker detected in step S3004 corresponds to or is similar to which object. For example, machine learning may be introduced into the determination process to improve the determination accuracy.
  • the displacement sensor 941 is necessary for performing output control in accordance with the user's physical movement (that is, interaction with the user wearing nothing) when the object determined in step S3005 is used.
  • Displacement information is calculated based on the three-dimensional position information accumulated in step S3003 (step S3006).
  • the displacement sensor 941 calculates displacement information related to the forward / backward / upper / left / right movement of the seat back and the forward / backward tilt angle. If the object is a fitness bike, the displacement sensor 941 calculates displacement information related to the rotational speed of the front wheels or pedals and the left and right tilt angles of the saddle or handle. If the object is a treadmill, the displacement sensor 941 calculates displacement information related to the moving speed of the endless belt in the front-rear direction and the tilt angle of the operation panel or the front-back, left-right, left-right. If the object is a bed, the displacement sensor 941 calculates displacement information regarding the vertical direction of the bed and the front, back, left, and right plane directions.
  • the displacement sensor 941 inputs the displacement information calculated according to the type of object to the control unit 910 as an output control unit (step S3007).
  • FIG. 40 shows a processing procedure in the form of a flowchart for the displacement sensor 941 as the displacement information acquisition unit to automatically determine the type of the object based on the unique marker and acquire the displacement information.
  • the unique marker is, for example, a visual marker composed of an element that emits invisible light or visible light with a blinking pattern representing object identification information, or a graphic pattern representing object identification information.
  • Step S3101 When the displacement sensor 941 can detect the identification information of the object from the marker included in the captured image of the camera (Yes in Step S3101), the displacement sensor 941 specifies the type of the object based on the detected identification information (Step S3101). S3102).
  • the displacement sensor 941 can detect the movement of the marker from the captured image of the camera capturing the object (Yes in step S3103), the displacement sensor 941 tries to calculate the three-dimensional position information of each marker ( Step S3104). Then, the three-dimensional position information of the marker that can be calculated is accumulated (step S3105).
  • the displacement sensor 941 tries to detect the type of movement of the marker corresponding to the object specified in step S3102 from the accumulated three-dimensional position information (step S3106).
  • the object is a chair
  • the movement of the marker corresponding to the front / back / up / down / left / right movement of the seat back and the forward / backward tilt angle can be mainly detected.
  • the object is a fitness bike
  • the object is a treadmill
  • the object is a bed
  • step S3106 When the type of movement of the marker corresponding to the object can be detected (Yes in step S3106), the displacement sensor 941 performs output control according to the user's body movement (that is, the user wearing nothing). Displacement information necessary for performing the interaction) is calculated based on the three-dimensional position information accumulated in step S3105 (step S3107).
  • the displacement sensor 941 calculates displacement information related to the forward / backward / upper / left / right movement of the seat back and the forward / backward tilt angle. If the object is a fitness bike, the displacement sensor 941 calculates displacement information related to the rotational speed of the front wheels or pedals and the left and right tilt angles of the saddle or handle. If the object is a treadmill, the displacement sensor 941 calculates displacement information related to the moving speed of the endless belt in the front-rear direction and the tilt angle of the operation panel or the front-back, left-right, left-right. If the object is a bed, the displacement sensor 941 calculates displacement information regarding the vertical direction of the bed and the front, back, left, and right plane directions.
  • the displacement sensor 941 inputs the displacement information calculated according to the type of the object to the control unit 910 as an output control unit (step S3108).
  • FIG. 41 shows a configuration example of this embodiment
  • FIG. 42 shows only the dome type screen 101 in the configuration shown in FIG.
  • FIG. 43 shows the field of view of the user shown in FIG. 41 at a viewpoint substantially facing the dome-shaped screen 101.
  • This embodiment is a digital content playback having a visualizer function capable of outputting an effect image that dynamically changes in accordance with the change of the sound signal when playing or executing digital content such as a game or video content. Can be applied to the machine.
  • the visualizer is a function of the control unit 910 serving as an output control unit in the present embodiment, and is a function of outputting (displaying) an effect image that dynamically changes in accordance with a change in an acoustic signal.
  • the effect image is an image for performing display necessary for the control unit 910 as the output control unit to perform the visualizer function.
  • the user may look at the effect image displayed on the dome-shaped screen 101 and exchange the digital content to be played back when the effect image does not meet his / her preference. With this configuration, it is possible to search for and reproduce an effect image that matches one's preference using the visualizer function.
  • the display unit (dome-shaped screen 101) on which the effect image is displayed has a dome shape, but the display unit on which the effect image is displayed may be a flat screen. It may be a television screen.
  • FIG. 41 shows an example in which a chair 1000 is installed.
  • fitness equipment such as a fitness bike or a treadmill is used instead of the chair 1000. May be provided so that the viewer can experience the visual riser function according to the present embodiment.
  • the control unit 910 as the output control unit changes the effect image displayed on the dome-shaped screen 101 according to the analysis result of the acoustic signal such as the pitch and volume of the sound in the acoustic signal, the beat, the frequency characteristic, etc.
  • a visualizer function may be realized.
  • the control unit 910 may acquire a sound analysis result using a music tone analysis algorithm (12 sound analysis), and may have a function of analyzing a signal in a so-called high resolution region.
  • control unit 910 as an output control unit outputs an effect image corresponding to the analysis result of the input acoustic signal, and outputs (reproduces) sound from the acoustic output system according to the acoustic signal.
  • FIGS. 55 to 62 show only some of the particles included in the effect image in order to show the change in the effect image in more detail. 44 and 55, FIGS. 45 and 56, FIGS. 46 and 57, FIGS. 47 and 58, FIGS. 49 and 59, FIGS. 51 and 60, FIGS. 52 and 61, and FIGS. 53 and 62. , Corresponds to each.
  • each particle is the center of the inner wall of the dome-shaped screen 101. It has a characteristic that it moves greatly as a whole while changing its position, size, orientation, angle, etc. in the virtual space through a plurality of steps in the radial direction from the vicinity toward its outer edge.
  • the particle groups shown in FIGS. 55 to 62 may be regarded as constituting a single particle group layer.
  • the three particles shown in FIGS. 55 to 62 are only part of the particles constituting the particle group layer, and each particle group layer may be composed of four or more particles. I want to be.
  • an image in which a plurality of different particle group layers are superimposed in the depth direction in the virtual space can constitute the effect image shown in FIGS. 44 to 54.
  • the effect image shown in FIGS. 44 to 54 is constituted by, for example, about 10 particle group layers.
  • the plurality of particle group layers are separated from or approach each other in the depth direction in the virtual space in conjunction with the change of the acoustic signal.
  • the separation speed (approach speed) between the particle group layers can be set as appropriate. For example, the faster the music tempo, the faster the separation speed (approach speed) may be set.
  • the front particle group layer approaches the outer edge of the dome-shaped screen 101.
  • the particle group layer diffuses radially (two-dimensionally) within the layer as it approaches the viewer.
  • the plurality of particle group layers are observed by the viewer so as to expand three-dimensionally in the virtual space. Therefore, according to the present embodiment, it is possible to provide a viewer with a visual riser function that exhibits a high immersive sensation.
  • At least one particle group layer among the plurality of particle group layers may be configured to move from the front position to the rear position of the viewer.
  • the particle group layer that moves from the front position to the rear position of the viewer may be a particle group layer that is positioned on the most front side in a state where the plurality of particle group layers contract. That is, all the particle group layers are preferably positioned in front of the viewer in a state where the plurality of particle group layers are contracted.
  • the display may be controlled so that particles arranged in the virtual space drift randomly in the virtual space. Then, by collecting the scattered particles in front of the user, the display may be controlled so that the effect image of FIG. 43 is formed with the start of music.
  • the shape of the particles may be different from a diamond shape such as a spherical shape, and the display may be controlled so as to change to a diamond shape as the music starts. Further, as the music ends, the display may be returned so that the particles drift randomly in the virtual space while releasing the diamond shape of the particles. According to such a configuration, since the viewer can maintain the feeling of being surrounded by the displayed particles even while switching the music to be viewed, the viewer can obtain a high immersive sensation.
  • the effect image is configured to extend the relative length of the particles displayed as the effect image as it approaches the vicinity of the outer edge of the inner wall of the dome-shaped screen 101.
  • the user who tends to gaze at can experience a immersive sensation as if he / she is in a three-dimensional virtual space.
  • 41 to 62 show examples in which diamond-shaped particles are displayed, but 3D models having other shapes may be displayed.
  • a dome-shaped or flat-shaped display screen in which an effect image that dynamically changes by a visualizer function of a digital content player as shown in FIGS. 44 to 54 is displayed on the inner wall or It can also be understood as a digital content player including the display screen as a component.
  • control unit 910 serving as an output control unit may perform control so as to perform feedback output based on displacement information corresponding to a three-dimensional displacement corresponding to the user's body movement.
  • control unit 910 serving as an output control unit may perform video processing so that the motion parallax before and after the effect image changes according to the displacement information related to the tilt angle in the front-rear or left-right direction of the chair 1000. Good (see FIGS. 20 and 21).
  • the interaction technique proposed in this specification can perform UI operations and device inputs using general objects without requiring a dedicated controller.
  • a dedicated controller since a dedicated controller is not used, it is difficult for the user to grasp the object operation method, and there is a possibility that the user may be confused by the object operation. Therefore, for example, when a user starts using an object, an operation that can be used using the object may be displayed on the display unit. At this time, it is preferable that the type of the object recognized by the system is displayed. Further, whether or not the user has started using the object may be determined based on the displacement information of the object acquired by the system. Note that the initial setting of the control that can be operated by the recognized object may be automatically acquired from the network according to the type of the identified object.
  • an operation list of currently available objects may be displayed according to a specific operation (for example, hitting a chair).
  • the operation that can be used by the object may be appropriately changed by the user.
  • FIG. 63 shows a perspective view of a configuration example in which the user terminal 700 is arranged.
  • the user terminal 700 is, for example, a terminal (information processing apparatus) that is normally used by the user, and may be a terminal that is used by the user even when the user is not using the system 900.
  • the present embodiment is an information processing apparatus (system) including an output unit (video output system or sound output system) and an output control unit.
  • the output control unit is configured to control the output unit based on sensor information related to the user's body movement and terminal information acquired from the user terminal 700.
  • the user terminal 700 is a smartphone, but the user terminal 700 is not limited to such an example.
  • the user terminal 700 may be a hand-held terminal that is usually carried by the user or a wearable terminal that is worn and used.
  • the mobile terminal may be a tablet terminal, and the wearable terminal (wearable device) attached to the user may be a wristwatch type smart watch or the like.
  • the object for obtaining the displacement information according to the user's body movement is the chair 1000
  • the present technology is not limited to the example.
  • the user terminal 700 may also be used when the object for obtaining the displacement information corresponding to the user's body movement is the above-described fitness equipment such as a treadmill or fitness bike, or furniture such as a sofa or bed.
  • the arrangement of the user terminal 700 is not limited to such an example.
  • the user terminal 700 may be disposed on the armrest of the chair 1000, may be disposed on the user's knee, may be held by the user, or may be placed in the user's breast pocket. May be.
  • the user terminal 700 may be disposed at a predetermined position of the object.
  • the user terminal 700 is a wearable device such as a smart watch, the user terminal 700 may be worn on the user's arm or the like.
  • FIG. 64 shows a configuration example of the user terminal 700.
  • the user terminal 700 is an information processing apparatus including a terminal controller 710, a memory 720, a communication unit 730, a sensor unit 740, a storage unit 750, a display unit 760, a speaker 770, and an operation input unit 780. .
  • the terminal controller 710 controls the entire user terminal 700. Further, the terminal controller 710 executes various applications (for example, a voice interaction application). Further, the terminal controller 710 may perform recognition (for example, voice recognition) based on the sensor information acquired by the sensor unit 740. In addition, when the system 900 and the user terminal 700 cooperate, the application and recognition which the terminal controller 710 performs are mentioned later.
  • applications for example, a voice interaction application
  • recognition for example, voice recognition
  • the memory 720 is configured by an SDRAM such as a flash memory or DDR (Double-Data-Rate), and is used as a working memory of the terminal controller 710.
  • SDRAM such as a flash memory or DDR (Double-Data-Rate)
  • the communication unit 730 includes wireless communication modules such as Wi-Fi (Wireless Fidelity), Bluetooth (registered trademark), and NFC (Near Field Communication).
  • the communication unit 730 may be connected to the communication unit 913 of the system 900 described with reference to FIG. 9.
  • the sensor information acquired by the sensor unit 740 may be transmitted to the communication unit 913.
  • the system 900 can realize more various functions in cooperation with the user terminal 700. Details of cooperation between the system 900 and the user terminal 700 will be described later.
  • the sensor unit 740 has a function of acquiring (sensing) various information (environment information) related to the user or the surrounding environment.
  • the sensor unit 740 includes a camera 741, a microphone 742, a gyro sensor 743, an acceleration sensor 744, an orientation sensor 745, a position positioning unit 746, a heart rate sensor 747, and a body temperature sensor 748.
  • the camera 741 acquires real space information as a captured image.
  • the camera 741 photoelectrically converts imaging light obtained by a lens system including an imaging lens, an aperture, a zoom lens, a focus lens, and the like, a drive system that performs a focusing operation and a zoom operation on the lens system, and the lens system.
  • a solid-state image pickup device array for generating an image pickup signal.
  • the solid-state imaging device array may be realized by a CCD (Charge Coupled Device) sensor array or a CMOS (Complementary Metal Oxide Semiconductor) sensor array, for example.
  • a plurality of cameras 741 may be provided, and when a plurality of cameras 741 are provided, the plurality of cameras 741 may be provided so as to pick up images in the same direction, or provided so as to pick up images in different directions. Also good.
  • the camera 741 may include an inward camera that mainly captures the user's direction and an outward camera that primarily captures the user's visual field direction.
  • the microphone 742 collects a user's voice and surrounding environmental sound and acquires it as an acoustic signal.
  • the gyro sensor 743 is realized by, for example, a three-axis gyro sensor and detects an angular velocity (rotational speed).
  • the acceleration sensor 744 is realized by, for example, a three-axis acceleration sensor (also referred to as a G sensor), and detects acceleration during movement.
  • a three-axis acceleration sensor also referred to as a G sensor
  • the direction sensor 745 is realized by, for example, a triaxial geomagnetic sensor (compass), and detects an absolute direction (direction).
  • the position positioning unit 746 has a function of detecting the current position of the user terminal 700 based on an externally acquired signal.
  • the position positioning unit 746 is realized by a GPS (Global Positioning System) positioning unit, receives a radio wave from a GPS satellite, detects a position where the user terminal 700 exists, and acquires position information.
  • the position measurement unit 746 detects the position by, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), transmission / reception with a mobile phone / PHS / smartphone or the like, or near field communication. There may be.
  • the heart rate sensor 747 detects the heart rate of the user having the user terminal 700 and acquires heart rate information.
  • the body temperature sensor 748 detects the body temperature of the user having the user terminal 700 and acquires body temperature information.
  • the sensor included in the sensor unit 740 illustrated in FIG. 64 is an example, and the present technology is not limited to the example.
  • the sensor unit 740 may not include all the illustrated sensors, and a plurality of sensors may be provided.
  • the sensor unit 740 may include other sensors, for example, user sweating, blood pressure, sweating, pulse, breathing, blink, eye movement, gaze time, pupil size, blood pressure, brain wave, body movement,
  • a sensor that acquires biological information such as body position, skin temperature, skin electrical resistance, MV (microvibration), myoelectric potential, or SPO2 (blood oxygen saturation) may be included.
  • calibration may be executed by calculating correction parameters based on sensor information obtained from various sensors by performing predetermined specific movements, operations, operations, and the like according to instructions on a dedicated application. .
  • the sensing target of the sensor unit 740 and the reflection target of the sensing result when the system 900 and the user terminal 700 are linked will be described later.
  • the storage unit 750 stores programs and parameters for the above-described terminal controller 710 to execute processing. Further, the storage unit 750 may store profile information related to a user who uses the user terminal 700.
  • the profile information may include history information when the user uses the user terminal 700, for example.
  • the history information may include, for example, a playback history related to content playback at the user terminal 700, an operation history related to operation of the user terminal 700, and the like.
  • the profile information may include personal information of the user.
  • the personal information may include, for example, information such as the user's nationality, age, gender, height, sitting height, weight, or schedule.
  • the personal information may be information obtained based on, for example, an explicit operation of the user, or may be information obtained by estimation based on the user's content viewing history, operation history, or the like.
  • the profile information may include palatability information indicating the user's palatability.
  • the preference information may include, for example, content preference information indicating the preference regarding the content, and output adjustment value preference information indicating the preference regarding the adjustment value related to the output of the display unit 760 or the speaker 770.
  • the preference information may be information obtained based on, for example, an explicit operation by the user, or may be information obtained by learning based on the user's content viewing history, operation history, or the like.
  • the display unit 760 is realized by, for example, a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, and the like, and displays various screens under the control of the terminal controller 710.
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diode
  • the speaker 770 outputs sound according to the control of the terminal controller 710, for example.
  • the operation input unit 780 is realized by an operation member having a physical structure for a user to input information, such as a touch sensor, a mouse, a keyboard, a button, a switch, and a lever.
  • information input to the user terminal 700 for performing some operation by the user may be referred to as “input operation information”.
  • the input operation by the user is not limited to the operation through the operation member described above, and may include, for example, a gesture input operation or a voice input operation acquired by the sensor unit 740.
  • the configuration example of the user terminal 700 has been described above. Next, the sensing target of the sensor unit 740 and the reflection target of the sensing result when the system 900 and the user terminal 700 are linked will be sequentially described.
  • the correspondence relationship between the sensing target and each sensor included in the sensor unit 740 is illustrated in Table 7 below.
  • the displacement information of the chair corresponding to the user's body movement may be acquired based on the sensing of the sensor unit 740.
  • the user terminal 700 can function as a displacement information acquisition unit.
  • the displacement information of the chair may be the same as the displacement information of the chair 1000 described in the first embodiment, for example.
  • the sensor unit 740 that acquires sensor information related to the user's body movement may be regarded as the “first sensor unit”.
  • the chair displacement information may be acquired based on a captured image of the camera 741 of the sensor unit 740, for example.
  • the displacement information acquisition method based on the image captured by the camera 741 may be the same as the displacement information acquisition method described in the first embodiment.
  • the displacement information of the chair may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740.
  • the treadmill displacement information corresponding to the user's body movement may be acquired based on the sensing of the sensor unit 740.
  • the user terminal 700 can function as a displacement information acquisition unit.
  • the treadmill displacement information may be the same as the treadmill 1500 displacement information described in the second embodiment, for example.
  • the displacement information of the treadmill may be acquired based on an image captured by the camera 741 of the sensor unit 740, for example.
  • the displacement information acquisition method based on the image captured by the camera 741 may be the same as the displacement information acquisition method described in the second embodiment.
  • the treadmill displacement information may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740. .
  • displacement information of the fitness bike according to the user's physical movement may be acquired based on the sensing of the sensor unit 740.
  • the user terminal 700 can function as a displacement information acquisition unit.
  • the displacement information of the fitness bike may be the same as the displacement information of the fitness bike 1600 described in the second embodiment, for example.
  • the displacement information of the fitness bike may be acquired based on an image captured by the camera 741 of the sensor unit 740, for example.
  • the displacement information acquisition method based on the image captured by the camera 741 may be the same as the displacement information acquisition method described in the second embodiment.
  • the displacement information of the fitness bike may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740. .
  • bed displacement information corresponding to the user's body movement may be acquired based on sensing by the sensor unit 740.
  • the user terminal 700 can function as a displacement information acquisition unit.
  • the displacement information of the bed may be the same as the displacement information of the bed 2400 or the bed 2500 described in the fourth embodiment, for example.
  • the bed displacement information may be acquired based on, for example, an image captured by the camera 741 of the sensor unit 740. Note that the displacement information acquisition method based on the image captured by the camera 741 may be the same as the displacement information acquisition method described in the second embodiment.
  • bed displacement information may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740.
  • the system 900 does not have to include the displacement sensor 941, and the configuration is simplified.
  • information on the user's head position and head posture may be acquired.
  • the head position and head posture may be estimated based on the displacement information as described above, or the head position and head posture information may be sensed more directly.
  • information on the user's head position and head posture may be acquired based on the captured image of the camera 741 of the sensor unit 740.
  • the position and posture of the user's head reflected in the captured image of the inward camera that captures the user direction are estimated based on the correspondence between the captured image of the outward camera that captures the user's field of view and the projected video. Also good.
  • the user terminal 700 may detect the user's head from the captured image of the camera 741 and transmit the video of the user's head to the control unit 910.
  • the system 900 does not have to include the head detection camera 942, and there is an effect that the configuration is simplified.
  • information on the tilt of the user's body may be acquired.
  • the information on the body tilt may include, for example, information on the sway of gravity and shaking.
  • body tilt information may be acquired based on a captured image of the camera 741 of the sensor unit 740.
  • information on body tilt may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the azimuth sensor 745 of the sensor unit 740. .
  • information on the user's hand movement may be acquired.
  • the information on the movement of the hand may include information on the movement of the hand, such as applause, waving, and crossing arms.
  • hand movement information may be acquired based on an image captured by the camera 741 of the sensor unit 740.
  • hand movement information may be acquired by combining sensor information acquired by at least one of the microphone 742, the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740. .
  • the brightness on the dome screen 101 projected from the projectors 103 and 104 and the preference information of the brightness adjustment value may be acquired.
  • luminance information may be acquired based on a captured image of the camera 741 of the sensor unit 740.
  • the preference information of the brightness adjustment value may be acquired for each user based on the heart rate acquired by the heart rate sensor or the body temperature sensor of the sensor unit 740 or the body temperature.
  • information on the image quality on the dome screen 101 projected from the projectors 103 and 104 and the preference information of the image quality adjustment value may be acquired.
  • image quality information may be acquired based on a captured image of the camera 741 of the sensor unit 740.
  • the preference information of the image quality adjustment value may be acquired for each user based on the heart rate acquired by the heart rate sensor or the body temperature sensor of the sensor unit 740 or the body temperature.
  • content preference information output by the system 900 may be acquired for each user.
  • content preference information may be acquired for each user based on the heart rate acquired by the heart rate sensor or the body temperature sensor of the sensor unit 740 or the body temperature.
  • the sound volume output from the sound output system of the system 900 and the preference information of the volume adjustment value may be acquired.
  • volume information may be acquired based on an acoustic signal (sound information) acquired by the microphone 742 of the sensor unit 740.
  • the preference information of the volume adjustment value may be acquired for each user based on the heart rate acquired by the heart rate sensor or the body temperature sensor of the sensor unit 740 or the body temperature.
  • the sound quality of the sound output from the sound output system of the system 900 and the preference information of the sound quality adjustment value may be acquired.
  • sound quality information may be acquired based on an acoustic signal acquired by the microphone 742 of the sensor unit 740.
  • the preference information of the sound quality adjustment value may be acquired for each user based on the heart rate acquired by the heart rate sensor or the body temperature sensor of the sensor unit 740 or the body temperature.
  • the location information may be acquired based on the sensor information of the sensor unit 740.
  • the location information may be acquired by the position positioning unit 746 of the sensor unit 740.
  • the location information may be acquired by combining sensor information acquired by at least one of the gyro sensor 743, the acceleration sensor 744, and the orientation sensor 745 of the sensor unit 740.
  • the location information is desirably acquired when the technique proposed in the present specification is applied to a moving body such as an airplane, a train, a bus, and a passenger car.
  • the example of the sensing target of the sensor unit 740 has been described above. Note that the process of acquiring information based on the captured image and the process of acquiring information by combining sensor information may be executed by the terminal controller 710 of the user terminal 700, or the main controller 911 of the system 900. May be executed.
  • the control unit 910 as an output control unit reflects the sensing result by the sensor unit 740 in the interaction.
  • Table 8 illustrates the correspondence relationship between the sensing target and the sensing result reflection target.
  • the control unit 910 serving as an output control unit controls the output of video processing and sound processing based on the chair displacement information.
  • the output control related to the video processing and the acoustic processing based on the chair displacement information may be the same as the output control related to the video processing and the acoustic processing based on the displacement information of the chair 1000 described in the first embodiment, for example.
  • the control part 910 as an output control part may perform the acoustic process which changes the sound volume according to the displacement information of a chair.
  • the control unit 910 as an output control unit may perform video processing or audio processing for switching content to be output based on chair displacement information.
  • the control unit 910 serving as an output control unit controls output of video processing and audio processing based on the treadmill displacement information. May be.
  • output control related to video processing and acoustic processing based on treadmill displacement information may be the same as output control related to video processing and acoustic processing based on the treadmill 1500 displacement information described in the second embodiment, for example.
  • the control unit 910 serving as an output control unit changes the screen drawing speed based on displacement information such as a user's running or walking speed on the treadmill, a vertical movement amount of the treadmill, and a left-right tilt angle.
  • Video processing may be executed.
  • the control unit 910 as an output control unit may perform video processing or audio processing for switching content to be output based on treadmill displacement information.
  • the control unit 910 as an output control unit controls the output of video processing and sound processing based on the displacement information of the fitness bike.
  • the output control related to the video processing and the audio processing based on the displacement information of the fitness bike may be the same as the output control related to the video processing and the audio processing based on the displacement information of the fitness bike 1600 described in the second embodiment, for example.
  • the control unit 910 as an output control unit executes video processing for changing the screen drawing speed and acoustic processing for changing the pitch and tempo of the sound in accordance with the rotational speed of the wheel (an example of fitness bike displacement information). May be.
  • the control unit 910 as an output control unit may perform video processing or audio processing for switching content to be output based on fitness bike displacement information.
  • the control unit 910 serving as an output control unit controls the output of video processing and sound processing based on the bed displacement information. Also good. Note that output control related to video processing and acoustic processing based on bed displacement information may be the same as output control related to video processing and acoustic processing based on displacement information of the bed 2400 or 2500 described in the fourth embodiment, for example. Or the control part 910 as an output control part may perform the acoustic process which changes the sound volume according to the displacement information of a bed. In addition, the control unit 910 as an output control unit may perform video processing or audio processing for switching content to be output based on bed displacement information.
  • the control unit 910 serving as an output control unit is based on the information on the head position and head posture.
  • the output of video processing and audio processing may be controlled.
  • the control unit 910 serving as an output control unit may execute video processing for changing the viewpoint position of the free viewpoint video being viewed based on the information on the head position and the head posture.
  • the control unit 910 as an output control unit may control the change of the SSF in accordance with the viewpoint position of the video based on the information on the head position and the head posture.
  • control part 910 as an output control part may perform the acoustic process which changes the sound volume based on the information of a head position and a head attitude
  • control unit 910 as an output control unit may perform video processing or audio processing for switching content to be output based on information on the head position and head posture.
  • control unit 910 serving as an output control unit may execute video processing related to the operation of the UI menu based on information on the head position and head posture.
  • the control unit 910 serving as an output control unit outputs video processing and audio processing based on the information on the tilt of the body. May be controlled.
  • the control unit 910 serving as an output control unit may execute video processing for changing the viewpoint position of the free viewpoint video being viewed based on information on the body tilt.
  • the control unit 910 as an output control unit may control the change of the SSF in accordance with the viewpoint position of the video based on the information on the body tilt.
  • the control part 910 as an output control part may perform the acoustic process which changes the sound volume based on the information of the information of a body inclination.
  • control unit 910 serving as an output control unit may perform video processing or audio processing for switching content to be output based on body tilt information.
  • control unit 910 serving as an output control unit may execute video processing related to the operation of the UI menu based on information on the tilt of the body.
  • control unit 910 serving as an output control unit switches video content to be output based on the hand movement information. Or acoustic processing may be performed.
  • control unit 910 serving as an output control unit may execute video processing related to the operation of the UI menu based on hand movement information.
  • the control unit 910 serving as the output control unit can detect the projectors 103 and 104 based on the luminance information. Brightness adjustment may be performed.
  • the control unit 910 as the output control unit is based on the preference information of the brightness adjustment value. The brightness of each projector 103 and 104 may be adjusted.
  • the control unit 910 serving as the output control unit can detect the projectors 103 and 104 based on the image quality information. Image quality adjustment may be performed.
  • the control unit 910 as the output control unit is based on the preference information of the image quality adjustment value.
  • the image quality adjustment of each projector 103 and 104 may be executed. Note that the image quality adjustment performed by the control unit 910 as the output control unit may include, for example, adjustment of color, contrast, or sharpness.
  • control unit 910 serving as an output control unit switches the content to be output based on the content preference information. Processing or acoustic processing may be performed.
  • the control unit 910 serving as an output control unit may execute output control for recommending content to a user (for example, displaying recommended content) based on content preference information.
  • the control unit 910 serving as the output control unit is based on the sound volume information. Sound volume output from the sound output system of the system 900 may be adjusted.
  • the control unit 910 as the output control unit is based on the preference information of the volume adjustment value. The volume may be adjusted.
  • the control unit 910 as the output control unit is based on the sound quality information.
  • the sound quality of the sound output from the sound output system of the system 900 may be adjusted.
  • the control unit 910 as the output control unit is based on the preference information of the sound quality adjustment value. Sound quality adjustment may be executed. Note that the sound quality adjustment performed by the control unit 910 as the output control unit may include, for example, adjustment of the frequency characteristic, phase characteristic, or delay characteristic of the sound output system.
  • control unit 910 serving as an output control unit performs video processing or audio processing for switching content to be output based on the location information. May be executed.
  • the control unit 910 serving as an output control unit may output content that guides nearby places or the like based on location information, or may output content that advertises nearby stores or the like.
  • the sensing target of the sensor unit 740 and the reflection target of the sensing result when the system 900 and the user terminal 700 are linked have been described.
  • the control unit 910 as the output control unit may control the output of the air conditioner included in the external output unit 952 based on the body temperature information acquired by the body temperature sensor 748.
  • this technique is not limited to the example which concerns.
  • geometric correction or edge blending processing may be performed based on an image captured by the camera 741 of the sensor unit 740.
  • the correction may be performed based on the captured image of the camera 741.
  • the control unit 910 serving as an output control unit may control the interaction based on profile information stored in the storage unit 750 of the user terminal 700.
  • control unit 910 as an output control unit may output content based on history information included in profile information.
  • control unit 910 serving as an output control unit may output content similar to content that the user has played in the past based on the playback history.
  • control unit 910 serving as an output control unit may output content frequently played back by the user in the past based on the playback history.
  • control unit 910 as an output control unit may control output based on personal information included in the profile information.
  • the control unit 910 as an output control unit may output suitable content according to personal information.
  • the control part 910 as an output control part may enlarge the magnitude
  • the control unit 910 serving as an output control unit may execute video processing for changing the viewpoint position of the free viewpoint video being viewed according to the user's height and sitting height information.
  • the control unit 910 serving as an output control unit may display a schedule or notify a schedule included in the schedule based on user schedule information.
  • profile information such as schedule information is superimposed on the content video while the user is viewing the content, the profile information is arranged outside the area corresponding to the front of the user so as not to disturb the content audition. It is desirable to do.
  • control unit 910 as the output control unit may control the output based on the preference information included in the profile information.
  • the control unit 910 serving as an output control unit may output content estimated to be preferred by the user according to the content preference information.
  • control unit 910 as an output control unit may perform adjustments related to output such as luminance, image quality, volume, and sound quality based on the output adjustment value preference information. With such a configuration, adjustment for each user is performed quickly, so that it is possible to reduce, for example, video sickness. Such adjustments for each user based on the profile information are particularly effective when the user frequently changes in a store or the like.
  • the use of profile information when the system 900 and the user terminal 700 are linked has been described.
  • the use of information stored in the storage unit 750 when the system 900 and the user terminal 700 cooperate with each other is not limited to the above.
  • the control unit 910 serving as an output control unit is stored in the storage unit 750.
  • the content may be output.
  • the control unit 910 as an output control unit may control output based on various functions of the user terminal 700.
  • control unit 910 as an output control unit may execute video processing and audio processing related to a video call using the dome type display 100.
  • control unit 910 as an output control unit may execute video processing and acoustic processing according to the voice recognition function.
  • the control unit 910 may execute video processing and acoustic processing according to the voice recognition function.
  • an operation related to the system 900 may be performed by voice dialogue.
  • the control unit 910 as the output control unit controls output based on the video call function, the voice recognition function, the voice dialogue function, and the like of the user terminal 700
  • the user speaks in front of the dome screen 101. If the utterance is made in front of the dome-shaped screen 101, an echo is generated, and there is a possibility that the microphone 742 of the user terminal 700 cannot appropriately acquire an audio signal. Therefore, it is desirable to calibrate the microphone 742 in advance. For example, by measuring the acoustic impulse response, calibration that cancels the unique reflection characteristic of the dome-shaped screen 101 according to the position of the user terminal 700 can be performed. As a result, it is possible to acquire an audio signal of the sound from which the echo is removed (cancelled).
  • control unit 910 as an output control unit may reduce the volume based on the incoming call to the user terminal 700.
  • control unit 910 as an output control unit may control the sound output of the speaker 770 included in the user terminal 700.
  • the control unit 910 as the output control unit may control the sound output of the speaker 770 according to the arrangement of the user terminal 700. For example, when the user terminal 700 is present near the headrest 1040 as illustrated in FIG. 63, the control unit 910 serving as an output control unit may output sound from the headrest speaker 934 instead. According to such a configuration, the system 900 does not have to include the headrest speaker 934, and there is an effect that the configuration is simplified.
  • control unit 910 as the output control unit may control the output based on a user operation via the operation input unit 780 included in the user terminal 700.
  • control unit 910 serving as an output control unit may execute video processing for changing the viewpoint position of the free viewpoint video being viewed based on a user operation via the operation input unit 780.
  • the user terminal 700 may be incorporated in the system 900. In such a case, the user terminal 700 may have functions of the control unit 910 and the input system instead of the control unit 910 and the input system.
  • FIG. 65 shows a configuration example of a system 900 including the user terminal 700.
  • the system 900 shown in FIG. 65 does not include the user terminal 700, but does not include the control unit 910, the displacement sensor 941, the head detection camera 942, the external sensor 943, and the audio player 944. Different from 900.
  • the function of the communication unit 913 of the control unit 910 can be replaced by the communication unit 730 of the user terminal 700.
  • the functions of the main controller 911, the main memory 912, the video DSP 914, and the audio DSP 915 (including the function as an output control unit) of the control unit 910 are included in the terminal controller 710 of the user terminal 700 and the memory 720. It can be replaced.
  • the user terminal 700 may include a video DSP and an audio DSP.
  • the functions of the displacement sensor 941, the head detection camera 942, and the external sensor 943 can be replaced by the sensor unit 740.
  • FIG. 65 an example of a specific sensor included in the sensor unit 740 is omitted. However, for example, it may be the same as the example of the specific sensor included in the sensor unit 740 illustrated in FIG.
  • the function of the audio player 944 can be replaced by, for example, the terminal controller 710 and the storage unit 750.
  • control unit 910 and the input system described above may be replaced, and the system 900 may include a part or all of the functions of the control unit 910 and the input system together with the user terminal 700. Good.
  • the user terminal 700 and the sound output system and the video display system may be wirelessly connected by wireless communication by the communication unit 730 or may be connected by wire.
  • a technology such as Miracast (registered trademark) or AirPlay (registered trademark) may be used.
  • the user terminal 700 and the audio output system and the video display system are, for example, MHL (Mobile High-definition Link) or HDMI (High-Definition Multimedia Interface). ) (Registered trademark) or the like.
  • connection between the user terminal 700 and the sound output system and the video display system is not limited to this example, and the user terminal 700 and the sound output system and the video display system may be Bluetooth (registered trademark) or USB (Universal). (Serial Bus) or the like.
  • the system 900 may include a plurality of user terminals 700. Further, one user terminal 700 may be connected to each projector 103 and 104. In such a case, it is desirable to synchronize the video output timing among the plurality of user terminals 700. For example, the time between the user terminals 700 may be synchronized using a protocol such as PTP (Precision Time Protocol), and video output may be started at a predetermined time.
  • PTP Precision Time Protocol
  • the system 900 includes the user terminal 700
  • the user terminal 700 replaces the control unit 910 and the input system functions, so that the configuration is simplified. Note that even in the configuration in which the system 900 described with reference to FIG. 65 includes the user terminal 700, it is based on the interaction reflecting the sensing result by the sensor unit 740, the interaction using the profile information, and the function of the user terminal 700. Interaction can take place.
  • a system provided with at least some or all of the components such as the control unit and the input system omitted in FIG. 65 may be employed. That is, the system 900 of FIG. 9 that can function independently may include the user terminal 700 as an auxiliary operation terminal and operate in cooperation with these.
  • video in the video display system can be controlled based on various signals (information) from the input system shown in FIG. 9 in addition to operation input information from the user terminal 700, sensor information, and the like. That is, for example, when the object is a chair, the video of the video display system can be controlled based on the chair motion information and information from the user terminal 700.
  • the sensor unit 740 (first sensor unit) of the user terminal 700 acquires sensor information related to the user's body motion
  • the displacement sensor 941 second sensor illustrated in FIG. Part
  • the output unit may also acquire sensor information relating to the user's physical movements.
  • the parallax of the video presented on the display unit may be controlled based on the sensor information acquired by the sensor unit 740 and the displacement sensor 941.
  • the parallax can be changed more greatly than in FIG. More specifically, for example, the user can change the parallax greatly while maintaining a state of looking forward by a combination of left-right rotation and an input operation to the user terminal 700.
  • the interaction technology proposed in this specification can detect the user's body movements such as the displacement of the trunk through furniture used in daily life such as chairs and beds, and can substitute for input. It can also be deployed as an alternative input function that replaces the controller and console for those with disabilities.
  • the interaction technology proposed in this specification can be used not only in general homes but also in facilities such as hospitals and rehabilitation. Furthermore, the interaction technique proposed in this specification can be used even in a mobile body with limited space such as an airplane, a train, a bus, and a passenger car that supports automatic driving.
  • a displacement information acquisition unit that acquires displacement information corresponding to a three-dimensional displacement of a predetermined part of a predetermined object on which the user is riding according to the user's physical movement; based on position information of the predetermined part; ,
  • An information processing apparatus comprising: an output control unit that controls the output unit to perform a predetermined output based on the acquired displacement information.
  • the predetermined object is an object that the user can sit on, The information processing apparatus according to (1), wherein the physical movement of the user includes a tilting movement of the upper body of the user.
  • the predetermined object has a seat back;
  • the displacement information acquisition unit acquires the displacement information corresponding to a tilt angle of the seat back in the front-rear direction.
  • the displacement information acquisition unit acquires a first tilt angle and a second tilt angle larger than the first tilt angle as the displacement information,
  • the output unit performs the predetermined output including a first output and a second output different from the first output;
  • the output control unit controls the output unit to perform the first output when the seat back has the first tilt angle, and when the seat back has the second tilt angle.
  • the displacement information acquisition unit acquires displacement information corresponding to a tilt angular acceleration of the seat back, The output unit performs the predetermined output including a third output; The output control unit according to any one of (3) to (6), wherein the output unit controls the output unit to perform the third output when the tilt angular acceleration is equal to or greater than a predetermined threshold.
  • Information processing device (8) The displacement information acquisition unit acquires the displacement information corresponding to a change in position in at least one of a front-rear direction, a left-right direction, and a vertical direction of a seating portion of the predetermined object, (2) to (7) The information processing apparatus according to any one of the above.
  • the displacement information acquisition unit acquires the displacement information corresponding to a change in position in at least one of a front-rear direction, a left-right direction, and a vertical direction of an armrest of the predetermined object, according to (2) to (8), The information processing apparatus according to any one of claims.
  • the output control unit controls the brightness of the video based on a tilt angle of the predetermined object in a horizontal direction.
  • the information processing apparatus controls a transition direction of the video based on a tilt angle of the predetermined object in a left-right direction.
  • the output control unit displays an effect image corresponding to an acoustic signal.
  • the output control unit changes the effect image according to an analysis result of the acoustic signal.
  • the effect image includes particles displayed so as to extend a relative length as approaching the vicinity of an outer edge of the display unit.
  • the effect images include a plurality of particle group layers that overlap each other in the depth direction in the virtual space and that are separated from or approach each other in the depth direction in the virtual space according to the change in the acoustic signal.
  • the information processing apparatus according to any one of the above.
  • the output unit includes a display unit that displays an image provided above the predetermined object, The information processing apparatus according to (18), wherein the output control unit controls the video in accordance with at least one of a head position and a front direction of the user estimated based on the displacement information. (20) The information processing apparatus according to (19), wherein the output control unit controls a display position of the video according to at least one of the estimated head position and front direction of the user. (21) The information processing apparatus according to (19) or (20), wherein the output control unit controls a direction of the video according to at least one of the estimated head position and front direction of the user.
  • the output unit performs the predetermined output including a fourth output different from any of the first output and the second output
  • the displacement information acquisition unit acquires the displacement information corresponding to vibration or swinging of the predetermined part
  • the information processing apparatus according to (5) wherein the output control unit controls the output unit to perform the fourth output in response to the vibration or the swing.
  • the output unit includes a speaker that outputs sound, and the speaker is provided so that a straight line that faces the vibration direction of the speaker intersects with the face of the user.
  • a displacement information acquisition step for acquiring displacement information corresponding to a three-dimensional displacement of the predetermined part of the predetermined object on which the user is riding according to the user's physical movement, based on the position information of the predetermined part;
  • An information processing method comprising: an output control step of controlling the output unit to perform a predetermined output based on the acquired displacement information.
  • a displacement information acquisition unit that acquires displacement information corresponding to a three-dimensional displacement of the predetermined part of the predetermined object on which the user is riding according to the user's physical movement, based on the positional information of the predetermined part;
  • a computer program written in a computer-readable format so that the computer functions as an output control unit that controls the output unit to perform a predetermined output based on the acquired displacement information.
  • a displacement information acquisition unit that acquires first displacement information corresponding to a three-dimensional rotational displacement of a straight line formed by at least two characteristic locations of a predetermined object according to a user's body movement;
  • An output control unit for controlling the output unit to perform a predetermined output based on the acquired first displacement information;
  • An information processing apparatus comprising: (28) The displacement information acquisition unit acquires the first displacement information corresponding to a three-dimensional rotational displacement of a surface formed by at least three characteristic locations, The output control unit controls the output unit based on the acquired first displacement information.
  • the information processing apparatus according to (27).
  • the predetermined output includes a first output and a second output different from the first output;
  • the output control unit controls the output unit to perform the first output when the rotational displacement in the first direction is substantially acquired as the first displacement information.
  • the output unit is controlled to perform the second output.
  • the first direction and the second direction correspond to a displacement direction of the predetermined object according to a three-dimensional displacement of the user's trunk.
  • the predetermined output further includes a third output different from any of the first output and the second output,
  • the output control unit controls the output unit to perform the first output when the first displacement amount in the first direction is acquired as the first displacement information.
  • control is performed so that the output unit performs the third output.
  • the predetermined output further includes a fourth output different from any of the first output and the second output,
  • the displacement information acquisition unit further acquires second displacement information corresponding to translational displacement according to the user's body movement of at least one of the characteristic locations, The output control unit controls the output unit to perform the fourth output based on the second displacement information.
  • the predetermined output further includes a fifth output different from any of the first output and the second output
  • the displacement information acquisition unit further acquires third displacement information corresponding to a reciprocal translational displacement corresponding to the user's body movement of at least one of the characteristic locations
  • the output control unit controls the output unit to perform the fifth output based on the third displacement information.
  • the information processing apparatus according to any one of (29) to (32).
  • the predetermined object is an object that is placed on the floor and does not substantially move relative to the floor with respect to the user's physical movements;
  • the output control unit controls the output of the output unit based on a constraint condition related to the predetermined object in the placed state and the first displacement information.
  • the information processing apparatus according to any one of (27) to (33). (35) The characteristic location is a marker provided for the predetermined object. The information processing apparatus according to any one of (27) to (34). (36) The marker is a marker provided at an edge of the predetermined object. The information processing apparatus according to (35). (37) The feature location is a feature point of the predetermined object recognized by image recognition processing. The information processing apparatus according to any one of (27) to (34). (38) The output unit includes a display unit that displays a stereoscopically viewable video, The output control unit controls the parallax of the video based on the acquired first displacement information; The information processing apparatus according to any one of (27) to (37).
  • the output control unit controls brightness of the video based on the acquired first displacement information;
  • the output unit further includes a feedback unit that outputs at least one feedback information among temperature, wind, humidity, smell, touch, and sound according to the video,
  • the output control unit controls at least one of an output direction and an output amount of the feedback information output from the feedback unit based on the acquired first displacement information.
  • (41) A line-of-sight information acquisition unit for acquiring line-of-sight information of the user;
  • the output control unit controls the visual field range of the video based on the acquired line-of-sight information and controls the parallax of the video based on the acquired first displacement information.
  • the information processing apparatus according to any one of (38) to (40).
  • the displacement information relates to the angular velocity or angular acceleration of the predetermined object.
  • the information processing apparatus according to any one of (27) to (41).
  • the predetermined object is an object that the user can ride.
  • the information processing apparatus according to any one of (27) to (42).
  • An information processing method comprising: (45) A displacement information acquisition unit for acquiring first displacement information corresponding to a three-dimensional rotational displacement of a straight line formed by at least two characteristic locations of a predetermined object according to a user's body movement; An output control unit that controls the output unit to perform a predetermined output based on the acquired first displacement information;
  • An output control unit configured to control the output unit based on sensor information related to the user's physical movement and terminal information acquired from a user terminal including at least one of the user's portable
  • the terminal information includes profile information about the user included in the storage of the user terminal, The information processing apparatus according to (46), wherein the output control unit controls the output unit based on the profile information.
  • the terminal information includes environment information related to a surrounding environment of the user terminal.The output control unit controls the output unit based on the environment information.
  • the environment information includes sound information acquired by a microphone microphone included in the user terminal.
  • the user terminal includes a first sensor unit configured to acquire the sensor information; The information processing apparatus according to any one of (46) to (49), wherein the output control unit controls the output unit based on the sensor information acquired from the user terminal.
  • the sensor information is configured to be acquired, and further includes a second sensor unit different from the first sensor unit, The output control unit controls the output unit based on the sensor information acquired by the first sensor unit and the sensor information acquired by the second sensor unit.
  • Information processing device Further comprising a display configured to cover substantially the entire range of the user's field of view; The output control unit is configured to display an image presented from the output unit to the display unit based on the sensor information acquired by the first sensor unit and the sensor information acquired by the second sensor unit.
  • the sensor information acquired by the first sensor unit includes input operation information of the user to the user terminal
  • the sensor information acquired by the second sensor unit includes rotation operation information related to the rotation operation of the user
  • the information processing apparatus according to (52), wherein the output control unit controls parallax of the video based on the rotation operation information and the input operation information.
  • the output control unit controls the output unit based on the sensor information acquired from the user terminal placed on a predetermined object on which the user can ride. (50) to (53)
  • the information processing apparatus according to any one of claims.
  • SYMBOLS 100 Dome type display, 101 ... Dome type screen 102 ... Support body, 102A, 102B ... Shaft part 103, 104 ... Projector, 105 ... Video decoding part 106 ... Chair, 108, 109 ... Projector 900 ... System, 910 ... Control part 911 ... Main controller, 912 ... Main memory 913 ... Communication unit, 914 ... Video DSP, 915 ... Audio DSP 931 ... DAC, 932 ... amplification unit, 933 ... headphones 934 ... headrest speaker, 935 ... subwoofer 936 ... speaker, 937 ... rear speaker 941 ... displacement sensor, 942 ... head detection camera, 943 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

ユーザの身体動作に応じたオブジェクトの変位情報に基づいて出力を制御する情報処理装置を提供する。情報処理装置は、ユーザが乗っているオブジェクトの所定の部位のユーザの身体動作に応じた3次元的な変位に対応する変位情報を所定の部位の位置情報に基づいて取得する変位情報取得部と、取得された変位情報に基づいて出力部が所定の出力を行うように制御する出力制御部を備える。オブジェクトは例えばユーザが着座可能でシートバックを有し、変位情報取得部はシートバックの前後方向、左右方向及び上下方向のうち少なくとも1つの位置変化を取得する。

Description

情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
 本明細書で開示する技術は、ユーザの指示に応じて出力を制御する情報処理装置及び情報処理方法、並びにコンピュータ・プログラムに関する。
 多視点カメラや広角カメラで撮影された自由視点映像を提供するサービスが増えつつある。例えばスポーツやコンサート中継などのエンターテインメント系の映像や、無形文化財や教育コンテンツなどを、当該技術の主な適用分野として挙げることができる。また、ゲーム用のコンテンツなど、コンピュータ・グラフィクス技術を用いて生成される仮想現実(VR)映像においても、自由視点映像に関する技術が浸透してきている。
 自由視点映像は、ユーザが視点位置や視線方向を任意に変更可能な映像である。例えば、据え置き型の表示装置で自由視点映像を視聴する際には、コントローラやコンソールを用いて視点位置や視線方向の指示が入力される。また、ヘッド・マウント・ディスプレイ(HMD)を用いて自由視点映像を視聴する際には、ユーザの頭部の動作を検出した結果に基づいて視点位置や視線方向を変化させることで、映像が撮影された空間を実際に探索しているような体験をユーザに与えることができる。
 また、手持ち型コントローラのような専用コントローラからの入力に基づいてHMDに表示する拡張仮想現実シーンを生成するシステムについて提案がなされている(例えば、特許文献1を参照のこと)。
特表2016-528942号公報
 本明細書で開示する技術の目的は、ユーザの指示に応じて出力を好適に制御することができる、優れた情報処理装置及び情報処理方法、並びにコンピュータ・プログラムを提供することにある。
 本明細書で開示する技術は、上記課題を参酌してなされたものであり、その第1の側面は、
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部と、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部と、を具備する情報処理装置である。
 また、本明細書で開示する技術の第2の側面は、
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得ステップと、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御ステップと、を有する情報処理方法である。
 また、本明細書で開示する技術の第3の側面は、
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部、としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータ・プログラムである。
 本明細書で開示する技術によれば、ユーザの身体動作に応じて出力を好適に制御することができる、優れた情報処理装置及び情報処理方法、並びにコンピュータ・プログラムを提供することができる。
 なお、本明細書に記載された効果は、あくまでも例示であり、本技術の効果はこれに限定されるものではない。また、本技術が、上記の効果以外に、さらに付加的な効果を奏する場合もある。
 本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。
図1は、ドーム型ディスプレイ100の構成例を示した図である。 図2は、ドーム型ディスプレイ100の構成例を示した図である。 図3は、ドーム型ディスプレイ100の構成例を示した図である。 図4は、ドーム型ディスプレイ100の構成例を示した図である。 図5は、ドーム型ディスプレイ100の構成例を示した図である。 図6は、ドーム型ディスプレイ100の構成例を示した図である。 図7は、ドーム型ディスプレイ100の構成例を示した図である。 図8は、ドーム型ディスプレイ100の構成例を示した図である。 図9は、ユーザとのインタラクションを実現するシステムの構成例を示した図である。 図10Aは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図10Bは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図11Aは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図11Bは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図12Aは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図12Bは、椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。 図13は、市販のサブウーファー935、及びスピーカー936を用いた構成例を示した図をある。 図14は、サブウーファー935を支持体102に埋め込んで設置した構成例を示した図である。 図15は、サブウーファー935を支持体102に埋め込んで設置した構成例を示した図である。 図16は、サブウーファー935、及びスピーカー936を支持体102に埋め込んで設置した構成例を示した図である。 図17は、椅子1000にヘッドレスト・スピーカー934、及びリアスピーカー937が備えられた構成例を示した図である。 図18は、椅子1000にヘッドレスト・スピーカー934が備えられた構成例の斜視図である。 図19は、ユーザの身体動作に応じた変位情報を取得するオブジェクトの一例として椅子1000を示した図である。 図20は、自由視点映像に運動視差の左右変化を付ける映像処理を例示した図である。 図21は、自由視点映像に運動視差の前後倒れ角変化を付ける映像処理を例示した図である。 図22は、自由視点映像に運動視差の左右倒れ角変化を付けるとともに、視点位置を左右に変化させる映像処理を例示した図である。 図23は、椅子のシートバックのばね性を利用して、シートバックに寄りかかっていたユーザが身体を起こす様子を示した図である。 図24は、ユーザの身体動作に応じた変位情報を取得するオブジェクトの一例としてトレッドミル1500を示した図である。 図25は、ユーザの身体動作に応じた変位情報を取得するオブジェクトの一例としてフィットネスバイク1600を示した図である。 図26は、ユーザがフィットネスバイク1600のペダルを漕いで前輪が回転する様子を示した図である。 図27は、ユーザがフィットネスバイク1600で立ち漕ぎ動作をする様子を示した図である。 図28は、ユーザがフィットネスバイク1600で左右に倒れ込んで漕ぐ様子を示した図である。 図29は、ユーザが椅子に着座しながら部屋の天井や壁面に表示されている映像を視聴している様子を示した図である。 図30は、ユーザが幌付きの椅子に着座している様子を示した図である。 図31は、ユーザが幌付きの椅子に着座している様子(幌を閉じて映像を視聴している状態)を示した図である。 図32は、ユーザが乗用車の座席に着座している様子を示した図である。 図33は、ユーザがベッド上に横たわっている様子を示した図である。 図34は、ユーザがベッド上に横たわっている様子を示した図である。 図35は、ユーザのベッド上での身体動作の例を示した図である。 図36は、ユーザのベッド上での身体動作の例を示した図である。 図37は、自由視点映像上でUIメニュー及びコンテンツのコントロールを行う様子を示した図である。 図38は、ユーザの身体動作に応じたオブジェクトの変位情報に基づいてユーザへのインタラクションを制御するための処理手順を示したフローチャートである。 図39は、マーカの動きに基づいてオブジェクトの種類を自動判別して、変位情報を取得するための処理手順を示したフローチャートである。 図40は、固有マーカに基づいてオブジェクトの種類を自動判別して、変位情報を取得するための処理手順を示したフローチャートである。 図41は、音響信号に応じた映像を表示させるビジュアライザー機能を有する実施例の構成例を示す図である。 図42は、図41に示した構成のうち、ドーム型スクリーン101のみを示した図である。 図43は、ドーム型スクリーン101に対して略正対するような視点における、図41に示したユーザの視界を示している。 図44は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示し 図45は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図46は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図47は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図48は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図49は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図50は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図51は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図52は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図53は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図54は、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を示した図である。 図55は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図56は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図57は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図58は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図59は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図60は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図61は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図62は、エフェクト画像に含まれる一部の粒子のみを示した図である。 図63は、ユーザ端末700が配置された構成例の斜視図である。 図64は、ユーザ端末700の構成例を示した図である。 図65は、システム900がユーザ端末700を備えた構成例を示した図である。
 以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。
A.システム構成
 図1及び図2には、自由視点映像やVR映像の表示に適用することができるドーム型ディスプレイ100の構成例を示している。ユーザはドーム内に入ると投影された映像を観察することができる。但し、図1はドーム型スクリーン101を前額面で切った断面を示し、図2はドーム型スクリーン101を矢状面で切った断面を示している。
 図示のドーム型ディスプレイ100は、ドーム型スクリーン101と、ドーム型スクリーン101を支持する支持体102と、2台のプロジェクタ103及び104を備えている。各プロジェクタ103及び104は、ベースバンドの映像信号に基づいて、ドーム型スクリーン101に向かって映像を投射する。また、ドーム型スクリーン101によって形成される空間の内部には、投影された映像を観察するユーザが着座する椅子106が設置されている。
 ドーム型スクリーン101は、内周が投影画像の表示面となっている。ドーム型スクリーン101は、例えば軽量なFRP(Fiber Reinforced Plastics:繊維強化プラスチック)などの樹脂や、金属、ガラス、アクリルなどで製作される。ドーム型スクリーン101の内周面には、光(投影された映像)の乱反射を防ぐための塗装やコーティング、その他の表面処理が施されていることが好ましい。ドーム型スクリーン101の内周は球面若しくは半球形状をなす。球面若しくは半球形状をなすドーム型スクリーン101を用いると、水平方向及び垂直方向に広視野角な臨場感のある映像を投影することができる。なお、ドーム型スクリーン101の外形は特に限定されない。例えば、折り畳み式若しくは収納式のドーム型スクリーン(図示しない)でもよい。
 支持体102は、互いの回転軸が一致する一対の軸部102A及び102Bを備え、この一対の軸部102A及び102Bでドーム型スクリーン101を矢状面内で水平軸回りに回転可能に支持する。但し、ドーム型スクリーン101を矢状面内で水平軸回りに回転可能に支持することができれば、一対の軸部102A及び102Bで支持する構造には限定されない。また、支持体102は、ドーム型スクリーン101を垂直軸回りに回転可能に支持する機構も備えていてもよい。さらに、支持体102は、上下動などドーム型スクリーン101が回転以外の自由度も持つように支持する構造であってもよい。
 2台のプロジェクタ103及び104は、それぞれ映像復号部105から供給される映像信号(広視野角の映像信号)を、ドーム型スクリーン101の内周に投影する。各プロジェクタ103及び104は、レーザー、LED、水銀ランプ、キセノンランプ等を光源に用いて、高彩度で色再現性のよい画像をドーム型スクリーン101に投影できるものとする。
 各プロジェクタ103及び104は、互いの投影画像でドーム型スクリーン101の内周の表示面全体をカバーできるように、ドーム型スクリーン101の端縁付近にて、ドーム型スクリーン101に対する相対位置及び姿勢が固定されている。各プロジェクタ103及び104は、例えば3軸方向及び各軸回りの6自由度を持つテーブル(図示しない)を介してドーム型スクリーン101に固定され、各々の光軸(投影方向)を微調整できるものとする。ドーム型スクリーン101を水平軸回りに回転させると(後述)、各プロジェクタ103及び104も一体となって動く。
 例えば、各プロジェクタ103及び104からドーム型スクリーン101に投影される画像間の接合部分のスティッチング処理を行うことで、ドーム型スクリーン101で広視野角映像を提示することができる。スティッチング処理には任意のアルゴリズムを適用することができる。具体的には、投影される画像間の接合部分に幾何補正とエッジブレンディングなどを行なうことで、ドーム型スクリーン101で広視野角映像を提示してもよい。もちろん、幾何補正やエッジブレンディング処理には任意のアルゴリズムが適用され得る。
 各プロジェクタ103及び104からの投影映像はそれぞれ4K(横4000×縦2000前後)の解像度を持つことを想定している。また、各プロジェクタ103及び104が持つ光学歪みや、ドーム型スクリーン101の内周の変形(経時変化を含む)などに起因する広視野角映像の歪みを画像処理によって補正するようにしてもよい。具体的には、各プロジェクタ103及び104が持つ光学歪みや輝度や色味の個体差、ドーム型スクリーン101の内周の変形(経時変化を含む)などに起因する広視野角映像の歪みが、画像処理によって補正され得る。映像の歪みの補正のために、例えば、各プロジェクタ103及び104からドーム型スクリーン101に既知形状からなるテスト・パターンを投影して、テスト・パターンの投影画像の歪みをキャンセルするような画像処理が実施されてもよい。具体的には、各プロジェクタ103及び104からドーム型スクリーン101に既知形状からなるテスト・パターンを投影し、外部カメラなどで投影されたテスト・パターンを撮影し、撮影された画像に基づいて、テスト・パターンの投影画像の歪みをキャンセルするような画像処理を行ってもよい。また、各プロジェクタ103及び104の位置姿勢推定や、ドーム型スクリーン101の形状推定などの三次元的な計測結果が、歪みをキャンセルする画像処理に利用されてもよい。また、各プロジェクタ103及び104をドーム型スクリーン101に固定したときの位置決め誤差に起因する投影画像の歪みも、画像処理によって補正するようにしてもよい。
 各プロジェクタ103及び104から投影される全天周映像に、メニューやボタンなどを含んだGUI(Graphical User Interface)を重畳表示するようにしてもよい。これらのGUIは、ハンドジェスチャ入力や視線入力等の種々の入力手段によって操作されてよい。
 ドーム型スクリーン101は、支持体102で回転可能に支持されている。図1及び図2に示したように、ドーム型スクリーン101をほぼ水平に支持している場合、ドーム型スクリーン101の表示面には水平方向に360度の全周囲映像を提示することができる。一方、図3及び図4に示すように、ドーム型スクリーン101を矢状面内で水平軸回りに90度だけ、軸部102A及び102Bの回転軸回りに回転させると、ドーム型スクリーン101の表示面には垂直方向に360度の全周囲映像を提示することができる。例えば、上空や高層などを想定した広視野角映像を観察する場合には、図3及び図4に示すようにドーム型スクリーン101を90度だけ回転させると、下方(例えば地面)の映像も提示することができる。また、図1~図4に示したように、ドーム型スクリーン101を水平方向又は垂直方向に設置するだけでなく、図5及び図6に示すように、ドーム型スクリーン101を矢状面内で水平軸回りに0度から90度の任意の角度に傾けて、ドーム型ディスプレイ100を使用することもできる。
 また、図1~図6に示した構成例では、ドーム型ディスプレイ100は2台のプロジェクタ103及び104を備えているが、3台以上のプロジェクタを設置するように構成してもよい。図7には、プロジェクタ103及び104に加えて、さらに2台のプロジェクタ108及び109をドーム型スクリーン101に取り付けたドーム型ディスプレイ100の構成例を示している。
 ドーム型スクリーン101に映像を投影するプロジェクタ103及び104として、例えば手のひらサイズで高解像度のピコプロジェクタを採用することもできる。ピコプロジェクタであれば、設置面積を要しないので、ドーム型スクリーン101への設置台数を増やすこともできる。図8には、多数のピコプロジェクタをドーム型スクリーン101に設置した様子を示している。プロジェクタの設置台数を増やしていくと、投影映像の輝度、コントラスト、解像度を向上させることができる。
 また、ドーム型スクリーン101内のユーザがジェスチャー動作する際などに、あるプロジェクタからの投影映像がユーザの突き出した手によって遮られることがあるが、別のプロジェクタの投影映像で補うことができる。多数のプロジェクタを点灯させると、消費電力が大きくなる。そこで、設置したすべてのプロジェクタを同時に駆動させるのではなく、必要な台数のプロジェクタだけ適宜部分的に動作させるようにしてもよい。
 例えば、ドーム型スクリーン101内にいるユーザの身体の姿勢や手の位置などに応じて、投影画像が影とならないプロジェクタを選択して、部分的に駆動させるように制御すればよい。カメラや距離センサなどをプロジェクタ毎に設置して各プロジェクタとスクリーン101表面までの間に障害物があるか又は投影映像に影ができているかを検出して、映像がうまく投影されないプロジェクタはオフにし、代わって隣接するプロジェクタをオンにすればよい。図8中、白で表示されたピコプロジェクタは点灯中で、グレーで表示されたピコプロジェクタは消灯中とする。
 ドーム型スクリーン101への投影映像は、HMDで拡大虚像を観察する場合よりも、ユーザは被写体のスケール感を感じ易い、というメリットがある。例えば、ドーム型スクリーン101の内径を1.5~2メートル程度に設定すると、ユーザが等身大に感じる被写体(人物など)の映像を表示することができ、リアリティーが増す。例えば、カメラ目線をした人物を撮影した映像を投影した場合には、ユーザは映像内の人物が自分と目が合っている(アイ・コンタクトしている)ような、現実感の強い体験をすることができる。また、ドーム型ディスプレイ100は、HMDに比べると解放感があるが、水平方向に360度の全天周映像を提示することで没入感が増す。
 要するに、ドーム型スクリーン101への投影映像は、現実により近い、囲まれた映像と言うことができる。さらに、ドーム型ディスプレイ100に、スピーカーやヘッドフォンと信号処理を利用した立体音響を組み合わせることで、ユーザに対して、映像と音声が録音が撮影された場所に居る、若しくはその場所に参加しているような感覚を与えることができる。
 自由視点映像やVR映像を視聴できる表示装置として、HMDも挙げることができる。HMDは小型で設置場所に制限がなく、どこでも利用することができる。反面、ユーザはHMDを着用すると頭部が締め付けられる、装置の重さを首で支えなければならないなどの理由により、長時間使用すると疲れるという問題がある。また、HMDはユーザの肌に密着するので、発汗により装置がダメージを受けるという問題がある。また、HMDを装着するとユーザの顔や視界を覆い隠すので、ユーザは他の入力デバイスとの併用が困難である、表情を読み取ることができない、動くと手足を障害物にぶつける危険がある、といった問題もある。
 これに対し、ドーム型ディスプレイ100の場合、ユーザは何も装着しない状態なので、解放感があり長時間の使用に耐え易いというメリットがある。また、ドーム型スクリーン101内のユーザをカメラの撮影画像などで観察することができ、顔認識(個人認証)や表情認識を行うことができる。また、ドーム型スクリーン101内に複数人が同時に入ることで、視聴映像を簡単に共有し、共同作業を実現し易い。
 また、ドーム型ディスプレイ100は、ドームで閉じられた空間を利用したマルチモーダルなインタフェースを備えていてもよい。マルチモーダルなインタフェースは、例えば、ドーム内の温度や湿度を調整したり、匂いを発生させたり、ユーザに風(微風や向かい風、エア・ブラスト)や水しぶき(ウォター・ブラスト)を吹き付けたり、ユーザの身体に触覚(背中をつつくような効果、首筋や足元に何かが触れるような感覚など)や振動・揺動(椅子106の下からの衝撃や地響きなど)を加えたり、匂いや香りを与えたりして、視聴空間の環境を自在に制御する手段からなる。ドーム型スクリーン101によって作業空間と外界が仕切られるので、マルチモーダルなインタラクションを適用して、仮想現実空間と同じような臨場感のある体験をしてもらうことができる。
 図1などに示した構成例では、ドーム型ディスプレイ100は、室内に設置して利用することを想定しているが、勿論、屋外に設置して利用してもよい。また、支持体102の下端にキャスターなどの移動用部品を取り付けて、設置場所を容易に移動できるようにしてもよい。また、1台のドーム型ディスプレイ100を1人で使用するだけでなく、複数人で使用することや、B2B(Business to Business)での利用も想定される。あるいは、ドーム形状ではなく、部屋の天井や壁面、あるいは乗用車の車室内の壁面を投影面に用いて、自由視点映像やVR映像を表示することも考えられる(後述)。
 なお、本実施形態では、ドーム型ディスプレイ100は、自由視点映像の視点位置及び視線方向を変更可能であることと、立体視可能な映像を表示できることを前提とする。
 視点位置の移動は、例えば自由視点映像を撮像している多視点カメラ又は広角カメラを搭載した移動体装置を移動させることなどによって実現する連続的な移動と(図22を参照のこと)、遠く離れた視点位置間を瞬間的に移動(ジャンプ)するという不連続的な移動を含むものとする。視点位置が連続的に移動する場合は、ドーム型スクリーン101に投影される映像も連続的に変化し、視点位置が不連続的に移動する場合は、ドーム型スクリーン101に投影される映像が次の視点位置の映像に瞬間的に切り替わる。なお、瞬間移動した視点位置の映像の少なくとも一部は、実写映像ではなく、VR映像やCG映像であってもよい。
 また、視線方向の変更は、例えば自由視点映像を撮像しているカメラの向きを(ロール、ピッチ、又はヨーの少なくともいずれか1つの軸回りに)変更することに相当する(図22を参照のこと)。視線方向が変更すると、例えばドーム型スクリーン101のユーザの正面方向に表示される映像(画角)が、視線方向の変更を打ち消す方向に移動する(右方向に視線が移動したときには、表示映像は左方向にシフトし、変更前はユーザの右側に表示されていた映像領域が正面に表示されるようになる)。
 また、本実施形態では、自由視点映像の上にUIメニューを表示することや、CG及びPicture in Pictureのインタラクション形式でコンテンツ・コントロールを行うこと(図37を参照のこと)を前提とする。
 図9には、ドーム型ディスプレイ100において、映像を表示するとともにユーザとのインタラクションを実現するシステム900の構成例を示している。なお、図示のシステム900で実現されるインタラクションは、ドーム型ディスプレイ100だけではなく、自由視点映像やVR映像を表示するさまざまなタイプの表示装置に対しても適用することができるという点を十分理解されたい。すなわち、少なくともシステム900の出力系を、HMDによって置き換えることもできる。また、システム900は、ユーザが何も装着していない状態でもインタラクションを実現することができ、専用のコントローラを一切必要としないというメリットを有するが、この点の詳細については後述に譲る。
 図示のシステム900は、ドーム型スクリーン101などの表示画面に映像を表示させる映像表示系と、表示映像に合わせた音響を出力する音響出力系と、ドーム内でこれら映像及び音響を視聴するユーザに関するセンサ情報を入力する入力系と、入力系からの入力情報に応じたフィードバックを出力する出力系を備え、制御部910によって各系統の動作が統括的に制御されるように構成されている。
 制御部910は、例えばSoC(System-on-a-Chip)のような集積回路で構成される。制御部910としてのSoC上には、メイン・コントローラ911、メイン・メモリ912、通信部913、映像用のディジタル信号処理部(Video DSP)914、及び音響用のディジタル信号処理部(Aidio DSP)915などの各機能を実現するための複数の回路モジュールが実装されている。
 メイン・コントローラ911は、ドーム型スクリーン101内における映像及び音響の出力を制御するとともに、ユーザに関するセンサ情報に基づくフィードバック出力を制御する。本実施形態では、メイン・コントローラ911は、ユーザの身体の動作に応じたインタラクション(後述)を実現する上で、ユーザの身体動作に応じたオブジェクトの変位情報に基づいてフィードバック出力を制御する「出力制御部」としても機能するものとする。また、メイン・コントローラ911は、出力制御部として、出力される音響に応じた映像の出力を制御してもよい。
 メイン・メモリ912は、フラッシュ・メモリ又はDDR(Double-Data-Rate)などのSDRAMで構成され、メイン・コントローラ911の作業メモリとして使用される。
 通信部913は、Wi-Fi(Wireless Fidelity)、Bluetooth(登録商標)、NFC(Near Field Communication)などの無線通信モジュールで構成される。例えば、ストリーミング配信される自由視点映像及び立体音響音声を通信部913で受信して、ドーム型ディスプレイ100で再生することが可能である。但し、映像や音声のソースはストリーミングに限定されず、例えばBD(ブルーレイ・ディスク)などメディアに記録された映像や音声をドーム型ディスプレイ100で再生出力することもできる。また、後述するオーディオプレイヤ944からの音響信号を通信部913で受信してもよい。
 映像用のDSP914は、内部にメモリ(フレーム・メモリ)を備えている。映像用DSP914は、通信部913で受信した映像信号をディジタル信号処理する。また、システム900は、映像表示系として、ドーム型スクリーン101に映像を投影する2台以上のプロジェクタ103、104…を備えている。映像用DSP914は、図1に示したドーム型ディスプレイ100の映像復号部105に相当し、信号処理した後のRGB形式の映像信号を各プロジェクタ103、104…に出力する。
 音響用のDSP915は、通信部913、または不図示のオーディオインタフェースで受信した音響信号をディジタル信号処理し、内部メモリにバッファリングしながら、音響出力系に出力する。また、システム900は、音響出力系として、ヘッドフォン933、ヘッドレスト・スピーカー934、又はサブウーファー935のうち少なくとも1つを備えている。DSP915で処理された音響信号は、内部メモリから読み出されると、I2C(Inter―Integrated Circuit)などのインタフェースを介して出力され、DAC(Digital to Analog Converter)931でアナログ信号に変換され、さらに増幅部(AMP)932で増幅された後、スピーカー936、ヘッドフォン933、ヘッドレスト・スピーカー934、又はサブウーファー935のいずれかから音響出力される。
 システム900は、入力系として、変位センサ941と、頭部検出カメラ942と、外付けセンサ943を備えている。
 変位センサ941は、何も装着していない状態のユーザが使用するオブジェクトの所定の部位の位置情報を検出して、ユーザの身体動作に応じた所定の部位の3次元的な変位に対応する変位情報を取得する。オブジェクトは、例えば日常生活で使う家具やフィットネス器具などであり、これらオブジェクトの表面に取り付けられたマーカや画像認識処理により抽出することが可能な特徴点をモーション・キャプチャすることで、変位情報が取得される。変位情報を取得する方法の詳細については、後述に譲る。取得された変位情報は、SPI(Serial Peripheral Interface)などのインタフェースを介して制御部910に取り込まれ、ユーザの身体の動作に応じたフィードバックの出力制御に用いられる。変位センサ941は、ユーザの身体の動作に応じたインタラクションを実現する上で、「変位情報取得部」として機能する。
 頭部検出カメラ942は、例えばドーム型スクリーン101内でユーザの正面に設置され、例えば骨格検出や音声認識の機能を利用してユーザの頭部を検出して、撮像したユーザの頭部の映像を制御部910にRGB出力する。なお、頭部検出カメラ942として、RGBカメラ、深度センサなどを有する既知のモーション・キャプチャ用センサあるいは情報処理装置が利用されてよい。頭部検出カメラ942から入力される映像に基づいて、ユーザの視線情報を取得することができる。
 外付けセンサ943は、ドーム型ディスプレイ100に対して外付け接続された各種センサであり、センサの検出信号をSPIなどのインタフェースを介して制御部910に出力する。外付けセンサ943は、例えば温度や湿度を始めとして、ドーム内でのユーザの視聴環境を検出する。また、システム900がドーム型ディスプレイ100ではなく乗用車(自動運転対応の車両など)に組み込まれている場合には、外付けセンサ943は、ODB2(On Board Diagnosis second generation)を介して取り込まれる車両の各種検出情報を扱うこともできる。
 オーディオプレイヤ944は、例えばドーム型ディスプレイ100に対して無線、または有線で接続され、通信部913、またはフォーンジャックなどのオーディオインタフェース(不図示)を介して制御部910に音響信号を出力する。オーディオプレイヤ944は、音響信号を出力するために、例えば音楽データを記憶していてもよいし、CD(コンパクトディスク)等のメディアから音楽データを読み出してもよい。
 システム900が備える出力系は、上記のような入力系からの入力情報に応じたフィードバックを出力する。ユーザの身体の動作に応じたインタラクション(後述)を実現する上で、出力系は、ユーザの身体動作に応じたオブジェクトの所定の部位の変位情報に基づく出力を行う「出力部」として機能する。
 図9に示す例では、システム900は、フィードバックの出力系として、駆動系出力部951、外部出力部952、及びディスプレイUI部953を備え、さらに上述したヘッドフォン933、ヘッドレスト・スピーカー934、サブウーファー935などの音響出力部をフィードバックの出力系としても活用することができる。MCOM950は、制御部910からのSPIなどのインタフェースを介した指示に従って、これらのフィードバック出力系からの出力を制御する。
 駆動系出力部951と外部出力部952は、マルチモーダル・インタフェースを構成し、ドーム内の温度や湿度を調整したり、ユーザに風(微風や向かい風、エア・ブラスト)や水しぶき(ウォター・ブラスト)を吹き付けたり、ユーザの身体に触覚(背中をつつくような効果、首筋や足元に何かが触れるような感覚など)や振動・揺動、軽い電気刺激などを加えたり、匂いや香りを与えたりして、視聴空間の環境を自在に制御する。
 駆動系出力部951は、椅子106などのユーザが使用しているオブジェクトに対して振動や揺動を加えたり、オブジェクトを傾けたりするアクチュエータなどからなる。MCOM950は、例えばSPIなどのインタフェースを介して、駆動系出力部951からの出力を制御する。
 外部出力部952は、エアコンや加湿器などのデバイスからなる。また、ドーム型ディスプレイ100が車両に組み込まれている場合には、エアコンECU(Electrinic Control Unit)なども外部出力部952に相当する。MCOM950は、例えばSPIなどのインタフェースを介して、外部出力部952からの出力を制御する。また、ネットワークを介した機器制御も含む。
 ディスプレイUI部953は、ドーム型スクリーン101上に、自由視点映像などのコンテンツに重畳して表示されるUIメニューや、CG、OSD、Picture in Pictureなどに相当する。MCOM950とディスプレイUI部953間では、例えばI2Cなどのインタフェースを介してインタラクションが行われる。
 また、MCOM950は、例えばI2Cなどのインタフェースを介してDAC931又はアンプ932を制御して、音響によるフィードバック出力を制御することができる。
 以上、システム900の構成例について説明した。続いて、図10~図18を参照して、上述した構成の配置に関する検討を行う。図10A、図10Bは椅子1000に着座したユーザがドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。なお、図10A、図10Bでは、ドーム型スクリーン101を矢状面で切った断面を示している。
 リクライニングチェアのシートバック(背もたれ)の角度(床面に垂直な直線との角度)は、一般に約30度と言われており、図10A、図10Bに示す例では、床面に垂直な直線と椅子1000のシートバックとの角度は28度である(図10Aを参照)。なお、図10Aでは、ユーザの頭が椅子1000のシートバックに沿った位置にある状態を示し、図10Bでは、ユーザが顎を引き、視線を水平に保った状態を示している。
 ここで、スピーカー936の設置角度について検討する。なお、スピーカー936は、例えばサウンドバースピーカーであってもよい。ここで、高い周波数になる程、また用いられるコーンスピーカのサイズが小さい程、一般にスピーカーの指向性は鋭くなる。例えば、60mmのコーンスピーカをバー部に含むサウンドスピーカでは、5kHz程度の周波数から拡散を伴いにくくなる。したがって、ユーザが高い周波数まで最適に聴くためにはスピーカー936の向きをユーザに(特にユーザの顔、または耳に)向けることが望ましい。
 そこで、スピーカー936の振動方向に正対する直線がユーザの顔と交差するための床面との角度は、図10Aに示すようにユーザの頭がシートバックに沿った位置にある場合には、35度程度であり、図10Bに示すようにユーザの視線が水平に保たれた場合には40度程度である。したがって、例えばスピーカー936は、スピーカー936の振動方向に正対する直線と床面とがなす角が35度~40度程度の角度になるように設置されることが望ましい。なお、以下では、例えばスピーカー936の振動方向に正対する直線と床面とがなす角が35度~40度となるようにスピーカー936が設置されることを、スピーカー936が仰角35度~40度で設置される等と表現する場合がある。
 スピーカー936が仰角35度~40度で設置するためには、例えばドーム型スクリーン101の支持体がスピーカー936を設置するための構成を有していてもよいし、スピーカー936を設置するためのスピーカースタンドが別途用意されてもよい。
 さらに、スピーカー936をドーム型スクリーン101下部の床面に設置した場合に、スピーカー936の振動方向に正対する直線がドーム型スクリーン101に遮られないようにするため、図10A、図10Bに示す例では、ドーム型スクリーン101は床面に対して45度の角度で設置されている。
 また、一般的に輻輳が生じない距離が1.2メートルとされているため、図10A、図10Bに示すように、ユーザの目と、ドーム型スクリーン101内でユーザが注視する位置との距離が1.2メートル以上であるように、各構成が配置されることが望ましい。なお、球体の反射は球体の中心に集まるため、音響の反射による定在波の問題を避けるためには、ユーザの視聴位置をドーム型スクリーン101の中心から、離すことが望ましい。
 また、上述したように、ドーム型スクリーン101の内径を1.5~2メートル程度に設定することでリアリティーが増すため、図10A、図10Bに示す例ではドーム型スクリーン101の内径を2メートルとしている。上述した情報を総合的に踏まえると、ドーム型スクリーン101の径の中心位置は、図10A、図10Bに示すように1.3メートル程度が望ましい。
 ここで、人間の上下視野角は上方視野角が50度、下方視野角が75度であるため、図10A、図10Bに示すようにドーム型スクリーン101と椅子1000が配置されることで、ドーム型スクリーン101はユーザの上方視野角50度を覆うことが可能となる。
 ただし、図10A、図10Bに示すように、ドーム型スクリーン101を床面に対して45度で設置した場合、ユーザの下方視野角75度を覆うことは困難である。そこで、下方視野角75度を極力覆うため、例えば、図11A、図11Bに示すように、ドーム型スクリーン101を床面に対して60度で設置することも可能である。
 図11A、図11Bは椅子1000に着座したユーザが、床面に対して60度で設置されたドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。なお、図11A、図11Bに示されない各種の値は、図10A、図10Bに示した例と同様であってよい。また、図11Aでは、ユーザの頭が椅子1000のシートバックに沿った位置にある状態を示し、図11Bでは、ユーザが顎を引き、視線を水平に保った状態を示している。
 図11A、図11Bに示す例においても、スピーカー936の振動方向に正対する直線がユーザの顔と交差するように、スピーカー936を仰角35度~40度で設置することが望ましい。しかし、図11A、図11Bに示すように、スピーカー936が仰角35度~40度で設置されると、スピーカー936の振動方向に正対する直線がドーム型スクリーン101に遮られてしまう。スピーカー936の振動方向に正対する直線がドーム型スクリーン101に遮られないようにスピーカー936を設置する場合、ドーム型スクリーン101の内側にスピーカー936を設置することになるが、係る場合には表示の妨げとなってしまう。
 スピーカー936を用いずに音響を出力するためには、例えばアクチュエータでドーム型スクリーン101を振動させる方法や、透過型スクリーンを活用する方法等が考えられる。しかし、球体の反射は中心に集まるため、音響の反射による定在波の問題と、スクリーンの強度の問題、透過による画質劣化の問題等が発生することから現実的ではないと考えられる。
 そこで、ドーム型スクリーン101を床面に対して50度程度で設置し、ドーム型スクリーン101の下端直下にスピーカー936を設置することが望ましい。係る配置により、下方視野角75度のより大部分を覆いつつ、スピーカー936とユーザの顔との間で、スピーカー936の振動方向に正対する直線がドーム型スクリーン101に遮られないようにすることが可能である。
 なお、スピーカー936は、複数のスピーカが並んだアレイスピーカを含むサウンドバースピーカーであってもよい。そして、アレイスピーカを用いて、複数のスピーカから出る音の波を視聴エリアに均一に到達させ、包まれる音の広がりと、広いリスニングスポットを実現するように音響が制御されてもよい。
 また、より低音域の音響を出力可能とするため、スピーカー936に加えて、低音域の音響を出力するサブウーファー935が設置されることが望ましい。サブウーファー935は、低音域の音響を出力するため指向性が低いものの、音圧は距離の二乗に反比例するため、例えば1メートル程度の近距離では、ユーザが音圧よって方向性を感じてしまう場合がある。そこで、ユーザまでの距離が確保されるように、サブウーファー935は、スピーカー936の真後ろに設置され、視聴位置への到達位相を合わせることが望ましい。また、サブウーファー935をドーム型スクリーン101の内部に設置すると、直接音が反射を起こす恐れがあるため、ドーム型スクリーン101の内部に直接音が届かない位置にサブウーファー935を設置することが望ましい。
 上述した検討を踏まえ、望ましい構成の一例を図12A、図12Bに示す。図12A、図12Bは椅子1000に着座したユーザが、床面に対して50度で設置されたドーム型スクリーン101に投影される映像を視聴する様子の例を示す模式図である。なお、図12A、図12Bに示されない各種の値は、図10A、図10Bに示した例と同様であってよい。また、図12Aでは、ユーザの頭が椅子1000のシートバックに沿った位置にある状態を示し、図12Bでは、ユーザが顎を引き、視線を水平に保った状態を示している。また、図12A、図12Bにおいて、スピーカー936の振動方向に正対する直線がユーザの顔と交差するように、より望ましいスピーカー936の仰角がそれぞれ示されているが、スピーカー936は仰角35度~40度で設置されればよい。
 図13には、図12A、図12Bに示した構成例の斜視図を示している。図12、図13に示すように、サブウーファー935は、スピーカー936(サウンドバースピーカー)の真後ろに設置される。なお、図12A、図12B、図13に示す例において、サブウーファー935、スピーカー936は、広く使用されている市販品でもよい。
 一方、カスタマイズされた専用のシステムを用いることも可能である。図14には、サブウーファー935を支持体102に埋め込んで設置した構成例を示している。また、図15には、サブウーファー935を支持体102に埋め込み、スピーカー936を鉛直方向から見たドーム型スクリーン101の曲線に沿って同心円状にカーブするように支持体102に設置した構成例を示している。また、図16には、サブウーファー935、及びスピーカー936を支持体102に埋め込んで設置した構成例を示している。なお、図14~図16に示したいずれの構成においても、スピーカー936は仰角35度~40度で設置されることが望ましい。
 上記のように、カスタマイズされた専用のシステムを用いることで、より囲まれた音響環境や、スピーカーが埋め込まれたことによるスピーカーの存在を感じないより没入可能な体験を実現することが可能となる。
 なお、図12~図16では、音響出力系として、サブウーファー935とスピーカー936を備える例を示したが、本実施形態は係る例に限定されない。例えば、さらなる音響出力系として、ヘッドレスト・スピーカーやリアスピーカーが備えられてもよい。
 図17には、椅子1000にヘッドレスト・スピーカー934、及びリアスピーカー937が備えられた構成例を示している。なお、図17に示す構成例は、椅子1000がヘッドレスト1040、ヘッドレスト・スピーカー934、及びリアスピーカー937を備えることを除いて、図12Aに示した構成例と同様である。ヘッドレスト・スピーカー934、及びリアスピーカー937が設けられることにより、ユーザの後ろから音響が出力され、より包み込まれるような音響環境が実現される。
 なお、図17ではリアスピーカー937が備えられる例を示したが、リアスピーカー937を設ける代わりに、信号処理による音場補正を行うことで、望ましい位置(例えば図17に示したリアスピーカー937の位置)に、仮想的に音源を再配置してもよい。図18には、椅子1000にヘッドレスト・スピーカー934が備えられた構成例の斜視図を示している。
 なお、変位情報に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、音像定位や反響を制御することで、ユーザの左右に設けられたヘッドレスト・スピーカー934を活用して、ユーザの頭の位置に合わせて信号処理された音響が出力されてもよい。
 また、所謂バイノーラル録音された音響の再生の原理を応用した信号処理により、サブウーファー935とスピーカー936(サウンドバースピーカ-)の双方とも、またはスピーカー936のみを、ユーザの左右に設けられたヘッドレスト・スピーカー934で代用することも可能である。
B.ユーザの身体の動作に応じたインタラクション
 図1~図7に示した構成例では、ドーム型スクリーン101に入ったユーザが椅子106に着座していることを想定しているが、ドーム型ディスプレイ100の使用方法はこれに限定されるものではない。ユーザは椅子以外のオブジェクトを使用している状態でも、ドーム型スクリーン101内に入り、自由視点映像やVR映像を視聴することができる。例えば、ソファやベッドといった日常生活で使う既存の家具などのオブジェクトや、フィットネスバイクやトレッドミルなどのフィットネス器具などをドーム型スクリーン101内に設置して、ユーザはこれらいずれかのオブジェクトを使用しながら、ドーム型スクリーン101に投影された映像を視聴することができる。
 ユーザがオブジェクトを使用している状態は、椅子に着座しさらにはシートバックにもたれかかっている状態や、フィットネスバイクに跨ってペダルを漕いでいる状態、トレッドミル上で走行又は歩行している状態、ソファやベッドの上で寝そべり若しくは横たわっている状態などである。いずれの状態も、ユーザは何も装着していない状態である。また、基本的にはユーザの身体は使用中のオブジェクトには拘束されない解放された状態であるが、オブジェクトの上に乗るなどユーザの身体はオブジェクトに触れている。このため、体幹や上半身などユーザの身体が動作すると、これに応じてオブジェクトの所定の部位も回転や並進など3次元的な位置情報が変位する。
 そこで、本明細書では、ユーザが使用しているオブジェクトの変位情報に基づいてユーザの体幹や上半身などの動作を直接的又は間接的に導き出し、専用のセンサを何も装着していない状態のユーザの身体の動作に応じたインタラクションを実現する技術について、以下で提案する。
 ユーザがオブジェクトの上に乗るなど、ユーザがオブジェクトを使用しているとき、ユーザの身体動作に応じてオブジェクトの所定の部位が3次元的に変位する。したがって、オブジェクトの所定の部位の位置情報に基づいて、所定の部位の変位情報を取得し、ユーザの体幹や上半身などの動作を直接的又は間接的に導き出すことになる。
 そして、オブジェクトの所定の部位の変位情報に基づいて、ドーム型ディスプレイ100におけるフィードバック出力を制御することによって、ユーザの身体の動作に応じたインタラクションが実現される。
 ドーム型ディスプレイ100における出力は、ドーム型スクリーン101への映像表示を含む。例えば、変位情報に基づいて、映像の明るさや解像度、自由視点映像内における表示位置(画角)や遷移方向、運動視差などを制御することで、ユーザに映像のフィードバックを与えることができる。また、ドーム型ディスプレイ100における出力は、音響出力を含む。例えば、変位情報に基づいて自由視点映像を視聴しているユーザの頭部位置を推定し、その頭部位置に向けて、音像定位や反響を制御することで、ユーザに音響のフィードバックを与えることができる。なお、ユーザの視線情報に応じて、いわゆる中心窩レンダリングをドーム型ディスプレイ100のレンダリングに適用してもよい。
 さらに、ドーム型ディスプレイ100における出力は、マルチモーダル・インタフェースを用いた温度や風、湿度、匂い、音響効果といったドーム内の環境変化や、ユーザに加える触覚や傾き、加速度感、重力方向感、振動、揺動、軽い電気刺激などを含む。ユーザの身体動作に応じたオブジェクトの所定の部位の変位情報に基づいて、これらマルチモーダル・インタフェースの出力を制御することで、臨場感を演出するようなフィードバックをユーザに与えることができる。
 ここで言うオブジェクトの所定の部位は、例えばオブジェクトの表面に存在する特徴箇所である。
 オブジェクトの特徴箇所は、赤外線などの不可視光又は可視光を発光する発光素子からなり、オブジェクトの表面上のあらかじめ決められた場所又は任意の場所に取り付けられている。あるいは特徴箇所は、発光素子のような能動的なマーカではなく、既知の2次元図形パターンなどからなる静的なビジュアル・マーカであってもよい。したがって、このような特徴箇所を、広角レンズなどを取り付けた1台又は2台以上のカメラで追跡(モーション・キャプチャ)することで、特徴箇所の変位情報を取得することができる。あるいは、オブジェクトの特徴箇所は、オブジェクトの表面に取り付けたマーカである必要はなく、画像認識処理やエッジ処理などを利用してオブジェクトの撮像画像から抽出することができる特徴点であってもよい。
 そして、オブジェクトの所定の部位の位置情報に基づいて、体幹や上半身などなどユーザの身体動作に対応する3次元的な変位情報を取得することができる。例えば、オブジェクトの表面に存在する2つ以上の特徴箇所の変位を計測して、体幹や上半身などなどユーザの身体動作に応じた3次元的な変位情報を導き出すことができる。
 具体的には、オブジェクトの表面上の少なくとも2つの特徴箇所の位置を計測すれば、これら少なくとも2つの特徴箇所により形成される直線の、ユーザの身体動作に応じた回転変位に対応する第1の変位情報を取得することができる。また、オブジェクトの表面上の少なくとも3つの特徴箇所の位置を計測すれば、これら少なくとも3つの特徴箇所により形成される面の3次元的な回転変位に対応する第1の変位情報を取得することができる。
 オブジェクトの回転変位に対応した第1の変位情報は、オブジェクトを使用しているユーザの体幹の3次元的な変位を直接的又は間接的に表すものである。そして、第1の変位情報として取得されたオブジェクトの回転方向や回転方向における変位量(あるいは、回転角速度や回転角加速度)などに基づいて、ドーム型ディスプレイ100の映像表示や、マルチモーダル・インタフェースの出力などをフィードバック制御することによって、専用のセンサを何も装着していない状態のユーザの身体の動作に応じたインタラクションを実現することができる。
 また、オブジェクトの表面上の少なくとも3つの特徴箇所の位置を計測すれば、これら少なくとも3つの特徴箇所により形成される面の3次元的な並進変位に対応する第2の変位情報を取得することができる。さらに、これら少なくとも3つの特徴箇所により形成される面の3次元的な往復並進変位に対応する第3の変位情報も取得することができる。
 オブジェクトの並進変位に対応した第2の変位情報や、オブジェクトの往復並進変位に対応した第3の変位情報は、オブジェクトを使用しているユーザの身体動作を直接的又は間接的に表すものである。そして、第2の変位情報又は第3の変位情報として取得されたオブジェクトの並進変位又は往復並進変位(若しくは、これらの並進変位方向、並進変位量、並進速度、並進加速度)などに基づいて、ドーム型ディスプレイ100の映像表示やマルチモーダル・インタフェースの出力などをフィードバック制御することによって、専用のセンサを何も装着していない状態のユーザの身体の動作に応じたインタラクションを実現することができる。
 ユーザが使用しているオブジェクトとして、例えば、椅子やソファ、ベッドなどの日常生活で使う既存の家具、フィットネスバイクやトレッドミルといったフィットネス器具などを挙げることができる。オブジェクトの多くは、床(具体的には、ドーム型スクリーン101の直下)に載置され、その上にユーザが乗るという形態で使用される。このような使用形態では、ユーザが身体動作を行なってもオブジェクトは床に対して相対移動を実質的に行わない(若しくは、ユーザは、オブジェクトを床に対して相対移動させるような身体動作を行わない)という拘束条件を課すことができる。そして、このような拘束条件下で、オブジェクトの回転変位に対応する第1の変位情報、オブジェクトの並進変位に対応する第2の変位情報、あるいはオブジェクトの往復並進変位に対応する第3の変位情報に基づいて、ドーム型ディスプレイ100の映像表示やマルチモーダル・インタフェースの出力などのフィードバック制御を行うようにしてもよい。
 本明細書で開示する、ユーザの身体の動作に応じたインタラクション技術は、ユーザは専用のセンサを何も装着する必要がなく、且つ、コントローラやコンソールといった入力デバイスを操作しなくてもよい、という点に特徴がある。
 また、椅子やソファ、ベッドなどの日常生活で使う既存の家具、フィットネスバイクやトレッドミルといったフィットネス器具など、ユーザが使用する各種のオブジェクトは広く使用されている市販品でよい。これら市販品からなるオブジェクトの表面に不可視光又は可視光を発光する素子やビジュアル・マーカなどからなるマーカを取り付けることで複数の特徴箇所を設置し、又は、画像認識処理により抽出することが可能な特徴点を特徴箇所として利用することで、ユーザの体幹などの身体動作に応じたオブジェクトの回転変位や並進変位に関する変位情報を取得することができる。すなわち、本明細書で開示する技術によれば、市販され又は広く普及しているさまざまな商品を取り込んで、ユーザの身体動作に応じて変位するオブジェクトとして活用して、ユーザの身体の動作に応じたインタラクションを実現することができ、専用のコントローラを一切必要としないのである。
 ドーム型ディスプレイ100自体は、囲まれた映像と音響環境を組み合わせて、その場にいる感覚やその場に参加している感覚を再現することができ(前述)、ユーザはわざわざ現場に出向かなくてもさまざまな場所を訪れる体験を実現することができる。さらに、本明細書で提案するインタラクション技術を活用することで、その場で自分が参加している感覚をもドーム型ディスプレイ100で再現することが可能になる。
 付言すれば、本明細書で提案するインタラクション技術は、椅子やベッドなどの日常生活で使用する家具を通じて体幹の変位などユーザの身体動作を検出して、入力に代替することができるので、身体の動きが不自由な障がい者に対して、コントローラやコンソールに置き換わる代替入力機能として展開することも可能である。また、本明細書で提案するインタラクション技術は、一般家庭だけではなく、病院やリハビリなどの施設で利用することができる。例えば、車椅子を利用しているユーザであれば、車椅子の3次元変位を検出し、ドアの開閉操作、リクライニングベッドの昇降操作、照明のオンオフ操作、ナースコール、カーテンの開閉などの種々の外部機器の制御に利用することができる。このケースにおいて、制御される外部機器は、車椅子の3次元変位を検出するカメラとネットワークを介して接続されていればよい。さらに、本明細書で提案するインタラクション技術は、飛行機や電車、バス、自動運転対応の乗用車など、スペースが限られた移動体でも利用することができる。
 以下では、ユーザが使用する各オブジェクトについて、ユーザの身体動作に応じたオブジェクトの所定の部位の変位情報を取得する方法や、さらには所得した変位情報に基づくフィードバック出力の制御方法に関する実施例について、詳細に説明する。
 図19には、ユーザの身体動作に応じた変位情報を取得するオブジェクトとして、ユーザが着座している椅子1000を例示している。図示の椅子1000は、シートバック及びアームレスト付きであるとする。椅子1000はドーム型スクリーン101の下に設置されており、ユーザは椅子1000に着座してドーム型スクリーン101に投影される映像を視聴することができる。
 椅子1000のシートバック1010の四隅には、それぞれマーカ1011~1014が取り付けられている。各マーカ1011~1014は、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカであってもよい。あるいは、マーカ1011~1014を椅子1000に取り付けるのではなく、画像認識処理により抽出することが可能な複数の特徴点をマーカの代わりに使用するようにしてもよい。また、椅子1000の左右の斜め後方にはカメラ1021及び1022がそれぞれ設置されている。変位情報取得部としての変位センサ941は、各カメラ1021及び1022の撮像画像中から各マーカ1011~1014の像を検出すると、3角測量の原理などに基づいて、各マーカ1011~1014の3次元的な位置情報を算出することができる。
 ユーザが椅子1000に着座したまま、シートバック1010にもたれるなど、主に体幹の動作や上半身の傾き動作に応じて各マーカ1011~1014の3次元的な位置情報が変化する。変位情報取得部としての変位センサ941は、各カメラ1021及び1022の撮像画像を入力して、各マーカ1011~1014の位置情報を追跡し続けることで、ユーザの身体動作に応じた各マーカ1011~1014の3次元的な変位情報を取得することができる。
 なお、図19には示していないが、椅子1000の着座部位やアームレスト1030にもマーカを取り付けてもよい。この場合、ユーザがアームレスト1030に肘をつくなどのユーザの身体動作に応じたアームレスト1030上のマーカが取り付けられた部位の3次元的な変位情報を取得することができる。
 例えば、変位情報取得部としての変位センサ941は、椅子1000のシートバック1010に取り付けられたいずれか2つのマーカにより形成される直線の、ユーザの身体動作に応じた3次元的な回転変位に対応する第1の変位情報を取得することができる。
 また、変位センサ941は、椅子1000のシートバック1010に取り付けられた3以上のマーカにより形成される面の、ユーザの身体動作に応じた3次元的な回転変位に対応する第1の変位情報を取得することができる。
 変位センサ941は、3次元的な回転変位に対応する第1の変位情報として、例えば、回転方向や、回転方向への回転変位量、単位時間当たりの回転変位量(若しくは、回転角速度)、回転角加速度といった情報を取得する。例えば、シートバック1010の倒れ角度に関する回転変位量、回転角速度、回転角加速度を取得することができる。例えば、椅子1000のシートバック1010や座面の左右回転角度(但し、椅子1000が座面の回転機能を備えている場合)や、前後又は左右方向の倒れ角度に関する変位情報を取得して、出力制御部としての制御部910に入力することができる。
 また、変位センサ941は、椅子1000のシートバック1010に取り付けられたマーカ1011~1014のうち少なくともいずれか1つの、ユーザの身体動作に応じた並進変位に対応する第2の変位情報や、ユーザの身体動作に応じた往復並進変位に対応する第3の変位情報を取得することができる。
 変位センサ941は、並進変位又は往復並進変位に対応する第2の変位情報、第3の変位情報として、例えば、並進する方向や、並進方向への変位量、単位時間当たりの並進変位量(若しくは、並進速度)、並進加速度といった情報を取得する。例えば、椅子1000の上下、前後、左右の各方向への移動に関する変位情報を取得して、出力制御部としての制御部910に入力することができる。
 変位センサ941による椅子1000に取り付けられたマーカ1011~1014の検出方法と、制御部910に入力される変位情報との対応関係を、以下の表1に例示する。
Figure JPOXMLDOC01-appb-T000001
 例えば、変位センサ941は、マーカ1011~1014のうち少なくともいずれか1つの3次元的な位置の変位情報を検出することにより、椅子1000の単位時間当たりの上下移動量を検出した結果を、椅子1000の上下移動量として、制御部910に入力する。椅子1000の上下移動量は、ユーザが椅子1000に着座した際の高さ方向の動作に対応する。なお、シートバック1010に取り付けられたマーカ1011~1014ではなく、着座部位やアームレスト1030に取り付けられたマーカ(いずれも図示しない)に基づいて椅子1000の上下方向の移動量を検出することもできる。
 また、変位センサ941は、マーカ1011~1014のうち少なくともいずれか1つの3次元的な位置の変位情報を検出することにより、椅子1000の単位時間当たりの左右回転角度を検出した結果を、椅子1000の左右回転角度(但し、椅子1000が座面の回転機能を備えている場合)として、制御部910に入力する。
 また、変位センサ941は、マーカ1011~1014のうち少なくともいずれか3つにより形成される面の3次元的な回転変位に対応する変位情報を検出することにより、椅子1000の単位時間当たりの前後方向の倒れ角度を検出した結果を、椅子1000の前後方向の倒れ角度として、制御部910に入力する。椅子1000の前後方向の倒れ角度は、ユーザが椅子1000に着座した際のシートバック1010に寄りかかり又は起き上がる動作に対応する。なお、椅子1000のシートバック1010のばね性を利用することができる場合には、変位センサ941は、シートバック1010に寄りかかっていたユーザが体を起こした際(図23を参照のこと)の戻りの所定の閾値を超える倒れ角角速度を検出し、これを制御部910に入力することもできる。
 また、変位センサ941は、マーカ1011~1014のうち少なくともいずれか3つにより形成される面の3次元的な回転変位に対応する変位情報を検出することにより、椅子1000の単位時間当たりの左右方向の倒れ角度を検出した結果を、椅子1000の左右方向の倒れ角度として、制御部910に入力する。椅子1000の左右方向の倒れ角度は、ユーザが椅子1000に着座した際のアームレストに寄りかかり又は起き上がる動作に対応する。
 また、変位センサ941は、マーカ1011~1014のうち少なくともいずれか1つの3次元的な位置の変位情報を検出することにより、椅子1000の単位時間当たりの前後並びに左右方向の移動量を検出した結果を、椅子1000の前後並びに左右方向の移動量として、制御部910に入力する。椅子1000の前後並びに左右方向の移動は、ユーザがキャスター付きの椅子1000に着座して、足で前後左右に位置を合わせる動作に対応する。なお、シートバック1010に取り付けられたマーカ1011~1014ではなく、着座部位やアームレスト1030に取り付けられたマーカ(いずれも図示しない)に基づいて椅子1000の前後並びに左右方向の移動量を検出することもできる。また、ユーザが椅子1000を揺らした際の揺動や振動も、椅子1000の前後並びに左右方向の移動量として検出することもできる。
 そして、出力制御部としての制御部910は、変位センサ941から入力される椅子1000の変位情報に基づいて、映像処理や音響処理、さらにはマルチモーダル・インタフェースの出力を制御することによって、椅子1000に着座しているユーザの身体動作に応じたインタラクションを実現する。
 ユーザの身体動作に対応した椅子1000の変位情報と、制御部910が実行する出力制御との対応関係を以下の表2に例示する。但し、表2では、出力制御として主に映像処理及び音響処理に関する出力制御について記述している。また、いずれの変位情報が入力された場合にも、映像をドーム型スクリーン101のような全天球ディスプレイに表示するとともに、音声をサラウンド・オーディオ・システムで再生するものとする。また、マルチモーダル・インタフェースを利用して、視点位置や視線方向の移動に合わせた風を吹かすなどの効果を組み合わせるようにしてもよい。また、頭部検出カメラ942などから検出されるユーザの視線情報に基づいて、映像の視差範囲を制御するようにしてもよい。
Figure JPOXMLDOC01-appb-T000002
 例えば、ユーザが着座している椅子1000の変位情報として上下移動量が入力されたときには、出力制御部としての制御部910は、単位時間当たりの上下移動量と比例した移動量で、視聴中の自由視点映像に運動視差の上下変化を付けるといった映像処理を実行する。また、制御部910は、単位時間当たりの上下移動量に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたサラウンド・サウンド・フィールド(以下、「SSF」とする)の上下変化を制御するといった音響処理を実行する。なお、制御部910は、椅子1000の上下移動量に応じて映像処理や音響処理を連続的に変化させるのではなく、移動量が第1の値に達したときに第1の出力を行い、移動量が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが着座している椅子1000の変位情報として左右回転角度が入力されたときには、出力制御部としての制御部910は、単位時間当たりの回転角度と同じ角度及び比例した角度で、視聴中の自由視点映像に運動視差の左右変化を付けるといった映像処理を実行する(図20を参照のこと)。また、左右回転に連動して、UIメニューのカーソルを左右に移動させるといった映像処理を実行してもよい(図37を参照のこと)。また、制御部910は、単位時間当たりの左右回転角度に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの左右変化を制御するといった音響処理を実行する。なお、制御部910は、椅子1000の左右回転角度に応じて映像処理や音響処理を連続的に変化させるのではなく、回転角度が第1の値に達したときに第1の出力を行い、回転角度が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが着座している椅子1000の変位情報として前後方向の角度が入力されたときには、出力制御部としての制御部910は、単位時間当たりの前後の倒れ角度と同じ角度及び比例した角度で、視聴中の自由視点映像に運動視差の前後倒れ角変化を付けるといった映像処理を実行する(図21を参照のこと)。また、前後の倒れ角に連動して、UIメニューのカーソルを移動させるといった映像処理を実行してもよい(図37を参照のこと)。あるいは、制御部910は、第1の倒れ角度が入力されたときには第1の出力を行い、第1の倒れ角度よりも大きい第2の倒れ角度が入力されたときには第1の出力とは異なる第2の出力を行うように制御してもよい。また、制御部910は、単位時間当たりの前後の倒れ角に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの前後倒れ角変化を制御するといった音響処理を実行する。なお、制御部910は、椅子1000の前後方向の角度に応じて映像処理や音響処理を連続的に変化させるのではなく、前後方向の角度が第1の値に達したときに第1の出力を行い、前後方向の角度が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが着座している椅子1000の変位情報として、シートバック1010に寄りかかっていたユーザがシートバック1010のばね性を利用して体を起こした際に、その戻りの倒れ角角加速度が所定の閾値を超えたことを発火条件として、出力制御部としての制御部910は、UIメニューのカーソル選択や、別の視点位置の自由視点映像(又はVR映像)へ瞬間移動させる(コンテンツの切り替え)といった映像処理(図37を参照のこと)を実行してもよい。また、制御部910は、自由視点映像の視点位置の瞬間移動(コンテンツの切り替え)を引き起こした前後の倒れ角の角加速度に合わせたSSFの効果音を発生させるといった音響処理を実行する。
 また、ユーザが着座している椅子1000の変位情報として左右方向の角度が入力されたときには、出力制御部としての制御部910は、単位時間当たりの左右の倒れ角度と同じ角度及び比例した角度で、視聴中の自由視点映像に運動視差の左右倒れ角変化を付けるとともに、視点位置を左右に変化させる(例えば、自由視点映像を撮像しているカメラを搭載した移動体装置の進行方向を左右に変化させる)といった映像処理を実行する(図22を参照のこと)。また、制御部910は、左右の倒れ角度と同じ角度及び比例した角度で、映像の明るさを制御するようにしてもよい。また、制御部910は、単位時間当たりの左右の倒れ角に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの左右倒れ角変化を制御するといった音響処理を実行する。なお、制御部910は、椅子1000の左右方向の角度に応じて映像処理や音響処理を連続的に変化させるのではなく、左右方向の角度が第1の値に達したときに第1の出力を行い、左右方向の角度が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが着座している椅子1000の変位情報として前後並びに左右方向の移動量が入力されたときには、出力制御部としての制御部910は、単位時間当たりの前後並びに左右の移動量と同じ移動量及び比例した移動量で、視聴中の自由視点映像に運動視差の前後並びに左右の変化を付けるといった映像処理を実行する。また、制御部910は、単位時間当たりの前後並びに左右の移動量に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの前後左右変化を制御するといった音響処理を実行する。また、ユーザが椅子1000を揺らした際の揺動や振動に起因する椅子1000の前後並びに左右方向の移動に関する変位情報が入力されたときには、制御部910は、ユーザが椅子1000を揺らす動作に対応した出力制御を行うようにしてもよい。
 続いて、ユーザが使用しているフィットネス器具から変位情報を取得して、ユーザの身体の動作に応じたインタラクションを実現する実施例について説明する。
 図24には、ユーザの身体動作に応じた変位情報を取得するオブジェクトとして、トレッドミル1500を例示している。図示のトレッドミル1500は、踏み台1510と操作パネル1520を備えている。踏み台1510の上面では、無端ベルト1511が周回移動しており、ユーザはこの無端ベルト1511上を走行又は歩行することができる。操作パネル1520は、無端ベルト1511上に乗った状態のユーザが向き合う位置に配設される。ユーザは、操作パネル1520を介して踏み台1510の傾斜や無端ベルト1511の走行速度の調整を行うことができる。また、操作パネル1520上には、走行距離や平均速度、心拍数、消費カロリーなどの運動情報が表示される。また、操作パネル1520の左右両端からは、ユーザが把持することができる手摺りフレーム1521、1522が、無端ベルト1511の移動方向に向かって伸びている。
 トレッドミル1500は、ドーム型スクリーン101の下に設置されており、ユーザは、無端ベルト1511上で走行又は歩行しながらドーム型スクリーン101に投影される映像を視聴することができる。ユーザは、左右いずれか一方に重心をずらしながら無端ベルト1511上を走行又は歩行することもある。また、ユーザは、無端ベルト1511上を走行又は歩行中に、左右いずれか一方又は両方の手摺りフレーム1521、1522を把持して身体を支えることもある。
 トレッドミル1500の無端ベルト1511上には、周回移動する方向に、複数のマーカ1531、1532、…が取り付けられている。マーカ1531、1532、…の間隔は任意でよいが、無端ベルト1511のいずれの周回位置でも少なくとも1つのマーカ1531が踏み台1510の上面に露出していることが好ましい。また、操作パネル1520の左右両端に1つずつマーカ1541、1542が取り付けられている。勿論、操作パネル1520上に3以上のマーカを取り付けていてもよい。
 各マーカ1531、1532、…、並びに1541、1542は、例えば、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカである。また、トレッドミル1500の左右の斜め後方にはカメラ1551及び1552がそれぞれ設置されている。変位情報取得部としての変位センサ941は、各カメラ1551及び1552の撮像画像中から各マーカ1531、1532、…、並びに1541、1542の像を検出すると、3角測量の原理などに基づいて、各マーカ1531、1532、…、並びに1541、1542の3次元的な位置情報を算出することができる。
 無端ベルト1511が周回移動すると、無端ベルト1511上に取り付けられた各マーカ1531、1532、…も直線的に移動する。したがって、変位情報取得部としての変位センサ941は、無端ベルト1511上の各マーカ1531、1532、…の単位時間当たりの移動量に基づいて、ユーザが無端ベルト1511上で走行又は歩行する速度を取得することができる。言い換えれば、市販されているトレッドミル1500をドーム型スクリーン101の下に設置するとともに無端ベルト1511上にマーカ1531、1532、…を取り付けるだけで、システム900は、トレッドミル1500とは電気的に接続することなく、ユーザの走行又は歩行速度に関する情報を取得することができる。なお、トレッドミル1500は、床面に載置され、ユーザの身体動作があっても床に対する相対移動を実質的に行わないという性質がある。トレッドミル1500の左右方向をX、上下方向をY、前後方向(無端ベルト1511の進行方向)をZと定義したとき、X方向は固定するという拘束条件下で、各マーカ1531、1532、…の並進の変位情報を取得することができる。また、Y方向は、その変位によって例えばユーザの歩調を検出することができるので固定せず、Z方向は、その方向に無端ベルト1511が動くので固定しない。
 また、ユーザが、左右いずれか一方に重心をずらしながら無端ベルト1511上を走行又は歩行しているときや、左右いずれか一方又は両方の手摺りフレーム1521、1522を把持して身体を支えているときには、トレッドミル1500は左右いずれか一方に傾斜する。このような左右の傾斜は、ユーザが映像における進行方向を左右に変化させたい意図を表す場合もある。変位情報取得部としての変位センサ941は、操作パネル1520の左右両端にそれぞれ取り付けられているマーカ1541、1542の3次元的な位置情報に基づいて、操作パネル1520若しくはトレッドミル1500本体の左右の倒れ角度を検出すると、左右の進行方向の変化を意図する情報として、出力制御部としての制御部910に入力することができる。あるいは、映像の進行方向が所定の方向に固定されているときに左右の倒れ角度を検出した場合、ユーザがトレーニングを終了することを意図していると見做してもよい。あるいは、左右の倒れ角度を検出に基づいてランニングフォームが乱れていると推定することで、ユーザにフォームを矯正するためのフィードバックを行ってもよい。なお、トレッドミル1500が床面に載置され、ユーザの身体動作があっても床に対する相対移動を実質的に行わないという性質を考慮すると、Y軸回りの回転は固定するという拘束条件下で、各マーカ1541、1542の回転に関する変位情報を取得することができる。また、X軸回りの回転変位によって例えばユーザの前後位置を検出可能なので固定せず、Z軸回りの回転変位によって例えばユーザの左右の足を検出することができるので、固定しない。
 図25には、ユーザの身体動作に応じた変位情報を取得するオブジェクトとして、フィットネスバイク1600を例示している。図示のフィットネスバイク1600は、サドル1610と、ハンドル1620と、前輪1630を備えている。フィットネスバイク1600は、ドーム型スクリーン101の下に設置されており、ユーザはフィットネスバイク1600で走行しながらドーム型スクリーン101に投影される映像を視聴することができる。
 ユーザは、サドル1610に跨ると、前傾姿勢となり、ハンドル1620を両手で把持する。また、ユーザは、サドル1610に跨ってペダル(図示しない)を漕ぐが、このペダルの回転動作に連動して前輪1630も回転する(図26を参照のこと)。また、ユーザは、フィットネスバイク1600の走行速度を上げるために立ち漕ぎ動作を行うことや(図27を参照のこと)、カーブを曲がるコーナリングの姿勢をとるために左又は右に倒れ込む動作を行う(図28を参照のこと)、など、ユーザがさまざまな姿勢をとることが想定される。
 フィットネバイク1600の前輪1630の側面には、回転方向に、1以上のマーカ1641、…が取り付けられている。あるいは、図示しないが、前輪1630ではなく、左右いずれか少なくとも一方のペダルにマーカを取り付けてもよい。また、サドル1610の後端縁の左右に一対のマーカ1651、1652が取り付けられている。あるいは、図示しないが、サドル1610ではなくハンドル1620の左右端に一対のマーカを取り付けてもよい。
 各マーカ1641、…、並びに1651、1652は、例えば、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカである。また、フィットネスバイク1600の左右の斜め後方にはカメラ1661、1662がそれぞれ設置されている。変位情報取得部としての変位センサ941は、各カメラ1661及び1662の撮像画像中から各マーカ1641、…、並びに1651、1652の像を検出すると、3角測量の原理などに基づいて、各マーカ1641、…、並びに1651、1652の3次元的な位置情報を算出することができる。
 変位センサ941によるフィットネスバイク1600に取り付けられたマーカ1641、…、並びに1651、1652の検出方法と、制御部910に入力されるフィットネスバイク1600の変位情報との対応関係を、以下の表3に例示する。
Figure JPOXMLDOC01-appb-T000003
 ユーザがペダルを漕いで前輪1630が図26に示すように回転すると、前輪1630の側面に取り付けられたマーカ1641、…も回転方向に沿って移動する。したがって、変位センサ941は、前輪1630の側面に取り付けられたマーカ1641、…の3次元的な位置情報を検出することにより、単位時間当たりの前輪1630の回転数を検出した結果を、前輪1630の回転速度として、制御部910に入力する。前輪1630の回転速度から、フィットネスバイク1600の走行速度に換算することができる。前輪1630ではなくペダルに取り付けたマーカの3次元的な位置情報に基づいても、同様にフィットネスバイク1600の走行速度を取得することができる。なお、フィットネスバイク1600は、床面に載置され、ユーザの身体動作があっても床に対する相対移動を実質的に行わないという性質がある。フィットネスバイク1600の左右方向をX、上下方向をY、前後方向をZと定義したとき、X方向は固定するという拘束条件下で、各マーカ1641、…、並びに1651、1652の変位情報を取得することができる。また、Y方向は、その変位によって例えばサドル1610に座るユーザの重量を検出することができるので固定しない。また、ユーザがペダルを漕ぐ姿勢に応じてZ方向に体重移動し、これに伴ってフィットネスバイク1600本体の前後方向の倒れ角度も変化するので、Z方向には固定しない。
 また、ユーザがフィットネスバイク1600の走行速度を上げるために立ち漕ぎ動作を行ったり立ち漕ぎをやめたりして、ユーザの身体が図27に示すように上下に移動すると、サドル1610に課される重量が変動することにより上下に移動する。したがって、変位センサ941は、サドル1610の後端縁に取り付けられたマーカ1651、1652のうち少なくとも1つの3次元的な位置情報を検出することにより、サドル1610の単位時間当たりの上下移動量を検出した結果を、ユーザの立ち漕ぎ動作に伴うフィットネスバイク1600の上下移動量として、制御部910に入力する。
 また、ユーザが、図28に示すようにカーブを曲がるコーナリングの姿勢をとるために左又は右に倒れ込んで漕ぐと、サドル1610も左又は左右に傾斜する。したがって、変位センサ941は、サドル1610の後端縁に取り付けられたマーカ1651、1652のうち少なくとも1つの3次元的な位置情報を検出することにより、サドル1610の単位時間当たりの左右の倒れ角度を検出した結果を、ユーザのコーナリングに伴う倒れ角度として、制御部910に入力する。なお、フィットネスバイク1600が床面に載置され、ユーザの身体動作があっても床に対する相対移動を実質的に行わないという性質を考慮しても、XYZの各軸回りを固定せずに変位情報を取得するべきである。例えば、フィットネスバイク1600本体のX軸回りの回転変位によって、ユーザがサドル1610に座る前後位置を検出することができる。また、フィットネスバイク1600本体のY軸回り回転変位によって、ユーザの身体の回転(ひねり)を検出することができる。また、フィットネスバイク1600本体のZ軸回りの回転変位によって、ユーザの進行方向を左右に変化させようとする際の左右の体重移動を検出することができる。
 なお、説明を省略したが、ユーザがトレッドミル1500を走行している場合においても、無端ベルト1511上に取り付けたセンサ1531、1532…、並びに操作パネル1520上に取り付けたセンサ1541、1542の検出結果に基づいて、表3と同様の変位情報を取得して、出力制御部としての制御部910への入力を行うことができる。
 そして、出力制御部としての制御部910は、変位センサ941から入力される変位情報に基づいて、映像処理や音響処理、さらにはマルチモーダル・インタフェースの出力を制御することによって、フィットネスバイク1600を使用しているユーザの身体の動作に応じたインタラクションを実現する。
 ユーザの身体動作に対応したフィットネスバイク1600の変位情報と、制御部910が実行する出力制御との対応関係を以下の表4に例示する。但し、表4では、出力制御として主に映像処理及び音響処理に関する出力制御について記述している。また、いずれの変位情報が入力された場合にも、映像をドーム型スクリーン101のような全天球ディスプレイに表示するとともに、音声をサラウンド・オーディオ・システムで再生するものとする。また、マルチモーダル・インタフェースを利用して、視点位置や視線方向の移動に合わせた風を吹かすなどの効果を組み合わせるようにしてもよい。また、頭部検出カメラ942などから検出されるユーザの視線情報に基づいて、映像の視差範囲を制御するようにしてもよい。
Figure JPOXMLDOC01-appb-T000004
 例えば、ユーザが使用しているフィットネスバイク1600の変位情報として前輪1630の回転速度が入力されたときには、出力制御部としての制御部910は、前輪1630の回転速度から換算されるフィットネスバイク1600の走行速度と同じ速度及び比例した速度で、視聴中の自由視点映像に運動視差の前後の変化を付けるといった映像処理を実行する。また、制御部910は、換算されるフィットネスバイク1600の走行速度と同じ速度及び比例した速度で、視聴中の自由視点映像の視点位置を前後又は左右に変化させる(例えば、自由視点映像を撮像しているカメラを搭載した移動体装置の進行方向を前後又は左右に変化させる)といった映像処理を実行する(図22を参照のこと)。また、制御部910は、前輪1630の回転速度から換算されるフィットネスバイク1600の走行速度に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの前後左右変化を制御するといった音響処理を実行する。なお、制御部910は、前輪1630の回転速度に応じて映像処理や音響処理を連続的に変化させるのではなく、前輪1630の回転速度が第1の値に達したときに第1の出力を行い、前輪1630の回転速度が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが使用しているフィットネスバイク1600の変位情報として上下移動量が入力されたときには、出力制御部としての制御部910は、単位時間当たりの上下移動量と比例した移動量で、視聴中の自由視点映像に運動視差の上下の変化を付けるといった映像処理を実行する。また、制御部910は、単位時間当たりの上下移動量に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの上下変化を制御するといった音響処理を実行する。なお、制御部910は、フィットネスバイク1600の上下移動量に応じて映像処理や音響処理を連続的に変化させるのではなく、上下移動量が第1の値に達したときに第1の出力を行い、上下移動量が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 また、ユーザが使用しているフィットネスバイク1600の変位情報として左右の倒れ角度が入力されたときには、出力制御部としての制御部910は、単位時間当たりの左右の倒れ角度と同じ角度及び比例した角度で、視聴中の自由視点映像に運動視差の左右倒れ角度の変化を付けるといった映像処理を実行する。また、制御部910は、単位時間当たりの左右の倒れ角度と同じ角度及び比例した角度で、視聴中の自由視点映像の視点位置の進行方向を左右に変化させる(例えば、自由視点映像を撮像しているカメラを搭載した移動体装置の進行方向を左右に変化させる)といった映像処理を実行する(図22を参照のこと)。また、制御部910は、単位時間当たりの左右の倒れ角度に基づいてユーザの頭部位置を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの左右の倒れ角度変化を制御するといった音響処理を実行する。なお、制御部910は、フィットネスバイク1600の左右の倒れ角度に応じて映像処理や音響処理を連続的に変化させるのではなく、倒れ角度が第1の値に達したときに第1の出力を行い、倒れ角度が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 なお、説明を省略したが、ユーザがトレッドミル1500を走行している場合においても、出力制御部としての制御部910は、トレッドミル1500上でのユーザの走行又は歩行速度や、トレッドミル1500の上下移動量、左右の倒れ角度などの変位情報に基づいて、ユーザに対して表4と同様のフィードバック出力を行うことができる。
 上記では、基本的には図1~図7に示したドーム型ディスプレイ100で自由視点映像を表示することを前提として、椅子などの家具やフィットネス器具をドーム型スクリーン101の下に設置した実施例について説明してきた。しかしながら、部屋の天井や壁面、あるいは乗用車の車室内の壁面などさまざまなデバイスを用いて自由視点映像やVR映像を表示することが可能である。また、表示デバイスの種類に応じて、さまざまなオブジェクトを使用しているユーザの身体動作に応じた変位情報に基づくインタラクションを実現することができる。
 図29には、ユーザが、椅子1000に着座しながら、部屋の天井や壁面2000に表示されている映像を視聴している様子を示している。実施例1で説明したのと同様の方法で、椅子1000に取り付けられたマーカの3次元的な位置情報を検出してユーザの身体動作に応じた椅子1000の変位情報を取得することができる。また、取得した変位情報に応じて、実施例1と同様の映像処理や音響処理を行うようにしてもよい。
 図30及び図31には、ユーザが幌2101付きの椅子2100に着座している様子を示している。幌2101は開閉操作が可能であり、図31に示すように閉じた幌2101の内壁面をスクリーンとして用いて、自由視点映像やVR映像を投影することができる。したがって、ユーザは、椅子2100に着座するとともに幌2101を閉じて、幌2101の内壁面に表示された映像を視聴することができる。
 また、椅子2100のアームレスト2102には複数のマーカ2111、2112…が取り付けられている。各マーカ2111、2112…は、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカであってもよい。アームレスト2102に対向して、カメラ2120が設置されている。変位情報取得部としての変位センサ941は、カメラ2120の撮像画像中から各マーカ2111、2112…の像を検出すると、各マーカ2111、2112…の3次元的な位置情報を算出して、映像を視聴中のユーザの身体動作に応じた椅子2100の変位情報を取得することができる。
 また、図示を省略するが、椅子2100のシートバックにもマーカを取り付けるとともに、そのマーカを撮像するカメラを設置して、椅子2100の前後方向の倒れ角度や、倒れ角速度、倒れ角加速度といったユーザの身体動作に応じた変位情報を取得することができる。
 そして、出力制御部としての制御部910は、変位センサ941から入力される椅子2100の変位情報に基づいて、映像処理や音響処理、さらにはマルチモーダル・インタフェースの出力を制御することによって、椅子2100に着座しているユーザの身体動作に応じたインタラクションを実現する。
 図32には、ユーザが乗用車の車室2300内の座席2301に着座している様子を示している。乗用車は、例えば自動運転対応の車両であり、車室2300の壁面をスクリーンとして用いて自由視点映像やVR映像を投影することができ、あるいは車室2300に映像を表示するディスプレイ(図示しない)が持ち込まれているものとする。ユーザは、座席2301に着座して、表示された映像を視聴することができる。
 また、座席2301には、複数のマーカ2311…が取り付けられている。各マーカ2311…は、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカであってもよい。車室2300の天井には、カメラ2320が設置されている。変位情報取得部としての変位センサ941は、カメラ2120の撮像画像中から各マーカ2311…の像を検出すると、各マーカ2311…の3次元的な位置情報を算出して、映像を視聴中のユーザの身体動作に応じた座席2301の変位情報を取得することができる。
 そして、出力制御部としての制御部910は、変位センサ941から入力される座席2300の変位情報に基づいて、映像処理や音響処理、さらにはマルチモーダル・インタフェースの出力を制御することによって、座席2300に着座しているユーザの身体動作に応じたインタラクションを実現する。制御部910は、取得した変位情報に応じて、実施例1と同様の映像処理や音響処理を行うようにしてもよい。なお、複数のユーザが乗用車の車室2300内に存在する場合、出力制御部としての制御部910は、全てのユーザの影にならないように、またはユーザの顔に照射しないように映像処理の出力を制御してもよい。
 図33並びに図34には、ユーザがベッド2400又は2500に横たわっている様子をそれぞれ示している。ユーザは、ベッドに横たわったり仰向けになったりし映像を視聴することも多い。図33に示す例では、横たわっているユーザが、図示しないディスプレイの映像を視聴しているものとする。また、図34に示す例では、ベッド2500のリクライニング2501を起こして、ベッド2500の正面に設置されたディスプレイ2510の映像を視聴している。
 また、ユーザは、ベッドの上でも、さまざまな身体動作を行う。例えば、ユーザは、寝返りを打つ、寝そべったまま伸びをする、枕の位置や高さを調整する、といった身体動作を行う。ユーザが肘枕や腕枕をしているときには、同様に、枕の位置や高さを調整する動作を行う。また、図34に示すようにリクライニング2501付きのベッド2500を使用している際には、リクライニング2501の高さ調整操作のための動作を行う。
 上記のようなユーザのベッド上での身体動作に応じて、ベッドの表面は上下に移動し、又は、前後左右に移動する。例えば、ベッドの表面に複数のマーカを取り付け、各マーカの3次元的な位置情報に基づいて、ユーザの身体動作に応じたベッドの変位情報を取得することができる。
 図33に示す例では、ベッド2400の表面上には複数のマーカ2401、2402、…が取り付けられるとともに、ベッド2400の上方に設置した2台のカメラ2411、2412でベッド2400の表面を撮像している。また、図34に示す例では、ベッド2500のリクライニング2501に複数のマーカ2521、2522、…が取り付けられているとともに、ベッド2500の上方に設置した2台のカメラ2531、2532で、リクライニング2501を含むベッド2500の表面を撮像している。
 マーカ2401、2402、…、並びにマーカ2521、2522、…は、赤外線などの不可視光又は可視光を発光する素子や、既知の図形パターンからなるビジュアル・マーカであってもよい。変位情報取得部としての変位センサ941は、カメラ2411、2412の撮像画像中から各マーカ2401、2402、…の像を検出すると、各マーカ2401、2402、…の3次元的な位置情報を算出して、映像を視聴中のユーザの身体動作に応じたベッド2400の変位情報を取得することができる。同様に、変位センサ941は、カメラ2531、2532の撮像画像中から各マーカ2521、2522、…の像を検出すると、各マーカ2521、2522、…の3次元的な位置情報を算出して、映像を視聴中のユーザの身体動作に応じたベッド2500の変位情報を取得することができる。
 変位センサ941によるベッドの表面に取り付けられたマーカの検出方法と、制御部910に入力されるベッドの変位情報との対応関係を、以下の表5に例示する。
Figure JPOXMLDOC01-appb-T000005
 ユーザがベッド上に横たわり足を伸ばしてベッドボードに枕越しに寄りかかる際のリクライニング調整を行う、ベッド上での枕(肘枕や腕枕を含む)の高さを調整する、ベッドの表面を叩く、といった上下方向の身体動作(図35を参照のこと)を行うと、ベッドの表面は上下方向に移動(揺動や振動を含む)する。したがって、変位センサ941は、ベッドの表面に取り付けられたマーカの3次元的な位置情報を検出することにより、単位時間当たりのベッドの表面の上下移動量を検出した結果を、制御部910に入力する。
 また、ユーザがベッド上に横たわり足を伸ばしてベッドボードに枕越しに寄りかかる際の左右の寝返りの動作(図36を参照のこと)を行うと、ベッドの表面は前後又は左右方向に移動する。したがって、変位センサ941は、ベッドの表面に取り付けられたマーカの3次元的な位置情報を検出することにより、単位時間当たりのベッドの表面の前後又は左右方向の移動量を検出した結果を、制御部910に入力する。
 そして、出力制御部としての制御部910は、変位センサ941から入力される座席2300の変位情報に基づいて、映像処理や音響処理、さらにはマルチモーダル・インタフェースの出力を制御することによって、座席2300に着座しているユーザの身体動作に応じたインタラクションを実現する。
 ユーザの身体動作に対応したベッドの変位情報と、制御部910が実行する出力制御との対応関係を以下の表6に例示する。但し、表6では、出力制御として主に映像処理及び音響処理に関する出力制御について記述している。また、いずれの変位情報が入力された場合にも、映像をドーム型スクリーン101のような全天球ディスプレイに表示するとともに、音声をサラウンド・オーディオ・システムで再生するものとする。また、マルチモーダル・インタフェースを利用して、視点位置や視線方向の移動に合わせた風を吹かすなどの効果を組み合わせるようにしてもよい。また、頭部検出カメラ942などから検出されるユーザの視線情報に基づいて、映像の視差範囲を制御するようにしてもよい。
Figure JPOXMLDOC01-appb-T000006
 ユーザが横たわっているベッドの変位情報として上下移動量が入力されたときには、出力制御部としての制御部910は、単位時間当たりの上下移動量と比例した移動量で、視聴中の自由視点映像に運動視差の上下変化を付けるといった映像処理を実行する(図22を参照のこと)。また、出力制御部としての制御部910は、ユーザがベッドのばね性を利用して表面を叩いた際の上下移動加速度が所定の閾値を超えたことを発火条件として、UIメニューのカーソル選択や、別の視点位置の自由視点映像(又はVR映像)へ瞬間移動させる(コンテンツの切り替え)といった映像処理(図37を参照のこと)を実行してもよい。また、制御部910は、単位時間当たりの上下移動量と組み合わせた前後左右移動量に基づいてユーザの頭部位置及び正面方向を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの上下変化を制御するといった音響処理を実行する。なお、制御部910は、ベッドの上下移動量に応じて映像処理や音響処理を連続的に変化させるのではなく、上下移動量が第1の値に達したときに第1の出力を行い、上下移動量が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。また、ユーザがベッドを叩くことにより生じた上下移動に関する変位情報が入力されたときには、制御部910は、ユーザがベッドを叩く動作に対応した出力制御を行うようにしてもよい。
 また、ユーザが横たわっているベッドの変位情報として前後左右移動量が入力されたときには、出力制御部としての制御部910は、単位時間当たりの上下移動量と組み合わせた前後左右移動量よりユーザの頭部位置及び正面方向を推定し、同じ移動量と移動角度、及び比例した移動量と移動角度で、視聴中の自由視点映像に運動視差の位置及び角度変化を付けるといった映像処理(図22を参照のこと)を実行する。また、出力制御部としての制御部910は、単位時間当たりの上下移動量と組み合わせた前後左右移動量よりユーザの頭部位置及び正面方向を推定し、同じ移動量と移動角度、及び比例した移動量と移動角度で、視聴中の自由視点映像の視点位置の左右の進行方向を変化させて、UIメニューのカーソル移動や、UIメニュー及びコンテンツの表示位置移動といった映像処理(図37を参照のこと)を実行してもよい。また、制御部910は、ユーザがベッドの上で寝転がったり寝返りを打ったりするときの頭部の向きに合うように、入力された変位情報に基づいて映像の向きを制御するようにしてもよい。また、制御部910は、単位時間当たりの上下移動量と組み合わせた前後左右移動量に基づいてユーザの頭部位置及び正面方向を推定し、その頭部位置に向けて、映像の視点位置(カメラの撮像位置)に合わせたSSFの位置及び角度変化を制御するといった音響処理を実行する。なお、制御部910は、ベッドの前後左右移動量に応じて映像処理や音響処理を連続的に変化させるのではなく、前後左右移動量が第1の値に達したときに第1の出力を行い、前後左右移動量が第1の値より大きい第2の値に達したときに第1の出力とは異なる第2の出力を行うといったように、段階的な出力制御を行うようにしてもよい。
 ベッドは、椅子と同様に、ユーザの身体動作に応じた変位情報を取得することが可能な家具であると言うことができる。ベッドは、椅子と同等又はそれ以上に使用時間の長く、本明細書で開示する技術を適用可能な重要な家具であるということもできる。さらに、ベッドが使用される病院やリハビリなどの施設でも、本明細書で開示する技術を展開していくことができる。
 図38には、システム900において、ユーザの身体動作に応じたオブジェクトの変位情報に基づいてユーザへのインタラクションを制御するための処理手順をフローチャートの形式で示している。但し、ここでは説明の簡素化のため、映像に関するインタラクションに限定した処理手順を示している。
 変位情報取得部としての変位センサ941は、ユーザが使用しているオブジェクトからマーカの動きを検出することができたときには(ステップS2901のYes)、まず、マーカの単位時間当たりの上下の移動の検出を試みる(ステップS2902)。そして、マーカの上下の移動を検出することができたときには(ステップS2902のYes)、変位センサ941は、マーカの上下移動に関する移動量、移動速度、移動加速度などの変位情報を算出すると(ステップS2903)、ユーザの身体動作に応じたオブジェクトの変位情報として、出力制御部としての制御部910に出力する。
 また、変位センサ941は、マーカの上下の移動を検出することができなかったときには(ステップS2902のNo)、変位センサ941は、続いて、マーカの単位時間当たりの左右のパン回転の検出を試みる(ステップS2904)。そして、マーカの左右のパン回転を検出することができたときには(ステップS2904のYes)、変位センサ941は、マーカの左右のパン回転に関する回転角度、回転角速度、回転角加速度などの変位情報を算出すると(ステップS2905)、ユーザの身体動作に応じたオブジェクトの変位情報として、出力制御部としての制御部910に出力する。
 また、変位センサ941は、マーカの左右のパン回転を検出することができなかったときには(ステップS2904のNo)、変位センサ941は、続いて、マーカの単位時間当たりの前後方向のチルト角の検出を試みる(ステップS2906)。そして、マーカの前後方向のチルト角を検出することができたときには(ステップS2906のYes)、変位センサ941は、マーカの前後方向のチルト角に関する回転角度、回転角速度、回転角加速度などの変位情報を算出すると(ステップS2907)、ユーザの身体動作に応じたオブジェクトの変位情報として、出力制御部としての制御部910に出力する。
 また、変位センサ941は、マーカの前後方向のチルト角を検出することができなかったときには(ステップS2906のNo)、変位センサ941は、マーカの単位時間当たりの左右方向のロール角の検出をさらに試みる(ステップS2908)。そして、マーカの左右方向のロールを検出することができたときには(ステップS2908のYes)、変位センサ941は、マーカの左右方向のロールに関する回転角度、回転角速度、回転角加速度などの変位情報を算出すると(ステップS2909)、ユーザの身体動作に応じたオブジェクトの変位情報として、出力制御部としての制御部910に入力する。
 出力制御部としての制御部910は、変位センサ941から入力されるオブジェクトの変位情報に基づいて、オブジェクトを使用しているユーザの頭部位置を推定すると、ユーザが視聴中の自由視点映像をその頭部位置から見える映像に変換するための射影ベクトルを生成し(ステップS2910)、その射影ベクトルで変換した映像を表示(プロジェクタから投影)する(ステップS2911)。
 また、制御部910は、ステップS2910及びS2911における処理と並行して、オブジェクトの変位情報に基づいてユーザの頭部位置を推定して、映像の視点位置に合わせたSSFの変化を制御したり、オブジェクトの変位情報に基づいてマルチモーダル・インタフェースの出力を制御したりするようにしてもよい。
 オブジェクトの種類に応じて、マーカの動きから取得すべきオブジェクトの変位情報(言い換えれば、ユーザへのフィードバック出力の制御に使用する変位情報)の種類が相違する。例えば、オブジェクトが椅子であれば主にシートバックの前後上下左右の移動や前後の倒れ角に関する変位情報を取得し、オブジェクトがフィットネスバイクやトレッドミルなどのフィットネス器具であれば主に走行方向や速度、加速度、走行方向に関する変位情報を取得し、オブジェクトがベッドであればベッドの上下方向並びに前後左右の平面方向に関する変位情報を取得する必要がある。
 したがって、変位情報取得部としての変位センサ941は、オブジェクトの種類を特定すると、オブジェクト上から検出した各マーカの3次元位置の情報(すなわち、マーカの動き)から、特定したオブジェクトの種類に応じた変位情報を算出し、これを出力制御部としての制御部910に入力すればよい。
 システム900において、オブジェクトの種類を特定する方法としては、オブジェクトに取り付けられたマーカの動きに基づいて自動判別する方法や、オブジェクトの種類と一意な固有のマーカを使用する方法などが挙げられる。勿論、システム900のオペレータやオブジェクトを使用するユーザがオブジェクトの種類をシステム900に手入力するようにしてもよい。また、機械学習やディープラーニングを利用して、オブジェクトの画像データからマーカを用いずにオブジェクトの種類が特定されてもよい。
 図39には、変位情報取得部としての変位センサ941が、マーカの動きに基づいてオブジェクトの種類を自動判別して、変位情報を取得するための処理手順をフローチャートの形式で示している。
 変位センサ941は、オブジェクトを撮像しているカメラの撮像画像からマーカの動きを検出することができたときには(ステップS3001のYes)、各マーカの3次元的な位置情報の算出を試みる(ステップS3002)。そして、算出することができたマーカの3次元位置情報を蓄積する(ステップS3003)。
 次いで、変位センサ941は、蓄積した3次元位置情報からマーカの動きの種類の検出を試みる(ステップS3004)。そして、マーカの動きの種類を検出することができたときには(ステップS3004のYes)、変位センサ941は、検出した動きに基づいて、オブジェクトの種類を判別する(ステップS3005)。
 例えば、オブジェクトが椅子であれば、主にシートバックの前後上下左右の移動や前後の倒れ角に相当するマーカの動きを検出することができる。また、オブジェクトがフィットネスバイクであれば、前輪又はペダルの回転や、サドル又はハンドルの左右の倒れ角度に相当するマーカの動きを検出することができる。また、オブジェクトがトレッドミルであれば、主に無端ベルトの前後方向の移動や、操作パネル又は踏み台の前後左右の倒れ角度に相当するマーカの動きを検出することができる。また、オブジェクトがベッドであれば、ベッドの上下方向並びに前後左右の平面方向に相当するマーカの動きを検出することができる。変位センサ941は、ステップS3005では、ステップS3004で検出したマーカの動きがどのオブジェクトのどのような動きに相当し又は類似するかを判別する。この判別処理に、例えば機械学習を導入して、判別精度を向上させるようにしてもよい。
 次いで、変位センサ941は、ステップS3005で判別したオブジェクトが使用されている場合に、ユーザの身体動作に応じた出力制御(すなわち、何も装着していないユーザに対するインタラクション)を行うために必要となる変位情報を、ステップS3003で蓄積しておいた3次元位置情報に基づいて算出する(ステップS3006)。
 例えば、オブジェクトが椅子であれば、変位センサ941は、シートバックの前後上下左右の移動や前後の倒れ角に関する変位情報を算出する。また、オブジェクトがフィットネスバイクであれば、変位センサ941は、前輪又はペダルの回転速度や、サドル又はハンドルの左右の倒れ角度に関する変位情報を算出する。また、オブジェクトがトレッドミルであれば、変位センサ941は、無端ベルトの前後方向の移動速度や、操作パネル又は踏み台の前後左右の倒れ角度に関する変位情報を算出する。また、オブジェクトがベッドであれば、変位センサ941は、ベッドの上下方向並びに前後左右の平面方向に関する変位情報を算出する。
 そして、変位センサ941は、オブジェクトの種類に応じて算出した変位情報を、出力制御部としての制御部910に入力する(ステップS3007)。
 また、図40には、変位情報取得部としての変位センサ941が、固有マーカに基づいてオブジェクトの種類を自動判別して、変位情報を取得するための処理手順をフローチャートの形式で示している。
 固有マーカは、例えば、オブジェクトの識別情報を表す明滅パターンで不可視光又は可視光を発光する素子や、オブジェクトの識別情報を表す図形パターンからなるビジュアル・マーカである。
 変位センサ941は、カメラの撮像画像に含まれるマーカから、オブジェクトの識別情報を検出することができたときには(ステップS3101のYes)、検出した識別情報に基づいて、オブジェクトの種類を特定する(ステップS3102)。
 そして、変位センサ941は、オブジェクトを撮像しているカメラの撮像画像からマーカの動きを検出することができたときには(ステップS3103のYes)、各マーカの3次元的な位置情報の算出を試みる(ステップS3104)。そして、算出することができたマーカの3次元位置情報を蓄積する(ステップS3105)。
 次いで、変位センサ941は、蓄積した3次元位置情報から、ステップS3102で特定したオブジェクトに対応するマーカの動きの種類の検出を試みる(ステップS3106)。
 例えば、オブジェクトが椅子であれば、主にシートバックの前後上下左右の移動や前後の倒れ角に相当するマーカの動きを検出することができる。また、オブジェクトがフィットネスバイクであれば、前輪又はペダルの回転や、サドル又はハンドルの左右の倒れ角度に相当するマーカの動きを検出することができる。また、オブジェクトがトレッドミルであれば、主に無端ベルトの前後方向の移動や、操作パネル又は踏み台の前後左右の倒れ角度に相当するマーカの動きを検出することができる。また、オブジェクトがベッドであれば、ベッドの上下方向並びに前後左右の平面方向に相当するマーカの動きを検出することができる。
 そして、オブジェクトに対応するマーカの動きの種類を検出することができたときには(ステップS3106のYes)、変位センサ941は、ユーザの身体動作に応じた出力制御(すなわち、何も装着していないユーザに対するインタラクション)を行うために必要となる変位情報を、ステップS3105で蓄積しておいた3次元位置情報に基づいて算出する(ステップS3107)。
 例えば、オブジェクトが椅子であれば、変位センサ941は、シートバックの前後上下左右の移動や前後の倒れ角に関する変位情報を算出する。また、オブジェクトがフィットネスバイクであれば、変位センサ941は、前輪又はペダルの回転速度や、サドル又はハンドルの左右の倒れ角度に関する変位情報を算出する。また、オブジェクトがトレッドミルであれば、変位センサ941は、無端ベルトの前後方向の移動速度や、操作パネル又は踏み台の前後左右の倒れ角度に関する変位情報を算出する。また、オブジェクトがベッドであれば、変位センサ941は、ベッドの上下方向並びに前後左右の平面方向に関する変位情報を算出する。
 そして、変位センサ941は、オブジェクトの種類に応じて算出した変位情報を、出力制御部としての制御部910に入力する(ステップS3108)。
 続いて、映像表示の一例として、出力制御部としての制御部910が、音響信号に応じた画像を表示させるビジュアライザー機能を有する実施例について説明する。図41には、本実施例の構成例を示しており、図42には、図41に示した構成のうち、ドーム型スクリーン101のみを示している。さらに、図43には、ドーム型スクリーン101に対して略正対する視点における、図41に示したユーザの視界を示している。
 本実施例は、ゲームや映像コンテンツなどのデジタルコンテンツの再生また実行時に、それらの音響信号の変化に応じて動的に変化するエフェクト画像を出力することができるビジュアライザー機能を有する、デジタルコンテンツ再生機に適用することができる。
 ビジュアライザーは、本実施例において出力制御部としての制御部910が有する機能であり、音響信号の変化に応じて動的に変化するエフェクト画像を出力(表示)する機能である。エフェクト画像は、出力制御部としての制御部910がビジュアライザー機能を果たすために必要な表示を行う画像である。ユーザは、ドーム型スクリーン101に表示されるエフェクト画像を見て、そのエフェクト画像が自分の嗜好に合わない場合には、再生されるデジタルコンテンツを交換してもよい。係る構成により、ビジュアライザー機能を利用して、自分の嗜好に合致したエフェクト画像を探索して再生することができる。
 なお、本実施例において、エフェクト画像が表示される表示部(ドーム型スクリーン101)は、ドーム形状をしているが、エフェクト画像が表示される表示部は、フラットなスクリーンであっても構わないし、テレビジョン画面であっても構わない。
 本実施例におけるエフェクト画像は、所定の空間に配置された椅子1000にユーザが座って体感できるように再生される。なお、図41では、椅子1000が設置される例が示されているが、図24、図25を参照して説明したように、椅子1000に代えて、フィットネスバイクやトレッドミルなどのフィットネス器具等を設置して、本実施例に係るビジュアルライザー機能を視聴者が体感できるように構成してもよい。
 出力制御部としての制御部910は、音響信号における音の高さや大きさ、ビート、周波数特性等、音響信号の解析結果に応じて、ドーム型スクリーン101に表示されるエフェクト画像を変化させて、ビジュアライザー機能を実現させてもよい。なお、制御部910は、曲調解析アルゴリズム(12音解析)を用いて音響の解析結果を取得してもよく、また所謂ハイレゾリューション領域の信号を解析する機能を有してもよい。
 また、出力制御部としての制御部910は、入力された音響信号の解析結果に応じたエフェクト画像を出力させると共に、当該音響信号に従って、音響出力系から音響を出力(再生)させる。
 図44~図54には、ドーム型スクリーン101に表示されるエフェクト画像の変化の例を順に示している。図44~図54に示すように、エフェクト画像において、ダイヤモンド形状の粒子(3Dモデル)が音響信号の解析結果に応じて変化する。
 また、図55~図62には、エフェクト画像の変化をより詳細に示すため、エフェクト画像に含まれる一部の粒子のみを示している。なお、図44と図55、図45と図56、図46と図57、図47と図58、図49と図59、図51と図60、図52と図61、そして図53と図62、がそれぞれ対応している。
 図55~図62に示す本実施例の場合には、本実施例に係るビジュアライザーのエフェクト画像に含まれて表示される粒子単体に注目すると、各粒子は、ドーム型スクリーン101の内壁の中心付近からその外縁に向けて放射方向に複数段階を経て、仮想空間における位置、大きさ、向き、角度などを変化させながら、全体として大きく動き回るという特性を有している。
 図55~図62に示された粒子群は、単一の粒子群レイヤーを構成するものと見做されてもよい。この場合、図55~図62に示された三つの粒子は、粒子群レイヤーを構成する粒子の一部に過ぎず、各粒子群レイヤーは四つ以上の粒子によりに構成されてよい旨に留意されたい。この構成において、複数の互いに異なる粒子群レイヤーが仮想空間において奥行方向に重ねられた画像が、図44~図54に示されたエフェクト画像を構成し得る。この場合、図44~図54に示されたエフェクト画像は、例えば、約10層の粒子群レイヤーによって構成される。複数の粒子群レイヤーは、音響信号の変化に連動して、仮想空間において奥行方向に互いに離間または接近する。粒子群レイヤー間の離間速度(接近速度)は適宜設定され得る。例えば、音楽のテンポが速い程、離間速度(接近速度)が速く設定されてもよい。複数の粒子群レイヤーが互いに離間すると、手前側の粒子群レイヤーがドーム型スクリーン101の外縁に近づく。また、粒子群レイヤーは、視聴者に対し接近するに伴ってレイヤー内で(二次元的に)放射状に拡散する。この結果、複数の粒子群レイヤーは、仮想空間において三次元的に膨張しているように視聴者に観測される。したがって、本実施例によれば、高い没入感覚を呈するビジュアルライザー機能を視聴者に提供することができる。なお、没入感覚を高めるために、複数の粒子群レイヤーのうち少なくとも1つの粒子群レイヤーが、視聴者の前方の位置から後方の位置に移動するように構成されてよい。これにより、エフェクト画像に包み込まれる感覚を視聴者に提供することができる。視聴者の前方の位置から後方の位置に移動する粒子群レイヤーは、複数の粒子群レイヤーが収縮した状態において最も手前側に位置する粒子群レイヤーであってもよい。すなわち、複数の粒子群レイヤーが収縮した状態において、全ての粒子群レイヤーが視聴者の前方に位置するとよい。このように構成することで、視聴者は、エフェクト画像に包まれていない状態からエフェクト画像に包まれている状態への遷移映像を体験することができ、高い没入感覚を得ることができる。
 なお、音楽の開始まで、仮想空間に配置された粒子が無秩序に仮想空間を漂うように表示が制御されてもよい。そして、散乱していた粒子をユーザの前方に集めることで、音楽の開始とともに図43のエフェクト画像が形成されるように表示が制御されてもよい。なお、音楽が開始する以前の状態において、粒子の形状は球状等のダイヤモンド形状とは異なる形状であってよく、音楽の開始とともにダイヤモンド形状に変化するように表示が制御されてもよい。また、音楽の終了とともに、粒子のダイヤモンド形状を解除しつつ粒子が無秩序に仮想空間を漂うように表示を戻してもよい。このような構成によれば、視聴する音楽を切り替える間も、視聴者は表示された粒子に包まれている感覚を維持できるため、視聴者は高い没入感覚を得ることができる。
 本実施例によれば、ドーム型スクリーン101の内壁の外縁付近に近づくにつれて、エフェクト画像として表示される粒子の相対的な長さを伸ばすようにエフェクト画像が構成されているので、内壁の中心付近を注視する傾向があるユーザは、あたかも3次元的な仮想空間に自分がいるかのような没入感覚を疑似体験することができる。
 なお、仮想空間における位置、大きさ、向き、角度だけでなく、粒子の色や明るさなどが変化してもよい。また、図41~図62では、ダイヤモンド形状の粒子が表示される例を示したが、他の形状の3Dモデルが表示されてもよい。
 また、本実施例は、図44~図54に示すようなデジタルコンテンツ再生機のビジュアライザー機能により動的に変化するエフェクト画像が、内壁部に表現されたドーム形状またはフラット形状の表示スクリーン、またはその表示スクリーンを構成要素として含むデジタルコンテンツ再生機としても捉えることができる。
 また、本実施例においても、出力制御部としての制御部910は、ユーザの身体動作に応じた3次元的な変位に対応する変位情報に基づいて、フィードバック出力を行うように制御してもよい。例えば、出力制御部としての制御部910は、椅子1000の前後又は左右方向の倒れ角度に関する変位情報に応じて、エフェクト画像の前後又は左右の運動視差が変化するように映像処理を実行してもよい(図20、図21を参照のこと)。
 上記の通り、本明細書で提案するインタラクション技術は、専用のコントローラを必要とせずに、一般的なオブジェクトを利用してUI操作や機器の入力を行うことができる。一方で、専用のコントローラを用いないことから、ユーザはオブジェクトの操作方法を把握することが難しく、オブジェクトの操作に戸惑う可能性がある。そこで、例えばユーザがオブジェクトの利用を開始した際に、当該オブジェクトを用いて利用できる操作を表示部に表示してもよい。この際、システムが認識しているオブジェクトの種類が表示されることが好ましい。また、ユーザがオブジェクトを利用し始めたか否かは、システムにより取得されるオブジェクトの変位情報に基づいて判定されてもよい。なお、認識されたオブジェクトにより操作可能な制御の初期設定は、特定されたオブジェクトの種類に応じてネットワーク上から自動的に取得されてもよい。また、オブジェクトによる入力操作の最中にユーザが利用可能な操作を忘れる可能性もある。そこで、特定の操作(例えば、椅子を叩く)に応じて現在利用可能なオブジェクトの操作リストが表示されてもよい。勿論、オブジェクトにより利用可能な操作は適宜ユーザによって変更されてもよい。
 続いて、ユーザが有するユーザ端末を用いた実施例について説明する。図63には、ユーザ端末700が配置された構成例の斜視図を示している。ユーザ端末700は、例えばユーザが普段利用している端末(情報処理装置)であり、ユーザがシステム900を利用していない際にもユーザに利用される端末であってよい。本実施例は、出力部(映像出力系または音響出力系)と、出力制御部を備える情報処理装置(システム)である。詳細は後述するが、本実施例の出力制御部は、ユーザの身体動作に関するセンサ情報と、ユーザ端末700から取得される端末情報に基づいて、出力部を制御するように構成されている。
 なお、図63では、ユーザ端末700がスマートフォンである例を示しているが、ユーザ端末700は係る例に限定されない。ユーザ端末700は、ユーザが普段持ち歩く携帯(hand-held)端末や、身に付けたりして利用するウェアラブル端末であればよい。例えば、携帯端末はタブレット端末であってもよいし、ユーザに装着されるウェアラブル端末(ウェアラブルデバイス)は腕時計型のスマートウォッチ等であってもよい。
 また、図63に示す例では、ユーザの身体動作に応じた変位情報を取得するオブジェクトが椅子1000である例を示しているが、本技術は係る例に限定されない。例えば、ユーザの身体動作に応じた変位情報を取得するオブジェクトが上述したトレッドミルやフィットネスバイク等のフィットネス器具、またはソファ、ベッド等の家具である場合にも、ユーザ端末700が用いられてよい。
 さらに、図63に示す例では、椅子1000のヘッドレスト1040に設けられた窪みにユーザ端末700が配置される例を示しているが、ユーザ端末700の配置は係る例に限定されない。例えば、ユーザ端末700は、椅子1000のアームレスト上に配置されてもよいし、ユーザの膝の上に配置されてもよいし、ユーザに把持されていてもよいし、ユーザの胸ポケットに入っていてもよい。また、ユーザの身体動作に応じた変位情報を取得するオブジェクトが椅子1000ではない場合であっても、当該オブジェクトの所定の位置にユーザ端末700が配置されてもよい。また、ユーザ端末700がスマートウォッチ等のウェアラブルデバイスである場合、ユーザ端末700はユーザの腕等に装着されていてもよい。
 図64には、ユーザ端末700の構成例を示している。図64に示すように、ユーザ端末700は、端末コントローラ710、メモリ720、通信部730、センサ部740、ストレージ部750、表示部760、スピーカー770、及び操作入力部780を備える情報処理装置である。
 端末コントローラ710は、ユーザ端末700の全体を制御する。また、端末コントローラ710は、様々なアプリケーション(例えば音声対話アプリケーション)を実行する。また、端末コントローラ710は、センサ部740により取得されたセンサ情報に基づく認識(例えば音声認識等)を実行してもよい。なお、システム900とユーザ端末700とが連携する場合に、端末コントローラ710が実行するアプリケーションや、認識については後述する。
 メモリ720は、フラッシュ・メモリ又はDDR(Double-Data-Rate)などのSDRAMで構成され、端末コントローラ710の作業メモリとして使用される。
 通信部730は、Wi-Fi(Wireless Fidelity)、Bluetooth(登録商標)、NFC(Near Field Communication)などの無線通信モジュールで構成される。通信部730は、図9を参照して説明したシステム900の通信部913と接続されてもよく、例えばセンサ部740により取得されたセンサ情報等を通信部913へ送信してもよい。係る構成により、システム900はユーザ端末700と連携してより多様な機能を実現することが可能となる。システム900とユーザ端末700の連携についての詳細は後述する。
 センサ部740はユーザまたは周辺環境に関する各種情報(環境情報)を取得(センシング)する機能を有する。例えばセンサ部740は、図64に示すように、カメラ741、マイクロフォン742、ジャイロセンサ743、加速度センサ744、方位センサ745、位置測位部746、心拍センサ747、及び体温センサ748を含む。
 カメラ741は、実空間の情報を撮像画像として取得する。カメラ741は、撮像レンズ、絞り、ズームレンズ、及びフォーカスレンズ等により構成されるレンズ系、レンズ系に対してフォーカス動作やズーム動作を行わせる駆動系、レンズ系で得られる撮像光を光電変換して撮像信号を生成する固体撮像素子アレイ等を有する。固体撮像素子アレイは、例えばCCD(Charge Coupled Device)センサアレイや、CMOS(Complementary Metal Oxide Semiconductor)センサアレイにより実現されてもよい。
 また、カメラ741は複数設けられていてもよく、カメラ741が複数設けられる場合、複数のカメラ741は同じ方向を撮像するように設けられてもよいし、異なる方向を撮像するように設けられてもよい。例えば、カメラ741は、主にユーザの方向を撮像する内向きカメラと、主にユーザの視界方向を撮像する外向きカメラを含んでもよい。
 マイクロフォン742は、ユーザの音声や周囲の環境音を収音し、音響信号として取得する。
 ジャイロセンサ743は、例えば3軸ジャイロセンサにより実現され、角速度(回転速度)を検出する。
 加速度センサ744は、例えば3軸加速度センサ(Gセンサとも称す)により実現され、移動時の加速度を検出する。
 方位センサ745は、例えば3軸地磁気センサ(コンパス)により実現され、絶対方向(方位)を検出する。
 位置測位部746は、外部からの取得信号に基づいてユーザ端末700の現在位置を検知する機能を有する。例えば位置測位部746は、GPS(Global Positioning System)測位部により実現され、GPS衛星からの電波を受信して、ユーザ端末700が存在している位置を検知し、位置情報を取得する。また、位置測位部746は、GPSの他、例えばWi-Fi(登録商標)、Bluetooth(登録商標)、携帯電話・PHS・スマートフォン等との送受信、または近距離通信等により位置を検知するものであってもよい。
 心拍センサ747は、ユーザ端末700を有するユーザの心拍を検知し、心拍情報を取得する。
 体温センサ748は、ユーザ端末700を有するユーザの体温を検知し、体温情報を取得する。
 なお、図64に示したセンサ部740に含まれるセンサは一例であって、本技術は係る例に限定されない。例えば、センサ部740は図示した全てのセンサを含まなくてもよいし、各センサはそれぞれ複数であってもよい。また、センサ部740は、他のセンサを含んでもよく、例えばユーザの発汗、血圧、発汗、脈拍、呼吸、瞬目、眼球運動、凝視時間、瞳孔径の大きさ、血圧、脳波、体動、***、皮膚温度、皮膚電気抵抗、MV(マイクロバイブレーション)、筋電位、またはSPO2(血中酸素飽和度))等の生体情報を取得するセンサを含んでもよい。
 また、各種センサは、機種依存性が存在し得るため、各種センサから得られるセンサ情報からキャリブレーションを行うことが望ましい。例えば、専用のアプリケーション上の指示に従って、事前に決まった特定の動きや動作、操作などを行う事により各種センサから得られるセンサ情報を元に補正パラメータを算出してキャリブレーションが実行されてもよい。
 また、システム900とユーザ端末700とが連携する場合の、センサ部740のセンシング対象、及びセンシング結果の反映対象については後述する。
 ストレージ部750は、上述した端末コントローラ710が処理を実行するためのプログラムやパラメータを記憶する。また、ストレージ部750は、ユーザ端末700を利用するユーザに関するプロファイル情報を記憶してもよい。
 プロファイル情報は、例えばユーザがユーザ端末700を利用した際の履歴情報を含んでもよい。履歴情報には、例えば、ユーザ端末700におけるコンテンツの再生に関する再生履歴、ユーザ端末700の操作に関する操作履歴等が含まれてもよい。
 また、プロファイル情報は、ユーザの個人情報を含んでもよい。個人情報には、例えばユーザの国籍、年齢、性別、身長、座高、体重、またはスケジュール等の情報が含まれてもよい。なお、個人情報は、例えばユーザの明示的な操作に基づいて得られた情報でもよいし、ユーザのコンテンツ視聴履歴や操作履歴等に基づく推定により得られた情報であってもよい。
 また、プロファイル情報は、ユーザの嗜好性を示す嗜好性情報を含んでもよい。嗜好性情報には、例えばコンテンツに関する嗜好性を示すコンテンツ嗜好性情報、及び表示部760やスピーカー770の出力に係る調整値に関する嗜好性を示す出力調整値嗜好性情報が含まれてもよい。なお、嗜好性情報は、例えばユーザの明示的な操作に基づいて得られた情報でもよいし、ユーザのコンテンツ視聴履歴や操作履歴等に基づく学習により得られた情報であってもよい。
 なお、システム900とユーザ端末700とが連携する場合の、プロファイル情報の活用については後述する。
 表示部760は、例えば液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置等により実現され、端末コントローラ710の制御に従って各種画面を表示する。
 スピーカー770は、例えば端末コントローラ710の制御に従って音響出力する。
 操作入力部780は、タッチセンサ、マウス、キーボード、ボタン、スイッチ及びレバー等、ユーザが情報を入力するための物理的な構造を有する操作部材により実現される。本開示において、ユーザが何らかの操作を行うためにユーザ端末700に対して入力した情報を「入力操作情報」と呼ぶ場合がある。なお、ユーザによる入力操作は、上記の操作部材を介した操作に限定されず、例えばセンサ部740により取得されるジェスチャー入力操作や音声入力操作等も含まれ得る。
 以上、ユーザ端末700の構成例について説明した。続いて、システム900とユーザ端末700とが連携する場合の、センサ部740のセンシング対象、及びセンシング結果の反映対象について順次説明を行う。センシング対象と、センサ部740に含まれる各センサの対応関係を以下の表7に例示する。
Figure JPOXMLDOC01-appb-T000007
 例えば、ユーザが椅子に着座している場合、センサ部740のセンシングに基づいて、ユーザの身体動作に応じた椅子の変位情報が取得されてもよい。係る場合、ユーザ端末700が変位情報取得部として機能し得る。また、係る場合、椅子の変位情報は、例えば実施例1で説明した椅子1000の変位情報と同様であってもよい。なお、本開示において、ユーザの身体動作に関するセンサ情報を取得するセンサ部740が、「第1のセンサ部」として見做されてもよい。
 椅子の変位情報は、例えばセンサ部740のカメラ741の撮像画像に基づいて取得されてもよい。なお、カメラ741の撮像画像に基づく変位情報の取得方法は、実施例1で説明した変位情報の取得方法と同様であってもよい。
 また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、椅子の変位情報が取得されてもよい。
 また、ユーザがトレッドミルを使用している場合、センサ部740のセンシングに基づいて、ユーザの身体動作に応じたトレッドミルの変位情報が取得されてもよい。係る場合にも、ユーザ端末700が変位情報取得部として機能し得る。また、係る場合、トレッドミルの変位情報は、例えば実施例2で説明したトレッドミル1500の変位情報と同様であってもよい。
 トレッドミルの変位情報は、例えばセンサ部740のカメラ741の撮像画像に基づいて取得されてもよい。なお、カメラ741の撮像画像に基づく変位情報の取得方法は、実施例2で説明した変位情報の取得方法と同様であってもよい。
 また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、トレッドミルの変位情報が取得されてもよい。
 また、ユーザがフィットネスバイクを使用している場合、センサ部740のセンシングに基づいて、ユーザの身体動作に応じたフィットネスバイクの変位情報が取得されてもよい。係る場合にも、ユーザ端末700が変位情報取得部として機能し得る。また、係る場合、フィットネスバイクの変位情報は、例えば実施例2で説明したフィットネスバイク1600の変位情報と同様であってもよい。
 フィットネスバイクの変位情報は、例えばセンサ部740のカメラ741の撮像画像に基づいて取得されてもよい。なお、カメラ741の撮像画像に基づく変位情報の取得方法は、実施例2で説明した変位情報の取得方法と同様であってもよい。
 また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、フィットネスバイクの変位情報が取得されてもよい。
 また、ユーザがベッドに横たわっている場合、センサ部740のセンシングに基づいて、ユーザの身体動作に応じたベッドの変位情報が取得されてもよい。係る場合にも、ユーザ端末700が変位情報取得部として機能し得る。また、係る場合、ベッドの変位情報は、例えば実施例4で説明したベッド2400、またはベッド2500の変位情報と同様であってもよい。
 ベッドの変位情報は、例えばセンサ部740のカメラ741の撮像画像に基づいて取得されてもよい。なお、カメラ741の撮像画像に基づく変位情報の取得方法は、実施例2で説明した変位情報の取得方法と同様であってもよい。
 また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、ベッドの変位情報が取得されてもよい。
 上述したように、ユーザ端末700が変位情報取得部として機能する場合、システム900は変位センサ941を備えなくてもよく、構成が簡易化される効果がある。
 また、センサ部740のセンシングに基づいて、ユーザの頭部位置及び頭部姿勢の情報が取得されてもよい。上述したような変位情報に基づいて頭部位置及び頭部姿勢が推定されてもよいし、より直接的に頭部位置及び頭部姿勢の情報がセンシングされてもよい。例えば、センサ部740のカメラ741の撮像画像に基づいてユーザの頭部位置及び頭部姿勢の情報が取得されてもよい。例えば、ユーザの視界方向を撮像する外向きカメラの撮像画像と投影映像の対応に基づいて、ユーザ方向を撮像する内向きカメラの撮像画像に映るユーザの頭部の位置、及び姿勢が推定されてもよい。また、ユーザ端末700は、上述した頭部検出カメラ942と同様に、カメラ741の撮像画像からユーザの頭部を検出して、ユーザの頭部の映像を制御部910に送信してもよい。係る場合、システム900は頭部検出カメラ942を備えなくてもよく、構成が簡易化される効果がある。
 また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、ユーザの頭部位置及び頭部姿勢の情報が取得されてもよい。
 また、センサ部740のセンシングに基づいて、ユーザの体の傾きの情報が取得されてもよい。体の傾きの情報には、例えば重心動揺、及び揺すりの情報が含まれてもよい。例えば、センサ部740のカメラ741の撮像画像に基づいて体の傾きの情報が取得されてもよい。また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、体の傾きの情報が取得されてもよい。
 また、センサ部740のセンシングに基づいて、ユーザの手の動き(ハンドジェスチャ)の情報が取得されてもよい。手の動きの情報には、例えば、拍手、手を振る、腕を組む、等の手の動作に関する情報が含まれてもよい。例えば、センサ部740のカメラ741の撮像画像に基づいて手の動きの情報が取得されてもよい。また、センサ部740のマイクロフォン742、ジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、手の動きの情報が取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、各プロジェクタ103及び104から投影されたドーム型スクリーン101上の輝度、及び輝度調整値の嗜好性の情報が取得されてもよい。例えば、センサ部740のカメラ741の撮像画像に基づいて、輝度の情報が取得されてもよい。また、センサ部740の心拍センサ、または体温センサにより取得された心拍、または体温に基づいて輝度調整値の嗜好性の情報がユーザごとに取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、各プロジェクタ103及び104から投影されたドーム型スクリーン101上の画質、及び画質調整値の嗜好性の情報が取得されてもよい。例えば、センサ部740のカメラ741の撮像画像に基づいて、画質の情報が取得されてもよい。また、センサ部740の心拍センサ、または体温センサにより取得された心拍、または体温に基づいて画質調整値の嗜好性の情報がユーザごとに取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、システム900により出力されるコンテンツの嗜好性の情報がユーザごとに取得されてもよい。例えば、センサ部740の心拍センサ、または体温センサにより取得された心拍、または体温に基づいてコンテンツの嗜好性の情報がユーザごとに取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、システム900の音響出力系から出力される音響の音量、及び音量調整値の嗜好性の情報が取得されてもよい。例えば、センサ部740のマイクロフォン742により取得された音響信号(音情報)に基づいて、音量の情報が取得されてもよい。また、センサ部740の心拍センサ、または体温センサにより取得された心拍、または体温に基づいて音量調整値の嗜好性の情報がユーザごとに取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、システム900の音響出力系から出力される音響の音質、及び音質調整値の嗜好性の情報が取得されてもよい。例えば、センサ部740のマイクロフォン742により取得された音響信号に基づいて、音質の情報が取得されてもよい。また、センサ部740の心拍センサ、または体温センサにより取得された心拍、または体温に基づいて音質調整値の嗜好性の情報がユーザごとに取得されてもよい。
 また、センサ部740のセンサ情報に基づいて、場所の情報が取得されてもよい。例えば、場所の情報は、センサ部740の位置測位部746により取得されてもよい。また、また、センサ部740のジャイロセンサ743、加速度センサ744、または方位センサ745のうち少なくとも1以上のセンサにより取得されたセンサ情報を組み合わせることで、場所の情報が取得されてもよい。なお、場所の情報は、例えば本明細書で提案する技術が飛行機や電車、バス、乗用車等の移動体に適用された場合に、取得されることが望ましい。
 以上、センサ部740のセンシング対象の例について説明した。なお、上述した撮像画像に基づいて情報を取得する処理、及びセンサ情報を組み合わせて情報を取得する処理は、ユーザ端末700の端末コントローラ710により実行されてもよいし、システム900のメイン・コントローラ911により実行されてもよい。
 続いて、センシング結果の反映対象について説明を行う。出力制御部としての制御部910は、センサ部740によるセンシング結果をインタラクションに反映させる。センシング対象と、センシング結果の反映対象の対応関係を以下の表8に例示する。
Figure JPOXMLDOC01-appb-T000008
 例えば、センサ部740のセンシングに基づいて、椅子の変位情報が取得された場合、出力制御部としての制御部910は、椅子の変位情報に基づいて、映像処理や音響処理の出力を制御してもよい。なお、椅子の変位情報に基づく映像処理や音響処理に関する出力制御は、例えば実施例1で説明した椅子1000の変位情報に基づく映像処理や音響処理に関する出力制御と同様であってもよい。または、出力制御部としての制御部910は、椅子の変位情報に応じて、音響の音量を変化させる音響処理を実行してもよい。また、出力制御部としての制御部910は、椅子の変位情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、トレッドミルの変位情報が取得された場合、出力制御部としての制御部910は、トレッドミルの変位情報に基づいて、映像処理や音響処理の出力を制御してもよい。なお、トレッドミルの変位情報に基づく映像処理や音響処理に関する出力制御は、例えば実施例2で説明したトレッドミル1500の変位情報に基づく映像処理や音響処理に関する出力制御と同様であってもよい。または、出力制御部としての制御部910は、トレッドミル上でのユーザの走行又は歩行速度や、トレッドミルの上下移動量、左右の倒れ角度などの変位情報に基づいて、画面描画速度を変化させる映像処理を実行してもよい。また、出力制御部としての制御部910は、トレッドミルの変位情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、フィットネスバイクの変位情報が取得された場合、出力制御部としての制御部910は、フィットネスバイクの変位情報に基づいて、映像処理や音響処理の出力を制御してもよい。なお、フィットネスバイクの変位情報に基づく映像処理や音響処理に関する出力制御は、例えば実施例2で説明したフィットネスバイク1600の変位情報に基づく映像処理や音響処理に関する出力制御と同様であってもよい。または、出力制御部としての制御部910は、車輪の回転速度(フィットネスバイクの変位情報の一例)に応じて、画面描画速度を変化させる映像処理や音響のピッチ・テンポを変化させる音響処理を実行してもよい。また、出力制御部としての制御部910は、フィットネスバイクの変位情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、ベッドの変位情報が取得された場合、出力制御部としての制御部910は、ベッドの変位情報に基づいて、映像処理や音響処理の出力を制御してもよい。なお、ベッドの変位情報に基づく映像処理や音響処理に関する出力制御は、例えば実施例4で説明したベッド2400又は2500の変位情報に基づく映像処理や音響処理に関する出力制御と同様であってもよい。または、出力制御部としての制御部910は、ベッドの変位情報に応じて、音響の音量を変化させる音響処理を実行してもよい。また、出力制御部としての制御部910は、ベッドの変位情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、ユーザの頭部位置及び頭部姿勢の情報が取得された場合、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいて、映像処理や音響処理の出力を制御してもよい。例えば、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいて、視聴中の自由視点映像の視点位置を変化させる映像処理を実行してもよい。また、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいて、映像の視点位置に合わせたSSFの変化を制御してもよい。または、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいて、音響の音量を変化させる音響処理を実行してもよい。また、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。また、出力制御部としての制御部910は、頭部位置及び頭部姿勢の情報に基づいてUIメニューの操作に係る映像処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、ユーザの体の傾きの情報が取得された場合、出力制御部としての制御部910は、体の傾きの情報に基づいて、映像処理や音響処理の出力を制御してもよい。例えば、出力制御部としての制御部910は、体の傾きの情報に基づいて、視聴中の自由視点映像の視点位置を変化させる映像処理を実行してもよい。また、出力制御部としての制御部910は、体の傾きの情報に基づいて、映像の視点位置に合わせたSSFの変化を制御してもよい。または、出力制御部としての制御部910は、体の傾きの情報の情報に基づいて、音響の音量を変化させる音響処理を実行してもよい。また、出力制御部としての制御部910は、体の傾きの情報に基づいて出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。また、出力制御部としての制御部910は、体の傾きの情報に基づいてUIメニューの操作に係る映像処理を実行してもよい。
 また、センサ部740のセンシングに基づいて、ユーザの手の動きの情報が取得された場合、出力制御部としての制御部910は、手の動きの情報に基づいて、出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。また、出力制御部としての制御部910は、手の動きの情報に基づいてUIメニューの操作に係る映像処理を実行してもよい。
 また、センサ部740のセンサ情報に基づいて、ドーム型スクリーン101上の輝度の情報が取得された場合、出力制御部としての制御部910は、輝度の情報に基づいて、各プロジェクタ103及び104の輝度調整を実行してもよい。また、同様に、センサ部740のセンサ情報に基づいて、輝度調整値の嗜好性の情報が取得された場合、出力制御部としての制御部910は、輝度調整値の嗜好性の情報に基づいて、各プロジェクタ103及び104の輝度調整を実行してもよい。
 また、センサ部740のセンサ情報に基づいて、ドーム型スクリーン101上の画質の情報が取得された場合、出力制御部としての制御部910は、画質の情報に基づいて、各プロジェクタ103及び104の画質調整を実行してもよい。また、同様に、センサ部740のセンサ情報に基づいて、画質調整値の嗜好性の情報が取得された場合、出力制御部としての制御部910は、画質調整値の嗜好性の情報に基づいて、各プロジェクタ103及び104の画質調整を実行してもよい。なお、出力制御部としての制御部910が実行する画質調整は、例えば色、コントラスト、またはシャープネスの調整を含んでもよい。
 また、センサ部740のセンサ情報に基づいて、コンテンツの嗜好性の情報が取得された場合、出力制御部としての制御部910は、コンテンツの嗜好性の情報に基づいて、出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。また、出力制御部としての制御部910は、コンテンツの嗜好性の情報に基づいて、ユーザへコンテンツを推薦する(例えばおすすめのコンテンツを表示させる)出力制御を実行してもよい。
 また、センサ部740のセンサ情報に基づいて、システム900の音響出力系から出力される音響の音量の情報が取得された場合、出力制御部としての制御部910は、音量の情報に基づいて、システム900の音響出力系から出力される音響の音量調整を実行してもよい。また、同様に、センサ部740のセンサ情報に基づいて、音量調整値の嗜好性の情報が取得された場合、出力制御部としての制御部910は、音量調整値の嗜好性の情報に基づいて、音量調整を実行してもよい。
 また、センサ部740のセンサ情報に基づいて、システム900の音響出力系から出力される音響の音質の情報が取得された場合、出力制御部としての制御部910は、音質の情報に基づいて、システム900の音響出力系から出力される音響の音質調整を実行してもよい。また、同様に、センサ部740のセンサ情報に基づいて、音質調整値の嗜好性の情報が取得された場合、出力制御部としての制御部910は、音質調整値の嗜好性の情報に基づいて、音質調整を実行してもよい。なお、出力制御部としての制御部910が実行する音質調整は、例えば音響出力系の周波数特性、位相特性、または遅延特性の調整を含んでもよい。
 また、センサ部740のセンサ情報に基づいて、場所の情報が取得された場合、出力制御部としての制御部910は、場所の情報に基づいて、出力させるコンテンツを切り替える映像処理、または音響処理を実行してもよい。例えば、出力制御部としての制御部910は、場所の情報に基づいて、付近の名所等を案内するコンテンツを出力させてもよいし、付近の店舗等を宣伝するコンテンツを出力させてもよい。
 以上、システム900とユーザ端末700とが連携する場合の、センサ部740のセンシング対象、及びセンシング結果の反映対象について説明した。なお、上記では主に映像処理、または音響処理に関する出力制御にセンシング結果が反映される例を説明したが、本技術は係る例に限定されない。例えば、出力制御部としての制御部910は、体温センサ748により取得された体温の情報に基づいて、外部出力部952に含まれるエアコンの出力を制御してもよい。また、上記では、ユーザがシステム900を利用している際のセンサ部740のセンシングについて主に説明したが、本技術は係る例に限定されない。例えば、ドーム型ディスプレイ100の設置時に、センサ部740のカメラ741の撮像画像に基づいて、幾何補正やエッジブレンディング処理が行われてもよい。また、経時変化のズレを補正する際にも、カメラ741の撮像画像に基づいて補正が行われてもよい。
 続いて、システム900とユーザ端末700とが連携する際の、プロファイル情報の活用について説明を行う。出力制御部としての制御部910は、ユーザ端末700のストレージ部750に記憶されたプロファイル情報に基づいてインタラクションを制御してもよい。
 例えば、出力制御部としての制御部910は、プロファイル情報に含まれる履歴情報に基づいて、コンテンツを出力させてもよい。例えば、出力制御部としての制御部910は、再生履歴に基づき、ユーザが過去に再生したコンテンツに類似したコンテンツを出力させてもよい。また、出力制御部としての制御部910は、再生履歴に基づき、ユーザが過去に頻繁に再生したコンテンツを出力させてもよい。
 また、出力制御部としての制御部910は、プロファイル情報に含まれる個人情報に基づいて、出力を制御してもよい。例えば、出力制御部としての制御部910は、個人情報に応じて、適したコンテンツを出力させてもよい。また、出力制御部としての制御部910は、ユーザが高齢である場合、表示させる文字の大きさを大きくしてもよい。また、出力制御部としての制御部910は、ユーザの身長や座高の情報に応じて、視聴中の自由視点映像の視点位置を変化させる映像処理を実行してもよい。また、出力制御部としての制御部910は、ユーザのスケジュールの情報に基づいて、スケジュールを表示させたり、スケジュールに含まれる予定を通知させたりしてもよい。なお、ユーザがコンテンツを視聴している際に、スケジュールの情報等のプロファイル情報をコンテンツ映像に重畳させる場合、プロファイル情報はユーザの正面に対応する領域以外に配置され、コンテンツ試聴を阻害しないようにすることが望ましい。
 また、出力制御部としての制御部910は、プロファイル情報に含まれる嗜好性情報に基づいて、出力を制御してもよい。例えば、出力制御部としての制御部910は、コンテンツ嗜好性情報に応じて、ユーザが嗜好すると推定されるコンテンツを出力させてもよい。また、出力制御部としての制御部910は、出力調整値嗜好性情報に基づいて、輝度、画質、音量、音質等の出力に係る調整を実行してもよい。係る構成により、ユーザごとの調整が速やかに行われるため、例えば映像酔いを軽減させることが可能となる。店舗等において、ユーザが頻繁に交代する場合に、このようなプロファイル情報に基づいたユーザごとの調整は特に有効となる。
 以上、システム900とユーザ端末700とが連携する際の、プロファイル情報の活用について説明した。なお、システム900とユーザ端末700とが連携する際の、ストレージ部750に記憶された情報の活用は上記に限定されず、例えば、出力制御部としての制御部910は、ストレージ部750に記憶されたコンテンツを出力させてもよい。
 続いて、システム900とユーザ端末700とが連携する際に、ユーザ端末700のその他の機能と連携する例について説明する。出力制御部としての制御部910は、ユーザ端末700が有する各種機能に基づいて、出力を制御してもよい。
 例えば、ユーザ端末700がビデオ通話機能を有する場合、出力制御部としての制御部910は、ドーム型ディスプレイ100を用いたビデオ通話に関する映像処理、及び音響処理を実行してもよい。
 また、ユーザ端末700が音声認識機能を有する場合、出力制御部としての制御部910は、係る音声認識機能に応じて映像処理、及び音響処理を実行してもよい。特に、ユーザ端末700が音声対話機能を有する場合、音声対話によって、システム900に係る操作が行われてもよい。
 なお、出力制御部としての制御部910がユーザ端末700のビデオ通話機能、音声認識機能、音声対話機能等に基づいて出力を制御する場合、ユーザはドーム型スクリーン101の前で発話を行う。ドーム型スクリーン101の前で発話を行うと、エコーが発生し、ユーザ端末700のマイクロフォン742が適切に音声の音響信号を取得できない恐れがある。そこで、事前にマイクロフォン742のキャリブレーションが行われることが望ましい。例えば、音響インパルス応答を測定することで、ユーザ端末700の位置に応じたドーム型スクリーン101の独特な反射特性をキャンセルするキャリブレーションを行うことも可能である。その結果、エコーが除去(キャンセル)された音声の音響信号を取得することが可能となる。
 また、ユーザ端末700が通話機能を有する場合、出力制御部としての制御部910は、ユーザ端末700に着信があったことに基づいて、音量を低下させてもよい。
 また、出力制御部としての制御部910は、ユーザ端末700が有するスピーカー770の音響出力を制御してもよい。出力制御部としての制御部910は、ユーザ端末700の配置に応じて、スピーカー770の音響出力を制御してもよい。例えば、図63に示したようにヘッドレスト1040の近傍にユーザ端末700が存在する場合、出力制御部としての制御部910は、ヘッドレスト・スピーカー934の代わりにから音響を出力させてもよい。係る構成によれば、システム900はヘッドレスト・スピーカー934を備えなくてもよく、構成が簡易化される効果がある。
 また、出力制御部としての制御部910は、ユーザ端末700が有する操作入力部780を介したユーザの操作に基づいて、出力を制御してもよい。例えば、出力制御部としての制御部910は、操作入力部780を介したユーザの操作に基づいて、視聴中の自由視点映像の視点位置を変化させる映像処理を実行してもよい。
 以上、システム900とユーザ端末700との連携について説明した。なお、上記では、システム900の通信部913とユーザ端末700の通信部730とが接続されて、システム900とユーザ端末700とが連携する例を説明したが、本技術は係る例に限定されない。例えば、システム900にユーザ端末700が組み込まれてもよく、係る場合、制御部910や入力系に代わって、制御部910や入力系の機能をユーザ端末700が有してもよい。
 図65には、ユーザ端末700を備えるシステム900の構成例を示している。図65に示すシステム900は、ユーザ端末700を備える代わりに、制御部910、変位センサ941、頭部検出カメラ942、外付けセンサ943、及びオーディオプレイヤ944を備えない点で図9に示したシステム900と異なる。
 制御部910の通信部913の機能は、ユーザ端末700の通信部730により代替され得る。また、制御部910のメイン・コントローラ911、メイン・メモリ912、映像用DSP914、及び音響用DSP915の機能(出力制御部としての機能を含む)は、ユーザ端末700の端末コントローラ710、及びメモリ720によって代替され得る。なお、ユーザ端末700は映像用DSPや音響用DSPを備えてもよい。
 また、入力系のうち、変位センサ941、頭部検出カメラ942、及び外付けセンサ943の機能は、センサ部740によって代替され得る。なお、図65ではセンサ部740に含まれる具体的なセンサの例を省略しているが、例えば図64に示したセンサ部740に含まれる具体的なセンサの例と同様であってもよい。
 また、入力系のうち、オーディオプレイヤ944の機能は、例えば端末コントローラ710、及びストレージ部750によって代替され得る。
 なお、上述した制御部910や入力系の機能の全てが代替されなくてもよく、システム900は、ユーザ端末700と共に、制御部910や入力系の機能の一部、または全てを備えていてもよい。
 また、ユーザ端末700と、音響出力系及び映像表示系とは、通信部730による無線通信により無線接続されてもよいし、有線接続されてもよい。ユーザ端末700と音響出力系及び映像表示系とが無線接続される場合、例えばMiracast(登録商標)やAirPlay(登録商標)等の技術が用いられてもよい。ユーザ端末700と音響出力系及び映像表示系とが有線接続される場合、ユーザ端末700と音響出力系及び映像表示系とは、例えばMHL(Mobile High-definition Link)やHDMI(High-Definition Multimedia Interface)(登録商標)等により接続されてもよい。なお、ユーザ端末700と、音響出力系及び映像表示系との間の接続は係る例に限定されず、ユーザ端末700と音響出力系及び映像表示系とは、Bluetooth(登録商標)やUSB(Universal Serial Bus)等により接続されてもよい。
 また、図65では、システム900が1台のユーザ端末700を備える例を示したが、システム900は、複数台のユーザ端末700を備えてもよい。また、各プロジェクタ103、及び104に対して、1台のユーザ端末700が接続されていてもよい。係る場合、複数のユーザ端末700の間で、映像出力タイミングの同期が行われることが望ましい。例えば、PTP(Precision Time Protocol)等のプロトコルを用いてユーザ端末700間の時刻を同期させ、所定の時刻において映像の出力が開始されてもよい。
 以上、システム900がユーザ端末700を備える例について説明した。上述したように制御部910や入力系の機能をユーザ端末700が代替することで、構成が簡易化される効果がある。なお、図65を参照して説明したシステム900がユーザ端末700を備える構成においても、上述したセンサ部740によるセンシング結果を反映したインタラクションや、プロファイル情報を活用したインタラクション、ユーザ端末700の機能に基づくインタラクションが行われ得る。
 もちろん、上述した実施例7において、図65で省略された制御部と入力系等の構成要素のうち少なくとも一部あるいは全部を設けたシステムが採用されても良い。すなわち、単独で機能し得る図9のシステム900に、補助操作端末としてユーザ端末700を備え、これらを連携させて動作させる構成としても良い。この構成において、ユーザ端末700からの操作入力情報やセンサ情報等に加え、図9で示された入力系からの各種信号(情報)に基づいて、映像表示系の映像が制御され得る。すなわち、例えばオブジェクトが椅子の場合、椅子の動作情報とユーザ端末700からの情報に基づいて、映像表示系の映像が制御され得る。
 上記構成において、例えば、ユーザ端末700のセンサ部740(第1のセンサ部)が、ユーザの身体動作に関するセンサ情報を取得するとともに、一方で、図9で示した変位センサ941(第2のセンサ部)もまた、ユーザの身体動作に関するセンサ情報を取得しても良い。センサ部740と変位センサ941がそれぞれ取得したセンサ情報に基づいて出力部が制御されることで、図9の構成よりも豊富なユーザ体験を、専用のコントローラを用いることなくユーザに提供することができる。
 例えば、ドーム形状を有する表示部で提供される映像をユーザが椅子に座って視聴する場合に、表2に示すようにユーザの身体動作に応じて映像の視差を変化させることを想定する。この構成において、センサ部740と変位センサ941がそれぞれ取得したセンサ情報に基づいて、表示部に提示される映像の視差が制御されても良い。係る構成より、図9よりも大きく視差を変化させることができる。より具体的には、例えば、ユーザは左右回転とユーザ端末700への入力操作の組み合わせにより、前方を見た状態を維持しつつ、視差を大きく変化させることができる。
 以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。
 本明細書で提案するインタラクション技術は、椅子やベッドなどの日常生活で使用する家具を通じて体幹の変位などユーザの身体動作を検出して、入力に代替することができるので、身体の動きが不自由な障がい者に対して、コントローラやコンソールに置き換わる代替入力機能として展開することも可能である。
 また、本明細書で提案するインタラクション技術は、一般家庭だけではなく、病院やリハビリなどの施設で利用することができる。さらに、本明細書で提案するインタラクション技術は、飛行機や電車、バス、自動運転対応の乗用車など、スペースが限られた移動体でも利用することができる。
 要するに、例示という形態により本明細書で開示する技術について説明してきたが、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。
 なお、本明細書の開示の技術は、以下のような構成をとることも可能である。
(1)
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部と、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部と、を具備する情報処理装置。
(2)
 前記所定のオブジェクトは、前記ユーザが着座可能なオブジェクトであり、
 前記ユーザの身体動作は、前記ユーザの上半身の傾き動作を含む、前記(1)に記載の情報処理装置。
(3)
 前記所定のオブジェクトはシートバックを有し、
 前記変位情報取得部は、前後方向、左右方向及び上下方向のうち少なくとも1つにおける前記シートバックの位置の変化に対応する前記変位情報を取得する、前記(2)に記載の情報処理装置。
(4)
 前記変位情報取得部は、前記前後方向における前記シートバックの倒れ角度に対応する前記変位情報を取得する、前記(3)に記載の情報処理装置。
(5)
 前記変位情報取得部は、第1の倒れ角度と、前記第1の倒れ角度よりも大きい第2の倒れ角度を前記変位情報として取得し、
 前記出力部は、第1の出力と、前記第1の出力とは異なる第2の出力を含む前記所定の出力を行い、
 前記出力制御部は、前記シートバックが前記第1の倒れ角度を有する場合に前記出力部が前記第1の出力を行うように制御し、前記シートバックが前記第2の倒れ角度を有する場合に前記出力部が前記第2の出力を行うように制御する、前記(4)に記載の情報処理装置。
(6)
 前記変位情報取得部は、前記シートバックの所定時間当たりの倒れ角度に対応する変位情報を取得する、前記(4)又は(5)に記載の情報処理装置。
(7)
 前記変位情報取得部は、前記シートバックの倒れ角加速度に対応する変位情報を取得し、
 前記出力部は、第3の出力を含む前記所定の出力を行い、
 前記出力制御部は、前記倒れ角加速度が所定の閾値以上である場合に前記出力部が前記第3の出力を行うように制御する、前記(3)~(6)のいずれか1項に記載の情報処理装置。
(8)
 前記変位情報取得部は、前記所定のオブジェクトの着座部位の前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、前記(2)~(7)のいずれか1項に記載の情報処理装置。
(9)
 前記変位情報取得部は、前記所定のオブジェクトのアームレストの前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、前記(2)~(8)のいずれか1項に記載の情報処理装置。
(10)
 前記出力部は、映像を表示する表示部を含む、前記(2)~(9)のいずれか1項に記載の情報処理装置。
(11)
 前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の明るさを制御する、前記(10)に記載の情報処理装置。
(12)
 前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の視差を制御する、前記(10)又は(11)に記載の情報処理装置。
(13)
 前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の遷移方向を制御する、前記(10)~(12)のいずれか1項に記載の情報処理装置。
(14)
 前記出力制御部は、音響信号に応じたエフェクト画像を表示させる、前記(10)~(13)のいずれか1項に記載の情報処理装置。
(15)
 前記出力制御部は、前記音響信号の解析結果に応じて前記エフェクト画像を変化させる、前記(14)に記載の情報処理装置。
(16)
 前記エフェクト画像は、前記表示部の外縁付近に近づくにつれて相対的な長さを伸ばすように表示される粒子を含む、前記(14)又は(15)に記載の情報処理装置。
(17)
 前記エフェクト画像は、仮想空間において奥行方向に互いに重なり合い、前記音響信号の変化に応じて、前記仮想空間において奥行方向に互いに離間または接近する複数の粒子群レイヤーを含む、前記(14)~(16)のいずれか1項に記載の情報処理装置。
(18)
 前記変位情報取得部は、前記所定のオブジェクトの上面の前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、前記(1)に記載の情報処理装置。
(19)
 前記出力部は、前記所定のオブジェクトの上方に設けられた映像を表示する表示部を含み、
 前記出力制御部は、前記変位情報に基づいて推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像を制御する、前記(18)に記載の情報処理装置。
(20)
 前記出力制御部は、前記推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像の表示位置を制御する、前記(19)に記載の情報処理装置。
(21)
 前記出力制御部は、前記推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像の向きを制御する、前記(19)又は(20)に記載の情報処理装置。
(22)
 前記出力部は、前記第1の出力及び前記第2の出力のいずれとも異なる第4の出力を含む前記所定の出力を行い、
 前記変位情報取得部は、前記所定の部位の振動又は揺動に対応する前記変位情報を取得し、
 前記出力制御部は、前記振動又は揺動に応じて前記出力部が前記第4の出力を行うように制御する、前記(5)に記載の情報処理装置。
(23)
 前記出力部は、音響を出力するスピーカーを含み、前記スピーカーは、前記スピーカーの振動方向に正対する直線が前記ユーザの顔と交差するように設けられる、前記(1)~(22)のいずれか1項に記載の情報処理装置。
(24)
 前記スピーカーと前記ユーザの顔との間で、前記スピーカーの前記振動方向に正対する直線が遮られない、前記(23)に記載の情報処理装置。
(25)
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得ステップと、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御ステップと、を有する情報処理方法。
(26)
 ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部、
 前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部、としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータ・プログラム。
(27)
 所定のオブジェクトが有する少なくとも2箇所の特徴箇所により形成される直線の、ユーザの身体動作に応じた3次元的な回転変位に対応する第1の変位情報を取得する変位情報取得部と、
 前記取得された第1の変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部と、
を具備する情報処理装置。
(28)
 前記変位情報取得部は、少なくとも3箇所の特徴箇所により形成される面の3次元的な回転変位に対応する前記第1の変位情報を取得し、
 前記出力制御部は、前記取得された第1の変位情報に基づいて、前記出力部を制御する、
前記(27)に記載の情報処理装置。
(29)
 前記所定の出力は、第1の出力と、前記第1の出力とは異なる第2の出力を含み、
 前記出力制御部は、前記第1の変位情報として実質的に第1の方向における回転変位が取得された場合に、前記出力部が前記第1の出力を行うように制御し、前記第1の変位情報として前記第1の方向とは異なる実質的に第2の方向における回転変位が取得された場合に、前記出力部が前記第2の出力を行うように制御する、
前記(28)に記載の情報処理装置。
(30)
 前記第1の方向及び前記第2の方向は、前記ユーザの体幹の3次元的な変位に応じた前記所定のオブジェクトの変位方向に対応する、
前記(29)に記載の情報処理装置。
(31)
 前記所定の出力は、前記第1の出力及び前記第2の出力のいずれとも異なる第3の出力をさらに含み、
 前記出力制御部は、前記第1の変位情報として実質的に第1の方向における第1の変位量が取得された場合に、前記出力部が前記第1の出力を行うように制御し、前記第1の変位情報として実質的に前記第1の方向における前記第1の変位量よりも大きい第2の変位量が取得された場合に、前記出力部が前記第3の出力を行うように制御する、
前記(29)又は(30)のいずれか1項に記載の情報処理装置。
(32)
 前記所定の出力は、前記第1の出力及び前記第2の出力のいずれとも異なる第4の出力をさらに含み、
 前記変位情報取得部は、少なくとも1つの前記特徴箇所の前記ユーザの身体動作に応じた並進変位に対応する第2の変位情報をさらに取得し、
 前記出力制御部は、前記第2の変位情報に基づいて、前記出力部が前記第4の出力を行うように制御する、
前記(29)~(31)のいずれか1項に記載の情報処理装置。
(33)
 前記所定の出力は、前記第1の出力及び前記第2の出力のいずれとも異なる第5の出力をさらに含み、
 前記変位情報取得部は、少なくとも1つの前記特徴箇所の前記ユーザの身体動作に応じた往復並進変位に対応する第3の変位情報をさらに取得し、
 前記出力制御部は、前記第3の変位情報に基づいて、前記出力部が前記第5の出力を行うように制御する、
前記(29)~(32)のいずれか1項に記載の情報処理装置。
(34)
 前記所定のオブジェクトは、床に載置され、前記ユーザの身体動作に対して前記床に対する相対移動を実質的に行わないオブジェクトであり、
 前記出力制御部は、載置状態の前記所定のオブジェクトに関する拘束条件と前記第1の変位情報に基づいて前記出力部の出力を制御する、
前記(27)~(33)のいずれか1項に記載の情報処理装置。
(35)
 前記特徴箇所は、前記所定のオブジェクトに対して設けられたマーカである、
前記(27)~(34)のいずれか1項に記載の情報処理装置。
(36)
 前記マーカは、前記所定のオブジェクトの縁部に設けられたマーカである、
前記(35)に記載の情報処理装置。
(37)
 前記特徴箇所は、画像認識処理により認識される前記所定のオブジェクトの特徴点である、
前記(27)~(34)のいずれか1項に記載の情報処理装置。
(38)
 前記出力部は、立体視可能な映像を表示する表示部を含み、
 前記出力制御部は、前記取得された第1の変位情報に基づいて前記映像の視差を制御する、
前記(27)~(37)のいずれか1項に記載の情報処理装置。
(39)
 前記出力制御部は、前記取得された第1の変位情報に基づいて前記映像の明るさを制御する、
前記(38)に記載の情報処理装置。
(40)
 前記出力部は、前記映像に応じて、温度、風、湿度、匂い、触覚、及び音のうち少なくとも1つのフィードバック情報を出力するフィードバック部をさらに備え、
 前記出力制御部は、前記取得された第1の変位情報に基づいて、前記フィードバック部から出力する前記フィードバック情報の出力方向及び出力量のうち少なくとも一方を制御する、
前記(38)又は(39)に記載の情報処理装置。
(41)
 前記ユーザの視線情報を取得する視線情報取得部をさらに備え、
 前記出力制御部は、前記取得された視線情報に基づいて前記映像の視野範囲を制御するとともに、前記取得された第1の変位情報に基づいて前記映像の視差を制御する、
前記(38)~(40)のいずれか1項に記載の情報処理装置。
(42)
 前記変位情報は、前記所定のオブジェクトの角速度又は角加速度に関する、
前記(27)~(41)のいずれか1項に記載の情報処理装置。
(43)
 前記所定のオブジェクトは、前記ユーザが乗ることが可能なオブジェクトである、
前記(27)~(42)のいずれか1項に記載の情報処理装置。
(44)
 所定のオブジェクトが有する少なくとも2箇所の特徴箇所により形成される直線の、ユーザの身体動作に応じた3次元的な回転変位に対応する第1の変位情報を取得する変位情報取得ステップと、
 前記取得された第1の変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御ステップと、
を有する情報処理方法。
(45)
 所定のオブジェクトが有する少なくとも2箇所の特徴箇所により形成される直線の、ユーザの身体動作に応じた3次元的な回転変位に対応する第1の変位情報を取得する変位情報取得部、
 前記取得された第1の変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部、
としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータ・プログラム。
(46)
 ユーザの視野を覆うことが可能なドーム形状を有し、映像または音を出力するように構成された出力部と、
 前記ユーザの身体動作に関するセンサ情報と、前記ユーザの携帯端末またはウェアラブル端末の少なくとも一方を含むユーザ端末から取得される端末情報に基づいて、前記出力部を制御するように構成された出力制御部と
 を有する情報処理装置。
(47)
 前記端末情報は、前記ユーザ端末のストレージに含まれる前記ユーザに関するプロファイル情報を含み、
 前記出力制御部は、前記プロファイル情報に基づいて、前記出力部を制御する
 前記(46)に記載の情報処理装置。
(48)
 前記端末情報は、前記ユーザ端末の周辺環境に関する環境情報を含み
 前記出力制御部は、前記環境情報に基づいて前記出力部を制御する、
 前記(46)または(47)に記載の情報処理装置。
(49)
 前記環境情報は、前記ユーザ端末が含むマイククロフォンにより取得される音情報を含む、
 前記(48)に記載の情報処理装置。
(50)
 前記ユーザ端末は、前記センサ情報を取得するように構成された第1のセンサ部を含み、
 前記出力制御部は、前記ユーザ端末から取得される前記センサ情報に基づいて、前記出力部を制御する
 前記(46)~(49)のいずれか一項に記載の情報処理装置。
(51)
 前記センサ情報を取得するように構成され、前記第1のセンサ部とは異なる第2のセンサ部をさらに備え、
 前記出力制御部は、前記第1のセンサ部により取得される前記センサ情報と前記第2のセンサ部により取得される前記センサ情報に基づいて、前記出力部を制御する
 前記(50)に記載の情報処理装置。
(52)
 前記ユーザの視野の略全範囲を覆うように構成された表示部をさらに備え、
 前記出力制御部は、前記第1のセンサ部により取得される前記センサ情報と前記第2のセンサ部により取得される前記センサ情報に基づいて、前記出力部から前記表示部に提示される映像の視差を制御する
 前記(51)に記載の情報処理装置。
(53)
 前記第1のセンサ部により取得される前記センサ情報は、前記ユーザ端末への前記ユーザの入力操作情報を含み、
 前記第2のセンサ部により取得される前記センサ情報は、前記ユーザの回転動作に関する回転動作情報を含み、
 前記出力制御部は、前記回転動作情報および前記入力操作情報に基づいて、前記映像の視差を制御する
 前記(52)に記載の情報処理装置。
(54)
 前記出力制御部は、前記ユーザが乗ることが可能な所定のオブジェクトに配置された前記ユーザ端末から取得される前記センサ情報に基づいて、前記出力部を制御する
 前記(50)~(53)のいずれか一項に記載の情報処理装置。
 100…ドーム型ディスプレイ、101…ドーム型スクリーン
 102…支持体、102A、102B…軸部
 103、104…プロジェクタ、105…映像復号部
 106…椅子、108、109…プロジェクタ
 900…システム、910…制御部
 911…メイン・コントローラ、912…メイン・メモリ
 913…通信部、914…映像用DSP、915…音響用DSP
 931…DAC、932…増幅部、933…ヘッドフォン
 934…ヘッドレスト・スピーカー、935…サブウーファー
 936…スピーカー、937…リアスピーカー
 941…変位センサ、942…頭部検出カメラ、943…外付けセンサ、944…オーディオプレイヤ
 950…MCOM、951…駆動系出力部
 952…外部出力部、953…ディスプレイUI部
 1000…椅子、1010…シートバック
 1011~1014…マーカ、1021、1022…カメラ
 1030…アームレスト
 1500…トレッドミル
 1510…踏み台、1511…無端ベルト
 1520…操作パネル、1521、1522…手摺りフレーム
 1531、1532…マーカ、1541、1542…マーカ
 1551、1552…カメラ
 1600…フィットネスバイク、1610…サドル
 1620…ハンドル、1630…前輪、1641…マーカ
 1651、1652…マーカ、1661、1662…カメラ
 2000…部屋の天井や壁面
 2100…椅子、2101…幌
 2111、2112…マーカ、2120…カメラ
 2300…乗用車の車室、2301…座席
 2311…マーカ、2320…カメラ
 2400…ベッド
 2401、2402…マーカ、2411、2412…カメラ
 2500…ベッド
 2501…リクライニング、2510…ディスプレイ
 2521、2522…マーカ、2531、2532…カメラ

Claims (26)

  1.  ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部と、
     前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部と、を具備する情報処理装置。
  2.  前記所定のオブジェクトは、前記ユーザが着座可能なオブジェクトであり、
     前記ユーザの身体動作は、前記ユーザの上半身の傾き動作を含む、請求項1に記載の情報処理装置。
  3.  前記所定のオブジェクトはシートバックを有し、
     前記変位情報取得部は、前後方向、左右方向及び上下方向のうち少なくとも1つにおける前記シートバックの位置の変化に対応する前記変位情報を取得する、請求項2に記載の情報処理装置。
  4.  前記変位情報取得部は、前記前後方向における前記シートバックの倒れ角度に対応する前記変位情報を取得する、請求項3に記載の情報処理装置。
  5.  前記変位情報取得部は、第1の倒れ角度と、前記第1の倒れ角度よりも大きい第2の倒れ角度を前記変位情報として取得し、
     前記出力部は、第1の出力と、前記第1の出力とは異なる第2の出力を含む前記所定の出力を行い、
     前記出力制御部は、前記シートバックが前記第1の倒れ角度を有する場合に前記出力部が前記第1の出力を行うように制御し、前記シートバックが前記第2の倒れ角度を有する場合に前記出力部が前記第2の出力を行うように制御する、請求項4に記載の情報処理装置。
  6.  前記変位情報取得部は、前記シートバックの所定時間当たりの倒れ角度に対応する変位情報を取得する、請求項4に記載の情報処理装置。
  7.  前記変位情報取得部は、前記シートバックの倒れ角加速度に対応する変位情報を取得し、
     前記出力部は、第3の出力を含む前記所定の出力を行い、
     前記出力制御部は、前記倒れ角加速度が所定の閾値以上である場合に前記出力部が前記第3の出力を行うように制御する、請求項3に記載の情報処理装置。
  8.  前記変位情報取得部は、前記所定のオブジェクトの着座部位の前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、請求項2に記載の情報処理装置。
  9.  前記変位情報取得部は、前記所定のオブジェクトのアームレストの前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、請求項2に記載の情報処理装置。
  10.  前記出力部は、映像を表示する表示部を含む、請求項2に記載の情報処理装置。
  11.  前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の明るさを制御する、請求項10に記載の情報処理装置。
  12.  前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の視差を制御する、請求項10に記載の情報処理装置。
  13.  前記出力制御部は、前記所定のオブジェクトの左右方向における倒れ角度に基づいて、前記映像の遷移方向を制御する、請求項10に記載の情報処理装置。
  14.  前記出力制御部は、音響信号に応じたエフェクト画像を表示させる、請求項10に記載の情報処理装置。
  15.  前記出力制御部は、前記音響信号の解析結果に応じて前記エフェクト画像を変化させる、請求項14に記載の情報処理装置。
  16.  前記エフェクト画像は、前記表示部の外縁付近に近づくにつれて相対的な長さを伸ばすように表示される粒子を含む、請求項14に記載の情報処理装置。
  17.  前記エフェクト画像は、仮想空間において奥行方向に互いに重なり合い、前記音響信号の変化に応じて、前記仮想空間において奥行方向に互いに離間または接近する複数の粒子群レイヤーを含む、請求項14に記載の情報処理装置。
  18.  前記変位情報取得部は、前記所定のオブジェクトの上面の前後方向、左右方向及び上下方向のうち少なくとも1つにおける位置の変化に対応する前記変位情報を取得する、請求項1に記載の情報処理装置。
  19.  前記出力部は、前記所定のオブジェクトの上方に設けられた映像を表示する表示部を含み、
     前記出力制御部は、前記変位情報に基づいて推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像を制御する、請求項18に記載の情報処理装置。
  20.  前記出力制御部は、前記推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像の表示位置を制御する、請求項19に記載の情報処理装置。
  21.  前記出力制御部は、前記推定される前記ユーザの頭部位置及び正面方向の少なくとも一方に応じて前記映像の向きを制御する、請求項19に記載の情報処理装置。
  22.  前記出力部は、前記第1の出力及び前記第2の出力のいずれとも異なる第4の出力を含む前記所定の出力を行い、
     前記変位情報取得部は、前記所定の部位の振動又は揺動に対応する前記変位情報を取得し、
     前記出力制御部は、前記振動又は揺動に応じて前記出力部が前記第4の出力を行うように制御する、請求項5に記載の情報処理装置。
  23.  前記出力部は、音響を出力するスピーカーを含み、前記スピーカーは、前記スピーカーの振動方向に正対する直線が前記ユーザの顔と交差するように設けられる、請求項1に記載の情報処理装置。
  24.  前記スピーカーと前記ユーザの顔との間で、前記スピーカーの前記振動方向に正対する直線が遮られない、請求項23に記載の情報処理装置。
  25.  ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得ステップと、
     前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御ステップと、を有する情報処理方法。
  26.  ユーザが乗っている所定のオブジェクトの所定の部位の前記ユーザの身体動作に応じた3次元的な変位に対応する変位情報を、前記所定の部位の位置情報に基づいて取得する変位情報取得部、
     前記取得された変位情報に基づいて、出力部が所定の出力を行うように制御する出力制御部、としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータ・プログラム。
PCT/JP2017/027786 2016-11-29 2017-07-31 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム WO2018100800A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/042690 WO2018101279A1 (ja) 2016-11-29 2017-11-28 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
CN201780072301.7A CN109997097A (zh) 2016-11-29 2017-11-28 信息处理装置、信息处理方法以及计算机程序
JP2018554167A JP7159870B2 (ja) 2016-11-29 2017-11-28 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
EP17876048.4A EP3550404B1 (en) 2016-11-29 2017-11-28 Information processing device, information processing method, and computer program
US16/348,846 US11683471B2 (en) 2016-11-29 2017-11-28 Information processing device and information processing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-231509 2016-11-29
JP2016-231510 2016-11-29
JP2016231510 2016-11-29
JP2016231509 2016-11-29
JP2017-044963 2017-03-09
JP2017044963 2017-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/249,986 Continuation US10573402B2 (en) 2016-08-25 2019-01-17 Semiconductor apparatus

Publications (1)

Publication Number Publication Date
WO2018100800A1 true WO2018100800A1 (ja) 2018-06-07

Family

ID=62242604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027786 WO2018100800A1 (ja) 2016-11-29 2017-07-31 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム

Country Status (4)

Country Link
US (1) US11683471B2 (ja)
JP (1) JP7159870B2 (ja)
CN (1) CN109997097A (ja)
WO (1) WO2018100800A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022092045A (ja) * 2019-04-26 2022-06-21 塁 佐藤 運動用設備
WO2024069779A1 (ja) * 2022-09-28 2024-04-04 日本電気株式会社 制御システム、制御方法、および記録媒体

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812770B2 (en) * 2017-09-13 2020-10-20 Canon Kabushiki Kaisha Image processing system, image processing apparatus, image processing method, and program
JP6965085B2 (ja) * 2017-10-05 2021-11-10 キヤノン株式会社 操作装置、システム、および撮像装置
CN111684793A (zh) * 2018-02-08 2020-09-18 索尼公司 图像处理装置、图像处理方法、程序以及投影***
JP6969793B2 (ja) * 2018-10-04 2021-11-24 株式会社ズーム アンビソニックスのためのa/bフォーマット変換装置、a/bフォーマット変換ソフトウェア、レコーダー、再生ソフトウェア
TWI662984B (zh) * 2018-11-28 2019-06-21 宏碁股份有限公司 應用於虛擬實境之電競座艙
US11221683B2 (en) * 2019-05-09 2022-01-11 Dell Products, L.P. Graphical user interface (GUI) manipulation using hand gestures over a hovering keyboard
US20220365588A1 (en) * 2019-09-04 2022-11-17 Sony Group Corporation Information processing apparatus, information processing method, and program
KR20210044506A (ko) * 2019-10-15 2021-04-23 삼성전자주식회사 증강 현실 객체를 표시하는 장치 및 그 동작 방법
DE102019128880A1 (de) * 2019-10-25 2021-04-29 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung für einen Sitz, Sitz und Fahrzeug mit einer solchen Vorrichtung, und Verfahren zur Wiedergabe von Medieninhalten
US11576352B2 (en) 2019-11-21 2023-02-14 Lg Electronics Inc. Treadmill having sterilizer
US11576351B2 (en) 2019-11-21 2023-02-14 Lg Electronics Inc. Treadmill
US11559041B2 (en) 2019-11-22 2023-01-24 Lg Electronics Inc. Treadmill having sensors
US11565146B2 (en) * 2019-11-21 2023-01-31 Lg Electronics Inc. Treadmill having adjustable inclination
US11510394B2 (en) 2019-11-22 2022-11-29 Lg Electronics Inc. Portable and storable treadmill having handle
US11510395B2 (en) 2019-11-22 2022-11-29 Lg Electronics Inc. Control method for treadmill
US11691046B2 (en) 2019-11-21 2023-07-04 Lg Electronics Inc. Treadmill having two belts
US11503808B2 (en) 2019-11-22 2022-11-22 Lg Electronics Inc. Control method for treadmill based on sensors
US11503807B2 (en) 2019-11-21 2022-11-22 Lg Electronics Inc. Treadmill having fragrance assembly
US11412709B2 (en) 2019-11-21 2022-08-16 Lg Electronics Inc. Treadmill having deodorizer
US11465031B2 (en) * 2020-09-16 2022-10-11 RevolutioNice, Inc. Ambulation simulation systems, terrain simulation systems, treadmill systems, and related systems and methods
KR20230060901A (ko) 2021-10-28 2023-05-08 주식회사 슈프리마 영상 처리 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019953A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 簡易全天画像表示装置
US20090135133A1 (en) * 2007-11-26 2009-05-28 Kunzler Patrik A 3D Motion Control System and Method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193900A (ja) 1993-12-24 1995-07-28 Aqueous Res:Kk 立体音場形成用頭部位置検出装置
SE503067C2 (sv) * 1994-07-06 1996-03-18 Rolf Blomdahl Styrdon för datorer eller industriella processer
AU2002303420A1 (en) * 2001-04-24 2002-11-05 Breed Automotive Technology, Inc. Simplified modeling software interface and method
JP2004135023A (ja) 2002-10-10 2004-04-30 Sony Corp 音響出力装置、音響出力システム、音響出力方法
CN1764871A (zh) * 2003-03-26 2006-04-26 松下电器产业株式会社 影像显示***
KR20050109468A (ko) * 2003-03-26 2005-11-21 마쯔시다덴기산교 가부시키가이샤 영상 표시 시스템
SG10201408027WA (en) * 2006-08-14 2015-01-29 Adason Group Llc Advertisement display device and method
JP2012113620A (ja) * 2010-11-26 2012-06-14 Konica Minolta Business Technologies Inc レイアウト支援装置
JP6030348B2 (ja) * 2012-06-15 2016-11-24 株式会社セガ・ライブクリエイション アトラクション装置
CA2793598C (en) * 2012-10-26 2015-10-20 Dynamic Structures, Ltd. Flying theatre
JP2014169022A (ja) 2013-03-04 2014-09-18 Mitsubishi Electric Corp モニタ装置
US9120021B2 (en) 2013-04-10 2015-09-01 Disney Enterprises, Inc. Interactive lean sensor for controlling a vehicle motion system and navigating virtual environments
US9380295B2 (en) * 2013-04-21 2016-06-28 Zspace, Inc. Non-linear navigation of a three dimensional stereoscopic display
US20160320862A1 (en) * 2014-05-01 2016-11-03 Aaron Schradin Motion control seat input device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019953A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 簡易全天画像表示装置
US20090135133A1 (en) * 2007-11-26 2009-05-28 Kunzler Patrik A 3D Motion Control System and Method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022092045A (ja) * 2019-04-26 2022-06-21 塁 佐藤 運動用設備
EP3960255A4 (en) * 2019-04-26 2023-01-11 Virtualwindow Co., Ltd. EXERCISE EQUIPMENT
JP7399503B2 (ja) 2019-04-26 2023-12-18 株式会社バーチャルウインドウ 運動用設備
WO2024069779A1 (ja) * 2022-09-28 2024-04-04 日本電気株式会社 制御システム、制御方法、および記録媒体

Also Published As

Publication number Publication date
JPWO2018101279A1 (ja) 2019-10-24
US11683471B2 (en) 2023-06-20
US20190289285A1 (en) 2019-09-19
JP7159870B2 (ja) 2022-10-25
CN109997097A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018100800A1 (ja) 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
WO2018101279A1 (ja) 情報処理装置及び情報処理方法、並びにコンピュータ・プログラム
JP6646620B2 (ja) 広範囲同時遠隔ディジタル提示世界
JP6673346B2 (ja) 情報処理装置、情報処理方法、およびプログラム
JP6988980B2 (ja) 画像表示装置
US10389937B2 (en) Information processing device, information processing method, and program
JP6346131B2 (ja) 情報処理装置および画像生成方法
US20190369725A1 (en) Guided virtual reality system for relaxing body and mind
JP6470859B1 (ja) ユーザの動きをアバタに反映するためのプログラム、当該プログラムを実行するための情報処理装置、およびアバタを含む映像を配信するための方法
JP7488867B2 (ja) プログラムおよびシステム
JPWO2017064926A1 (ja) 情報処理装置及び情報処理方法
WO2020017435A1 (ja) 情報処理装置、情報処理方法、およびプログラム
KR20220014254A (ko) 버스와 같은 차량에서 여행 가상현실 컨텐츠를 제공하는 방법 및 시스템
JP2014170330A (ja) 仮想現実提示システム、仮想現実提示方法、仮想現実提示装置
JP6820299B2 (ja) プログラム、情報処理装置、および方法
WO2022091832A1 (ja) 情報処理装置、情報処理システム、情報処理方法、および情報処理端末
KR101922677B1 (ko) 체험장치
JP2008079917A (ja) トレーニングシステム
JP7111848B2 (ja) プログラム、情報処理装置、および方法
WO2023248832A1 (ja) 遠隔視認システム、現地撮像システム
JP2019160295A (ja) ユーザの動きをアバタに反映するためのプログラム、当該プログラムを実行するための情報処理装置、およびアバタを含む映像を配信するための方法
TW201225696A (en) Interactive sound playback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP