WO2018078752A1 - 検査装置および検査方法 - Google Patents

検査装置および検査方法 Download PDF

Info

Publication number
WO2018078752A1
WO2018078752A1 PCT/JP2016/081776 JP2016081776W WO2018078752A1 WO 2018078752 A1 WO2018078752 A1 WO 2018078752A1 JP 2016081776 W JP2016081776 W JP 2016081776W WO 2018078752 A1 WO2018078752 A1 WO 2018078752A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
fixed
probe
inspection
state
Prior art date
Application number
PCT/JP2016/081776
Other languages
English (en)
French (fr)
Inventor
直斗 鹿口
勇史 海老池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/081776 priority Critical patent/WO2018078752A1/ja
Priority to CN201680090272.2A priority patent/CN109844550B/zh
Priority to JP2018546995A priority patent/JP6702426B2/ja
Priority to DE112016007382.8T priority patent/DE112016007382T5/de
Priority to US16/316,098 priority patent/US10802047B2/en
Publication of WO2018078752A1 publication Critical patent/WO2018078752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor

Definitions

  • the present invention relates to a power semiconductor inspection apparatus and inspection method.
  • Patent Document 1 discloses an inspection jig used for inspection of a semiconductor integrated circuit.
  • jigs for power semiconductor devices are designed and manufactured in accordance with the chip layout to be inspected to ensure current capacity. For this reason, as the types of chip layout increase, the types of jigs increase. Accordingly, the jig design time becomes longer and the development cost becomes higher. Moreover, the produced jig needs to be stored and managed. For this reason, as the number of types of jigs increases, it becomes difficult to secure a storage location. In addition, the management cost of the jig increases.
  • the present invention has been made to solve the above-described problems, and a first object is to obtain an inspection apparatus that can be used in common for a plurality of products.
  • the second object of the present invention is to obtain an inspection method using an inspection apparatus that can be used in common for a plurality of products.
  • the inspection apparatus includes a fixed plate, a plurality of expansion / contraction portions having one end fixed to the fixed plate, a plurality of contact probes fixed to the other ends of the plurality of expansion / contraction portions, and the plurality of the plurality of contact probes.
  • a plurality of fixing portions each provided on the contact probe, each fixing portion fixing a top end of a corresponding contact probe among the plurality of contact probes to a first position, and fixing the contact probe
  • the contact probe is pulled toward the fixing plate by a corresponding expansion / contraction portion of the plurality of expansion / contraction portions, and in the open state, the upper end of the contact probe is The second position is closer to the fixed plate than the first position.
  • An inspection method includes a fixed plate, a plurality of expansion / contraction portions having one end fixed to the fixed plate, a plurality of contact probes fixed to the other ends of the plurality of expansion / contraction portions, and the plurality of the plurality of contact probes.
  • a plurality of fixing portions each provided on the contact probe, each fixing portion fixing a top end of a corresponding contact probe among the plurality of contact probes to a first position, and fixing the contact probe
  • the contact probe is pulled toward the plate, and in the open state, the upper end of the contact probe is disposed at a second position closer to the fixing plate than the first position, and the upper end is fixed at the first position. Is in contact with the inspection object with an elastic force, and the contact probe whose upper end is arranged at the second position does not contact the inspection object.
  • the upper end of each contact probe can be arranged at the first position or the second position by the fixing part and the expansion / contraction part.
  • the upper end of the contact probe used for inspection is fixed at the first position.
  • the upper end of the contact probe that is not used for the inspection is arranged at the second position. Therefore, the inspection apparatus can be applied to a plurality of products by selecting the contact probe to be fixed at the first position.
  • the contact probe used for the inspection is selected from the current-voltage characteristics of the contact probe.
  • the upper end of the selected contact probe is fixed at the first position. Further, the upper end of the contact probe that is not used for the inspection is arranged at the second position. In the second position, the contact probe does not contact the inspection object. Therefore, the inspection apparatus can be applied to a plurality of products.
  • FIG. 2 is a cross-sectional view of the inspection apparatus according to Embodiment 1.
  • FIG. 4 is a bottom view of the contact probe according to Embodiment 1.
  • FIG. 5 is a diagram for explaining an inspection method according to Embodiment 1.
  • FIG. 5 is a diagram for explaining a fixing process according to the first embodiment. It is a figure which shows the state which made the contact probe contact the test object. 5 is a diagram for explaining a measurement process according to Embodiment 1.
  • FIG. It is a figure explaining the current-voltage characteristic of the contact probe which concerns on Embodiment 1.
  • FIG. It is a figure which shows the state after implementation of the switching process. It is a figure which shows the inspection apparatus of the state by which pin arrangement was set.
  • FIG. 10 is a diagram for explaining a measurement process according to Embodiment 2.
  • FIG. It is a figure explaining the current-voltage characteristic of the contact probe which concerns on Embodiment 2.
  • FIG. It is a figure which shows the initial state of the inspection apparatus which concerns on Embodiment 3.
  • FIG. It is a figure explaining the fixing process which concerns on Embodiment 3.
  • FIG. It is a figure explaining the contact process which concerns on Embodiment 3.
  • FIG. 10 is a diagram for explaining a switching step according to the third embodiment. It is a figure which shows the inspection apparatus of the state by which pin arrangement was set.
  • FIG. 1 is a cross-sectional view of the inspection apparatus according to the first embodiment.
  • the inspection device 10 includes a fixed plate 24.
  • One end of the plurality of extendable parts 11 is fixed to the back surface of the fixed plate 24.
  • the extension / contraction part 11 is a spring formed of metal.
  • Contact probes 19 are fixed to the other ends of the plurality of extendable portions 11, respectively.
  • Each contact probe 19 includes a probe pin 15 and a holding portion 13.
  • the holding unit 13 holds and stores the upper part of the probe pin 15.
  • One end of the holding portion 13 is fixed to the other end of the stretchable portion 11.
  • the lower part of the probe pin 15 is exposed from the other end of the holding part 13.
  • a spring (not shown) is formed on the probe pin 15. When the probe pin 15 is pressed toward the fixed plate 24, it is pushed into the holding portion 13 with an elastic force due to the spring. Therefore, the plurality of contact probes 19 have elasticity. At the time of inspection, the lower end of the probe pin 15 comes into contact with the inspection object with elasticity.
  • the fixing plate 24, the telescopic part 11 and the contact probe 19 are accommodated in a housing 22.
  • the plurality of contact probes 19 are held by the frame portion 14.
  • the upper part of the frame part 14 is accommodated in the housing 22. Further, the lower portion of the frame portion 14 is exposed from the housing 22.
  • Each contact probe 19 is guided by the frame 14 and moves up and down. As the contact probe 19 moves, the corresponding expansion / contraction part 11 expands / contracts.
  • the stretchable part 11 has conductivity.
  • the probe pin 15 and the expansion / contraction part 11 are electrically connected.
  • One end of the stretchable portion 11 is connected to the wiring 20 on the back surface of the fixed plate 24.
  • the wiring 20 is connected to the control unit 40.
  • the control unit 40 is a tester.
  • a lower jig 17 is disposed below the contact probe 19.
  • the lower jig 17 is a portion on which an inspection object is mounted.
  • the lower jig 17 and the control unit 40 are connected by a wiring 21.
  • the contact probe 19 and the wiring 20 are electrically connected by the telescopic part 11. For this reason, it is not necessary to separately provide a member for electrically connecting the contact probe 19 and the wiring 20. Therefore, the structure of the inspection apparatus 10 can be simplified.
  • the elastic part 11 may be formed of rubber. In this case, the durability of the stretchable part 11 can be improved. Further, in this case, a member for electrically connecting the contact probe 19 and the wiring 20 is provided in addition to the expansion / contraction part 11.
  • the stretchable portion 11 is in a contracted state.
  • the plurality of contact probes 19 are each provided with a fixing portion 12.
  • the fixing part 12 is provided on the frame part 14.
  • the fixing portion 12 is a component for fixing the contact probe 19 in a state where the expansion / contraction portion 11 is extended and the contact probe 19 is disposed below the position shown in FIG.
  • Each fixing portion 12 fixes a corresponding contact probe 19.
  • each of the fixed parts 12 is connected to the control part 40 by a wiring 41.
  • FIG. 2 is a bottom view of the contact probe according to the first embodiment.
  • the inspection apparatus 10 includes 36 contact probes 19.
  • the number of contact probes 19 provided in the inspection apparatus 10 is not limited to this. Further, in the present embodiment, the same number of contact probes 19 are arranged in the vertical direction and the horizontal direction, but the number of contact probes 19 arranged in the vertical direction and the horizontal direction may be different.
  • the frame portion 14 is provided in a lattice shape so as to fill between the adjacent contact probes 19 and between the contact probes 19 and the housing 22. Further, in the present embodiment, the holding portion 13 is square in a bottom view. The shape of the holding portion 13 is not limited to this, and may be a rectangle or a circle when viewed from below. In this case, the frame portion 14 is provided with an opening that matches the shape of the holding portion 13.
  • FIG. 3 is a diagram for explaining the inspection method according to the first embodiment.
  • an inspection object 16 is mounted on the upper surface of the lower jig 17.
  • the control unit 40 and the wirings 21 and 41 are omitted.
  • the inspection object 16 is a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the inspection target 16 may be other than this as long as it is a semiconductor device.
  • the inspection apparatus 10 is prepared. At this time, the inspection object 16 is disposed on the lower jig 17, and the contact probe 19 is disposed above the inspection object 16. In this state, all the stretchable parts 11 are in a contracted state, and all the contact probes 19 are accommodated in the housing 22. In FIG. 3, the inspection apparatus 10 is in an initial state.
  • FIG. 4 is a diagram for explaining a fixing process according to the first embodiment.
  • all the contact probes 19 are pulled out below the housing 22.
  • the upper end of the extracted contact probe 19 is fixed to the first position by the fixing portion 12.
  • the first position is a position where the upper end of the contact probe 19 is at the same height as the upper end of the frame portion 14.
  • Each fixing portion 12 is provided on both sides of each contact probe 19 and opens and closes. Each fixing unit 12 switches between a fixed state and an open state. In the fixed state, each fixed portion 12 is in a closed state toward the corresponding contact probe 19. Here, in the fixed state, the contact probe 19 is pulled toward the fixed plate 24 by the corresponding expansion / contraction part 11 among the plurality of expansion / contraction parts 11. In the fixed state, the fixing portion 12 is disposed on the contact probe 19. For this reason, the upper end of the contact probe 19 is fixed at the first position. Accordingly, each fixing portion 12 fixes the upper end of the corresponding contact probe 19 among the plurality of contact probes 19 in the fixed state at the first position.
  • the fixing portion 12 in an open state.
  • the fixing portion 12 In the open state, the fixing portion 12 is accommodated on the frame portion 14 and is not disposed on the contact probe 19. Therefore, each fixing part 12 does not fix the corresponding contact probe 19 in the open state.
  • the extendable portion 11 connected to the contact probe 19 contracts. For this reason, the upper end of the contact probe 19 is disposed at the second position. The second position is closer to the fixed plate 24 than the first position.
  • all the contact probes 19 are arranged at the second position.
  • all the fixing portions 12 are in a fixed state.
  • fixed part 12 is not limited to this.
  • the fixing portion 12 may be switched between a fixed state and an open state, the upper end of the contact probe 19 that is opposed in the fixed state is fixed to the first position, and the corresponding contact probe 19 may be opened from the fixing portion 12 in the open state.
  • the fixing portions 12 are provided on both sides of each contact probe 19.
  • the fixing portion 12 may be provided only on one side of each contact probe 19. Further, in the present embodiment, the fixing portion 12 fixes the upper end of the contact probe 19, but the fixing portion of the contact probe 19 may be other than the upper end.
  • FIG. 5 is a diagram illustrating a state in which the contact probe is in contact with the inspection target.
  • the region where the contact probe 19 is provided is wider than the width of the inspection object 16. For this reason, at least one of the plurality of contact probes 19 comes into contact with the lower jig 17.
  • the contact probe 19 has elasticity. For this reason, the plurality of contact probes 19 can be in contact with the inspection object 16 and the lower jig 17 having different positions on the upper surface at the same time.
  • the probe pin 15 is pushed into the holding portion 13 with an elastic force by contacting the inspection object 16 or the lower jig 17. 4 and 5, the control unit 40 and the wirings 20, 21, and 41 are omitted.
  • FIG. 6 is a diagram for explaining a measurement process according to the first embodiment.
  • the inspection apparatus 10 includes a measurement circuit 32.
  • the measurement circuit 32 includes a wiring 20, a power supply 30 and a wiring 21.
  • the wiring 20 is connected to the wiring 21 through the power supply 30.
  • the control unit 40 is omitted.
  • the power supply 30 may be a power supply included in the control unit 40.
  • the measurement circuit 32 is a circuit that measures current-voltage characteristics between each of the plurality of contact probes 19 and the lower jig 17.
  • the lower jig 17 includes a plurality of spring probes.
  • the plurality of spring probes come into contact with the back surface of the inspection object 16 or the contact probe 19.
  • Each spring probe is connected to the control unit 40 by a wiring 21.
  • the current-voltage characteristics of each of the plurality of contact probes 19 are measured while the plurality of contact probes 19 are in contact with the inspection object 16 and the lower jig 17. Thereby, the current-voltage characteristic between each of the plurality of contact probes 19 and the lower jig 17 is measured.
  • an electrode part 26 and an insulating film 28 are formed on the upper surface of the inspection object 16.
  • the electrode unit 26 includes, for example, a gate electrode, a drain electrode, a source electrode, or a diode electrode formed on a MOSFET. Some of the plurality of contact probes 19 are in contact with the electrode portion 26. A part of the plurality of contact probes 19 is in contact with the insulating film 28.
  • FIG. 7 is a diagram for explaining the current-voltage characteristics of the contact probe according to the first embodiment.
  • FIG. 7 shows the result of measuring the current I flowing through the contact probe 19 when a voltage V is applied between each contact probe 19 and the lower jig 17.
  • the current / voltage measurement of the contact probe 19 in contact with the lower jig 17 will be described. In this case, as indicated by a broken line 61, the contact probe 19 and the lower jig 17 are in a low resistance state.
  • the current / voltage measurement of the contact probe 19 in contact with the insulating film 28 will be described. In this case, as shown by the solid line 62, the contact probe 19 and the lower jig 17 are in a high resistance state.
  • the contact probe 19 and the lower jig 17 are connected via a diode, a capacitance component or a resistance component disposed between the electrode portion 26 and the lower jig 17.
  • the current-voltage characteristic is linear as shown by the broken line 63.
  • the contact probe 19 and the lower jig 17 are connected via a diode or a capacitive component, the current-voltage characteristic has a downward convex curve as shown by a one-dot chain line 64.
  • the resistance value between the contact probe 19 and the lower jig 17 is larger than when the contact probe 19 and the lower jig 17 are in contact. Further, the resistance value between the contact probe 19 and the lower jig 17 is smaller than when the contact probe 19 and the insulating film 28 are in contact with each other. From the above, the contact location of each contact probe 19 can be determined from the difference in current-voltage characteristics of each contact probe 19.
  • the contact probe 19 that contacts the electrode portion 26 is the contact probe 19 to be used for the inspection of the inspection object 16.
  • the contact probe 19 used for the inspection is selected according to the current-voltage characteristics.
  • a standard is provided for the voltage V applied between the contact probe 19 and the lower jig 17 with respect to the current I flowing through the contact probe 19.
  • the contact probe 19 having the voltage V in the region A shown in FIG. 7 with respect to the reference current I is used in the inspection. Further, the contact probe 19 having the voltage V in the region B is not used in the inspection. In the switching step, each contact probe 19 is distributed to the region A or the region B.
  • the contact probe 19 having a voltage V lower than that of the region A is determined to be in a short state.
  • the contact probe 19 in contact with the lower jig 17 is determined to be in a short state.
  • the contact probe 19 having a voltage V higher than that of the region A is determined to be in an open state.
  • the contact probe 19 in contact with the insulating film 28 is determined to be in an open state.
  • the threshold value for determining the open state is 100V.
  • a voltage V is applied between each contact probe 19 and the lower jig 17 to measure the current I flowing through the contact probe 19.
  • the voltage V between the contact probe 19 and the lower jig 17 may be measured in a state where the current I flows between each contact probe 19 and the lower jig 17.
  • a standard is provided in the range of the voltage V applied between the contact probe 19 and the lower jig 17 with respect to the reference current value.
  • a standard may be provided in the range of the current I flowing through the contact probe 19 with respect to the reference voltage value.
  • the fixing portion 12 provided in the contact probe 19 determined as a short state or an open state from the current-voltage characteristics is switched to the open state. That is, the fixing portion 12 provided in the contact probe 19 distributed to the region B is opened.
  • FIG. 8 is a diagram illustrating a state after the switching process is performed.
  • the fixed unit 12 that switches from the fixed state to the open state among the plurality of fixed units 12 is selected according to the current-voltage characteristics.
  • the selected fixing unit 12 is switched from the fixed state to the open state.
  • the contact probe 19 corresponding to the fixed portion 12 in the open state is pulled by the telescopic portion 11 and is disposed at the second position. Therefore, the contact probe 19 that is not used in the inspection is accommodated in the housing 22.
  • the inspection apparatus 10 is set to a pin arrangement corresponding to the chip layout.
  • the control unit 40 and the wirings 20, 21, 41 are omitted.
  • FIG. 9 is a diagram showing the inspection apparatus in which the pin arrangement is set.
  • the control unit 40 switches the fixing unit 12 from the fixed state to the open state.
  • the control unit 40 measures the current-voltage characteristics between each contact probe 19 and the lower jig 17.
  • the control unit 40 selects the fixed unit 12 that switches from the fixed state to the open state among the plurality of fixed units 12 in accordance with the current-voltage characteristics obtained in the measurement step.
  • the control unit 40 and each fixed unit 12 are connected via a wiring 41.
  • the control unit 40 issues a signal for switching from the fixed state to the open state via the wiring 41 toward the selected fixing unit 12.
  • the fixing unit 12 switches from the fixed state to the open state. From the above, the control unit 40 switches the fixing unit 12 selected according to the current-voltage characteristics from the fixed state to the open state. Thereby, a measurement process and a switching process can be automatically implemented.
  • control unit 40 stores the current-voltage characteristics for each chip layout in a storage device provided in the control unit 40.
  • the control unit 40 stores which of the contact probes 19 is assigned to the region A or the region B.
  • the control part 40 is good also as what memorize
  • the operation of the control unit 40 described above can be performed by using an existing tester as the control unit 40. Note that the switching of the fixing unit 12 from the fixed state to the open state may be performed manually.
  • the inspection process is carried out.
  • a plurality of contact probes 19 are brought into contact with the inspection object 16 to perform inspection.
  • the upper end of the contact probe 19 with the fixing portion 12 fixed is fixed at the first position.
  • the upper end of the contact probe 19 with the fixed portion 12 in the open state is disposed at the second position.
  • the first position is closer to the inspection object 16 than the second position. For this reason, only the contact probe 19 fixed at the first position by the fixing part 12 contacts the inspection object 16.
  • the contact probe 19 has elasticity. Due to the contact with the inspection object 16, the lower end of the probe pin 15 comes into contact with the inspection object 16 with an elastic force. At this time, the probe pin 15 is pushed into the holding portion 13. Accordingly, the contact probe 19 contracts due to contact with the inspection object 16. As shown in FIG. 8, the lower end of the contact probe 19 with the upper end fixed at the first position and contracted is positioned below the lower end of the contact probe 19 with the upper end disposed at the second position and extended. Shall be. Thereby, only the contact probe 19 whose upper end is fixed at the first position among the plurality of contact probes 19 comes into contact with the inspection object. Further, the contact probe 19 whose upper end is arranged at the second position does not contact the inspection object 16.
  • the inspection apparatus 10 After completion of the inspection process, all the fixing parts 12 are set in an open state. Thereby, the inspection apparatus 10 returns to the initial state. Therefore, the inspection apparatus 10 can be repeatedly used for products having a layout different from that of the inspection object 16.
  • the controller 40 reads the stored current-voltage characteristics after performing the fixing process.
  • the control unit 40 selects the fixed unit 12 that switches from the fixed state to the open state among the plurality of fixed units 12. Thereby, at the time of the second and subsequent inspections, the pin arrangement can be changed by reading the current-voltage characteristics. Therefore, preparation for the inspection becomes easy at the second and subsequent inspections.
  • each contact probe 19 can be arranged at the first position or the second position. Therefore, a plurality of pin arrangements can be realized by one inspection apparatus 10.
  • the inspection apparatus 10 can be commonly used for inspection of a plurality of products.
  • the inspection apparatus 10 can be adapted to high current density measurement. In the inspection of a wide gap semiconductor, a high current density chip test is required. Therefore, the inspection apparatus 10 according to the present embodiment can inspect the inspection object 16 formed from a wide gap semiconductor.
  • the wide gap semiconductor is SiC, GaN, or the like.
  • the lower jig 17 includes a plurality of spring probes.
  • the lower jig 17 may include a plurality of wire probes.
  • the lower jig 17 may have another configuration as long as it can measure current-voltage characteristics between the contact probes 19.
  • FIG. FIG. 10 is a diagram for explaining a measurement process according to the second embodiment.
  • the inspection apparatus 110 according to the present embodiment is different from the first embodiment in the structure of the measurement circuit 132.
  • the rest is the same as in the first embodiment.
  • the measurement circuit 132 includes a wiring 120 and a power supply 30.
  • the control unit 40 is omitted.
  • the power supply 30 may be a power supply included in the control unit 40.
  • one of the plurality of contact probes 19 is a reference probe 150.
  • the reference probe 150 is selected from the contact probes 19 that are in contact with the electrode part 26.
  • the contact probe 19 that contacts the gate electrode of the MOSFET is used as the reference probe 150.
  • the measurement circuit 132 is a circuit that measures current-voltage characteristics between the reference probe 150 and each of the contact probes 19 other than the reference probe 150.
  • the wiring 120 connects the contact probe 19 other than the reference probe 150 and the ground.
  • the reference probe 150 is connected to the ground via the power supply 30.
  • the inspection method according to the present embodiment differs from the first embodiment in the measurement process and the switching process.
  • the reference probe 150 is selected from the plurality of contact probes 19.
  • the contact probe 19 in contact with the gate electrode is set as the reference probe 150 in a state where the plurality of contact probes 19 are in contact with the inspection object 16.
  • FIG. 11 is a diagram for explaining current-voltage characteristics of the contact probe according to the second embodiment.
  • FIG. 11 shows the result of measuring the current I flowing through the reference probe 150 when the voltage V is applied between the reference probe 150 and each of the contact probes 19 other than the reference probe 150.
  • the contact probe 19 and the reference probe 150 are in a high resistance state.
  • the current / voltage measurement of the contact probe 19 in contact with the insulating film 28 will be described. In this case, as shown by a solid line 66, the contact probe 19 and the reference probe 150 are in a high resistance state.
  • the contact probe 19 may be in contact with the electrode of the diode formed on the MOSFET.
  • the resistance value between the contact probe 19 and the reference probe 150 is higher than that when the contact probe 19 is in contact with the same gate electrode as the reference probe 150. Further, the resistance value between the contact probe 19 and the reference probe 150 is lower than that when the contact probe 19 is in contact with the insulating film 28.
  • a dotted line 68 indicates a current-voltage characteristic when the reference probe 150 is in contact with the drain electrode and the contact probe 19 to be measured is in contact with the gate electrode as a modification of the present embodiment.
  • the MOSFET is in a breakdown state at several tens of volts. From the above, the contact location of each contact probe 19 can be determined from the difference in current-voltage characteristics of each contact probe 19.
  • a switching process is performed.
  • a standard is provided for the voltage V applied between the contact probe 19 and the reference probe 150 with respect to the current I flowing through the reference probe 150.
  • the contact probe 19 having the voltage V in the region A shown in FIG. 11 with respect to the reference current I is used in the inspection. Further, the contact probe 19 having the voltage V in the region B is not used in the inspection.
  • the contact probe 19 having a voltage V higher than that of the region A is determined to be in an open state.
  • the contact probe 19 in contact with the insulating film 28 or the lower jig 17 is determined to be in an open state.
  • the threshold value for determining the open state is 100V.
  • the contact probes 19 that are in contact with the electrode portions 26 are distributed to the region A.
  • the fixing portion 12 provided in the contact probe 19 determined to be in the open state from the current-voltage characteristics among the plurality of contact probes 19 is switched to the open state.
  • the lower jig 17 does not need to include a spring probe or a wire probe. Therefore, the lower jig 17 can be simplified.
  • FIG. 12 to 16 are diagrams for explaining an inspection method according to the third embodiment.
  • the width of the inspection object 216 is wider than the width of the region where the contact probe 19 is provided. The rest is the same as in the first embodiment.
  • the plurality of contact probes 19 do not contact the lower jig 17. An inspection method in this case will be described.
  • FIG. 12 is a diagram illustrating an initial state of the inspection apparatus according to the third embodiment. In FIG. 12, the control unit 40 and the wirings 21 and 41 are omitted.
  • FIG. 13 is a diagram for explaining a fixing process according to the third embodiment.
  • the fixing process is the same as in the first embodiment.
  • FIG. 14 is a diagram for explaining a contact process according to the third embodiment.
  • the contact process some of the plurality of contact probes 19 are in contact with the insulating film 228. Further, some of the plurality of contact probes 19 are in contact with the electrode portion 226.
  • a measurement process is performed. The measurement process is the same as in the first embodiment. However, in this embodiment, the contact probe 19 does not contact the lower jig 17. For this reason, a short state does not occur.
  • FIG. 15 is a diagram for explaining the switching process according to the third embodiment.
  • the fixing portion 12 of the contact probe 19 distributed to the region B is opened according to the current-voltage characteristics obtained in the measurement step.
  • the inspection apparatus 10 is set to a pin arrangement corresponding to the chip layout.
  • FIG. 16 is a diagram illustrating the inspection apparatus in a state where the pin arrangement is set. 13 to 16, the control unit 40 and the wirings 20, 21, and 41 are omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

本願の発明に係る検査装置は、固定板(24)と、固定板(24)に一端が固定された複数の伸縮部(11)と、複数の伸縮部(11)の他端にそれぞれ固定された複数のコンタクトプローブ(19)と、複数のコンタクトプローブ(19)にそれぞれ設けられた複数の固定部(12)と、を備え、各固定部(12)は、複数のコンタクトプローブ(19)のうち対応するコンタクトプローブの上端を第1位置に固定する固定状態と、コンタクトプローブを固定しない開放状態と、を切り替え、固定状態において、コンタクトプローブ(19)は、複数の伸縮部(11)のうち対応する伸縮部(11)によって固定板(24)に向かって引っ張られ、開放状態において、コンタクトプローブ(19)の上端は、第1位置よりも固定板(24)に近い第2位置に配置される。

Description

検査装置および検査方法
 この発明は、電力半導体の検査装置および検査方法に関する。
 特許文献1には、半導体集積回路の検査に用いられる検査治具が開示されている。
日本特開2010-20936号公報
 一般に、電力半導体装置の治具では、電流容量を確保するため、検査対象のチップレイアウトに合わせて治具を設計および製作する。このため、チップレイアウトの種類が増えると、治具の種類が増える。従って、治具の設計時間が長くなり、開発費用が高くなる。また、作製した治具は、保管および管理される必要がある。このため、治具の種類が増えると保管場所の確保が困難になる。また、治具の管理費用が増加する。
 本発明は上述の問題を解決するためになされたものであり、第1の目的は、複数の製品に共通して使用できる検査装置を得ることである。本発明の第2の目的は、複数の製品に共通して使用できる検査装置を用いた検査方法を得ることである。
 本願の発明に係る検査装置は、固定板と、該固定板に一端が固定された複数の伸縮部と、該複数の伸縮部の他端にそれぞれ固定された複数のコンタクトプローブと、該複数のコンタクトプローブにそれぞれ設けられた複数の固定部と、を備え、各固定部は、該複数のコンタクトプローブのうち対応するコンタクトプローブの上端を第1位置に固定する固定状態と、該コンタクトプローブを固定しない開放状態と、を切り替え、該固定状態において、該コンタクトプローブは、該複数の伸縮部のうち対応する伸縮部によって該固定板に向かって引っ張られ、該開放状態において、該コンタクトプローブの上端は、該第1位置よりも該固定板に近い第2位置に配置される。
 本願の発明に係る検査方法は、固定板と、該固定板に一端が固定された複数の伸縮部と、該複数の伸縮部の他端にそれぞれ固定された複数のコンタクトプローブと、該複数のコンタクトプローブにそれぞれ設けられた複数の固定部と、を備え、各固定部は、該複数のコンタクトプローブのうち対応するコンタクトプローブの上端を第1位置に固定する固定状態と、該コンタクトプローブを固定しない開放状態と、を切り替える検査装置を準備する工程と、該複数の固定部を該固定状態にする固定工程と、該固定工程の後に、該複数のコンタクトプローブを検査対象と接触させる接触工程と、該複数のコンタクトプローブを該検査対象に接触させた状態で、該複数のコンタクトプローブの各々の電流電圧特性を測定する測定工程と、該電流電圧特性に応じて、該複数の固定部のうち該固定状態から該開放状態に切り替える固定部を選択し、該選択された固定部を該固定状態から該開放状態に切り替える切り替え工程と、該切り替え工程の後に、該複数のコンタクトプローブを該検査対象に接触させ、検査を行う検査工程と、を備え、該固定状態において、該コンタクトプローブは、該複数の伸縮部のうち対応する伸縮部によって該固定板に向かって引っ張られ、該開放状態において、該コンタクトプローブの上端は、該第1位置よりも該固定板に近い第2位置に配置され、上端が該第1位置に固定された該コンタクトプローブは、弾性力を持って検査対象と接触し、上端が該第2位置に配置された該コンタクトプローブは、該検査対象と接触しない。
 本願の発明に係る検査装置では、固定部および伸縮部によって各々のコンタクトプローブの上端を第1位置または第2位置に配置できる。検査に使用するコンタクトプローブの上端は、第1位置に固定される。また、検査に使用しないコンタクトプローブの上端は第2位置に配置される。従って、第1位置に固定するコンタクトプローブを選択することで検査装置を複数の製品に適用できる。
 本願の発明に係る検査方法では、コンタクトプローブの電流電圧特性から、検査に用いるコンタクトプローブを選択する。選択されたコンタクトプローブの上端は第1位置に固定される。また、検査に使用しないコンタクトプローブの上端は第2位置に配置される。第2位置において、コンタクトプローブは検査対象と接触しない。従って、検査装置を複数の製品に適用できる。
実施の形態1に係る検査装置の断面図である。 実施の形態1に係るコンタクトプローブの下面図である。 実施の形態1に係る検査方法を説明する図である。 実施の形態1に係る固定工程を説明する図である。 コンタクトプローブを検査対象と接触させた状態を示す図である。 実施の形態1に係る測定工程を説明する図である。 実施の形態1に係るコンタクトプローブの電流電圧特性を説明する図である。 切り替え工程の実施後の状態を示す図である。 ピン配置が設定された状態の検査装置を示す図である。 実施の形態2に係る測定工程を説明する図である。 実施の形態2に係るコンタクトプローブの電流電圧特性を説明する図である。 実施の形態3に係る検査装置の初期状態を示す図である。 実施の形態3に係る固定工程を説明する図である。 実施の形態3に係る接触工程を説明する図である。 実施の形態3に係る切り替え工程を説明する図である。 ピン配置が設定された状態の検査装置を示す図である。
 本発明の実施の形態に係る検査装置および検査方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、実施の形態1に係る検査装置の断面図である。検査装置10は、固定板24を備える。固定板24の裏面には、複数の伸縮部11の一端が固定されている。本実施の形態では、伸縮部11は金属から形成されたバネである。複数の伸縮部11の他端には、それぞれコンタクトプローブ19が固定されている。
 各々のコンタクトプローブ19は、プローブピン15と保持部13を備える。保持部13はプローブピン15の上部を保持および収納する。保持部13の一端は、伸縮部11に他端に固定されている。プローブピン15の下部は保持部13の他端から露出する。プローブピン15の上部には図示しないバネが形成されている。プローブピン15は固定板24に向かって押圧されると、バネに起因する弾性力を持って保持部13に押し込まれる。従って、複数のコンタクトプローブ19は伸縮性を有する。検査時には、プローブピン15の下端が、弾性力を持って検査対象と接触する。
 固定板24、伸縮部11およびコンタクトプローブ19は筐体22に収納されている。複数のコンタクトプローブ19は、枠部14に保持されている。枠部14の上部は筐体22に収納される。また、枠部14の下部は、筐体22から露出している。各々のコンタクトプローブ19は枠部14にガイドされ、上下に動く。また、コンタクトプローブ19の移動に伴い、対応する伸縮部11は伸縮する。
 本実施の形態において、伸縮部11は導電性を有する。プローブピン15と伸縮部11は電気的に接続されている。固定板24の裏面において、伸縮部11の一端は、配線20に接続される。配線20は、制御部40に接続される。制御部40はテスタである。コンタクトプローブ19の下方には下治具17が配置される。下治具17は、検査対象が搭載される部分である。下治具17と制御部40は配線21によって接続されている。
 本実施の形態では、伸縮部11によってコンタクトプローブ19と配線20が導通する。このため、コンタクトプローブ19と配線20との間を電気接続するための部材を別に設ける必要が無い。従って、検査装置10の構造を簡易化できる。これに対し、伸縮部11はゴムで形成されても良い。この場合、伸縮部11の耐久性を向上できる。また、この場合、伸縮部11とは別にコンタクトプローブ19と配線20との間を電気接続するための部材を設ける。
 また、図1において伸縮部11は縮んだ状態である。複数のコンタクトプローブ19には、それぞれ固定部12が設けられる。固定部12は、枠部14の上に設けられる。固定部12は、伸縮部11を伸ばしコンタクトプローブ19を図1に示す位置よりも下方に配置した状態で、コンタクトプローブ19を固定するための部品である。各固定部12は、それぞれ対応するコンタクトプローブ19を固定する。また、固定部12の各々は、配線41によって制御部40と接続されている。
 図2は、実施の形態1に係るコンタクトプローブの下面図である。筐体22の内部には、縦方向および横方向に6個のコンタクトプローブ19が並んで配置されている。検査装置10は36個のコンタクトプローブ19を備える。検査装置10が備えるコンタクトプローブ19の数はこれに限らない。また、本実施の形態では、縦方向および横方向に同数のコンタクトプローブ19が配置されているが、縦方向および横方向に配置されるコンタクトプローブ19の数は異なってもよい。
 枠部14は、隣り合うコンタクトプローブ19の間およびコンタクトプローブ19と筐体22との間を埋めるように格子状に設けられる。また、本実施の形態では保持部13は下面視において正方形である。保持部13の形状はこれに限らず、下面視において長方形または円形でも良い。この場合、枠部14には保持部13の形状に合わせた開口が設けられるものとする。
 次に、検査装置10を用いた検査方法について説明する。図3は、実施の形態1に係る検査方法を説明する図である。図3において、下治具17の上面には、検査対象16が搭載されている。なお、図3において、制御部40および配線21、41は省略されている。検査対象16は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。検査対象16は半導体装置であればこれ以外でも良い。
 まず、検査装置10を準備する。このとき、下治具17の上に検査対象16を配置し、検査対象16の上方にコンタクトプローブ19を配置する。この状態において、すべての伸縮部11は縮んだ状態であり、全てのコンタクトプローブ19は、筐体22に収納されている。図3において、検査装置10は初期状態である。
 次に、固定工程を実施する。図4は、実施の形態1に係る固定工程を説明する図である。まず、全てのコンタクトプローブ19を筐体22の下方に引き出す。次に、引き出されたコンタクトプローブ19の上端を、固定部12によって第1位置に固定する。ここで、第1位置は、コンタクトプローブ19の上端が枠部14の上端と同じ高さとなる位置である。
 各々の固定部12は、各々のコンタクトプローブ19の両側に設けられ、開閉する。各固定部12は、固定状態と開放状態を切り替える。固定状態において、各々の固定部12は対応するコンタクトプローブ19に向かって閉じた状態である。ここで、固定状態において、コンタクトプローブ19は、複数の伸縮部11のうち対応する伸縮部11によって固定板24に向かって引っ張られている。固定状態において、コンタクトプローブ19の上には固定部12が配置される。このため、コンタクトプローブ19の上端は第1位置に固定される。従って、各固定部12は、固定状態において複数のコンタクトプローブ19のうち対応するコンタクトプローブ19の上端を第1位置に固定する。
 また、開放状態において、固定部12は開いた状態である。開放状態において、固定部12は枠部14の上に収納され、コンタクトプローブ19の上には配置されない。従って、各固定部12は、開放状態において対応するコンタクトプローブ19を固定しない。コンタクトプローブ19に設けられた固定部12が開放状態の場合、コンタクトプローブ19に接続された伸縮部11が縮む。このため、コンタクトプローブ19の上端は第2位置に配置される。第2位置は、第1位置よりも固定板24に近い位置である。
 なお、図1および図3では、全てのコンタクトプローブ19は第2位置に配置されている。固定工程を実施することにより、全ての固定部12は固定状態となる。また、固定部12の構造はこれに限定されない。固定部12は固定状態と開放状態が切り替わり、固定状態において対尾するコンタクトプローブ19の上端を第1位置に固定し、開放状態において対応するコンタクトプローブ19を固定部12から開放できれば良い。
 本実施の形態では、各々のコンタクトプローブ19の両側に固定部12を設けた。これに対し、各々のコンタクトプローブ19の片側のみに固定部12を設けても良い。また、本実施の形態では、固定部12はコンタクトプローブ19の上端を固定するものとしたが、コンタクトプローブ19の固定箇所は上端以外でも良い。
 固定工程の後に、接触工程を実施する。接触工程では、コンタクトプローブ19を検査対象16と接触させる。図5は、コンタクトプローブを検査対象と接触させた状態を示す図である。本実施の形態では、検査対象16の幅よりも、コンタクトプローブ19が設けられる領域の幅が広い。このため、複数のコンタクトプローブ19の少なくとも1つは下治具17と接触する。
 なお、コンタクトプローブ19は伸縮性を有する。このため、複数のコンタクトプローブ19は、上面の位置が異なる検査対象16および下治具17と同時に接触できる。プローブピン15は、検査対象16または下治具17と接触することで、弾性力を持って保持部13に押し込まれる。なお、図4および図5において、制御部40および配線20、21、41は省略されている。
 次に、測定工程を実施する。図6は、実施の形態1に係る測定工程を説明する図である。本実施の形態に係る検査装置10は、測定回路32を備える。測定回路32は、配線20、電源30および配線21を備える。配線20は、電源30を介して配線21に接続される。図6において、制御部40は省略されている。電源30は、制御部40が備える電源であっても良い。測定回路32は、複数のコンタクトプローブ19の各々と下治具17との間の電流電圧特性を測定する回路である。
 本実施の形態に係る下治具17は、複数のスプリングプローブを備える。複数のスプリングプローブは検査対象16の裏面またはコンタクトプローブ19と接触する。また、各々のスプリングプローブは、配線21によって制御部40と接続される。
 測定工程では、複数のコンタクトプローブ19を検査対象16および下治具17に接触させた状態で、複数のコンタクトプローブ19の各々の電流電圧特性を測定する。これにより、複数のコンタクトプローブ19の各々と下治具17との間の電流電圧特性が測定される。ここで、検査対象16の上面には電極部26および絶縁膜28が形成されている。電極部26は例えばゲート電極、ドレイン電極、ソース電極またはMOSFETに形成されたダイオードの電極を含む。複数のコンタクトプローブ19の一部は、電極部26と接触する。また、複数のコンタクトプローブ19の一部は、絶縁膜28と接触する。
 図7は、実施の形態1に係るコンタクトプローブの電流電圧特性を説明する図である。図7は、各々のコンタクトプローブ19と、下治具17との間に電圧Vを印加した時に、コンタクトプローブ19に流れる電流Iを測定した結果を示す。まず、下治具17と接しているコンタクトプローブ19の電流電圧測定について説明する。この場合、破線61に示すように、コンタクトプローブ19と下治具17との間は低抵抗状態となる。次に、絶縁膜28と接しているコンタクトプローブ19の電流電圧測定について説明する。この場合、実線62に示すようにコンタクトプローブ19と下治具17との間は高抵抗状態となる。
 次に、コンタクトプローブ19が電極部26と接している場合について説明する。この場合、コンタクトプローブ19と下治具17はダイオード、電極部26と下治具17との間に配置される容量成分または抵抗成分を介して接続される。コンタクトプローブ19と下治具17が抵抗成分を介して接続される場合、破線63に示すように、電流電圧特性は直線状になる。また、コンタクトプローブ19と下治具17がダイオードまたは容量成分を介して接続される場合、一点鎖線64に示すように、電流電圧特性は下に凸の曲線状になる。
 コンタクトプローブ19が電極部26と接している場合、コンタクトプローブ19と下治具17との間の抵抗値は、コンタクトプローブ19と下治具17が接している場合よりも大きい。また、コンタクトプローブ19と下治具17との間の抵抗値は、コンタクトプローブ19と絶縁膜28が接している場合よりも小さい。以上から、各々のコンタクトプローブ19の電流電圧特性の違いから、各々のコンタクトプローブ19の接触箇所が判別できる。ここで、電極部26に接触するコンタクトプローブ19が、検査対象16の検査に使用されることとなるコンタクトプローブ19である。
 次に、切り替え工程を実施する。まず、電流電圧特性に応じて検査に用いるコンタクトプローブ19を選択する。本実施の形態では、コンタクトプローブ19に流れる電流Iに対して、コンタクトプローブ19と下治具17との間に印加される電圧Vに規格を設ける。本実施の形態では、基準となる電流Iに対して電圧Vが図7に示す領域Aにあるコンタクトプローブ19が、検査において使用されることとなる。また、電圧Vが領域Bにあるコンタクトプローブ19は検査において使用されない。切り替え工程では、各々のコンタクトプローブ19を領域Aまたは領域Bに振り分ける。
 領域Aよりも電圧Vが低いコンタクトプローブ19は、ショート状態と判定される。下治具17と接しているコンタクトプローブ19はショート状態と判定される。また、領域Aよりも電圧Vが高いコンタクトプローブ19は、オープン状態と判定される。絶縁膜28と接しているコンタクトプローブ19はオープン状態と判定される。本実施の形態では、オープン状態と判定される閾値は100Vである。
 本実施の形態では、電流電圧特性を得るために、各々のコンタクトプローブ19と下治具17との間に電圧Vを印加して、コンタクトプローブ19に流れる電流Iを測定した。これに対し、各々のコンタクトプローブ19と下治具17との間に電流Iを流した状態で、コンタクトプローブ19と下治具17との間の電圧Vを測定しても良い。
 また、本実施の形態では、基準となる電流値に対してコンタクトプローブ19と下治具17との間に印加される電圧Vの範囲に規格を設けた。これに対し、基準となる電圧値に対してコンタクトプローブ19に流れる電流Iの範囲に規格を設けても良い。
 次に、複数のコンタクトプローブ19のうち、電流電圧特性からショート状態またはオープン状態と判定されたコンタクトプローブ19に設けられた固定部12を開放状態に切り替える。つまり、領域Bに振り分けられたコンタクトプローブ19に設けられた固定部12を開放状態にする。
 図8は、切り替え工程の実施後の状態を示す図である。切り替え工程では、電流電圧特性に応じて、複数の固定部12のうち固定状態から開放状態に切り替える固定部12が選択される。選択された固定部12は固定状態から開放状態に切り替えられる。この結果、開放状態となった固定部12に対応するコンタクトプローブ19は、伸縮部11に引っ張られ、第2位置に配置される。従って、検査で使用されないコンタクトプローブ19は筐体22に収納される。以上から、検査装置10は、チップレイアウトに応じたピン配置に設定される。なお、図8において、制御部40および配線20、21、41は省略されている。
 図9は、ピン配置が設定された状態の検査装置を示す図である。固定部12の固定状態から開放状態への切り替えは、制御部40によって行われる。測定工程において、制御部40は、各々のコンタクトプローブ19と下治具17との間の電流電圧特性を測定する。切り替え工程において、制御部40は測定工程において得られた電流電圧特性に応じて、複数の固定部12のうち固定状態から開放状態に切り替える固定部12を選択する。
 制御部40と各々の固定部12は配線41を介して接続されている。制御部40は、選択された固定部12に向けて配線41を介し、固定状態から開放状態に切り替える信号を発する。この信号に応じて、固定部12は固定状態から開放状態に切り替わる。以上から、制御部40は、電流電圧特性に応じて選択された固定部12を固定状態から開放状態に切り替える。これにより、測定工程および切り替え工程を自動で実施できる。
 また、制御部40は、制御部40に設けられた記憶装置にチップレイアウト毎の電流電圧特性を記憶する。制御部40は、各々のコンタクトプローブ19が領域Aおよび領域Bのどちらに振り分けられたかを記憶する。また、制御部40は、オープン状態またはショート状態と判定されたコンタクトプローブ19を記憶するものとしても良い。以上の制御部40の動作は、制御部40として既存のテスタを用いることで実施可能である。なお、固定部12の固定状態から開放状態への切り替えは、手動で行っても良い。
 次に検査工程を実施する。検査工程では、複数のコンタクトプローブ19を検査対象16に接触させ、検査を行う。ここで、固定部12が固定状態のコンタクトプローブ19の上端は、第1位置に固定される。固定部12が開放状態のコンタクトプローブ19の上端は、第2位置に配置される。第1位置は、第2位置よりも検査対象16に近い。このため、固定部12により第1位置に固定されたコンタクトプローブ19のみが検査対象16と接触する。
 また、コンタクトプローブ19は伸縮性を有する。検査対象16との接触によって、プローブピン15の下端は弾性力を持って検査対象16と接触する。このとき、プローブピン15は保持部13に押し込まれる。従って、検査対象16との接触により、コンタクトプローブ19は縮む。図8に示すように、上端が第1位置に固定され、縮んだ状態のコンタクトプローブ19の下端は、上端が第2位置に配置され伸びた状態のコンタクトプローブ19の下端よりも下方に配置されるものとする。これにより、複数のコンタクトプローブ19のうち、上端が第1位置に固定されたコンタクトプローブ19のみが検査対象と接触する。また、上端が第2位置に配置されたコンタクトプローブ19は、検査対象16と接触しない。
 検査工程の終了後に、すべての固定部12は開放状態に設定される。これにより、検査装置10は初期状態に戻る。従って、検査対象16と異なるレイアウトの製品に対して、検査装置10を繰り返し使用出来る。
 再び検査対象16を検査する際には、固定工程の実施後に、制御部40は記憶された電流電圧特性を読み出す。記憶された電流電圧特性に応じて、制御部40は、複数の固定部12のうち固定状態から開放状態に切り替える固定部12を選択する。これにより、2回目以降の検査時には、電流電圧特性を読み込むことでピン配置を変更できる。よって、2回目以降の検査時には、検査の準備が容易になる。
 本実施の形態に係る検査装置10では、各々のコンタクトプローブ19の上端を第1位置または第2位置に配置できる。従って、1つの検査装置10で複数のピン配置を実現できる。ピン配置の変更により、検査装置10を複数の製品の検査に共通して使用できる。検査装置10の共通化により、製品毎に治具を開発する必要がなくなる。従って、開発コストを削減できる。また、製品のチップレイアウトが変更されても、治具を作り変える必要が無い。このため、製品の開発工期を短縮できる。また、治具の種類を減らすことができるため、治具の管理費用を削減できる。
 また、下治具17が備えるスプリングプローブのピンサイズを調整することで、検査装置10を高電流密度の測定に対応させることができる。ワイドギャップ半導体の検査では、高電流密度チップテストが要求される。従って、本実施の形態に係る検査装置10は、ワイドギャップ半導体から形成される検査対象16を検査できる。ここで、ワイドギャップ半導体は、SiCまたはGaN等である。
 また、下治具17が備えるスプリングプローブのピンサイズを調整することで、検査対象16のチップレイアウトへの柔軟な対応が可能となる。本実施の形態では、下治具17は複数のスプリングプローブを備えるものとした。これに対し、下治具17は複数のワイヤプローブを備えるものとしても良い。また、下治具17は、各々のコンタクトプローブ19との間の電流電圧特性を測定できれば、別の構成でもよい。
 これらの変形は以下の実施の形態に係る検査装置および検査方法について適宜応用することができる。なお、以下の実施の形態に係る検査装置および検査方法については実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。
実施の形態2.
 図10は、実施の形態2に係る測定工程を説明する図である。本実施の形態に係る検査装置110は、測定回路132の構造が実施の形態1と異なる。それ以外は、実施の形態1と同様である。測定回路132は、配線120および電源30を備える。図10において、制御部40は省略されている。電源30は、制御部40が備える電源であっても良い。
 本実施の形態では、複数のコンタクトプローブ19のうち1つは基準プローブ150である。基準プローブ150は、電極部26に接触しているコンタクトプローブ19から選択される。本実施の形態では、MOSFETのゲート電極と接触するコンタクトプローブ19を基準プローブ150とする。測定回路132は、基準プローブ150と、基準プローブ150以外のコンタクトプローブ19の各々との間の電流電圧特性を測定する回路である。配線120は、基準プローブ150以外のコンタクトプローブ19とグランドを接続する。基準プローブ150は、電源30を介してグランドに接続される。
 次に、検査装置110を用いた検査方法について説明する。本実施の形態に係る検査方法は、測定工程および切り替え工程が実施の形態1と異なる。まず、測定工程に先んじて、複数のコンタクトプローブ19から基準プローブ150を選択する。本実施の形態では、複数のコンタクトプローブ19を検査対象16に接触された状態において、ゲート電極と接触しているコンタクトプローブ19を基準プローブ150に設定する。
 測定工程では、基準プローブ150と、基準プローブ150以外の複数のコンタクトプローブ19の各々との間の電流電圧特性を測定する。図11は、実施の形態2に係るコンタクトプローブの電流電圧特性を説明する図である。図11は、基準プローブ150と、基準プローブ150以外のコンタクトプローブ19の各々との間に電圧Vを印加した時に、基準プローブ150に流れる電流Iを測定した結果を示す。
 まず、下治具17と接しているコンタクトプローブ19の電流電圧測定について説明する。この場合、実線66に示すようにコンタクトプローブ19と基準プローブ150との間は高抵抗状態となる。次に、絶縁膜28と接しているコンタクトプローブ19の電流電圧測定について説明する。この場合、実線66に示すようにコンタクトプローブ19と基準プローブ150との間は高抵抗状態となる。
 次に、電極部26と接しているコンタクトプローブ19の電流電圧測定について説明する。コンタクトプローブ19が、基準プローブ150と接するゲート電極と同じゲート電極に接している場合、破線65に示すようにコンタクトプローブ19と基準プローブ150との間は低抵抗状態となる。
 また、コンタクトプローブ19が、MOSFETに形成されたダイオードの電極に接する場合がある。この場合、一点鎖線67に示すように、コンタクトプローブ19と基準プローブ150との間の抵抗値は、コンタクトプローブ19が基準プローブ150と同じゲート電極と接している場合よりも高抵抗となる。また、コンタクトプローブ19と基準プローブ150との間の抵抗値は、コンタクトプローブ19が絶縁膜28と接している場合よりも低抵抗となる。
 また、点線68は、本実施の形態の変形例として基準プローブ150がドレイン電極に接触し、測定対象となるコンタクトプローブ19がゲート電極に接触した場合の電流電圧特性を示す。この場合、数十VでMOSFETは降伏状態となる。以上から、各々のコンタクトプローブ19の電流電圧特性の違いから、各々のコンタクトプローブ19の接触箇所が判別できる。
 次に、切り替え工程を実施する。本実施の形態では、基準プローブ150に流れる電流Iに対して、コンタクトプローブ19と基準プローブ150との間に印加される電圧Vに規格を設ける。本実施の形態では、基準となる電流Iに対して電圧Vが図11に示す領域Aにあるコンタクトプローブ19が、検査において使用されることとなる。また、電圧Vが領域Bにあるコンタクトプローブ19は検査において使用されない。
 領域Aよりも電圧Vが高いコンタクトプローブ19は、オープン状態と判定される。絶縁膜28または下治具17と接しているコンタクトプローブ19はオープン状態と判定される。本実施の形態では、オープン状態と判定される閾値は100Vである。電極部26と接触するコンタクトプローブ19は領域Aに振り分けられる。次に、複数のコンタクトプローブ19のうち電流電圧特性からオープン状態と判定されたコンタクトプローブ19に設けられた固定部12を開放状態に切り替える。
 本実施の形態に係る測定工程では、下治具17とコンタクトプローブ19との間の測定が必要ない。このため、下治具17はスプリングプローブまたはワイヤプローブを備える必要がない。従って、下治具17を簡易化できる。
実施の形態3.
 図12~図16は、実施の形態3に係る検査方法を説明する図である。本実施の形態では、検査対象216の幅が、コンタクトプローブ19が設けられる領域の幅よりも広い。それ以外は、実施の形態1と同様である。本実施の形態では、複数のコンタクトプローブ19は下治具17と接触しない。この場合の検査方法について説明する。図12は、実施の形態3に係る検査装置の初期状態を示す図である。なお、図12において制御部40および配線21、41は省略されている。
 図13は、実施の形態3に係る固定工程を説明する図である。固定工程は、実施の形態1と同様である。図14は、実施の形態3に係る接触工程を説明する図である。接触工程において、複数のコンタクトプローブ19の一部は絶縁膜228と接触する。また、複数のコンタクトプローブ19の一部は電極部226と接触する。次に、測定工程を実施する。測定工程は実施の形態1と同様である。ただし、本実施の形態では、コンタクトプローブ19は下治具17と接触しない。このため、ショート状態は発生しない。
 次に、切り替え工程を実施する。図15は、実施の形態3に係る切り替え工程を説明する図である。切り替え工程では、測定工程で得られた電流電圧特性に応じて、B領域に振り分けられたコンタクトプローブ19の固定部12を開放状態にする。以上から、検査装置10は、チップレイアウトに応じたピン配置に設定される。図16は、ピン配置が設定された状態の検査装置を示す図である。なお、図13~図16において制御部40および配線20、21、41は省略されている。
 なお、各実施の形態で説明した技術的特徴は適宜に組み合わせて用いてもよい。
 10、110 検査装置、 24 固定板、 11 伸縮部、 19 コンタクトプローブ、 12 固定部、 17 下治具、 32、132 測定回路、 150 基準プローブ、 40 制御部、 16、216 検査対象

Claims (17)

  1.  固定板と、
     前記固定板に一端が固定された複数の伸縮部と、
     前記複数の伸縮部の他端にそれぞれ固定された複数のコンタクトプローブと、
     前記複数のコンタクトプローブにそれぞれ設けられた複数の固定部と、
     を備え、
     各固定部は、前記複数のコンタクトプローブのうち対応するコンタクトプローブの上端を第1位置に固定する固定状態と、前記コンタクトプローブを固定しない開放状態と、を切り替え、
     前記固定状態において、前記コンタクトプローブは、前記複数の伸縮部のうち対応する伸縮部によって前記固定板に向かって引っ張られ、
     前記開放状態において、前記コンタクトプローブの上端は、前記第1位置よりも前記固定板に近い第2位置に配置されることを特徴とする検査装置。
  2.  前記複数のコンタクトプローブは伸縮性を有し、
     上端が前記第1位置に固定され、縮んだ状態の前記複数のコンタクトプローブの下端は、上端が前記第2位置に配置され、伸びた状態の前記複数のコンタクトプローブの下端よりも下方に配置されることを特徴とする請求項1に記載の検査装置。
  3.  前記複数のコンタクトプローブの下方に配置された下治具と、
     前記複数のコンタクトプローブの各々と前記下治具との間の電流電圧特性を測定する測定回路と、
     を備えることを特徴とする請求項1または2に記載の検査装置。
  4.  前記複数のコンタクトプローブのうち1つは基準プローブであり、
     前記基準プローブと、前記基準プローブ以外の前記複数のコンタクトプローブの各々との間の電流電圧特性を測定する測定回路を備えることを特徴とする請求項1または2に記載の検査装置。
  5.  前記複数の固定部の各々を前記固定状態から前記開放状態に切り替える制御部を備えることを特徴とする請求項1~4の何れか1項に記載の検査装置。
  6.  前記複数の固定部の各々を前記固定状態から前記開放状態に切り替える制御部を備え、
     前記制御部は、前記電流電圧特性に応じて、前記複数の固定部のうち前記固定状態から前記開放状態に切り替える固定部を選択することを特徴とする請求項3または4に記載の検査装置。
  7.  前記制御部は、前記電流電圧特性を記憶し、記憶された前記電流電圧特性を読み出して、前記複数の固定部のうち前記固定状態から前記開放状態に切り替える固定部を選択することを特徴とする請求項6に記載の検査装置。
  8.  前記複数の伸縮部はゴムで形成されることを特徴とする請求項1~7の何れか1項に記載の検査装置。
  9.  前記複数の伸縮部は導電性を有することを特徴とする請求項1~7の何れか1項に記載の検査装置。
  10.  前記下治具は、スプリングプローブまたはワイヤプローブを備えることを特徴とする請求項3記載の検査装置。
  11.  固定板と、
     前記固定板に一端が固定された複数の伸縮部と、
     前記複数の伸縮部の他端にそれぞれ固定された複数のコンタクトプローブと、
     前記複数のコンタクトプローブにそれぞれ設けられた複数の固定部と、
     を備え、
     各固定部は、前記複数のコンタクトプローブのうち対応するコンタクトプローブの上端を第1位置に固定する固定状態と、前記コンタクトプローブを固定しない開放状態と、を切り替える検査装置を準備する工程と、
     前記複数の固定部を前記固定状態にする固定工程と、
     前記固定工程の後に、前記複数のコンタクトプローブを検査対象と接触させる接触工程と、
     前記複数のコンタクトプローブを前記検査対象に接触させた状態で、前記複数のコンタクトプローブの各々の電流電圧特性を測定する測定工程と、
     前記電流電圧特性に応じて、前記複数の固定部のうち前記固定状態から前記開放状態に切り替える固定部を選択し、前記選択された固定部を前記固定状態から前記開放状態に切り替える切り替え工程と、
     前記切り替え工程の後に、前記複数のコンタクトプローブを前記検査対象に接触させ、検査を行う検査工程と、
     を備え、
     前記固定状態において、前記コンタクトプローブは、前記複数の伸縮部のうち対応する伸縮部によって前記固定板に向かって引っ張られ、
     前記開放状態において、前記コンタクトプローブの上端は、前記第1位置よりも前記固定板に近い第2位置に配置され、
     上端が前記第1位置に固定された前記コンタクトプローブは、弾性力を持って前記検査対象と接触し、
     上端が前記第2位置に配置された前記コンタクトプローブは、前記検査対象と接触しないことを特徴とする検査方法。
  12.  前記検査装置は前記検査対象が搭載された下治具を備え、
     前記測定工程では、前記複数のコンタクトプローブの各々と前記下治具との間の前記電流電圧特性を測定することを特徴とする請求項11に記載の検査方法。
  13.  前記切り替え工程では、前記複数のコンタクトプローブのうち前記電流電圧特性からショート状態またはオープン状態と判定されたコンタクトプローブに設けられた固定部を前記開放状態に切り替えることを特徴とする請求項12に記載の検査方法。
  14.  前記複数のコンタクトプローブから基準プローブを選択する工程を備え、
     前記測定工程では、前記基準プローブと、前記基準プローブ以外の前記複数のコンタクトプローブの各々との間の前記電流電圧特性を測定することを特徴とする請求項11に記載の検査方法。
  15.  前記切り替え工程では、前記複数のコンタクトプローブのうち前記電流電圧特性からオープン状態と判定されたコンタクトプローブに設けられた固定部を前記開放状態に切り替えることを特徴とする請求項14に記載の検査方法。
  16.  前記検査対象が搭載された下治具を備え、
     前記接触工程では、前記複数のコンタクトプローブの少なくとも1つは前記下治具と接触することを特徴とする請求項11~15の何れか1項に記載の検査方法。
  17.  前記検査工程の後に、前記複数の固定部を前記開放状態にする工程を備えることを特徴とする請求項11~16の何れか1項に記載の検査方法。
PCT/JP2016/081776 2016-10-26 2016-10-26 検査装置および検査方法 WO2018078752A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/081776 WO2018078752A1 (ja) 2016-10-26 2016-10-26 検査装置および検査方法
CN201680090272.2A CN109844550B (zh) 2016-10-26 2016-10-26 检查装置及检查方法
JP2018546995A JP6702426B2 (ja) 2016-10-26 2016-10-26 検査装置および検査方法
DE112016007382.8T DE112016007382T5 (de) 2016-10-26 2016-10-26 Inspektionsvorrichtung und Inspektionsverfahren
US16/316,098 US10802047B2 (en) 2016-10-26 2016-10-26 Inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081776 WO2018078752A1 (ja) 2016-10-26 2016-10-26 検査装置および検査方法

Publications (1)

Publication Number Publication Date
WO2018078752A1 true WO2018078752A1 (ja) 2018-05-03

Family

ID=62023280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081776 WO2018078752A1 (ja) 2016-10-26 2016-10-26 検査装置および検査方法

Country Status (5)

Country Link
US (1) US10802047B2 (ja)
JP (1) JP6702426B2 (ja)
CN (1) CN109844550B (ja)
DE (1) DE112016007382T5 (ja)
WO (1) WO2018078752A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856434A (zh) * 2019-03-27 2019-06-07 昆山福烨电子有限公司 一种经济型接触式阻值检测针
US11913782B2 (en) 2019-12-09 2024-02-27 Lg Energy Solution, Ltd. Method and device for evaluating dispersion of binder in electrode mixture layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880891A (ja) * 1981-11-10 1983-05-16 関東化成工業株式会社 プリント配線板の検査方法
JPS60190876A (ja) * 1984-03-09 1985-09-28 Sharp Corp 印刷配線基板の検査装置
JPS6194783U (ja) * 1984-11-28 1986-06-18
JPS61159174A (ja) * 1984-06-21 1986-07-18 ザ ゼネラル エレクトリツク コムパニ− ピ−エルシ− プログラム可能な剣山型試験アクセス治具
JPS62134579A (ja) * 1985-12-06 1987-06-17 Sharp Corp ユニバ−サルフイクスチヤ−
JPS6414937A (en) * 1987-07-09 1989-01-19 Sumitomo Electric Industries Prober
JPH0289377U (ja) * 1988-09-12 1990-07-16
JP2012145454A (ja) * 2011-01-12 2012-08-02 Renesas Electronics Corp 半導体試験装置
JP2017003295A (ja) * 2015-06-05 2017-01-05 三菱電機株式会社 測定装置、半導体装置の測定方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153833A (ja) * 1986-12-18 1988-06-27 Oki Electric Ind Co Ltd 半導体集積回路の測定装置
JPH0757062A (ja) * 1993-06-30 1995-03-03 Ricoh Co Ltd 電子機器
US5698990A (en) * 1996-07-10 1997-12-16 Southwest Test Inc. Counterforce spring assembly for printed circuit board test fixtures
JP3500042B2 (ja) * 1997-06-18 2004-02-23 矢崎総業株式会社 電子部品の接続構造及び接続方法
US6917525B2 (en) * 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US6819095B1 (en) * 1999-09-16 2004-11-16 International Rectifier Corporation Power semiconductor device assembly with integrated current sensing and control
JP2004340793A (ja) * 2003-05-16 2004-12-02 Alps Electric Co Ltd 電子回路ユニットの測定装置
JP4368704B2 (ja) * 2004-03-12 2009-11-18 三井金属鉱業株式会社 電子部品実装用プリント配線板の電気検査方法および電気検査装置ならびにコンピュータ読み取り可能な記録媒体
CN100585826C (zh) * 2005-03-11 2010-01-27 株式会社瑞萨科技 半导体集成电路器件的制造方法
JP4725996B2 (ja) * 2005-09-27 2011-07-13 株式会社アイペックス コネクタ装置
KR100967318B1 (ko) * 2007-11-13 2010-07-05 이에 유나이티드 스틸 코포레이션 오스테나이트 스테인레스 스틸 검사용 탐침 장치
JP2009125853A (ja) * 2007-11-22 2009-06-11 Murata Mach Ltd センサ
JP2009276215A (ja) * 2008-05-15 2009-11-26 Tokyo Electron Ltd プローブ装置及びコンタクト位置の補正方法
JP5184996B2 (ja) 2008-07-08 2013-04-17 株式会社日本マイクロニクス 接触子及び電気的接続装置
CN101639490A (zh) * 2008-07-31 2010-02-03 安捷伦科技有限公司 探针继电器、测试夹具和使用测试夹具进行隔离的方法
US7880487B2 (en) * 2009-01-22 2011-02-01 Fluke Corporation Test lead probe with retractable insulative sleeve
US8907694B2 (en) * 2009-12-17 2014-12-09 Xcerra Corporation Wiring board for testing loaded printed circuit board
JP5827554B2 (ja) * 2011-12-05 2015-12-02 株式会社日本マイクロニクス 電力用半導体デバイス検査用プローブ集合体とそれを用いる検査装置
US9335343B1 (en) * 2012-03-30 2016-05-10 Altera Corporation Contactor for reducing ESD in integrated circuit testing
CN103439582A (zh) * 2013-08-28 2013-12-11 三星高新电机(天津)有限公司 检测块的测试装置
CN203673034U (zh) * 2013-11-27 2014-06-25 中国航天科技集团公司第五研究院第五一三研究所 一种多点自调整故障注入装置
TWI555987B (zh) * 2014-01-28 2016-11-01 Spring sleeve type probe and its manufacturing method
KR101576668B1 (ko) * 2014-08-18 2015-12-22 한전케이피에스 주식회사 블록형 프로브 장치
KR101569777B1 (ko) * 2015-02-24 2015-11-18 (주)코스텍 다접점 컨넥터 및 이를 구비한 전기 접촉편, 플러그, 소켓
DE102015109022B4 (de) * 2015-06-08 2018-08-23 Infineon Technologies Ag Modulares Messgerät zum Testen von Prüflingen mittels Schnittstellenelementen
KR102270233B1 (ko) * 2017-12-12 2021-06-25 주식회사 엘지에너지솔루션 배터리 팩의 음극 컨택터 진단 장치 및 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880891A (ja) * 1981-11-10 1983-05-16 関東化成工業株式会社 プリント配線板の検査方法
JPS60190876A (ja) * 1984-03-09 1985-09-28 Sharp Corp 印刷配線基板の検査装置
JPS61159174A (ja) * 1984-06-21 1986-07-18 ザ ゼネラル エレクトリツク コムパニ− ピ−エルシ− プログラム可能な剣山型試験アクセス治具
JPS6194783U (ja) * 1984-11-28 1986-06-18
JPS62134579A (ja) * 1985-12-06 1987-06-17 Sharp Corp ユニバ−サルフイクスチヤ−
JPS6414937A (en) * 1987-07-09 1989-01-19 Sumitomo Electric Industries Prober
JPH0289377U (ja) * 1988-09-12 1990-07-16
JP2012145454A (ja) * 2011-01-12 2012-08-02 Renesas Electronics Corp 半導体試験装置
JP2017003295A (ja) * 2015-06-05 2017-01-05 三菱電機株式会社 測定装置、半導体装置の測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856434A (zh) * 2019-03-27 2019-06-07 昆山福烨电子有限公司 一种经济型接触式阻值检测针
US11913782B2 (en) 2019-12-09 2024-02-27 Lg Energy Solution, Ltd. Method and device for evaluating dispersion of binder in electrode mixture layer

Also Published As

Publication number Publication date
US10802047B2 (en) 2020-10-13
US20200141977A1 (en) 2020-05-07
JP6702426B2 (ja) 2020-06-03
CN109844550B (zh) 2021-06-15
JPWO2018078752A1 (ja) 2019-03-22
CN109844550A (zh) 2019-06-04
DE112016007382T5 (de) 2019-09-26

Similar Documents

Publication Publication Date Title
KR101389251B1 (ko) 프로브 장치
JP5432700B2 (ja) 半導体デバイスの検査装置
JP5265746B2 (ja) プローブ装置
JP6520356B2 (ja) 検査装置および検査方法
JP2013032938A5 (ja)
CN103033728B (zh) 经时击穿矩阵测试电路及测试方法
CN101865971A (zh) 半导体场效应晶体管的测试方法及测试结构
WO2018078752A1 (ja) 検査装置および検査方法
KR100787829B1 (ko) 프로브 카드 테스트 장치 및 테스트 방법
Jormanainen et al. High humidity, high temperature and high voltage reverse bias-a relevant test for industrial applications
US20140354325A1 (en) Semiconductor layout structure and testing method thereof
Lutz et al. Reliability and reliability investigation of wide-bandgap power devices
JP2015190788A (ja) 基板検査装置
US11307247B2 (en) Prober with busbar mechanism for testing a device under test
CN117577552A (zh) 晶圆可靠性测试***
CN108845166B (zh) 探针卡
KR102195561B1 (ko) 전기적 접속 장치
KR101310404B1 (ko) 에스램을 이용한 에러 캐치 램이 구현된 테스트 장치
CN107870294B (zh) 评价装置、半导体装置的评价方法
US20140320156A1 (en) Apparatus for detecting misalignment of test pad
JP4744884B2 (ja) ウエハ検査装置及びウエハ検査方法
US20180180659A1 (en) Evaluation apparatus of semiconductor device and method of evaluating semiconductor device using the same
JP6731862B2 (ja) 半導体装置の評価装置
KR101762383B1 (ko) 반도체 시험 장치에 있어서의 전기 길이 측정 방법
JP6747374B2 (ja) 半導体装置の評価装置、半導体装置の評価方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546995

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920422

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16920422

Country of ref document: EP

Kind code of ref document: A1