WO2018079552A1 - 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置 - Google Patents

電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置 Download PDF

Info

Publication number
WO2018079552A1
WO2018079552A1 PCT/JP2017/038366 JP2017038366W WO2018079552A1 WO 2018079552 A1 WO2018079552 A1 WO 2018079552A1 JP 2017038366 W JP2017038366 W JP 2017038366W WO 2018079552 A1 WO2018079552 A1 WO 2018079552A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
adhesive film
electronic device
manufacturing
adhesive
Prior art date
Application number
PCT/JP2017/038366
Other languages
English (en)
French (fr)
Inventor
英司 林下
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to EP17866122.9A priority Critical patent/EP3533852A4/en
Priority to SG11201903701SA priority patent/SG11201903701SA/en
Priority to CN201780066329.XA priority patent/CN109891253A/zh
Priority to JP2018547689A priority patent/JP6726296B2/ja
Priority to US16/344,900 priority patent/US11047900B2/en
Priority to KR1020197011795A priority patent/KR102243345B1/ko
Publication of WO2018079552A1 publication Critical patent/WO2018079552A1/ja
Priority to US17/178,905 priority patent/US11747388B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers

Definitions

  • the present invention relates to an electronic device manufacturing method, an electronic device manufacturing adhesive film, and an electronic component testing apparatus.
  • the characteristics of an electronic component may be evaluated.
  • the characteristic evaluation process of the electronic component for example, the characteristic evaluation of the electronic component is performed at a high temperature or a low temperature.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-163281
  • Patent Document 1 Japanese Patent Laid-Open No. 10-163281
  • Patent Document 1 dicing is performed on a semiconductor wafer on which a plurality of semiconductor elements are formed, and a tester is applied to electrodes formed on the semiconductor elements in a state in which the positional relationship between the semiconductor elements subjected to the dicing is maintained.
  • the semiconductor device is manufactured by pressing and electrically connecting the contact terminal connected to the semiconductor device, and inspecting the semiconductor device by an operation characteristic test on the semiconductor device by the tester in the connected state. A method is described.
  • the wrinkle 53A is generated by heating or cooling in the adhesive film 50A for fixing the electronic component 70A, and the wrinkle 53A comes into contact with the probe terminal 95A. (See FIG. 10). In this case, since the adhesive film 50A interferes with the probe terminal 95A, the characteristics of the electronic component 70A cannot be accurately evaluated.
  • the present inventor has found that there is room for improvement in the characteristic evaluation step of the electronic component from the viewpoint of accurately and stably performing the characteristic evaluation of the electronic component.
  • the present invention has been made in view of the above circumstances, and provides an electronic device manufacturing method capable of accurately and stably evaluating the characteristics of an electronic component.
  • the present inventor has intensively studied to achieve the above problems. As a result, it is possible to suppress the adhesive film from coming into contact with the probe terminal by vacuum-sucking the area where the electronic component of the adhesive film is not attached when evaluating the characteristics of the electronic component.
  • the present invention has been completed by finding that the characteristic evaluation can be accurately and stably performed.
  • the following method for manufacturing an electronic device, an adhesive film for manufacturing an electronic device, and an electronic component testing apparatus are provided.
  • the sample stage has first vacuum suction means for vacuum-sucking the adhesive film in a region on the outer peripheral side different from the electronic component mounting region; At least in the step (C), The manufacturing method of the electronic apparatus which vacuum-sucks the area
  • a method of manufacturing an electronic device comprising: a second vacuum suction means for holding the structure by vacuum suction of the sample stage to at least the electronic component mounting region.
  • a method of manufacturing an electronic device wherein the first vacuum suction means is a vacuum suction groove continuously closed over the outer periphery of the sample stage.
  • a method for manufacturing an electronic device wherein a vacuum seal portion is provided on an outer peripheral portion of the sample table.
  • a pressure-sensitive adhesive film for producing an electronic device wherein the flexible resin constituting the flexible resin layer comprises one or more selected from the group consisting of a polyester elastomer, a polyamide elastomer, a polyimide elastomer, and polybutylene terephthalate.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer contains one or more selected from (meth) acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, olefin-based pressure-sensitive adhesives, and styrene-based pressure-sensitive adhesives.
  • Adhesive film for manufacturing electronic devices contains one or more selected from (meth) acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, olefin-based pressure-sensitive adhesives, and styrene-based pressure-sensitive adhesives.
  • An electronic component test apparatus used for evaluating the characteristics of an electronic component, A sample stage having an electronic component mounting area; A probe card provided at a position facing the sample stage and having a probe terminal; With An electronic component testing apparatus having a first vacuum suction means for vacuum-sucking a region where the electronic component of the adhesive film is not attached to a region on the outer periphery side where the sample stage is different from the electronic component mounting region. [14] In the electronic component testing apparatus according to [13] above, An electronic component testing apparatus having a second vacuum suction means for holding the electronic component and the adhesive film by vacuum suction of the sample stage to at least the electronic component mounting region.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of the electronic component testing apparatus 200 and the structure 100 according to the embodiment of the present invention.
  • FIG. 2A shows the structure 100 in the electronic component testing apparatus 200. The arranged state is shown, and (b) shows the state in which the characteristics of the electronic component 70 are being evaluated.
  • FIG. 3 is a plan view schematically showing an example of the structure of the structure 100 according to the embodiment of the present invention.
  • FIG. 4 is a plan view schematically showing an example of the structure of the first vacuum suction means 210 of the embodiment according to the present invention.
  • the electronic device manufacturing method includes at least the following four steps.
  • (B) The electronic component mounting area 85 is provided. Adhesive on the electronic component mounting area 85 of the sample stage 80 in the electronic part testing apparatus 200 provided with a sample stage 80 having a probe card 90 provided at a position facing the sample stage 80 and having a probe terminal 95.
  • the step of contacting the terminal 75 of 70 and evaluating the characteristics of the electronic component 70 (D) Picking up the electronic component 70 from the adhesive film 50 after the step (C)
  • the sample stage 80 has first vacuum suction means 210 for vacuum suction of the adhesive film 50 in a region 89 on the outer peripheral side different from the electronic component mounting region 85, and at least in step (C), the first vacuum is provided.
  • a region 58 where the electronic component 70 of the adhesive film 50 is not attached is vacuumed by the suction unit 210.
  • the adhesive film 50A for fixing the electronic component 70A When the inventor performs the characteristic evaluation of the electronic component 70A, the adhesive film 50A for fixing the electronic component 70A generates wrinkles 53A by heating or cooling, and the wrinkles 53A come into contact with the probe terminals 95A. (See FIG. 10). In this case, since the adhesive film 50A interferes with the probe terminal 95A, the characteristics of the electronic component 70A cannot be accurately evaluated. That is, the present inventor has found that there is room for improvement in the characteristic evaluation process of the electronic component from the viewpoint of performing the characteristic evaluation of the electronic component accurately and stably.
  • the present inventor has intensively studied in order to achieve the above problems.
  • the adhesive film 50 comes into contact with the probe terminal 95 by vacuum suction of the region 58 of the adhesive film 50 where the electronic component 70 is not attached.
  • the characteristic evaluation of the electronic component 70 can be performed accurately and stably. That is, the wrinkle 53 may be generated by heating or cooling the adhesive film 50 mainly in the region 58 where the film 50 is in contact with the sample stage 80 and the electronic component 70 is not attached. ), The area 58 can be vacuum-sucked to reduce wrinkles 53. As a result, the size of the wrinkle 53 can be reduced. Therefore, as shown in FIG.
  • the adhesive film 50 becomes the probe terminal 95.
  • the characteristic evaluation of the electronic component 70 can be performed accurately and stably by including the steps (A) to (D). Become.
  • each process of the manufacturing method of the electronic device which concerns on this embodiment is demonstrated.
  • the electronic component 70 is attached to the adhesive surface of the adhesive film 50 (for example, the surface of the adhesive resin layer 10 described later), and the electronic component 70 on the adhesive film 50 is used as necessary. Can be produced by separating the pieces.
  • the method for manufacturing the structure 100 will be specifically described by taking the case where the electronic component 70 is a semiconductor substrate and a semiconductor chip as an example.
  • a semiconductor substrate is attached to the adhesive surface of the adhesive film 50.
  • the semiconductor substrate to be attached to the adhesive film 50 include substrates such as silicon, germanium, gallium-arsenic, gallium-phosphorus, and gallium-arsenic-aluminum (for example, wafers).
  • the semiconductor substrate a semiconductor substrate having a circuit formed on the surface is preferably used.
  • the adhesive film 50 may be attached to the frame 150, and then the electronic component 50 may be attached to the adhesive surface of the adhesive film 50. You may affix 150 and the electronic component 50 on the adhesive film 50 simultaneously.
  • the adhesive film 50 may be attached by a human hand, but is usually performed by an automatic attaching machine equipped with a roll-shaped surface protective film. There are no particular restrictions on the temperature of the adhesive film 50 and the semiconductor substrate at the time of attachment, but 25 ° C. to 80 ° C. is preferable. Further, the pressure between the adhesive film 50 and the semiconductor substrate at the time of attachment is not particularly limited, but is preferably 0.3 MPa to 0.5 MPa.
  • the semiconductor substrate on the adhesive film 50 is diced into semiconductor chips.
  • the dicing can be performed using a dicing blade (dicing saw), laser light, plasma, or the like.
  • the semiconductor substrate When the dicing is full cut dicing, the semiconductor substrate is divided into a plurality of semiconductor chips by dicing.
  • the semiconductor substrate is not divided into a plurality of semiconductor chips by dicing alone, and the semiconductor substrate is divided by the expansion of the adhesive film 50 after dicing. A divided semiconductor chip is obtained.
  • expansion of the adhesive film 50 in the case of stealth dicing may be performed before a process (C), and may be performed after a process (C).
  • the electronic component 70 in the step (A) includes both a plurality of divided semiconductor chips obtained by full-cut dicing and a plurality of semiconductor chips before division obtained by stealth dicing.
  • the structure 100 is arranged in the electronic component testing apparatus 200 so that the electronic component 70 is positioned on the electronic component mounting area 85 of the sample stage 80 in the electronic component testing apparatus 200 via the adhesive film 50.
  • the electronic component testing apparatus 200 is an electronic component testing apparatus used for evaluating the characteristics of the electronic component 70, and is opposed to the sample table 80 having the electronic component mounting area 85 and the sample table 80.
  • a probe card 90 provided at a position and having a probe terminal 95.
  • the sample stage 80 has first vacuum suction means 210 that vacuum sucks the region 58 where the electronic component 70 of the adhesive film 50 is not attached to the outer peripheral region 89 different from the electronic component mounting region 85.
  • the probe terminal 95 is brought into contact with the terminal 75 of the electronic component 70 and the characteristics of the electronic component 70 are evaluated, the region 58 where the electronic component 70 of the adhesive film 50 is not attached by the first vacuum suction means 210. Is vacuumed.
  • the probe card 90 having the probe terminal 95 is not particularly limited, and generally known probe cards can be used.
  • the electronic component testing apparatus 200 arranges an electronic component 70 as a test body and an adhesive film 50 that holds the electronic component 70 in a frame, and an end 55 of the adhesive film 50 is provided. It is preferable to further include a frame 150 to be fixed. By further including the frame 150, the electronic component 70 can be stably held on the adhesive film 50 when the characteristics of the electronic component 70 are evaluated.
  • the shape of the frame 150 is not particularly limited, and examples thereof include a circular shape, an elliptical shape, and a rectangular shape.
  • An example of the frame 150 is a ring frame.
  • the first vacuum suction means 210 is preferably a vacuum suction groove that is continuously closed over the outer periphery of the sample stage 80.
  • the first vacuum suction means 210 can suppress that gas flows into the area
  • wrinkles 53 generated by heating or cooling of the adhesive film 50 can be further suppressed.
  • FIG. 5 is a cross-sectional view schematically showing an example of the structure of the first vacuum suction means 210 and the second vacuum suction means 220 of the embodiment according to the present invention.
  • FIG. 6 is a plan view schematically showing an example of the structure of the first vacuum suction means 210 and the second vacuum suction means 220 according to the embodiment of the present invention.
  • the sample stage 80 further includes the second vacuum suction means 220 at least in the electronic component mounting area 85.
  • the second vacuum suction means 220 holds the electronic component 70 and the adhesive film 50 (structure 100) by vacuum suction. Since the electronic component test apparatus 200 further includes the second vacuum suction means 220, when the characteristics of the electronic component 70 are evaluated, the electronic component 70 and the adhesive film 50 (structure 100) are more stably placed on the sample stage 80. Can be held.
  • the first vacuum suction means 210 and the second vacuum suction means 220 are not particularly limited, and known vacuum suction means can be used.
  • a vacuum suction means composed of a vacuum suction pump (for example, a vacuum pump) and suction holes connected to the vacuum pump can be used.
  • the vacuum lines of the first vacuum suction means 210 and the second vacuum suction means 220 may be independent or connected. 2 and 4 to 7, only the suction holes are shown as the first vacuum suction means 210 and the second vacuum suction means 220, and the vacuum pump is not shown.
  • a vacuum pump is connected to the suction hole, and the electronic component 70 and the adhesive film 50 (structure 100) can be vacuum-sucked from the suction hole using the vacuum pump.
  • FIG. 7 is a plan view schematically showing an example of the structure of the vacuum seal portion 230 of the embodiment according to the present invention.
  • the vacuum seal portion 230 is provided on the outer peripheral portion of the sample stage 80.
  • the adhesive film 50 can be attracted
  • wrinkles 53 generated by heating or cooling of the adhesive film 50 can be further suppressed.
  • the material of the vacuum seal 230 is not particularly limited, but a heat resistant elastomer such as silicone rubber is preferable.
  • the probe terminal 95 is brought into contact with the terminal 75 of the electronic component 70 in a state of being stuck on the adhesive film 50, and the characteristics of the electronic component 70 are evaluated.
  • the characteristic evaluation of the electronic component 70 is, for example, an operation confirmation test of the electronic component 70, and can be performed using a probe card 90 having a probe terminal 95 as shown in FIG.
  • the probe terminal 95 connected to the tester via the probe card 90 is brought into contact with the terminal 75 of the electronic component 70.
  • step (C) as shown in FIGS. 2 and 3, the structure 100 is preferably disposed within the frame 150 and the end portion 55 of the adhesive film 50 is preferably fixed to the frame 150. Thereby, the electronic component 70 can be stably held on the adhesive film 50 when the characteristic evaluation of the electronic component 70 is performed. Then, as shown in FIG. 2A, the first vacuum suction means 210 vacuum-sucks the area 58 where the electronic component 70 of the adhesive film 50 is not attached.
  • the step (C) it is preferable to perform the characteristic evaluation of the electronic component 70 in a temperature environment of 0 ° C. or less or 50 ° C. or more and 200 ° C. or less, and the characteristic evaluation of the electronic component 70 in a temperature environment of 60 ° C. or more and 180 ° C. or less. Is more preferable, and it is more preferable to evaluate the characteristics of the electronic component 70 in a temperature environment of 80 ° C. or higher and 160 ° C. or lower. By doing so, it is possible to accelerate the deterioration of the electronic component 70 in which the cause of the occurrence of the defect is inherent, to cause the initial failure of the electronic component 70 early, and to remove the defective product. Thereby, the electronic component 70 excellent in reliability can be obtained with a high yield. For example, by placing the structure 100 in a thermostat or oven, or by heating with a heater provided on the sample stage 80, the above temperature environment can be obtained.
  • the electronic component 70 is picked up from the adhesive film 50 after the step (C). With this pickup, the electronic component 70 can be peeled from the adhesive film 50.
  • the electronic component 70 can be picked up by a known method.
  • the adhesive film 50 is in a state where the region of the adhesive film 50 where the electronic component 70 is affixed is expanded in the in-plane direction of the film and the interval between the adjacent electronic components 70 is expanded. It is preferable to pick up the electronic component 70. By doing so, the interval between the adjacent electronic components 70 is increased, so that the electronic components 70 can be easily picked up from the adhesive film 50. Furthermore, since the adhesive force between the electronic component 70 and the adhesive film 50 is reduced due to the shear stress between the electronic component 70 and the adhesive film 50 caused by the expansion in the in-plane direction of the adhesive film 50, the adhesive film 50. Therefore, it becomes easy to pick up the electronic component 70.
  • the heat resistant resin layer 30 is used after a process (C). It is preferable to peel from the adhesive film 50 and to perform a process (D). Thereby, the expansion of the in-plane direction of the adhesive film 50 can be performed more easily.
  • the heat-resistant resin layer 30 may be peeled off by hand, it can be generally performed by an apparatus called an automatic peeling machine.
  • the adhesive film 50 is irradiated with radiation before the step (D) to crosslink the adhesive film 50, so that the adhesive film 50 for the electronic component 70 is cross-linked. You may further provide the process (E) which reduces adhesive force.
  • the electronic component 70 can be easily picked up from the adhesive film 50. Moreover, it can suppress that the surface of the electronic component 70 is contaminated with the adhesive component which comprises the adhesive film 50.
  • FIG. Radiation is irradiated from the surface on the opposite side to the adhesive surface of the adhesive film 50, for example.
  • the dose of ultraviolet rays applied to the adhesive film 50 is preferably 100 mJ / cm 2 or more, and more preferably 350 mJ / cm 2 or more.
  • the ultraviolet ray dose is equal to or higher than the lower limit, the adhesive strength of the adhesive film 50 can be sufficiently reduced, and as a result, the occurrence of adhesive residue on the surface of the electronic component 70 can be further suppressed.
  • the dose of ultraviolet irradiation against adhesive film 50 from the viewpoint of productivity, for example, at 1500 mJ / cm 2 or less, preferably 1200 mJ / cm 2 or less.
  • Ultraviolet irradiation can be performed using, for example, a high-pressure mercury lamp.
  • the timing for performing the step (E) is not particularly limited. Between the step (A) and the step (B), between the step (B) and the step (C), or between the step (C) and the step (D). However, when the electronic component mounting area 85 is heated in advance, it is preferably performed between the step (A) and the step (B). In the case where the temperature is raised after the structure 100 is arranged in the electronic component mounting area 85, the temperature may be between the step (B) and the step (C) or between the step (C) and the step (D).
  • the method for manufacturing an electronic device according to the present embodiment may include other steps other than those described above. As other steps, known steps can be used in the method of manufacturing an electronic device.
  • step (D) is performed, it is generally performed in a process of mounting the obtained electronic component 70 such as a semiconductor chip on a circuit board, a manufacturing process of an electronic component such as a wire bonding process and a sealing process. An arbitrary process or the like may be further performed.
  • the semiconductor substrate which has a circuit surface as the electronic component 70 you may further have the process of forming a protective film in an electrode formation and a non-circuit surface by the method normally used for the circuit formation surface of a semiconductor substrate, for example. .
  • the manufacturing method provided with the process of performing electrode formation and resin sealing is also called WLP (Wafer Level Package).
  • An electronic device obtained by forming a redistribution layer in a wide region exceeding the semiconductor chip area is also called a fan-out package.
  • an adhesive film 50 (also referred to as an adhesive film for manufacturing an electronic device) used in the method for manufacturing an electronic device according to this embodiment will be described.
  • 8 and 9 are cross-sectional views schematically showing an example of the structure of the adhesive film 50 according to the embodiment of the present invention.
  • the adhesive film 50 has at least the adhesive resin layer 10. Further, from the viewpoint of improving the flexibility of the adhesive film 50 and further improving the pickup property of the electronic component 70, the adhesive film 50 may further include the flexible resin layer 20 in addition to the adhesive resin layer 10. preferable.
  • the adhesive film 50 further includes both the flexible resin layer 20 and the heat resistant resin layer 30 in addition to the adhesive resin layer 10 from the viewpoint of improving the balance between flexibility and heat resistance.
  • the adhesive film 50 includes the adhesive resin layer 10, the flexible resin layer 20, and the heat resistant resin layer 30, the adhesive film 50 includes the heat resistant resin layer 30, the flexible resin layer 20, and the adhesive resin layer 10. It is preferable to have them in order. By doing so, the deformation and melting of the adhesive resin layer 10 can be suppressed by the heat resistant resin layer 30 and the positional displacement of the electronic component 70 can be suppressed. As a result, the electronic component 70 can be picked up in the step (D). It can be done more accurately. That is, the balance of the adhesiveness, heat resistance, and flexibility of the adhesive film 50 can be improved.
  • heat resistance means the dimensional stability of a film or a resin layer at high or low temperatures. That is, it means that a film or a resin layer having excellent heat resistance is less prone to deformation or melting such as expansion or contraction or softening at high or low temperatures.
  • the adhesive resin layer 10 is a layer that contacts and adheres to the surface of the electronic component 70 when the adhesive film 50 is attached to the electronic component 70.
  • Examples of the adhesive constituting the adhesive resin layer 10 include (meth) acrylic adhesives, silicone adhesives, urethane adhesives, olefin adhesives, and styrene adhesives.
  • a (meth) acrylic pressure-sensitive adhesive having a (meth) acrylic polymer as a base polymer is preferable from the viewpoint that the adhesive force can be easily adjusted.
  • a radiation cross-linking pressure-sensitive adhesive that reduces the adhesive force by radiation can be used. Since the adhesive resin layer 10 composed of the radiation-crosslinking type adhesive is cross-linked by irradiation with radiation and the adhesive force is remarkably reduced, the electronic component 70 is picked up from the adhesive resin layer 10 in the pickup process of the electronic component 70. It becomes easy to do. Examples of radiation include ultraviolet rays, electron beams, and infrared rays. As the radiation crosslinking adhesive, an ultraviolet crosslinking adhesive is preferable.
  • Examples of the (meth) acrylic polymer contained in the (meth) acrylic adhesive include, for example, a homopolymer of a (meth) acrylic ester compound, a copolymer of a (meth) acrylic ester compound and a comonomer, and the like. Can be mentioned.
  • Examples of (meth) acrylic acid ester compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate, and hydroxypropyl (meth).
  • Examples include acrylate, dimethylaminoethyl (meth) acrylate, and glycidyl (meth) acrylate. These (meth) acrylic acid ester compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Examples of the comonomer constituting the (meth) acrylic copolymer include vinyl acetate, (meth) acrylonitrile, (meth) acrylamide, styrene, (meth) acrylic acid, itaconic acid, and (meth) acrylamide. , Methylol (meth) acrylamide, maleic anhydride and the like. These comonomers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the radiation-crosslinking-type pressure-sensitive adhesive is, for example, a pressure-sensitive adhesive such as the above (meth) acrylic pressure-sensitive adhesive, a crosslinkable compound (component having a carbon-carbon double bond), a photopolymerization initiator or a thermal polymerization initiator, including.
  • crosslinkable compound examples include monomers, oligomers or polymers having a carbon-carbon double bond in the molecule and capable of crosslinking by radical polymerization.
  • crosslinkable compounds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neo Esters of (meth) acrylic acid and polyhydric alcohols such as pentyl glycol di (meth) acrylate and dipentaerythritol hexa (meth) acrylate; ester (meth) acrylate oligomers; 2-propenyl di-3-butenyl cyanurate, 2 -Isocyanurates or isocyanurate compounds such as hydroxyethyl bis (2- (meth) acryloxyethyl) isocyanurate and tris
  • the content of the crosslinkable compound is preferably 5 to 900 parts by mass, more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive.
  • the content of the crosslinkable compound is within the above range, it becomes easier to adjust the adhesive force than when the content is less than the above range, and the sensitivity to heat and light is too high compared with the case where the content is larger than the above range.
  • the storage stability is less likely to deteriorate.
  • the photopolymerization initiator may be any compound that can be cleaved by irradiation to generate radicals, such as benzoin alkyl ethers such as benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzyl, benzoin, and benzophenone.
  • aromatic ketones such as ⁇ -hydroxycyclohexyl phenyl ketone; aromatic ketals such as benzyldimethyl ketal; polyvinylbenzophenone; thioxanthones such as chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, and diethylthioxanthone.
  • thermal polymerization initiator examples include organic peroxide derivatives and azo polymerization initiators.
  • An organic peroxide derivative is preferable because nitrogen is not generated during heating.
  • thermal polymerization initiator examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate.
  • a cross-linking agent may be added to the adhesive.
  • the crosslinking agent include epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether; tetramethylolmethane-tri- ⁇ -aziridinylpropionate , Trimethylolpropane-tri- ⁇ -aziridinylpropionate, N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), N, N′-hexamethylene-1,6-bis Aziridine compounds such as (1-aziridinecarboxamide); isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
  • the thickness in particular of the adhesive resin layer 10 is not restrict
  • the adhesive resin layer 10 can be formed, for example, by applying an adhesive coating solution on the base material layer or the flexible resin layer 20.
  • a conventionally known coating method such as a roll coater method, a reverse roll coater method, a gravure roll method, a bar coat method, a comma coater method, a die coater method, or the like can be employed.
  • drying conditions of the applied pressure-sensitive adhesive there are no particular restrictions on the drying conditions of the applied pressure-sensitive adhesive, but in general, drying is preferably performed for 10 seconds to 10 minutes in a temperature range of 80 to 200 ° C. More preferably, it is dried at 80 to 170 ° C. for 15 seconds to 5 minutes.
  • it may be heated at 40 to 80 ° C. for about 5 to 300 hours.
  • the flexible resin layer 20 is a layer provided for the purpose of improving the properties of the adhesive film 50 such as flexibility and stretchability. By providing the flexible resin layer 20, the stretchability and flexibility of the adhesive film 50 are improved, and it is easier to expand the adhesive film 50 in the in-plane direction in the step (D) of picking up the electronic component 70. Can be.
  • the flexible resin layer 20 is not particularly limited as long as it can be expanded in the in-plane direction, but is excellent in properties such as flexibility and stretchability, and has an adhesive property when evaluating the characteristics of the electronic component 70 at high or low temperature. What has heat resistance of the grade which can maintain adhesiveness with the resin layer 10 is preferable.
  • the flexible resin constituting the flexible resin layer 20 include one or more selected from polyester elastomers, polyamide elastomers, polyimide elastomers, polybutylene terephthalate, and the like.
  • the melting point of the flexible resin layer 20 is preferably 100 ° C. or higher and 250 ° C. or lower.
  • the thermal expansion of the adhesive film 50 when the characteristics of the electronic component 70 are evaluated at a high temperature or a low temperature can be further suppressed.
  • the thickness of the flexible resin layer 20 is not particularly limited, but is preferably, for example, 10 ⁇ m or more and 500 ⁇ m or less, more preferably 20 ⁇ m or more and 300 ⁇ m or less, further preferably 30 ⁇ m or more and 250 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m. It is particularly preferred that
  • the heat resistant resin layer 30 is a layer provided for the purpose of improving the handling properties, mechanical properties, heat resistance, and other properties of the adhesive film 50.
  • the heat-resistant resin layer 30 is not particularly limited as long as the heat-resistant resin layer 30 has heat resistance enough to prevent deformation and melting of the electronic component 70 when the characteristic evaluation of the electronic component 70 is performed at high or low temperature.
  • a heat resistant resin film can be used.
  • the resin constituting the heat-resistant resin film examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon-6, nylon-66, and polymetaxylene adipamide; polyimides; polyethers Polyimide; Polycarbonate; Modified polyphenylene ether; Polyacetal; Polyarylate; Polysulfone; Polyethersulfone; Polyphenylenesulfide; Polyetheretherketone; Fluorine resin; Liquid crystal polymer; Vinylidene chloride resin; Polybenzimidazole; Polybenzoxazole; One or more selected from methylpentene and the like can be mentioned.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyamides such as nylon-6, nylon-66, and polymetaxylene adipamide
  • polyimides polyethers Polyimide
  • Polycarbonate Modified polypheny
  • one or more selected from polyimide, polyamide, and polyester are preferable.
  • the melting point of the heat resistant resin layer 30 is preferably 200 ° C. or higher, and more preferably 220 ° C. or higher. Or it is preferable that the heat resistant resin layer 30 does not show melting
  • the heat resistant resin layer 30 may be a single layer or two or more layers.
  • the form of the resin film used to form the heat resistant resin layer 30 may be a stretched film or a film stretched in a uniaxial direction or a biaxial direction. From the viewpoint of improving the heat resistance and mechanical strength of the layer 30, a film stretched in a uniaxial direction or a biaxial direction is preferable.
  • the thickness of the heat resistant resin layer 30 is preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 10 ⁇ m or more and 500 ⁇ m or less, and further preferably 20 ⁇ m or more and 300 ⁇ m or less from the viewpoint of obtaining good film properties.
  • the heat-resistant resin layer 30 may be subjected to a surface treatment in order to improve adhesion with other layers. Specifically, corona treatment, plasma treatment, undercoat treatment, primer coat treatment, or the like may be performed.
  • the heat-resistant resin layer 30 is preferably laminated so as to be peelable from the flexible resin layer 20.
  • peeling is not specifically limited, For example, the method of laminating
  • the peelable adhesive layer refers to a layer that can be easily peeled off by applying some kind of stimulus such as radiation or heat at the time of peeling.
  • a peelable adhesive layer for example, (1) an adhesive layer composed of a radiation cross-linkable pressure-sensitive adhesive that can reduce adhesive strength by radiation irradiation, and (2) heating that can be expanded by heating to reduce adhesive strength.
  • Examples include an adhesive layer composed of an inflatable pressure-sensitive adhesive, and (3) an adhesive layer composed of a double-sided adhesive film based on a shrinkable film that can shrink by heating to reduce the adhesive force.
  • the radiation-crosslinking-type pressure-sensitive adhesive has a sufficient adhesive force to the heat-resistant resin layer 30 and the flexible resin layer 20 before irradiation, and the adhesive force is remarkably reduced after irradiation. That is, the heat resistant resin layer 30 and the flexible resin layer 20 can be bonded before irradiation with radiation, and the heat resistant resin layer 30 can be easily peeled off from the flexible resin layer 20 after irradiation with radiation.
  • a radiation crosslinkable pressure sensitive adhesive such as a generally known UV crosslinkable pressure sensitive adhesive can be used.
  • the heat-expandable pressure-sensitive adhesive refers to a pressure-sensitive adhesive in which thermally expandable fine particles, a foaming agent and the like are dispersed in the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive generally known pressure-sensitive adhesives can be used.
  • the heat-expandable fine particles include fine particles obtained by encapsulating, in an elastic shell, a substance that easily gasifies and expands by heating, such as isobutane, propane, or pentane.
  • foaming agent examples include chemical substances having the ability to thermally decompose to generate water, carbon dioxide gas, and nitrogen.
  • the heat-expandable fine particles and the foaming agent are expanded by heating, the surface state of the adhesive layer is changed, and the adhesive force between the flexible resin layer 20 and the heat-resistant resin layer 30 can be reduced.
  • the heat resistant resin layer 30 can be easily peeled from the resin layer 20.
  • Examples of the shrink film used for the double-sided adhesive film based on the shrink film include a heat shrink film that shrinks by heating. Examples thereof include uniaxial or biaxially stretched films such as polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polyamide, polyurethane, polyvinyl chloride, and polyvinylidene chloride.
  • As the pressure-sensitive adhesive provided on both sides of the shrinkable film generally known pressure-sensitive adhesives can be used, for example, (meth) acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, polyurethane-based pressure-sensitive adhesives. And polyvinyl ether-based pressure-sensitive adhesives.
  • the shrinkable film of the substrate shrinks due to heating, the surface state of the adhesive layer changes, and the adhesive force between the flexible resin layer 20 and the heat resistant resin layer 30 can be reduced. As a result, the flexible resin The heat resistant resin layer 30 can be easily peeled from the layer 20.
  • the adhesive film 50 according to the present embodiment may be further laminated with a release film on the adhesive resin layer 10.
  • the release film include a polyester film subjected to a release treatment.
  • the total light transmittance of the adhesive film 50 is preferably 80% or more, and more preferably 85% or more. In this way, transparency can be imparted to the adhesive film 50. And by making the total light transmittance of the adhesive film 50 more than the said lower limit, a radiation can be more effectively irradiated to the adhesive resin layer 10, and radiation irradiation efficiency can be improved.
  • the total light transmittance of the adhesive film 50 can be measured according to JIS K7105 (1981).
  • the pressure-sensitive adhesive film 50 according to the present embodiment can be obtained by forming the pressure-sensitive adhesive resin layer 10 by applying a pressure-sensitive adhesive coating solution on the base material layer or the flexible resin layer 20 and drying it.
  • the flexible resin layer 20 can be formed, for example, on one surface of the base material layer or the heat resistant resin layer 30 by an extrusion laminating method.
  • the heat-resistant resin layer 30 and the flexible resin layer 20 may be formed by coextrusion molding, or the film-like heat-resistant resin layer 30 and the film-like flexible resin layer 20 are laminated (laminated). May be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Laminated Bodies (AREA)
  • Dicing (AREA)

Abstract

本発明の電子装置の製造方法は、粘着性フィルムと、その粘着面上に貼り付けられた1または2以上の電子部品と、を備える構造体を準備する工程(A)と、電子部品搭載領域を有する試料台と、試料台に対向する位置に設けられ、かつ、プローブ端子を有するプローブカードと、を備える電子部品試験装置における試料台の電子部品搭載領域上に粘着性フィルムを介して電子部品が位置するように、構造体を電子部品試験装置内に配置する工程(B)と、粘着性フィルム上に貼り付けられた状態で、プローブ端子を電子部品の端子に接触させて電子部品の特性を評価する工程(C)と、その後に粘着性フィルムから電子部品をピックアップする工程(D)と、を備える。そして、試料台が電子部品搭載領域とは異なる外周側の領域に、粘着性フィルムを真空吸引する第1真空吸引手段を有し、少なくとも工程(C)において、第1真空吸引手段により粘着性フィルムの電子部品が貼り付けられていない領域を真空吸引する。

Description

電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
 本発明は、電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置に関する。
 電子装置の製造工程において、電子部品の特性を評価する場合がある。
 この電子部品の特性評価工程では、例えば、高温または低温で電子部品の特性評価をおこなう。こうすることで、不良発生の要因が内在している電子部品の劣化を加速でき、電子部品の初期不良を早期に発生させ、その不良品を除去することができる。これにより、信頼性に優れた電子部品を効率よく得ることができる。
 このような電子部品の特性評価の加速試験に関する技術としては、例えば、特許文献1(特開平10-163281号公報)に記載のものが挙げられる。
 特許文献1には、複数個の半導体素子を形成した半導体ウェハに対してダイシングを施し、このダイシングが施された半導体素子間の位置関係を保持した状態で上記半導体素子に形成された電極にテスタに接続された接触端子を押し当てて電気的に接続し、この接続した状態でテスタにより半導体素子に対して動作特性試験による検査を行って半導体素子を製造することを特徴とする半導体素子の製造方法が記載されている。
特開平10-163281号公報
 本発明者は、電子部品70Aの特性評価をおこなう際に、電子部品70Aを固定する粘着性フィルム50Aに加熱または冷却によりシワ53Aが発生し、このシワ53Aがプローブ端子95Aに接触してしまう場合があることを知見した(図10参照)。この場合、粘着性フィルム50Aがプローブ端子95Aに干渉してしまうため電子部品70Aの特性を正確に評価できなくなってしまう。
 すなわち、本発明者は、電子部品の特性評価工程には、電子部品の特性評価を精度よく安定的におこなうという観点において、改善の余地があることを見出した。
 本発明は上記事情に鑑みてなされたものであり、電子部品の特性評価を精度よく安定的におこなうことが可能な電子装置の製造方法を提供するものである。
 本発明者は、上記課題を達成するために鋭意検討を重ねた。その結果、電子部品の特性を評価する際に粘着性フィルムの電子部品が貼り付けられていない領域を真空吸引することにより、粘着性フィルムがプローブ端子に接触してしまうことを抑制でき、電子部品の特性評価を精度よく安定的におこなうことができることを見出して、本発明を完成させた。
 本発明によれば、以下に示す電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置が提供される。
[1]
 粘着性フィルムと、上記粘着性フィルムの粘着面上に貼り付けられた1または2以上の電子部品と、を備える構造体を準備する工程(A)と、
 電子部品搭載領域を有する試料台と、上記試料台に対向する位置に設けられ、かつ、プローブ端子を有するプローブカードと、を備える電子部品試験装置における上記試料台の上記電子部品搭載領域上に上記粘着性フィルムを介して上記電子部品が位置するように、上記構造体を上記電子部品試験装置内に配置する工程(B)と、
 上記粘着性フィルム上に貼り付けられた状態で、上記プローブ端子を上記電子部品の端子に接触させて上記電子部品の特性を評価する工程(C)と、
 上記工程(C)の後に上記粘着性フィルムから上記電子部品をピックアップする工程(D)と、
を備える電子装置の製造方法であって、
 上記試料台が上記電子部品搭載領域とは異なる外周側の領域に、上記粘着性フィルムを真空吸引する第1真空吸引手段を有し、
 少なくとも上記工程(C)において、
  上記第1真空吸引手段により上記粘着性フィルムの上記電子部品が貼り付けられていない領域を真空吸引する電子装置の製造方法。
[2]
 上記[1]に記載の電子装置の製造方法において、
 上記試料台が少なくとも上記電子部品搭載領域に、真空吸引することにより上記構造体を保持する第2真空吸引手段を有する電子装置の製造方法。
[3]
 上記[1]または[2]に記載の電子装置の製造方法において、
 上記第1真空吸引手段が上記試料台の外周にわたって連続的に閉じた真空吸着溝である電子装置の製造方法。
[4]
 上記[1]乃至[3]のいずれか一つに記載の電子装置の製造方法において、
 上記試料台の外周部に真空シール部が設けられている電子装置の製造方法。
[5]
 上記[1]乃至[4]のいずれか一つに記載の電子装置の製造方法において、
 上記工程(C)では、0℃以下または50℃以上200℃以下の温度環境下で上記電子部品の特性評価をおこなう電子装置の製造方法。
[6]
 上記[1]乃至[5]のいずれか一つに記載の電子装置の製造方法において、
 上記工程(D)では、上記粘着性フィルムにおける上記電子部品が貼り付けられた領域をフィルムの面内方向に拡張させて、隣接する上記電子部品間の間隔を拡大させた状態で、上記粘着性フィルムから上記電子部品をピックアップする電子装置の製造方法。
[7]
 上記[1]乃至[6]のいずれか一つに記載の電子装置の製造方法において、
 上記粘着性フィルムが少なくとも柔軟性樹脂層および粘着性樹脂層を有する電子装置の製造方法。
[8]
 上記[7]に記載の電子装置の製造方法において、
 上記柔軟性樹脂層を構成する柔軟性樹脂がポリエステル系エラストマー、ポリアミド系エラストマー、ポリイミド系エラストマー、およびポリブチレンテレフタレートからなる群から選択される一種または二種以上を含む電子装置の製造方法。
[9]
 上記[1]乃至[8]のいずれか一つに記載の電子装置の製造方法で使用する上記粘着性フィルムであって、
 少なくとも柔軟性樹脂層および粘着性樹脂層を有する電子装置製造用粘着性フィルム。
[10]
 上記[9]に記載の電子装置製造用粘着性フィルムにおいて、
 上記柔軟性樹脂層の融点が100℃以上250℃以下である電子装置製造用粘着性フィルム。
[11]
 上記[9]または[10]に記載の電子装置製造用粘着性フィルムにおいて、
 上記柔軟性樹脂層を構成する柔軟性樹脂がポリエステル系エラストマー、ポリアミド系エラストマー、ポリイミド系エラストマー、およびポリブチレンテレフタレートからなる群から選択される一種または二種以上を含む電子装置製造用粘着性フィルム。
[12]
 上記[9]乃至[11]のいずれか一つに記載の電子装置製造用粘着性フィルムにおいて、
 上記粘着性樹脂層を構成する粘着剤が(メタ)アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、オレフィン系粘着剤、およびスチレン系粘着剤から選択される一種または二種以上を含む電子装置製造用粘着性フィルム。
[13]
 電子部品の特性を評価するために使用する電子部品試験装置であって、
 電子部品搭載領域を有する試料台と、
 上記試料台に対向する位置に設けられ、かつ、プローブ端子を有するプローブカードと、
を備え、
 上記試料台が上記電子部品搭載領域とは異なる外周側の領域に、粘着性フィルムの上記電子部品が貼り付けられていない領域を真空吸引する第1真空吸引手段を有する電子部品試験装置。
[14]
 上記[13]に記載の電子部品試験装置において、
 上記試料台が少なくとも上記電子部品搭載領域に、真空吸引することにより上記電子部品および上記粘着性フィルムを保持する第2真空吸引手段を有する電子部品試験装置。
[15]
 上記[13]または[14]に記載の電子部品試験装置において、
 上記第1真空吸引手段が上記試料台の外周にわたって連続的に閉じた真空吸着溝である電子部品試験装置。
[16]
 上記[13]乃至[15]のいずれか一つに記載の電子部品試験装置において、
 上記試料台の外周部に真空シール部が設けられている電子部品試験装置。
 本発明によれば、電子部品の特性評価を精度よく安定的におこなうことが可能な電子装置の製造方法を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態の電子装置の製造方法の一例を示すフロー図である。 本発明に係る実施形態の電子部品試験装置および構造体の構造の一例を模式的に示した断面図であり、(a)は電子部品試験装置内に構造体を配置した状態を示し、(b)は電子部品の特性を評価している状態を示す。 本発明に係る実施形態の構造体の構造の一例を模式的に示した平面図である。 本発明に係る実施形態の第1真空吸引手段の構造の一例を模式的に示した平面図である。 本発明に係る実施形態の第1真空吸引手段および第2真空吸引手段の構造の一例を模式的に示した断面図である。 本発明に係る実施形態の第1真空吸引手段および第2真空吸引手段の構造の一例を模式的に示した平面図である。 本発明に係る実施形態の真空シール部の構造の一例を模式的に示した平面図である。 本発明に係る実施形態の粘着性フィルムの構造の一例を模式的に示した断面図である。 本発明に係る実施形態の粘着性フィルムの構造の一例を模式的に示した断面図である。 電子部品の特性評価をおこなう際に粘着性フィルムがプローブ端子に接触してしまうことを模式的に説明するための断面図である。
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。また、数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。また、本実施形態において、「(メタ)アクリル」とは、アクリルおよびメタクリルの一方または両方を意味する。
1.電子装置の製造方法および電子部品試験装置
 はじめに、本実施形態に係る電子装置の製造方法および電子部品試験装置について説明する。
 図1は、本発明に係る実施形態の電子装置の製造方法の一例を示すフロー図である。図2は、本発明に係る実施形態の電子部品試験装置200および構造体100の構造の一例を模式的に示した断面図であり、(a)は電子部品試験装置200内に構造体100を配置した状態を示し、(b)は電子部品70の特性を評価している状態を示す。図3は、本発明に係る実施形態の構造体100の構造の一例を模式的に示した平面図である。図4は、本発明に係る実施形態の第1真空吸引手段210の構造の一例を模式的に示した平面図である。
 本実施形態に係る電子装置の製造方法は、以下の4つの工程を少なくとも備えている。
 (A)粘着性フィルム50と、粘着性フィルム50の粘着面上に貼り付けられた1または2以上の電子部品70と、を備える構造体100を準備する工程
 (B)電子部品搭載領域85を有する試料台80と、試料台80に対向する位置に設けられ、かつ、プローブ端子95を有するプローブカード90と、を備える電子部品試験装置200における試料台80の電子部品搭載領域85上に粘着性フィルム50を介して電子部品70が位置するように、構造体100を電子部品試験装置200内に配置する工程
 (C)粘着性フィルム50上に貼り付けられた状態で、プローブ端子95を電子部品70の端子75に接触させて電子部品70の特性を評価する工程
 (D)工程(C)の後に粘着性フィルム50から電子部品70をピックアップする工程
 そして、試料台80が電子部品搭載領域85とは異なる外周側の領域89に、粘着性フィルム50を真空吸引する第1真空吸引手段210を有し、少なくとも工程(C)において、第1真空吸引手段210により粘着性フィルム50の電子部品70が貼り付けられていない領域58を真空吸引する。
 本発明者は、電子部品70Aの特性評価をおこなう際に、電子部品70Aを固定する粘着性フィルム50Aが加熱または冷却によりシワ53Aが発生し、このシワ53Aがプローブ端子95Aに接触してしまう場合があることを知見した(図10参照)。この場合、粘着性フィルム50Aがプローブ端子95Aに干渉してしまうため電子部品70Aの特性を正確に評価できなくなってしまう。
 すなわち、本発明者は、電子部品の特性評価工程には、電子部品の特性評価を精度よく安定的におこなうという観点において、改善の余地があることを見出した。
 本発明者は、上記課題を達成するために鋭意検討を重ねた。その結果、電子部品70の特性を評価する際に粘着性フィルム50の電子部品70が貼り付けられていない領域58を真空吸引することにより、粘着性フィルム50がプローブ端子95に接触してしまうことを抑制でき、電子部品70の特性評価を精度よく安定的におこなうことができることを見出した。
 すなわち、粘着性フィルム50が加熱または冷却によりシワ53が生じる可能性があるのは、主としてフィルム50が試料台80に接し電子部品70が貼り付けられていない領域58であるから、少なくとも工程(C)において、領域58を真空吸引することで、シワ53を低減することができる。その結果、シワ53の大きさを低減させることができる。そのため、図2(b)に示すように電子部品70の特性評価をおこなう際に粘着性フィルム50がプローブ端子95に接触してしまうことを抑制でき、その結果、粘着性フィルム50がプローブ端子95に干渉してしまうことを抑制でき、電子部品70の特性評価を精度よく安定的におこなうことができる。
 以上のように、本実施形態に係る電子装置の製造方法によれば、上記工程(A)~(D)を備えることで、電子部品70の特性評価を精度よく安定的におこなうことが可能となる。
 以下、本実施形態に係る電子装置の製造方法の各工程について説明する。
(工程(A))
 はじめに、粘着性フィルム50と、粘着性フィルム50の粘着面上に貼り付けられた1または2以上の電子部品70と、を備える構造体100を準備する。
 このような構造体は、例えば、粘着性フィルム50の粘着面(例えば、後述の粘着性樹脂層10の表面)に電子部品70を貼り付け、必要に応じて粘着性フィルム50上の電子部品70を個片化することにより作製することができる。
 以下、電子部品70が半導体基板および半導体チップである場合を例にして、構造体100の製造方法について具体的に説明する。
 はじめに、粘着性フィルム50の粘着面に半導体基板を貼り付ける。
 粘着性フィルム50に貼り付ける半導体基板としては、例えば、シリコン、ゲルマニウム、ガリウム-ヒ素、ガリウム-リン、ガリウム-ヒ素-アルミニウム等の基板(例えば、ウェハ)が挙げられる。
 また、半導体基板としては、表面に回路が形成された半導体基板を用いることが好ましい。
 粘着性フィルム50の粘着面に電子部品70を貼り付ける際は、粘着性フィルム50をフレーム150に貼り付け、その後、粘着性フィルム50の粘着面に電子部品50を貼り付けてもよいし、フレーム150と電子部品50を粘着性フィルム50に同時に貼り付けてもよい。
 粘着性フィルム50の貼り付けは、人の手で行なってもよいが、通常、ロール状の表面保護フィルムを取り付けた自動貼り機によって行なう。
 貼り付け時の粘着性フィルム50および半導体基板の温度には特に制限はないが、25℃~80℃が好ましい。
 また、貼り付け時の粘着性フィルム50と半導体基板との圧力については特に制限はないが、0.3MPa~0.5MPaが好ましい。
 次いで、粘着性フィルム50上の半導体基板を半導体チップにダイシングする。
 ここでいう「ダイシング」には、
(a)半導体基板に対してこの半導体基板の厚さと同じ深さの切れ込みを設けることによって半導体基板を分断し、複数の分断された半導体チップを得る操作(以下、「フルカットダイシング」ともいう)、および、
(b)レーザー光やプラズマを照射することにより、半導体基板に対し、半導体基板の切断までには至らない変質領域を設け、複数の半導体チップを得る操作(以下、「ステルスダイシング」ともいう)が含まれる。
 上記ダイシングは、ダイシングブレード(ダイシングソー)、レーザー光、プラズマ等を用いて行うことができる。
 ダイシングがフルカットダイシングである場合には、ダイシングによって半導体基板が複数の半導体チップに分断される。
 一方、ダイシングがステルスダイシングである場合には、ダイシングのみによっては半導体基板が複数の半導体チップに分断されるまでには至らず、ダイシング後の粘着性フィルム50の拡張によって半導体基板が分断されて複数の分断された半導体チップが得られる。なお、ステルスダイシングである場合の粘着性フィルム50の拡張は、工程(C)の前におこなってもよいし、工程(C)の後におこなってもよい。
 なお、工程(A)における電子部品70には、フルカットダイシングにより得られる分断された複数の半導体チップと、ステルスダイシングにより得られる分断される前の複数の半導体チップの両方を含む。
(工程(B))
 次に、電子部品試験装置200における試料台80の電子部品搭載領域85上に粘着性フィルム50を介して電子部品70が位置するように、構造体100を電子部品試験装置200内に配置する。
 以下、本実施形態に係る電子部品試験装置200について説明する。
 本実施形態に係る電子部品試験装置200は、電子部品70の特性を評価するために使用する電子部品試験装置であって、電子部品搭載領域85を有する試料台80と、試料台80に対向する位置に設けられ、かつ、プローブ端子95を有するプローブカード90と、を備える。そして、試料台80が電子部品搭載領域85とは異なる外周側の領域89に、粘着性フィルム50の電子部品70が貼り付けられていない領域58を真空吸引する第1真空吸引手段210を有する。そして、プローブ端子95を電子部品70の端子75に接触させて電子部品70の特性を評価する際に、第1真空吸引手段210により粘着性フィルム50の電子部品70が貼り付けられていない領域58を真空吸引する。
 プローブ端子95を有するプローブカード90は特に限定されず、一般的に公知のプローブカードを用いることができる。
 また、本実施形態に係る電子部品試験装置200は、枠内に試験体である電子部品70および電子部品70を保持する粘着性フィルム50を配置し、かつ、粘着性フィルム50の端部55を固定するフレーム150をさらに備えることが好ましい。
 フレーム150をさらに備えることで、電子部品70の特性評価をおこなう際に電子部品70を粘着性フィルム50上に安定的に保持することができる。
 フレーム150の形状は特に限定されず、円形状、楕円形上、矩形状等が挙げられる。フレーム150としては、例えば、リングフレームが挙げられる。
 また、図4に示すように、第1真空吸引手段210は試料台80の外周にわたって連続的に閉じた真空吸着溝であることが好ましい。
 こうすることで、連続的に閉じた真空吸着溝の内側の領域に気体が流入することを抑制でき、粘着性フィルム50をより一層効果的に吸引することができる。その結果、粘着性フィルム50の加熱または冷却により発生するシワ53をより一層抑制することができる。
 ここで、図5は、本発明に係る実施形態の第1真空吸引手段210および第2真空吸引手段220の構造の一例を模式的に示した断面図である。図6は、本発明に係る実施形態の第1真空吸引手段210および第2真空吸引手段220の構造の一例を模式的に示した平面図である。
 図5に示すように、本実施形態に係る電子部品試験装置200において、試料台80が少なくとも電子部品搭載領域85に第2真空吸引手段220をさらに有することが好ましい。
 第2真空吸引手段220は真空吸引することにより電子部品70および粘着性フィルム50(構造体100)を保持する。電子部品試験装置200が第2真空吸引手段220をさらに備えることで、電子部品70の特性を評価する際に電子部品70および粘着性フィルム50(構造体100)をより安定的に試料台80に保持することができる。
 第1真空吸引手段210および第2真空吸引手段220は特に限定されず、公知の真空吸引手段を用いることができる。例えば、真空吸引するポンプ(例えば、真空ポンプ)と、真空ポンプに接続する吸着孔から構成される真空吸引手段等が挙げられる。ここで、第1真空吸引手段210および第2真空吸引手段220の真空ラインはそれぞれ独立していてもよいし、つながっていてもよい。ここで、図2および4~7では、第1真空吸引手段210および第2真空吸引手段220としては吸着孔のみを示し、真空ポンプは図示していない。この吸着孔に真空ポンプが接続され、真空ポンプを用いて吸着孔から電子部品70および粘着性フィルム50(構造体100)を真空吸引することができる。
 ここで、図7は、本発明に係る実施形態の真空シール部230の構造の一例を模式的に示した平面図である。
 本実施形態に係る電子部品試験装置200において、試料台80の外周部に真空シール部230が設けられていることが好ましい。これにより、真空シール部230の内側の領域の真空度をより良好にすることができるため、粘着性フィルム50をより一層効果的に吸引することができる。その結果、粘着性フィルム50の加熱または冷却により発生するシワ53をより一層抑制することができる。真空シール部230の材質は特に限定されないが、シリコーンゴム等の耐熱エラストマーが好ましい。
(工程(C))
 次に、粘着性フィルム50上に貼り付けられた状態で、プローブ端子95を電子部品70の端子75に接触させて電子部品70の特性を評価する。
 電子部品70の特性評価は、例えば、電子部品70の動作確認テストであり、図2(b)に示すように、プローブ端子95を有するプローブカード90を用いておこなうことができる。
 例えば、電子部品70の端子75に対して、プローブカード90を介してテスタに接続されたプローブ端子95を接触させる。これにより、電子部品70とテスタとの間で、動作電力や動作試験信号等の授受を行い、電子部品70の動作特性の良否等を判別することができる。
 工程(C)において構造体100は、図2および3に示すように、フレーム150の枠内に配置され、かつ、粘着性フィルム50の端部55がフレーム150に固定されていることが好ましい。これにより、電子部品70の特性評価をおこなう際に電子部品70を粘着性フィルム50上に安定的に保持することができる。
 そして、図2(a)に示すように、第1真空吸引手段210により粘着性フィルム50の電子部品70が貼り付けられていない領域58を真空吸引する。
 工程(C)では、0℃以下または50℃以上200℃以下の温度環境下で電子部品70の特性評価をおこなうことが好ましく、60℃以上180℃以下の温度環境下で電子部品70の特性評価をおこなうことがより好ましく、80℃以上160℃以下の温度環境下で電子部品70の特性評価をおこなうことがさらに好ましい。こうすることで、不良発生の要因が内在している電子部品70の劣化を加速でき、電子部品70の初期不良を早期に発生させ、その不良品を除去することができる。これにより、信頼性に優れた電子部品70を歩留りよく得ることができる。
 例えば、構造体100を恒温槽やオーブンに入れるか、または試料台80に設けられたヒーターで加熱することによって、上記の温度環境下とすることができる。
(工程(D))
 次いで、工程(C)の後に粘着性フィルム50から電子部品70をピックアップする。
 このピックアップにより、粘着性フィルム50から電子部品70を剥離することができる。
 電子部品70のピックアップは、公知の方法で行うことができる。
 工程(D)では、粘着性フィルム50における電子部品70が貼り付けられた領域をフィルムの面内方向に拡張させて、隣接する電子部品70間の間隔を拡大させた状態で、粘着性フィルム50から電子部品70をピックアップすることが好ましい。
 こうすることにより、隣接する電子部品70間の間隔が拡大するため、粘着性フィルム50から電子部品70をピックアップし易くなる。さらに、粘着性フィルム50の面内方向の拡張によって生じる、電子部品70と粘着性フィルム50とのずり応力により、電子部品70と粘着性フィルム50との粘着力が低下するため、粘着性フィルム50から電子部品70をピックアップし易くなる。
 また、粘着性フィルム50として、後述の耐熱性樹脂層30、柔軟性樹脂層20および粘着性樹脂層10をこの順番に有するフィルムを使用する場合、工程(C)の後に耐熱性樹脂層30を粘着性フィルム50から剥離し、工程(D)を行うことが好ましい。これにより、粘着性フィルム50の面内方向の拡張をより容易におこなうことができる。耐熱性樹脂層30の剥離は手により行われる場合もあるが、一般には自動剥がし機と称される装置によって行うことができる。
(工程(E))
 本実施形態に係る電子装置の製造方法において、工程(D)の前に粘着性フィルム50に対して放射線を照射し、粘着性フィルム50を架橋させることで、電子部品70に対する粘着性フィルム50の粘着力を低下させる工程(E)をさらに備えてもよい。
 工程(E)をおこなうことで、粘着性フィルム50から電子部品70を容易にピックアップすることができる。また、粘着性フィルム50を構成する粘着成分により電子部品70の表面が汚染されることを抑制することができる。
 放射線は、例えば、粘着性フィルム50の粘着面とは反対側の面から照射される。
 放射線として紫外線を用いる場合、粘着性フィルム50に対して照射する紫外線の線量は、100mJ/cm以上が好ましく、350mJ/cm以上がより好ましい。
 紫外線の線量が上記下限値以上であると、粘着性フィルム50の粘着力を十分に低下させることができ、その結果、電子部品70表面に糊残りが発生することをより抑制することができる。
 また、粘着性フィルム50に対して照射する紫外線の線量の上限は特に限定されないが、生産性の観点から、例えば、1500mJ/cm以下であり、好ましくは1200mJ/cm以下である。
 紫外線照射は、例えば、高圧水銀ランプを用いておこなうことができる。
 工程(E)を行うタイミングは特に制限されず、工程(A)と工程(B)との間、工程(B)と工程(C)との間あるいは工程(C)と工程(D)との間いずれでもよいが、電子部品搭載領域85が予め加熱されている場合は工程(A)と工程(B)との間に行うことが好ましい。構造体100を電子部品搭載領域85に配置後に昇温する場合は、工程(B)と工程(C)との間あるいは工程(C)と工程(D)との間におこなってもよい。
(その他の工程)
 本実施形態に係る電子装置の製造方法は、上記以外のその他の工程を有していてもよい。その他の工程としては、電子装置の製造方法において公知の工程を用いることができる。
 例えば、工程(D)を行った後、得られた半導体チップ等の電子部品70を回路基板に実装する工程や、ワイヤボンディング工程、封止工程等の電子部品の製造工程において一般的におこなわれている任意の工程等をさらに行ってもよい。
 また、電子部品70として回路面を有する半導体基板を用いる場合、例えば、半導体基板の回路形成面に通常用いられる方法で電極形成および非回路面に保護膜形成を行う工程をさらに有してもよい。この電極形成および樹脂封止を行う工程が設けられた製造方法は、WLP(Wafer Level Package)とも呼ばれている。
 また、電子部品の回路面に再配線層を形成する工程をさらに有してもよい。
 半導体チップ面積を超える広い領域に再配線層を形成することにより得られる電子装置は、ファンアウトパッケージ(Fan-out Package)とも呼ばれている。
2.粘着性フィルム
 次に、本実施形態に係る電子装置の製造方法で用いる粘着性フィルム50(電子装置製造用粘着性フィルムとも呼ぶ。)について説明する。
 図8および9は、本発明に係る実施形態の粘着性フィルム50の構造の一例を模式的に示した断面図である。
 粘着性フィルム50は粘着性樹脂層10を少なくとも有する。また、粘着性フィルム50の柔軟性を向上させ、電子部品70のピックアップ性をより向上させる観点から、粘着性フィルム50は粘着性樹脂層10に加えて、柔軟性樹脂層20をさらに有することが好ましい。
 また、粘着性フィルム50は柔軟性および耐熱性のバランスをより良好にする観点から、粘着性樹脂層10に加えて、柔軟性樹脂層20および耐熱性樹脂層30の両方をさらに有することが好ましい。
 粘着性フィルム50が粘着性樹脂層10、柔軟性樹脂層20および耐熱性樹脂層30を含む場合、粘着性フィルム50は耐熱性樹脂層30、柔軟性樹脂層20および粘着性樹脂層10をこの順番に有することが好ましい。
 こうすることで、耐熱性樹脂層30により粘着性樹脂層10の変形や溶融が抑制されて電子部品70の位置ズレを抑制でき、その結果、上記工程(D)での電子部品70のピックアップをより正確におこなうことができる。すなわち、粘着性フィルム50の粘着性、耐熱性および柔軟性のバランスをより良好にすることができる。
 ここで、本実施形態において、耐熱性とは高温または低温におけるフィルムや樹脂層の寸法安定性を意味する。すなわち、耐熱性に優れるフィルムや樹脂層ほど、高温または低温における膨張や収縮、軟化等の変形や溶融等が起き難いことを意味する。
(粘着性樹脂層)
 粘着性樹脂層10は粘着性フィルム50を電子部品70に貼り付ける際に、電子部品70の表面に接触して粘着する層である。
 粘着性樹脂層10を構成する粘着剤は、(メタ)アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、オレフィン系粘着剤、スチレン系粘着剤等が挙げられる。これらの中でも、接着力の調整を容易にできる点等から、(メタ)アクリル系重合体をベースポリマーとする(メタ)アクリル系粘着剤が好ましい。
 粘着性樹脂層10を構成する粘着剤としては、放射線により粘着力を低下させる放射線架橋型粘着剤を用いることができる。放射線架橋型粘着剤により構成された粘着性樹脂層10は、放射線の照射により架橋して粘着力が著しく減少するため、電子部品70のピックアップ工程において、粘着性樹脂層10から電子部品70をピックアップし易くなる。放射線としては、紫外線、電子線、赤外線等が挙げられる。
 放射線架橋型粘着剤としては、紫外線架橋型粘着剤が好ましい。
 (メタ)アクリル系粘着剤に含まれる(メタ)アクリル系重合体としては、例えば、(メタ)アクリル酸エステル化合物の単独重合体、(メタ)アクリル酸エステル化合物とコモノマーとの共重合体等が挙げられる。(メタ)アクリル酸エステル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリル酸エステル化合物は一種単独で用いてもよく、二種以上を併用して用いてもよい。
 また、(メタ)アクリル系共重合体を構成するコモノマーとしては、例えば、酢酸ビニル、(メタ)アクリルニトリル、(メタ)アクリルアマイド、スチレン、(メタ)アクリル酸、イタコン酸、(メタ)アクリルアマイド、メチロール(メタ)アクリルアマイド、無水マレイン酸等が挙げられる。これらのコモノマーは一種単独で用いてもよく、二種以上を併用して用いてもよい。
 放射線架橋型粘着剤は、例えば、上記(メタ)アクリル系粘着剤等の粘着剤と、架橋性化合物(炭素-炭素二重結合を有する成分)と、光重合開始剤または熱重合開始剤と、を含む。
 架橋性化合物としては、例えば、分子中に炭素-炭素二重結合を有し、ラジカル重合により架橋可能なモノマー、オリゴマーまたはポリマー等が挙げられる。このような架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル;エステル(メタ)アクリレートオリゴマー;2-プロペニルジ-3-ブテニルシアヌレート、2-ヒドロキシエチルビス(2-(メタ)アクリロキシエチル)イソシアヌレート、トリス(2-メタクリロキシエチル)イソシアヌレート等のイソシアヌレートまたはイソシアヌレート化合物等が挙げられる。
 なお、粘着剤が、ポリマーの側鎖に炭素-炭素二重結合を有する放射線架橋型ポリマーである場合は、架橋性化合物を加えなくてもよい。
 架橋性化合物の含有量は、粘着剤100質量部に対して5~900質量部が好ましく、20~200質量部がより好ましい。架橋性化合物の含有量が上記範囲であることにより、上記範囲よりも少ない場合に比べて粘着力の調整がし易くなり、上記範囲よりも多い場合に比べて、熱や光に対する感度が高すぎることによる保存安定性の低下が起こりにくい。
 光重合開始剤としては、放射線を照射することにより開裂しラジカルを生成する化合物であればよく、例えば、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル類;ベンジル、ベンゾイン、ベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等の芳香族ケトン類;ベンジルジメチルケタール等の芳香族ケタール類;ポリビニルベンゾフェノン;クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン等のチオキサントン類等が挙げられる。
 熱重合開始剤としては、例えば、有機過酸化物誘導体やアゾ系重合開始剤等が挙げられる。加熱時に窒素が発生しない点から、好ましくは有機過酸化物誘導体である。熱重合開始剤としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステルおよびパーオキシジカーボネート等が挙げられる。
 粘着剤には架橋剤を添加してもよい。架橋剤としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリストールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル等のエポキシ系化合物;テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N'-ジフェニルメタン-4,4'-ビス(1-アジリジンカルボキシアミド)、N,N'-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等のアジリジン系化合物;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネート等のイソシアネート系化合物等が挙げられる。
 粘着性樹脂層10の厚みは特に制限されないが、例えば、1μm以上100μm以下であることが好ましく、3μm以上50μm以下であることがより好ましい。
 粘着性樹脂層10は、例えば、基材層や柔軟性樹脂層20上に粘着剤塗布液を塗布することにより形成することができる。
 粘着剤塗布液を塗布する方法としては、従来公知の塗布方法、例えば、ロールコーター法、リバースロールコーター法、グラビアロール法、バーコート法、コンマコーター法、ダイコーター法等が採用できる。塗布された粘着剤の乾燥条件には特に制限はないが、一般的には、80~200℃の温度範囲において、10秒~10分間乾燥することが好ましい。更に好ましくは、80~170℃において、15秒~5分間乾燥する。架橋剤と粘着剤との架橋反応を十分に促進させるために、粘着剤塗布液の乾燥が終了した後、40~80℃において5~300時間程度加熱してもよい。
(柔軟性樹脂層)
 柔軟性樹脂層20は、粘着性フィルム50の柔軟性や伸縮性等の特性を良好にすることを目的として設けられる層である。
 柔軟性樹脂層20を設けることにより、粘着性フィルム50の伸縮性や柔軟性が向上し、電子部品70をピックアップする工程(D)において粘着性フィルム50を面内方向に拡張させることがより容易にできる。
 柔軟性樹脂層20は面内方向に拡張できるものであれば特に限定されないが、柔軟性や伸縮性等の特性に優れ、かつ、高温または低温で電子部品70の特性評価をおこなう際に粘着性樹脂層10との接着性を維持できる程度の耐熱性があるものが好ましい。
 上記柔軟性樹脂層20を構成する柔軟性樹脂としては、例えば、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリイミド系エラストマー、およびポリブチレンテレフタレート等から選択される一種または二種以上が挙げられる。
 柔軟性樹脂層20の融点は100℃以上250℃以下であることが好ましい。
 このような柔軟性樹脂層20を用いると、高温または低温で電子部品70の特性評価をおこなう際の粘着性フィルム50の熱膨張をより一層抑制することができる。
 柔軟性樹脂層20の厚みは特に制限されないが、例えば、10μm以上500μm以下であることが好ましく、20μm以上300μm以下であることがより好ましく、30μm以上250μm以下であることがさらに好ましく、50μm以上200μm以下であることが特に好ましい。
(耐熱性樹脂層)
 耐熱性樹脂層30は、粘着性フィルム50の取り扱い性や機械的特性、耐熱性等の特性をより良好にすることを目的として設けられる層である。
 耐熱性樹脂層30は、高温または低温で電子部品70の特性評価をおこなう際に、電子部品70の位置ズレが起きるほどの変形や溶融が起きない程度の耐熱性があれば特に限定されないが、例えば、耐熱性樹脂フィルムを用いることができる。
 上記耐熱性樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等のポリアミド;ポリイミド;ポリエーテルイミド;ポリアミドイミド;ポリカーボネート;変性ポリフェニレンエーテル;ポリアセタール;ポリアリレート;ポリスルホン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;フッ素系樹脂;液晶ポリマー;塩化ビニリデン樹脂;ポリベンゾイミダゾール;ポリベンゾオキサゾール;ポリメチルペンテン等から選択される一種または二種以上を挙げることができる。
 これらの中でも、耐熱性や機械的強度、透明性、価格等のバランスに優れる観点から、ポリイミド、ポリアミド、およびポリエステルから選択される一種または二種以上が好ましい。
 耐熱性樹脂層30の融点は200℃以上であることが好ましく、220℃以上であることがより好ましい。あるいは、耐熱性樹脂層30は融点を示さないものであることが好ましく、分解温度が200℃以上であることがより好ましく、分解温度が220℃以上であることがさらに好ましい。
 このような耐熱性樹脂層30を用いると、高温または低温で電子部品70の特性評価をおこなう際の粘着性フィルム50の変形をより一層抑制することができる。
 耐熱性樹脂層30は、単層であっても、二種以上の層であってもよい。
 また、耐熱性樹脂層30を形成するために使用する樹脂フィルムの形態としては、延伸フィルムであってもよいし、一軸方向または二軸方向に延伸したフィルムであってもよいが、耐熱性樹脂層30の耐熱性および機械的強度を向上させる観点から、一軸方向または二軸方向に延伸したフィルムであることが好ましい。
 耐熱性樹脂層30の厚さは、良好なフィルム特性を得る観点から、好ましくは10μm以上1000μm以下、より好ましくは10μm以上500μm以下、さらに好ましくは20μm以上300μm以下である。
 耐熱性樹脂層30は他の層との接着性を改良するために、表面処理を行ってもよい。具体的には、コロナ処理、プラズマ処理、アンダーコート処理、プライマーコート処理等を行ってもよい。
 耐熱性樹脂層30は柔軟性樹脂層20に対して剥離可能なように積層されていることが好ましい。
剥離可能に積層する方法は特に限定されないが、例えば、剥離可能な接着層(図示しない)を介して積層する方法が挙げられる。剥離可能な接着層とは、剥離の際に放射線や熱等の何らかの刺激を加えることによって容易に剥離することが可能な層をいう。
 このような剥離可能な接着層としては、例えば、(1)放射線照射により粘着力を低減できる放射線架橋型粘着剤により構成された接着層、(2)加熱により膨張して粘着力を低減できる加熱膨張型粘着剤により構成された接着層、(3)加熱により収縮して粘着力を低減できる、収縮性フィルムを基材とした両面粘着性フィルムにより構成された接着層等が挙げられる。
 放射線架橋型粘着剤は、放射線照射前には耐熱性樹脂層30および柔軟性樹脂層20に対して十分な接着力を有し、放射線照射後には接着力が著しく減少するものである。すなわち、放射線照射前には耐熱性樹脂層30および柔軟性樹脂層20を接着でき、放射線照射後には柔軟性樹脂層20から耐熱性樹脂層30を容易に剥離することができる。
 放射線架橋型粘着剤としては、一般的に公知の紫外線架橋型粘着剤等の放射線架橋型粘着剤を用いることができる。
 加熱膨張型粘着剤は粘着剤中に熱膨張性微粒子や発泡剤等が分散している粘着剤をいう。粘着剤としては、一般的に公知の粘着剤を用いることができ、例えば、(メタ)アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ポリウレタン系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。
 熱膨張性微粒子としては、例えば、イソブタン、プロパン、ペンタン等の加熱によって容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微粒子が挙げられる。
 発泡剤としては、例えば、熱分解して、水、炭酸ガス、窒素を発生させる能力を有する化学物質等挙げられる。
 加熱により、熱膨張性微粒子や発泡剤が膨張すると、接着層の表面状態が変化し、柔軟性樹脂層20と耐熱性樹脂層30との接着力を低下させることができ、その結果、柔軟性樹脂層20から耐熱性樹脂層30を容易に剥離することができる。
 収縮性フィルムを基材とした両面粘着性フィルムに使用される収縮フィルムとしては、加熱により収縮する熱収縮フィルムが挙げられる。例えば、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリアミド、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン等の一軸または二軸延伸フィルム等を挙げることができる。
 収縮性フィルムの両面に設けられる粘着剤としては、一般的に公知の粘着剤を用いることができ、例えば、(メタ)アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ポリウレタン系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。
 加熱により、基材の収縮性フィルムが収縮すると、接着層の表面状態が変化し、柔軟性樹脂層20と耐熱性樹脂層30との接着力を低下させることができ、その結果、柔軟性樹脂層20から耐熱性樹脂層30を容易に剥離することができる。
 本実施形態に係る粘着性フィルム50は、粘着性樹脂層10上に離型フィルムをさらに積層させてもよい。離型フィルムとしては、例えば、離型処理が施されたポリエステルフィルム等が挙げられる。
 本実施形態に係る粘着性フィルム50の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上である。こうすることで、粘着性フィルム50に透明性を付与することができる。そして、粘着性フィルム50の全光線透過率を上記下限値以上とすることにより、粘着性樹脂層10へより効果的に放射線を照射することができ、放射線照射効率を向上させることができる。なお、粘着性フィルム50の全光線透過率は、JIS K7105(1981)に準じて測定することが可能である。
 次に、本実施形態に係る粘着性フィルム50の製造方法の一例について説明する。
 本実施形態に係る粘着性フィルム50は、基材層や柔軟性樹脂層20上に粘着剤塗布液を塗布し乾燥させることによって、粘着性樹脂層10を形成することにより得ることができる。
 柔軟性樹脂層20は、例えば、基材層や耐熱性樹脂層30の一方の面に押出しラミネート法によって形成することができる。また、耐熱性樹脂層30と柔軟性樹脂層20とは共押出成形によって形成してもよいし、フィルム状の耐熱性樹脂層30とフィルム状の柔軟性樹脂層20とをラミネート(積層)して形成してもよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 この出願は、2016年10月27日に出願された日本出願特願2016-210626号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (16)

  1.  粘着性フィルムと、前記粘着性フィルムの粘着面上に貼り付けられた1または2以上の電子部品と、を備える構造体を準備する工程(A)と、
     電子部品搭載領域を有する試料台と、前記試料台に対向する位置に設けられ、かつ、プローブ端子を有するプローブカードと、を備える電子部品試験装置における前記試料台の前記電子部品搭載領域上に前記粘着性フィルムを介して前記電子部品が位置するように、前記構造体を前記電子部品試験装置内に配置する工程(B)と、
     前記粘着性フィルム上に貼り付けられた状態で、前記プローブ端子を前記電子部品の端子に接触させて前記電子部品の特性を評価する工程(C)と、
     前記工程(C)の後に前記粘着性フィルムから前記電子部品をピックアップする工程(D)と、
    を備える電子装置の製造方法であって、
     前記試料台が前記電子部品搭載領域とは異なる外周側の領域に、前記粘着性フィルムを真空吸引する第1真空吸引手段を有し、
     少なくとも前記工程(C)において、
      前記第1真空吸引手段により前記粘着性フィルムの前記電子部品が貼り付けられていない領域を真空吸引する電子装置の製造方法。
  2.  請求項1に記載の電子装置の製造方法において、
     前記試料台が少なくとも前記電子部品搭載領域に、真空吸引することにより前記構造体を保持する第2真空吸引手段を有する電子装置の製造方法。
  3.  請求項1または2に記載の電子装置の製造方法において、
     前記第1真空吸引手段が前記試料台の外周にわたって連続的に閉じた真空吸着溝である電子装置の製造方法。
  4.  請求項1乃至3のいずれか一項に記載の電子装置の製造方法において、
     前記試料台の外周部に真空シール部が設けられている電子装置の製造方法。
  5.  請求項1乃至4のいずれか一項に記載の電子装置の製造方法において、
     前記工程(C)では、0℃以下または50℃以上200℃以下の温度環境下で前記電子部品の特性評価をおこなう電子装置の製造方法。
  6.  請求項1乃至5のいずれか一項に記載の電子装置の製造方法において、
     前記工程(D)では、前記粘着性フィルムにおける前記電子部品が貼り付けられた領域をフィルムの面内方向に拡張させて、隣接する前記電子部品間の間隔を拡大させた状態で、前記粘着性フィルムから前記電子部品をピックアップする電子装置の製造方法。
  7.  請求項1乃至6のいずれか一項に記載の電子装置の製造方法において、
     前記粘着性フィルムが少なくとも柔軟性樹脂層および粘着性樹脂層を有する電子装置の製造方法。
  8.  請求項7に記載の電子装置の製造方法において、
     前記柔軟性樹脂層を構成する柔軟性樹脂がポリエステル系エラストマー、ポリアミド系エラストマー、ポリイミド系エラストマー、およびポリブチレンテレフタレートからなる群から選択される一種または二種以上を含む電子装置の製造方法。
  9.  請求項1乃至8のいずれか一項に記載の電子装置の製造方法で使用する前記粘着性フィルムであって、
     少なくとも柔軟性樹脂層および粘着性樹脂層を有する電子装置製造用粘着性フィルム。
  10.  請求項9に記載の電子装置製造用粘着性フィルムにおいて、
     前記柔軟性樹脂層の融点が100℃以上250℃以下である電子装置製造用粘着性フィルム。
  11.  請求項9または10に記載の電子装置製造用粘着性フィルムにおいて、
     前記柔軟性樹脂層を構成する柔軟性樹脂がポリエステル系エラストマー、ポリアミド系エラストマー、ポリイミド系エラストマー、およびポリブチレンテレフタレートからなる群から選択される一種または二種以上を含む電子装置製造用粘着性フィルム。
  12.  請求項9乃至11のいずれか一項に記載の電子装置製造用粘着性フィルムにおいて、
     前記粘着性樹脂層を構成する粘着剤が(メタ)アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、オレフィン系粘着剤、およびスチレン系粘着剤から選択される一種または二種以上を含む電子装置製造用粘着性フィルム。
  13.  電子部品の特性を評価するために使用する電子部品試験装置であって、
     電子部品搭載領域を有する試料台と、
     前記試料台に対向する位置に設けられ、かつ、プローブ端子を有するプローブカードと、
    を備え、
     前記試料台が前記電子部品搭載領域とは異なる外周側の領域に、粘着性フィルムの前記電子部品が貼り付けられていない領域を真空吸引する第1真空吸引手段を有する電子部品試験装置。
  14.  請求項13に記載の電子部品試験装置において、
     前記試料台が少なくとも前記電子部品搭載領域に、真空吸引することにより前記電子部品および前記粘着性フィルムを保持する第2真空吸引手段を有する電子部品試験装置。
  15.  請求項13または14に記載の電子部品試験装置において、
     前記第1真空吸引手段が前記試料台の外周にわたって連続的に閉じた真空吸着溝である電子部品試験装置。
  16.  請求項13乃至15のいずれか一項に記載の電子部品試験装置において、
     前記試料台の外周部に真空シール部が設けられている電子部品試験装置。
PCT/JP2017/038366 2016-10-27 2017-10-24 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置 WO2018079552A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17866122.9A EP3533852A4 (en) 2016-10-27 2017-10-24 MANUFACTURING METHOD FOR ELECTRONIC DEVICE, ADHESIVE FILM FOR MANUFACTURING METHOD FOR ELECTRONIC DEVICE AND TEST DEVICE FOR ELECTRONIC COMPONENTS
SG11201903701SA SG11201903701SA (en) 2016-10-27 2017-10-24 Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus
CN201780066329.XA CN109891253A (zh) 2016-10-27 2017-10-24 电子装置的制造方法、电子装置制造用粘着性膜及电子部件试验装置
JP2018547689A JP6726296B2 (ja) 2016-10-27 2017-10-24 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
US16/344,900 US11047900B2 (en) 2016-10-27 2017-10-24 Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus
KR1020197011795A KR102243345B1 (ko) 2016-10-27 2017-10-24 전자 장치의 제조 방법, 전자 장치 제조용 점착성 필름 및 전자 부품 시험 장치
US17/178,905 US11747388B2 (en) 2016-10-27 2021-02-18 Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210626 2016-10-27
JP2016210626 2016-10-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/344,900 A-371-Of-International US11047900B2 (en) 2016-10-27 2017-10-24 Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus
US17/178,905 Division US11747388B2 (en) 2016-10-27 2021-02-18 Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus

Publications (1)

Publication Number Publication Date
WO2018079552A1 true WO2018079552A1 (ja) 2018-05-03

Family

ID=62024133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038366 WO2018079552A1 (ja) 2016-10-27 2017-10-24 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置

Country Status (8)

Country Link
US (2) US11047900B2 (ja)
EP (1) EP3533852A4 (ja)
JP (1) JP6726296B2 (ja)
KR (1) KR102243345B1 (ja)
CN (1) CN109891253A (ja)
SG (1) SG11201903701SA (ja)
TW (1) TWI745464B (ja)
WO (1) WO2018079552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172990A1 (ja) * 2021-02-10 2022-08-18 三井化学東セロ株式会社 電子部品の製造方法、製造用フィルム及び製造用具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169896A1 (ja) * 2016-03-30 2017-10-05 三井化学東セロ株式会社 半導体装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697884A (en) * 1980-01-07 1981-08-06 Mitsubishi Electric Corp Testing method for damp resistance of electronic parts
JPS6313339A (ja) * 1986-07-04 1988-01-20 Hitachi Ltd 異物有無検査装置
JPH02235355A (ja) * 1989-03-08 1990-09-18 Nec Kansai Ltd 半導体製造装置及び製造方法
JPH10163281A (ja) 1996-10-04 1998-06-19 Hitachi Ltd 半導体素子およびその製造方法
US6541989B1 (en) * 2000-09-29 2003-04-01 Motorola, Inc. Testing device for semiconductor components and a method of using the device
JP2015109436A (ja) * 2013-10-23 2015-06-11 リンテック株式会社 ダイシングシート
JP2015169589A (ja) * 2014-03-10 2015-09-28 新日本無線株式会社 半導体試験装置
JP2016210626A (ja) 2013-10-18 2016-12-15 旭硝子株式会社 真空複層ガラスの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180469A (ja) 1998-12-18 2000-06-30 Fujitsu Ltd 半導体装置用コンタクタ及び半導体装置用コンタクタを用いた試験装置及び半導体装置用コンタクタを用いた試験方法及び半導体装置用コンタクタのクリーニング方法
US6445202B1 (en) 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
JP4137471B2 (ja) 2002-03-04 2008-08-20 東京エレクトロン株式会社 ダイシング方法、集積回路チップの検査方法及び基板保持装置
JP2003303919A (ja) * 2002-04-10 2003-10-24 Hitachi Ltd 半導体装置及びその製造方法
KR101025404B1 (ko) 2002-06-24 2011-03-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 열 경화성 접착제 조성물, 물품, 반도체 장치 및 방법
US20050224978A1 (en) 2002-06-24 2005-10-13 Kohichiro Kawate Heat curable adhesive composition, article, semiconductor apparatus and method
SG116533A1 (en) * 2003-03-26 2005-11-28 Toshiba Kk Semiconductor manufacturing apparatus and method of manufacturing semiconductor device.
TWI402325B (zh) 2005-05-12 2013-07-21 Nitto Denko Corp 切割用黏著片以及使用此黏著片的切割方法
JP5054949B2 (ja) 2006-09-06 2012-10-24 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2011004825A1 (ja) * 2009-07-08 2011-01-13 古河電気工業株式会社 ウエハ貼着用粘着シートおよびそれを用いたウエハの加工方法
WO2011016607A1 (ko) * 2009-08-02 2011-02-10 (주)큐엠씨 픽업장치 및 이를 포함하는 엘이디 칩 분류장치
JP2012241063A (ja) 2011-05-17 2012-12-10 Nitto Denko Corp 半導体装置製造用の接着シート
JP6159163B2 (ja) 2013-06-21 2017-07-05 日東電工株式会社 粘着シート
JP6477732B2 (ja) 2015-02-06 2019-03-06 Agc株式会社 フィルム、その製造方法および該フィルムを用いた半導体素子の製造方法
JP6587811B2 (ja) * 2015-02-24 2019-10-09 日東電工株式会社 熱剥離型粘着シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697884A (en) * 1980-01-07 1981-08-06 Mitsubishi Electric Corp Testing method for damp resistance of electronic parts
JPS6313339A (ja) * 1986-07-04 1988-01-20 Hitachi Ltd 異物有無検査装置
JPH02235355A (ja) * 1989-03-08 1990-09-18 Nec Kansai Ltd 半導体製造装置及び製造方法
JPH10163281A (ja) 1996-10-04 1998-06-19 Hitachi Ltd 半導体素子およびその製造方法
US6541989B1 (en) * 2000-09-29 2003-04-01 Motorola, Inc. Testing device for semiconductor components and a method of using the device
JP2016210626A (ja) 2013-10-18 2016-12-15 旭硝子株式会社 真空複層ガラスの製造方法
JP2015109436A (ja) * 2013-10-23 2015-06-11 リンテック株式会社 ダイシングシート
JP2015169589A (ja) * 2014-03-10 2015-09-28 新日本無線株式会社 半導体試験装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172990A1 (ja) * 2021-02-10 2022-08-18 三井化学東セロ株式会社 電子部品の製造方法、製造用フィルム及び製造用具

Also Published As

Publication number Publication date
US11747388B2 (en) 2023-09-05
KR20190059935A (ko) 2019-05-31
KR102243345B1 (ko) 2021-04-21
US11047900B2 (en) 2021-06-29
JPWO2018079552A1 (ja) 2019-10-03
JP6726296B2 (ja) 2020-07-22
TW201816984A (zh) 2018-05-01
CN109891253A (zh) 2019-06-14
US20190285687A1 (en) 2019-09-19
US20210172993A1 (en) 2021-06-10
EP3533852A1 (en) 2019-09-04
TWI745464B (zh) 2021-11-11
SG11201903701SA (en) 2019-05-30
EP3533852A4 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2018079551A1 (ja) 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
JP6204639B1 (ja) 半導体装置の製造方法
JP6204640B1 (ja) 半導体装置の製造方法
TWI759360B (zh) 黏著性積層膜及電子裝置的製造方法
US11747388B2 (en) Method for manufacturing electronic apparatus, adhesive film for manufacturing electronic apparatus, and electronic component testing apparatus
KR102121681B1 (ko) 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547689

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197011795

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866122

Country of ref document: EP

Effective date: 20190527