WO2022172990A1 - 電子部品の製造方法、製造用フィルム及び製造用具 - Google Patents

電子部品の製造方法、製造用フィルム及び製造用具 Download PDF

Info

Publication number
WO2022172990A1
WO2022172990A1 PCT/JP2022/005344 JP2022005344W WO2022172990A1 WO 2022172990 A1 WO2022172990 A1 WO 2022172990A1 JP 2022005344 W JP2022005344 W JP 2022005344W WO 2022172990 A1 WO2022172990 A1 WO 2022172990A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
electronic component
substrate
electronic components
evaluation
Prior art date
Application number
PCT/JP2022/005344
Other languages
English (en)
French (fr)
Inventor
英司 林下
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to EP22752812.2A priority Critical patent/EP4293709A1/en
Priority to KR1020237028242A priority patent/KR20230135621A/ko
Priority to JP2022580676A priority patent/JPWO2022172990A1/ja
Priority to CN202280014507.5A priority patent/CN116848627A/zh
Publication of WO2022172990A1 publication Critical patent/WO2022172990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2853Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2896Testing of IC packages; Test features related to IC packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting

Definitions

  • the present invention relates to a method for manufacturing electronic components in which a plurality of individualized electronic components are subjected to electrical evaluation at the same time, a film for manufacturing electronic components, and a tool for manufacturing electronic components used in the method for manufacturing electronic components.
  • the method using a socket can obtain high evaluation efficiency when the types of electronic components to be evaluated are limited and the specifications are known.
  • sockets are specially designed in terms of size, electrode position, etc. for each electronic component to be measured. For this reason, there are problems of a decrease in the degree of freedom with respect to the measurement object and a decrease in evaluation efficiency.
  • new sockets are required in accordance with the new specifications of electronic components, so it takes time even for test operation, and in lots with different evaluation targets, it is necessary to change the specifications to replace them with the necessary sockets. , there is a problem that the evaluation efficiency is lowered.
  • Patent Document 2 is a technology that uses a common holding film in the three steps of the evaluation process, the singulation process, and the pick-up process.
  • this holding film By using this holding film, the socket can be eliminated, and the rate limiting associated with the use of the socket can be eliminated.
  • this technology is realized by using a characteristic material as the base layer of the holding film, and it was found that when trying to improve the evaluation efficiency, problems thought to be caused by the base layer material occurred. That is, it has been found that positional deviation may occur when evaluation is performed using this holding film. This positional deviation tends to occur particularly when the number of evaluation objects is large and the measurement temperature is high.
  • the present invention has been made in view of the above problems, and aims to provide a parts manufacturing method excellent in evaluation efficiency, a parts manufacturing film and a parts manufacturing tool used in the parts manufacturing method.
  • the present invention is as follows. [1] A placement step of arranging a plurality of electronic components on a support having a substrate and a holding layer with electrodes exposed through the holding layer; and an evaluation step of simultaneously connecting the exposed electrodes and probes to evaluate the electrical characteristics of 80 or more electronic components among the electronic components arranged on the support. A method of manufacturing an electronic component. [2] The method for manufacturing an electronic component according to [1], wherein the evaluation step is a step of performing the energization evaluation while the electronic component is heated. [3] In the above [1] or [2], comprising a singulation step of obtaining the electronic components by singulating the precursor electronic component on another support different from the support before the arranging step. A method for manufacturing the described electronic component.
  • [4] The method of manufacturing an electronic component according to any one of [1] to [3] above, wherein the retention layer has a characteristic that the retention force is reduced by heat application or energy ray irradiation.
  • [5] The method for manufacturing an electronic component according to any one of [1] to [3] above, wherein the retention layer contains thermally expandable particles and has a property that the retention force is reduced by heating.
  • [6] The method for manufacturing an electronic component according to any one of [1] to [5] above, wherein the substrate is made of metal.
  • the support includes a component-manufacturing film adhered to one surface of the substrate,
  • the component-manufacturing film includes a resin base layer, the holding layer provided on one side of the resin base layer; Manufacture of an electronic component according to any one of the above [1] to [6], further comprising a bonding layer provided on the opposite side of the resin base layer for bonding the component-manufacturing film to the substrate.
  • Method. [8] The method for manufacturing an electronic component according to any one of [1] to [7] above, wherein the resin base layer has a coefficient of linear thermal expansion of 100 ppm/K or less. [9] Any one of the above [1] to [8], wherein the resin base layer has a melting point of 180° C.
  • the electronic component manufacturing method of the present invention and the electronic component manufacturing film and electronic component manufacturing tool used in the method, it is possible to manufacture electronic components with excellent evaluation efficiency.
  • [1] Electronic component manufacturing method In the electronic component manufacturing method of the present invention, a plurality of electronic components 31 are placed on a support 45 having a substrate 21 and a retaining layer 12 with the retaining layer 12 interposed therebetween. An arrangement step of arranging in an exposed state; an evaluation step of simultaneously connecting the exposed electrode 315 and the probe to evaluate the electrical characteristics of 80 or more electronic components among the electronic components 31 arranged on the support 45 (see FIG. 1). .
  • the arranging step is a step of arranging the plurality of electronic components 31 on the support 45 having the substrate 21 and the holding layer 12 with the electrodes 315 exposed through the protective layer 12 (Fig. 1(a)).
  • the electronic component 31 includes the following ⁇ A> and ⁇ B>.
  • ⁇ A> Semiconductor parts Semiconductor chips obtained by dicing a semiconductor wafer, silicon dies, and the like are included.
  • ⁇ B> Package parts Includes parts separated from a package array and package parts individually formed without going through a package array.
  • the sealing material is not limited, and organic materials (resins) and inorganic materials (ceramics, crystallized glass, glass, etc.) can be used.
  • package components include those that do not rewiring after sealing, those that use the fan-out method (eWLB method) that performs rewiring after sealing, and those that use the Wafer Level Chip Size Package (WLCSP) method.
  • eWLB method fan-out method
  • WLCSP Wafer Level Chip Size Package
  • the electronic component 31 described above has electrodes for electrical connection with the outside.
  • the electrode may have only one, but may have a plurality.
  • the form of the electrode that can be electrically connected to the outside is not limited, and includes, for example, a pad electrode, a bonding electrode, and an exposed surface of a through electrode in a semiconductor component.
  • Package components include pad-type electrodes, pin-type electrodes, ball-type electrodes, lead-frame-type electrodes, and the like.
  • PGA Peripheral Component Interconnect
  • CPGA Cyclonal Component Interconnect
  • PPGA Physical Pin Grid Array
  • SPGA Stablgered Pin Grid Array
  • BGA Ball Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • PQFP Plastic Quad Flat Package
  • QFN Quad Flat Non-leaded
  • QFJ Quad Flat J-leaded
  • PQFJ Plastic Quad Flat J-leaded
  • TCP Transmission Carrier Package
  • CSP Chip Size Package
  • the electronic component 31 normally does not change structurally from before and after the placement process and the evaluation process. That is, the electronic component 31 to be measured remains the electronic component 31 even after the placement process and the evaluation process.
  • the electronic component 31 to be measured is the precursor electronic component 31 can be rephrased.
  • the electrodes 315 of the electronic component 31 are arranged in a state of being exposed to the outside so that they can be electrically connected to the outside. That is, these electrodes 315 are arranged on the support 45 via the holding layer 12 so as to be electrically connected to the outside. Therefore, normally, the electrodes 315 are arranged so as not to be held by the holding layer 12 .
  • the electrodes 315 may be arranged so as to be exposed to the sides of the electronic component 31, but from the viewpoint of facilitating contact with the probes, the electrodes 315 face upward from the holding layer 12. It is preferable to arrange That is, it is preferable to arrange the electronic component 31 so that the electrode 315 is positioned on the side opposite to the holding layer 12 with the main body of the electronic component 31 interposed therebetween.
  • the number of electronic components 31 to be arranged is not limited, but since the present method simultaneously conducts energization evaluation of at least 80 electronic components 31, the number of electronic components 31 to be arranged is usually 80. That's it.
  • This lower limit number can be, for example, 100 or more, and can also be 300 or more.
  • the upper limit number of the electronic components 31 to be arranged is not limited, it is usually 100,000 or less.
  • This upper limit number can be, for example, 10,000 or less, or further 500 or less. Specifically, for example, 80 to 100,000, 100 to 100,000, 300 to 100,000, 80 to 10,000, 100 to 10,000 300 or more and 10,000 or less, 80 or more and 500 or less, 100 or more and 500 or less, or 300 or more and 500 or less.
  • the holding layer 12 is a layer for holding the electronic components 31
  • the electronic components 31 are arranged on the holding layer 12 .
  • the support 45 is not limited to having the substrate 21 and the holding layer 12, but may be the component-manufacturing film 10 (see FIG. 2) and the component-manufacturing tool 20 (FIGS. 3A and 3B) of the present invention, which will be described later. (b)) can be used. These will be detailed later.
  • the electronic components 31 may be evaluated (inspected) before the placement step. .
  • the electronic components 31 suitable for the next process can be picked up from the singulation support 40 and arranged on the evaluation support 45 .
  • Electronic components 31 that have passed evaluation on other singulation supports 40 can be added. In this way, the space on the evaluation support 45 can be used without waste, and simultaneous evaluation can be performed.
  • Evaluation step This is a step of electrically evaluating the electrical characteristics of 80 or more electronic components among the electronic components 31 placed on the support 45 by simultaneously connecting the exposed electrodes 315 and the probes 51 (Fig. 1(b)).
  • each electronic component has a plurality of electrodes, but it is not necessary to connect all of them.
  • the method for manufacturing an electronic component according to the present invention includes a step of arranging a plurality of electronic components on a support having a substrate and a retaining layer with the electrodes interposed therebetween; a connecting step of electrically connecting the exposed electrodes and probes of 80 or more electronic components among the electronic components having exposed electrodes; and an evaluation step of conducting collective evaluation of the electrical characteristics of the 80 or more electronic components electrically connected to the probe.
  • the probe 51 is a member that makes electrical contact with the exposed electrode 315 of the electronic component 31 .
  • the structure of the probe 51 is not limited, and known structures can be used.
  • an electrically conductive pin, an elastic body (coil spring, elastic resin, etc.) for adjusting the contact force between the electrically conductive pin and the electrode 315, a guide portion for regulating the moving direction of the electrically conductive pin, and the like can be provided.
  • the electrodes 315 include outer lead electrodes of lead frames, pin grid electrodes, ball grid electrodes (solder balls), land electrodes, and other types of electrodes.
  • 80 or more electronic components are simultaneously connected and evaluated, so 80 or more sets of probes 51 are required.
  • the number of probes included in one set is not limited, but is at least one or more, and can be 10 or more, or even 100 or more (usually, the number of probes included in one set is 10,000 or less).
  • These probes 51 can be provided integrally with a probe card 50 (substrate with probes), for example. Of course, the entire probe 51 may be used, or only a part thereof may be used for the energization evaluation.
  • the electronic components 31 to be subjected to energization evaluation may be some or all of the electronic components 31 arranged on the support 45 . Although it can be performed according to the necessity, it is preferable to connect more electronic components 31 at the same time and perform the energization evaluation from the viewpoint of manufacturing efficiency and cost reduction.
  • a probe card 50 provided with a plurality of probes 51 is brought into contact with the electrodes 315 exposed from the electronic components 31 arranged on the holding layer 12. For example, it is possible to determine whether signals exchanged between the probe 51 and the circuit formed on the electronic component 31 by making an electrical connection (probe test).
  • the connection between the exposed electrodes 315 and the probes 51 may be made simultaneously between all the electrodes 315 and the probes 51.
  • the specific configuration of the probe card 50 is not limited, and one designed according to the number of electronic components 31 to be evaluated simultaneously and the arrangement of the electronic components 31 on the support 45 can be used.
  • the evaluation mechanism used in this method can use a large probe card having a large number of probes that can be simultaneously connected to a plurality of electrodes of a plurality of 80 or more electronic components.
  • a small probe card with a small number of probes so that individual evaluations can be carried out, i.e. for example, multiple electrodes of one electronic component can be connected simultaneously. can be done.
  • the content and purpose of the energization evaluation are not limited, and examples include the content and purpose of an operation check, an accelerated endurance test, and the like. More specifically, for example, the presence or absence of disconnection or short circuit can be evaluated, and the input voltage, output voltage, output current, etc. can be evaluated. It includes function tests such as evaluation of read operation feasibility and speed, evaluation of retention time, and evaluation of mutual interference. Examples include final test, structured test, scan test, adaptive test, etc. for package components, and wafer test, burn-in test, etc. for semiconductor components. These may use only 1 type and may use 2 or more types together. Moreover, in the energization evaluation, 80 or more electrically connected electronic components 31 can be evaluated collectively. This evaluation may be performed on 80 or more electronic components 31 simultaneously, or may be performed sequentially. That is, it suffices if 80 or more electronic components 31 can be evaluated without disconnecting the electrical connection between the electrodes 315 and the probes 51 .
  • the electrical evaluation can be performed while the electronic component 31 is heated.
  • a support 45 in a form in which the electronic component 31 is adhered to the holding layer 12 of the component manufacturing tool 20 can be used as the support 45 . That is, the component manufacturing tool 20 is fixed to a vacuum chuck table (not shown) via the substrate 21 . By heating the component manufacturing tool 20 (that is, the support 45) from the vacuum chuck table, the electronic component 31 can be energized and evaluated in a heated state.
  • the temperature range of the heated state in the evaluation process differs depending on the application of the electronic component 31 and is not particularly limited.
  • the lower limit of this temperature range can be, for example, 50° C. or higher, further 100° C. or higher, and further 150° C. or higher.
  • the upper limit of this temperature range is usually 250° C. or less.
  • the position of the electronic component 31 may change due to thermal expansion in the heated state.
  • Such a change in the position of the electronic component 31 causes a positional deviation of the electronic component 31 with respect to the probe 51, and this positional deviation increases as the number of simultaneous measurements of the electronic component 31 increases. It becomes noticeable when there are more than one.
  • the method utilizes a support 45 with substrate 21 . That is, the following (A) and (B) are exemplified as the support 45 .
  • the substrate 21 and the component-manufacturing film 10 attached to one side of the substrate 21 are provided as the support 45 , and the component-manufacturing film 10 includes a base layer (resin base layer) 11 and a base layer 11 . and a bonding layer 13 for the substrate 21 provided on the opposite side of the base layer 11 (see FIG. 3A).
  • a support 45 having a configuration including a substrate 21 and a holding layer 12 provided on one side of the substrate 21 (see FIG.
  • the support 45 is provided with the substrate 21, so that the substrate 21 can hold the position of the electronic component 31, particularly the horizontal position of the electronic component 31 where relative positional deviation with respect to the probe 51 is conspicuous.
  • a configuration other than the substrate 21 and the holding layer 12 may be provided, but unlike (A), a configuration without the base layer 11 may be provided. It can consist of only the retaining layer 12 .
  • These supports 45 can function to prevent relative displacement between the electronic component 31 and the probe 51 even during heating. That is, for example, in the case of the support 45 having the configuration (A), the component-manufacturing film 10 can be adhered to the substrate 21, a heat-resistant resin can be used as the base layer 11 forming the component-manufacturing film 10, or the base layer 11 can be By adopting a configuration such as increasing the thickness of the electronic component 31 and the probe 51, it is possible to prevent relative displacement during heating. Therefore, by using the above-described (A) and/or (B) as the support 45, it is possible to more reliably perform simultaneous measurement of a plurality of electronic components 31 in the evaluation process, thereby further improving manufacturing efficiency. can be improved.
  • This method can include steps other than the placement step and the evaluation step described above.
  • Other processes include a singulation process for obtaining singulated electronic components 31 as a process before the placement process, and a pick-up process for separating the electronic components 31 from the support 45 as a process after the evaluation process. .
  • the precursor component 30 (an array of electronic components, a semiconductor wafer, or the like) in which a plurality of elements to be the electronic components 31 are combined is singulated (diced) to form the electronic components 31. It is a process of obtaining At this time, a singulation support 40 can be adhered to the back surface (see FIG. 4).
  • the singulation step can be appropriately performed using a known method.
  • the singulation support 40 is adhered to the back surface of the frame 41 so as to cover the opening thereof. It is glued onto the support 40 .
  • Electrodes 315 are formed on the surface of the precursor component 30 used in the singulation process. This electrode is as described above.
  • semiconductor components usually have circuits formed on their surfaces. Circuits include wiring, capacitors, diodes, transistors, and the like. These may use only 1 type and may use 2 or more types together.
  • package components may be singulated so that at least one semiconductor component (semiconductor chip) is included in one electronic component 31, and two or more semiconductor components are included in one electronic component 31. of semiconductor components (semiconductor chips).
  • the package array described above is the precursor component 30 in which a large number of semiconductor chips (silicon dies) are arranged and sealed, and means a form in which package components before singulation are included in the array.
  • the removed electronic components 31 can be arranged so as to be transferred onto the support for evaluation 45 while being arranged on the support for singulation 40, and the arrangement on the support for singulation 40 is It can also be arranged differently on the evaluation support 45 .
  • socket evaluation mount
  • the socket is replaced each time for evaluation. It was necessary to change the specification of the board.
  • a film or a substrate can be used as the support 45 as a film for electronic component manufacturing or as an electronic component manufacturing tool. Therefore, in this method, the cost of jigs associated with the use of sockets can be suppressed.
  • the exposed electrode 315 is used to evaluate the electrical characteristics of the electronic component 31. can. Therefore, it is possible to suppress an increase in man-hours, improve manufacturing efficiency, and reduce costs without requiring a change in the specifications of the evaluation board.
  • the socket usually has a partition wall (side wall) to define the accommodation position of the electronic component to be evaluated. Therefore, on the evaluation board, one electronic component requires a space that occupies two partition wall thicknesses of the socket. Therefore, if an attempt is made to increase the number of evaluations in one evaluation of electronic components, the area occupied by the partition wall of the socket will also increase on the measurement board. That is, there is a dilemma in that an attempt to increase the number of simultaneous evaluations results in an increase in the area occupied by the partition wall, and there is a demerit in that it is difficult to increase the number of electronic components that can be arranged.
  • the exposed electrode 315 is used to electrically charge the electronic component 31 .
  • Characteristics can be evaluated. That is, since the socket is not used, the partition can be eliminated, and the electronic components 31 can be arranged in the area corresponding to the exclusive area of the partition. Therefore, simultaneous evaluation of more electronic components 31 becomes possible.
  • the electronic components 31 arranged on the support 45 can be arranged with a high degree of freedom, and various types of electronic components can be evaluated in each evaluation lot. It can be arranged by optimization calculation so that there are many. That is, for example, the electronic components 31 can be arranged so as to maximize the area efficiency, and as will be described later, when using a probe card, optimization is performed so that the number of simultaneous evaluations by the probe card increases. can also
  • a probe is utilized in the energization evaluation.
  • the probe card can be placed above the electronic components 31 arranged so that the electrodes 315 are exposed on the support 45, and one or both of them can be brought close to each other and energized in contact for evaluation. Since the electronic components 31 only need to be arranged with the electrodes 315 exposed so as to be connectable to the outside, various different electronic components can be freely arranged on the support 45 .
  • the time of conducting evaluation for example, after simultaneous evaluation is performed by a probe card so as to maximize the number of evaluations, electronic components that cannot be evaluated simultaneously can be individually evaluated while maintaining the state of the support 45. Even in this case (even if the number of contact points increases), there is no need to stop the device to change the evaluation board unlike in the case of using sockets, so excellent work efficiency can be obtained.
  • the film for manufacturing parts 10 of the present invention (hereinafter also referred to as “film 10" for short) is bonded to one side of the substrate 21 in order to evaluate the electrical characteristics of the electronic parts 31. It is used as The film 10 includes a resin base layer 11 (hereinafter also referred to as “base layer 11” for short), a holding layer 12, and a bonding layer 13 (see FIG. 2).
  • the holding layer 12 is a layer provided on one side of the base layer 11 to hold a plurality of electronic components 31 side by side.
  • the bonding layer 13 is a layer provided on the opposite side of the base layer 11 to bond the film 10 to the substrate 21 .
  • Each layer of the film 10 will be described below.
  • the base layer 11 is a layer provided for the purpose of improving the handleability, mechanical properties, etc. of the film 10 .
  • the material used for the base layer 11 is not particularly limited, but preferably has a mechanical strength that can withstand the measurement environment of the evaluation process described later, particularly a material that can suppress thermal expansion and elongation in a heated state.
  • resin can be used as the material of the base layer 11 .
  • resins that can constitute the base layer 11 include polyolefin resins such as polyethylene, polypropylene, poly(4-methyl-1-pentene), and poly(1-butene); polyethylene terephthalate (PET), polybutylene terephthalate (PBT); ), aromatic polyester-based resins such as polyethylene naphthalate (PEN); semi-aromatic polyimides, polyimide-based resins such as aromatic polyimides; polyamide-based resins such as nylon-6, nylon-66, and polymetaxylene adipamide; polyacrylate; polymethacrylate; polyvinyl chloride; polyetherimide; polyacrylonitrile; polycarbonate; can be done.
  • polyolefin resins such as polyethylene, polypropylene, poly(4-methyl-1-pentene), and poly(1-butene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • aromatic polyester-based resins such as polyethylene naphthalate
  • the melting point is preferably 180° C. or higher, more preferably 200° C. or higher, and 220° C. or higher. Especially preferred.
  • the melting point is, for example, preferably 800° C. or lower, more preferably 600° C. or lower. Specifically, for example, 180° C. to 800° C., 200° C. to 800° C., 220° C. to 800° C., 180° C. to 600° C., 200° C. to 600° C., 220° C. to 600° C. be able to. It should be noted that this melting point is the melting peak temperature according to JIS K7121.
  • the linear thermal expansion coefficient of the base layer 11 is preferably 100 ppm/K or less (thermal expansion coefficient at a temperature of 25 to 150° C.). This makes it possible to more effectively suppress misalignment in the heating state in the evaluation process. This value is usually 5 ppm/K or more.
  • the coefficient of linear thermal expansion is preferably 90 ppm/K or less, more preferably 50 ppm/K or less. This coefficient of thermal expansion is a value measured according to JIS K7197.
  • the tensile modulus E'(160) of the base layer 11 at a temperature of 160° C. is 50 MPa or more. This makes it possible to more effectively suppress misalignment in the heating state in the evaluation process. This value is usually 5000 MPa or less.
  • E'(160) is preferably 100 MPa or more, more preferably 200 MPa or more.
  • the tensile modulus E′ (160) can be measured by a dynamic mechanical analysis (DMA) (product name: RSA-3, manufactured by TA Instruments). Specifically, the sample size was 10 mm in width and the length between chucks was 20 mm. obtained by reading the data in
  • DMA dynamic mechanical analysis
  • Additives in the above resins include plasticizers, softeners (mineral oil, etc.), fillers (carbonates, sulfates, titanates, silicates, oxides (titanium oxide, magnesium oxide), silica, talc, mica, clay, fiber filler, etc.), antioxidants, light stabilizers, antistatic agents, lubricants, colorants, and the like can be added. These additives may be used alone or in combination of two or more.
  • the film used for the base layer 11 may be a stretched film such as a non-stretched film, a uniaxially stretched film or a biaxially stretched film, regardless of whether or not it is stretched.
  • the above film can be either a single layer film or a multilayer film having a plurality of layers.
  • a surface-treated film for the base layer 11 from the viewpoint of improving the adhesiveness with the holding layer 12 and the bonding layer 13 .
  • Specific examples of surface treatment include corona treatment, plasma treatment, undercoat treatment, primer coat treatment, and the like.
  • the thickness of the base layer 11 is not particularly limited.
  • the holding layer 12 is a layer for holding a plurality of electronic components 31 side by side, and can be formed of, for example, an adhesive.
  • the adhesive strength of the adhesive forming the holding layer 12 is not particularly limited, but when the adherend is peeled off from the surface of the silicon wafer after being adhered to the surface of the silicon wafer and left for 60 minutes, the adherend is attached to the silicon wafer.
  • the 180° peel adhesive strength measured according to JIS Z0237 is preferably 0.1 N/25 mm or more and 10 N/25 mm or less. When the adhesive strength is within the above range, good adhesiveness with the electronic component 31 can be ensured.
  • This adhesive strength is more preferably 0.2 N/25 mm or more and 9 N/25 mm or less, and further preferably 0.3 N/25 mm or more and 8 N/25 mm or less.
  • the above measured values are values obtained by separately providing the holding layer 12 on a biaxially stretched PET film having a thickness of 38 ⁇ m.
  • the holding layer 12 preferably has a characteristic that the holding force is reduced by heat application or energy beam irradiation.
  • the adhesive used in the holding layer 12 is not particularly limited, but examples of those having the above properties include a foamed adhesive whose adhesive strength is reduced or lost by the application of heat, and an energy beam whose adhesive strength is reduced or lost by irradiation with energy rays.
  • a curable pressure-sensitive adhesive can be mentioned.
  • Both the foaming adhesive and the energy curing adhesive contain at least a main adhesive.
  • this adhesive main agent include acrylic adhesives, silicone adhesives, rubber adhesives, and the like. These may use only 1 type and may use 2 or more types together. Among these, acrylic pressure-sensitive adhesives are preferred.
  • acrylic adhesives include homopolymers of acrylic acid ester compounds, copolymers of acrylic acid ester compounds and comonomers, and the like. These may use only 1 type and may use 2 or more types together.
  • acrylic ester compounds include methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate. These may use only 1 type and may use 2 or more types together.
  • comonomers include vinyl acetate, acrylonitrile, acrylamide, styrene, methyl (meth)acrylate, (meth)acrylic acid, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, glycidyl methacrylate, maleic anhydride, and the like.
  • the pressure-sensitive adhesive can contain a cross-linking agent in addition to the above-described main pressure-sensitive adhesive.
  • cross-linking agents include epoxy-based cross-linking agents (pentaerythrol polyglycidyl ether, etc.) and isocyanate-based cross-linking agents (diphenylmethane diisocyanate, tolylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, polyisocyanate, etc.). These cross-linking agents may be used alone or in combination of two or more.
  • the adhesive contains a cross-linking agent
  • the content of the cross-linking agent is preferably 10 parts by mass or less based on 100 parts by mass of the entire adhesive.
  • the adhesive strength of the adhesive can be adjusted by the content of the cross-linking agent. Specifically, the method described in JP-A-2004-115591 can be used.
  • a foaming adhesive is an adhesive that can reduce or lose the adhesive strength of the holding layer 12 to the electronic component 31 by foaming due to the application of heat.
  • a foaming pressure-sensitive adhesive can be realized by blending a thermally expandable foaming agent (hereinafter also simply referred to as "foaming agent") into the pressure-sensitive adhesive.
  • the foaming agent may be blended with the adhesive as it is, or may be incorporated by being combined with the adhesive, or may be formed into thermally expandable microparticles in which the foaming agent is encapsulated in an outer shell (such as a microcapsule). It can be used as thermally expandable particles such as spheres.
  • the mechanism of the thermally expandable particles is not limited, but the following (1) and (2) can be exemplified. That is, (1) heat expands the inclusions of the thermally expandable particles, softens the material constituting the outer shell by the heating, expands the entire thermally expandable particles, and increases the thermal expandability in the adhesive. Particle volume can be increased. As a result, the adhesion area between the electronic component 31 held by the holding layer 12 and the adhesive is reduced, and the adhesion of the holding layer 12 to the electronic component 31 can be reduced or lost.
  • the inclusion of the thermally expandable particles can be expanded by heating, the outer shell can be destroyed by the expanded substance, and the volume of the expanded substance in the adhesive can be increased.
  • the adhesion area between the electronic component 31 held by the holding layer 12 and the adhesive is reduced, and the adhesion of the holding layer 12 to the electronic component 31 can be reduced or lost.
  • Either one of these mechanisms may be used alone, or both of them may be used.
  • the mechanism of reduction or loss of adhesive strength due to thermally expandable particles is not limited to the above (1) and (2).
  • foaming agent described above examples include inorganic foaming agents and organic foaming agents. These may use only 1 type and may use 2 or more types together.
  • inorganic foaming agents include ammonium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, ammonium nitrite, sodium borohydride, various inorganic azide compounds (metal azide compounds, etc.), and water. These may use only 1 type and may use 2 or more types together.
  • organic blowing agents include alkane fluorochloride compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azo compounds such as azobisisobutyronitrile, azodicarbonamide, and barium azodicarboxylate; hydrazine compounds such as toluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis(benzenesulfonyl hydrazide), allyl bis(sulfonyl hydrazide); p-toluylenesulfonyl semicarbazide, 4,4' -semicarbazide compounds such as oxybis(benzenesulfonyl semicarbazide); triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N,N'-dinitrosopent
  • alkanes having a boiling point of 100° C. or lower such as isobutane, propane, and pentane
  • a component that can be heated and vaporized to expand can be used.
  • alkanes having a boiling point of 100° C. or lower such as isobutane, propane, and pentane
  • Examples of materials forming the outer shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone. These may use only 1 type and may use 2 or more types together.
  • the foaming temperature is preferably set to a temperature exceeding the heating temperature in the evaluation step described later. Specifically, the foaming temperature can be greater than 120° C., can be 135° C. or higher, and can be 150° C. or higher.
  • an energy-curable adhesive is an adhesive that can be cured by irradiating the adhesive with energy rays to reduce or lose adhesive strength.
  • Energy rays include ultraviolet rays, electron rays, infrared rays, and the like. These energy rays may be used alone or in combination of two or more.
  • an ultraviolet curable pressure-sensitive adhesive that is cured by ultraviolet rays can be used.
  • This energy-curable pressure-sensitive adhesive contains, in addition to the main adhesive agent described above, a compound having a carbon-carbon double bond in the molecule (hereinafter simply referred to as a "curable compound") and a curable compound that reacts with energy rays.
  • a photoinitiator capable of initiating polymerization may be included.
  • This curable compound is preferably a monomer, oligomer and/or polymer that has a carbon-carbon double bond in its molecule and is curable by radical polymerization.
  • the curable compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6- hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate and the like. These may use only 1 type and may use 2 or more types together.
  • the adhesive contains a curable compound
  • the content of the curable compound is preferably 0.1 to 20 parts by weight with respect to 100 parts by mass of the adhesive.
  • the carbon-carbon double bond in the molecule may be included by having it in the molecule of the adhesive main agent. That is, for example, the main adhesive can be an energy-curable polymer having a carbon-carbon double bond in its side chain.
  • the curable compound described above may or may not be blended.
  • acetophenone-based photopolymerization initiators ⁇ methoxyacetophenone, etc. ⁇ , ⁇ -ketol compounds ⁇ 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, ⁇ -hydroxycyclohexylphenylketone, etc. ⁇ , ketal compounds ⁇ benzyl dimethyl ketal, etc. ⁇ , benzoin photoinitiators ⁇ benzoin, benzoin alkyl ethers (benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether), etc. ⁇ , benzophenone photoinitiators ⁇ benzophenone, benzoyl benzoic acid, etc. ⁇ , aromatic ketals ⁇ benzyl dimethyl ketal, etc. ⁇ , and the like. These may use only 1 type and
  • the holding layer 12 has a balance between the viewpoint that the electronic components 31 floating on the surface of the holding layer 12 can be favorably picked up, and the bonding layer 13 described later. From this point of view, a foamed pressure-sensitive adhesive is preferable, and the use of thermally expandable particles is particularly preferable.
  • the thickness of the holding layer 12 is not particularly limited, but can be, for example, 1 ⁇ m or more and 1000 ⁇ m or less, further 3 ⁇ m or more and 500 ⁇ m or less, further 5 ⁇ m or more and 250 ⁇ m or less, and furthermore 10 ⁇ m or more. It can be 150 ⁇ m or less.
  • the bonding layer 13 is a layer for bonding the film 10 to the substrate 21 and is made of an adhesive.
  • the thickness of the bonding layer 13 can be, for example, 1 ⁇ m or more and 1000 ⁇ m or less, further 3 ⁇ m or more and 500 ⁇ m or less, further 5 ⁇ m or more and 250 ⁇ m or less, and further 10 ⁇ m or more and 150 ⁇ m or less. be able to.
  • the adhesive used for the bonding layer 13 is not particularly limited as long as it can bond the film 10 to the substrate 21 to be described later. Usually, this adhesive contains at least a main adhesive agent. As this adhesive main agent, the same ones as those listed for the above-described holding layer 12 can be used.
  • the energy-curing adhesive described above for the holding layer 12 can be used.
  • the release target can be selected as desired by selecting either heat application or energy beam irradiation.
  • a foaming adhesive is used for the holding layer 12 and an energy-curing adhesive is used for the bonding layer 13
  • only the electronic component 31 can be peeled off when heat is applied, and when the energy beam is irradiated, the electronic component The film 10 can be peeled off from the substrate 21 while the film 31 is held.
  • the adhesive strength of the adhesive that forms the bonding layer 13 is not particularly limited, but is measured in accordance with JIS Z0237 when peeled off from the stainless steel surface after being adhered to stainless steel and left for 60 minutes.
  • the peel adhesive strength can be 0.1 N/25 mm or more and 50 N/25 mm or less, further 0.2 N/25 mm or more and 25 N/25 mm or less, and further 0.3 N/25 mm or more and 8 N/15 mm or less. be able to.
  • the above measured values are values obtained by separately providing the bonding layer 13 on a biaxially stretched PET film having a thickness of 38 ⁇ m.
  • the film 10 of the present invention may consist of only the base layer 11, the retention layer 12 and the bonding layer 13, but may also include other layers.
  • other layers include an interfacial strength improving layer for improving the interfacial strength with the pressure-sensitive adhesive, a migration prevention layer for suppressing migration of low molecular weight components from the base layer 11 to the holding layer 12, and the like. These may use only 1 type and may use 2 or more types together.
  • a component manufacturing tool 20 (see FIGS. 3(a) and 3(b)) of the present invention is used to simultaneously evaluate electrical characteristics of an electronic component 31 in a heated state.
  • the component manufacturing tool 20 includes a substrate 21 and a holding layer 12 (see FIGS. 3(a) and 3(b)).
  • the holding layer 12 is a layer provided on one side of the substrate 21 to hold a plurality of electronic components 31 side by side.
  • the component manufacturing tool 20 can be configured by bonding the film 10 described above to one surface side of the substrate 21 via the bonding layer 13 described above.
  • the substrate 21 is provided for the purpose of arranging the electronic component 31 at an appropriate measurement position in the evaluation process described later.
  • the material of the substrate 21 is not particularly limited, it is preferably hard so as not to bend during the evaluation process. Therefore, as the material of the substrate 21, metal materials such as stainless steel, aluminum, iron, and copper; non-metal inorganic materials such as glass, fine ceramics and silicon wafers; resin materials, and the like can be used. These may use only 1 type and may use 2 or more types together.
  • various resins mentioned as materials for forming the resin-made base layer 11 (base layer 11) forming the component-manufacturing film 10 can be used.
  • the Young's modulus of the substrate 21 can be 10 GPa or more.
  • the thickness of the substrate 21 is not limited, but can be, for example, 1 mm or more and 500 mm or less, 2 mm or more and 250 mm or less, and further 3 mm or more and 150 mm or less.
  • the component manufacturing tool 20 is not limited to the configuration for bonding the film 10 described above, and may be configured by providing only the holding layer 12 on one surface side of the substrate 21. can be done.
  • the holding layer 12 can use the same adhesive as the holding layer 12 of the film 10 described above.
  • the electronic component manufacturing method, electronic component manufacturing film, and electronic component manufacturing tool of the present invention are widely used in applications for manufacturing electronic components.
  • it has the property of enabling simultaneous measurement of a plurality of electronic components, and is suitably used for manufacturing components with excellent productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

評価効率に優れた部品製造方法と、該部品製造方法で使用される部品製造用フィルム及び部品製造用具を提供することを目的として、本方法は、基板と保持層とを有する支持体上に、保持層を介して、複数の電子部品を、電極が露出した状態に並べる工程と、支持体上に配置された電子部品のうち80以上の電子部品の電気特性を、露出した電極の全部又は一部とプローブとを接触させて、同時に通電評価する工程と、を備える。本部品製造用フィルムは、樹脂製基層と、樹脂製基層の一面側に設けられた保持層と、樹脂製基層の対面側に設けられ、基板に本部品製造用フィルムを接合するための接合層と、を備える。本部品製造用具は、基板と、基板の一面に設けられた保持層と、を備える。

Description

電子部品の製造方法、製造用フィルム及び製造用具
 本発明は、個片化された複数の電子部品を同時に通電評価する電子部品の製造方法、当該電子部品の製造方法で使用される電子部品製造用フィルム及び電子部品製造用具に関する。
 電子部品(パッケージ部品、半導体チップ等)は、その製造時に個別に評価(検査)して、評価合格したもののみを次工程へ送るよう、各段階で選別できることが望まれる。即ち、次工程へ送る前に評価を行い、相応しくない部品を除くことで歩留まりを向上させコスト低減を実現する目的がある。
 この評価を行う方法として、ソケットと称される評価用マウント(下記特許文献1参照)を利用する方法や、保持フィルムを利用する技術(下記特許文献2参照)が知られている。
特開2011-112552号 国際公開第2017/002610号
 上記評価工程に際しても、電子部品製造全体におけると同様に、コスト低減に繋がる高い効率が求められる。
 この点、ソケットを用いる方法は、評価対象となる電子部品の種類が少なく限られ、既知の仕様である場合には、高い評価効率を得ることができる。しかしながら、ソケットは、測定対象となる電子部品ごとにサイズや電極位置等が専用設計され、電子部品の多様化に伴い、ソケットの種類も多用化される。このため、測定対象に対する自由度の低下と、評価効率の低下が問題となる。即ち、電子部品の新たな仕様に則して、新たなソケットが必要となるため、テスト運用にさえ時間を要したり、評価対象が異なるロットでは、必要なソケットへ交換する仕様変更を要し、評価効率を低下させてしまうという課題がある。
 これに対し、上記特許文献2に開示された技術は、評価工程、個片化工程及びピックアップ工程の3工程で共通した保持フィルムを利用する技術である。この保持フィルムを利用することにより、ソケットを排することができ、ソケット利用に伴う律速を解消できる。一方で、この技術は、保持フィルムの基層として、特徴的材料を利用することで実現されており、評価効率を向上させようとすると、基層材料に起因すると考えられる課題を生じることが分かった。即ち、この保持フィルムを利用して評価を行うと、位置ズレを生じる場合があることが分かってきた。この位置ズレは、特に評価対象数が多く、測定温度が高い場合に生じやすい傾向にある。
 本発明は上記問題に鑑みてなされたものであり、評価効率に優れた部品製造方法と、該部品製造方法で使用される部品製造用フィルム及び部品製造用具を提供することを目的とする。
 上記の問題点を解決する手段として、本発明は以下の通りである。
[1]基板と保持層とを有する支持体上に、前記保持層を介して、複数の電子部品を、電極が露出した状態に並べる配置工程と、
 前記支持体上に配置された前記電子部品のうち80以上の電子部品の電気特性を、当該露出した電極とプローブとを同時に接続させて、通電評価する評価工程と、を備えることを特徴とする電子部品の製造方法。
[2]前記評価工程は、前記通電評価を、前記電子部品が加熱された状態で行う工程である上記[1]に記載の電子部品の製造方法。
[3]前記配置工程前に、前記支持体とは異なる他支持体上で、前駆電子部品を個片化して前記電子部品を得る個片化工程を備える上記[1]又は上記[2]に記載の電子部品の製造方法。
[4]前記保持層は、熱付加又はエネルギー線照射により保持力が低下される特性を有する上記[1]乃至[3]のうちのいずれかに記載の電子部品の製造方法。
[5]前記保持層は、熱膨張性粒子を含み、加熱により保持力が低下される特性を有する上記[1]乃至[3]のうちのいずれかに記載の電子部品の製造方法。
[6]前記基板は、金属製である上記[1]乃至[5]のうちのいずれかに記載の電子部品の製造方法。
[7]前記支持体は、前記基板の一面側に貼着された部品製造用フィルムを備え、
 前記部品製造用フィルムは、樹脂製基層と、
 前記樹脂製基層の一面側に設けられた前記保持層と、
 前記樹脂製基層の対面側に設けられ、前記基板に前記部品製造用フィルムを接合するための接合層と、を備える上記[1]乃至[6]のうちのいずれかに記載の電子部品の製造方法。
[8]前記樹脂製基層は、線熱膨張係数が100ppm/K以下である上記[1]乃至[7]のうちのいずれかに記載の電子部品の製造方法。
[9]前記樹脂製基層は、融点が180℃以上であるとともに、温度160℃における引張弾性率E’(160)が50MPa以上である上記[1]乃至[8]のうちのいずれかに記載の電子部品の製造方法。
[10]前記配置工程において、並べる前記電子部品の個数が100以上である上記[1]乃至[9]うちのいずれかに記載の電子部品の製造方法。
[11]上記[1]乃至[10]のうちのいずれかに記載の電子部品の製造方法に用いられる部品製造用フィルムであって、
 樹脂製基層と、
 前記樹脂製基層の一面側に設けられた前記保持層と、
 前記樹脂製基層の対面側に設けられ、前記基板に本部品製造用フィルムを接合するための接合層と、を備えることを特徴とする部品製造用フィルム。
[12]上記[1]乃至[10]のうちのいずれかに記載の電子部品の製造方法に用いられる部品製造用具であって、
 前記基板と、
 前記基板の一面に設けられた前記保持層と、を備えることを特徴とする電子部品製造。
 本発明の電子部品の製造方法、当該方法で使用される電子部品製造用フィルム及び電子部品製造用具によれば、評価効率に優れた電子部品の製造を行うことができる。
本発明における配置工程及び評価工程を説明する説明図である。 本発明における部品製造用フィルムを説明する説明図である。 本発明における部品製造用具を説明する説明図である。 本発明における個片化工程を説明する説明図である。 本発明における配置工程の詳細を説明する説明図である。
 以下、本発明を、図面を参照しながら説明する。ここで示す事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要で、ある程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
[1]電子部品の製造方法
 本発明の電子部品の製造方法は、基板21と保持層12とを有する支持体45上に、保持層12を介して、複数の電子部品31を、電極315が露出した状態に並べる配置工程と、
 支持体45上に配置された電子部品31のうち80以上の電子部品の電気特性を、露出した電極315とプローブとを同時に接続させて、通電評価する評価工程と、を備える(図1参照)。
(1)配置工程
 配置工程は、基板21と保持層12とを有する支持体45上に、保護層12を介して複数の電子部品31を、電極315が露出した状態に並べる工程である(図1(a)参照)。
 本発明において、電子部品31には、下記〈A〉及び〈B〉が含まれる。
 〈A〉半導体部品:半導体ウエハを個片化(ダイシング)して得られた半導体チップや、シリコンダイ等が含まれる。
 〈B〉パッケージ部品:パッケージアレイから個片化された部品や、パッケージアレイを経ることなく個別に形成されたパッケージ部品等が含まれる。
 尚、パッケージ部品において、封止材料は限定されず、有機材料(樹脂)及び無機材料(セラミックス、結晶化ガラス、ガラス等)を用いることができる。更に、パッケージ部品には、封止後に再配線を行わないもの、封止後に再配線を行うファンアウト方式(eWLB方式)のもの、ウエハレベルチップサイズパッケージ(WLCSP)方式のものが含まれる。
 上述した電子部品31は、外部と電気的な接続を行う電極を有する。電極は1つのみを有してもよいが、複数を有してもよい。外部と電気的接続が可能な電極の形態は限定されず、例えば、半導体部品においては、パッド電極、ボンディング用電極、貫通電極の露出面等が含まれる。また、パッケージ部品では、パッドタイプの電極、ピンタイプの電極、ボールタイプの電極、リードフレームタイプの電極等が含まれる。即ち、パッケージ部品としては、PGA(Pin Grid Array)タイプもの、CPGA(Ceramic Pin Grid Array)タイプのもの、PPGA(Plastic Pin Grid Array)タイプのもの、SPGA(Staggered Pin Grid Array)タイプのもの、BGA(Ball Grid Array)タイプのもの、LGA(Land Grid Array)タイプのもの、QFP(Quad Flat Package)タイプのもの、PQFP(Plastic Quad Flat Package)タイプのもの、QFN(Quad Flat Non-leaded)タイプのもの、QFJ(Quad Flat J-leaded)タイプのもの、PQFJ(Plastic Quad Flat J-leaded)のもの、TCP(Tape Carrier Package)タイプのもの、CSP(Chip Size Package)タイプのもの等が含まれる。
 尚、電子部品31は、配置工程及び評価工程を経た後も、経る前と、構成的な変化は通常生じない。即ち、測定対象である電子部品31は、配置工程及び評価工程を経た後も、電子部品31である。但し、本発明の電子部品の製造方法において、評価工程後、電子部品31に他の構成を付加することになる他工程を経る場合には、測定対象である電子部品31は、前駆電子部品31と換言できる。
 配置工程では、電子部品31が有する電極315を、外部との電気的接続が可能となるように、外部へ露出した状態で並べる。即ち、支持体45上に、保持層12を介して、これらの電極315が、外部と電気的接続が可能となるように並べる。従って、通常、電極315が保持層12に保持されないように並べることになる。そして、電極315は、電子部品31の側方へ露出されるように配置してもよいが、プローブとの接触をより容易にするという観点からは、電極315が、保持層12の上方へ向くように並べることが好ましい。即ち、電子部品31の本体を挟んで、保持層12とは反対側に電極315が位置するように並べることが好ましい。
 配置工程において、並べる電子部品31の個数は限定されないが、本方法は、少なくとも80個以上の電子部品31を同時に通電評価するものであることから、並べる電子部品31の個数も、通常、80個以上となる。この下限個数は、例えば、100個以上とすることができ、更に300個以上とすることもできる。一方で、並べる電子部品31の上限個数は限定されないが、通常、100,000個以下である。この上限個数は、例えば、10,000個以下、更には、500個以下にすることができる。具体的には、例えば、80個以上100,000個以下、100個以上100,000個以下、300個以上100,000個以下、80個以上10,000個以下、100個以上10,000個以下、300個以上10,000個以下、80個以上500個以下、100個以上500個以下、300個以上500個以下とすることができる。
 電子部品31は、支持体45上に並べる際、保持層12上に並べる。即ち、保持層12は、電子部品31を保持するための層であり、電子部品31は保持層12上に並べることとなる。
 支持体45は、基板21と保持層12とを有すること以外に限定されないが、後述する本発明の部品製造用フィルム10(図2参照)及び部品製造用具20(図3(a)及び図3(b)参照)を利用できる。これらについては、後に詳述する。
 例えば、図5のように、後述する個片化用支持体40上に配置されている電子部品31の場合は、配置工程前に、評価(検査)を受けた電子部品31であってもよい。この場合、次工程へ移行するのに適した電子部品31のみを個片化用支持体40上からピックアップして、評価用支持体45上へ並べることができる。そして、例えば、個片化用支持体40上の評価合格した一部の電子部品31のみを、評価用支持体45上へ移行させた場合には、評価用支持体45上の空きスペースへ、他の個片化用支持体40上の評価合格した電子部品31を加えることができる。このようにして、評価用支持体45上のスペースを無駄なく利用し、同時評価を行うことができる。
(2)評価工程
 支持体45上に配置された電子部品31のうち80以上の電子部品の電気特性を、露出した電極315とプローブ51とを同時に接続させて、通電評価する工程である(図1(b)参照)。ここで、各電子部品には複数の電極が存在するが、それぞれ全てに接続させる必要はない。
 この評価工程を更に説明すれば、露出された電極を有する電子部品のうち80以上の電子部品の当該露出された電極とプローブとを電気的に接続する接続工程を含むことができる。そして、プローブと電気的に接続された80以上の電子部品の電気特性を一括して通電評価する評価工程を含むことができる。
 従って、本発明の電子部品の製造方法は、基板と保持層とを有する支持体上に、前記保持層を介して、複数の電子部品を、電極が露出した状態に並べる配置工程と、
 露出された電極を有する前記電子部品のうち80以上の電子部品の当該露出された電極とプローブとを電気的に接続する接続工程と、
 前記プローブと電気的に接続された前記80以上の電子部品の電気特性を一括して通電評価する評価工程と、を備える電子部品の製造方法とすることができる。
 プローブ51は、電子部品31の露出された電極315と電気的に接触される部材である。プローブ51の構造は限定されず、公知のものを利用できる。例えば、電気導通性を有する通電ピン、当該通電ピンと電極315との当接力を調節する弾性体(コイルバネ、弾性樹脂等)、当該通電ピンの可動方向を規制するガイド部等を備えることができる。
 一方、電極315には、リードフレームのアウターリード電極、ピングリッド電極、ボールグリッド電極(ハンダボール)、ランド電極、更にその他の電極形態などが含まれる。
 また、上述の通り、本方法では、80以上の電子部品を同時に接続させて通電評価することから、プローブ51は、80セット以上を要する。1セットに含まれるプローブ数は限定されないが、少なくとも1本以上であり、10本以上、更には100本以上(通常、1セットに含まれるプローブ数は10,000本以下)とすることができる。これらのプローブ51は、例えば、プローブカード50(探針付き基板)に一体的に備えることができる。尚、当然ながら、通電評価に際しては、プローブ51の全部を利用してもよいし、一部のみを利用してもよい。
 通電評価する電子部品31は、支持体45上に並べられた全部の電子部品のうちの一部の電子部品31であってもよいし、全部の電子部品31であってもよい。その必要性に応じて行うことができるが、製造効率及びコスト抑制の観点から、より多くの電子部品31を同時に接続させて通電評価することが好ましい。
 例えば、図1(b)に示すように、評価工程では、複数のプローブ51が設けられたプローブカード50を、保持層12上に並べられた電子部品31から露出された電極315へ接触させて電気的接続を行い、プローブ51と電子部品31上に形成された回路との間でやり取りされる、例えば、信号の正否判定を行う(プローブテスト)ことができる。
 ここで、露出された電極315とプローブ51との接続は、全ての電極315とプローブ51との間で同時に行われてもよいが、例えば、プローブカード50の中心から外周側へ向かって、電極315と接続され、結果的に、通電評価時に、80個以上の電子部品31との電気接続が完成される態様や、プローブカード50の外周側から中心へ向かって、電極315と接続され、結果的に、通電評価時に、80個以上の電子部品31との電気接続が完成される態様などであってもよい。即ち、接続工程は、電極315とプローブ51とが同時に接続されてもよいし、電極315とプローブ51とが暫時的に接続されてもよく、結果的に、80個以上の電子部品の電極315とプローブ51との間での電気接続が、通電評価の開始時までに完成されればよい。
 プローブカード50の具体的構成は限定されず、同時に評価する電子部品31の個数や、支持体45上における電子部品31の配置に応じた設計のものを使用できる。特に本方法に利用する評価機構では、80個以上の複数の電子部品の複数の電極と同時に接続が可能な多数のプローブを備えた大型のプローブカードを用いることができる。加えて、必要であれば、個別の評価を行うことができるように、即ち、例えば、1つの電子部品の複数の電極と同時に接続が可能な少数のプローブを備えた小型のプローブカードを有することができる。
 通電評価の内容や目的等は限定されず、例えば、動作確認や、加速耐久試験等の内容や目的が挙げられる。より具体的には、例えば、断線や短絡の有無の評価、入力電圧、出力電圧及び出力電流等の評価を行うことができる直流通電テスト、出力波形の評価を行うことができる交流通電テスト、書き込み読み込み演算の可否・速度等の評価、保持時間の評価、相互干渉の評価等の機能テスト等が含まれる。即ち、パッケージ部品におけるファイナルテスト、構造化テスト、スキャンテスト、アダプティブテスト等や、半導体部品におけるウエハテスト、バーンインテスト等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 また、通電評価では、電気的に接続された80個以上の電子部品31の評価を、一括して行うことができる。この評価は、80個以上の電子部品31に対して同時に行われてもよいが、逐次的に行われてもよい。即ち、電極315とプローブ51との電気的接続を解消することなく、80個以上の電子部品31の評価を行うことができればよい。
 また、本製造方法における評価工程では、電子部品31が加熱された状態で通電評価を行うことができることが好ましい。この場合、例えば、支持体45として、部品製造用具20の保持層12に電子部品31が貼着された形態の支持体45を利用できる。即ち、部品製造用具20を、基板21を介して真空チャックテーブル(図示略)に固定する。そして、真空チャックテーブルから部品製造用具20(即ち、支持体45)を加熱することにより、加熱状態で電子部品31を通電評価することができる。
 評価工程における加熱状態の温度域は、電子部品31の用途に応じて異なり、特に限定されない。この温度域の下限は、例えば、50℃以上とすることができ、更に100℃以上とすることができ、更に150℃以上とすることができる。一方、この温度域の上限は、通常、250℃以下である。
 通電評価を加熱状態で行う場合、例えば、支持体として、フィルム状の支持体を用いると、加熱状態となった場合に熱膨張により、電子部品31の位置が変化し得る。こうした電子部品31の位置の変化は、上記プローブ51に対する電子部品31の位置ずれを発生させ、この位置ずれは、電子部品31の同時測定数が多くなるに従って大きなものとなり、特に同時測定数が80個以上となることで顕著となる。
 このため、本方法では、基板21を備えた支持体45を利用する。即ち、支持体45として、下記(A)及び(B)が例示される。
 (A)支持体45として、基板21と、基板21の一面側に貼着された部品製造用フィルム10と、を備え、部品製造用フィルム10が、基層(樹脂製基層)11と、基層11の一面側に設けられた保持層12と、基層11の対面側に設けられた基板21用の接合層13と、を備えた構成の支持体45(図3(a)参照)
 (B)基板21と、基板21の一面側に設けられた保持層12と、を備えた構成の支持体45(図3(b)参照)
 このように、支持体45が、基板21を備えることにより、基板21が電子部品31の位置、特にプローブ51との相対的な位置ずれが顕著に現れる電子部品31の水平方向の位置を、保持するように機能させることができる。
 尚、上記(B)においては、基板21及び保持層12以外の構成を備えてもよいが、(A)とは異なり、基層11を備えない構成にすることができ、更には、基板21及び保持層12のみから構成することができる。
 これらの支持体45によれば、電子部品31とプローブ51との相対的な位置ずれを加熱時にも防止するように機能させることができる。即ち、例えば、(A)構成の支持体45であれば、部品製造用フィルム10を基板21に貼着することや、部品製造用フィルム10をなす基層11として耐熱樹脂を用いることや、基層11の厚さを増すこと等の構成の採用により、電子部品31とプローブ51との加熱時の相対的な位置ずれを防止できる。
 従って、支持体45として、上述の(A)及び/又は(B)を利用することで、評価工程において、電子部品31の複数個同時測定をより確実に行うことができ、製造効率の更なる向上を図ることができる。
(3)その他の工程
 本方法では、上述の配置工程と評価工程以外の他の工程を備えることができる。他の工程として、配置工程の前工程として、個片化された電子部品31を得る個片化工程や、評価工程の後工程として支持体45から電子部品31を離間させるピックアップ工程等が挙げられる。
 上述のうち、個片化工程は、複数の電子部品31となる要素が結合された前駆部品30(アレイ状の電子部品や、半導体ウエハ等)を個片化(ダイシング)して電子部品31を得る工程である。この際、裏面に個片化用支持体40を貼着して行うことができる(図4参照)。個片化工程は、公知の方法を用いて適宜行うことができる。
 個片化工程において、個片化用支持体40は、枠体41の裏面からその開口を覆うように貼着されており、前駆部品30は、この枠体41の内側で、個片化用支持体40上に貼着されている。
 個片化工程で使用される前駆部品30は、その表面に電極315が形成されている。この電極については前述の通りである。また、半導体部品(ウエハ)では、通常、その表面に回路が形成される。回路としては、配線、キャパシタ、ダイオード及びトランジスタ等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 また、個片化に際して、パッケージ部品では、1つの電子部品31内に少なくとも1つの半導体部品(半導体チップ)が含まれるように個片化されてもよく、1つの電子部品31内に2つ以上の半導体部品(半導体チップ)が含まれるように個片化されてもよい。
 尚、上記のパッケージアレイは、多数の半導体チップ(シリコンダイ)を並べて封止した前駆部品30であり、個片化前のパッケージ部品がアレイに含まれた形態を意味する。
 他方、上述のうち、個片化用支持体40上の一部の複数個の電子部品31のみを取り外す場合や、個片化用支持体40上の電子部品31を1個ずつ取り外す場合には、取り外した電子部品31を、個片化用支持体40上における配置のまま、評価用支持体45上へ転写するように並べることができる他、個片化用支持体40上における配置とは異なるように、評価用支持体45上へ並べることもできる。
 以上の通り、従来の評価では、ソケット(評価用マウント)が利用され、異なる電子部品の評価を行う場合や、異なる種類の電子部品が混在する場合等に、その都度、ソケットを取り換えて評価用ボードの仕様を変更する必要があった。
 これに対し、本方法では、ソケットを利用する必要がなく、支持体45として、電子部品製造用フィルムや電子部品製造用具として、フィルムや基板を利用できる。このため、本方法では、ソケット利用に伴う治具コストを抑制できる。
 更に、電子部品31は、その電極315が露出した状態となるように支持体45上に直接的に並べた後、この露出された電極315を利用して、電子部品31の電気特性を、評価できる。このため、評価用ボードの仕様変更を要さず、工数増加を抑制して、製造効率を向上、コスト低減を実現できる。
 更に、ソケットは、通常、評価対象である電子部品の収容位置を規定するために隔壁(側壁)を有する。このため、評価用ボード上では、1つの電子部品につき、ソケットが備える2つの隔壁厚さを占有するスペースが必要となる。このため、電子部品の一回の評価における評価数をより多くしようとすると、測定ボード上では、ソケットの隔壁が占める面積も嵩むことになる。即ち、同時評価数を大きくしようとすると、隔壁の専有面積が増えてしまうというジレンマを有し、配置できる電子部品数が多くし難いというデメリットを有する。
 これに対して、本方法では、電子部品31を、その電極315が露出した状態となるように支持体45上に並べた後、この露出された電極315を利用して、電子部品31の電気特性を評価できる。即ち、ソケットを利用しないため隔壁を排することができ、隔壁の専有面積に相当する領域に電子部品31を並べることができる。従って、より多くの電子部品31の同時評価が可能となる。
 加えて、ソケットによって、電子部品の収容位置が固定されないため、支持体45上に並べる電子部品31の配置自由度が高く、評価ロット毎に、様々なタイプの電子部品をその都度、評価数が多くなるように最適化計算して配置できる。即ち、例えば、最も面積効率がよくなるように電子部品31を並べることもできるし、後述するように、プローブカードを利用する場合等には、プローブカードによる同時評価数が多くなるように最適化することもできる。
 また、本発明の方法では、通電評価に際して、プローブを活用する。例えば、支持体45上に電極315が露出するように並べられた電子部品31の上方に、プローブカードを配置し、いずれか一方又は両方を近づけて接触通電させて評価を行うことができる。
 そして、電子部品31は、電極315が外部と接続可能なように露出されて並べられればよいだけであるため、種々の異なる電子部品を自在に支持体45上に並べることができる。通電評価時には、例えば、プローブカードによって、最も評価数が多くなるように同時評価を行った後、支持体45の状態を維持したままで、同時評価できない電子部品を個別評価することができる。この場合であっても(接針回数が増えるとしても)、ソケットを利用する場合のように評価用ボード変更のために装置を停止する必要はないため、優れた作業効率を得ることができる。
 更に、必要な場合には、プローブカード以外に、画像取得と取得画像に基づき位置調節できる単発測定用の接針評価機構を備えることができる。これにより、個数が多いタイプの電子部品はプローブカードで同時評価し、個数の少ないタイプの電子部品は、位置を読み取り、個別に評価することができる。
[2]部品製造用フィルム
 本発明の部品製造用フィルム10(以下、省略して「フィルム10」とも記載する)は、電子部品31の電気特性を評価するために、基板21の一面側に接合して利用されるものである。
 このフィルム10は、樹脂製基層11(以下、省略して「基層11」とも記載する)と、保持層12と、接合層13と、を備える(図2参照)。
 保持層12は、電子部品31を複数並べて保持するために、基層11の一面側に設けられた層である。
 接合層13は、基板21にフィルム10を接合するために、基層11の対面側に設けられた層である。
 以下、フィルム10の各層について説明する。
(1)基層(樹脂製基層)
 基層11は、フィルム10の取り扱い性や機械的特性等を向上させることを目的として設けられる層である。
 基層11に使用される材料は、特に限定されないが、後述する評価工程の測定環境に耐え得る機械的強度を有するもの、特には加温状態での熱膨張や伸張を抑制可能なものが好ましい。通常、基層11の材料には樹脂を利用できる。
 基層11を構成することができる樹脂としては、ポリエチレン、ポリプロピレン、ポリ(4-メチル-1-ペンテン)、ポリ(1-ブテン)等のポリオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の芳香族ポリエステル系樹脂;半芳香族ポリイミド、芳香族ポリイミド等のポリイミド系樹脂;ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等のポリアミド系樹脂;ポリアクリレート;ポリメタアクリレート;ポリ塩化ビニル;ポリエーテルイミド;ポリアクリロニトリル;ポリカーボネート;ポリスチレン;アイオノマー;ポリスルホン;ポリエーテルスルホン;ポリフェニレンエーテル等から選択される1種又は2種以上の熱可塑性樹脂を挙げることができる。
 上述した樹脂の中でも、評価工程での加熱状態における位置ずれを抑制する観点から、融点を有する場合、その融点は、180℃以上であることが好ましく、200℃以上がより好ましく、220℃以上が特に好ましい。一方、この融点は、例えば、800℃以下であることが好ましく、600℃以下であることがより好ましい。具体的には、例えば、180℃以上800℃以下、200℃以上800℃以下、220℃以上800℃以下、180℃以上600℃以下、200℃以上600℃以下、220℃以上600℃以下とすることができる。尚、この融点は、JIS K7121による融解ピーク温度であるものとする。
 また、基層11の線熱膨張係数は100ppm/K以下(温度25~150℃における熱膨張率)であることが好ましい。これにより、評価工程での加熱状態における位置ずれをより効果的に抑制できる。この値は、通常、5ppm/K以上である。この線熱膨脹係数は、更に、90ppm/K以下が好ましく、50ppm/K以下がより好ましい。尚、この熱膨張係数はJIS K7197に準拠して測定した値である。
 更に、基層11の温度160℃における引張弾性率E’(160)が、50MPa以上であることが好ましい。これにより、評価工程での加熱状態における位置ずれをより効果的に抑制できる。この値は、通常、5000MPa以下である。E’(160)は、更に、100MPa以上が好ましく、200MPa以上がより好ましい。
 尚、この引張弾性率E’(160)は、動的粘弾性測定装置(DMA:Dynamic Mechanical Analysis)(製品名:RSA-3、TAインスツルメント社製)により測定することができる。具体的には、サンプルサイズを幅10mm、チャック間の長さ20mmとし、周波数1Hz、昇温速度5℃/分の測定条件で-20℃から200℃まで測定して得られたデータから160℃におけるデータを読み取ることにより得られる。
 上述の耐熱特性のいずれをも充足することができる樹脂として、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド等を挙げることができる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上述の樹脂中には添加剤として、可塑剤、軟化剤(鉱油等)、充填剤(炭酸塩、硫酸塩、チタン酸塩、珪酸塩、酸化物(酸化チタン、酸化マグネシウム)、シリカ、タルク、マイカ、クレー、繊維フィラー等)、酸化防止剤、光安定化剤、帯電防止剤、滑剤、着色剤等を添加することができる。これら添加剤は、1種のみを用いてもよく2種以上を併用してもよい。
 基層11に使用されるフィルムは、延伸の有無を問わず、無延伸フィルム、一軸延伸フィルムや二軸延伸フィルム等の延伸フィルムの何れも使用することができる。
 また、上述のフィルムは、単層フィルム、複数の層を有する多層フィルムの何れも使用することができる。
 基層11には、保持層12及び接合層13との接着性向上という観点から、表面処理されたフィルムを使用することが好ましい。表面処理の具体例として、コロナ処理、プラズマ処理、アンダーコート処理、プライマーコート処理等を挙げることができる。
 基層11の厚さは、特に限定されないが、例えば、1μm以上1000μm以下とすることができ、5μm以上500μm以下とすることができ、10μm以上250μm以下とすることができる。
(2)保持層
 保持層12は、電子部品31を複数並べて保持するための層であり、例えば、粘着剤によって形成することができる。
 保持層12を形成する粘着剤の粘着力は、特に限定されないが、シリコンウエハの表面に貼着して60分間放置した後、シリコンウエハの表面から剥離するときの、被着体をシリコンウエハにした以外はJIS Z0237に準拠して測定された180°剥離粘着力が0.1N/25mm以上10N/25mm以下であることが好ましい。粘着力が上記範囲である場合には、電子部品31との良好な接着性を確保できる。この粘着力は、更に、0.2N/25mm以上9N/25mm以下がより好ましく、0.3N/25mm以上8N/25mm以下が更に好ましい。尚、上記の測定値は、別途38μm厚みの二軸延伸PETフィルムに保持層12を設けて測定した値である。
 保持層12は、電子部品31を好適にピックアップするという観点から、熱付加又はエネルギー線照射により保持力が低下される特性を有することが好ましい。
 保持層12に使用される粘着剤は、特に限定されないが、上記特性を有するものとして、熱付加によって粘着力が低下又は喪失する発泡型粘着剤、エネルギー線照射によって粘着力が低下又は喪失するエネルギー硬化型粘着剤が挙げられる。
 発泡型粘着剤及びエネルギー硬化型粘着剤は、両者共に、少なくとも粘着主剤を含む。この粘着主剤としては、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらのなかでも、アクリル系粘着剤が好ましい。
 アクリル系粘着剤としては、アクリル酸エステル化合物の単独重合体、アクリル酸エステル化合物とコモノマーとの共重合体等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 また、アクリル酸エステル化合物としては、メチルアクリレート、エチルアクリレート、ブチルアクリレート及び2-エチルヘキシルアクリレート等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、コモノマーとしては、酢酸ビニル、アクリルニトリル、アクリルアマイド、スチレン、メチル(メタ)クリレート、(メタ)アクリル酸、ヒドロキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、グリシジルメタクリレート、無水マレイン酸等が挙げられる。
 粘着剤は、上述の粘着主剤以外に、架橋剤を含むことができる。
 架橋剤としては、エポキシ系架橋剤(ペンタエリストールポリグリシジルエーテルなど)、イソシアネート系架橋剤(ジフェニルメタンジイソシアネート、トリレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネートなど)が挙げられる。これら架橋剤は、1種のみを用いてもよく2種以上を併用してもよい。
 粘着剤に架橋剤が含まれる場合、架橋剤の含有量は、粘着剤全体を100質量部として10質量部以下とすることが好ましい。また、粘着剤の粘着力は、架橋剤の含有量によって調整できる。具体的には、特開2004-115591号公報に記載の方法を利用できる。
 発泡型粘着剤は、熱付加により発泡することで、電子部品31に対する保持層12の粘着力を低下又は喪失させることができる粘着剤である。このような発泡型粘着剤は、粘着剤内に熱膨張性発泡剤(以下、単に「発泡剤」ともいう)を配合することにより実現できる。発泡剤は、そのままの状態で粘着剤に配合されていてもよいし、粘着剤と結合させることによって含有させてもよいし、発泡剤を外殻(マイクロカプセル等)に封入した熱膨張性微小球等の熱膨張性粒子として利用することができる。
 上述のうち、熱膨張性粒子の機序は限定されないが、例えば、下記(1)や(2)を例示できる。即ち、(1)加熱によって、熱膨張性粒子の内包物を膨張させるとともに、当該加熱によって外殻を構成する材料を軟化させ、熱膨張性粒子全体を膨張させて、粘着剤内における熱膨張性粒子の体積が増大させることができる。これにより、保持層12に保持された電子部品31と粘着剤との粘着面積が低下されて、電子部品31に対する保持層12の粘着力を低下又は喪失させることができる。また、(2)加熱によって、熱膨張性粒子の内包物を膨張させ、当該膨張物により外殻を破壊して、粘着剤内における当該膨張物の体積を増大させることができる。これにより、保持層12に保持された電子部品31と粘着剤との粘着面積が低下されて、電子部品31に対する保持層12の粘着力を低下又は喪失させることができる。これらの機序はいずれか一方のみを用いてもよいし併用してもよい。更に、熱膨張性粒子による粘着力低下又は喪失の機序は、上記(1)及び(2)に限定されるものではない。
 上述した発泡剤としては、無機系発泡剤、有機系発泡剤が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 このうち、無機系発泡剤としては、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種無機系アジド化合物(金属アジ化合物等)、水などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 一方、有機系発泡剤としては、トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3’-ジスルホニルヒドラジド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4’-オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物;N,N’-ジニトロソペンタメチレンテトラミン、N,N’-ジメチル-N,N’-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物;有機アジド化合物;メルドラム酸誘導体等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、とりわけ、発泡剤を熱膨張性粒子として利用する場合、イソブタン、プロパン、ペンタン等の沸点が100℃以下のアルカン類を液体状態で外殻内に封入することにより発泡剤として利用することができる。即ち、加熱気化させて膨張させることができる成分を利用できる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 また、上記外殻を形成する材料としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、発泡剤を用いる場合、その配合量は限定されないが、例えば、発泡型粘着剤を構成する粘着主剤を100質量部とした場合、発泡剤(特に熱膨張性粒子)を1質量部以上、更には5質量部以上、更には10質量部以上、配合することができる。一方、この配合量は、例えば、150質量部以下、更には130質量部以下、更には100質量部以下にすることができる。具体的には、例えば、1質量部以上150質量部以下、5質量部以上150質量部以下、10質量部以上150質量部以下、1質量部以上130質量部以下、5質量部以上130質量部以下、10質量部以上130質量部以下、1質量部以上100質量部以下、5質量部以上100質量部以下、10質量部以上100質量部以下とすることができる。
 また、発泡型粘着剤において、発泡温度は、後述する評価工程での加熱温度を超える温度に設定することが好ましい。具体的に、発泡温度は、120℃超とすることができ、135℃以上にすることができ、150℃以上にすることができる。
 一方、エネルギー硬化型粘着剤は、粘着剤に対しエネルギー線照射を行うことで、粘着剤を硬化させて、粘着力を低下又は喪失させることができる粘着剤である。
 エネルギー線としては、紫外線、電子線、赤外線等が挙げられる。これらのエネルギー線は1種のみを用いてもよく2種以上を併用してもよい。具体的には、紫外線によって硬化される紫外線硬化型粘着剤が挙げられる。
 このエネルギー硬化型粘着剤は、上述の粘着主剤以外に、分子内に炭素-炭素二重結合を有する化合物(以下、単に「硬化性化合物」という)と、エネルギー線に反応して硬化性化合物の重合を開始させることができる光重合開始剤を含むことができる。この硬化性化合物は、分子中に炭素-炭素二重結合を有し、ラジカル重合により硬化可能なモノマー、オリゴマー及び/又はポリマーが好ましい。
 具体的には、硬化性化合物としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 粘着剤に硬化性化合物が含まれる場合、硬化性化合物の含有量は、粘着剤100質量部に対して0.1~20重量部が好ましい。
 尚、分子内の炭素-炭素二重結合は、上述の粘着主剤が分子内に有することによって含まれてもよい。即ち、例えば、粘着主剤は、側鎖に炭素-炭素二重結合を有するエネルギー硬化型ポリマー等とすることができる。このように、粘着主剤が分子内に硬化性構造を有する場合には、上述の硬化性化合物は配合してもよく、配合しなくてもよい。
 光重合開始剤としては、エネルギー線の照射によりラジカルを生成できる化合物が好ましい。
 具体的には、アセトフェノン系光重合開始剤{メトキシアセトフェノンなど}、α-ケトール化合物{4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシシクロヘキシルフェニルケトンなど}、ケタール系化合物{ベンジルジメチルケタールなど}、ベンゾイン系光重合開始剤{ベンゾイン、ベンゾインアルキルエーテル類(ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル)など}、ベンゾフェノン系光重合開始剤{ベンゾフェノン、ベンゾイル安息香酸など}、芳香族ケタール類{ベンジルジメチルケタールなど}等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 粘着剤に光重合開始剤が含まれる場合、光重合開始剤の含有量は、粘着剤100質量部に対して5~15質量部とすることが好ましい。
 保持層12には、上述の発泡型粘着剤とエネルギー硬化型粘着剤とのうち、保持層12の表面に浮上した電子部品31を良好にピックアップできるという観点と、後述する接合層13との兼ね合いという観点から、発泡型粘着剤が好ましく、更には、熱膨張性粒子の利用が特に好ましい。
 保持層12の厚さは、特に限定されないが、例えば、1μm以上1000μm以下とすることができ、更に3μm以上500μm以下とすることができ、更に5μm以上250μm以下とすることができ、更に10μm以上150μm以下とすることができる。
(3)接合層
 接合層13は、フィルム10を基板21に接合するための層であり、粘着剤によって形成されている。
 この接合層13の厚さは、例えば、1μm以上1000μm以下とすることができ、更に3μm以上500μm以下とすることができ、更に5μm以上250μm以下とすることができ、更に10μm以上150μm以下とすることができる。
 接合層13に使用される粘着剤は、フィルム10を、後述する基板21に接合可能であれば、何れを用いてもよく、特に限定されない。
 通常、この粘着剤は、少なくとも粘着主剤を含む。この粘着主剤としては、上述の保持層12で挙げたものと同様のものを使用することができる。
 また、接合層13の粘着剤には、上述の保持層12で挙げたエネルギー硬化型粘着剤を使用することができる。
 特に、上述の保持層12に発泡型粘着剤が使用される場合、熱付加又はエネルギー線照射の何れかの選択により、剥離対象を所望に応じて選択することができる。
 例えば、保持層12に発泡型粘着剤を使用し、接合層13にエネルギー硬化型粘着剤を使用した場合、熱付加時には、電子部品31のみを剥離させることができ、エネルギー線照射時には、電子部品31が保持されたままの状態でフィルム10を基板21から剥離させることができる。
 接合層13を形成する粘着剤の粘着力は、特に限定されないが、ステンレスに貼着して60分間放置した後、ステンレスの表面から剥離するときの、JIS Z0237に準拠して測定される180°剥離粘着力が0.1N/25mm以上50N/25mm以下にすることができ、更に0.2N/25mm以上25N/25mm以下とすることができ、更に0.3N/25mm以上8N/15mm以下とすることができる。尚、上記の測定値は、別途38μm厚みの二軸延伸PETフィルムに接合層13を設けて測定した値である。
(4)その他の層
 本発明のフィルム10は、基層11、保持層12及び接合層13のみからなってもよいが、他層を備えることができる。
 他層としては、粘着剤との界面強度を向上する界面強度向上層、基層11から保持層12への低分子量成分の移行を抑制する移行防止層等が挙げられる。
 これらは1種のみを用いてもよく2種以上を併用してもよい。
[3]部品製造用具
 本発明の部品製造用具20(図3(a)及び図3(b)参照)は、電子部品31の電気特性を、加温状態で同時に評価するために利用されるものである。部品製造用具20は、基板21と、保持層12とを備えている(図3(a)及び図3(b)参照)。
 この保持層12は、電子部品31を複数並べて保持するために、基板21の一面側に設けられた層である。
 具体的に、部品製造用具20は、基板21の一面側に上述のフィルム10を、上述の接合層13を介して接合することにより、構成することができる。
(1)基板
 基板21は、後述する評価工程において、電子部品31を適正な測定位置に配置することを目的として設けられたものである。
 基板21の材質は、特に限定されないが、評価工程時に折れ曲がらないような硬いものであることが好ましい。このため、基板21の材質には、ステンレス鋼、アルミニウム、鉄、銅等の金属材料;ガラス、ファインセラミックス、シリコンウエハ等の非金属無機材料;樹脂材料などを使用することができる。これらは1種のみを用いてもよく2種以上を併用してもよい。尚、上述のうち、樹脂材料としては、部品製造用フィルム10を構成する樹脂製基層11(基層11)を構成する材料として挙げた各種樹脂が挙げられる。
 例えば、基板21のヤング率は10GPa以上にすることができる。
 更に、基板21の厚さは限定されないが、例えば、1mm以上500mm以下にすることができ、2mm以上250mm以下にすることができ、更に3mm以上150mm以下にすることができる。
 また、前述の通り、図3(b)に示すように、部品製造用具20は、上述のフィルム10を接合する構成に限らず、基板21の一面側に保持層12のみを設けて構成することができる。
 この場合、保持層12は、上述したフィルム10の保持層12で使用された粘着剤と同様のものを使用することができる。
 本発明の電子部品の製造方法、電子部品製造用フィルム及び電子部品製造用具は、電子部品の製造の用途において広く用いられる。特に、電子部品の複数個同時測定が可能な特性を有し、生産性に優れた部品製造を行うために好適に利用される。
 10;部品製造用フィルム、
 11;基層、
 12;保持層、
 13;接合層、
 20;部品製造用具、
 21;基板、
 30;前駆部品、
 31;電子部品、
 315;電極、
 40;支持体(個片化用支持体)、
 41;枠体、
 45;支持体(評価用支持体)、
 50;プローブカード、
 51;プローブ。

Claims (12)

  1.  基板と保持層とを有する支持体上に、前記保持層を介して、複数の電子部品を、電極が露出した状態に並べる配置工程と、
     前記支持体上に配置された前記電子部品のうち80以上の電子部品の電気特性を、当該露出した電極とプローブとを同時に接続させて、通電評価する評価工程と、を備えることを特徴とする電子部品の製造方法。
  2.  前記評価工程は、前記通電評価を、前記電子部品が加熱された状態で行う工程である請求項1に記載の電子部品の製造方法。
  3.  前記配置工程前に、前記支持体とは異なる他支持体上で、前駆電子部品を個片化して前記電子部品を得る個片化工程を備える請求項1又は2に記載の電子部品の製造方法。
  4.  前記保持層は、熱付加又はエネルギー線照射により保持力が低下される特性を有する請求項1乃至3のうちのいずれかに記載の電子部品の製造方法。
  5.  前記保持層は、熱膨張性粒子を含み、加熱により保持力が低下される特性を有する請求項1乃至3のうちのいずれかに記載の電子部品の製造方法。
  6.  前記基板は、金属製である1乃至5のうちのいずれかに記載の電子部品の製造方法。
  7.  前記支持体は、前記基板の一面側に貼着された部品製造用フィルムを備え、
     前記部品製造用フィルムは、樹脂製基層と、
     前記樹脂製基層の一面側に設けられた前記保持層と、
     前記樹脂製基層の対面側に設けられ、前記基板に前記部品製造用フィルムを接合するための接合層と、を備える請求項1乃至6のうちのいずれかに記載の電子部品の製造方法。
  8.  前記樹脂製基層は、線熱膨張係数が100ppm/K以下である請求項1乃至7のうちのいずれかに記載の電子部品の製造方法。
  9.  前記樹脂製基層は、融点が180℃以上であるとともに、温度160℃における引張弾性率E’(160)が50MPa以上である請求項1乃至8のうちのいずれかに記載の電子部品の製造方法。
  10.  前記配置工程において、並べる前記電子部品の個数が100以上である請求項1乃至9うちのいずれかに記載の電子部品の製造方法。
  11.  請求項1乃至10のうちのいずれかに記載の電子部品の製造方法に用いられる部品製造用フィルムであって、
     樹脂製基層と、
     前記樹脂製基層の一面側に設けられた前記保持層と、
     前記樹脂製基層の対面側に設けられ、前記基板に本部品製造用フィルムを接合するための接合層と、を備えることを特徴とする電子部品製造用フィルム。
  12.  請求項1乃至10のうちのいずれかに記載の電子部品の製造方法に用いられる部品製造用具であって、
     前記基板と、
     前記基板の一面に設けられた前記保持層と、を備えることを特徴とする電子部品製造用具。
PCT/JP2022/005344 2021-02-10 2022-02-10 電子部品の製造方法、製造用フィルム及び製造用具 WO2022172990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22752812.2A EP4293709A1 (en) 2021-02-10 2022-02-10 Electronic component manufacturing method, manufacturing film, and manufacturing tool
KR1020237028242A KR20230135621A (ko) 2021-02-10 2022-02-10 전자 부품의 제조 방법, 제조용 필름 및 제조 용구
JP2022580676A JPWO2022172990A1 (ja) 2021-02-10 2022-02-10
CN202280014507.5A CN116848627A (zh) 2021-02-10 2022-02-10 电子部件的制造方法、制造用膜和制造用具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020210 2021-02-10
JP2021-020210 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172990A1 true WO2022172990A1 (ja) 2022-08-18

Family

ID=82838841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005344 WO2022172990A1 (ja) 2021-02-10 2022-02-10 電子部品の製造方法、製造用フィルム及び製造用具

Country Status (6)

Country Link
EP (1) EP4293709A1 (ja)
JP (1) JPWO2022172990A1 (ja)
KR (1) KR20230135621A (ja)
CN (1) CN116848627A (ja)
TW (1) TW202246784A (ja)
WO (1) WO2022172990A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100882A (ja) * 1998-09-18 2000-04-07 Hitachi Ltd 半導体装置の製造方法とその検査方法、及び、それらの方法に用いる冶具
JP2004115591A (ja) 2002-09-24 2004-04-15 Mitsui Chemicals Inc 粘着フィルム及びその使用方法
JP2006258546A (ja) * 2005-03-16 2006-09-28 Denso Corp 半導体センサの製造方法
JP2011112552A (ja) 2009-11-27 2011-06-09 Renesas Electronics Corp 半導体パッケージのソケット装置、及び半導体パッケージのテスト装置
JP2013131594A (ja) * 2011-12-21 2013-07-04 Lintec Corp 保護膜形成層付ダイシングシートおよびチップの製造方法
JP2013173852A (ja) * 2012-02-24 2013-09-05 Denki Kagaku Kogyo Kk 導電性粘着シート及び電子部品の製造方法
US20140051189A1 (en) * 2012-08-14 2014-02-20 Chang Kai-Jun Method for wafer-level testing diced multi-chip stacked packages
US20150061718A1 (en) * 2013-09-05 2015-03-05 Powertech Technology Inc. Wafer-level testing method for singulated 3d-stacked chip cubes
JP2015156438A (ja) * 2014-02-20 2015-08-27 リンテック株式会社 半導体チップの製造方法
WO2017002610A1 (ja) 2015-06-29 2017-01-05 三井化学東セロ株式会社 半導体部品製造用フィルム
WO2017169747A1 (ja) * 2016-03-31 2017-10-05 三井化学東セロ株式会社 部品製造用フィルム及び部品の製造方法
WO2017169896A1 (ja) * 2016-03-30 2017-10-05 三井化学東セロ株式会社 半導体装置の製造方法
WO2018079551A1 (ja) * 2016-10-27 2018-05-03 三井化学東セロ株式会社 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
WO2018079552A1 (ja) * 2016-10-27 2018-05-03 三井化学東セロ株式会社 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
WO2018097036A1 (ja) * 2016-11-25 2018-05-31 三井化学東セロ株式会社 粘着性積層フィルムおよび電子装置の製造方法
JP2020003361A (ja) * 2018-06-28 2020-01-09 ルネサスエレクトロニクス株式会社 検査冶具、半導体チップの検査方法、および半導体装置の製造方法
WO2020162231A1 (ja) * 2019-02-06 2020-08-13 日東電工株式会社 粘着シートおよびその利用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100882A (ja) * 1998-09-18 2000-04-07 Hitachi Ltd 半導体装置の製造方法とその検査方法、及び、それらの方法に用いる冶具
JP2004115591A (ja) 2002-09-24 2004-04-15 Mitsui Chemicals Inc 粘着フィルム及びその使用方法
JP2006258546A (ja) * 2005-03-16 2006-09-28 Denso Corp 半導体センサの製造方法
JP2011112552A (ja) 2009-11-27 2011-06-09 Renesas Electronics Corp 半導体パッケージのソケット装置、及び半導体パッケージのテスト装置
JP2013131594A (ja) * 2011-12-21 2013-07-04 Lintec Corp 保護膜形成層付ダイシングシートおよびチップの製造方法
JP2013173852A (ja) * 2012-02-24 2013-09-05 Denki Kagaku Kogyo Kk 導電性粘着シート及び電子部品の製造方法
US20140051189A1 (en) * 2012-08-14 2014-02-20 Chang Kai-Jun Method for wafer-level testing diced multi-chip stacked packages
US20150061718A1 (en) * 2013-09-05 2015-03-05 Powertech Technology Inc. Wafer-level testing method for singulated 3d-stacked chip cubes
JP2015156438A (ja) * 2014-02-20 2015-08-27 リンテック株式会社 半導体チップの製造方法
WO2017002610A1 (ja) 2015-06-29 2017-01-05 三井化学東セロ株式会社 半導体部品製造用フィルム
WO2017169896A1 (ja) * 2016-03-30 2017-10-05 三井化学東セロ株式会社 半導体装置の製造方法
WO2017169747A1 (ja) * 2016-03-31 2017-10-05 三井化学東セロ株式会社 部品製造用フィルム及び部品の製造方法
WO2018079551A1 (ja) * 2016-10-27 2018-05-03 三井化学東セロ株式会社 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
WO2018079552A1 (ja) * 2016-10-27 2018-05-03 三井化学東セロ株式会社 電子装置の製造方法、電子装置製造用粘着性フィルムおよび電子部品試験装置
WO2018097036A1 (ja) * 2016-11-25 2018-05-31 三井化学東セロ株式会社 粘着性積層フィルムおよび電子装置の製造方法
JP2020003361A (ja) * 2018-06-28 2020-01-09 ルネサスエレクトロニクス株式会社 検査冶具、半導体チップの検査方法、および半導体装置の製造方法
WO2020162231A1 (ja) * 2019-02-06 2020-08-13 日東電工株式会社 粘着シートおよびその利用

Also Published As

Publication number Publication date
CN116848627A (zh) 2023-10-03
TW202246784A (zh) 2022-12-01
KR20230135621A (ko) 2023-09-25
EP4293709A1 (en) 2023-12-20
JPWO2022172990A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
TWI763867B (zh) 切晶黏晶膜
JP4810565B2 (ja) ダイシング・ダイボンドフィルム及び半導体装置の製造方法
US7863182B2 (en) Dicing die-bonding film
JP6295304B1 (ja) ダイシングテープ一体型接着シート
JP4976481B2 (ja) 熱硬化型ダイボンドフィルム、ダイシング・ダイボンドフィルム、及び、半導体装置
JP7046585B2 (ja) 接着フィルムおよびダイシングテープ付き接着フィルム
JP2015129226A (ja) フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
KR20190013519A (ko) 다이 본드 필름, 다이싱 다이 본드 필름, 및 반도체 장치 제조 방법
JP5580730B2 (ja) ダイシング・ダイボンドフィルム及び半導体素子
JP2012142368A (ja) ダイシング・ダイボンドフィルム及び半導体素子
JP5499111B2 (ja) 半導体装置用接着剤組成物、半導体装置用接着フィルム、ダイシングフィルム付き接着フィルム、半導体装置の製造方法、及び半導体装置
TW202100691A (zh) 電子裝置的製造方法
KR20150013048A (ko) 다이싱 테이프 부착 다이본딩 필름 및 반도체 장치의 제조 방법
JP2018157037A (ja) 粘着性フィルムおよび電子装置の製造方法
TW202035605A (zh) 接著膜、附有切晶帶之接著膜、及半導體裝置製造方法
JP2012186361A (ja) ダイシング・ダイボンドフィルム及び半導体素子
JP7041505B2 (ja) 接着フィルムおよびダイシングテープ付き接着フィルム
JP2014068020A (ja) 放熱性ダイボンドフィルム
WO2022172990A1 (ja) 電子部品の製造方法、製造用フィルム及び製造用具
JP2019121619A (ja) ダイシングダイボンドフィルム
JP2012186360A (ja) ダイシング・ダイボンドフィルム及び半導体素子
JP2015103573A (ja) 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、及び、半導体装置の製造方法
JP2022093167A (ja) 電子部品の製造方法、電子部品製造装置
JP2023057459A (ja) 電子部品の製造装置及び電子部品の製造方法
JP2015103581A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580676

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18264105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280014507.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028242

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028242

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022752812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752812

Country of ref document: EP

Effective date: 20230911