WO2018056052A1 - Electroconductive film composite and method for manufacturing same - Google Patents

Electroconductive film composite and method for manufacturing same Download PDF

Info

Publication number
WO2018056052A1
WO2018056052A1 PCT/JP2017/032036 JP2017032036W WO2018056052A1 WO 2018056052 A1 WO2018056052 A1 WO 2018056052A1 JP 2017032036 W JP2017032036 W JP 2017032036W WO 2018056052 A1 WO2018056052 A1 WO 2018056052A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver fine
conductive film
resin layer
fine particles
silver
Prior art date
Application number
PCT/JP2017/032036
Other languages
French (fr)
Japanese (ja)
Inventor
外村 卓也
祐樹 新谷
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2017547016A priority Critical patent/JPWO2018056052A1/en
Priority to CN201780058105.4A priority patent/CN109716450B/en
Publication of WO2018056052A1 publication Critical patent/WO2018056052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the present invention is a conductive film composite having a base material and a conductive film, and is suitably used for wiring such as semiconductor integrated circuits, wiring of printed wiring boards, transparent electrodes, and wiring and electrodes for organic thin film transistor substrates.
  • the present invention relates to a conductive film composite that can be used, and a method for producing the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-162767
  • a coated metal comprising: a first step of producing a complex compound containing the metal compound and an amine, and a second step of producing a metal fine particle by decomposition of the complex compound by heating.
  • a method for producing microparticles is disclosed.
  • Patent Document 1 it is possible to smoothly produce a complex compound of an amine and a metal compound in the process of producing coated metal fine particles by the metal amine complex decomposition method, and it is possible to shorten the time required for production. It will be.
  • various amines can be used depending on the application of the coated metal fine particles, it is possible to provide coated metal fine particles that can be sintered smoothly even at a temperature of 100 ° C. or less, for example, PET and polypropylene. It is also possible to form a conductive film and conductive wiring on a plastic substrate having low heat resistance.
  • Patent Document 2 Japanese Patent Laid-Open No. 2013-142173
  • an aliphatic hydrocarbon monoamine comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 6 or more.
  • an aliphatic hydrocarbon monoamine (B) consisting of an aliphatic hydrocarbon group and one amino group, the total number of carbons of the aliphatic hydrocarbon group being 5 or less, and an amine (A) and an amine
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-149681
  • development on a support is performed. It has a fine line pattern made of a conductive metal containing silver and a transparent conductive layer, and has an easy-adhesion layer having a moisture expansion rate of less than 60% between the support and the fine line pattern.
  • a translucent conductive substrate is disclosed which is characterized.
  • an easy adhesion layer is provided between the support and the fine line pattern layer, and the swelling rate of the layer with respect to water is controlled to be less than 60%.
  • the adhesion is remarkably improved, and the compatibility between the fine line shape (thinness and width) and conductivity, and the compatibility between the fine line shape (thinness and width) and translucency can be easily adjusted.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2014-196556
  • (1) a resin layer forming composition (b) is applied to an insulating substrate (A) to form a resin layer (B).
  • a process for producing a conductive layer comprising: a step of electroless plating a base material having a non-conductive layer (D) obtained in step 1 to form a conductive layer (E), comprising: (B) is a resin containing a urethane resin (b1), a vinyl polymer (b2), and an aqueous medium (b3)
  • Method for producing a conductive material which is a composition for forming is disclosed
  • a resin layer is formed on various insulating substrates, so that non-conductive containing metal fine particles containing gold, silver, copper and platinum protected by a specific compound.
  • the layer is easily obtained by a coating method, and the non-conductive layer exhibits excellent electroless plating catalytic activity and functions as a scaffold for a plating film that induces strong adhesion.
  • High-performance conductive materials, printed wiring board substrates, and printed wiring boards that can be used in the mounting field can be manufactured at low cost without the need for vacuum equipment.
  • the conductive film obtained by baking at a low temperature has excellent conductivity.
  • PET Polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • the conductive film when the conductive film is required to have heat resistance (for example, maintained at 180 ° C. for 1 minute) at the time of mounting, in addition to the heat resistance, the conductive film has both adhesion to the substrate and conductivity. Is extremely difficult to form.
  • an object of the present invention is a conductive film composite having a base material and a conductive film, and even when a base material or glass base material having low heat resistance is used,
  • An object of the present invention is to provide a conductive film composite having both good adhesion of the film and excellent conductivity and heat resistance of the conductive film, and a method for producing the same.
  • the present inventor has excellent adhesion to a substrate and exhibits good conductivity even for a substrate having low heat resistance and a glass substrate.
  • a resin having a specific thickness is formed as an adhesion layer between the substrate and the conductive film, and a specific silver nanoparticle dispersion is used.
  • the inventors have found that forming a conductive film is extremely effective in achieving the above object, and have reached the present invention.
  • the present invention A substrate; A resin layer formed on at least a part of the substrate; A conductive film formed on at least a part of the resin layer, The conductive coating is formed from silver fine particles, The resin layer has a thickness of 1 ⁇ m or less, A conductive coating composite characterized by the above.
  • the resin layer functions as an adhesion layer between the substrate and the conductive film, the substrate and the conductive film have good adhesion. Moreover, by making the film thickness of the resin layer 1 ⁇ m or less, the influence of swelling / shrinkage of the resin layer is reduced, and excellent heat resistance can be imparted to the conductive film.
  • the resin layer is thicker than 1 ⁇ m, there may be a problem due to the characteristics of the resin layer. Specifically, as a result of the conductive film excessively expanding and contracting due to the flexibility of the resin layer, defects are formed in the conductive film (disconnection). Moreover, transparency deterioration due to a thick resin layer, whitening due to moisture absorption, yellowing due to heat, and the like may occur. Here, these adverse effects can be minimized by setting the thickness of the resin layer to 1 ⁇ m or less. In addition, by setting the film thickness of the resin layer to 1 ⁇ m or less, it is advantageous in terms of cost because materials are not used more than necessary.
  • the more preferable film thickness of the resin layer is 0.05 to 0.8 ⁇ m, and the most preferable film thickness is 0.1 to 0.5 ⁇ m. If it is less than 0.05 micrometer, the effect of a resin layer may not fully be exhibited but it may be inferior to adhesiveness.
  • the resin layer is not particularly limited as long as it is a resin that exhibits good adhesion to the substrate, but in order to exhibit excellent adhesion to the substrate, a carboxyl group And those having a functional group such as a hydroxyl group are preferable.
  • polyvinyl alcohol resins including polyvinyl butyral
  • polyvinyl pyrrolidone can be used, and the main component of the resin layer is a polyurethane resin.
  • a polymer having an isocyanate group protected with a blocking agent and / or a polymer containing an oxazoline group is added as a crosslinking agent.
  • the flexibility of the resin layer can be controlled by adding the cross-linking agent to the polyurethane resin.
  • the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is within 10% by weight.
  • the specific functional group contained in the polyurethane resin and the cross-linking agent are excessively reacted, and thus the flexibility of the resin layer is impaired.
  • the adhesion between the resin layer, the substrate and the conductive film tends to be impaired.
  • polyurethane resins used as the adhesion layer are —COO—H, —COOR, —COO — NH + R 2 and —COO — NH 4 + (provided that R, R 2 Are each independently a linear or branched alkyl group that may have a substituent, the same cycloalkyl group, the same alkylene group, the same oxyalkylene group, the same aryl group, the same aralkyl group, the same heterocyclic group, Having the functional group of any one of (the same alkoxy group, the same alkoxycarbonyl group, and the same acyl group)), the adhesion between the resin layer and the base material, and between the resin layer and the conductive film is improved. It is thought to improve.
  • the use of the polyurethane resin is also preferable in that the durability under a high temperature and high humidity environment is improved.
  • the conductive coating is formed from silver fine particles, and further sintered to the same degree as the original conductivity of the silver fine particles by sintering it by external heating or the like. Have excellent electrical conductivity. The reason why the good conductivity is manifested is not necessarily clear, but it is thought to be due to the excellent deformability of the resin layer used as the adhesion layer.
  • the resin layer preferably has a breaking elongation of 600% or more, and in the process of sintering the silver fine particles, the thermal expansion coefficient difference between the base material and the conductive coating is alleviated by the flexibility and the shrinkage / expansion property. Can do. As a result, the sintering of the silver fine particles proceeds smoothly, and a conductive film having excellent conductivity can be obtained.
  • the polyurethane resin is an aqueous polyurethane resin.
  • the water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
  • the resin layer is formed by applying the aqueous polyurethane resin dissolved in a solvent to the base material.
  • aqueous polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses.
  • the film is formed by the influence of the particle size of the emulsion. There is.
  • the aqueous polyurethane resin in a solvent (for example, ethanol, acetone, etc.), the emulsion breaks up into a uniform solution, so that the film-forming ability (particularly the film quality uniformity in the thin film) is improved.
  • a solvent for example, ethanol, acetone, etc.
  • the conductive coating is The silver fine particles; A short chain amine, A solvent, It is preferably formed from a silver fine particle dispersion containing a dispersing agent for dispersing the silver fine particles.
  • the short chain amine preferably has 5 or less carbon atoms
  • the solvent is preferably a highly polar solvent
  • the dispersant has an acid value.
  • the partition coefficient logP of the short chain amine is preferably -1.0 to 1.4.
  • the above-mentioned silver fine particle dispersion is a silver fine particle dispersion having a low temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (especially highly polar solvents), and a conductive film is formed by sintering the silver fine particle composite. By doing so, a conductive film having good conductivity can be formed at a low temperature.
  • the amino group in one molecule of the amine has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, each amino group tends to exhibit alkaline properties. Accordingly, when the amine is localized (attached) on at least a part of the surface of the silver fine particles (that is, when at least a part of the surface of the silver fine particles is coated), the amine and the inorganic particles can sufficiently have an affinity. And aggregation of silver fine particles can be prevented (dispersibility is improved).
  • the functional group of amine is adsorbed on the surface of the silver fine particles with an appropriate strength and prevents mutual contact between the silver fine particles, thereby contributing to the stability of the silver fine particles in the storage state. Moreover, it is thought that the fusion
  • the amine constituting the silver fine particle dispersion a short chain amine having 5 or less carbon atoms
  • the amine attached to at least a part of the surface of the silver fine particles by heating can be easily removed.
  • Good low-temperature sinterability for example, sinterability at 100 to 350 ° C.
  • the distribution coefficient logP of the short chain amine is set to -1.0 to 1.4 because if the distribution coefficient logP is less than -1.0, the polarity of the short chain amine is too high, so that the reduction of silver is reduced. This is because it progresses rapidly and it becomes difficult to control the formation of silver fine particles, and if the distribution coefficient logP exceeds 1.4, the polarity of the amine coordinated to silver is low, making it difficult to disperse in a highly polar solvent.
  • Log P is calculated as a distribution coefficient. Therefore, the distribution coefficient logP means that it is one index that indicates whether or not a range of polar solvent can disperse the silver fine particles.
  • the method for measuring the partition coefficient logP is not particularly limited, and can be determined by, for example, flask shaking method, high performance liquid chromatography (HPLC) method, and calculation using a quantitative structure-activity relationship algorithm. Literature values published on websites such as centers may be used.
  • the silver fine particle dispersion includes an acid value dispersant added after the synthesis of the silver fine particles (that is, a dispersant having an acid value for dispersing the silver fine particles).
  • the “dispersant having an acid value” as used herein includes all dispersants that do not have an amine value or a hydroxyl value as an adsorbing group or a functional group. By using such a dispersant, the dispersion stability of the silver fine particles in the solvent can be improved.
  • the acid value of the dispersant is preferably 5 to 200, and the dispersant preferably has a functional group derived from phosphoric acid.
  • the “dispersant having an acid value” is preferable is not necessarily clear, but the present inventors not only adsorb metal, but also adsorb in a denser form by interacting with a short chain amine. It is thought that it exhibits high dispersibility while having low-temperature sinterability.
  • a dispersant having a high polarity When it is desired to disperse silver fine particles in a highly polar solvent described later, it is generally effective to use a dispersant having a high polarity.
  • a short-chain amine having a lower log P it is conceivable to use a short-chain amine having a lower log P, but the short-chain amine generally exhibits reducibility and may not keep the reaction rate properly. Specifically, the reaction rate is excessively increased, and silver fine particles having excellent dispersibility may not be formed. Therefore, by adding a more polar dispersant after the synthesis of the silver fine particles, it is possible to improve only the compatibility with the dispersion medium (surface modification) while leaving the silver fine particles intact.
  • the acid value of the dispersant is 5 or more, adsorption by an acid-base interaction starts to occur on a metal substance coordinated with an amine and the particle surface is basic, and if it is 200 or less, an adsorption site is excessively formed. Since it does not have, it adsorb
  • the dispersant since the dispersant has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts the metal M through the oxygen O, and is therefore most effective for adsorption with metals and metal compounds. It is preferable because suitable dispersibility can be obtained by the amount of adsorption.
  • the “acid value” is expressed in mg of potassium hydroxide required to neutralize the acidic component contained in 1 g of the sample.
  • the acid value measurement method include an indicator method (p-naphtholbenzein indicator) and a potentiometric titration method.
  • ⁇ ISO6618-1997 Neutralization titration method by indicator titration method ⁇ corresponding to indicator titration method (acid value)
  • ⁇ ISO6619-1988 Corresponding to potentiometric titration method (acid value) ⁇ potentiometric titration method (acid value)
  • the silver fine particle dispersion may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of the silver fine particles.
  • a dispersant protecting dispersant
  • the “protective dispersant” herein may be the same as the “dispersant having an acid value” added after the synthesis of the silver fine particles.
  • a highly polar solvent means a solvent that is generally incompatible with a low polarity solvent such as hexane or toluene, such as water or an alcohol having a short carbon number.
  • a low polarity solvent such as hexane or toluene, such as water or an alcohol having a short carbon number.
  • an alcohol having 1 to 6 carbon atoms is used. More preferably, it is used.
  • the particle size of the silver fine particles constituting the silver fine particle dispersion is suitably a nanometer size that desirably causes a melting point drop, desirably 1 to 200 nm. However, if necessary, a particle size of micrometer size may be included. Good.
  • the present invention also provides: A first step of applying a resin to at least a part of the substrate to form a resin layer; A second step of applying a silver fine particle dispersion to at least a part of the resin layer; A third step of sintering the silver fine particles contained in the silver fine particle dispersion by external heating to form a conductive film, There is also provided a method for producing a conductive film composite characterized by the above.
  • a conductive coating excellent in conductivity can be formed at a low temperature, and good conductivity can be obtained even for a substrate having low heat resistance.
  • a conductive film composite to be expressed can be obtained.
  • the adhesion between the resin layer and the substrate and between the resin layer and the conductive film can be improved.
  • the main component of the resin layer is a polyurethane resin
  • the polyurethane resin contains a polymer in which an isocyanate group is protected with a blocking agent and / or an oxazoline group. It is preferable that the polymer is added as a crosslinking agent.
  • the flexibility of the resin layer can be controlled by adding the crosslinking agent to the polyurethane resin. That is, it is preferable to use a polyurethane resin composition containing a polyurethane resin and a crosslinking agent.
  • the solid content of the crosslinking agent relative to the solid content of the polyurethane resin is preferably 10% by weight or less.
  • the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is more than 10% by weight, the specific functional group contained in the polyurethane resin and the cross-linking agent are excessively reacted, and thus the flexibility of the resin layer is impaired.
  • the adhesion between the resin layer, the substrate and the conductive film tends to be impaired.
  • the difference in thermal expansion coefficient between the base material and the conductive film can be sufficiently relaxed in the third step of sintering the silver fine particles. .
  • the sintering of silver fine particles proceeds smoothly, and a conductive film having excellent conductivity can be obtained.
  • a water-based polyurethane resin as the polyurethane resin.
  • the water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
  • the resin layer has a thickness of 1 ⁇ m or less.
  • the film thickness of the resin layer can be appropriately controlled by the spin coating rotation speed, the amount of diluted liquid, and the like.
  • the resin layer is preferably formed by applying the aqueous polyurethane resin dissolved in a solvent to the base material.
  • aqueous polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses.
  • the film is formed by the influence of the particle size of the emulsion. There is.
  • the aqueous polyurethane resin in a solvent (for example, ethanol, acetone, etc.), the emulsion breaks up into a uniform solution, so that the film-forming ability (particularly the film quality uniformity in the thin film) is improved.
  • a solvent for example, ethanol, acetone, etc.
  • the silver fine particle dispersion As the silver fine particle dispersion, The silver fine particles; A short-chain amine having 5 or less carbon atoms; A highly polar solvent, It is preferable to use a silver fine particle dispersion having a distribution coefficient logP of the short-chain amine of -1.0 to 1.4 containing a dispersant having an acid value for dispersing the silver fine particles.
  • the silver fine particle dispersion is a silver fine particle dispersion having a low-temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (particularly high polarity solvents), and thus can be easily applied to a substrate.
  • Yes by forming the conductive film by sintering the silver fine particle composite (third step), a conductive film having good conductivity can be formed at a low temperature.
  • the conductive film composite of the present invention and the method for producing the same, the conductive film composite having a base material and a conductive film, which is a case of using a low heat resistant base material or a glass base material.
  • a conductive film composite having excellent heat resistance and a method for producing the same are provided. Can do.
  • FIG. 1 is a schematic cross-sectional view of the conductive film composite of the present embodiment.
  • the conductive film composite 1 of the present invention comprises a base material 2, a resin layer 4 formed on at least a part of the base material 2, and a conductive film 6 formed on at least a part of the resin layer 4.
  • the resin layer 4 is formed as an adhesion layer between the substrate 2 and the conductive coating 6, the conductive coating 6 and the substrate 2 have good adhesion.
  • the base material 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known base materials can be used.
  • materials that can be used for the substrate 2 include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
  • Polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, or glass can be used.
  • the resin layer 4 has a thickness of 1 ⁇ m or less. By setting the thickness of the resin layer 4 to 1 ⁇ m or less, the influence of swelling / shrinkage of the resin layer is reduced, and excellent heat resistance can be imparted to the conductive coating 6.
  • the more preferable film thickness of the resin layer 4 is 0.05 to 0.8 ⁇ m, and the most preferable film thickness is 0.1 to 0.5 ⁇ m.
  • the resin layer 4 is thicker than 1 ⁇ m, there may be a problem due to the characteristics of the resin layer 4. Specifically, as a result of the conductive film 6 being excessively expanded and contracted due to the flexibility of the resin layer 4, defects are formed in the conductive film 6 (disconnection). Moreover, transparency deterioration due to the thick resin layer 4, whitening due to moisture absorption, yellowing due to heat, and the like may occur.
  • the film thickness of the resin layer 4 to 1 ⁇ m or less, these adverse effects can be minimized.
  • the material is not used more than necessary, which is advantageous in terms of cost.
  • the resin layer 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known resins can be used.
  • the main component is a polyurethane resin, and the polyurethane resin has an isocyanate group as a blocking agent. It is preferable that a polymer protected with a polymer and / or a polymer containing an oxazoline group is added as a crosslinking agent.
  • the flexibility of the resin layer 4 can be controlled by adding the cross-linking agent to the polyurethane resin.
  • the solid content of the crosslinking agent is within 10% by weight with respect to the solid content of the polyurethane resin.
  • the specific functional group contained in the polyurethane resin and the cross-linking agent react excessively, so that the flexibility of the resin layer 4 is impaired.
  • the adhesion between the resin layer 4 and the substrate 2 and the conductive coating 6 tends to be impaired.
  • the main component of the resin layer 4 is more preferably a polyurethane resin having a breaking elongation of 600% or more, and the polyurethane resin includes —COO—H, —COOR, —COO ⁇ NH + R 2 and — COO ⁇ NH 4 + (wherein R and R 2 are each independently a linear or branched alkyl group, cycloalkyl group, alkylene group, oxyalkylene group, An aryl group, the same aralkyl group, the same heterocyclic group, the same alkoxy group, the same alkoxycarbonyl group, and the same acyl group.) Having any one of the functional groups shown below. It is preferable.
  • the resin layer 4 functions as an adhesion layer between the substrate 2 and the conductive film 6, the substrate 2 and the conductive film 6 have good adhesion. Moreover, although it is not clear about a detailed reason, since the polyurethane resin used as an adhesion layer has the specific functional group, the resin layer 4 and the base material 2, and the resin layer 4 and the conductive film are used. Adhesion with 6 is improved.
  • the polyurethane resin which is the main component of the resin layer 4
  • the polyurethane resin which is the main component of the resin layer 4
  • the elongation at break is 600% or more
  • the difference in thermal expansion coefficient between the substrate 2 and the conductive coating film 6 can be reduced. As a result, it is considered that the sintering of the silver fine particles proceeds smoothly and the conductive film 6 having excellent conductivity can be obtained.
  • the polyurethane resin is preferably an aqueous polyurethane resin.
  • the water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
  • any polyurethane resin of ester type, ether type or polycarbonate type can be used, but it is preferable to use an ether type or polycarbonate type polyurethane resin excellent in hydrolysis resistance.
  • the Superflex series 300, 460, 470, 500M, 740, E-2000, E-4800 manufactured by Daiichi Kogyo Seiyaku, and the hydran series of DIC Corporation: HW312B, HW311 AP-10, AP-70, Sanyo Chemical's urethane resin emulsions: Permarin UA-200, Uprene UXA-307, etc. can be preferably used.
  • the polyurethane resin used as the main component of the resin layer 4 has a specific functional group
  • the flexibility of the resin layer 4 can be controlled by adding a crosslinking agent that reacts with the functional group.
  • a crosslinking agent that reacts with the functional group.
  • applicable functional groups include amino groups, isocyanate groups, oxazoline groups, and carbodiimide groups.
  • the crosslinking agent is added too much, the specific functional group contained in the polyurethane resin and the crosslinking agent react excessively, so that the flexibility of the resin layer 4 is impaired. In addition, the adhesion between the resin layer 4 and the base material 2 and the conductive coating 6 tends to be impaired. Therefore, it is preferable that the solid content of the crosslinking agent is within 10% with respect to the solid content of the polyurethane resin.
  • the crosslinking agent is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known crosslinking agents can be used.
  • Elastron series BN-69, BN-77 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. can be used.
  • Nippon Catalytic Epocros series WS-300, WS-500, WS-700, and the like can be used.
  • the film formation method of the resin layer 4 is not particularly limited, and for example, dipping, spraying, bar coating, spin coating, slit die coating, air knife, reverse roll coating, gravure coating, curtain flow, etc. are used. Can do.
  • the film formation temperature is not particularly limited, and a temperature equal to or higher than the minimum film formation temperature of the composition used as the raw material of the resin layer 4 may be used. Furthermore, you may heat-process at the temperature below the heat-resistant temperature of the base material 2 as needed.
  • the conductive coating 6 is a sintered body formed from silver fine particles and formed by external heating, and has good conductivity comparable to that inherent in silver fine particles. ing.
  • the thickness of the conductive coating 6 is preferably 0.1 to 2 ⁇ m. If the thickness is less than 0.1 ⁇ m, the thickness may be too thin to obtain sufficient conductivity. Even if it exceeds 2 ⁇ m, there is no problem in terms of conductivity, but the amount of use increases, which is not preferable because of high cost.
  • the silver fine particle dispersion used for forming the conductive coating 6 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver fine particle dispersions can be used.
  • the distribution coefficient logP of a short-chain amine comprising a short-chain amine having a 5 or less, a highly polar solvent, and a dispersant having an acid value for dispersing silver fine particles is -1.0 to 1.4 It is preferable to use a silver fine particle dispersion.
  • the silver fine particle dispersion is a silver fine particle dispersion having a low temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (especially high polarity solvents), and the conductive coating 6 is formed by sintering the silver fine particle composite.
  • the conductive film 6 having good conductivity can be formed at a low temperature.
  • the specific functional group of the polyurethane resin used as a main component of the resin layer 4 interacts with the short chain amine contained in the silver fine particles, and good adhesion can be exhibited.
  • the silver fine particle dispersion of this embodiment contains silver fine particles, a short-chain amine having 5 or less carbon atoms, and a highly polar solvent. These components will be described below.
  • the average particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment is not particularly limited as long as the effect of the present invention is not impaired. It preferably has a diameter, for example, it may be 1 to 200 nm. Further, it is preferably 2 to 100 nm. If the average particle diameter of the silver fine particles is 1 nm or more, the silver fine particles have good low-temperature sinterability, and the production of silver fine particles is practical without increasing the cost. Moreover, if it is 200 nm or less, the dispersibility of a silver fine particle does not change easily over time, and it is preferable.
  • the silver fine particle dispersion may be added with a metal whose ionization column is more noble than hydrogen, that is, gold, copper, platinum, palladium, or the like in consideration of the problem of migration, for example.
  • the particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment may not be constant.
  • the silver fine particle dispersion contains a dispersant described later as an optional component, it may contain a metal particle component having an average particle size of more than 200 nm, but it does not cause aggregation, and the effect of the present invention is achieved.
  • a metal particle component having an average particle diameter of more than 200 nm may be included as long as the component is not significantly impaired.
  • the particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
  • the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
  • RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
  • the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
  • the crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
  • D K ⁇ / Bcos ⁇
  • K Scherrer constant (0.9)
  • wavelength of X-ray
  • B half width of diffraction line
  • Bragg angle.
  • a short-chain amine having 5 or less carbon atoms is attached to at least a part of the surface of the silver fine particles.
  • a trace amount of organic matter contained as an impurity from the beginning, a trace amount of organic matter mixed in the manufacturing process described later, a residual reducing agent that could not be removed in the cleaning process, a residual dispersant, etc. may be attached.
  • the short-chain amine having 5 or less carbon atoms is not particularly limited as long as the distribution coefficient logP is ⁇ 1.0 to 1.4, and may be linear or branched. You may have a chain.
  • Examples of the short chain amine include ethylamine ( ⁇ 0.3) propylamine (0.5), butylamine (1.0), N- (3-methoxypropyl) propane-1,3-diamine ( ⁇ 0.
  • 1,2-ethanediamine N- (3-methoxypropyl) formamide (-0.2), 2-methoxyethylamine (-0.9), 3-methoxypropylamine (-0.5), 3 -Ethoxypropylamine (-0.1), 1,4-butanediamine (-0.9), 1,5-pentanediamine (-0.6), pentanolamine (-0.3), aminoisobutanol (-0.8) and the like are mentioned, among which alkoxyamine is preferably used.
  • the short chain amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the said amine may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the silver particle dispersion of this embodiment may contain a carboxylic acid in addition to the short-chain amine having 5 or less carbon atoms as long as the effects of the present invention are not impaired.
  • the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the carboxylic acid is localized (attached) on at least a part of the surface of the silver fine particles (that is, covers at least a part of the surface of the silver fine particles) in the silver particle dispersion of the present embodiment, the solvent. And silver fine particles can be made to sufficiently adhere to each other and aggregation of silver fine particles can be prevented (dispersibility is improved).
  • carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
  • a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • amines and carboxylic acids form amides. Since the amide group also adsorbs moderately on the surface of the silver fine particles, the amide group may adhere to the surface of the silver fine particles.
  • the content of the organic component in the colloid is 0.5 to 50 It is preferable that it is mass%. If the organic component content is 0.5% by mass or more, the storage stability of the resulting silver fine particle dispersion tends to be improved, and if it is 50% by mass or less, the silver fine particle dispersion is obtained by heating. There exists a tendency for the electroconductivity of a sintered body to be good. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
  • the silver fine particle dispersion of the present embodiment is obtained by dispersing silver fine particles in various high polar solvents.
  • High polar solvents include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, 2-butanol, pentanol, hexanol, isoamyl alcohol, furfuryl alcohol, nitromethane, acetonitrile, pyridine, acetone cresol, dimethylformamide, dioxane, ethylene Glycol, glycerin, phenol, p-cresol, propyl acetate, isopropyl acetate, tert-butanol, 1-pentanol, 2-pentanol, 4-methyl-2-pentanol, 3-methyl-1-pentanol, 3- Methyl-2-pentanol, 2-butanol, 1-hexanol, 2-hexanol 2-pentanone, 2-heptanone, 2- (2
  • the silver particle dispersion of the present embodiment further includes a “dispersant having an acid value” added after the synthesis of silver fine particles in order to disperse the silver fine particles.
  • a dispersant having an acid value added after the synthesis of silver fine particles in order to disperse the silver fine particles.
  • the acid value of the dispersant is more preferably from 5 to 200, and it is further preferable that the dispersant has a functional group derived from phosphoric acid.
  • the acid value of the dispersant is 5 or more, adsorption with an acid-base interaction starts to occur on a metal substance that coordinates with the amine and the particle surface is basic. This is because it does not have an adsorption site and adsorbs in a suitable form.
  • the dispersant since the dispersant has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts the metal M through the oxygen O, and is therefore most effective for adsorption with metals and metal compounds. This is because suitable dispersibility can be obtained by the amount of adsorption.
  • Examples of the polymer dispersant having an acid value of 5 to 200 include SOLPERSE-16000, 21000, 41000, 41090, 43000, 44000, 46000, and 54000 in the SOLSPERSE series of Lubrizol.
  • DISPERBYK-102, 110, 111, 170, 190.194N, 2015.2090, 2096 and the like are listed, and in Evonik's TEGO® Dispers series, 610, 610S, 630, 651, 655, 750W, 755W and the like are listed.
  • Disparon series manufactured by Enomoto Kasei Co., Ltd. DA-375, DA-1200 and the like are listed.
  • In the Floren series manufactured by Kyoei Chemical Industry Co., Ltd., WK-13E, G-700, -900 can be exemplified GW-1500, GW-1640, WK-13E.
  • the content when the dispersant is contained in the silver fine particle dispersion of the present embodiment may be adjusted according to desired properties such as viscosity.
  • desired properties such as viscosity.
  • the content is preferably 0.5 to 20% by mass, and when used as a silver paste, the content of the dispersant is preferably 0.1 to 10% by mass.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass.
  • the content of the polymer dispersant is 0.1% or more, the dispersion stability of the obtained silver fine particle dispersion is improved.
  • the content is too large, the low-temperature sinterability is lowered.
  • the more preferable content of the polymer dispersant is 0.3 to 10% by mass, and still more preferable content is 0.5 to 8% by mass.
  • the dispersion of this embodiment further has a weight reduction rate of 20% by mass or less when heated from room temperature to 200 ° C. by thermal analysis, and a weight reduction rate of 10% when heated from 200 ° C. to 500 ° C. It is preferable that it is below mass%.
  • the weight loss rate up to 200 ° C. mainly indicates the content of the short-chain amine, which is a low-temperature component that contributes to low-temperature sinterability, and the weight loss rate at 200 to 500 ° C. is mainly the dispersion stability.
  • the silver fine particle dispersion of this embodiment may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of the silver fine particles.
  • a dispersant protecting dispersant
  • the “protective dispersant” referred to here may be of the same type or different type as the “dispersant having an acid value” added after the synthesis of the silver fine particles.
  • the silver fine particle dispersion of the present embodiment has an appropriate viscosity, adhesion, drying property or printing depending on the purpose of use within a range not impairing the effects of the present invention.
  • Such optional components are not particularly limited.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin or emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose. , Hydroxypropylcellulose, cellulose derivatives of hydroxypropylmethylcellulose, polysaccharides such as xanthan gum or guar gum, etc., and these may be used alone or in combination of two or more.
  • clay minerals such as clay, bentonite or hectorite
  • polyester emulsion resin acrylic emulsion resin
  • polyurethane emulsion resin or emulsion such as blocked isocyanate
  • methyl cellulose carboxymethyl cellulose
  • hydroxyethyl cellulose Hydroxypropylcellulose
  • cellulose derivatives of hydroxypropylmethylcellulose polysaccharides such as xanthan gum or guar gum, etc
  • a surfactant different from the above organic components may be added.
  • the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used.
  • an anionic surfactant for example, alkylbenzene sulfonic acid Salt, quaternary ammonium salt and the like.
  • fluorine-based surfactants and silicon-based surfactants are preferred because an effect can be obtained with a small amount of addition.
  • the silver fine particles contained in the silver fine particle dispersion of the present embodiment have a distribution coefficient logP of ⁇ 1.0 to 1.4 and a carbon number of 5 or less on at least a part of the surface. Silver fine particles with a certain alkoxyamine attached.
  • the silver fine particles By attaching an alkoxyamine having a partition coefficient logP of ⁇ 1.0 to 1.4 and having 5 or less carbon atoms to at least a part of the surface of the silver fine particles, the silver fine particles can be used for various solvents (particularly highly polar solvents) Excellent dispersibility and low-temperature sinterability can be imparted.
  • the solvent various solvents can be used as long as the effects of the present invention are not impaired, and a solvent having an SP value (solubility parameter) of 7.0 to 15.0 can be used.
  • SP value solubility parameter
  • the phase is combined with the short-chain amine having 5 or less carbon atoms. It is preferable to use an alcohol having 1 to 6 carbon atoms because of good solubility.
  • Examples of the solvent having an SP value (solubility parameter) of 7.0 to 15.0 include hexane (7.2), triethylamine (7.3), ethyl ether (7.7), and n-octane (7. 8), cyclohexane (8.3), n-amyl acetate (8.3), isobutyl acetate (8.3), methyl isopropyl ketone (8.4), amyl benzene (8.5) butyl acetate (8.5) ), Carbon tetrachloride (8.6), ethylbenzene (8.7), p-xylene (8.8), toluene (8.9), methyl propyl ketone (8.9) ethyl acetate (8.9), Tetrahydrofuran (9.2), methyl ethyl ketone (9.3), chloroform (9.4), acetone (9.8), dioxane (10.1), pyridine (10.8), is
  • the particle size of the silver fine particles of the present embodiment is a nanometer size that desirably causes a melting point drop, and preferably 1 to 200 nm. However, if necessary, particles of a micrometer size may be included.
  • the silver fine particle dispersion may be used as it is to form the conductive coating 6, but the conductive film transferred and printed on the resin layer 4 can be prepared as a conductive ink suitable for transfer printing.
  • the conductive film 6 can be formed.
  • the conductive ink will be described.
  • the conductive ink for transfer printing of this embodiment is characterized by containing metal particles, a solvent containing ethanol, and 0.1 to 3.0% by mass of a high boiling point solvent having a hydroxyl group.
  • the solid content which has the metal particle dispersion in other words, metal colloid particle
  • distributes these solid content are included.
  • the “dispersion medium” may dissolve a part of the solid content.
  • the dispersibility of the metal colloid particles in the metal colloid liquid can be improved. Therefore, the content of the metal component in the metal colloid liquid can be reduced. Even if it is increased, the colloidal metal particles are less likely to aggregate and good dispersion stability can be maintained.
  • the “dispersibility” as used herein indicates whether or not the dispersion state of the metal particles in the metal colloid liquid is excellent immediately after the metal colloid liquid is prepared (whether it is uniform or not).
  • Dispersion stability indicates whether or not the dispersion state of the metal particles in the metal colloid liquid is maintained after a predetermined time has elapsed after adjusting the metal colloid liquid, It can also be said to be “low sedimentation aggregation”.
  • the “organic component” in the metal colloid particle is an organic substance that substantially constitutes the metal colloid particle together with the metal component.
  • the organic component includes trace organic substances contained in the metal as impurities from the beginning, organic substances adhering to the metal component from trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersion It does not include organic substances that adhere to trace amounts of metal components such as agents.
  • the “trace amount” is specifically intended to be less than 1% by mass in the metal colloid particles. Since the metal colloid particles in this embodiment contain an organic component, the dispersion stability in the metal colloid liquid is high. Therefore, even if the content of the metal component in the metal colloid liquid is increased, the metal colloid particles are less likely to aggregate, and as a result, good dispersibility is maintained.
  • the “solid content” of the metal colloid liquid in the present embodiment means that after removing the dispersion medium from the metal colloid liquid using silica gel or the like, for example, it is dried at room temperature of 30 ° C. or lower (for example, 25 ° C.) for 24 hours.
  • the solid content that remains is usually contained metal particles, residual organic components, residual reducing agent, and the like.
  • Various methods can be employed as a method of removing the dispersion medium from the metal colloid liquid using silica gel. For example, a metal colloid liquid is applied on a glass substrate and placed in a sealed container containing silica gel. What is necessary is just to remove a dispersion medium by leaving a glass substrate with a coating film for 24 hours or more.
  • the preferable solid content is 1 to 60% by mass.
  • the solid content concentration is 1% by mass or more, the metal content in the conductive ink for transfer printing can be secured, and the conductive efficiency does not decrease.
  • the solid content concentration is 60% by mass or less, the viscosity of the metal colloid liquid does not increase, the handling is easy, it is industrially advantageous, and a flat thin film can be formed.
  • a more preferable solid content is 5 to 40% by mass.
  • the conductive ink for transfer printing contains 0.1 to 3.0% by mass of a high boiling point solvent having a hydroxyl group.
  • the high boiling point solvent having a hydroxyl group is 1,3-butylene glycol (boiling point: 203 ° C.), 2,4-diethyl-1,5-pentanediol (boiling point: 150 ° C./5 mmHg, 200 ° C. or more at 1 atm) or octane. It is preferably selected from diols (boiling point: 243 ° C.).
  • “High-boiling solvent” refers to a solvent having a boiling point of 200 ° C. or higher.
  • an ink suitable for transfer printing with a small addition amount can be obtained. can do.
  • the ink applied on the silicone blanket can be semi-dried in a short time, and the printing tact can be shortened.
  • the addition amount of the high boiling point solvent having a hydroxyl group is 0.1 to 3.0% by mass. If the amount is less than 0.1% by mass, the amount is too small to easily form an ink suitable for the transfer printing method. If the amount exceeds 3.0% by mass, the time to reach a semi-dry state suitable for the transfer printing method is reached. It becomes longer and disadvantageous in terms of printing tact.
  • the addition amount of the high boiling point solvent having a hydroxyl group is 0.3 to 2.0% by mass, but it is more sure that the ink is suitable for the transfer printing method, and it is a semi-dry state suitable for the transfer printing method. This is particularly preferable from the viewpoint of shortening the time required to reach the position and being advantageous in terms of printing tact.
  • a highly volatile solvent such as ethanol is added to improve the drying property of the ink.
  • the transfer printing conductive ink can be quickly adjusted to a viscosity suitable for printing.
  • the highly volatile solvent include one or more selected from the group of solvents having a boiling point of less than 100 ° C. such as ethanol, methanol, propyl alcohol, isopropyl alcohol, acetone, n-butanol, sec-butanol, tert-butanol and the like. Low boiling solvents can be used.
  • the conductive ink for transfer printing preferably contains a fluorine solvent such as hydrofluoroether. Since the fluorine solvent has a low surface tension, it can exhibit good wettability with respect to the silicone blanket, and since the boiling point is relatively low, it can provide good drying properties. Of these, hydrofluoroethers are more preferable than fluorine solvents containing halogen atoms from the viewpoint of the ozone depletion coefficient.
  • hydrofluoroether has an ether bond than hydrofluorocarbons, so it has a high polarity and has the advantage of hardly causing the silicone blanket to swell, and has good compatibility with alcohols such as ethanol, This is more preferable because it has an effect of being excellent in compatibility with metal particles dispersed in alcohol.
  • a fluorine-based surfactant having a fluorine atom may be added for the purpose of improving the wettability with respect to the silicone blanket.
  • the content is preferably 0.01 to 2% by mass.
  • the surface tension is 22 mN / m or less.
  • the surface tension of 22 mN / m or less can be realized by adjusting the component ratio of the conductive ink for transfer printing according to the present invention.
  • the lower limit of the surface tension may be about 13 mN / m.
  • the surface tension referred to in the present invention is obtained by measurement based on the principle of the plate method (Wilhelmy method). For example, the surface tension is measured by a fully automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. can do.
  • the silver fine particles and silver fine particle dispersion production method of the present embodiment includes a step of producing silver fine particles, and the silver fine particles are added to the silver fine particles.
  • a second pre-process for producing silver fine particles with chain amine attached thereto is a first pre-process for preparing a mixed solution of a short-chain amine of ⁇ 1.4 and a short compound having 5 or less carbon atoms on at least a part of the surface by reducing the silver compound in the mixed solution.
  • the first pre-process it is preferable to add 2 mol or more of short chain amine to 1 mol of metallic silver.
  • an appropriate amount of the short chain amine can be attached to the surface of the silver fine particles produced by the reduction, and various solvents (particularly, Excellent dispersibility and low-temperature sinterability with respect to a highly polar solvent) can be imparted.
  • the particle size of the silver fine particles obtained is a nanometer size that causes a melting point drop depending on the composition of the liquid mixture in the first pre-process and the reduction conditions (for example, heating temperature, heating time, etc.) in the second pre-process.
  • the thickness is 1 to 200 nm.
  • particles of micrometer size may be included as necessary.
  • the method for taking out the silver fine particles from the silver fine particle dispersion obtained in the second pre-process is not particularly limited, and examples thereof include a method for washing the silver fine particle dispersion.
  • silver salts such as silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate, and silver sulfide. These are not particularly limited as long as they can be reduced, and may be dissolved in an appropriate solvent or may be used as dispersed in a solvent. These may be used alone or in combination.
  • the method for reducing these silver compounds in the raw material liquid is not particularly limited.
  • a method using a reducing agent a method of irradiating light such as ultraviolet rays, an electron beam, ultrasonic waves or thermal energy, a method of heating, etc. Is mentioned.
  • a method using a reducing agent is preferable from the viewpoint of easy operation.
  • Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
  • amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
  • hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
  • carbon monoxide for example, carbon monoxide.
  • Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
  • Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • light and / or heat may be added to promote the reduction reaction.
  • organic component, solvent and reducing agent for example, the above metal salt is dissolved in an organic solvent (for example, toluene) to form a metal salt.
  • organic solvent for example, toluene
  • the method include preparing a solution, adding a short-chain amine as a dispersant or a protective dispersant having an acid value to the metal salt solution, and then gradually dropping a solution in which the reducing agent is dissolved.
  • the dispersant in addition to the silver fine particles, a metal ion counter ion, a reducing agent residue, there is a dispersant, and the concentration of the electrolyte and the organic matter in the whole liquid tend to be high.
  • the silver fine particles are agglomerated due to high electrical conductivity, etc., and are easily precipitated.
  • the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing silver fine particles to remove excess residues, silver fine particles coated with an organic substance can be obtained with certainty.
  • washing method for example, a dispersion containing silver fine particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, a solvent for precipitating silver fine particles (for example, water, methanol, Methanol / water mixed solvent, etc.) is added and stirred again, and the method of removing the supernatant liquid after standing for a certain period of time is repeated several times, the method of performing centrifugation instead of the above standing, Examples thereof include a desalting method using a filtration device, an ion exchange device, and the like. By removing excess residue and removing the organic solvent by such washing, silver fine particles coated with the “short-chain amine or the dispersant having an acid value” of the present embodiment can be obtained.
  • a solvent for precipitating silver fine particles for example, water, methanol, Methanol / water mixed solvent, etc.
  • the metal colloid dispersion liquid is a mixture of the silver fine particles coated with the short-chain amine obtained in the above or the protective dispersant having an acid value and the dispersion medium described in the present embodiment. Is obtained.
  • the method of mixing the silver fine particles coated with the “short-chain amine or the protective dispersant having an acid value” and the dispersion medium is not particularly limited, and is performed by a conventionally known method using a stirrer or a stirrer. Can do. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
  • the production method is not particularly limited.
  • the metal colloid dispersion liquid composed of silver and other metals
  • the metal colloid dispersion liquid is coated with the above organic substance.
  • a dispersion containing silver fine particles and a dispersion containing other metal particles may be produced separately and then mixed, or a silver ion solution and other metal ion solution may be mixed. Thereafter, reduction may be performed.
  • Silver fine particles may be produced by the second step of producing silver fine particles in which a short-chain amine having 5 or less carbon atoms is attached to at least a part of the surface by reducing the silver compound.
  • atomic silver produced by heating a complex compound generated from a metal compound such as silver oxalate containing silver and a short-chain amine and decomposing the metal compound such as oxalate ion contained in the complex compound
  • a metal compound such as silver oxalate containing silver and a short-chain amine
  • decomposing the metal compound such as oxalate ion contained in the complex compound
  • the metal amine complex decomposition method for producing silver fine particles coated with amine by thermally decomposing a complex compound of a metal compound in the presence of amine decomposition of the metal amine complex which is a single kind of molecule is performed. Since the atomic metal is generated by the reaction, it is possible to generate the atomic metal uniformly in the reaction system, and the reaction is configured as compared with the case where the metal atom is generated by the reaction between multiple components. Inhomogeneity of the reaction due to fluctuations in the composition of the components is suppressed, which is particularly advantageous when producing a large amount of silver fine particles on an industrial scale.
  • a short chain amine molecule is coordinated to the metal atom to be generated, and the movement of the metal atom when aggregation occurs due to the action of the short chain amine molecule coordinated to the metal atom. Is assumed to be controlled. As a result, it is possible to produce silver fine particles that are very fine and have a narrow particle size distribution according to the metal amine complex decomposition method.
  • short-chain amine molecules have a relatively weak coordination bond on the surface of the silver fine particles to be produced, and these form a dense protective film on the surface of the silver fine particles. It is possible to produce coated silver fine particles having an excellent surface and excellent surface. In addition, since the short-chain amine molecules forming the film can be easily detached by heating or the like, it is possible to produce silver fine particles that can be sintered at a very low temperature.
  • the number of carbon atoms is 5 or less with respect to the dispersant having an acid value constituting the coating of the coated silver fine particles.
  • the dispersion of the present embodiment obtained as described above can be used as it is, but various inorganic components can be used as long as the dispersion stability and low-temperature sinterability of the conductive ink and conductive paste are not impaired. And organic components can be added.
  • FIG. 2 is a process diagram of the method for producing a conductive film composite of the present invention.
  • the method for producing a conductive film composite of the present invention includes a first step (S01) in which a resin is applied to at least a part of a substrate 2 to form a resin layer 4, and silver fine particles on at least a part of the resin layer 4.
  • a second step (S02) of applying the dispersion and a third step (S03) of sintering the silver fine particles contained in the silver fine particle dispersion by external heating to form the conductive coating 6 are included.
  • a polyurethane resin layer is formed as the resin layer 4 will be described.
  • a resin layer 4 is formed by applying an aqueous polyurethane resin dissolved in a solvent to at least a part of the substrate 2.
  • the film thickness of the resin layer 4 is preferably 1 ⁇ m or less. The film thickness can be appropriately controlled by the number of spin coating revolutions, the amount of diluent, and the like.
  • the polyurethane resin is preferably an aqueous system dissolved in a solvent.
  • the elongation at break is 600% or more, and —COO—H, —COOR, —COO ⁇ NH + R 2 and —COO ⁇ NH 4 + (wherein R and R 2 are each independently a linear or branched An alkyl group, the same cycloalkyl group, the same alkylene group, the same oxyalkylene group, the same aryl group, the same aralkyl group, the same heterocyclic group, the same alkoxy group, the same alkoxycarbonyl group, the same acyl which may have a substituent.
  • the resin layer 4 is formed by applying the water-based polyurethane resin to the substrate 2 in a state in which it is dissolved in a solvent.
  • water-based polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses.
  • the film is formed by the influence of the particle size of the emulsion.
  • the surface roughness becomes large.
  • the emulsion breaks into a uniform solution, so the film forming ability (particularly the film quality uniformity in the thin film) is improved, A good resin layer 4 can be formed.
  • a solvent for example, ethanol, acetone, etc.
  • the third step (S03) in which the silver fine particles are sintered.
  • the rate difference can be relaxed.
  • the sintering of the silver fine particles proceeds smoothly, and the conductive film 6 having excellent conductivity can be obtained.
  • the surface treatment of the base material 2 may be performed in order to improve the adhesion between the base material 2 and the resin layer 4.
  • the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment.
  • the film formation method of the resin layer 4 is not particularly limited, and for example, dipping, spraying, bar coating, spin coating, slit die coating, air knife, reverse roll coating, gravure coating, curtain flow, etc. are used.
  • the film forming temperature is not particularly limited, and a temperature equal to or higher than the minimum film forming temperature of the composition used as the raw material of the resin layer 4 may be used. Furthermore, you may heat-process at the temperature below the heat-resistant temperature of the base material 2 as needed.
  • a silver fine particle dispersion is applied to the surface of the substrate 2.
  • the silver fine particle dispersion is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver fine particle dispersions can be used.
  • the silver fine particles and the short-chain amine having 5 or less carbon atoms can be used.
  • Various methods can be used as a method for applying the silver fine particle dispersion. For example, dipping, screen printing, reversal printing, microcontact printing, spray method, bar coating method, spin coating method, and ink jet method. , Dispenser method, pin transfer method, stamping method, brush coating method, casting method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method, etc. Can do.
  • the resin layer 4 may be subjected to a surface treatment in order to improve the adhesion between the resin layer 4 and the conductive film 6.
  • a surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment.
  • the silver fine particle dispersion of the present embodiment is used, it is applied to the substrate 2 and then heated and fired at a relatively low temperature (for example, 300 ° C. or less, preferably 100 to 250 ° C.) to sinter the silver fine particles, thereby Can be obtained.
  • a relatively low temperature for example, 300 ° C. or less, preferably 100 to 250 ° C.
  • the temperature can be raised or lowered stepwise.
  • a surfactant or a surface active agent in advance to the surface on which the silver fine particle dispersion is applied.
  • the binder component when the silver fine particle dispersion contains a binder component, the binder component is also sintered from the viewpoint of improving the strength of the coating film, etc., but in some cases, for application to various printing methods.
  • the main purpose of the binder component is to adjust the viscosity of the silver fine particle dispersion, and all the binder component may be removed by controlling the firing conditions.
  • the method for performing the heating and baking is not particularly limited.
  • the temperature of the silver fine particle dispersion applied or drawn on the base material 2 using a conventionally known oven or the like becomes, for example, 300 ° C. or less.
  • the lower limit of the heating / firing temperature is not necessarily limited as long as the temperature is within a range not impairing the effects of the present invention.
  • the remaining amount of the organic substance is preferably small in terms of obtaining as high strength and excellent conductivity as possible, but the organic substance is within a range not impairing the effect of the present invention. A part may remain.
  • the obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. Immediately after the start of stirring, a reaction involving the generation of carbon dioxide started, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver fine particles were suspended in the amine mixture.
  • ⁇ Preparation Example 2 >> 8.9 g of 3-methoxypropylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4, log P: -0.5) and 0.3 g of DISPERBYK-102, which is a polymer dispersant, The mixture was mixed and stirred well with a magnetic stirrer to produce an amine mixture (molar ratio of added amine was 5 with respect to silver). Next, 3.0 g of silver oxalate was added while stirring. After the addition of silver oxalate, stirring was continued at room temperature to change the silver oxalate to a viscous white substance, and stirring was terminated when the change was found to be apparently finished.
  • the obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. Immediately after the start of stirring, a reaction involving the generation of carbon dioxide started, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver fine particles were suspended in the amine mixture.
  • ⁇ Adjustment example 4 200 ml of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 11 g of butylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd., carbon number: 4, log P: 1.0) were mixed and mixed with a magnetic stirrer. Stir well (molar ratio of added amine is 2.5 to silver). To this, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added while stirring. After the silver nitrate was dissolved, 10 g of DISPERBYK-2090, a polymer dispersant, and hexanoic acid (Wako Pure Chemical Industries, Ltd.) were added.
  • Dispersion D was obtained.
  • Example 1 DIC Hydran HW-312B was diluted 3 times with ethanol to obtain a resin layer forming ink. At this time, HW-312B was completely dissolved visually.
  • a resin layer forming ink was formed on a glass substrate under the conditions of 2000 rpm and 30 seconds, and then heated at 120 ° C. for 30 minutes to form a resin layer.
  • the conductive ink B was applied onto a silicone blanket with a bar coater (No. 7), and the substrate with the resin layer was pressed against the blanket, whereby the conductive film was transferred to the substrate with the resin layer. Thereafter, the conductive film composite body 1 was obtained by baking at 120 ° C. for 30 minutes.
  • Example 2 >> DIC Hydran HW-311 was diluted with N-methyl-2-pyrrolidone three times to obtain a resin layer forming ink. At this time, HW-311 was completely dissolved visually. Other than that was carried out similarly to Example 1, and obtained the conductive film composite body 2 obtained.
  • Example 3 Except having used the conductive ink C, it carried out similarly to Example 1, and obtained the conductive film composite body 3 performed.
  • Example 4 The conductive film composite 4 was obtained in the same manner as in Example 2 except that Nippon Shokubai Epochros WS-700 was added to the resin layer forming ink of Example 2 at a ratio of 5% by weight to the resin layer forming ink. It was.
  • Example 5 Except having used the conductive ink D, it carried out similarly to Example 1, and obtained the implementation electroconductive film composite 5.
  • Example 6 A resin layer forming ink was obtained by diluting Superflex 420 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. with water three times. A resin layer forming ink was formed on a glass substrate using a spin coater under the conditions of 2000 rpm and 30 seconds, and then heated at 120 ° C. for 30 minutes to form a resin layer. Next, using the conductive ink A in the same manner as in Example 1, an Example conductive film composite 6 was obtained.
  • Example 8 Example 1 Conductive film composite 8 was obtained in the same manner as Example 1 except that Superflex 150HS manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was diluted with water three times to obtain a resin layer forming ink.
  • Example 9 Example 1 Conductive film composite 9 was obtained in the same manner as Example 1 except that Superflex 650 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was diluted twice with water to obtain a resin layer forming ink.
  • Example 10 The conductive film composite body 10 was obtained in the same manner as in Example 1 except that DIC Hydran ADS-120 was diluted with water three times to obtain a resin layer forming ink.
  • Example 11 A conductive film composite 11 was obtained in the same manner as in Example 1 except that DIC Hydran HW-312B was diluted 1.5 times with ethanol and the film formation conditions with a spin coater were 1000 rpm for 30 sec.
  • DIC Hydran HW-312B was diluted with water three times to obtain a resin layer forming ink. Bar coater No. The resin layer forming ink was applied onto the glass substrate using No. 10 to form a resin layer, and then the resin layer was formed by heating at 120 ° C. for 30 minutes. Next, the conductive ink A was applied onto a silicone blanket with a bar coater (No. 7), and the substrate with the resin layer was pressed against the blanket, whereby the conductive film was transferred to the substrate with the resin layer. Then, the comparative conductive film composite 1 was obtained by baking for 30 minutes at 120 degreeC.
  • Comparative Example 3 A comparative conductive film composite 3 was obtained in the same manner as in Comparative Example 1 except that the resin layer forming ink was not used.
  • Comparative Example 4 Comparative conductive film composite 4 was obtained in the same manner as Comparative Example 2 except that Superflex 210 manufactured by Daiichi Kogyo Seiyaku was used.
  • Comparative Example 5 A comparative conductive film composite 5 was obtained in the same manner as in Comparative Example 4 except that the conductive ink C was used.
  • Comparative Example 6 A comparative conductive coating composite 6 was obtained in the same manner as in Comparative Example 1 except that Aronmite AS-60 manufactured by Toa Gosei Co., Ltd. was used as the resin layer forming ink.
  • Comparative Example 7 >> Bar coater No. Except having used 6, it carried out similarly to the comparative example 1, and obtained the comparative conductive film composite 7.
  • a glass relief plate was pressed on a blanket coated with various conductive inks, and non-image portions (unnecessary portions) were transferred and removed. Furthermore, the pattern was transcribe

Abstract

Provided are an electroconductive film composite having a substrate and an electroconductive film, and a method for manufacturing the same, wherein the electroconductive film has good adhesion to the substrate and also good electroconductivity and heat resistance, even when a substrate having low heat resistance or a glass substrate is used. The present invention pertains to an electroconductive film composite characterized by having a substrate, a resin layer formed on at least a part of the substrate, and an electroconductive film formed on at least a part of the resin layer, the electroconductive film being a sintered body of silver fine particles, and the film thickness of the resin layer being 1 μm or less.

Description

導電性被膜複合体及びその製造方法Conductive coating composite and method for producing the same
 本発明は、基材と導電性被膜とを有する導電性被膜複合体であって、半導体集積回路等の配線、プリント配線板の配線、透明電極、及び有機薄膜トランジスタ基板に対する配線や電極に好適に用いることができる導電性被膜複合体、及びその製造方法に関する。 The present invention is a conductive film composite having a base material and a conductive film, and is suitably used for wiring such as semiconductor integrated circuits, wiring of printed wiring boards, transparent electrodes, and wiring and electrodes for organic thin film transistor substrates. The present invention relates to a conductive film composite that can be used, and a method for producing the same.
 従来から、基板の全面にスパッタや蒸着等で金属薄膜を形成させた後、フォトリソグラフィー法によって不要な部分をエッチングして必要な導電膜パターンを形成させる方法が知られている。しかしながら、当該方法は工程が煩雑であることに加え、高価な真空装置を用いる必要がある。 Conventionally, a method is known in which a metal thin film is formed on the entire surface of a substrate by sputtering or vapor deposition, and then an unnecessary portion is etched by photolithography to form a necessary conductive film pattern. However, this method requires complicated vacuum processes and an expensive vacuum apparatus.
 このため、より簡便かつ安価な導電膜パターンの形成方法が求められており、近年、凸版印刷法、凹版印刷法、スクリーン印刷法、インクジェット印刷法等の印刷法を用いた方法が提案されている。更に、より高精細なパターンが形成できる印刷手法として、反転印刷法やマイクロコンタクト印刷法等を用いた方法が提案されており、これらの印刷法に適した導電性インク、絶縁性インク、及び抵抗インク等の各種インクが開発されている。ここで、特に注目されているのが銀微粒子の低温焼結性を利用した導電性インクである。 For this reason, a simpler and less expensive method for forming a conductive film pattern has been demanded. In recent years, methods using printing methods such as letterpress printing, intaglio printing, screen printing, and ink jet printing have been proposed. . Furthermore, as a printing method capable of forming a higher-definition pattern, a method using a reverse printing method, a microcontact printing method, or the like has been proposed, and conductive ink, insulating ink, and resistance suitable for these printing methods are proposed. Various inks such as ink have been developed. Of particular interest here are conductive inks that utilize the low-temperature sinterability of silver particulates.
 例えば、特許文献1(特開2012-162767号公報)においては、炭素数が6以上のアルキルアミンと、炭素数が5以下であるアルキルアミンとを含むアミン混合液と、金属原子を含む金属化合物を混合して、当該金属化合物とアミンを含む錯化合物を生成する第1工程と、当該錯化合物を加熱することで分解して金属微粒子を生成する第2工程を含むことを特徴とする被覆金属微粒子の製造方法が開示されている。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2012-162767), an amine mixed solution containing an alkylamine having 6 or more carbon atoms and an alkylamine having 5 or less carbon atoms, and a metal compound containing a metal atom A coated metal comprising: a first step of producing a complex compound containing the metal compound and an amine, and a second step of producing a metal fine particle by decomposition of the complex compound by heating. A method for producing microparticles is disclosed.
 上記特許文献1においては、金属アミン錯体分解法により被覆金属微粒子を製造する過程において、アミンと金属化合物との錯化合物を円滑に生成させることが可能となり、製造に要する時間を短縮することが可能となる、としている。また、被覆金属微粒子の用途等に応じて各種のアミンが使用可能であるため、例えば100℃以下の温度においても円滑に焼結が可能な被覆金属微粒子を提供することが可能となり、PETおよびポリプロピレンのような耐熱性の低いプラスチック基板にも導電膜、導電配線を形成させることが可能となる、としている。 In the above-mentioned Patent Document 1, it is possible to smoothly produce a complex compound of an amine and a metal compound in the process of producing coated metal fine particles by the metal amine complex decomposition method, and it is possible to shorten the time required for production. It will be. In addition, since various amines can be used depending on the application of the coated metal fine particles, it is possible to provide coated metal fine particles that can be sintered smoothly even at a temperature of 100 ° C. or less, for example, PET and polypropylene. It is also possible to form a conductive film and conductive wiring on a plastic substrate having low heat resistance.
 また、特許文献2(特開2013-142173号公報)においては、脂肪族炭化水素基と1つのアミノ基とからなり、当該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり、当該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、アミン(A)とアミン(B)の合計を基準として、アミン(A)5モル%以上20モル%未満、及びアミン(B)80モル%を超えて95モル%以下の割合で含むアミン混合液を調製し;銀化合物と前記アミン混合液とを混合して、銀化合物及びアミンを含む錯化合物を生成させ;錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する;ことを含む銀ナノ粒子の製造方法が開示されている。 In Patent Document 2 (Japanese Patent Laid-Open No. 2013-142173), an aliphatic hydrocarbon monoamine comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 6 or more. (A), an aliphatic hydrocarbon monoamine (B) consisting of an aliphatic hydrocarbon group and one amino group, the total number of carbons of the aliphatic hydrocarbon group being 5 or less, and an amine (A) and an amine An amine mixture containing 5 mol% or more and less than 20 mol% of amine (A) and more than 80 mol% of amine (B) and 95 mol% or less based on the sum of (B); silver compound A silver compound and a complex compound containing an amine by mixing the mixture with the amine; and heating and complexing the complex compound to form silver nanoparticles; Is disclosed.
 上記特許文献2においては、炭素総数6以上の脂肪族炭化水素モノアミン(A)と炭素総数5以下の脂肪族炭化水素モノアミン(B)とを含むアミン混合液を用いることで、銀ナノ粒子の適切な安定化が得られる、としている。 In the above-mentioned Patent Document 2, by using an amine mixed solution containing an aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and an aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms, silver nanoparticles can be appropriately used. It is said that stable stabilization can be obtained.
 更に、基材との密着性に優れた導電性被膜を有する導電性基材も種々提案されており、例えば、特許文献3(特開2008-149681号公報)においては、支持体上に、現像銀を含む導電性金属からなる細線パターンと、透明導電性層とを有し、支持体と該細線パターンとの間に、水に対する膨湿率が60%未満である易接着層を有することを特徴とする、透光性導電性基材が開示されている。 Furthermore, various conductive substrates having a conductive film excellent in adhesion to the substrate have been proposed. For example, in Patent Document 3 (Japanese Patent Laid-Open No. 2008-149681), development on a support is performed. It has a fine line pattern made of a conductive metal containing silver and a transparent conductive layer, and has an easy-adhesion layer having a moisture expansion rate of less than 60% between the support and the fine line pattern. A translucent conductive substrate is disclosed which is characterized.
 上記特許文献3においては、支持体と細線パターン層との間に易接着層を設け、その層の水に対する膨潤率を60%未満に制御することによって、高温高湿環境下での耐久性や密着性が顕著に向上し、細線形状(薄さと幅広さ)と導電性との両立性や、細線形状(薄さと幅広さ)と透光性との両立性を調整しやすくなる、としている。 In the above Patent Document 3, an easy adhesion layer is provided between the support and the fine line pattern layer, and the swelling rate of the layer with respect to water is controlled to be less than 60%. The adhesion is remarkably improved, and the compatibility between the fine line shape (thinness and width) and conductivity, and the compatibility between the fine line shape (thinness and width) and translucency can be easily adjusted.
 また、特許文献4(特開2014-196556号公報)においては、(1)絶縁性基材(A)上に、樹脂層形成用組成物(b)を塗布して樹脂層(B)を形成する工程、(2)(1)で得られた樹脂層(B)上に窒素原子、硫黄原子、リン原子又は酸素原子を有する化合物(c1)で保護されてなる金、銀、銅及び白金からなる群から選ばれる1種以上の金属微粒子(c2)を0.5質量%以上含有する分散液(C)を塗布し、非導電性層(D)を形成する工程、(3)(2)で得られた非導電性層(D)を有する基材に無電解めっきを行い、導電層(E)を形成する工程、を有する導電性材料の製造方法であって、樹脂層形成用組成物(b)が、ウレタン樹脂(b1)、ビニル重合体(b2)、及び、水性媒体(b3)を含有する樹脂層形成用組成物であることを特徴とする導電性材料の製造方法が開示されている。 In Patent Document 4 (Japanese Patent Application Laid-Open No. 2014-196556), (1) a resin layer forming composition (b) is applied to an insulating substrate (A) to form a resin layer (B). (2) From the gold, silver, copper and platinum which are protected with the compound (c1) having a nitrogen atom, sulfur atom, phosphorus atom or oxygen atom on the resin layer (B) obtained in (1) A step of applying a dispersion (C) containing 0.5% by mass or more of one or more kinds of metal fine particles (c2) selected from the group consisting of: (3) (2) A process for producing a conductive layer, comprising: a step of electroless plating a base material having a non-conductive layer (D) obtained in step 1 to form a conductive layer (E), comprising: (B) is a resin containing a urethane resin (b1), a vinyl polymer (b2), and an aqueous medium (b3) Method for producing a conductive material which is a composition for forming is disclosed.
 上記特許文献4においては、各種の絶縁性基材上に樹脂層を形成することで、特定の化合物で保護されてなる金、銀、銅、白金を含有する金属微粒子を含有する非導電性の層が、塗布法によって容易に得られること、また、非導電性層が優れた無電解めっきの触媒活性を示し、かつ、強い密着性を誘起するめっき膜の足場として機能することから、高密度実装分野で利用しうる、高性能の導電性材料、プリント配線基板用基板、プリント配線板を、真空設備を必要とせず、低コストで製造することができる、としている。 In the above-mentioned Patent Document 4, a resin layer is formed on various insulating substrates, so that non-conductive containing metal fine particles containing gold, silver, copper and platinum protected by a specific compound. The layer is easily obtained by a coating method, and the non-conductive layer exhibits excellent electroless plating catalytic activity and functions as a scaffold for a plating film that induces strong adhesion. High-performance conductive materials, printed wiring board substrates, and printed wiring boards that can be used in the mounting field can be manufactured at low cost without the need for vacuum equipment.
特開2012-162767号公報JP 2012-162767 A 特開2013-142173号公報JP 2013-142173 A 特開2008-149681号公報JP 2008-149681 A 特開2014-196556号公報JP 2014-196556 A
 しかしながら、上記特許文献1及び特許文献2に記載の銀ナノ粒子を用いた場合、低温で焼成して得られる導電性被膜は優れた導電性を有しているが、例えばPET(Polyethylene terephthalate)及びPEN(Ethylene naphthalate)等の非耐熱性基材やガラス基材に導電性被膜を形成する場合、基材への密着性を担保することが困難であった。 However, when the silver nanoparticles described in Patent Document 1 and Patent Document 2 are used, the conductive film obtained by baking at a low temperature has excellent conductivity. For example, PET (Polyethylene terephthalate) and When a conductive film is formed on a non-heat resistant substrate such as PEN (Ethylene naphthalate) or a glass substrate, it is difficult to ensure adhesion to the substrate.
 また、上記特許文献3及び特許文献4に記載の導電性材料においては、基材に対する導電性被膜の密着性は良好であるが、導電性被膜の導電性が損なわれる場合があった。 Further, in the conductive materials described in Patent Document 3 and Patent Document 4, the adhesion of the conductive film to the base material is good, but the conductivity of the conductive film may be impaired.
 更に、実装時には導電性被膜に耐熱性(例えば、180℃環境下で1分保持)も求められるところ、当該耐熱性に加えて、基材への密着性及び導電性を全て兼ね備えた導電性被膜を形成させることは極めて困難である。 Furthermore, when the conductive film is required to have heat resistance (for example, maintained at 180 ° C. for 1 minute) at the time of mounting, in addition to the heat resistance, the conductive film has both adhesion to the substrate and conductivity. Is extremely difficult to form.
 そこで、本発明の目的は、基材と導電性被膜とを有する導電性被膜複合体であって、耐熱性の低い基材やガラス基材を用いた場合であっても、基材に対する導電性被膜の良好な密着性と導電性被膜の優れた導電性及び耐熱性とを兼ね備えた導電性被膜複合体、及びその製造法を提供することにある。 Therefore, an object of the present invention is a conductive film composite having a base material and a conductive film, and even when a base material or glass base material having low heat resistance is used, An object of the present invention is to provide a conductive film composite having both good adhesion of the film and excellent conductivity and heat resistance of the conductive film, and a method for producing the same.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、基材に対する優れた密着性を有し、耐熱性の低い基材やガラス基材に対しても良好な導電性を発現させる耐熱性にも優れた導電性被膜複合体を得るためには、特定の厚さを有する樹脂を基材と導電性被膜との間に密着層として形成し、特定の銀ナノ粒子分散体を用いて導電性被膜を形成することが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。 As a result of intensive studies to achieve the above-mentioned object, the present inventor has excellent adhesion to a substrate and exhibits good conductivity even for a substrate having low heat resistance and a glass substrate. In order to obtain a conductive film composite with excellent heat resistance, a resin having a specific thickness is formed as an adhesion layer between the substrate and the conductive film, and a specific silver nanoparticle dispersion is used. Thus, the inventors have found that forming a conductive film is extremely effective in achieving the above object, and have reached the present invention.
 即ち、本発明は、
 基材と、
 前記基材の少なくとも一部に形成された樹脂層と、
 前記樹脂層の少なくとも一部に形成された導電性被膜と、を有し、
 前記導電性被膜は銀微粒子から形成されており、
 前記樹脂層の膜厚が1μm以下であること、
 を特徴とする導電性被膜複合体、を提供する。
That is, the present invention
A substrate;
A resin layer formed on at least a part of the substrate;
A conductive film formed on at least a part of the resin layer,
The conductive coating is formed from silver fine particles,
The resin layer has a thickness of 1 μm or less,
A conductive coating composite characterized by the above.
 本発明の導電性被膜複合体においては、樹脂層が基材と導電性被膜との密着層として機能するため、基材と導電性被膜とは良好な密着性を有している。また、樹脂層の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜に優れた耐熱性を付与することができる。 In the conductive film composite of the present invention, since the resin layer functions as an adhesion layer between the substrate and the conductive film, the substrate and the conductive film have good adhesion. Moreover, by making the film thickness of the resin layer 1 μm or less, the influence of swelling / shrinkage of the resin layer is reduced, and excellent heat resistance can be imparted to the conductive film.
 また、樹脂層が1μmよりも厚くなると、樹脂層の特性に起因する問題が生じる場合がある。具体的には、樹脂層の柔軟性によって導電性被膜が過剰に膨張収縮する結果、導電性被膜に欠陥が形成してしまう(断線)。また、厚い樹脂層による透明性の悪化、吸湿等による白化、熱による黄変等が生じる場合がある。ここで、樹脂層の膜厚を1μm以下とすることで、これらの悪影響を最小限に留めることができる。加えて、樹脂層の膜厚を1μm以下とすることで、必要以上に材料を使用することがないため、コスト面で有利となる。 Also, if the resin layer is thicker than 1 μm, there may be a problem due to the characteristics of the resin layer. Specifically, as a result of the conductive film excessively expanding and contracting due to the flexibility of the resin layer, defects are formed in the conductive film (disconnection). Moreover, transparency deterioration due to a thick resin layer, whitening due to moisture absorption, yellowing due to heat, and the like may occur. Here, these adverse effects can be minimized by setting the thickness of the resin layer to 1 μm or less. In addition, by setting the film thickness of the resin layer to 1 μm or less, it is advantageous in terms of cost because materials are not used more than necessary.
 なお、樹脂層のより好ましい膜厚は0.05~0.8μmであり、最も好ましい膜厚は0.1~0.5μmである。0.05μm未満であれば、樹脂層の効果が十分に発揮されず密着性に劣る場合がある。 The more preferable film thickness of the resin layer is 0.05 to 0.8 μm, and the most preferable film thickness is 0.1 to 0.5 μm. If it is less than 0.05 micrometer, the effect of a resin layer may not fully be exhibited but it may be inferior to adhesiveness.
 本発明の導電性被膜複合体においては、前記樹脂層は基材と良好な密着性を発現する樹脂であれば特に限定されないが、基材との優れた密着性を発揮するために、カルボキシル基や水酸基などの官能基を有するものが好ましく、例えばポリビニルアルコール系樹脂(ポリビニルブチラールを含む)やポリビニルピロリドンなどが使用できるほか、前記樹脂層の主成分がポリウレタン樹脂であり、前記ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、が好ましい。ポリウレタン樹脂に前記架橋剤が添加されていることで、樹脂層の柔軟性を制御することができる。 In the conductive film composite of the present invention, the resin layer is not particularly limited as long as it is a resin that exhibits good adhesion to the substrate, but in order to exhibit excellent adhesion to the substrate, a carboxyl group And those having a functional group such as a hydroxyl group are preferable. For example, polyvinyl alcohol resins (including polyvinyl butyral) and polyvinyl pyrrolidone can be used, and the main component of the resin layer is a polyurethane resin. It is preferable that a polymer having an isocyanate group protected with a blocking agent and / or a polymer containing an oxazoline group is added as a crosslinking agent. The flexibility of the resin layer can be controlled by adding the cross-linking agent to the polyurethane resin.
 また、本発明の導電性被膜複合体においては、前記ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量が10重量%以内であること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層の柔軟性が損なわれることに加えて、樹脂層と基材及び導電性被膜との密着性が損なわれる傾向がある。 In the conductive film composite of the present invention, it is preferable that the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is within 10% by weight. When the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is more than 10% by weight, the specific functional group contained in the polyurethane resin and the cross-linking agent are excessively reacted, and thus the flexibility of the resin layer is impaired. In addition, the adhesion between the resin layer, the substrate and the conductive film tends to be impaired.
 また、詳細な理由については明らかになっていないが、密着層として用いるポリウレタン樹脂が-COO-H、-COOR、-COONH及び-COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有していることで、樹脂層と基材、及び樹脂層と導電性被膜との密着性が向上するものと考えられる。また、前記ポリウレタン樹脂を用いれば、高温高湿環境下での耐久性が良好になるという点でも好ましい。 Further, although the detailed reason has not been clarified, polyurethane resins used as the adhesion layer are —COO—H, —COOR, —COO NH + R 2 and —COO NH 4 + (provided that R, R 2 Are each independently a linear or branched alkyl group that may have a substituent, the same cycloalkyl group, the same alkylene group, the same oxyalkylene group, the same aryl group, the same aralkyl group, the same heterocyclic group, Having the functional group of any one of (the same alkoxy group, the same alkoxycarbonyl group, and the same acyl group)), the adhesion between the resin layer and the base material, and between the resin layer and the conductive film is improved. It is thought to improve. The use of the polyurethane resin is also preferable in that the durability under a high temperature and high humidity environment is improved.
 また、本発明の導電性被膜複合体においては、導電性被膜は銀微粒子から形成されており、さらにそれを外部加熱などによって焼結させることで、銀微粒子が本来有する導電性と同程度の良好な導電性を有している。当該良好な導電性が発現する理由は必ずしも明らかになっていないが、密着層として用いる樹脂層の優れた変形能に起因すると思われる。 Further, in the conductive coating composite of the present invention, the conductive coating is formed from silver fine particles, and further sintered to the same degree as the original conductivity of the silver fine particles by sintering it by external heating or the like. Have excellent electrical conductivity. The reason why the good conductivity is manifested is not necessarily clear, but it is thought to be due to the excellent deformability of the resin layer used as the adhesion layer.
 樹脂層は破断伸度が600%以上であることが好ましく、当該柔軟性及び収縮膨張性により、銀微粒子を焼結させるプロセスにおいて、基材と導電性被膜との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜が得られる。 The resin layer preferably has a breaking elongation of 600% or more, and in the process of sintering the silver fine particles, the thermal expansion coefficient difference between the base material and the conductive coating is alleviated by the flexibility and the shrinkage / expansion property. Can do. As a result, the sintering of the silver fine particles proceeds smoothly, and a conductive film having excellent conductivity can be obtained.
 また、本発明の導電性被膜複合体においては、前記ポリウレタン樹脂が水系ポリウレタン樹脂であること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。 In the conductive coating composite of the present invention, it is preferable that the polyurethane resin is an aqueous polyurethane resin. The water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
 また、本発明の導電性被膜複合体においては、前記樹脂層が、溶剤に溶解した前記水系ポリウレタン樹脂を前記基材に塗布して形成されたものであること、が好ましい。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合がある。 In the conductive film composite of the present invention, it is preferable that the resin layer is formed by applying the aqueous polyurethane resin dissolved in a solvent to the base material. Usually, water-based polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses. However, depending on the film forming conditions, the film is formed by the influence of the particle size of the emulsion. There is.
 ここで、薄い樹脂層を形成させたい場合は、表面粗さが大きくなってしまう問題がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上する。 Here, when it is desired to form a thin resin layer, there is a problem that the surface roughness becomes large. On the other hand, by dissolving the aqueous polyurethane resin in a solvent (for example, ethanol, acetone, etc.), the emulsion breaks up into a uniform solution, so that the film-forming ability (particularly the film quality uniformity in the thin film) is improved.
 また、本発明の導電性被膜複合体においては、
 前記導電性被膜が、
 前記銀微粒子と、
 短鎖アミンと、
 溶媒と、
 前記銀微粒子を分散させるための分散剤と、を含む銀微粒子分散体から形成されること、が好ましい。
In the conductive film composite of the present invention,
The conductive coating is
The silver fine particles;
A short chain amine,
A solvent,
It is preferably formed from a silver fine particle dispersion containing a dispersing agent for dispersing the silver fine particles.
 また、本発明の導電性被膜複合体においては、前記短鎖アミンの炭素数は5以下であることが好ましく、前記溶媒は高極性溶媒であることが好ましく、前記分散剤は酸価を有することが好ましく、前記短鎖アミンの分配係数logPは-1.0~1.4であることが好ましい。 In the conductive film composite of the present invention, the short chain amine preferably has 5 or less carbon atoms, the solvent is preferably a highly polar solvent, and the dispersant has an acid value. The partition coefficient logP of the short chain amine is preferably -1.0 to 1.4.
 上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であり、導電性被膜を当該銀微粒子複合体の焼結によって形成することで、良好な導電性を有する導電性被膜を低温で形成することができる。 The above-mentioned silver fine particle dispersion is a silver fine particle dispersion having a low temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (especially highly polar solvents), and a conductive film is formed by sintering the silver fine particle composite. By doing so, a conductive film having good conductivity can be formed at a low temperature.
 アミンの一分子内におけるアミノ基は、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、アミノ基は、それぞれアルカリ性的性質を示し易い。したがって、アミンは、銀微粒子の表面の少なくとも一部に局在化(付着)すると(即ち、銀微粒子の表面の少なくとも一部を被覆すると)、有機成分と無機粒子とを十分に親和させることができ、銀微粒子同士の凝集を防ぐことができる(分散性を向上させる)。即ち、アミンは官能基が銀微粒子の表面に適度の強さで吸着し、銀微粒子同士の相互の接触を妨げるため、保管状態での銀微粒子の安定性に寄与する。また、加熱によって銀微粒子の表面から移動及び又は揮発することにより、銀微粒子同士の融着を促進するものと考えられる。 The amino group in one molecule of the amine has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, each amino group tends to exhibit alkaline properties. Accordingly, when the amine is localized (attached) on at least a part of the surface of the silver fine particles (that is, when at least a part of the surface of the silver fine particles is coated), the amine and the inorganic particles can sufficiently have an affinity. And aggregation of silver fine particles can be prevented (dispersibility is improved). That is, the functional group of amine is adsorbed on the surface of the silver fine particles with an appropriate strength and prevents mutual contact between the silver fine particles, thereby contributing to the stability of the silver fine particles in the storage state. Moreover, it is thought that the fusion | melting of silver fine particles is accelerated | stimulated by moving and / or volatilizing from the surface of silver fine particles by heating.
 また、銀微粒子分散体を構成するアミンを炭素数が5以下である短鎖アミンとすることで、加熱によって銀微粒子の表面の少なくとも一部に付着したアミンを容易に除去することができ、銀微粒子の良好な低温焼結性(例えば、100~350℃における焼結性)を担保することができる。 Further, by making the amine constituting the silver fine particle dispersion a short chain amine having 5 or less carbon atoms, the amine attached to at least a part of the surface of the silver fine particles by heating can be easily removed. Good low-temperature sinterability (for example, sinterability at 100 to 350 ° C.) of the fine particles can be ensured.
 また、短鎖アミンの分配係数logPを-1.0~1.4とするのは、分配係数logPが-1.0未満になれば、短鎖アミンの極性が高すぎるため、銀の還元が急速に進んでしまい銀微粒子生成の制御が困難となり、分配係数logPが1.4を超えると、銀に配位するアミンの極性が低い為に高極性溶媒に分散しづらくなるからである。 In addition, the distribution coefficient logP of the short chain amine is set to -1.0 to 1.4 because if the distribution coefficient logP is less than -1.0, the polarity of the short chain amine is too high, so that the reduction of silver is reduced. This is because it progresses rapidly and it becomes difficult to control the formation of silver fine particles, and if the distribution coefficient logP exceeds 1.4, the polarity of the amine coordinated to silver is low, making it difficult to disperse in a highly polar solvent.
 分配係数logPは、溶媒としてn-オクタノールと水を用いたオクタノール/水分配係数を意味しており、オクタノール中の濃度Coと水中の濃度Cwをそれぞれ求め、濃度比P=Co/Cwの常用対数 logPを分配係数として算出する。そのため、分配係数logPは銀微粒子がどの範囲の極性溶媒で分散させうることが可能かどうかを表す一つの指標であることを意味する。分配係数logPの測定方法は特に限定されず、例えば、フラスコ振盪法、高速液体クロマトグラフィー(HPLC)法、及び定量的構造活性相関アルゴリズムを用いた計算等によって求めることができるが、国立生物工学情報センター等のウェブサイトで公表されている文献値を用いてもよい。 The partition coefficient logP means an octanol / water partition coefficient using n-octanol and water as solvents, and obtains a concentration Co in octanol and a concentration Cw in water, respectively, and a common logarithm of the concentration ratio P = Co / Cw. Log P is calculated as a distribution coefficient. Therefore, the distribution coefficient logP means that it is one index that indicates whether or not a range of polar solvent can disperse the silver fine particles. The method for measuring the partition coefficient logP is not particularly limited, and can be determined by, for example, flask shaking method, high performance liquid chromatography (HPLC) method, and calculation using a quantitative structure-activity relationship algorithm. Literature values published on websites such as centers may be used.
 更に、銀微粒子分散体は、銀微粒子合成後に添加される酸価を有する分散剤(即ち、銀微粒子を分散させるための酸価を有する分散剤)を含むことを特徴とする。ここでいう「酸価を有する分散剤」とは、吸着基乃至は官能基としてアミン価や水酸基価等を有さない分散剤全てを包含するものである。かかる分散剤を用いることで、溶媒中の銀微粒子の分散安定性を向上させることができる。当該分散剤の酸価は5~200であることが好ましく、また、当該分散剤がリン酸由来の官能基を有することが好ましい。「酸価を有する分散剤」が好ましい理由は、必ずしも明らかではないが、本発明者らは、金属への吸着作用だけではなく、短鎖アミンと相互作用することによって、より密な形態で吸着することができ、低温焼結性を有しつつ高い分散性を発現させているものと考えている。 Furthermore, the silver fine particle dispersion includes an acid value dispersant added after the synthesis of the silver fine particles (that is, a dispersant having an acid value for dispersing the silver fine particles). The “dispersant having an acid value” as used herein includes all dispersants that do not have an amine value or a hydroxyl value as an adsorbing group or a functional group. By using such a dispersant, the dispersion stability of the silver fine particles in the solvent can be improved. The acid value of the dispersant is preferably 5 to 200, and the dispersant preferably has a functional group derived from phosphoric acid. The reason why the “dispersant having an acid value” is preferable is not necessarily clear, but the present inventors not only adsorb metal, but also adsorb in a denser form by interacting with a short chain amine. It is thought that it exhibits high dispersibility while having low-temperature sinterability.
 後述する高極性溶剤に銀微粒子を分散させたい場合は、一般的に極性の高い分散剤を使用することが有効である。例えばlogPがより小さい短鎖アミンを用いることが考えられるが、短鎖アミンは一般的に還元性を発揮して反応速度を適切に保てない場合がある。具体的には、反応速度を過剰に高めてしまい、分散性に優れた銀微粒子を形成できない場合がある。そこで、より高極性な分散剤を銀微粒子合成後に添加することで、銀微粒子はそのままに分散媒に対する相溶性のみを高めること(表面改質)が可能となる。 When it is desired to disperse silver fine particles in a highly polar solvent described later, it is generally effective to use a dispersant having a high polarity. For example, it is conceivable to use a short-chain amine having a lower log P, but the short-chain amine generally exhibits reducibility and may not keep the reaction rate properly. Specifically, the reaction rate is excessively increased, and silver fine particles having excellent dispersibility may not be formed. Therefore, by adding a more polar dispersant after the synthesis of the silver fine particles, it is possible to improve only the compatibility with the dispersion medium (surface modification) while leaving the silver fine particles intact.
 分散剤の酸価が5以上であるとアミンと配位し粒子表面が塩基性となっている金属物への酸塩基相互作用での吸着が起こり始め、200以下であると過度に吸着サイトを有さないため好適な形態で吸着するから好ましい。また、分散剤がリン酸由来の官能基を有することでリンPが酸素Oを介して金属Mと相互作用し引き合うので金属や金属化合物との吸着には最も効果的であり、必要最小限の吸着量で好適な分散性を得ることができるから好ましい。ここで「酸価」とは、試料1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのmg数で表される。酸価の測定法として、指示薬法(p-ナフトールベンゼイン指示薬)や電位差滴定法をあげることができる。
・ISO6618-1997:指示薬滴定法による中和価試験法→指示薬滴定法(酸価)に対応
・ISO6619-1988:電位差滴定法(酸価)→電位差滴定法(酸価)に対応
When the acid value of the dispersant is 5 or more, adsorption by an acid-base interaction starts to occur on a metal substance coordinated with an amine and the particle surface is basic, and if it is 200 or less, an adsorption site is excessively formed. Since it does not have, it adsorb | sucks in a suitable form, and is preferable. In addition, since the dispersant has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts the metal M through the oxygen O, and is therefore most effective for adsorption with metals and metal compounds. It is preferable because suitable dispersibility can be obtained by the amount of adsorption. Here, the “acid value” is expressed in mg of potassium hydroxide required to neutralize the acidic component contained in 1 g of the sample. Examples of the acid value measurement method include an indicator method (p-naphtholbenzein indicator) and a potentiometric titration method.
・ ISO6618-1997: Neutralization titration method by indicator titration method → corresponding to indicator titration method (acid value) ・ ISO6619-1988: Corresponding to potentiometric titration method (acid value) → potentiometric titration method (acid value)
 銀微粒子分散体は、更に、銀微粒子合成前に添加される保護剤としての酸価を有する分散剤(保護分散剤)を含んでいてもよい。ここでいう「保護分散剤」は、上記の銀微粒子合成後に添加される「酸価を有する分散剤」と同じであってもよい。 The silver fine particle dispersion may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of the silver fine particles. The “protective dispersant” herein may be the same as the “dispersant having an acid value” added after the synthesis of the silver fine particles.
 また、銀微粒子分散体においては、溶媒として種々の溶媒、特に高極性溶媒を用いることができる。高極性溶媒とは、一般的に水や炭素数の短いアルコールなど、ヘキサンやトルエンのような低極性溶剤と相溶しにくいものを意味するが、本発明においては炭素数1~6のアルコールを用いることがより好ましい。高極性溶媒として炭素数1~6のアルコールとすることで、低極性溶媒を用いた時の不具合、例えば樹脂上で銀微粒子分散体を積層した際に、溶媒が下地の樹脂層を侵すことを回避できる。ここで、アミンにはアルコキシアミンを用いることが好ましい。アミンをアルコキシアミンとすることで、銀微粒子を高極性溶媒に良好に分散させることができる。 Further, in the silver fine particle dispersion, various solvents, particularly high polarity solvents can be used as the solvent. A highly polar solvent means a solvent that is generally incompatible with a low polarity solvent such as hexane or toluene, such as water or an alcohol having a short carbon number. In the present invention, an alcohol having 1 to 6 carbon atoms is used. More preferably, it is used. By using an alcohol having 1 to 6 carbon atoms as a highly polar solvent, there is a problem when a low polarity solvent is used, for example, when a silver fine particle dispersion is laminated on a resin, the solvent may attack the underlying resin layer. Can be avoided. Here, it is preferable to use an alkoxyamine as the amine. By using alkoxyamine as the amine, the silver fine particles can be favorably dispersed in the highly polar solvent.
 銀微粒子分散体を構成する銀微粒子の粒径は、融点降下が生じるようなナノメートルサイズ、望ましくは1~200nmが適切であるが、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。 The particle size of the silver fine particles constituting the silver fine particle dispersion is suitably a nanometer size that desirably causes a melting point drop, desirably 1 to 200 nm. However, if necessary, a particle size of micrometer size may be included. Good.
 また、本発明は、
樹脂を基材の少なくとも一部に塗布して樹脂層を形成させる第一工程と、
 前記樹脂層の少なくとも一部に銀微粒子分散体を塗布する第二工程と、
 前記銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜を形成させる第三工程と、を含むこと、
 を特徴とする導電性被膜複合体の製造方法、も提供する。
The present invention also provides:
A first step of applying a resin to at least a part of the substrate to form a resin layer;
A second step of applying a silver fine particle dispersion to at least a part of the resin layer;
A third step of sintering the silver fine particles contained in the silver fine particle dispersion by external heating to form a conductive film,
There is also provided a method for producing a conductive film composite characterized by the above.
 銀微粒子分散体の塗布及び外部加熱により導電性被膜を形成することにより、導電性に優れた導電性被膜を低温で形成することができ、耐熱性の低い基板に対しても良好な導電性を発現させる導電性被膜複合体を得ることができる。 By forming a conductive coating by applying a silver fine particle dispersion and external heating, a conductive coating excellent in conductivity can be formed at a low temperature, and good conductivity can be obtained even for a substrate having low heat resistance. A conductive film composite to be expressed can be obtained.
 また、本発明の導電性被膜複合体の製造方法においては、密着層として樹脂層を用いることで、樹脂層と基材、及び樹脂層と導電性被膜との密着性を向上させることができる。 Further, in the method for producing a conductive film composite of the present invention, by using a resin layer as the adhesion layer, the adhesion between the resin layer and the substrate and between the resin layer and the conductive film can be improved.
 また、本発明の導電性被膜複合体の製造方法においては、樹脂層の主成分をポリウレタン樹脂とし、当該ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加すること、が好ましい。ポリウレタン樹脂に前記架橋剤を添加することで、樹脂層の柔軟性を制御することができる。即ち、ポリウレタン樹脂及び架橋剤を含むポリウレタン樹脂組成物を用いるのが好ましい。 In the method for producing a conductive film composite of the present invention, the main component of the resin layer is a polyurethane resin, and the polyurethane resin contains a polymer in which an isocyanate group is protected with a blocking agent and / or an oxazoline group. It is preferable that the polymer is added as a crosslinking agent. The flexibility of the resin layer can be controlled by adding the crosslinking agent to the polyurethane resin. That is, it is preferable to use a polyurethane resin composition containing a polyurethane resin and a crosslinking agent.
 ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量は10重量%以内とすること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層の柔軟性が損なわれることに加えて、樹脂層と基材及び導電性被膜との密着性が損なわれる傾向がある。 The solid content of the crosslinking agent relative to the solid content of the polyurethane resin is preferably 10% by weight or less. When the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is more than 10% by weight, the specific functional group contained in the polyurethane resin and the cross-linking agent are excessively reacted, and thus the flexibility of the resin layer is impaired. In addition, the adhesion between the resin layer, the substrate and the conductive film tends to be impaired.
 樹脂層に、例えば破断伸度600%以上のポリウレタン樹脂を用いることで、銀微粒子を焼結させる第三工程において、基材と導電性被膜との熱膨張率差を十分に緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜を得ることができる。 For example, by using a polyurethane resin having a breaking elongation of 600% or more for the resin layer, the difference in thermal expansion coefficient between the base material and the conductive film can be sufficiently relaxed in the third step of sintering the silver fine particles. . As a result, the sintering of silver fine particles proceeds smoothly, and a conductive film having excellent conductivity can be obtained.
 また、本発明の導電性被膜複合体の製造方法においては、前記ポリウレタン樹脂として水系ポリウレタン樹脂を用いること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。 In the method for producing a conductive film composite of the present invention, it is preferable to use a water-based polyurethane resin as the polyurethane resin. The water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
 また、本発明の導電性被膜複合体の製造方法においては、前記樹脂層の膜厚を1μm以下とすること、が好ましい。樹脂層の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜に優れた耐熱性を付与することができる。なお、樹脂層の膜厚はスピンコートの回転数や希釈液量等によって適宜制御することができる。 In the method for producing a conductive film composite of the present invention, it is preferable that the resin layer has a thickness of 1 μm or less. By setting the film thickness of the resin layer to 1 μm or less, the influence of swelling and shrinkage of the resin layer is reduced, and excellent heat resistance can be imparted to the conductive film. The film thickness of the resin layer can be appropriately controlled by the spin coating rotation speed, the amount of diluted liquid, and the like.
 また、本発明の導電性被膜複合体の製造方法においては、第一工程において、前記樹脂層を、溶剤に溶解した前記水系ポリウレタン樹脂を前記基材に塗布して形成させることが好ましい。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合がある。 In the method for producing a conductive film composite of the present invention, in the first step, the resin layer is preferably formed by applying the aqueous polyurethane resin dissolved in a solvent to the base material. Usually, water-based polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses. However, depending on the film forming conditions, the film is formed by the influence of the particle size of the emulsion. There is.
 ここで、薄い樹脂層を形成したい場合は表面粗さが大きくなってしまう問題がおこる場合がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上する。 Here, when it is desired to form a thin resin layer, there may be a problem that the surface roughness becomes large. On the other hand, by dissolving the aqueous polyurethane resin in a solvent (for example, ethanol, acetone, etc.), the emulsion breaks up into a uniform solution, so that the film-forming ability (particularly the film quality uniformity in the thin film) is improved.
 また、本発明の導電性被膜複合体の製造方法においては、
 前記銀微粒子分散体として、
 前記銀微粒子と、
 炭素数が5以下である短鎖アミンと、
 高極性溶媒と、
 前記銀微粒子を分散させるための酸価を有する分散剤と、を含む前記短鎖アミンの分配係数logPが-1.0~1.4である銀微粒子分散体を用いること、が好ましい。
Further, in the method for producing a conductive film composite of the present invention,
As the silver fine particle dispersion,
The silver fine particles;
A short-chain amine having 5 or less carbon atoms;
A highly polar solvent,
It is preferable to use a silver fine particle dispersion having a distribution coefficient logP of the short-chain amine of -1.0 to 1.4 containing a dispersant having an acid value for dispersing the silver fine particles.
 上述のとおり、上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であることから、基材への塗布が容易であり(第二工程)、導電性被膜を当該銀微粒子複合体の焼結(第三工程)によって形成することで、良好な導電性を有する導電性被膜を低温で形成することができる。 As described above, the silver fine particle dispersion is a silver fine particle dispersion having a low-temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (particularly high polarity solvents), and thus can be easily applied to a substrate. Yes (second step), by forming the conductive film by sintering the silver fine particle composite (third step), a conductive film having good conductivity can be formed at a low temperature.
 本発明の導電性被膜複合体及びその製造方法によれば、基材と導電性被膜とを有する導電性被膜複合体であって、耐熱性の低い基材やガラス基材を用いた場合であっても、基材に対する導電性被膜の良好な密着性と導電性被膜の優れた導電性とを兼ね備えることに加え、耐熱性にも優れた導電性被膜複合体、及びその製造法を提供することができる。 According to the conductive film composite of the present invention and the method for producing the same, the conductive film composite having a base material and a conductive film, which is a case of using a low heat resistant base material or a glass base material. However, in addition to having good adhesion of the conductive film to the substrate and excellent conductivity of the conductive film, a conductive film composite having excellent heat resistance and a method for producing the same are provided. Can do.
本発明の導電性被膜複合体の概略断面図である。It is a schematic sectional drawing of the electroconductive film composite of this invention. 本発明の導電性被膜複合体の製造方法の工程図である。It is process drawing of the manufacturing method of the electroconductive film composite of this invention.
 以下、本発明の導電性被膜複合体の好適な一実施形態及びその製造方法について詳細に説明する。なお、以下の説明では重複する説明は省略することがある。 Hereinafter, a preferred embodiment of the conductive coating composite of the present invention and a manufacturing method thereof will be described in detail. In the following description, overlapping description may be omitted.
(1)導電性被膜複合体
 図1に、本実施形態の導電性被膜複合体の概略断面図を示す。本発明の導電性被膜複合体1は、基材2と、基材2の少なくとも一部に形成された樹脂層4と、樹脂層4の少なくとも一部に形成された導電性被膜6と、を有している。
(1) Conductive film composite FIG. 1 is a schematic cross-sectional view of the conductive film composite of the present embodiment. The conductive film composite 1 of the present invention comprises a base material 2, a resin layer 4 formed on at least a part of the base material 2, and a conductive film 6 formed on at least a part of the resin layer 4. Have.
 基材2と導電性被膜6との間に密着層として樹脂層4が形成されていることから、導電性被膜6と基材2とは良好な密着性を有している。 Since the resin layer 4 is formed as an adhesion layer between the substrate 2 and the conductive coating 6, the conductive coating 6 and the substrate 2 have good adhesion.
(1-1)基材
 基材2は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の基材を用いることができる。基材2に用いることができる材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、又はガラス等を挙げることができる。
(1-1) Base Material The base material 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known base materials can be used. Examples of materials that can be used for the substrate 2 include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). Polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, or glass can be used.
(1-2)樹脂層
 樹脂層4の膜厚は1μm以下となっている。樹脂層4の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜6に優れた耐熱性を付与することができる。なお、樹脂層4のより好ましい膜厚は0.05~0.8μmであり、最も好ましい膜厚は0.1~0.5μmである。
(1-2) Resin Layer The resin layer 4 has a thickness of 1 μm or less. By setting the thickness of the resin layer 4 to 1 μm or less, the influence of swelling / shrinkage of the resin layer is reduced, and excellent heat resistance can be imparted to the conductive coating 6. The more preferable film thickness of the resin layer 4 is 0.05 to 0.8 μm, and the most preferable film thickness is 0.1 to 0.5 μm.
 樹脂層4が1μmよりも厚くなると、樹脂層4の特性に起因する問題が生じる場合がある。具体的には、樹脂層4の柔軟性によって導電性被膜6が過剰に膨張収縮する結果、導電性被膜6に欠陥が形成してしまう(断線)。また、厚い樹脂層4による透明性の悪化、吸湿等による白化、熱による黄変等が生じる場合がある。ここで、樹脂層4の膜厚を1μm以下とすることで、これらの悪影響を最小限に留めることができる。加えて、樹脂層4の膜厚を1μm以下とすることで、必要以上に材料を使用することがないため、コスト面で有利となる。 If the resin layer 4 is thicker than 1 μm, there may be a problem due to the characteristics of the resin layer 4. Specifically, as a result of the conductive film 6 being excessively expanded and contracted due to the flexibility of the resin layer 4, defects are formed in the conductive film 6 (disconnection). Moreover, transparency deterioration due to the thick resin layer 4, whitening due to moisture absorption, yellowing due to heat, and the like may occur. Here, by setting the film thickness of the resin layer 4 to 1 μm or less, these adverse effects can be minimized. In addition, by setting the film thickness of the resin layer 4 to 1 μm or less, the material is not used more than necessary, which is advantageous in terms of cost.
 樹脂層4は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の樹脂を用いることができるが、主成分がポリウレタン樹脂であり、ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、が好ましい。ポリウレタン樹脂に前記架橋剤が添加されていることで、樹脂層4の柔軟性を制御することができる。 The resin layer 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known resins can be used. The main component is a polyurethane resin, and the polyurethane resin has an isocyanate group as a blocking agent. It is preferable that a polymer protected with a polymer and / or a polymer containing an oxazoline group is added as a crosslinking agent. The flexibility of the resin layer 4 can be controlled by adding the cross-linking agent to the polyurethane resin.
 また、ポリウレタン樹脂の固形分に対する架橋剤の固形分量は10重量%以内であること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層4の柔軟性が損なわれることに加えて、樹脂層4と基材2及び導電性被膜6との密着性が損なわれる傾向がある。 Moreover, it is preferable that the solid content of the crosslinking agent is within 10% by weight with respect to the solid content of the polyurethane resin. When the solid content of the cross-linking agent with respect to the solid content of the polyurethane resin is more than 10% by weight, the specific functional group contained in the polyurethane resin and the cross-linking agent react excessively, so that the flexibility of the resin layer 4 is impaired. In addition, the adhesion between the resin layer 4 and the substrate 2 and the conductive coating 6 tends to be impaired.
 また、樹脂層4の主成分は、破断伸度が600%以上であるポリウレタン樹脂であることがより好ましく、当該ポリウレタン樹脂は、-COO-H、-COOR、-COONH及び-COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有すること下記で示される官能基のいずれかを有していることが好ましい。 The main component of the resin layer 4 is more preferably a polyurethane resin having a breaking elongation of 600% or more, and the polyurethane resin includes —COO—H, —COOR, —COO NH + R 2 and — COO NH 4 + (wherein R and R 2 are each independently a linear or branched alkyl group, cycloalkyl group, alkylene group, oxyalkylene group, An aryl group, the same aralkyl group, the same heterocyclic group, the same alkoxy group, the same alkoxycarbonyl group, and the same acyl group.) Having any one of the functional groups shown below. It is preferable.
 導電性被膜複合体1においては、樹脂層4が基材2と導電性被膜6との密着層として機能するため、基材2と導電性被膜6とは良好な密着性を有している。また、詳細な理由については明らかになっていないが、密着層として用いるポリウレタン樹脂が上記特定の官能基を有していることで、樹脂層4と基材2、及び樹脂層4と導電性被膜6との密着性が向上する。 In the conductive film composite 1, since the resin layer 4 functions as an adhesion layer between the substrate 2 and the conductive film 6, the substrate 2 and the conductive film 6 have good adhesion. Moreover, although it is not clear about a detailed reason, since the polyurethane resin used as an adhesion layer has the specific functional group, the resin layer 4 and the base material 2, and the resin layer 4 and the conductive film are used. Adhesion with 6 is improved.
 また、樹脂層4の主成分であるポリウレタン樹脂が破断伸度600%以上という特徴を有している場合、柔軟性及び収縮膨張性に富んでいることから、銀微粒子を焼結させて導電性被膜6を形成させるプロセスにおいて、基材2と導電性被膜6との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜6が得られるものと考えられる。 In addition, when the polyurethane resin, which is the main component of the resin layer 4, has a characteristic that the elongation at break is 600% or more, it is rich in flexibility and shrinkage expansion. In the process of forming the coating film 6, the difference in thermal expansion coefficient between the substrate 2 and the conductive coating film 6 can be reduced. As a result, it is considered that the sintering of the silver fine particles proceeds smoothly and the conductive film 6 having excellent conductivity can be obtained.
 ポリウレタン樹脂は水系ポリウレタン樹脂であること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。 The polyurethane resin is preferably an aqueous polyurethane resin. The water-based polyurethane resin has a low odor, and can prevent the working environment from deteriorating and reduce the environmental load.
 ポリウレタン樹脂としては、エステル系、エーテル系、ポリカーボネート系のいずれのポリウレタン樹脂であっても使用することができるが、耐加水分解性に優れたエーテル系又はポリカーボネート系のポリウレタン樹脂を用いることが好ましい。 As the polyurethane resin, any polyurethane resin of ester type, ether type or polycarbonate type can be used, but it is preferable to use an ether type or polycarbonate type polyurethane resin excellent in hydrolysis resistance.
 より具体的には、ポリウレタン樹脂として、第一工業製薬製のスーパーフレックスシリーズ:300、460、470、500M、740、E-2000、E-4800や、DIC株式会社のハイドランシリーズ:HW312B、HW311、AP-10、AP-70、三洋化成製のウレタン樹脂エマルション:パーマリンUA-200、ユープレンUXA-307等を好適に用いることができる。 More specifically, as a polyurethane resin, the Superflex series: 300, 460, 470, 500M, 740, E-2000, E-4800 manufactured by Daiichi Kogyo Seiyaku, and the hydran series of DIC Corporation: HW312B, HW311 AP-10, AP-70, Sanyo Chemical's urethane resin emulsions: Permarin UA-200, Uprene UXA-307, etc. can be preferably used.
 また、樹脂層4の主成分として用いるポリウレタン樹脂は特定の官能基を有しているため、当該官能基と反応する架橋剤を添加することで、樹脂層4の柔軟性を制御することも可能である。適用できる官能基としては、アミノ基やイソシアネート基、オキサゾリン基、カルボジイミド基等を挙げることができる。ここで、官能基と架橋剤の反応は成膜時に行われることが望ましいため、常温では反応が進み難いブロックイソシアネート基やオキサゾリン基等を用いることが好ましい。 Moreover, since the polyurethane resin used as the main component of the resin layer 4 has a specific functional group, the flexibility of the resin layer 4 can be controlled by adding a crosslinking agent that reacts with the functional group. It is. Examples of applicable functional groups include amino groups, isocyanate groups, oxazoline groups, and carbodiimide groups. Here, since it is desirable that the reaction between the functional group and the crosslinking agent is performed at the time of film formation, it is preferable to use a blocked isocyanate group, an oxazoline group, or the like that does not easily proceed at room temperature.
 しかしながら、架橋剤を添加し過ぎると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層4の柔軟性が損なわれる。加えて、樹脂層4と基材2及び導電性被膜6との密着性が損なわれる傾向がある。よって、ポリウレタン樹脂の固形分に対する架橋剤の固形分量を10%以内とすることが好ましい。 However, if the crosslinking agent is added too much, the specific functional group contained in the polyurethane resin and the crosslinking agent react excessively, so that the flexibility of the resin layer 4 is impaired. In addition, the adhesion between the resin layer 4 and the base material 2 and the conductive coating 6 tends to be impaired. Therefore, it is preferable that the solid content of the crosslinking agent is within 10% with respect to the solid content of the polyurethane resin.
 架橋剤は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の架橋剤を用いることができるが、例えば、第一工業製薬製エラストロンシリーズのBN-69、BN-77や、日本触媒製エポクロスシリーズのWS-300、WS-500、WS-700等を用いることができる。 The crosslinking agent is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known crosslinking agents can be used. For example, Elastron series BN-69, BN-77 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. can be used. In addition, Nippon Catalytic Epocros series WS-300, WS-500, WS-700, and the like can be used.
 樹脂層4の成膜方法は特に限定されず、例えば、ディッピング、スプレー式、バーコート式、スピンコート、スリットダイコート式、エアナイフ式、リバースロールコート式、グラビアコート式、カーテンフロー式等を用いることができる。 The film formation method of the resin layer 4 is not particularly limited, and for example, dipping, spraying, bar coating, spin coating, slit die coating, air knife, reverse roll coating, gravure coating, curtain flow, etc. are used. Can do.
 また、成膜温度も特に限定されず、樹脂層4の原料として用いる組成物の最低成膜温度以上の温度を用いればよい。更に、必要に応じて、基材2の耐熱温度以下の温度で加熱処理を施してもよい。 Also, the film formation temperature is not particularly limited, and a temperature equal to or higher than the minimum film formation temperature of the composition used as the raw material of the resin layer 4 may be used. Furthermore, you may heat-process at the temperature below the heat-resistant temperature of the base material 2 as needed.
(1-3)導電性被膜
 導電性被膜6は銀微粒子から形成され、それを外部加熱によって形成した焼結体であり、銀微粒子が本来有する導電性と同程度の良好な導電性を有している。導電性被膜6の厚みは、0.1~2μmが好ましい。0.1μm未満であると厚みが薄すぎて十分な導電性が得られない場合がある。2μmを超えても導電性の面で問題はないが、使用量が多くなるためコスト高となり好ましくない。
(1-3) Conductive coating The conductive coating 6 is a sintered body formed from silver fine particles and formed by external heating, and has good conductivity comparable to that inherent in silver fine particles. ing. The thickness of the conductive coating 6 is preferably 0.1 to 2 μm. If the thickness is less than 0.1 μm, the thickness may be too thin to obtain sufficient conductivity. Even if it exceeds 2 μm, there is no problem in terms of conductivity, but the amount of use increases, which is not preferable because of high cost.
 導電性被膜6の形成に用いる銀微粒子分散体は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀微粒子分散体を用いることができるが、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、銀微粒子を分散させるための酸価を有する分散剤と、を含む短鎖アミンの分配係数logPが-1.0~1.4である銀微粒子分散体を用いることが好ましい。 The silver fine particle dispersion used for forming the conductive coating 6 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver fine particle dispersions can be used. The distribution coefficient logP of a short-chain amine comprising a short-chain amine having a 5 or less, a highly polar solvent, and a dispersant having an acid value for dispersing silver fine particles is -1.0 to 1.4 It is preferable to use a silver fine particle dispersion.
 上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であり、導電性被膜6を当該銀微粒子複合体の焼結によって形成することで、良好な導電性を有する導電性被膜6を低温で形成することができる。
 さらに銀微粒子に含まれる短鎖アミンと樹脂層4の主成分として用いるポリウレタン樹脂の特定の官能基が相互作用し、良好な密着性を発揮することができる。
The silver fine particle dispersion is a silver fine particle dispersion having a low temperature sintering property in which silver fine particles are uniformly dispersed in various solvents (especially high polarity solvents), and the conductive coating 6 is formed by sintering the silver fine particle composite. By forming, the conductive film 6 having good conductivity can be formed at a low temperature.
Furthermore, the specific functional group of the polyurethane resin used as a main component of the resin layer 4 interacts with the short chain amine contained in the silver fine particles, and good adhesion can be exhibited.
(1-3-1)銀微粒子分散体
 本実施形態の銀微粒子分散体は、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、を含んでいる。以下においてこれら各成分等について説明する。
(1-3-1) Silver Fine Particle Dispersion The silver fine particle dispersion of this embodiment contains silver fine particles, a short-chain amine having 5 or less carbon atoms, and a highly polar solvent. These components will be described below.
(A)銀微粒子
 本実施形態の銀微粒子分散体における銀微粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、融点降下が生じるような平均粒径を有するのが好ましく、例えば、1~200nmであればよい。更には、2~100nmであるのが好ましい。銀微粒子の平均粒径が1nm以上であれば、銀微粒子が良好な低温焼結性を具備すると共に銀微粒子製造がコスト高とならず実用的である。また、200nm以下であれば、銀微粒子の分散性が経時的に変化しにくく、好ましい。
(A) Silver fine particles The average particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment is not particularly limited as long as the effect of the present invention is not impaired. It preferably has a diameter, for example, it may be 1 to 200 nm. Further, it is preferably 2 to 100 nm. If the average particle diameter of the silver fine particles is 1 nm or more, the silver fine particles have good low-temperature sinterability, and the production of silver fine particles is practical without increasing the cost. Moreover, if it is 200 nm or less, the dispersibility of a silver fine particle does not change easily over time, and it is preferable.
 銀微粒子分散体を、例えばマイグレーションの問題を考慮して、イオン化列が水素より貴である金属、即ち金、銅、白金、パラジウム等の粒子を添加してもよい。 The silver fine particle dispersion may be added with a metal whose ionization column is more noble than hydrogen, that is, gold, copper, platinum, palladium, or the like in consideration of the problem of migration, for example.
 なお、本実施形態の銀微粒子分散体における銀微粒子の粒径は、一定でなくてもよい。また、銀微粒子分散体が、任意成分として、後述する分散剤等を含む場合、平均粒径が200nm超の金属粒子成分を含む場合があるが、凝集を生じたりせず、本発明の効果を著しく損なわない成分であればかかる200nm超の平均粒径を有する金属粒子成分を含んでもよい。 In addition, the particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment may not be constant. In addition, when the silver fine particle dispersion contains a dispersant described later as an optional component, it may contain a metal particle component having an average particle size of more than 200 nm, but it does not cause aggregation, and the effect of the present invention is achieved. A metal particle component having an average particle diameter of more than 200 nm may be included as long as the component is not significantly impaired.
 ここで、本実施形態の銀微粒子分散体における銀微粒子の粒径は、動的光散乱法、小角X線散乱法、広角X線回折法で測定することができる。ナノサイズの銀微粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、より具体的には、理学電機(株)製のRINT-UltimaIIIを用いて、回折法で2θが30~80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1~1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を粒径とすればよい。
  D=Kλ/Bcosθ
ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
Here, the particle size of the silver fine particles in the silver fine particle dispersion of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method. In order to show the melting point drop of nano-sized silver fine particles, the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate. For example, in the wide-angle X-ray diffraction method, more specifically, RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2θ in the range of 30 to 80 ° by the diffraction method. In this case, the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center. The crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
D = Kλ / Bcos θ
Here, K: Scherrer constant (0.9), λ: wavelength of X-ray, B: half width of diffraction line, θ: Bragg angle.
(B)炭素数が5以下である短鎖アミン
 本実施形態の銀微粒子分散体において、銀微粒子の表面の少なくとも一部には炭素数が5以下である短鎖アミンが付着している。なお、銀微粒子の表面には、原料に最初から不純物として含まれる微量有機物、後述する製造過程で混入する微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、微量の有機物が付着していてもよい。
(B) Short-chain amine having 5 or less carbon atoms In the silver fine particle dispersion of this embodiment, a short-chain amine having 5 or less carbon atoms is attached to at least a part of the surface of the silver fine particles. In addition, on the surface of the silver fine particles, a trace amount of organic matter contained as an impurity from the beginning, a trace amount of organic matter mixed in the manufacturing process described later, a residual reducing agent that could not be removed in the cleaning process, a residual dispersant, etc. A trace amount of organic matter may be attached.
 炭素数が5以下である短鎖アミンは分配係数logPが-1.0~1.4であれば特に限定されず、直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。当該短鎖アミンとしては、例えば、エチルアミン(-0.3)プロピルアミン(0.5)、ブチルアミン(1.0)、N-(3-メトキシプロピル)プロパン-1,3-ジアミン(-0.6)、1,2-エタンジアミン、N-(3-メトキシプロピル)ホルムアミド(-0.2),2-メトキシエチルアミン(-0.9)、3-メトキシプロピルアミン(-0.5)、3-エトキシプロピルアミン(-0.1)、1,4-ブタンジアミン(-0.9)、1,5-ペンタンジアミン(-0.6)、ペンタノールアミン(-0.3)、アミノイソブタノール(-0.8)等が挙げられるが、なかでもアルコキシアミンを用いることが好ましい。 The short-chain amine having 5 or less carbon atoms is not particularly limited as long as the distribution coefficient logP is −1.0 to 1.4, and may be linear or branched. You may have a chain. Examples of the short chain amine include ethylamine (−0.3) propylamine (0.5), butylamine (1.0), N- (3-methoxypropyl) propane-1,3-diamine (−0. 6), 1,2-ethanediamine, N- (3-methoxypropyl) formamide (-0.2), 2-methoxyethylamine (-0.9), 3-methoxypropylamine (-0.5), 3 -Ethoxypropylamine (-0.1), 1,4-butanediamine (-0.9), 1,5-pentanediamine (-0.6), pentanolamine (-0.3), aminoisobutanol (-0.8) and the like are mentioned, among which alkoxyamine is preferably used.
 上記短鎖アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。 The short chain amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
 本実施形態の銀粒子分散体は、本発明の効果を損なわない範囲であれば、上記の炭素数が5以下である短鎖アミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本実施形態の銀粒子分散体中で、銀微粒子の表面の少なくとも一部に局在化(付着)すると(即ち、銀微粒子の表面の少なくとも一部を被覆すると)、溶媒と銀微粒子とを十分に親和させることができ、銀微粒子同士の凝集を防ぐことができる(分散性を向上させる。)。 The silver particle dispersion of this embodiment may contain a carboxylic acid in addition to the short-chain amine having 5 or less carbon atoms as long as the effects of the present invention are not impaired. The carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties. In addition, when the carboxylic acid is localized (attached) on at least a part of the surface of the silver fine particles (that is, covers at least a part of the surface of the silver fine particles) in the silver particle dispersion of the present embodiment, the solvent. And silver fine particles can be made to sufficiently adhere to each other and aggregation of silver fine particles can be prevented (dispersibility is improved).
 カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。 As the carboxylic acid, compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid. A part of carboxyl groups of the carboxylic acid may form a salt with a metal ion. In addition, about the said metal ion, 2 or more types of metal ions may be contained.
 上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も銀微粒子表面に適度に吸着するため、銀微粒子表面にはアミド基が付着していてもよい。 The carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. In this case, the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups. Moreover, the said carboxylic acid may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower. Also, amines and carboxylic acids form amides. Since the amide group also adsorbs moderately on the surface of the silver fine particles, the amide group may adhere to the surface of the silver fine particles.
 銀微粒子と当該銀微粒子の表面に付着した有機物(上記炭素数が5以下である短鎖アミン等)によってコロイドが構成される場合、当該コロイド中の有機成分の含有量は、0.5~50質量%であることが好ましい。有機成分含有量が0.5質量%以上であれば、得られる銀微粒子分散体の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、銀微粒子分散体を加熱して得られる焼成体の導電性が良い傾向がある。有機成分のより好ましい含有量は1~30質量%であり、更に好ましい含有量は2~15質量%である。 When the colloid is composed of silver fine particles and organic substances (such as the short-chain amine having 5 or less carbon atoms) attached to the surface of the silver fine particles, the content of the organic component in the colloid is 0.5 to 50 It is preferable that it is mass%. If the organic component content is 0.5% by mass or more, the storage stability of the resulting silver fine particle dispersion tends to be improved, and if it is 50% by mass or less, the silver fine particle dispersion is obtained by heating. There exists a tendency for the electroconductivity of a sintered body to be good. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
(C)高極性溶媒
 本実施形態の銀微粒子分散体は、種々の高極性溶媒に銀微粒子が分散したものである。
(C) High Polar Solvent The silver fine particle dispersion of the present embodiment is obtained by dispersing silver fine particles in various high polar solvents.
 上記溶媒としては、本発明の効果を損なわない範囲で、種々の高極性溶媒を用いることができる。高極性溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、2-ブタノール、ペンタノール、ヘキサノール、イソアミルアルコール、フルフリルアルコール、ニトロメタン、アセトニトリル、ピリジン、アセトンクレゾール、ジメチルホルムアミド、ジオキサン、エチレングリコール、グリセリン、フェノール、p-クレゾール、酢酸プロピル、酢酸イソプロピル、tert-ブタノール、1-ペンタノール、2-ペンタノール、4-メチル-2-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、2-ブタノール、1-ヘキサノール、2-ヘキサノール2-ペンタノン、2-ヘプタノン、酢酸2-(2-エトキシエトキシ)エチル、酢酸-2-ブトキシエチル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸-2-メトキシエチル、2-ヘキシルオキシエタノール等を例示することができるが、本発明では前記炭素数が5以下の短鎖アミンと相溶性が良好であるため、炭素数1~6のアルコールを用いることが好ましい。なお、これらの溶媒はそれぞれ単独で用いてもよく、2種以上を併用してもよい。 As the solvent, various highly polar solvents can be used as long as the effects of the present invention are not impaired. High polar solvents include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, 2-butanol, pentanol, hexanol, isoamyl alcohol, furfuryl alcohol, nitromethane, acetonitrile, pyridine, acetone cresol, dimethylformamide, dioxane, ethylene Glycol, glycerin, phenol, p-cresol, propyl acetate, isopropyl acetate, tert-butanol, 1-pentanol, 2-pentanol, 4-methyl-2-pentanol, 3-methyl-1-pentanol, 3- Methyl-2-pentanol, 2-butanol, 1-hexanol, 2-hexanol 2-pentanone, 2-heptanone, 2- (2-ethoxyethoxy) ethyl acetate, 2-butoxy acetate Examples include chill, 2- (2-butoxyethoxy) ethyl acetate, 2-methoxyethyl acetate, 2-hexyloxyethanol, etc., but the present invention is compatible with the short-chain amine having 5 or less carbon atoms. Therefore, it is preferable to use an alcohol having 1 to 6 carbon atoms. These solvents may be used alone or in combination of two or more.
(D)分散剤
 本実施形態の銀粒子分散体には、更に、銀微粒子を分散させるために銀微粒子合成後に添加される「酸価を有する分散剤」を含む。かかる分散剤を用いることで、溶媒中の銀微粒子の分散安定性を向上させることができる。ここで、当該分散剤の酸価は5~200であることがより好ましく、また、当該分散剤がリン酸由来の官能基を有することが更に好ましい。
(D) Dispersant The silver particle dispersion of the present embodiment further includes a “dispersant having an acid value” added after the synthesis of silver fine particles in order to disperse the silver fine particles. By using such a dispersant, the dispersion stability of the silver fine particles in the solvent can be improved. Here, the acid value of the dispersant is more preferably from 5 to 200, and it is further preferable that the dispersant has a functional group derived from phosphoric acid.
 分散剤の酸価が5以上であるとアミンと配位し粒子表面が塩基性となっている金属物への酸塩基相互作用での吸着が起こり始めるからであり、200以下であると過度に吸着サイトを有さないため好適な形態で吸着するからである。また、分散剤がリン酸由来の官能基を有することでリンPが酸素Oを介して金属Mと相互作用し引き合うので金属や金属化合物との吸着には最も効果的であり、必要最小限の吸着量で好適な分散性を得ることができるからである。 If the acid value of the dispersant is 5 or more, adsorption with an acid-base interaction starts to occur on a metal substance that coordinates with the amine and the particle surface is basic. This is because it does not have an adsorption site and adsorbs in a suitable form. In addition, since the dispersant has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts the metal M through the oxygen O, and is therefore most effective for adsorption with metals and metal compounds. This is because suitable dispersibility can be obtained by the amount of adsorption.
 なお、酸価が5~200の高分子分散剤としては、例えば、ルーブリゾール社のSOLSPERSEシリーズではSOLSPERSE-16000、21000、41000、41090、43000、44000、46000、54000等が挙げられ、ビックケミー社DISPERBYKシリーズではDISPERBYK-102、110、111、170、190.194N、2015.2090、2096等が挙げられ、エボニック社のTEGO Dispersシリーズでは610、610S、630、651、655、750W、755W等が挙げられ、楠本化成(株)製のディスパロンシリーズではDA-375、DA-1200等が挙げられ、共栄化学工業(株)製のフローレンシリーズではWK-13E、G-700、G-900、GW-1500、GW-1640、WK-13Eを例示することができる。 Examples of the polymer dispersant having an acid value of 5 to 200 include SOLPERSE-16000, 21000, 41000, 41090, 43000, 44000, 46000, and 54000 in the SOLSPERSE series of Lubrizol. In the series, DISPERBYK-102, 110, 111, 170, 190.194N, 2015.2090, 2096 and the like are listed, and in Evonik's TEGO® Dispers series, 610, 610S, 630, 651, 655, 750W, 755W and the like are listed. In the Disparon series manufactured by Enomoto Kasei Co., Ltd., DA-375, DA-1200 and the like are listed. In the Floren series manufactured by Kyoei Chemical Industry Co., Ltd., WK-13E, G-700, -900 can be exemplified GW-1500, GW-1640, WK-13E.
 本実施形態の銀微粒子分散体に分散剤を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良いが、例えば、銀微粒子分散体を銀インクとして用いる場合は、分散剤の含有量を0.5~20質量%とすることが好ましく、銀ペーストとして用いる場合は、分散剤の含有量を0.1~10質量%とすることが好ましい。 The content when the dispersant is contained in the silver fine particle dispersion of the present embodiment may be adjusted according to desired properties such as viscosity. For example, when the silver fine particle dispersion is used as a silver ink, The content is preferably 0.5 to 20% by mass, and when used as a silver paste, the content of the dispersant is preferably 0.1 to 10% by mass.
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる銀微粒子分散体の分散安定性が良くなるが、含有量が多過ぎる場合は低温焼結性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.3~10質量%であり、更に好ましい含有量は0.5~8質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. When the content of the polymer dispersant is 0.1% or more, the dispersion stability of the obtained silver fine particle dispersion is improved. However, when the content is too large, the low-temperature sinterability is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.3 to 10% by mass, and still more preferable content is 0.5 to 8% by mass.
 本実施形態の分散体は、更に、熱分析によって室温から200℃まで加熱したときの重量減少率が20質量%以下であり、かつ、200℃から500℃まで加熱したときの重量減少率が10質量%以下であることが好ましい。ここで、200℃までの重量減少率は主として低温焼結性に寄与する低温成分である短鎖アミンの含有量を示し、200~500℃での高温性分の重量減少率は主として分散安定性に寄与する酸価の分散剤の含有量を示す。短鎖アミンや高温成分が過剰になると低温焼結性が損なわれる。即ち、室温から200℃まで加熱したときの重量減少率が20質量%以下で、200℃から500℃まで加熱したときの重量減少率が10質量%以下であれば低温焼結性がより優れる。 The dispersion of this embodiment further has a weight reduction rate of 20% by mass or less when heated from room temperature to 200 ° C. by thermal analysis, and a weight reduction rate of 10% when heated from 200 ° C. to 500 ° C. It is preferable that it is below mass%. Here, the weight loss rate up to 200 ° C. mainly indicates the content of the short-chain amine, which is a low-temperature component that contributes to low-temperature sinterability, and the weight loss rate at 200 to 500 ° C. is mainly the dispersion stability. The content of the dispersant having an acid value that contributes to If the short-chain amine or the high temperature component is excessive, the low temperature sintering property is impaired. That is, if the weight reduction rate when heated from room temperature to 200 ° C. is 20% by mass or less and the weight reduction rate when heated from 200 ° C. to 500 ° C. is 10% by mass or less, the low temperature sinterability is more excellent.
(E)保護剤(保護分散剤)
 本実施形態の銀微粒子分散体は、更に、銀微粒子合成前に添加される保護剤としての酸価を有する分散剤(保護分散剤)を含んでいてもよい。ここでいう「保護分散剤」は、上記の銀微粒子合成後に添加される「酸価を有する分散剤」と同じ種類のものでも異なる種類のものであってもよい。
(E) Protective agent (protective dispersant)
The silver fine particle dispersion of this embodiment may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of the silver fine particles. The “protective dispersant” referred to here may be of the same type or different type as the “dispersant having an acid value” added after the synthesis of the silver fine particles.
(F)その他の成分
 本実施形態の銀微粒子分散体には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
(F) Other components In addition to the above components, the silver fine particle dispersion of the present embodiment has an appropriate viscosity, adhesion, drying property or printing depending on the purpose of use within a range not impairing the effects of the present invention. For example, an oligomer component, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickener, You may add arbitrary components, such as a surface tension regulator. Such optional components are not particularly limited.
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースのセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin or emulsion such as blocked isocyanate, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose. , Hydroxypropylcellulose, cellulose derivatives of hydroxypropylmethylcellulose, polysaccharides such as xanthan gum or guar gum, etc., and these may be used alone or in combination of two or more.
 上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の銀微粒子分散体に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる銀微粒子分散体が得られる。 A surfactant different from the above organic components may be added. In a multi-component solvent-based inorganic colloidal dispersion, the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying. By adding a surfactant to the silver fine particle dispersion of this embodiment, a silver fine particle dispersion capable of suppressing these disadvantages and forming a uniform conductive film can be obtained.
 本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れかを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。なかでも、少量の添加量で効果が得られるので、フッ素系界面活性剤、シリコン系界面活性剤が好ましい。 The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used. For example, alkylbenzene sulfonic acid Salt, quaternary ammonium salt and the like. Of these, fluorine-based surfactants and silicon-based surfactants are preferred because an effect can be obtained with a small amount of addition.
(1-3-2)銀微粒子
 本実施形態の銀微粒子分散体に含まれる銀微粒子は、表面の少なくとも一部に分配係数logPが-1.0~1.4であり炭素数が5以下であるアルコキシアミンが付着した銀微粒子である。
(1-3-2) Silver Fine Particles The silver fine particles contained in the silver fine particle dispersion of the present embodiment have a distribution coefficient logP of −1.0 to 1.4 and a carbon number of 5 or less on at least a part of the surface. Silver fine particles with a certain alkoxyamine attached.
 銀微粒子の表面の少なくとも一部に分配係数logPが-1.0~1.4である炭素数が5以下のアルコキシアミンを付着させることで、銀微粒子に種々の溶媒(特に高極性溶媒)に対する優れた分散性と低温焼結性とを付与することができる。 By attaching an alkoxyamine having a partition coefficient logP of −1.0 to 1.4 and having 5 or less carbon atoms to at least a part of the surface of the silver fine particles, the silver fine particles can be used for various solvents (particularly highly polar solvents) Excellent dispersibility and low-temperature sinterability can be imparted.
 上記溶媒としては、本発明の効果を損なわない範囲で、種々の溶媒を用いることができ、SP値(溶解パラメーター)が7.0~15.0である溶媒を用いることができる。ここで、高極性溶媒中においても銀微粒子が均一に分散していることが本発明の銀微粒子分散体の特徴の一つであり、本発明では前記炭素数が5以下の短鎖アミンと相溶性が良好であるため、炭素数1~6のアルコールを用いることが好ましい。なお、これらの溶媒はそれぞれ単独で用いてもよく、2種以上を併用してもよい。 As the solvent, various solvents can be used as long as the effects of the present invention are not impaired, and a solvent having an SP value (solubility parameter) of 7.0 to 15.0 can be used. Here, it is one of the characteristics of the silver fine particle dispersion of the present invention that the silver fine particles are uniformly dispersed even in a highly polar solvent. In the present invention, the phase is combined with the short-chain amine having 5 or less carbon atoms. It is preferable to use an alcohol having 1 to 6 carbon atoms because of good solubility. These solvents may be used alone or in combination of two or more.
 SP値(溶解パラメーター)が7.0~15.0である溶媒としては、例えば、ヘキサン(7.2)、トリエチルアミン(7.3)、エチルエーテル(7.7)、n-オクタン(7.8)、シクロヘキサン(8.3)、n-アミルアセテート(8.3)、酢酸イソブチル(8.3)、メチルイソプロピルケトン(8.4)、アミルベンゼン(8.5)酢酸ブチル(8.5)、四塩化炭素(8.6)、エチルベンゼン(8.7)、p-キシレン(8.8)、トルエン(8.9)、メチルプロピルケトン(8.9)酢酸エチル(8.9)、テトラヒドロフラン(9.2)、メチルエチルケトン(9.3)、クロロホルム(9.4)、アセトン(9.8)、ジオキサン(10.1)、ピリジン(10.8)、イソブタノール(11.0)、n-ブタノール(11.1)、ニトロエタン(11.1)イソプロピルアルコール(11.2)、m-クレゾール(11.4)、アセトニトリル(11.9)、n-プロパノール(12.1)、フルフリルアルコール(12.5)、ニトロメタン(12.7)、エタノール(12.8)、クレゾール(13.3)、エチレングリコール(14.2)、メタノール(14.8)フェノール、p-クレゾール、酢酸プロピル、酢酸イソプロピル、tert-ブタノール、1-ペンタノール、2-ペンタノール、4-メチル-2-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、2-ブタノール、1-ヘキサノール、2-ヘキサノール2-ペンタノン、2-ヘプタノン、酢酸2-(2-エトキシエトキシ)エチル、酢酸-2-ブトキシエチル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸-2-メトキシエチル、2-ヘキシルオキシエタノール等を例示することができる。 Examples of the solvent having an SP value (solubility parameter) of 7.0 to 15.0 include hexane (7.2), triethylamine (7.3), ethyl ether (7.7), and n-octane (7. 8), cyclohexane (8.3), n-amyl acetate (8.3), isobutyl acetate (8.3), methyl isopropyl ketone (8.4), amyl benzene (8.5) butyl acetate (8.5) ), Carbon tetrachloride (8.6), ethylbenzene (8.7), p-xylene (8.8), toluene (8.9), methyl propyl ketone (8.9) ethyl acetate (8.9), Tetrahydrofuran (9.2), methyl ethyl ketone (9.3), chloroform (9.4), acetone (9.8), dioxane (10.1), pyridine (10.8), isobutanol (11.0), n-bu Nord (11.1), Nitroethane (11.1) Isopropyl alcohol (11.2), m-cresol (11.4), acetonitrile (11.9), n-propanol (12.1), furfuryl alcohol ( 12.5), nitromethane (12.7), ethanol (12.8), cresol (13.3), ethylene glycol (14.2), methanol (14.8) phenol, p-cresol, propyl acetate, acetic acid Isopropyl, tert-butanol, 1-pentanol, 2-pentanol, 4-methyl-2-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 2-butanol, 1-hexanol 2-hexanol 2-pentanone, 2-heptanone, 2- (2-ethoxyethoxy) ethyl acetate, acetic acid - butoxyethyl, 2- (2-butoxyethoxy) ethyl acetate, acetic acid-2-methoxyethyl, can be exemplified 2-hexyloxy ethanol.
 本実施形態の銀微粒子の粒径は、融点降下が生じるようなナノメートルサイズ、望ましくは1~200nmが適切であるが、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。 The particle size of the silver fine particles of the present embodiment is a nanometer size that desirably causes a melting point drop, and preferably 1 to 200 nm. However, if necessary, particles of a micrometer size may be included.
 なお、上記銀微粒子分散体をそのまま用いて導電性被膜6を形成させてもよいが、転写印刷用に適した導電性インクとして調整して用いることで、樹脂層4の上に転写印刷した導電性被膜6を形成させることができる。以下、当該導電性インクについて説明する。 The silver fine particle dispersion may be used as it is to form the conductive coating 6, but the conductive film transferred and printed on the resin layer 4 can be prepared as a conductive ink suitable for transfer printing. The conductive film 6 can be formed. Hereinafter, the conductive ink will be described.
 本実施形態の転写印刷用導電性インクは、金属粒子と、エタノールを含む溶媒と、水酸基を有する高沸点溶剤0.1~3.0質量%と、を含むことを特徴とする。また、金属粒子と有機成分とからなる金属粒子分散体(換言すれば金属コロイド粒子)を主成分とする固形分と、これら固形分を分散する分散媒とを含むものである。ただし、上記コロイド液において、「分散媒」は上記固形分の一部を溶解していても構わない。 The conductive ink for transfer printing of this embodiment is characterized by containing metal particles, a solvent containing ethanol, and 0.1 to 3.0% by mass of a high boiling point solvent having a hydroxyl group. Moreover, the solid content which has the metal particle dispersion (in other words, metal colloid particle) which consists of a metal particle and an organic component as a main component, and the dispersion medium which disperse | distributes these solid content are included. However, in the colloid liquid, the “dispersion medium” may dissolve a part of the solid content.
 このような金属コロイド液によれば、有機成分を含んでいるため、金属コロイド液中での金属コロイド粒子の分散性を向上させることができ、したがって、金属コロイド液中の金属成分の含有量を増やしても金属コロイド粒子が凝集しにくく、良好な分散安定性を保つことができる。なお、ここでいう「分散性」とは、金属コロイド液を調製した直後において、当該金属コロイド液中での金属粒子の分散状態が優れているか否か(均一か否か)を示すものであり、「分散安定性」とは、金属コロイド液を調整して所定の時間を経過した後において、当該金属コロイド液中での金属粒子の分散状態が維持されているか否かを示すものであり、「低沈降凝集性」ともいえる。 According to such a metal colloid liquid, since it contains an organic component, the dispersibility of the metal colloid particles in the metal colloid liquid can be improved. Therefore, the content of the metal component in the metal colloid liquid can be reduced. Even if it is increased, the colloidal metal particles are less likely to aggregate and good dispersion stability can be maintained. The “dispersibility” as used herein indicates whether or not the dispersion state of the metal particles in the metal colloid liquid is excellent immediately after the metal colloid liquid is prepared (whether it is uniform or not). , "Dispersion stability" indicates whether or not the dispersion state of the metal particles in the metal colloid liquid is maintained after a predetermined time has elapsed after adjusting the metal colloid liquid, It can also be said to be “low sedimentation aggregation”.
 ここで、上記の金属コロイド液において、金属コロイド粒子中の「有機成分」は、上記金属成分とともに実質的に金属コロイド粒子を構成する有機物のことである。当該有機成分には、金属中に最初から不純物として含まれる微量有機物、後述する製造過程で混入した微量の有機物が金属成分に付着した有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、金属成分に微量付着した有機物等は含まれない。なお、上記「微量」とは、具体的には、金属コロイド粒子中1質量%未満が意図される。
 本実施形態における金属コロイド粒子は、有機成分を含んでいるため、金属コロイド液中での分散安定性が高い。そのため、金属コロイド液中の金属成分の含有量を増大させても金属コロイド粒子が凝集しにくく、その結果、良好な分散性が保たれる。
Here, in the metal colloid liquid, the “organic component” in the metal colloid particle is an organic substance that substantially constitutes the metal colloid particle together with the metal component. The organic component includes trace organic substances contained in the metal as impurities from the beginning, organic substances adhering to the metal component from trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersion It does not include organic substances that adhere to trace amounts of metal components such as agents. The “trace amount” is specifically intended to be less than 1% by mass in the metal colloid particles.
Since the metal colloid particles in this embodiment contain an organic component, the dispersion stability in the metal colloid liquid is high. Therefore, even if the content of the metal component in the metal colloid liquid is increased, the metal colloid particles are less likely to aggregate, and as a result, good dispersibility is maintained.
 また、本実施形態における金属コロイド液の「固形分」とは、シリカゲル等を用いて金属コロイド液から分散媒を取り除いた後、例えば、30℃以下の常温(例えば25℃)で24時間乾燥させたときに残存する固形分のことをいい、通常は、金属粒子、残存有機成分及び残留還元剤等を含むものである。なお、シリカゲルを用いて金属コロイド液から分散媒を取り除く方法としては、種々の方法を採用することが可能であるが、例えばガラス基板上に金属コロイド液を塗布し、シリカゲルを入れた密閉容器に塗膜付ガラス基板を24時間以上放置することにより分散媒を取り除けばよい。 In addition, the “solid content” of the metal colloid liquid in the present embodiment means that after removing the dispersion medium from the metal colloid liquid using silica gel or the like, for example, it is dried at room temperature of 30 ° C. or lower (for example, 25 ° C.) for 24 hours. In general, the solid content that remains is usually contained metal particles, residual organic components, residual reducing agent, and the like. Various methods can be employed as a method of removing the dispersion medium from the metal colloid liquid using silica gel. For example, a metal colloid liquid is applied on a glass substrate and placed in a sealed container containing silica gel. What is necessary is just to remove a dispersion medium by leaving a glass substrate with a coating film for 24 hours or more.
 本実施形態の金属コロイド液において、好ましい固形分の濃度は1~60質量%である。固形分の濃度が1質量%以上であれば、転写印刷用導電性インクにおける金属の含有量を確保することができ、導電効率が低くならない。また、固形分の濃度が60質量%以下であれば、金属コロイド液の粘度が増加せず取り扱いが容易で、工業的に有利であり、平坦な薄膜を形成することができる。より好ましい固形分の濃度は5~40質量%である。 In the metal colloid liquid of the present embodiment, the preferable solid content is 1 to 60% by mass. When the solid content concentration is 1% by mass or more, the metal content in the conductive ink for transfer printing can be secured, and the conductive efficiency does not decrease. In addition, when the solid content concentration is 60% by mass or less, the viscosity of the metal colloid liquid does not increase, the handling is easy, it is industrially advantageous, and a flat thin film can be formed. A more preferable solid content is 5 to 40% by mass.
 転写印刷用導電性インクは、水酸基を有する高沸点溶剤を0.1~3.0質量%含むことを特徴とする。水酸基を有する高沸点溶剤は、1,3-ブチレングリコール(沸点:203℃)、2,4-ジエチル-1,5-ペンタンジオール(沸点:150℃/5mmHg、1気圧では200℃以上)又はオクタンジオール(沸点:243℃)から選択されるのが好ましい。 The conductive ink for transfer printing contains 0.1 to 3.0% by mass of a high boiling point solvent having a hydroxyl group. The high boiling point solvent having a hydroxyl group is 1,3-butylene glycol (boiling point: 203 ° C.), 2,4-diethyl-1,5-pentanediol (boiling point: 150 ° C./5 mmHg, 200 ° C. or more at 1 atm) or octane. It is preferably selected from diols (boiling point: 243 ° C.).
 「高沸点溶剤」とは、200℃以上の沸点を有する溶剤のことをいう。また、水酸基を有することによって水に対して適度な親和性を有し、空気中の水分を吸収乃至は吸着等して保湿する傾向があるため、少ない添加量で転写印刷法に好適なインクとすることができる。更に、高沸点溶剤の添加量を必要最小限とすることで、シリコーンブランケット上に塗布したインクを短時間に半乾燥させることができ、印刷タクトを短くすることができるという効果を奏する。 “High-boiling solvent” refers to a solvent having a boiling point of 200 ° C. or higher. In addition, since it has a suitable affinity for water by having a hydroxyl group and tends to absorb or absorb moisture in the air and moisturize it, an ink suitable for transfer printing with a small addition amount can be obtained. can do. Furthermore, by minimizing the amount of the high-boiling solvent added, the ink applied on the silicone blanket can be semi-dried in a short time, and the printing tact can be shortened.
 水酸基を有する高沸点溶剤の添加量は、0.1~3.0質量%である。0.1質量%未満であると、量が少なすぎて転写印刷法に好適なインク状になりにくく、3.0質量%を超えると、転写印刷法に好適な半乾燥状態に到達する時間が長くなり印刷タクトの面で不利となる。水酸基を有する高沸点溶剤の添加量は、0.3~2.0質量%であるのが、より確実に、転写印刷法に好適なインク状になり易く、転写印刷法に好適な半乾燥状態に到達する時間を短くでき印刷タクトの面で有利となるという観点から、特に好ましい。 The addition amount of the high boiling point solvent having a hydroxyl group is 0.1 to 3.0% by mass. If the amount is less than 0.1% by mass, the amount is too small to easily form an ink suitable for the transfer printing method. If the amount exceeds 3.0% by mass, the time to reach a semi-dry state suitable for the transfer printing method is reached. It becomes longer and disadvantageous in terms of printing tact. The addition amount of the high boiling point solvent having a hydroxyl group is 0.3 to 2.0% by mass, but it is more sure that the ink is suitable for the transfer printing method, and it is a semi-dry state suitable for the transfer printing method. This is particularly preferable from the viewpoint of shortening the time required to reach the position and being advantageous in terms of printing tact.
 また、転写印刷用導電性インクにおいては、インクの乾燥性を高めるためにエタノール等の高揮発性溶剤を添加する。当該溶剤を添加することにより、転写印刷用導電性インクを素早く印刷に適した粘度に調整することができる。高揮発性溶剤としては、エタノールの他、メタノール、プロピルアルコール、イソプロピルアルコール、アセトン、n-ブタノール、sec-ブタノール、tert-ブタノール等の沸点100℃未満の溶剤の群から選ばれる1又は2以上の低沸点溶剤を用いることができる。 In addition, in the conductive ink for transfer printing, a highly volatile solvent such as ethanol is added to improve the drying property of the ink. By adding the solvent, the transfer printing conductive ink can be quickly adjusted to a viscosity suitable for printing. Examples of the highly volatile solvent include one or more selected from the group of solvents having a boiling point of less than 100 ° C. such as ethanol, methanol, propyl alcohol, isopropyl alcohol, acetone, n-butanol, sec-butanol, tert-butanol and the like. Low boiling solvents can be used.
 更に、転写印刷用導電性インクにおいては、ハイドロフルオロエーテル等のフッ素溶剤を含んでいることが好ましい。フッ素溶剤は、表面張力が低いためにシリコーンブランケットに対し良好な濡れ性を発揮させることができ、沸点が比較的低いために良好な乾燥性を付与することができる。なかでも、オゾン破壊係数の観点から、ハロゲン原子を含むフッ素溶剤よりもハイドロフルオロエーテルのほうが好ましい。 Furthermore, the conductive ink for transfer printing preferably contains a fluorine solvent such as hydrofluoroether. Since the fluorine solvent has a low surface tension, it can exhibit good wettability with respect to the silicone blanket, and since the boiling point is relatively low, it can provide good drying properties. Of these, hydrofluoroethers are more preferable than fluorine solvents containing halogen atoms from the viewpoint of the ozone depletion coefficient.
 また、ハイドロフルオロエーテルは、ハイドロフルオロカーボン類よりもエーテル結合を有しているために極性が高く、シリコーンブランケットをほとんど膨潤させないという利点を有しており、エタノール等のアルコールとの相溶性が良く、アルコールに分散した金属粒子との相溶性にも優れるという効果を奏するため、より好ましい。 In addition, hydrofluoroether has an ether bond than hydrofluorocarbons, so it has a high polarity and has the advantage of hardly causing the silicone blanket to swell, and has good compatibility with alcohols such as ethanol, This is more preferable because it has an effect of being excellent in compatibility with metal particles dispersed in alcohol.
 転写印刷用導電性インクにおいては、シリコーンブランケットに対する濡れ性を向上させる目的で、フッ素原子を有するフッ素系界面活性剤を添加してもよい。ただし、この場合、添加量が多過ぎると転写印刷用導電性インクを用いて作製した導電性被膜の導電性が低下し、添加量が少な過ぎると濡れ性改善の効果が不十分であるため、0.01~2質量%であるのが好適である。 In the conductive ink for transfer printing, a fluorine-based surfactant having a fluorine atom may be added for the purpose of improving the wettability with respect to the silicone blanket. However, in this case, if the addition amount is too large, the conductivity of the conductive film produced using the conductive ink for transfer printing is lowered, and if the addition amount is too small, the effect of improving the wettability is insufficient. The content is preferably 0.01 to 2% by mass.
 転写印刷用導電性インクにおいては、表面張力が22mN/m以下である。表面張力を22mN/m以下と十分に下げることで、シリコーン樹脂等のブランケットへの転写印刷用導電性インクの濡れ性を十分に担保することができる。表面張力を22mN/m以下にすることは、上記の本発明の転写印刷用導電性インクの成分比を調整することによって実現できる。表面張力の下限は13mN/m程度であればよい。なお、本発明においていう表面張力とは、プレート法(Wilhelmy法)という原理で測定して得られるものであり、例えば、協和界面科学(株)製の全自動表面張力計CBVP-Z等により測定することができる。 In the conductive ink for transfer printing, the surface tension is 22 mN / m or less. By sufficiently lowering the surface tension to 22 mN / m or less, the wettability of the conductive ink for transfer printing onto a blanket such as a silicone resin can be sufficiently ensured. The surface tension of 22 mN / m or less can be realized by adjusting the component ratio of the conductive ink for transfer printing according to the present invention. The lower limit of the surface tension may be about 13 mN / m. The surface tension referred to in the present invention is obtained by measurement based on the principle of the plate method (Wilhelmy method). For example, the surface tension is measured by a fully automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. can do.
(1-3-3)銀微粒子及び銀微粒子分散体の製造方法
 本実施形態の銀微粒子及び銀微粒子分散体の製造方法は、銀微粒子を生成する工程と、前記銀微粒子に、前記銀微粒子を分散させるための酸価を有する分散剤を添加・混合する工程と、を有するものであるが、更に、還元により分解して金属銀を生成しうる銀化合物と、分配係数logPが-1.0~1.4である短鎖アミンと、の混合液を調整する第1前工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部に炭素数が5以下である短鎖アミンが付着した銀微粒子を生成する第2前工程と、を含んでいる。
(1-3-3) Silver Fine Particles and Silver Fine Particle Dispersion Manufacturing Method The silver fine particles and silver fine particle dispersion production method of the present embodiment includes a step of producing silver fine particles, and the silver fine particles are added to the silver fine particles. A step of adding and mixing a dispersant having an acid value for dispersion, and further, a silver compound that can be decomposed by reduction to form metallic silver, and a distribution coefficient logP of −1.0. A first pre-process for preparing a mixed solution of a short-chain amine of ˜1.4 and a short compound having 5 or less carbon atoms on at least a part of the surface by reducing the silver compound in the mixed solution And a second pre-process for producing silver fine particles with chain amine attached thereto.
 上記第1前工程においては、短鎖アミンを金属銀1molに対して2mol以上添加すること、が好ましい。短鎖アミンの添加量を金属銀1molに対して2mol以上とすることで、還元によって生成される銀微粒子の表面に短鎖アミンを適量付着させることができ、当該銀微粒子に種々の溶媒(特に高極性溶媒)に対する優れた分散性と低温焼結性とを付与することができる。 In the first pre-process, it is preferable to add 2 mol or more of short chain amine to 1 mol of metallic silver. By setting the addition amount of the short chain amine to 2 mol or more with respect to 1 mol of metallic silver, an appropriate amount of the short chain amine can be attached to the surface of the silver fine particles produced by the reduction, and various solvents (particularly, Excellent dispersibility and low-temperature sinterability with respect to a highly polar solvent) can be imparted.
 なお、上記第1前工程における混合液の組成及び上記第2前工程における還元条件(例えば、加熱温度及び加熱時間等)によって、得られる銀微粒子の粒径を融点降下が生じるようなナノメートルサイズとすることが好ましく、1~200nmとすることがより好ましい。ここで、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。 It should be noted that the particle size of the silver fine particles obtained is a nanometer size that causes a melting point drop depending on the composition of the liquid mixture in the first pre-process and the reduction conditions (for example, heating temperature, heating time, etc.) in the second pre-process. Preferably, the thickness is 1 to 200 nm. Here, particles of micrometer size may be included as necessary.
 上記第2前工程で得られる銀微粒子分散体から銀微粒子を取り出す方法は特に限定されないが、例えば、その銀微粒子分散体の洗浄を行う方法等が挙げられる。 The method for taking out the silver fine particles from the silver fine particle dispersion obtained in the second pre-process is not particularly limited, and examples thereof include a method for washing the silver fine particle dispersion.
 有機物(分配係数logPが-1.0~1.4である短鎖アミン)で被覆された銀微粒子を得るための出発材料としては、種々の公知の銀化合物(金属塩又はその水和物)を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩が挙げられる。これらは還元可能なものであれば特に限定されず、適当な溶媒中に溶解させても、溶媒中に分散させたまま使用してもよい。また、これらは単独で用いても複数併用してもよい。 As a starting material for obtaining silver fine particles coated with an organic substance (short chain amine having a partition coefficient log P of −1.0 to 1.4), various known silver compounds (metal salts or hydrates thereof) are used. Examples of the silver salt include silver salts such as silver nitrate, silver sulfate, silver chloride, silver oxide, silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate, and silver sulfide. These are not particularly limited as long as they can be reduced, and may be dissolved in an appropriate solvent or may be used as dispersed in a solvent. These may be used alone or in combination.
 また、上記原料液においてこれらの銀化合物を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法、加熱する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。 In addition, the method for reducing these silver compounds in the raw material liquid is not particularly limited. For example, a method using a reducing agent, a method of irradiating light such as ultraviolet rays, an electron beam, ultrasonic waves or thermal energy, a method of heating, etc. Is mentioned. Among these, a method using a reducing agent is preferable from the viewpoint of easy operation.
 上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D-グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。 Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide. Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc. There is no particular limitation as long as it can be reduced. When the reducing agent is used, light and / or heat may be added to promote the reduction reaction.
 上記金属塩、有機成分、溶媒及び還元剤を用いて、有機物で被覆された銀微粒子を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に分散剤としての短鎖アミンや酸価をもつ保護分散剤を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。 As a specific method for preparing silver fine particles coated with an organic substance using the above metal salt, organic component, solvent and reducing agent, for example, the above metal salt is dissolved in an organic solvent (for example, toluene) to form a metal salt. Examples of the method include preparing a solution, adding a short-chain amine as a dispersant or a protective dispersant having an acid value to the metal salt solution, and then gradually dropping a solution in which the reducing agent is dissolved.
 上記のようにして得られた短鎖アミンや酸価をもつ保護分散剤で被覆された銀微粒子を含む分散液には、銀微粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度や有機物濃度が高い傾向にある。このような状態の液は、電導度が高い等の理由で銀微粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、上記銀微粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、有機物で被覆された銀微粒子を確実に得ることができる。 In the dispersion containing silver fine particles coated with the short-chain amine and the protective dispersant having an acid value obtained as described above, in addition to the silver fine particles, a metal ion counter ion, a reducing agent residue, There is a dispersant, and the concentration of the electrolyte and the organic matter in the whole liquid tend to be high. In the liquid in such a state, the silver fine particles are agglomerated due to high electrical conductivity, etc., and are easily precipitated. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing silver fine particles to remove excess residues, silver fine particles coated with an organic substance can be obtained with certainty.
 上記洗浄方法としては、例えば、有機成分で被覆された銀微粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、銀微粒子を沈殿させる溶媒(例えば、水、メタノール、メタノール/水混合溶媒等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって余分な残留物を取り除くと共に有機溶媒を除去することにより、本実施形態の「短鎖アミンや酸価をもつ分散剤」で被覆された銀微粒子を得ることができる。 As the washing method, for example, a dispersion containing silver fine particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, a solvent for precipitating silver fine particles (for example, water, methanol, Methanol / water mixed solvent, etc.) is added and stirred again, and the method of removing the supernatant liquid after standing for a certain period of time is repeated several times, the method of performing centrifugation instead of the above standing, Examples thereof include a desalting method using a filtration device, an ion exchange device, and the like. By removing excess residue and removing the organic solvent by such washing, silver fine particles coated with the “short-chain amine or the dispersant having an acid value” of the present embodiment can be obtained.
 本実施形態のうち、金属コロイド分散液は、上記において得た短鎖アミンや酸価をもつ保護分散剤で被覆された銀微粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかる「短鎖アミンや酸価をもつ保護分散剤」で被覆された銀微粒子と分散媒との混合方法は特に限定されるものではなく、攪拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。 Among the present embodiments, the metal colloid dispersion liquid is a mixture of the silver fine particles coated with the short-chain amine obtained in the above or the protective dispersant having an acid value and the dispersion medium described in the present embodiment. Is obtained. The method of mixing the silver fine particles coated with the “short-chain amine or the protective dispersant having an acid value” and the dispersion medium is not particularly limited, and is performed by a conventionally known method using a stirrer or a stirrer. Can do. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
 複数の金属を含む金属コロイド分散液を得る場合、その製造方法としては特に限定されず、例えば、銀とその他の金属とからなる金属コロイド分散液を製造する場合には、上記の有機物で被覆された銀微粒子の調製において、銀微粒子を含む分散液と、その他の金属粒子を含む分散液とを別々に製造し、その後混合してもよく、銀イオン溶液とその他の金属イオン溶液とを混合し、その後に還元してもよい。 When obtaining a metal colloid dispersion liquid containing a plurality of metals, the production method is not particularly limited. For example, when producing a metal colloid dispersion liquid composed of silver and other metals, the metal colloid dispersion liquid is coated with the above organic substance. In the preparation of silver fine particles, a dispersion containing silver fine particles and a dispersion containing other metal particles may be produced separately and then mixed, or a silver ion solution and other metal ion solution may be mixed. Thereafter, reduction may be performed.
 還元により分解して金属銀を生成しうる銀化合物と、分配係数logPが-1.0~1.4である短鎖アミンと、の混合液を調整する第1工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部に炭素数が5以下である短鎖アミンが付着した銀微粒子を生成する第2工程により、銀微粒子を製造してもよい。 A first step of adjusting a mixed solution of a silver compound that can be decomposed by reduction to form metallic silver and a short-chain amine having a partition coefficient log P of −1.0 to 1.4; Silver fine particles may be produced by the second step of producing silver fine particles in which a short-chain amine having 5 or less carbon atoms is attached to at least a part of the surface by reducing the silver compound.
 例えば、銀を含むシュウ酸銀等の金属化合物と短鎖アミンから生成される錯化合物を加熱して、当該錯化合物に含まれるシュウ酸イオン等の金属化合物を分解して生成する原子状の銀を凝集させることにより、短鎖アミンの保護膜に保護された銀微粒子を製造することができる。 For example, atomic silver produced by heating a complex compound generated from a metal compound such as silver oxalate containing silver and a short-chain amine and decomposing the metal compound such as oxalate ion contained in the complex compound By agglomerating, silver fine particles protected by a short-chain amine protective film can be produced.
 このように、金属化合物の錯化合物をアミンの存在下で熱分解することで、アミンにより被覆された銀微粒子を製造する金属アミン錯体分解法においては、単一種の分子である金属アミン錯体の分解反応により原子状金属が生成するため、反応系内に均一に原子状金属を生成することが可能であり、複数の成分間の反応により金属原子を生成する場合に比較して、反応を構成する成分の組成揺らぎに起因する反応の不均一が抑制され、特に工業的規模で多量の銀微粒子を製造する際に有利である。 Thus, in the metal amine complex decomposition method for producing silver fine particles coated with amine by thermally decomposing a complex compound of a metal compound in the presence of amine, decomposition of the metal amine complex which is a single kind of molecule is performed. Since the atomic metal is generated by the reaction, it is possible to generate the atomic metal uniformly in the reaction system, and the reaction is configured as compared with the case where the metal atom is generated by the reaction between multiple components. Inhomogeneity of the reaction due to fluctuations in the composition of the components is suppressed, which is particularly advantageous when producing a large amount of silver fine particles on an industrial scale.
 また、金属アミン錯体分解法においては、生成する金属原子に短鎖アミン分子が配位結合しており、当該金属原子に配位した短鎖アミン分子の働きにより凝集を生じる際の金属原子の運動がコントロールされるものと推察される。この結果として、金属アミン錯体分解法によれば非常に微細で、粒度分布が狭い銀微粒子を製造することが可能となる。 In the metal amine complex decomposition method, a short chain amine molecule is coordinated to the metal atom to be generated, and the movement of the metal atom when aggregation occurs due to the action of the short chain amine molecule coordinated to the metal atom. Is assumed to be controlled. As a result, it is possible to produce silver fine particles that are very fine and have a narrow particle size distribution according to the metal amine complex decomposition method.
 更に、製造される銀微粒子の表面にも多数の短鎖アミン分子が比較的弱い力の配位結合を生じており、これらが銀微粒子の表面に緻密な保護被膜を形成するため、保存安定性に優れる表面の清浄な被覆銀微粒子を製造することが可能となる。また、当該被膜を形成する短鎖アミン分子は加熱等により容易に脱離可能であるため、非常に低温で焼結可能な銀微粒子を製造することが可能となる。 In addition, many short-chain amine molecules have a relatively weak coordination bond on the surface of the silver fine particles to be produced, and these form a dense protective film on the surface of the silver fine particles. It is possible to produce coated silver fine particles having an excellent surface and excellent surface. In addition, since the short-chain amine molecules forming the film can be easily detached by heating or the like, it is possible to produce silver fine particles that can be sintered at a very low temperature.
 また、固体状の金属化合物とアミンを混合して錯化合物等の複合化合物が生成する際に、被覆銀微粒子の被膜を構成する酸価をもつ分散剤に対して、炭素数が5以下である短鎖アミンを混合して用いることにより、錯化合物等の複合化合物の生成が容易になり、短時間の混合で複合化合物を製造可能となる。また、当該短鎖アミンを混合して用いることにより、各種の用途に応じた特性を有する被覆銀微粒子の製造が可能である。 In addition, when a solid metal compound and an amine are mixed to produce a complex compound such as a complex compound, the number of carbon atoms is 5 or less with respect to the dispersant having an acid value constituting the coating of the coated silver fine particles. By mixing and using a short-chain amine, it becomes easy to produce a complex compound such as a complex compound, and the complex compound can be produced by mixing in a short time. Further, by mixing and using the short chain amine, it is possible to produce coated silver fine particles having characteristics according to various uses.
 以上のようにして得られる本実施形態の分散体は、そのままの状態で使用することができるが、導電インク、導電性ペーストの分散安定性及び低温焼結性を損なわない範囲で種々の無機成分や有機成分を添加することができる。 The dispersion of the present embodiment obtained as described above can be used as it is, but various inorganic components can be used as long as the dispersion stability and low-temperature sinterability of the conductive ink and conductive paste are not impaired. And organic components can be added.
(2)導電性被膜複合体の製造方法
 図2は、本発明の導電性被膜複合体の製造方法の工程図である。本発明の導電性被膜複合体の製造方法は、樹脂を基材2の少なくとも一部に塗布して樹脂層4を形成させる第一工程(S01)と、樹脂層4の少なくとも一部に銀微粒子分散体を塗布する第二工程(S02)と、銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜6を形成させる第三工程(S03)と、を含んでいる。以下、樹脂層4としてポリウレタン樹脂層を形成させる場合について説明する。
(2) Method for Producing Conductive Film Composite FIG. 2 is a process diagram of the method for producing a conductive film composite of the present invention. The method for producing a conductive film composite of the present invention includes a first step (S01) in which a resin is applied to at least a part of a substrate 2 to form a resin layer 4, and silver fine particles on at least a part of the resin layer 4. A second step (S02) of applying the dispersion and a third step (S03) of sintering the silver fine particles contained in the silver fine particle dispersion by external heating to form the conductive coating 6 are included. Hereinafter, a case where a polyurethane resin layer is formed as the resin layer 4 will be described.
(2-1)樹脂層の形成(第一工程(S01))
 溶剤に溶解させた水系ポリウレタン樹脂を基材2の少なくとも一部に塗布して樹脂層4を形成させる工程である。樹脂層4の膜厚は1μm以下とすることが好ましい。当該膜厚は、スピンコートの回転数や希釈液量等によって適宜制御することができる。なお、ポリウレタン樹脂は溶剤に溶解させた水系であるのが好ましい。
(2-1) Formation of resin layer (first step (S01))
In this process, a resin layer 4 is formed by applying an aqueous polyurethane resin dissolved in a solvent to at least a part of the substrate 2. The film thickness of the resin layer 4 is preferably 1 μm or less. The film thickness can be appropriately controlled by the number of spin coating revolutions, the amount of diluent, and the like. The polyurethane resin is preferably an aqueous system dissolved in a solvent.
 破断伸度が600%以上であり、-COO-H、-COOR、-COONH及び-COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有する水系ポリウレタン樹脂を用いることで、第二工程(S02)及び第三工程(S03)で形成させる導電性被膜6と基材2との密着性を効率的に向上させることができると共に、優れた導電性を有する導電性被膜6を形成させることができる。 The elongation at break is 600% or more, and —COO—H, —COOR, —COO NH + R 2 and —COO NH 4 + (wherein R and R 2 are each independently a linear or branched An alkyl group, the same cycloalkyl group, the same alkylene group, the same oxyalkylene group, the same aryl group, the same aralkyl group, the same heterocyclic group, the same alkoxy group, the same alkoxycarbonyl group, the same acyl which may have a substituent. The conductive film 6 formed in the second step (S02) and the third step (S03) and the base material 2 by using an aqueous polyurethane resin having any functional group of As a result, the conductive film 6 having excellent conductivity can be formed.
 例えば、水系ポリウレタン樹脂を溶剤に溶解させた状態で基材2に塗布し、樹脂層4を形成させる。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合があり、特に、薄い樹脂層4を形成したい場合は表面粗さが大きくなってしまう問題がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上し、良好な樹脂層4を形成させることができる。 For example, the resin layer 4 is formed by applying the water-based polyurethane resin to the substrate 2 in a state in which it is dissolved in a solvent. Usually, water-based polyurethane resin exists in a state dispersed in water (emulsion), and the film evaporates as the solvent progresses. However, depending on the film forming conditions, the film is formed by the influence of the particle size of the emulsion. In particular, when it is desired to form the thin resin layer 4, there is a problem that the surface roughness becomes large. In contrast, by dissolving the aqueous polyurethane resin in a solvent (for example, ethanol, acetone, etc.), the emulsion breaks into a uniform solution, so the film forming ability (particularly the film quality uniformity in the thin film) is improved, A good resin layer 4 can be formed.
 また、密着層(樹脂層4)に破断伸度600%以上のポリウレタン樹脂を用いることで、銀微粒子を焼結させる第三工程(S03)において、基材2と導電性被膜6との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜6を得ることができる。 Further, by using a polyurethane resin having a breaking elongation of 600% or more for the adhesion layer (resin layer 4), thermal expansion between the base material 2 and the conductive coating 6 is performed in the third step (S03) in which the silver fine particles are sintered. The rate difference can be relaxed. As a result, the sintering of the silver fine particles proceeds smoothly, and the conductive film 6 having excellent conductivity can be obtained.
 基材2の表面に樹脂層4を形成する際に、基材2と樹脂層4の密着性を高めるために、基材2の表面処理を行ってもよい。当該表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法等を挙げることができる。
 樹脂層4の成膜方法は特に限定されず、例えば、ディッピング、スプレー式、バーコート式、スピンコート、スリットダイコート式、エアナイフ式、リバースロールコート式、グラビアコート式、カーテンフロー式等を用いることができ、また、成膜温度も特に限定されず、樹脂層4の原料として用いる組成物の最低成膜温度以上の温度を用いればよい。更に、必要に応じて、基材2の耐熱温度以下の温度で加熱処理を施してもよい。
When the resin layer 4 is formed on the surface of the base material 2, the surface treatment of the base material 2 may be performed in order to improve the adhesion between the base material 2 and the resin layer 4. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment.
The film formation method of the resin layer 4 is not particularly limited, and for example, dipping, spraying, bar coating, spin coating, slit die coating, air knife, reverse roll coating, gravure coating, curtain flow, etc. are used. The film forming temperature is not particularly limited, and a temperature equal to or higher than the minimum film forming temperature of the composition used as the raw material of the resin layer 4 may be used. Furthermore, you may heat-process at the temperature below the heat-resistant temperature of the base material 2 as needed.
(2-2)銀微粒子分散体の塗布(第二工程(S02))
 基材2の表面に銀微粒子分散体を塗布する工程である。銀微粒子分散体は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀微粒子分散体を用いることができるが、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、銀微粒子を分散させるための酸価を有する分散剤と、を含む短鎖アミンの分配係数logPが-1.0~1.4である銀微粒子分散体を用いること、が好ましい。
(2-2) Application of silver fine particle dispersion (second step (S02))
In this step, a silver fine particle dispersion is applied to the surface of the substrate 2. The silver fine particle dispersion is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known silver fine particle dispersions can be used. The silver fine particles and the short-chain amine having 5 or less carbon atoms can be used. A silver fine particle dispersion having a partition coefficient logP of -1.0 to 1.4 for a short-chain amine containing a high-polarity solvent and a dispersant having an acid value for dispersing silver fine particles, Is preferred.
 銀微粒子分散体を塗布する方法としては、種々の方法を用いることが可能であるが、例えば、ディッピング、スクリーン印刷、反転印刷、マイクロコンタクト印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、スタンピング法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、オフセット法、転写法、親疎水パターン法、又はシリンジ式等のなかから適宜選択して用いることができる。 Various methods can be used as a method for applying the silver fine particle dispersion. For example, dipping, screen printing, reversal printing, microcontact printing, spray method, bar coating method, spin coating method, and ink jet method. , Dispenser method, pin transfer method, stamping method, brush coating method, casting method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method, etc. Can do.
 樹脂層4の表面に導電性被膜6を形成する際に、樹脂層4と導電性被膜6の密着性を高めるために、樹脂層4の表面処理を行ってもよい。当該表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法等を挙げることができる。 When the conductive film 6 is formed on the surface of the resin layer 4, the resin layer 4 may be subjected to a surface treatment in order to improve the adhesion between the resin layer 4 and the conductive film 6. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment.
(2-3)銀微粒子の焼成(第三工程(S03))
 第二工程(S02)で銀微粒子分散体を塗布した基材2を加熱し、銀微粒子を焼結することによって導電性被膜6を形成させる工程である。
(2-3) Firing of silver fine particles (third step (S03))
In this second step (S02), the substrate 2 coated with the silver fine particle dispersion is heated to sinter the silver fine particles, thereby forming the conductive coating 6.
 本実施形態の銀微粒子分散体を用いれば、基材2に塗布した後、比較的低温(例えば300℃以下、好ましくは100~250℃)で加熱・焼成して銀微粒子を焼結させて導電性被膜6を得ることができる。焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、銀微粒子分散体を塗布する面に、予め界面活性剤又は表面活性化剤等を塗布しておくことも可能である。 If the silver fine particle dispersion of the present embodiment is used, it is applied to the substrate 2 and then heated and fired at a relatively low temperature (for example, 300 ° C. or less, preferably 100 to 250 ° C.) to sinter the silver fine particles, thereby Can be obtained. When firing, the temperature can be raised or lowered stepwise. Further, it is also possible to apply a surfactant or a surface active agent in advance to the surface on which the silver fine particle dispersion is applied.
 本実施形態においては、銀微粒子分散体がバインダー成分を含む場合は、塗膜の強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために銀微粒子分散体の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。 In the present embodiment, when the silver fine particle dispersion contains a binder component, the binder component is also sintered from the viewpoint of improving the strength of the coating film, etc., but in some cases, for application to various printing methods. The main purpose of the binder component is to adjust the viscosity of the silver fine particle dispersion, and all the binder component may be removed by controlling the firing conditions.
 上記加熱・焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、基材2上に塗布または描画した上記銀微粒子分散体の温度が、例えば300℃以下となるように加熱・焼成することによって焼結させることができる。上記加熱・焼成の温度の下限は必ずしも限定されず、本発明の効果を損なわない範囲の温度であればよい。ここで、上記焼結後の導電性被膜6においては、なるべく高い強度及び優れた導電性を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。 The method for performing the heating and baking is not particularly limited. For example, the temperature of the silver fine particle dispersion applied or drawn on the base material 2 using a conventionally known oven or the like becomes, for example, 300 ° C. or less. Thus, it can be sintered by heating and firing. The lower limit of the heating / firing temperature is not necessarily limited as long as the temperature is within a range not impairing the effects of the present invention. Here, in the conductive film 6 after sintering, the remaining amount of the organic substance is preferably small in terms of obtaining as high strength and excellent conductivity as possible, but the organic substance is within a range not impairing the effect of the present invention. A part may remain.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.
 以下、実施例及び比較例を挙げて本発明の導電性被膜複合体及びその製造方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the conductive film composite of the present invention and the production method thereof will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
≪調製例1≫
 3-メトキシプロピルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:-0.5)8.9gと、高分子分散剤であるDISPERBYK-111を0.3gと、を混合し、マグネティックスターラーにてよく撹拌してアミン混合液を生成した(添加したアミンのモル比は銀に対して10)。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した。
<< Preparation Example 1 >>
8.9 g of 3-methoxypropylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4, log P: -0.5) and 0.3 g of DISPERBYK-111, which is a polymer dispersant, The mixture was mixed and well stirred with a magnetic stirrer to produce an amine mixture (molar ratio of added amine was 10 with respect to silver). Next, 3.0 g of silver oxalate was added while stirring. After the addition of silver oxalate, stirring was continued at room temperature to change the silver oxalate to a viscous white substance, and stirring was terminated when the change was found to be apparently finished.
 得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀微粒子がアミン混合物中に懸濁した懸濁液を得た。 The obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. Immediately after the start of stirring, a reaction involving the generation of carbon dioxide started, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver fine particles were suspended in the amine mixture.
 次に、当該懸濁液の分散媒を置換するため、メタノール/水の混合溶媒10mLを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール/水の混合溶媒10mLを加え、撹拌、遠心分離を行うことで銀微粒子を沈殿させて分離し、分散溶媒としてエタノール/イソブタノール/IPA(40/40/30 v/v)混合溶媒2.1gを加えることで固形分濃度48wt%の銀微粒子分散体Aを得た。 Next, in order to replace the dispersion medium of the suspension, 10 mL of a mixed solvent of methanol / water is added and stirred, and then silver fine particles are precipitated and separated by centrifugation. A mixed solvent of 10 mL of water is added, and silver fine particles are precipitated and separated by stirring and centrifuging, and 2.1 g of ethanol / isobutanol / IPA (40/40/30 v / v) mixed solvent is used as a dispersion solvent. By addition, a silver fine particle dispersion A having a solid content concentration of 48 wt% was obtained.
≪調製例2≫
 3-メトキシプロピルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:-0.5)8.9gと、高分子分散剤であるDISPERBYK-102を0.3gと、を混合し、マグネティックスターラーにてよく撹拌してアミン混合液を生成した(添加したアミンのモル比は銀に対して5)。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した。
<< Preparation Example 2 >>
8.9 g of 3-methoxypropylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4, log P: -0.5) and 0.3 g of DISPERBYK-102, which is a polymer dispersant, The mixture was mixed and stirred well with a magnetic stirrer to produce an amine mixture (molar ratio of added amine was 5 with respect to silver). Next, 3.0 g of silver oxalate was added while stirring. After the addition of silver oxalate, stirring was continued at room temperature to change the silver oxalate to a viscous white substance, and stirring was terminated when the change was found to be apparently finished.
 得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀微粒子がアミン混合物中に懸濁した懸濁液を得た。 The obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. Immediately after the start of stirring, a reaction involving the generation of carbon dioxide started, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver fine particles were suspended in the amine mixture.
 次に、当該懸濁液の分散媒を置換するため、メタノール/水の混合溶媒10mLを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール/水の混合溶媒10mLを加え、撹拌、遠心分離を行うことで銀微粒子を沈殿させて分離し、SOLSPERSE41000(日本ルーブリゾール(株)製)0.06gを含むエタノール2.1gを加えることで固形分濃度48wt%の銀微粒子分散体Bを得た。 Next, in order to replace the dispersion medium of the suspension, 10 mL of a mixed solvent of methanol / water is added and stirred, and then silver fine particles are precipitated and separated by centrifugation. A mixed solvent of 10 mL of water is added, and silver fine particles are precipitated and separated by stirring and centrifuging. By adding 2.1 g of ethanol containing 0.06 g of SOLPERSE 41000 (manufactured by Nippon Lubrizol Co., Ltd.), the solid content A silver fine particle dispersion B having a concentration of 48 wt% was obtained.
≪調製例3≫
 10N-NaOH水溶液を3mL添加してアルカリ性にした水50mLに、クエン酸3ナトリウム2水和物17g、タンニン酸0.36gを溶解した。得られた溶液に対して3.87mol/L硝酸銀水溶液3mLを添加し、2時間攪拌を行い、銀コロイド水溶液を得た。得られた銀コロイド水溶液に対し、導電率が30μS/cm以下になるまで透析することで脱塩を行った。透析後、濃縮を行い、2100rpm(920G)、10分の条件で遠心分離を行うことで、粗大金属コロイド粒子を除去し、固形分濃度48wt%の銀微粒子分散体Cを得た。
<< Preparation Example 3 >>
17 g of trisodium citrate dihydrate and 0.36 g of tannic acid were dissolved in 50 mL of water made alkaline by adding 3 mL of 10N-NaOH aqueous solution. To the obtained solution, 3 mL of a 3.87 mol / L silver nitrate aqueous solution was added and stirred for 2 hours to obtain a silver colloid aqueous solution. The obtained silver colloid aqueous solution was desalted by dialysis until the electric conductivity became 30 μS / cm or less. After dialysis, the mixture was concentrated and centrifuged at 2100 rpm (920 G) for 10 minutes to remove coarse metal colloidal particles and obtain a silver fine particle dispersion C having a solid content concentration of 48 wt%.
≪調整例4≫
 トルエン(和光純薬工業(株)製の試薬一級)200mlとブチルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:1.0)11gと、を混合してマグネティックスターラーで十分に撹拌した(添加したアミンのモル比は銀に対して2.5)。ここに、撹拌を行いながら硝酸銀(東洋化学工業(株)製の試薬特級)10gを添加し、硝酸銀が溶解した後、高分子分散剤であるDISPERBYK-2090を10gとヘキサン酸(和光純薬工業(株)製の試薬特級)10gを添加した。ここに、イオン交換水50mlに水素化ホウ素ナトリウム(和光純薬工業(株)製)1gを添加して調製した0.02g/mlの水素化ホウ素ナトリウム水溶液を滴下し、銀微粒子を含む液を得た。1時間撹拌した後、メタノール(和光純薬工業(株)製の試薬特級)200mlを添加して銀微粒子を凝集、沈降させた。さらに、遠心分離にて銀微粒子を完全に沈降させた後、上澄みであるトルエン及びメタノールを除去し、過剰の有機物を除去して、2-ペンタノール6gを加え、固形分濃度50wt%の銀微粒子分散体Dを得た。
≪Adjustment example 4≫
200 ml of toluene (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 11 g of butylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd., carbon number: 4, log P: 1.0) were mixed and mixed with a magnetic stirrer. Stir well (molar ratio of added amine is 2.5 to silver). To this, 10 g of silver nitrate (special grade reagent manufactured by Toyo Chemical Industry Co., Ltd.) was added while stirring. After the silver nitrate was dissolved, 10 g of DISPERBYK-2090, a polymer dispersant, and hexanoic acid (Wako Pure Chemical Industries, Ltd.) were added. 10 g of a reagent special grade manufactured by Co., Ltd. was added. A 0.02 g / ml sodium borohydride aqueous solution prepared by adding 1 g of sodium borohydride (manufactured by Wako Pure Chemical Industries, Ltd.) to 50 ml of ion-exchanged water was added dropwise to obtain a liquid containing silver fine particles. Obtained. After stirring for 1 hour, 200 ml of methanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to aggregate and precipitate silver fine particles. Further, after the silver fine particles are completely settled by centrifugation, the supernatant toluene and methanol are removed, excess organic matter is removed, 6 g of 2-pentanol is added, and the silver fine particles having a solid content concentration of 50 wt% are added. Dispersion D was obtained.
 上記銀微粒子分散体A~Dと、表1に示すその他の成分を添加・混合して、導電性インクA~Dを得た。なお、表1に示す成分の量は重量%で示している。また、樹脂層形成インクに用いた樹脂を表2に示す。 The above silver fine particle dispersions A to D and other components shown in Table 1 were added and mixed to obtain conductive inks A to D. In addition, the quantity of the component shown in Table 1 is shown by weight%. Table 2 shows the resins used for the resin layer forming ink.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪実施例1≫
 DIC社製ハイドランHW-312Bをエタノールで3倍希釈することで樹脂層形成インクとした。この際、HW-312Bは目視では完全に溶解していた。スピンコーターを用いて、ガラス基板上に樹脂層形成インクを2000rpm、30秒の条件で成膜した後、120℃で30分加熱することで樹脂層を形成させた。次いで、導電性インクBをシリコーン製ブランケット上にバーコーター(No.7)で塗布し、樹脂層付き基板をブランケットに押圧することで、導電性被膜を樹脂層付き基板に転写した。その後、120℃で30分の焼成を施すことで、実施導電性被膜複合体1を得た。
Example 1
DIC Hydran HW-312B was diluted 3 times with ethanol to obtain a resin layer forming ink. At this time, HW-312B was completely dissolved visually. Using a spin coater, a resin layer forming ink was formed on a glass substrate under the conditions of 2000 rpm and 30 seconds, and then heated at 120 ° C. for 30 minutes to form a resin layer. Next, the conductive ink B was applied onto a silicone blanket with a bar coater (No. 7), and the substrate with the resin layer was pressed against the blanket, whereby the conductive film was transferred to the substrate with the resin layer. Thereafter, the conductive film composite body 1 was obtained by baking at 120 ° C. for 30 minutes.
≪実施例2≫
 DIC社製ハイドランHW-311をN-メチル-2-ピロリドンで3倍希釈することで樹脂層形成インクとした。このとき、HW-311は目視では完全に溶解していた。それ以外は実施例1と同様とし、実施導電性被膜複合体2を得た。
<< Example 2 >>
DIC Hydran HW-311 was diluted with N-methyl-2-pyrrolidone three times to obtain a resin layer forming ink. At this time, HW-311 was completely dissolved visually. Other than that was carried out similarly to Example 1, and obtained the conductive film composite body 2 obtained.
≪実施例3≫
 導電性インクCを用いた以外は実施例1と同様とし、実施導電性被膜複合体3を得た。
Example 3
Except having used the conductive ink C, it carried out similarly to Example 1, and obtained the conductive film composite body 3 performed.
≪実施例4≫
 実施例2の樹脂層形成インクに日本触媒製エポクロスWS-700を樹脂層形成インクに対し5重量%の割合で添加したこと以外は実施例2と同様にし、実施導電性被膜複合体4を得た。
Example 4
The conductive film composite 4 was obtained in the same manner as in Example 2 except that Nippon Shokubai Epochros WS-700 was added to the resin layer forming ink of Example 2 at a ratio of 5% by weight to the resin layer forming ink. It was.
≪実施例5≫
 導電性インクDを用いた以外は実施例1と同様とし、実施導電性被膜複合体5を得た。
Example 5
Except having used the conductive ink D, it carried out similarly to Example 1, and obtained the implementation electroconductive film composite 5.
≪実施例6≫
 第一工業製薬社製スーパーフレックス420を水で3倍希釈することで樹脂層形成インクとした。スピンコーターを用いてガラス基板上に樹脂層形成インクを2000rpm、30秒の条件で成膜した後、120℃で30分加熱することで樹脂層を形成した。次いで、実施例1と同様の方法で導電性インクAを用いて、実施導電性被膜複合体6を得た。
Example 6
A resin layer forming ink was obtained by diluting Superflex 420 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. with water three times. A resin layer forming ink was formed on a glass substrate using a spin coater under the conditions of 2000 rpm and 30 seconds, and then heated at 120 ° C. for 30 minutes to form a resin layer. Next, using the conductive ink A in the same manner as in Example 1, an Example conductive film composite 6 was obtained.
≪実施例7≫
 積水化学社製のエスレックBL-Sをエタノール/トルエン(=1/1 W/W)溶液に固形分濃度10wt%となるように溶解させ、樹脂層形成インクとした。その他は実施例1と同様とし、実施導電性被膜複合体7を得た。
Example 7
SRECK BL-S manufactured by Sekisui Chemical Co., Ltd. was dissolved in an ethanol / toluene (= 1/1 W / W) solution to a solid content concentration of 10 wt% to obtain a resin layer forming ink. Others were the same as in Example 1, and the conductive film composite body 7 was obtained.
≪実施例8≫
 第一工業製薬社製スーパーフレックス150HSを水で3倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体8を得た。
Example 8
Example 1 Conductive film composite 8 was obtained in the same manner as Example 1 except that Superflex 150HS manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was diluted with water three times to obtain a resin layer forming ink.
≪実施例9≫
 第一工業製薬社製スーパーフレックス650を水で2倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体9を得た。
Example 9
Example 1 Conductive film composite 9 was obtained in the same manner as Example 1 except that Superflex 650 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was diluted twice with water to obtain a resin layer forming ink.
≪実施例10≫
 DIC社製ハイドランADS-120を水で3倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体10を得た。
Example 10
The conductive film composite body 10 was obtained in the same manner as in Example 1 except that DIC Hydran ADS-120 was diluted with water three times to obtain a resin layer forming ink.
≪実施例11≫
DIC社製ハイドランHW-312Bをエタノールで1.5倍希釈し、スピンコーターによる成膜条件を1000rpm、30secとしたこと以外は実施例1と同様とし、実施導電性被膜複合体11を得た。
Example 11
A conductive film composite 11 was obtained in the same manner as in Example 1 except that DIC Hydran HW-312B was diluted 1.5 times with ethanol and the film formation conditions with a spin coater were 1000 rpm for 30 sec.
≪比較例1≫
 DIC社製ハイドランHW-312Bを水で3倍希釈することで樹脂層形成インクとした。バーコーターNo.10を用いてガラス基板上に樹脂層形成インクを塗布し、樹脂層を成膜した後、120℃で30分加熱することで、樹脂層を形成させた。次いで、導電性インクAをシリコーン製ブランケット上にバーコーター(No.7)で塗布し、樹脂層付き基板をブランケットに押圧することで、導電性被膜を樹脂層付き基板に転写した。その後、120℃で30分の焼成を施すことで、比較導電性被膜複合体1を得た。
≪Comparative example 1≫
DIC Hydran HW-312B was diluted with water three times to obtain a resin layer forming ink. Bar coater No. The resin layer forming ink was applied onto the glass substrate using No. 10 to form a resin layer, and then the resin layer was formed by heating at 120 ° C. for 30 minutes. Next, the conductive ink A was applied onto a silicone blanket with a bar coater (No. 7), and the substrate with the resin layer was pressed against the blanket, whereby the conductive film was transferred to the substrate with the resin layer. Then, the comparative conductive film composite 1 was obtained by baking for 30 minutes at 120 degreeC.
≪比較例2≫
 第一工業製薬社製スーパーフレックス470をバーコーターNO.10を用いて樹脂層を成膜したのち、120℃で30分加熱することで樹脂層を形成した。それ以外は実施例1と同様とし、比較導電性被膜複合体2を得た。
≪Comparative example 2≫
Superflex 470 manufactured by Daiichi Kogyo Seiyaku Co., Ltd. After forming a resin layer using No. 10, the resin layer was formed by heating at 120 ° C. for 30 minutes. Other than that was carried out similarly to Example 1, and obtained the comparative conductive film composite 2.
≪比較例3≫
 樹脂層形成インクを用いなかったこと以外は比較例1と同様とし、比較導電性被膜複合体3を得た。
«Comparative Example 3»
A comparative conductive film composite 3 was obtained in the same manner as in Comparative Example 1 except that the resin layer forming ink was not used.
≪比較例4≫
 第一工業製薬社製スーパーフレックス210を用いたこと以外は比較例2と同様とし、比較導電性被膜複合体4を得た。
<< Comparative Example 4 >>
Comparative conductive film composite 4 was obtained in the same manner as Comparative Example 2 except that Superflex 210 manufactured by Daiichi Kogyo Seiyaku was used.
≪比較例5≫
 導電性インクCを用いたこと以外は比較例4と同様とし、比較導電性被膜複合体5を得た。
<< Comparative Example 5 >>
A comparative conductive film composite 5 was obtained in the same manner as in Comparative Example 4 except that the conductive ink C was used.
≪比較例6≫
 樹脂層形成インクとして東亜合成社製のアロンマイティAS-60を用いたこと以外は比較例1と同様とし、比較導電性被膜複合体6を得た。
<< Comparative Example 6 >>
A comparative conductive coating composite 6 was obtained in the same manner as in Comparative Example 1 except that Aronmite AS-60 manufactured by Toa Gosei Co., Ltd. was used as the resin layer forming ink.
≪比較例7≫
 バーコーターNo.6を用いたこと以外は比較例1と同様とし、比較導電性被膜複合体7を得た。
<< Comparative Example 7 >>
Bar coater No. Except having used 6, it carried out similarly to the comparative example 1, and obtained the comparative conductive film composite 7.
[評価試験]
(1)樹脂層の膜厚測定
 カミソリなど鋭利な刃物で樹脂層を削り取り、ガラス基板と樹脂層の厚み差を共焦点顕微鏡(キーエンス VK-X150)で計測することで樹脂層の膜厚を計測した。得られた値を表3に示した。
(2)密着性評価
 実施例及び比較例で得られた導電性被膜複合体にセロテープ(ニチバン 18mm)を貼りつけ、一気に引きはがし、試験を行った。目視上剥離が見られない場合を◎、ごく一部分のみ(2%以下)剥離した箇所が見られた場合を○、10%以下の面積しか剥離が見られなかった場合を△、20%以上剥離が見られた場合を×とし、結果を表3に示した。
(3)導電性評価
 導電性被膜複合体の導電性を三菱化学アナリテック社製ロレスタGP MCP-T610を用いて表面抵抗を測定し、膜厚を乗することで体積抵抗値を算出した。体積抵抗値が20μΩ・cm以下を◎、50μΩ・cm以下を○、50μΩ・cm超を×とし、結果を表3に示した。なお、密着性評価で○以上かつ導電性評価で○となったサンプルについて、総合評価を○とし、結果を表3に示した。
(4)耐熱性評価
 導電性被膜複合体の耐熱性を評価した。各種導電性インクを塗布したブランケット上にガラス凸版を押圧し、非画像部(不要部分)を転写して除去した。更に、ブランケット材に樹脂層付き基材を押圧することでパターンを基材に転写した。パターンは細線とし、ライン幅10、20、30、50、100μm、長さ10mmとした。更に、120℃、30分の条件で焼成することで導電性被膜複合体を得た。得られた導電性被膜の厚みは約0.3μmであった。次に、得られた導電性被膜複合体を180℃×1分の高温短時間暴露を5回繰り返した後、パターン形状を顕微鏡観察した。パターン曲がりや断線など変形が認められた場合を×、殆ど認められなかった場合を○、全く認められなかった場合を◎とし、結果を表3に示した。
[Evaluation test]
(1) Measurement of resin layer thickness The resin layer is scraped off with a sharp blade such as a razor, and the thickness difference between the glass substrate and the resin layer is measured with a confocal microscope (Keyence VK-X150). did. The obtained values are shown in Table 3.
(2) Adhesion evaluation A cellophane tape (Nichiban 18 mm) was attached to the conductive coating composites obtained in the examples and comparative examples, peeled off at once, and tested. ◎ when no peeling is observed visually, ◯ when only a part (2% or less) peeled off is observed, ○ when peeling is observed only in an area of 10% or less, Δ, 20% or more peeling Is shown as x, and the results are shown in Table 3.
(3) Conductivity evaluation The surface resistance of the conductive film composite was measured using a Loresta GP MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd., and the volume resistance value was calculated by multiplying the film thickness. The volume resistance value of 20 μΩ · cm or less was given as “◎”, 50 μΩ · cm or less as “○”, and 50 μΩ · cm or more as “x”. In addition, about the sample which became more than (circle) by adhesive evaluation and (circle) by electroconductivity evaluation, comprehensive evaluation was set to (circle) and the result was shown in Table 3.
(4) Evaluation of heat resistance The heat resistance of the conductive coating composite was evaluated. A glass relief plate was pressed on a blanket coated with various conductive inks, and non-image portions (unnecessary portions) were transferred and removed. Furthermore, the pattern was transcribe | transferred to the base material by pressing the base material with a resin layer against a blanket material. The pattern was a thin line, and the line width was 10, 20, 30, 50, 100 μm and the length was 10 mm. Furthermore, the electroconductive film composite was obtained by baking on 120 degreeC and the conditions for 30 minutes. The thickness of the obtained conductive film was about 0.3 μm. Next, the obtained conductive film composite was repeatedly exposed to high temperature and short time at 180 ° C. for 1 minute 5 times, and then the pattern shape was observed with a microscope. The results are shown in Table 3. The case where deformation such as pattern bending or disconnection was observed was indicated as x, the case where almost no deformation was observed, and the case where no deformation was observed as ◎.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 全ての実施導電性被膜複合体について、密着性と良好な導電性を兼ね備えていることが確認できる。これに対し、比較導電性被膜複合体3と実施導電性被膜複合体の比較により、樹脂層を形成させない場合は良好な密着性が得られていない。 It can be confirmed that all the conductive film composites have both adhesion and good conductivity. On the other hand, when the resin layer is not formed by comparison between the comparative conductive film composite 3 and the practical conductive film composite, good adhesion is not obtained.
 また、実施導電性被膜複合体における耐熱性評価の結果、樹脂層の膜厚を1μm以下とすることで、導電性被膜複合体に良好な耐熱性が付与されることが分かる。 Further, as a result of the heat resistance evaluation in the conductive film composite according to the present invention, it can be seen that when the film thickness of the resin layer is 1 μm or less, good heat resistance is imparted to the conductive film composite.
1・・・導電性被膜複合体、
2・・・基材、
4・・・樹脂層、
6・・・導電性被膜。
1 ... conductive film composite,
2 ... base material,
4 ... resin layer,
6: Conductive coating.

Claims (11)

  1.  基材と、
     前記基材の少なくとも一部に形成された樹脂層と、
     前記樹脂層の少なくとも一部に形成された導電性被膜と、を有し、
     前記導電性被膜は銀微粒子から形成されており、
     前記樹脂層の膜厚が1μm以下であること、
     を特徴とする導電性被膜複合体。
    A substrate;
    A resin layer formed on at least a part of the substrate;
    A conductive film formed on at least a part of the resin layer,
    The conductive coating is formed from silver fine particles,
    The resin layer has a thickness of 1 μm or less,
    A conductive film composite characterized by the above.
  2.  前記樹脂層の主成分がポリウレタン樹脂であり、
     前記ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、
     を特徴とする請求項1に記載の導電性被膜複合体。
    The main component of the resin layer is a polyurethane resin,
    The polyurethane resin is added with a polymer having an isocyanate group protected with a blocking agent and / or a polymer containing an oxazoline group as a crosslinking agent,
    The conductive film composite according to claim 1.
  3.  前記ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量が10重量%以内であること、
     を特徴とする請求項2に記載の導電性被膜複合体。
    The solid content of the crosslinking agent relative to the solid content of the polyurethane resin is within 10% by weight;
    The conductive film composite according to claim 2, wherein:
  4.  前記導電性被膜が、
     前記銀微粒子と、
     短鎖アミンと、
     溶媒と、
     前記銀微粒子を分散させるための分散剤と、を含む銀微粒子分散体から形成されること、
     を特徴とする請求項1~3のいずれかに記載の導電性被膜複合体。
    The conductive coating is
    The silver fine particles;
    A short chain amine,
    A solvent,
    A silver fine particle dispersion containing a dispersing agent for dispersing the silver fine particles,
    The conductive film composite according to any one of claims 1 to 3, wherein:
  5.  前記短鎖アミンの炭素数が5以下であること、
     を特徴とする請求項4に記載の導電性被膜複合体。
    The short chain amine has 5 or less carbon atoms,
    The conductive film composite according to claim 4.
  6.  前記溶媒が高極性溶媒であること、
     を特徴とする請求項4又は5に記載の導電性被膜複合体。
    The solvent is a highly polar solvent;
    The conductive film composite according to claim 4 or 5, wherein:
  7.  前記分散剤が酸価を有すること、
     を特徴とする請求項4~6のいずれかに記載の導電性被膜複合体。
    The dispersant has an acid value;
    The conductive film composite according to any one of claims 4 to 6, wherein:
  8.  前記短鎖アミンの分配係数logPが-1.0~1.4であること、
     を特徴とする請求項4~7のいずれかに記載の導電性被膜複合体。
    The short chain amine has a partition coefficient log P of -1.0 to 1.4;
    The conductive film composite according to any one of claims 4 to 7, wherein:
  9.  前記短鎖アミンがアルコキシアミンであること、
     を特徴とする請求項4~8のいずれかに記載の導電性被膜複合体。
    The short chain amine is an alkoxyamine;
    The conductive film composite according to any one of claims 4 to 8, wherein:
  10.  樹脂を基材の少なくとも一部に塗布して樹脂層を形成させる第一工程と、
     前記樹脂層の少なくとも一部に銀微粒子分散体を塗布する第二工程と、
     前記銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜を形成させる第三工程と、を含むこと、
     を特徴とする導電性被膜複合体の製造方法。
    A first step of applying a resin to at least a part of the substrate to form a resin layer;
    A second step of applying a silver fine particle dispersion to at least a part of the resin layer;
    A third step of sintering the silver fine particles contained in the silver fine particle dispersion by external heating to form a conductive film,
    A process for producing a conductive coating composite characterized by the above.
  11.  前記樹脂層の膜厚を1μm以下とすること、
     を特徴とする請求項10に記載の導電性被膜複合体の製造方法。
    The resin layer has a thickness of 1 μm or less,
    The method for producing a conductive film composite according to claim 10.
PCT/JP2017/032036 2016-09-21 2017-09-06 Electroconductive film composite and method for manufacturing same WO2018056052A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017547016A JPWO2018056052A1 (en) 2016-09-21 2017-09-06 Conductive coating composite and method for producing the same
CN201780058105.4A CN109716450B (en) 2016-09-21 2017-09-06 Conductive coating composite and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184186 2016-09-21
JP2016184186 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018056052A1 true WO2018056052A1 (en) 2018-03-29

Family

ID=61690357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032036 WO2018056052A1 (en) 2016-09-21 2017-09-06 Electroconductive film composite and method for manufacturing same

Country Status (4)

Country Link
JP (1) JPWO2018056052A1 (en)
CN (1) CN109716450B (en)
TW (1) TWI783947B (en)
WO (1) WO2018056052A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047378A (en) * 2018-09-14 2020-03-26 バンドー化学株式会社 Conductive fine particle dispersion
JP2021075770A (en) * 2019-11-12 2021-05-20 国立大学法人京都工芸繊維大学 Catalyst, catalyst solution comprising the solution, and electroless plating method using the catalyst solution
WO2022190859A1 (en) * 2021-03-09 2022-09-15 株式会社ダイセル Metal nanoparticle-containing dispersion composition
WO2023189945A1 (en) * 2022-03-29 2023-10-05 バンドー化学株式会社 Electroconductive ink

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750766B2 (en) * 2018-06-26 2020-09-02 Dic株式会社 Method for manufacturing printed wiring board
JP7238712B2 (en) * 2019-09-18 2023-03-14 トヨタ自動車株式会社 Wiring board manufacturing method and wiring board
CN112040662A (en) * 2020-08-25 2020-12-04 江西华创触控科技有限公司 Preparation method of circuit base material, circuit base material and circuit board

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (en) * 2006-05-01 2007-12-20 Bridgestone Corp Method for manufacturing electromagnetic wave shielding light transmitting window material, and electromagnetic wave shielding light transmitting window material
JP2009049124A (en) * 2007-08-17 2009-03-05 Konica Minolta Holdings Inc Conductive pattern and forming method thereof
JP2010013550A (en) * 2008-07-03 2010-01-21 Toyobo Co Ltd Easily adhesive polyester film for optical use
WO2012147815A1 (en) * 2011-04-28 2012-11-01 富士フイルム株式会社 Electroconductive member, method for manufacturing same, touch panel, and solar cell
WO2014115629A1 (en) * 2013-01-23 2014-07-31 Dic株式会社 Composition for forming receiving layer, receiving base obtained using same, printed material, conductive pattern, and electrical circuit
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
WO2015190076A1 (en) * 2014-06-11 2015-12-17 バンドー化学株式会社 Fine silver particle dispersion, fine silver particles, and method for producing same
WO2016047359A1 (en) * 2014-09-24 2016-03-31 富士フイルム株式会社 Optical film, electroconductive film, touch panel, and display device
WO2016084312A1 (en) * 2014-11-25 2016-06-02 バンドー化学株式会社 Conductive ink
WO2016104249A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Electroconductive pattern, electronic circuit, and electromagnetic wave shield
WO2016152017A1 (en) * 2015-03-23 2016-09-29 バンドー化学株式会社 Conductive coated composite body and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450915A4 (en) * 2009-06-30 2014-10-22 Dainippon Ink & Chemicals Method for forming pattern for transparent conductive layer
CN102660013A (en) * 2012-05-08 2012-09-12 江苏苏博特新材料股份有限公司 Single-component polyurethane latent curing agent and preparation method and application thereof
JP2016523296A (en) * 2013-06-14 2016-08-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Heatable moldings made from conductive thermoplastic polyurethane

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (en) * 2006-05-01 2007-12-20 Bridgestone Corp Method for manufacturing electromagnetic wave shielding light transmitting window material, and electromagnetic wave shielding light transmitting window material
JP2009049124A (en) * 2007-08-17 2009-03-05 Konica Minolta Holdings Inc Conductive pattern and forming method thereof
JP2010013550A (en) * 2008-07-03 2010-01-21 Toyobo Co Ltd Easily adhesive polyester film for optical use
WO2012147815A1 (en) * 2011-04-28 2012-11-01 富士フイルム株式会社 Electroconductive member, method for manufacturing same, touch panel, and solar cell
WO2014115629A1 (en) * 2013-01-23 2014-07-31 Dic株式会社 Composition for forming receiving layer, receiving base obtained using same, printed material, conductive pattern, and electrical circuit
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
WO2015190076A1 (en) * 2014-06-11 2015-12-17 バンドー化学株式会社 Fine silver particle dispersion, fine silver particles, and method for producing same
WO2016047359A1 (en) * 2014-09-24 2016-03-31 富士フイルム株式会社 Optical film, electroconductive film, touch panel, and display device
WO2016084312A1 (en) * 2014-11-25 2016-06-02 バンドー化学株式会社 Conductive ink
WO2016104249A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Electroconductive pattern, electronic circuit, and electromagnetic wave shield
WO2016152017A1 (en) * 2015-03-23 2016-09-29 バンドー化学株式会社 Conductive coated composite body and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047378A (en) * 2018-09-14 2020-03-26 バンドー化学株式会社 Conductive fine particle dispersion
JP2021075770A (en) * 2019-11-12 2021-05-20 国立大学法人京都工芸繊維大学 Catalyst, catalyst solution comprising the solution, and electroless plating method using the catalyst solution
JP7446598B2 (en) 2019-11-12 2024-03-11 国立大学法人京都工芸繊維大学 Catalyst, catalyst solution containing the catalyst, and electroless plating method using the catalyst solution
WO2022190859A1 (en) * 2021-03-09 2022-09-15 株式会社ダイセル Metal nanoparticle-containing dispersion composition
WO2023189945A1 (en) * 2022-03-29 2023-10-05 バンドー化学株式会社 Electroconductive ink
JP7373096B1 (en) * 2022-03-29 2023-11-01 バンドー化学株式会社 conductive ink

Also Published As

Publication number Publication date
TWI783947B (en) 2022-11-21
TW201819546A (en) 2018-06-01
CN109716450B (en) 2021-05-04
JPWO2018056052A1 (en) 2018-09-20
CN109716450A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2018056052A1 (en) Electroconductive film composite and method for manufacturing same
JP6659665B2 (en) Conductive coating composite and method for producing the same
JP6220920B2 (en) Silver fine particle dispersion, silver fine particle and method for producing the same
CN105340370B (en) Method for preparing conductive metal layer or pattern
JP6329703B1 (en) Conductive paste and conductive pattern forming method
JP6101403B2 (en) Conductive ink
JP6053246B1 (en) Electrode manufacturing method
WO2018150697A1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
WO2017017911A1 (en) Method for producing electrode
JP2016207439A (en) Manufacturing method of conducive coated film
JP2016225126A (en) Conductive coating and method for producing the same
WO2017195491A1 (en) Electroconductive ink
JP2020186421A (en) Conductive fine particle dispersion, method for forming conductive pattern, and method for producing conductive substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017547016

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852829

Country of ref document: EP

Kind code of ref document: A1