WO2012147815A1 - Electroconductive member, method for manufacturing same, touch panel, and solar cell - Google Patents

Electroconductive member, method for manufacturing same, touch panel, and solar cell Download PDF

Info

Publication number
WO2012147815A1
WO2012147815A1 PCT/JP2012/061137 JP2012061137W WO2012147815A1 WO 2012147815 A1 WO2012147815 A1 WO 2012147815A1 JP 2012061137 W JP2012061137 W JP 2012061137W WO 2012147815 A1 WO2012147815 A1 WO 2012147815A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
group
conductive member
member according
layer
Prior art date
Application number
PCT/JP2012/061137
Other languages
French (fr)
Japanese (ja)
Inventor
岡崎 賢太郎
田中 智史
中平 真一
松並 由木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012147815A1 publication Critical patent/WO2012147815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive member, a manufacturing method thereof, a touch panel, and a solar cell.
  • This conductive member includes a conductive layer including a plurality of metal nanowires on a base material.
  • the conductive member contains a desired conductive region and a non-conductive region by pattern exposure and subsequent development, for example, by containing a photocurable composition as a matrix in a conductive layer. It can be easily processed into a conductive member having a conductive layer. This processed conductive member can be used, for example, as a touch panel or as an electrode of a solar cell.
  • the conductive member has a weak film strength of the conductive layer.
  • Patent Document 1 discloses that a transparent conductive layer is applied to a transparent conductive material using a combination of silver nanowires and a binder matrix and various surface-treated supports.
  • Patent Document 3 describes a support on which a silane coupling agent is applied as an undercoat of a transparent conductive material composed of nanowires and a polymer.
  • Patent Document 1 when the hard coating described in Patent Document 1 is provided to protect the conductive layer from scratches and abrasion, it is necessary to have a thickness of about 1 ⁇ m to about 50 ⁇ m, resulting in a problem that the conductivity is lowered. It was. On the other hand, when a hard film having a thickness in a range where the decrease in conductivity is small is provided, it is insufficient to prevent the conductive layer from being scratched and worn.
  • Patent Document 2 does not mention a phenomenon in which migration is improved when a support on which a specific silane coupling agent is applied after contact angle control by surface treatment is used.
  • Patent Document 3 does not mention a phenomenon in which migration is improved when a support on which a specific silane coupling agent is applied after the contact angle is controlled by surface treatment.
  • a conductive member provided with a conductive layer containing conductive fibers it is difficult to achieve both a protection of the conductive layer from scratches and wear and a high conductivity.
  • the problem to be solved by the present invention is a conductive member having high resistance to scratches and wear and having excellent conductivity, a method for manufacturing the same, and a touch panel and a solar cell using the conductive member. Is to provide.
  • a conductive member comprising a conductive layer including a conductive fiber having a minor axis diameter of 150 nm or less on a substrate and including a three-dimensional cross-linking bond including a bond represented by the following general formula (I)
  • a conductive member further comprising at least one intermediate layer between the substrate and the conductive layer.
  • M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.
  • M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.
  • the functional group is at least selected from the group consisting of amide group, amino group, mercapto group, carboxylic acid group, sulfonic acid group, phosphoric acid group and phosphonic acid group, and salts of these groups and precursors of these groups.
  • the intermediate layer contains 1 ⁇ mol / m 2 or more and 1 mmol / m 2 or less of the silane coupling agent.
  • the conductive layer according to any one of [1] to [10], wherein the conductive layer includes a conductive region and a non-conductive region, and at least one of the conductive region and the non-conductive region includes a conductive fiber.
  • Sexual member [12]
  • M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.
  • the intermediate layer contains a silane coupling agent, and the functional groups are amide group, amino group, mercapto group, carboxylic acid group, sulfonic acid group, phosphoric acid group and phosphonic acid group, and salts of these groups and these groups.
  • [15] [14] The method for producing a conductive member according to [14], wherein the silane coupling agent is contained in the intermediate layer in an amount of 1 ⁇ mol / m 2 to 1 mmol / m 2 .
  • the surface treatment is corona discharge treatment, plasma treatment, or glow discharge treatment.
  • a conductive member having high resistance to scratches and abrasion and excellent in conductivity a manufacturing method thereof, a touch panel and a solar cell using the conductive member.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • is also referred to as “sq.” Or “square”.
  • the term “light” is used as a concept including not only visible light, but also high energy rays such as ultraviolet rays, X-rays, and gamma rays, and particle rays such as electron beams.
  • (meth) acrylic acid is used to indicate either or both of acrylic acid and methacrylic acid
  • (meth) acrylate” is used to indicate either or both of acrylate and methacrylate.
  • the content is expressed in terms of mass, and unless otherwise specified, mass% represents a ratio to the total amount of the composition, and “solid content” is a component excluding the solvent in the composition. Represents.
  • the conductive member of the present invention includes a conductive fiber including a conductive fiber having a short axis diameter of 150 nm or less on a base material and including a bond represented by the following general formula (I). It is an electroconductive member provided with an electroconductive layer, Comprising: Between the said base material and the said electroconductive layer, it has at least one layer of intermediate
  • the present invention provides (a) a conductive fiber having a minor axis diameter of 150 nm or less and at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al on a substrate. Applying an aqueous solution containing the aqueous solution to form a liquid film of the aqueous solution on the substrate; and (b) hydrolyzing and polycondensing the alkoxide compound in the liquid film of the aqueous solution, And forming a three-dimensional cross-linking bond in this order, and forming a conductive layer including the conductive fiber and including the three-dimensional cross-linking bond on the base material.
  • the present invention Prior to (a) in the method for producing a conductive member, the present invention also relates to a method for producing a conductive member, wherein at least one intermediate layer is formed on the surface of the substrate on which the liquid film is formed. .
  • Base material various materials can be used according to the purpose as long as the base material can bear the conductive layer. Generally, a plate shape or a sheet shape is used.
  • the substrate may be transparent or opaque. Examples of the material constituting the substrate include transparent glass such as white plate glass, blue plate glass, and silica coated blue plate glass; polycarbonate, polyethersulfone, polyester, acrylic resin, thermoplastic norbornene resin, vinyl chloride resin, aromatic polyamide Examples thereof include synthetic resins such as resin, polyamideimide, and polyimide; metals such as aluminum, copper, nickel, and stainless steel; other ceramics, and silicon wafers used for semiconductor substrates.
  • TAC, PC, COP amorphous cycloolefin polymer
  • glass polyethylene terephthalate (PET), polycarbonate (PC), triacetyl cellulose (TAC), or amorphous cycloolefin polymer (COP)
  • PET polyethylene terephthalate
  • PC polycarbonate
  • TAC triacetyl cellulose
  • COP amorphous cycloolefin polymer
  • TAC, PC, and COP which have a high polarization property and easily control the polarization characteristics, are more preferable for applications such as a touch panel.
  • TAC, PC, COP is the present invention for electromigration between conductive layer patterns in which a conductive layer made of silver nanowires includes a conductive region and a non-conductive region described later (for PET or glass). It can be said that this is a more preferable embodiment.
  • the surface of the base material on which the conductive layer is formed is optionally cleaned with an alkaline aqueous solution, treated with a chemical such as a silane coupling agent, corona discharge treatment, plasma treatment, glow discharge treatment, ion plating, sputtering. Further, pretreatment such as vapor phase reaction method and vacuum deposition can be performed. Among these, the use of corona discharge treatment, plasma treatment, or glow discharge treatment is preferable from the viewpoint of improving the adhesion of the silane coupling of the intermediate layer and the -M1-O-M1-layer having a three-dimensional cross-linking, and the corona discharge treatment. And glow discharge treatment is more preferred.
  • the water contact angle after the surface treatment is preferably 3 ° to 50 °, more preferably 5 ° to 45 °, still more preferably 5 ° to 40 °, and still more preferably 5 ° to 35 °. Most preferably, it is 5 ° or more and 30 ° or less.
  • a water contact angle of 3 ° or more is preferable because the fixed density of the group that interacts with the silver in the intermediate layer is increased.
  • the water contact angle is 50 ° or less, the unevenness and repellency of the -M1-O-M1-layer having a three-dimensional cross-linking is reduced, which is preferable.
  • the water contact angle can be measured using a commercially available contact angle measuring device and pure water.
  • the thickness of the substrate is in a desired range depending on the application. Generally, it is selected from the range of 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 400 ⁇ m, and even more preferably 5 ⁇ m to 300 ⁇ m.
  • the substrate is selected from those having a total visible light transmittance of 70% or more, more preferably 85% or more, and still more preferably 90% or more. .
  • the conductive layer according to the present invention includes a conductive fiber having a minor axis diameter of 150 nm or less and includes a three-dimensional cross-link including a bond represented by the following general formula (I).
  • -M 1 -OM 1- (I) (In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
  • the conductive layer according to the present invention contains conductive fibers having a minor axis diameter of 150 nm or less.
  • the conductive fiber may take any form of a solid structure, a porous structure, and a hollow structure, but preferably has a solid structure or a hollow structure.
  • a solid structure fiber may be referred to as a wire, and a hollow structure fiber as a tube.
  • the conductive material forming the fibers is preferably at least one of metal and carbon.
  • metal oxides such as ITO, zinc oxide, and tin oxide, metallic carbon, simple metal elements, and multiple metals
  • examples thereof include a core-shell structure composed of elements and an alloy composed of a plurality of metals.
  • you may surface-treat, for example, the metal fiber etc. which were plated can be used.
  • metal nanowires From the viewpoint of easily forming a transparent conductive film, it is preferable to use metal nanowires as the conductive fibers.
  • the metal nanowire in the present invention is, for example, metal fine particles having an aspect ratio (average major axis length / average minor axis length) of 30 or more, and an average minor axis length of 1 nm to 150 nm, The average major axis length is preferably 1 ⁇ m to 100 ⁇ m.
  • the average minor axis length (average diameter) of the metal nanowire is preferably 100 nm or less, and more preferably 30 nm or less.
  • the average minor axis length is preferably 5 nm or more. If the average minor axis length exceeds 150 nm, it is not preferable because there is a possibility that the optical characteristics deteriorate due to a decrease in conductivity or light scattering.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average long axis length of the metal nanowire is too long, there is a concern that aggregates are produced during the production of the metal nanowire, and if the average long axis length is too short, sufficient conductivity may not be obtained.
  • the average minor axis length (average diameter) and average major axis length of the metal nanowires are, for example, to observe a TEM image and an optical microscope image using a transmission electron microscope (TEM) and an optical microscope.
  • the average minor axis length (average diameter) and the average major axis length of the metal nanowires are measured with a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). Using 300 metal nanowires, the average axial length of the metal nanowires was determined from the average value.
  • the short-axis length in case the short-axis direction cross section of the said metal nanowire is not circular made the length of the longest part the short-axis length by the measurement of a short-axis direction. Also. When the metal nanowire is bent, a circle with the arc as the arc is taken into consideration, and the value calculated from the radius and the curvature is taken as the major axis length.
  • an electroconductive layer is transparent and contains metal nanowire with an average diameter of 50 nm or less and an average length of 5 micrometers or more.
  • metal nanowires having a minor axis length (diameter) of 150 nm or less and a major axis length of 5 ⁇ m or more and 500 ⁇ m or less are contained in the total conductive fiber by 50% by mass or more in terms of metal amount. Preferably, it is 60 mass% or more, more preferably 75 mass% or more.
  • the short axis length (diameter) is 150 nm or less, and the ratio of metal nanowires having a length of 5 ⁇ m or more and 500 ⁇ m or less is contained by 50% by mass or more, so that sufficient conductivity is obtained and voltage concentration is achieved. Is less likely to occur, and a decrease in durability due to this can be suppressed, which is preferable. If the photosensitive layer contains conductive particles other than fibers, the transparency may decrease when plasmon absorption is strong, such being undesirable.
  • the coefficient of variation of the short axis length (diameter) of the metal nanowire used in the conductive layer according to the present invention is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less. If the coefficient of variation exceeds 40%, the voltage may be concentrated on a wire having a short axis length (diameter), or the durability may deteriorate.
  • the coefficient of variation of the short axis length (diameter) of the metal nanowires is measured, for example, by measuring the short axis length (diameter) of 300 nanowires from a transmission electron microscope (TEM) image, and the standard deviation and average value thereof. Can be obtained by calculating.
  • TEM transmission electron microscope
  • a columnar shape, a rectangular parallelepiped shape, a columnar shape having a polygonal cross section, and the like a columnar shape or a cross section may be used in applications where high transparency is required.
  • the cross-sectional shape of the metal nanowire can be detected by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • metal in the said metal nanowire Any metal may be used, 2 or more types of metals may be used in combination other than 1 type of metal, and it can also be used as an alloy. . Among these, those formed from metals or metal compounds are preferable, and those formed from metals are more preferable.
  • the metal is preferably at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC 1991), and at least one selected from Groups 2 to 14 More preferably, at least one metal selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, Group 14 is more preferable, It is particularly preferable to include it as a main component.
  • the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, and antimony. , Lead, or an alloy thereof.
  • copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
  • the metal nanowire is not particularly limited and may be produced by any method, but is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved as follows. Moreover, after forming metal nanowire, it is preferable from a viewpoint of dispersibility and temporal stability of a photosensitive layer to perform a desalting process by a conventional method.
  • a method for producing metal nanowires JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
  • the solvent used for the production of the metal nanowire is preferably a hydrophilic solvent, and examples thereof include water, alcohols, ethers, and ketones. These may be used alone or in combination of two or more. May be used in combination.
  • alcohols include methanol, ethanol, propanol, isopropanol, butanol, and ethylene glycol.
  • ethers include dioxane and tetrahydrofuran.
  • ketones include acetone.
  • the heating temperature is preferably 250 ° C. or lower, more preferably 20 ° C. or higher and 200 ° C. or lower, further preferably 30 ° C. or higher and 180 ° C. or lower, and particularly preferably 40 ° C.
  • the temperature may be changed during the grain formation process. Changing the temperature during the process has the effect of controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. There is.
  • the heating is preferably performed by adding a reducing agent.
  • the reducing agent is not particularly limited and can be appropriately selected from those usually used.
  • borohydride metal salt, aluminum hydride salt, alkanolamine, aliphatic amine, heterocyclic amine, Aromatic amines, aralkylamines, alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, glutathione and the like can be mentioned.
  • reducing sugars, sugar alcohols as derivatives thereof, and ethylene glycol are particularly preferable.
  • there is a compound that functions as a dispersant or a solvent as a function there is a compound that functions as a dispersant or a solvent as a function, and can be preferably used in the same manner.
  • a dispersant and a halogen compound or metal halide fine particles it is preferable to add a dispersant and a halogen compound or metal halide fine particles.
  • the timing of addition of the dispersant and the halogen compound may be before or after the addition of the reducing agent, and may be before or after the addition of metal ions or metal halide fine particles.
  • the step of adding the dispersant may be added before preparing the particles and may be added in the presence of the dispersed polymer, or may be added for controlling the dispersion state after adjusting the particles.
  • the amount needs to be changed depending on the length of the metal wire required. This is thought to be due to the length of the metal wire by controlling the amount of metal particles as a nucleus.
  • the dispersant include amino group-containing compounds, thiol group-containing compounds, sulfide group-containing compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, polysaccharide-derived natural polymers, synthetic polymers, or these. And polymers such as gels.
  • various polymer compounds used as a dispersant are compounds included in the polymer (b) described later.
  • polymer suitably used as the dispersant examples include gelatin, which is a protective colloidal polymer, polyvinyl alcohol (P-3), methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, a partial alkyl ester of polyacrylic acid, polyvinyl Preferred examples include pyrrolidone, a copolymer containing a polyvinylpyrrolidone structure, and a polymer having a hydrophilic group such as polyacrylic acid having an amino group or a thiol group.
  • the polymer used as the dispersant has a weight average molecular weight (Mw) measured by GPC method of preferably 3000 or more and 300000 or less, and more preferably 5000 or more and 100000 or less.
  • the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asakura Shoin Co., Ltd., 2000) can be referred to.
  • the shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
  • the halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose.
  • sodium bromide, sodium chloride, sodium iodide, potassium iodide Compounds that can be used in combination with alkali halides such as potassium bromide, potassium chloride, potassium iodide and the following dispersion additives are preferred. Some halogen compounds may function as a dispersion additive, but can be preferably used in the same manner.
  • silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
  • a single substance having both functions may be used as the dispersant and the halogen compound. That is, by using a halogen compound having a function as a dispersant, the functions of both the dispersant and the halogen compound are expressed with one compound.
  • halogen compound having a function as a dispersant examples include HTAB (hexadecyl-trimethylammonium bromide) containing an amino group and a bromide ion, HTAC (hexadecyl-trimethylammonium chloride) containing an amino group and a chloride ion, Dodecyltrimethylammonium bromide containing bromide ion or chloride ion, dodecyltrimethylammonium chloride, stearyltrimethylammonium bromide, stearyltrimethylammonium chloride, decyltrimethylammonium bromide, decyltrimethylammonium chloride, dimethyldistearylammonium bromide, dimethyldistearylammonium chloride, Dilauryl dimethyl ammonium bromide, dilauryl dimethyl ammonium Mukurorido, dimethyl dipalmityl ammonium bromide, dimethyl dipalmityl
  • the metal nanowire preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions.
  • the electrical conductivity when the metal nanowire is dispersed in an aqueous dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
  • the viscosity at 20 ° C. when the metal nanowire is dispersed in an aqueous dispersion is preferably 0.5 mPa ⁇ s to 100 mPa ⁇ s, more preferably 1 mPa ⁇ s to 50 mPa ⁇ s.
  • Examples of preferable conductive fibers other than metal nanowires include hollow metal nanotubes and carbon nanotubes.
  • Metal nanotube There is no restriction
  • the shape of the metal nanotube may be a single layer or a multilayer, but a single layer is preferable from the viewpoint of excellent conductivity and thermal conductivity.
  • the thickness of the metal nanotube (difference between the outer diameter and the inner diameter) is preferably 3 nm to 80 nm, and more preferably 3 nm to 30 nm. When the thickness is 3 nm or more, sufficient oxidation resistance is obtained, and when the thickness is 80 nm or less, the occurrence of light scattering due to the metal nanotubes is suppressed.
  • the average short axis length of the metal nanotubes is required to be 150 nm or less like the metal nanowires.
  • the preferred minor axis diameter is the same as in metal nanowires.
  • the major axis length is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m.
  • limiting in particular as a manufacturing method of the said metal nanotube According to the objective, it can select suitably, For example, the method as described in the US application publication 2005/0056118 grade
  • a carbon nanotube is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube.
  • Single-walled carbon nanotubes are called single-walled nanotubes (SWNT)
  • multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT)
  • DWNT double-walled carbon nanotubes
  • the carbon nanotube may be a single wall or a multilayer, but a single wall is preferable from the viewpoint of excellent conductivity and thermal conductivity.
  • the aspect ratio of the conductive fiber that can be used in the present invention is preferably 10 or more.
  • the aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average major axis length / average minor axis length).
  • ratio of average major axis length / average minor axis length There is no restriction
  • the aspect ratio of the entire conductive fiber can be estimated by measuring the major axis length and the minor axis length of the conductive fiber separately.
  • the outer diameter of this tube is used as a diameter for calculating the said aspect ratio.
  • the aspect ratio of the conductive fiber is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, preferably 100 to 1,000,000. More preferred. When the aspect ratio is less than 10, network formation by the conductive fibers may not be performed and sufficient conductivity may not be obtained. In this case, since the conductive fibers are entangled and aggregate before film formation, a stable liquid may not be obtained.
  • the conductive layer is obtained by hydrolyzing and polycondensing an alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al (hereinafter also referred to as “specific alkoxide compound”), and further heating if desired. It is preferable that it is composed of a sol-gel cured product obtained by drying, because it can be easily manufactured having high resistance to scratches and abrasion.
  • the valence of M 1 contained in the three-dimensional cross-linking structure including the bond represented by the general formula (I) is as follows when M 1 in the general formula (I) is any one of Si, Ti, and Zr. Is 4, and is 3 when M 1 is Al.
  • the electroconductive layer which concerns on this invention is comprised including the three-dimensional bridge
  • Such a three-dimensional bond is preferably obtained by hydrolysis and polycondensation of a specific alkoxide compound from the viewpoint of production.
  • Specific alkoxide compound is a compound represented by the following general formula (II) is preferable in that it is easily available.
  • M 2 (OR 1 ) a R 2 4-a (II) (In General Formula (II), M 2 represents an element selected from Si, Ti and Zr, R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group, and a represents an integer of 2 to 4 Show.)
  • Each hydrocarbon group of R 1 and R 2 in the general formula (II) is preferably an alkyl group or an aryl group.
  • the number of carbon atoms in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4.
  • a phenyl group is preferable.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group.
  • This compound is a low molecular compound and preferably has a molecular weight of 1000 or less.
  • M 2 is Si and a is 2, that is, as a bifunctional alkoxysilane, for example, dimethyldimethoxysilane, diethyldimethoxysilane, propylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, dipropyldiethoxysilane , ⁇ -chloropropylmethyldiethoxysilane, ⁇ -chloropropyldimethyldimethoxysilane, chlorodimethyldiethoxysilane, (p-chloromethyl) phenylmethyldimethoxysilane, ⁇ -bromopropylmethyldimethoxysilane, acetoxymethylmethyldiethoxysilane, Acetoxymethylmethyldimethoxysilane, acetoxypropylmethyldimethoxysilane, benzoy
  • dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, and the like can be given from the viewpoint of easy availability and adhesiveness with the hydrophilic layer.
  • M 2 is Si and a is 3, that is, as a trifunctional alkoxysilane, for example, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxy Silane, ⁇ -chloropropyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, chloromethyltriethoxysilane, (p-chloromethyl) phenyltrimethoxysilane, ⁇ -bromopropyltrimethoxysilane, acetoxymethyltriethoxysilane, acetoxy Methyltrimethoxysilane, acetoxypropyltrimethoxysilane, benzoyloxypropyltrimethoxysilane, 2- (carbomethoxy) ethyltrimethoxys
  • methyltrimethoxysilane ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, and the like from the viewpoint of easy availability and the adhesion to the hydrophilic layer. .
  • M 2 is Si and a is 4, that is, as tetrafunctional alkoxide silane, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, ethoxytrimethoxysilane, methoxy Examples include tripropoxysilane, ethoxytripropoxysilane, propoxytrimethoxysilane, propoxytriethoxysilane, and dimethoxydiethoxysilane. Of these, tetramethoxysilane, tetraethoxysilane and the like are particularly preferable.
  • M 2 is Ti and a is 2, that is, as a bifunctional alkoxy titanate, for example, dimethyldimethoxytitanate, diethyldimethoxytitanate, propylmethyldimethoxytitanate, dimethyldiethoxytitanate, diethyldiethoxytitanate, dipropyldiethoxytitanate , Phenylethyldiethoxytitanate, phenylmethyldipropoxytitanate, dimethyldipropoxytitanate, and the like.
  • a bifunctional alkoxy titanate for example, dimethyldimethoxytitanate, diethyldimethoxytitanate, propylmethyldimethoxytitanate, dimethyldiethoxytitanate, diethyldiethoxytitanate, dipropyldiethoxytitanate , Phenylethyldiethoxytitanate, phenylmethyldipropoxytit
  • M 2 is Ti and a is 3, that is, as trifunctional alkoxy titanate, for example, methyl trimethoxy titanate, ethyl trimethoxy titanate, propyl trimethoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, propyl triethoxy
  • examples include titanate, chloromethyl triethoxy titanate, phenyl trimethoxy titanate, phenyl triethoxy titanate, and phenyl tripropoxy titanate.
  • M 2 is a is 4 Ti
  • 4 alkoxy titanates functional for example, tetramethoxysilane titanate, tetraethoxy titanate, tetrapropoxy titanate, tetraisopropoxy titanate, can be given Tetrabutoxytitanate like.
  • the one containing zirconium can include, for example, a zirconate corresponding to the compound exemplified as containing titanium.
  • Al alkoxide compounds that are not included in the general formula (II) include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, and tetraethoxy aluminate.
  • the specific alkoxide can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
  • the specific alkoxide one kind of compound may be used alone, or two or more kinds of compounds may be used in combination.
  • the content ratio of the compound (II) / conductive fiber is in a mass ratio in the range of 0.5 / 1 to 25/1, more preferably in the range of 1/1 to 15/1, most preferably 2/1. It is preferable that the ratio be in the range of ⁇ 8 / 1 because an advantage can be obtained that a conductive layer having high conductivity, low haze, and high film strength can be obtained.
  • the conductive layer is formed by applying an aqueous solution containing conductive fibers and a specific alkoxide compound as a coating liquid (hereinafter also referred to as “sol-gel coating liquid”) on a substrate to form a coating liquid film.
  • a specific alkoxide compound as a coating liquid
  • sol-gel coating liquid a specific alkoxide compound
  • the hydrolysis and polycondensation reaction is also referred to as “sol-gel reaction”
  • heat the water as a solvent to evaporate Formed by drying.
  • an aqueous dispersion of conductive fibers may be prepared separately and mixed with the specific alkoxide compound.
  • the aqueous solution is heated to hydrolyze and polycondense at least a part of the specific alkoxide compound to form a sol state.
  • a mixture of the dispersion and the sol-gel coating liquid may be used.
  • an acidic catalyst or a basic catalyst in combination because the reaction efficiency can be increased.
  • this catalyst will be described.
  • Any catalyst that promotes hydrolysis and polycondensation reactions of the alkoxide compound can be used.
  • a catalyst includes an acid or a basic compound and is used as it is or dissolved in a solvent such as water or alcohol (hereinafter, these are collectively included as an acidic catalyst and a basic compound, respectively). Also referred to as a catalyst).
  • the concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like. Here, when the concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase.
  • the concentration is 1N in terms of concentration in an aqueous solution. The following is desirable.
  • the kind of acidic catalyst or basic catalyst is not particularly limited, but when a catalyst having a high concentration is required, a catalyst composed of an element that hardly remains in the conductive layer is preferable.
  • the acidic catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structure represented by RCOOH.
  • Examples thereof include substituted carboxylic acids in which R in the formula is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., and basic catalysts include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
  • a Lewis acid catalyst comprising a metal complex can also be preferably used.
  • Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketones, ketoesters, hydroxycarboxylic acids or their esters, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
  • 2A group elements such as Mg, Ca, St and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as V, Nb and Ta are preferable.
  • the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a ⁇ -diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid and methyl tartrate, 4-hydroxy-4-methyl-2-pentanone, Keto alcohols such as 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone and 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl-mono Ethanolamine, diethanol Amino alcohols such as ethanol and triethanolamine, methylol
  • a preferred ligand is an acetylacetone derivative.
  • the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone.
  • Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone
  • the substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms.
  • acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred.
  • the complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element.
  • ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
  • Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
  • the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, A salt form such as a halogenate salt, a sulfate salt, a phosphate salt, etc., that ensures stoichiometric neutrality is used.
  • a salt form such as a halogenate salt, a sulfate salt, a phosphate salt, etc., that ensures stoichiometric neutrality is used.
  • the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst.
  • this metal complex it is possible to obtain a coating solution having excellent stability over time, film surface quality of the conductive layer and high durability.
  • the above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
  • the catalyst according to the present invention is used in the sol-gel coating solution in an amount of preferably 0 to 50% by mass, more preferably 5 to 25% by mass, based on the nonvolatile components.
  • a catalyst may be used independently or may be used in combination of 2 or more type.
  • the sol-gel coating liquid may contain an organic solvent as desired in order to ensure the formation of a uniform coating liquid film on the substrate.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, chloroform, and chloride.
  • Chlorine solvents such as methylene, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ethylene glycol monomethyl ether, ethylene glycol Examples thereof include glycol ether solvents such as dimethyl ether.
  • VOC volatile organic solvent
  • the hydrolysis and condensation reactions of the specific alkoxide compound occur.
  • the coating liquid film may be heated and dried.
  • the heating temperature for promoting the sol-gel reaction is suitably in the range of 30 ° C. to 200 ° C., more preferably in the range of 50 ° C. to 180 ° C.
  • the heating and drying time is preferably 10 seconds to 300 minutes, more preferably 1 minute to 120 minutes.
  • the thickness of the conductive layer of the present invention is preferably 0.01 ⁇ m to 2 ⁇ m, more preferably 0.02 ⁇ m to 1 ⁇ m, more preferably 0.03 ⁇ m to 0.8 ⁇ m, and even more preferably 0.05 ⁇ m to 0.5 ⁇ m. preferable.
  • the film thickness is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, sufficient durability and film strength can be obtained.
  • a range of 0.05 ⁇ m to 0.5 ⁇ m is preferable because a manufacturing tolerance is secured.
  • the conductive layer may further include a matrix.
  • the “matrix” is a general term for substances that include conductive fibers to form a layer.
  • the matrix has a function of stably maintaining the dispersion of the conductive fibers, and may be non-photosensitive or photosensitive. By including the matrix, the dispersion of the conductive fibers in the conductive layer is stably maintained, and even when the conductive layer is formed on the surface of the base material without an adhesive layer, the base material and the conductive layer Strong adhesion is ensured.
  • the conductive layer may contain a matrix. What contains a matrix is preferable from the viewpoint of obtaining a conductive member having conductivity in which dispersion of conductive fibers is stable.
  • the matrix may be a non-photosensitive material such as an organic polymer or a photosensitive material such as a photoresist composition.
  • the conductive layer contains a matrix, the content ratio of the matrix / conductive fiber is suitably in the range of 0.001 / 1 to 100/1 by mass ratio.
  • the content ratio of the matrix / conductive fiber is more preferably in the range of 0.005 / 1 to 50/1 by mass ratio, and still more preferably in the range of 0.01 / 1 to 20/1.
  • the matrix may be non-photosensitive or photosensitive.
  • Suitable non-photosensitive matrices include organic polymer polymers.
  • the organic polymer include polyacrylic acid (for example, poly (methyl methacrylate)), polyacrylate, polyacrylic acid such as polyacrylonitrile, polyvinyl alcohol, polyester (for example, polyethylene terephthalate (PET), polyester) Naphthalate and polycarbonate), phenol or cresol-formaldehyde (Novolacs®), polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, polyamideimide, polyetherimide, polysulfide, polysulfone, polyphenylene, polyphenyl ether, etc.
  • the photosensitive matrix includes a photoresist composition suitable for a lithographic process.
  • a photoresist composition suitable for a lithographic process.
  • a conductive layer having a conductive region and a non-conductive region on the pattern is preferable in that it can be formed by a lithographic process.
  • a photopolymerizable composition is particularly preferable because a conductive layer having excellent transparency and flexibility and excellent adhesion to a substrate can be obtained. It is done.
  • this photopolymerizable composition will be described.
  • the photopolymerizable composition includes (a) an addition polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light as basic components, and (c) a binder, if desired. (D) In addition, additives other than the above components (a) to (c) are included. Hereinafter, these components will be described.
  • the component (a) addition-polymerizable unsaturated compound is a compound that undergoes an addition-polymerization reaction in the presence of a radical to become a polymer, and usually has a molecular end.
  • a compound having at least one, more preferably two or more, more preferably four or more, and even more preferably six or more ethylenically unsaturated double bonds is used. These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
  • Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
  • particularly preferred polymerizable compounds are trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) from the viewpoint of film strength.
  • Acrylate is particularly preferred.
  • the content of the component (a) is preferably 2.6% by mass or more and 37.5% by mass or less based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers described above. More preferably, it is 0.0 mass% or more and 20.0 mass% or less.
  • the photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light.
  • photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals.
  • the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
  • -Photoacid generator- Photoacid generators include photoinitiators for photocationic polymerization, photoinitiators for photoradical polymerization, photodecolorants for dyes, photochromic agents, irradiation with actinic rays or radiation used in microresists, etc.
  • known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
  • Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose.
  • triazine or 1,3,4-oxadi having at least one di- or tri-halomethyl group may be used.
  • examples thereof include azole, naphthoquinone-1,2-diazido-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, and o-nitrobenzyl sulfonate.
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid
  • a group that generates an acid radical upon irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin for example, US Pat. No. 3,849,137, German Patent No. 3914407.
  • JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 And compounds described in JP-A-63-146029, etc. can be used. Furthermore, compounds described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used as an acid radical generator.
  • triazine compound examples include 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6-bis (trichloromethyl)- s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) mono-s-triazine, 2- (4-ethoxycarbonylnaphthyl) -4,6-bis (trichloromethyl) -s-triazine 2,4,6-tris (monochloromethyl) -s-triazine, 2,4,6-tris (dichloromethyl) -s-triazine, 2,4,6-tris (trichloromethyl) -s-triazine, 2, -Methyl-4,6-bis (trichloromethyl) -s-triazine, 2-n-propyl-4,6-
  • the photoradical generator is a compound that directly absorbs light or is photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction to generate a radical.
  • the photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
  • Many compounds are known as such photo radical generators. For example, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds as described in JP-A-2008-268884 are known.
  • Azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds can be appropriately selected according to the purpose.
  • benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable from the viewpoint of exposure sensitivity.
  • benzophenone compound examples include benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, N, N-diethylaminobenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
  • acetophenone compound examples include 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 1-hydroxycyclohexyl phenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl (p-isopropylphenyl) ketone, 1-hydroxy- 1- (p-dodecylphenyl) ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 1,1,1-trichloromethyl- (p-butylphenyl) ketone, 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butano -1 and the like. Specific examples of commercially available products are Irga,
  • Examples of the hexaarylbiimidazole compound include JP-B-6-29285, US Pat. No. 3,479,185, US Pat. No. 4,311,783, US Pat. No. 4,622,286, and the like.
  • Examples of the oxime ester compound include J.P. C. S. Perkin II (1979) 1653-1660), J.M. C. S. Perkin II (1979) 156-162, Journal of Photopolymer Science and Technology (1995) 202-232, JP-A 2000-66385, compounds described in JP-A 2000-80068, JP-T 2004-534797 Compounds and the like. Specific examples include Irgacure OXE-01 and OXE-02 manufactured by Ciba Specialty Chemicals. These may be used individually by 1 type and may use 2 or more types together.
  • acylphosphine (oxide) compound examples include Irgacure 819, Darocur 4265, and Darocur TPO manufactured by Ciba Specialty Chemicals.
  • 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1- is used from the viewpoint of exposure sensitivity and transparency.
  • the photopolymerization initiator of component (b) may be used alone or in combination of two or more, and the content thereof is the total solid content of the photopolymerizable composition containing conductive fibers.
  • the mass is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
  • the binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or styrene copolymer as a main chain) (for example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like. Among these, those that are soluble in an organic solvent and soluble in an aqueous alkali solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid are particularly preferable. preferable.
  • the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
  • a known radical polymerization method For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
  • a polymer having a carboxylic acid in the side chain is preferable.
  • the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
  • a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful.
  • the polymer can be used by mixing in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Coalescence, etc.
  • (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
  • Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. In these, the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
  • Examples of the alkyl (meth) acrylate or aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth).
  • vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, CH 2 ⁇ CR. 1 R 2 , CH 2 ⁇ C (R 1 ) (COOR 3 ) [wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. R 3 represents an alkyl group having 1 to 8 carbon atoms or an aralkyl group having 6 to 12 carbon atoms. ] And the like. These may be used individually by 1 type and may use 2 or more types together.
  • the weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
  • the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
  • the content of the component (c) binder is preferably 5% by mass to 90% by mass, preferably 10% by mass to 90% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers. 85% by mass is more preferable, and 20% by mass to 80% by mass is even more preferable. When the content is within the preferable range, both developability and conductivity of the metal nanowire can be achieved.
  • additives other than the above components (a) to (c) include, for example, a chain transfer agent, a crosslinking agent, a dispersant, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity.
  • a chain transfer agent for improving the exposure sensitivity of the photopolymerizable composition.
  • chain transfer agents examples include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzoic acid.
  • N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzoic acid.
  • imidazole N-phenylmercaptobenzimidazole, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, etc.
  • Aliphatic polyfunctional compounds such as mercapto compounds having a heterocyclic ring, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane Examples include mercapto compounds. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers. % Is more preferable, and 0.5% by mass to 5% by mass is still more preferable.
  • a crosslinking agent is a compound that forms a chemical bond with a free radical or acid and heat and cures the conductive layer. For example, at least one selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group.
  • Examples thereof include a compound, a compound having an ethylenically unsaturated group including a methacryloyl group or an acryloyl group.
  • an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
  • the said oxetane resin can be used individually by 1 type or in mixture with an epoxy resin.
  • the reactivity is high, which is preferable from the viewpoint of improving film properties.
  • the said crosslinking agent is also included by the said (c) polymeric compound, The content is (c) superposition
  • the content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, and more preferably 3 parts by weight to 200 parts by weight, based on the total weight of the solid content of the photopolymerizable composition containing the conductive fibers.
  • the dispersant is used for dispersing the conductive fibers in the photopolymerizable composition while preventing the conductive fibers from aggregating.
  • the dispersant is not particularly limited as long as the conductive fibers can be dispersed, and can be appropriately selected according to the purpose.
  • a commercially available dispersant can be used as a pigment dispersant, and a polymer dispersant having a property of adsorbing to conductive fibers is particularly preferable.
  • polymer dispersants examples include polyvinyl pyrrolidone, BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nihon Lubrizol), Ajisper series (manufactured by Ajinomoto Co., Inc.), and the like.
  • the polymer dispersant is also included in the binder of the component (c), It should be considered that the content is included in the content of the component (c) described above.
  • the content of the dispersant is preferably 0.1 part by weight to 50 parts by weight, more preferably 0.5 part by weight to 40 parts by weight, with respect to 100 parts by weight of the binder of component (c), and 1 part by weight to 30 parts by weight. Part by mass is particularly preferred.
  • the solvent is a component used to form a coating solution for forming the photopolymerizable composition containing the above-described conductive fibers on the surface of the base material in a film form, depending on the purpose.
  • a coating solution for forming the photopolymerizable composition containing the above-described conductive fibers on the surface of the base material in a film form depending on the purpose.
  • propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate, 3-methoxybutanol, water, 1-methoxy-2- Examples include propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL), propylene carbonate, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • (D-5) Metal corrosion inhibitor When metal nanowires are used as the conductive fibers, it is preferable to contain a metal corrosion inhibitor. There is no restriction
  • the metal corrosion inhibitor is added to the composition for forming the photosensitive layer in a state dissolved in a suitable solvent, or in the form of powder, or after preparing a conductive film with a conductive layer coating solution described later, this is added to the metal corrosion inhibitor. It can be applied by soaking in a bath. When a metal corrosion inhibitor is added, it is preferable to contain 0.5% by mass to 10% by mass with respect to the metal nanowires.
  • the matrix it is possible to use, as at least a part of the components constituting the matrix, a polymer compound as a dispersant used in the production of the conductive fibers described above.
  • the ratio of the conductive fibers having an aspect ratio of 10 or more is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more by volume ratio in the composition for forming a photosensitive layer.
  • the ratio of these conductive fibers may be referred to as “the ratio of conductive fibers”. If the ratio of the conductive fibers is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced.
  • particles having a shape other than the conductive fiber are not preferable because they do not greatly contribute to conductivity and have absorption.
  • transparency may be deteriorated when plasmon absorption such as a spherical shape is strong.
  • the ratio of the conductive fibers is, for example, when the conductive fibers are silver nanowires, the silver nanowire aqueous dispersion is filtered to separate the silver nanowires from the other particles.
  • the ratio of conductive fibers can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver transmitted through the filter paper using an ICP emission analyzer. This is detected by observing the conductive fibers remaining on the filter paper with a TEM, observing the short axis lengths of 300 conductive fibers, and examining their distribution.
  • the measuring method of the average minor axis length and the average major axis length of the conductive fiber is as described above.
  • a method for forming the conductive layer on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected according to the purpose.
  • a roll coating method or a bar coating method Dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
  • the conductive member of the present invention is characterized by having at least one intermediate layer between the substrate and the conductive layer.
  • an intermediate layer between the base material and the conductive layer, the adhesion between the base material and the conductive layer, the total light transmittance of the conductive layer, the haze of the conductive layer, the film strength of the conductive layer, It is possible to improve at least one of electromigration in the case where the conductive layer is a conductive layer including a conductive region and a non-conductive region, which will be described later.
  • the intermediate layer include an adhesive layer for improving the adhesive force between the base material and the conductive layer, and a functional layer for improving functionality by interaction with components contained in the conductive layer. Depending on the situation, it is appropriately provided.
  • FIG. 1 is a schematic cross-sectional view showing a conductive member 1 according to the first embodiment of the present invention.
  • the 1st contact bonding layer 31 excellent in affinity with the base material 10 and the 2nd adhesion excellent in affinity with the electroconductive layer 20 are shown.
  • An intermediate layer 30 including a layer 32 is provided.
  • FIG. 2 is a schematic cross-sectional view showing a conductive member 2 according to the second embodiment of the present invention.
  • the conductive layer 20 is adjacent to the base material 10 and the conductive layer 20.
  • the intermediate layer 30 is configured to include the functional layer 33.
  • the intermediate layer 30 in this specification refers to a layer including at least one layer selected from the first adhesive layer 31, the second adhesive layer 32, and the functional layer 33.
  • the material used for the intermediate layer 30 is not particularly limited as long as it improves at least one of the above characteristics.
  • a material selected from a polymer used for an adhesive, a silane coupling agent, a titanium coupling agent, a sol-gel film obtained by hydrolysis and polycondensation of an alkoxide compound of Si, etc. Is included.
  • an intermediate layer in contact with the conductive layer is a functional layer 33 containing a compound having a functional group capable of interacting with the conductive fibers contained in the conductive layer 20, the conductivity excellent in total light transmittance, haze, and film strength. It is preferable because a conductive layer is obtained. In the case of having such an intermediate layer, a conductive layer excellent in film strength can be obtained even if the conductive layer 20 contains conductive fibers and organic polymers. Furthermore, when the conductive layer is a conductive layer including a conductive region and a non-conductive region, which will be described later, it is preferable to provide the functional layer 33 in that the electromigration phenomenon can be suppressed.
  • the conductive fiber and the intermediate layer contained in the conductive layer are provided. Due to the interaction with the compound having the above functional group contained, the aggregation of the conductive material in the conductive layer is suppressed, the uniform dispersibility is improved, and the transparency resulting from the aggregation of the conductive material in the conductive layer It is considered that an increase in film strength is achieved due to adhesion, as well as a decrease in haze and haze.
  • the intermediate layer capable of exhibiting such interaction may be referred to as a functional layer. Since the functional layer exhibits its effect by interaction with the conductive material, not only the conductive layer having the aforementioned three-dimensional cross-linked structure in the present invention, but also a conductive layer containing conductive fibers and organic polymers. Even if it is provided adjacent to the sex layer, the effect is exhibited.
  • Examples of the functional group capable of interacting with the conductive fiber include, for example, when the conductive fiber is silver nanowire, an amide group, an amino group, a mercapto group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic group. More preferably, it is at least one selected from the group consisting of acid groups or salts thereof. More preferred is an amino group, mercapto group, phosphoric acid group, phosphonic acid group or a salt thereof, and most preferred is an amino group.
  • Examples of the compound having a functional group as described above include compounds having an amide group such as ureidopropyltriethoxysilane, polyacrylamide, polymethacrylamide and the like, for example, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane.
  • 3-aminopropyltriethoxysilane bis (hexamethylene) triamine, N, N′-bis (3-aminopropyl) -1,4-butanediamine tetrahydrochloride, spermine, diethylenetriamine, m-xylenediamine, metaphenylene
  • amino groups such as diamines, such as compounds having mercapto groups such as 3-mercaptopropyltrimethoxysilane, 2-mercaptobenzothiazole, toluene-3,4-dithiol, such as poly (p-styrene sulfone) Acid sodium ), Poly (2-acrylamido-2-methylpropanesulfonic acid) and other sulfonic acid or salts thereof, such as polyacrylic acid, polymethacrylic acid, polyaspartic acid, terephthalic acid, cinnamic acid , Compounds having a carboxylic acid group such as fumaric acid, succin
  • the conductive fibers interact with the functional groups contained in the intermediate layer, and the conductive fibers aggregate when dried.
  • a conductive layer in which conductive fibers are uniformly dispersed can be formed.
  • the said functional group is fixed on the said base material by reaction of a silane coupling agent.
  • the functional group precursor may be fixed and converted to a functional group by subsequent chemical treatment.
  • a silane coupling agent having a carboxylic acid precursor compounds disclosed in JP-A-2005-255615 can be used.
  • the appropriate amount of the functional group depends on the type of functional group and the structure of the silane coupling agent. However, if the amount is too much, the metal wire will aggregate and the surface resistance will increase or electromigration will deteriorate. .
  • a coating method capable of managing the fixed amount is preferable, and specifically, a slot die method is preferable.
  • fixation by an immersion method is also preferably performed. Adjustment of the fixed amount by the immersion method is possible by adjusting the concentration of the silane coupling agent in the immersion liquid and the immersion time.
  • the content of the silane coupling agent in the intermediate layer wherein it is preferably contained 1 [mu] mol / m 2 or more 1 mmol / m 2 or less in the intermediate layer, may be included 2 [mu] mol / m 2 or more 500 [mu] mol / m 2 or less and more Preferably, it is more preferably 3 ⁇ mol / m 2 or more and 200 ⁇ mol / m 2 or less.
  • the short circuit time due to the electromigration phenomenon can be increased.
  • electroion migration is improved by setting the content to 1 ⁇ mol / m 2 or more.
  • Various methods of surface analysis such as TOF-SIMS, ESCA, EDX, and FTIR-ATR can be used for quantification of the immobilized functional group.
  • the amount of fixation can be confirmed as a change in membrane surface pH before and after the functional group is fixed.
  • the intermediate layer can be formed by applying a solution obtained by dissolving or dispersing or emulsifying the compound constituting the intermediate layer onto the substrate and drying it, and a general method can be used as the application method.
  • the method is not particularly limited and can be appropriately selected depending on the purpose. For example, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method. , Gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
  • surface treatment such as corona discharge irradiation is preferably performed, and the water contact angle is preferably within an appropriate range by these surface treatments.
  • the surface treatment can be performed by a method that can be used for the above-described substrate surface treatment, and among them, the use of corona discharge treatment, plasma treatment, or glow discharge treatment causes less damage to the substrate and can impart surface energy. It is preferable from a certain viewpoint.
  • the water contact angle after the surface treatment is preferably 3 ° to 50 °, more preferably 5 ° to 45 °, still more preferably 5 ° to 40 °, and still more preferably 5 ° to 35 °. Most preferably, it is 5 ° or more and 30 ° or less.
  • a water contact angle of 3 ° or more is preferable because the fixed density of the group that interacts with the silver in the intermediate layer is increased.
  • the water contact angle is 50 ° or less, the unevenness and repellency of the -M1-O-M1-layer having a three-dimensional cross-linked bond are reduced, which is preferable.
  • the water contact angle can be measured using a commercially available contact angle measuring device and pure water. For example, it can be measured with a DM701 fully automatic contact angle meter manufactured by Kyowa Interface Chemical Co., Ltd.
  • the shape of the conductive member according to the present invention when observed from the direction perpendicular to the substrate surface is that the entire region of the conductive layer is a conductive region (hereinafter, this conductive layer is referred to as “unpatterned conductive”). Also referred to as a conductive layer.)
  • the first embodiment, and the conductive layer includes a conductive region and a non-conductive region (hereinafter, this conductive layer is also referred to as a “patterned conductive layer”). Any of the embodiments may be used.
  • the non-conductive region may or may not contain conductive fibers. When conductive fibers are included in the nonconductive region, the conductive fibers included in the nonconductive region are disconnected.
  • the electroconductive member which concerns on a 1st aspect can be used as a transparent electrode of a solar cell, for example.
  • the electroconductive member which concerns on a 2nd aspect is used when creating a touch panel, for example. In this case, a conductive region and a non-conductive region having a desired shape are formed.
  • the patterned conductive layer is manufactured, for example, by the following patterning method.
  • a non-patterned conductive layer is formed in advance, and a conductive fiber contained in a desired region of the non-patterned conductive layer is irradiated with a high-energy laser beam such as a carbon dioxide laser or a YAG laser.
  • a high-energy laser beam such as a carbon dioxide laser or a YAG laser.
  • a patterning method in which a part of the conductive fiber is disconnected or disappeared to make the desired region a non-conductive region. This method is described in, for example, Japanese Patent Application Laid-Open No. 2010-496.
  • a photoresist layer is provided on a previously formed non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist.
  • the conductive layer is composed of conductive fibers alone, and the conductive layer includes a non-photosensitive matrix (for example, an organic polymer). This is a convenient patterning method.
  • the light source used for the pattern exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but generally ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used.
  • a blue LED may be used.
  • the pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
  • the solution for dissolving the conductive fibers can be appropriately selected according to the conductive fibers.
  • the conductive fiber is silver nanowire
  • bleaching fixer, strong acid, oxidizing agent, peroxidation used mainly in bleaching and fixing process of photographic paper of silver halide color photosensitive material Examples include hydrogen.
  • bleach-fixing solution, dilute nitric acid, and hydrogen peroxide are particularly preferable.
  • the dissolution of the silver nanowires with the solution for dissolving the conductive fibers may not completely dissolve the silver nanowires of the portion to which the solution is applied, and partly if the conductivity is lost. It may remain.
  • the concentration of the diluted nitric acid is preferably 1% by mass to 20% by mass.
  • the concentration of the hydrogen peroxide is preferably 3% by mass to 30% by mass.
  • the bleach-fixing solution examples include, for example, JP-A-2-207250, page 26, lower right column, line 1 to page 34, upper-right column, line 9 and JP-A-4-97355, page 5, upper left column, line 17.
  • the processing materials and processing methods described in the 20th page, lower right column, line 20 are preferably applicable.
  • the bleach-fixing time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer, and still more preferably 90 seconds or shorter and 5 seconds or longer.
  • the washing time or the stabilization time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer.
  • the bleach-fixing solution is not particularly limited as long as it is a photographic bleach-fixing solution, and can be appropriately selected according to the purpose.
  • CP-48S and CP-49E (Fujifilm Co., Ltd.) Fixing agent), Kodak Ektacolor RA bleach-fixing solution, Dai Nippon Printing Co., Ltd. bleach-fixing solution D-J2P-02-P2, D-30P2R-01, D-22P2R-01, and the like.
  • CP-48S and CP-49E are particularly preferable.
  • the viscosity of the solution for dissolving the conductive fibers is preferably 5 mPa ⁇ s to 300,000 mPa ⁇ s at 25 ° C., more preferably 10 mPa ⁇ s to 150,000 mPa ⁇ s.
  • the viscosity is preferably 5 mPa ⁇ s to 300,000 mPa ⁇ s at 25 ° C., more preferably 10 mPa ⁇ s to 150,000 mPa ⁇ s.
  • the application of the pattern of the solution for dissolving the conductive fibers is not particularly limited as long as the solution can be applied in a pattern, and can be appropriately selected according to the purpose.
  • screen printing, inkjet printing, resist Examples thereof include a method in which an etching mask is formed with an agent and a solution is applied on the coating mask, coater application, roller application, dipping application, and spray application.
  • screen printing, ink jet printing, coater coating, and dip coating are particularly preferable.
  • the ink jet printing for example, either a piezo method or a thermal method can be used.
  • the conductive member according to the present invention is preferably adjusted so that the surface resistance is 1,000 ⁇ / ⁇ or less.
  • the surface resistance is a value measured by a four-probe method on the surface of the conductive member according to the present invention on the side opposite to the base material side.
  • the method of measuring the surface resistance by the four-probe method can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method by the four-probe method of conductive plastics). Can be easily measured.
  • JIS K 7194 resistivity test method by the four-probe method of conductive plastics.
  • a conductive layer having a desired range of surface resistance can be formed by adjusting the content ratio of the compound represented by the general formula (II) and the conductive fiber. it can.
  • the surface resistance of the conductive member according to the present invention is more preferably in the range of 0.1 ⁇ / ⁇ to 900 ⁇ / ⁇ . 10 ⁇ / ⁇ to 250 ⁇ / ⁇ is preferable for touch panel applications and laminated solar cell applications.
  • the conductive layer contains conductive fibers and includes a three-dimensional bond represented by the general formula (I), so that the conductive layer has high film strength. And, there is a specific effect that the surface resistance is low.
  • the conductive layer according to the present invention includes a sol-gel cured product obtained by coating an aqueous solution containing the above-mentioned specific alkoxide compound on top, and hydrolyzing and polycondensing the specific alkoxide compound contained in the coating liquid film. It seems that the effect of low surface resistance is closely related to the fact that it is composed.
  • the polymer having a hydrophilic group as a dispersant used during the preparation of the silver nanowires prevents at least some of the contact between the silver nanowires. It is guessed.
  • the conductive element according to the present invention in the process of forming the sol-gel cured product, the above-mentioned dispersant covering the silver nanowires is peeled off, and further, a large number of silver is contracted due to contraction when the specific alkoxide compound is polycondensed. It is estimated that the contact point between nanowires increases, and as a result, a conductive member having a low surface resistance is obtained.
  • the water contact angle can be adjusted by the surface treatment of the base material, and the above-described conductive fibers included in the intermediate layer can interact.
  • Fixing a compound having a functional group to a substrate by a silane coupling treatment is a preferred embodiment.
  • the suppression of migration by the water contact angle and the silane coupling treatment is effective even when a hydrophilic binder other than the present invention or a hydrophilic binder layer is coated with a hydrophobic binder as a binder matrix of the conductive layer. I understood it.
  • the conductive member according to the present invention has excellent durability against scratches and abrasion of the conductive layer and has low surface resistance, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic EL display electrode, and an inorganic EL display It is widely applied to electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, liquid crystal display devices, display devices with touch panel functions, and other various devices. Among these, application to a touch panel and a solar cell is particularly preferable.
  • the conductive member according to the present invention is applied to, for example, a surface capacitive touch panel, a projection capacitive touch panel, a resistive touch panel, and the like.
  • the touch panel includes a so-called touch sensor and a touch pad.
  • the layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. It is preferable that it is either.
  • the surface capacitive touch panel is described in, for example, JP-T-2007-533044.
  • the conductive member according to the present invention is useful as a transparent electrode in an integrated solar cell (hereinafter sometimes referred to as a solar cell device).
  • a solar cell device There is no restriction
  • Group III-V compound semiconductor solar cell devices II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned.
  • CdTe cadmium telluride
  • CIS system copper / indium / selenium system
  • So-called CIGS-based copper / indium / gallium / selenium system
  • I-III-VI group compound semiconductor solar cell devices dye-sensitized solar cell devices, organic solar cell devices, etc.
  • the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
  • CIS system copper / indium / selenium system
  • CIGS-based copper / indium / gallium / A selenium-based
  • I-III-VI group compound semiconductor solar cell device is preferable.
  • amorphous silicon solar cell device composed of a tandem structure type or the like, amorphous silicon, a microcrystalline silicon thin film layer, a thin film containing Ge in these, and a tandem structure of these two or more layers is a photoelectric conversion layer Used as For film formation, plasma CVD or the like is used.
  • the conductive member according to the present invention can be applied to all the solar cell devices.
  • the conductive member may be included in any part of the solar cell device, but it is preferable that the conductive layer is disposed adjacent to the photoelectric conversion layer.
  • the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this.
  • the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood.
  • the configuration surrounded by [] corresponds to the conductive member according to the present invention.
  • A [base material-conductive layer] -photoelectric conversion layer
  • B [base material-conductive layer] -photoelectric conversion layer- [conductive layer-base material]
  • C Substrate-electrode-photoelectric conversion layer- [conductive layer-base material]
  • D Back electrode-photoelectric conversion layer- [conductive layer-base material] Details of such a solar cell are described in, for example, Japanese Patent Application Laid-Open No. 2010-87105.
  • the present invention is not limited to these examples.
  • “%” and “parts” as the contents are based on mass.
  • the average diameter (average minor axis length) and average major axis length of metal nanowires, the coefficient of variation of minor axis length, and the ratio of silver nanowires with an aspect ratio of 10 or more are as follows: The measurement was performed as described above.
  • TEM transmission electron microscope
  • ⁇ Ratio of silver nanowires with an aspect ratio of 10 or more> Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 short axis lengths of the silver nanowires were observed, and the amount of silver transmitted through the filter paper was measured. Of silver nanowires having a major axis length of 5 ⁇ m or more was determined as the ratio (%) of silver nanowires having an aspect ratio of 10 or more. The silver nanowires were separated when determining the ratio of silver nanowires using a membrane filter (Millipore, FALP 02500, pore size 1.0 ⁇ m).
  • a silver nanowire aqueous dispersion was prepared as follows. 410 mL of pure water was placed in a three-necked flask, and 82.5 mL of the additive solution H and 206 mL of the additive solution G were added through a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of the additive solution A was added at a flow rate of 2.0 mL / min and a stirring rotation speed of 800 rpm (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 73 ° C. at 3 ° C./min. Then, the stirring rotation speed was reduced to 200 rpm and heated for 5.5 hours.
  • an ultrafiltration module SIP1013 manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000
  • a magnet pump a magnet pump
  • a stainless steel cup was connected with a silicone tube to obtain an ultrafiltration device.
  • the silver nanowire aqueous dispersion was put into a stainless steel cup, and the ultrafiltration was performed by operating the pump.
  • the filtrate from the module reached 50 mL
  • 950 mL of distilled water was added to the stainless steel cup for washing. The above washing was repeated until the conductivity reached 50 ⁇ S / cm or less, and then concentrated to obtain a 0.84 mass% silver nanowire dispersion (1).
  • the average minor axis length, the average major axis length, the ratio of silver nanowires with an aspect ratio of 10 or more, and the silver nanowire minor axis length are as described above.
  • the coefficient of variation was measured.
  • silver nanowires having an average minor axis length of 17.2 nm, an average major axis length of 34.2 ⁇ m, and a coefficient of variation of 17.8% were obtained.
  • the ratio of silver nanowires having an aspect ratio of 10 or more was 81.8%.
  • silver nanowire aqueous dispersion (1) the silver nanowire aqueous dispersion obtained by the said method is shown.
  • Preparation Example 2 Preparation of sol-gel silica binder silver coating solution-
  • the following alkoxide compound solution (1) 3.44 parts and the silver nanowire aqueous dispersion (1) 16.56 parts obtained in Preparation Example 1 were mixed, and further diluted with distilled water to obtain a sol-gel coating solution. It was.
  • Example 1 A glass substrate was obtained according to the following preparation example.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the “glass substrate” refers to the alkali-free glass substrate obtained by the pretreatment.
  • the sol-gel silica binder silver coating solution was bar coated on the glass substrate so that the silver coating amount was 17 mg / m 2 and dried at 110 ° C. for 75 seconds to obtain a pre-patterning sample 101A.
  • the sample 101A is coated with a positive resist manufactured by Fuji Film Co., Ltd. at 10 g / m 2, and the resist layer is exposed through a positive pattern mask having a pattern in which two 1 cm ⁇ 1 cm squares are arranged with a gap of 30 ⁇ m. Development was carried out with a 3.4% tetramethylammonium hydroxide (TMAH) developer at 25 ° C. for 45 seconds, followed by washing with water and drying to obtain a masked transparent conductive glass.
  • TMAH tetramethylammonium hydroxide
  • a 1 cm ⁇ 1 cm square is 30 ⁇ m
  • An aqueous solution which forms a pattern in which two gaps are arranged and further contains 1% 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene and 1% 1-phenyl-5-mercapto-1H-tetrazole For 30 seconds, washed with water, and dried to obtain a patterned sample 101B.
  • Examples 2-6, Comparative Examples 1-2 Patterned sample in the same manner as in Example 1 except that the immersion time in a 1% aqueous solution of sodium hydroxide and the immersion time of the silane coupling solution are appropriately changed so that the water contact angles shown in Table 1 are adjusted. 102B to 108B were obtained.
  • Example 7 A surface-treated PET substrate was obtained according to the following preparation example.
  • (Preparation Example 4) Pretreatment of PET substrate- A bonding solution 1 was prepared with the following composition.
  • Adhesive solution 1 -Takelac WS-4000 5.0 parts (solid content concentration 30%, manufactured by Mitsui Chemicals, Inc.) ⁇ Surfactant 0.3 part (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries, Ltd.) ⁇ Surfactant 0.3 part (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.) ⁇ 94.4 parts of water
  • a corona discharge treatment was performed on one surface of a PET substrate having a thickness of 125 ⁇ m.
  • the adhesive solution 1 was applied to the surface subjected to the corona discharge treatment and dried at 120 ° C. for 2 minutes to form an adhesive layer 1 having a thickness of 0.11 ⁇ m.
  • An adhesive solution 2 was prepared with the following composition.
  • [Adhesive solution 2] ⁇ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.) ⁇ 3.2 parts of 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) ⁇ 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.8 parts.
  • the bonding solution 2 was prepared by the following method. While the aqueous acetic acid solution was vigorously stirred, 3-glycidoxypropyltrimethoxysilane was dropped into the aqueous acetic acid solution over 3 minutes. Next, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added to the aqueous acetic acid solution over 3 minutes with vigorous stirring. Next, tetramethoxysilane was added to the acetic acid aqueous solution with vigorous stirring over 5 minutes, and then stirring was continued for 2 hours. Next, colloidal silica, a curing agent, and a surfactant were sequentially added to prepare an adhesive solution 2.
  • the adhesive solution 2 was applied onto the adhesive layer 1 subjected to corona discharge treatment by a bar coating method, heated at 170 ° C. for 5 minutes and dried to form an adhesive layer 2 having a thickness of 0.7 ⁇ m. Thereafter, corona discharge treatment was performed on the adhesive layer 2 to obtain a surface-treated PET substrate.
  • the following surface-treated PET substrate was bar-coated with the following silane coupling solution and subjected to silane coupling treatment by hot air drying at 100 ° C. for 60 seconds.
  • the amount of the coating solution was adjusted so that the change in pH of the film surface before and after the silane coupling treatment was +1.
  • the membrane surface pH was measured by dropping 0.5 ml of pure water onto the membrane surface with a GST-5423 SpH electrode manufactured by Toa DKK and a pH meter.
  • the 109A sample was subjected to the same operation as 101A to obtain a patterned sample 109B.
  • Samples 110B to 120B were prepared in the same manner as in Example 7 except that the corona irradiation amount was adjusted to the water contact angle shown in Table 1 with respect to the PET substrate.
  • ⁇ Surface resistance> The surface resistance of the portion where the 1 cm square pattern of the sample before patterning was formed was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
  • the silane coupling agent could not be applied (Sample 102B), and the sol-gel silica binder silver coating solution could not be applied.
  • silver aggregation occurred (sample 103B), and conductivity was not obtained.
  • the short-circuit time by electromigration is long (110B to 113B). If the amount is too large, the surface resistance is high and the short circuit time is short (example samples 106B and 120B).
  • the contact angle is 4 ° or less, the surface resistance is good, but the short-circuit time is short, and when it is 50 °, silver nanowire aggregation is observed and the resistance is increased. It can be seen that these tendencies are the same for the glass substrate as for the PET substrate. Further, since the same result was obtained even when the surface treatment method of the sample 109B was changed to atmospheric pressure plasma and glow irradiation, there is an effect of extending the short-circuiting time due to electromigration regardless of the surface treatment method. Recognize.
  • samples 201B to 212B shown in Table 2 were prepared, and surface resistance and migration short-circuit time were evaluated.
  • the short-circuiting time due to electromigration was long (example samples 202B to 205B), and the KBM603 coating amount was 0 It can be seen that the short-circuiting time is long for the samples of 5 mg / m 2 to 5 mg / m 2 (example samples 207B to 210B), which is a preferable embodiment for the purpose of the present invention.
  • Sample 109B except that the substrate was replaced with a triacetylcellulose (TAC) substrate (thickness 100 ⁇ m), and a triacetylcellulose (TAC) substrate was obtained by applying corona discharge treatment without applying adhesive layers 1 and 2.
  • Samples 301B to 312B shown in Table 3 were produced in the same manner as for .about.120B. And the surface resistance and the migration short circuit time were evaluated.
  • Samples 401B to 407B shown in Table 5 were prepared in the same manner as Sample 301B except that compounds SA-1 to 7 shown in Table 4 below were used instead of KBM603, and surface resistance and migration short circuit time were evaluated. went.
  • the manufactured touch panel When using the manufactured touch panel, it improves visibility by improving transmittance, and responds to input of characters, etc. or screen operations with at least one of bare hands, hands with gloves, or pointing tools by improving conductivity It was found that a touch panel with excellent performance can be produced. Moreover, in this embodiment, since it did not short-circuit for a long time, migration did not arise and it turned out that the electrical property of a touch panel is stable over a long period of time.
  • Example 51 In Example 50, a touch panel was produced in the same manner as in Example 50 except that the interval between adjacent sides of the substantially square pad portion of the electrode pattern in the X direction and the Y direction was 50 ⁇ m. When the performance of the manufactured touch panel of Example 51 was evaluated in the same manner as in Example 50, the same level of performance as in Example 50 was obtained.
  • Example 52 In Example 50, a touch panel was produced in the same manner as in Example 50 except that the interval between adjacent sides of the substantially square pad portion of the electrode pattern in the X direction and the Y direction was set to 60 ⁇ m. As for the produced touch panel of Example 52, it turned out that the pattern of a transparent electrode is visually recognized by visual observation, and a pattern space
  • Example 53 ⁇ Production of integrated solar cell> -Fabrication of amorphous solar cells (super straight type)- Sample No. above.
  • a p-type film having a thickness of about 15 nm is formed on the top of the transparent conductive material 117B by plasma CVD, an i-type film having a thickness of about 350 nm is formed on the p-type, and an n-type amorphous silicon film having a thickness of about 30 nm is formed on the i-type.
  • a gallium-doped zinc oxide layer having a thickness of 20 nm was formed as a back surface reflecting electrode on the n-type amorphous silicon, and a silver layer having a thickness of 200 nm was formed on the gallium-doped zinc oxide layer to produce a photoelectric conversion element.
  • the laminate for forming a conductive film of the present invention can be used as it is or as a transfer material, and has excellent patternability by development, and excellent transparency, conductivity and durability (film strength).

Abstract

An electroconductive member in which electroconductivity and film strength can be obtained at the same time; the electroconductive member having, on a base material, an electroconductive layer including an electroconductive fiber having a minor-axis diameter equal to or less than 150 nm and including a three-dimensional crosslink bond having a bond represented by the following formula (I); the electroconductive member furthermore having at least one intermediate layer between the base material and the electroconductive layer. -M1-O-M1- (I) (in formula (I), M1 represents an element selected from the group consisting of Si, Ti, Zr, and Al).

Description

導電性部材、その製造方法、タッチパネル及び太陽電池Conductive member, manufacturing method thereof, touch panel and solar cell
 本発明は、導電性部材、その製造方法、タッチパネル及び太陽電池に関する。 The present invention relates to a conductive member, a manufacturing method thereof, a touch panel, and a solar cell.
 近年、金属ナノワイヤーのような導電性繊維を含む導電性層を有する導電性部材が提案されている(例えば、特許文献1参照。)。この導電性部材は、基材上に、複数の金属ナノワイヤーを含む導電性層を備えるものである。この導電性部材は、例えば導電性層中にマトリックスとしての光硬化性組成物を含有させておくことにより、パターン露光及びそれに引き続く現像によって、所望の導電性領域と非導電性領域とを含む導電性層を有する導電性部材に容易に加工することができる。この加工された導電性部材は、例えばタッチパネルとして、又は太陽電池の電極としての用途に供することができる。
 上記の導電性部材は導電性層の膜強度が弱い。そのため、導電性層の表面に硬質皮膜を設けて、導電性層をキズ及び磨耗から守る保護層とすることも提案されている。そして、このような硬質皮膜の例として、ポリアクリル酸、エポキシ、ポリウレタン、ポリシラン、シリコーン、ポリ(シリコ-アクリル)等の合成ポリマーの膜が例示されている(例えば、特許文献1の段落0071参照。)。
 また、特許文献2には、銀ナノワイヤとバインダーマトリクスの組合せによる透明導電材料及び種々の表面処理された支持体に透明導電層を塗布することが開示されている。
 更に、特許文献3には、ナノワイヤとポリマーからなる透明導電材料の下引きとしてシランカップリング剤を塗布した支持体の記載がある。
In recent years, a conductive member having a conductive layer containing conductive fibers such as metal nanowires has been proposed (see, for example, Patent Document 1). This conductive member includes a conductive layer including a plurality of metal nanowires on a base material. The conductive member contains a desired conductive region and a non-conductive region by pattern exposure and subsequent development, for example, by containing a photocurable composition as a matrix in a conductive layer. It can be easily processed into a conductive member having a conductive layer. This processed conductive member can be used, for example, as a touch panel or as an electrode of a solar cell.
The conductive member has a weak film strength of the conductive layer. For this reason, it has also been proposed to provide a protective layer that protects the conductive layer from scratches and abrasion by providing a hard film on the surface of the conductive layer. Examples of such hard coatings include films of synthetic polymers such as polyacrylic acid, epoxy, polyurethane, polysilane, silicone, and poly (silico-acrylic) (see, for example, paragraph 0071 of Patent Document 1). .)
Patent Document 2 discloses that a transparent conductive layer is applied to a transparent conductive material using a combination of silver nanowires and a binder matrix and various surface-treated supports.
Furthermore, Patent Document 3 describes a support on which a silane coupling agent is applied as an undercoat of a transparent conductive material composed of nanowires and a polymer.
 しかしながら、特許文献1に記載の硬質皮膜を設けて導電性層をキズ及び磨耗から守るようにすると、1μm前後~50μm前後の厚さとする必要があり、導電性が低下してしまうという問題が生じてしまっていた。他方、導電性の低下の少ない範囲の厚みの硬質皮膜を設けた場合には、導電性層をキズ及び磨耗を防ぐには、不十分であった。
 また、特許文献2には、表面処理により接触角制御した後に特定のシランカップリング剤を塗布した支持体を用いるとマイグレーションが改善される現象については言及されていない。
 更に、特許文献3には、表面処理により接触角制御した後に特定のシランカップリング剤を塗布した支持体を用いるとマイグレーションが改善される現象については言及されていない。
 このように、導電性繊維を含む導電性層を備えた導電性部材において、導電性層をキズ及び磨耗から守ることと高い導電性を保持させることとを両立させることは困難であり、これらを両立させた導電性部材が要望されていた。
However, when the hard coating described in Patent Document 1 is provided to protect the conductive layer from scratches and abrasion, it is necessary to have a thickness of about 1 μm to about 50 μm, resulting in a problem that the conductivity is lowered. It was. On the other hand, when a hard film having a thickness in a range where the decrease in conductivity is small is provided, it is insufficient to prevent the conductive layer from being scratched and worn.
Patent Document 2 does not mention a phenomenon in which migration is improved when a support on which a specific silane coupling agent is applied after contact angle control by surface treatment is used.
Furthermore, Patent Document 3 does not mention a phenomenon in which migration is improved when a support on which a specific silane coupling agent is applied after the contact angle is controlled by surface treatment.
Thus, in a conductive member provided with a conductive layer containing conductive fibers, it is difficult to achieve both a protection of the conductive layer from scratches and wear and a high conductivity. There has been a demand for compatible conductive members.
日本国特表2009-505358号公報Japan Special Table 2009-505358 日本国特表2010-507199号公報Japan Special Table 2010-507199 日本国特開2012-009479号公報Japanese Unexamined Patent Publication No. 2012-009479
 従って、本発明が解決しようとする課題は、キズ及び磨耗に対して高い耐性を有し、かつ導電性に優れた導電性部材及びその製造方法、並びに当該導電性部材を用いたタッチパネル及び太陽電池を提供することにある。 Therefore, the problem to be solved by the present invention is a conductive member having high resistance to scratches and wear and having excellent conductivity, a method for manufacturing the same, and a touch panel and a solar cell using the conductive member. Is to provide.
 前記課題を解決する本発明は、以下のとおりである。
〔1〕
 基材上に、短軸径が150nm以下の導電性繊維を含み、かつ下記一般式(I)で示される結合を含む三次元架橋結合を含んで構成される導電性層を備える導電性部材であって、基材と導電性層との間に、更に少なくとも一層の中間層を有する導電性部材。
   -M-O-M-    (I)
 (一般式(I)中、MはSi、Ti、Zr及びAlからなる群から選ばれた元素を示す。)
〔2〕
 導電性層が、Si、Ti、Zr及びAlからなる群より選ばれた元素のアルコキシド化合物の少なくとも一つを加水分解及び重縮合して得られるゾルゲル硬化物を含む〔1〕に記載の導電性部材。
〔3〕
 中間層のうち、導電性層に接する中間層が、導電性繊維と相互作用可能な官能基を有する化合物を含む〔1〕又は〔2〕に記載の導電性部材。
〔4〕
 官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びに、これらの基の塩及びこれらの基の前駆体からなる群より選ばれる少なくとも1つである〔3〕に記載の導電性部材。
〔5〕
 中間層がシランカップリング剤を含み、官能基がシランカップリング剤の反応により基材上に固定される〔3〕又は〔4〕に記載の導電性部材。
〔6〕
 シランカップリング剤が中間層中に1μmol/m以上1mmol/m以下含まれる〔5〕に記載の導電性部材。
〔7〕
 中間層表面における水接触角が5゜以上40゜以下である〔1〕~〔6〕のいずれか一項に記載の導電性部材。
〔8〕
 基材が、ガラス、ポリエチレンテレフタレート、ポリカーボネート、又はトリアセチルセルロースである〔1〕~〔7〕のいずれか一項に記載の導電性部材。
〔9〕
 導電性層が、導電性繊維として平均直径50nm以下、平均長さ5μm以上の金属ナノワイヤーを含む〔1〕~〔8〕のいずれか一項に記載の導電性部材。
〔10〕
 導電性繊維が、銀ナノワイヤーである〔1〕~〔9〕のいずれか一項に記載の導電性部材。
〔11〕
 導電性層が、導電性領域及び非導電性領域を含み、かつ導電性領域及び非導電性領域の少なくとも一方が導電性繊維を含む〔1〕~〔10〕のいずれか一項に記載の導電性部材。
〔12〕
 (a)基材上に、短軸径が150nm以下の導電性繊維と、Si、Ti、Zr及びAlからなる群より選ばれた元素のアルコキシド化合物の少なくとも一つと、を含む水溶液を塗布して、当該水溶液の液膜を基材上に形成させること、及び、(b)水溶液の液膜中のアルコキシド化合物を加水分解及び重縮合させて、下記一般式(I)で示される三次元架橋結合を形成すること、をこの順に含む、基材上に、導電性繊維を含み、かつ三次元架橋結合を含んで構成される導電性層を形成する導電性部材の製造方法において(a)に先だって、更に基材における液膜が形成される表面に、少なくとも一層の中間層を形成することを特徴とする導電性部材の製造方法。
   -M-O-M-    (I)   
 (一般式(I)中、MはSi、Ti、Zr及びAlからなる群より選ばれた元素を示す。)
〔13〕
 中間層のうち、導電性層に接する中間層が、導電性繊維と相互作用可能な官能基を有する化合物を含む〔12〕に記載の導電性部材の製造方法。
〔14〕
 中間層がシランカップリング剤を含み、官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びに、これらの基の塩及びこれらの基の前駆体からなる群より選ばれる少なくとも1つであり、シランカップリング剤の反応により基材上に官能基を固定する〔13〕に記載の導電性部材の製造方法。
〔15〕
 シランカップリング剤が中間層中に1μmol/m以上1mmol/m以下含まれる〔14〕に記載の導電性部材の製造方法。
〔16〕
 (a)に先立って、中間層表面における水接触角が5゜以上40゜以下となるように表面処理する〔12〕~〔15〕のいずれか一項に記載の導電性部材の製造方法。
〔17〕
 表面処理が、コロナ放電処理、プラズマ処理、又はグロー放電処理である〔16〕に記載の導電性部材の製造方法。
〔18〕
 基材が、ガラス、ポリエチレンテレフタレート、ポリカーボネート、又はトリアセチルセルロースである〔12〕~〔17〕のいずれか一項に記載の導電性部材の製造方法。
〔19〕
 導電性層が、導電性繊維として平均直径50nm以下、平均長さ5μm以上の金属ナノワイヤーを含む〔12〕~〔18〕のいずれか一項に記載の導電性部材の製造方法。
〔20〕
 〔12〕~〔19〕のいずれか一項に記載の導電性部材の製造方法によって形成された導電性層に、更に
 (c)パターン状の非導電性領域を形成すること、を含む、導電性領域と非導電性領域とを含む導電性層を備える導電性部材の製造方法。
〔21〕
 エッチングによってパターン状の非導電性領域を形成する〔20〕に記載の導電性部材の製造方法。
〔22〕
 レーザー光照射によって導電性繊維を断線又は消失させてパターン状の非導電性領域を形成する〔20〕に記載の導電性部材の製造方法。
〔23〕
 〔1〕~〔11〕のいずれか一項に記載の導電性部材を含むタッチパネル。
〔24〕
 〔1〕~〔11〕のいずれか一項に記載の導電性部材を含む太陽電池。
The present invention for solving the above problems is as follows.
[1]
A conductive member comprising a conductive layer including a conductive fiber having a minor axis diameter of 150 nm or less on a substrate and including a three-dimensional cross-linking bond including a bond represented by the following general formula (I) A conductive member further comprising at least one intermediate layer between the substrate and the conductive layer.
-M 1 -OM 1- (I)
(In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
[2]
The conductive layer according to [1], wherein the conductive layer includes a sol-gel cured product obtained by hydrolysis and polycondensation of at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al. Element.
[3]
The conductive member according to [1] or [2], wherein the intermediate layer in contact with the conductive layer includes a compound having a functional group capable of interacting with the conductive fiber.
[4]
The functional group is at least selected from the group consisting of amide group, amino group, mercapto group, carboxylic acid group, sulfonic acid group, phosphoric acid group and phosphonic acid group, and salts of these groups and precursors of these groups The conductive member according to [3], which is one.
[5]
The conductive member according to [3] or [4], wherein the intermediate layer includes a silane coupling agent, and the functional group is fixed on the substrate by a reaction of the silane coupling agent.
[6]
The conductive member according to [5], wherein the intermediate layer contains 1 μmol / m 2 or more and 1 mmol / m 2 or less of the silane coupling agent.
[7]
The conductive member according to any one of [1] to [6], wherein a water contact angle on the surface of the intermediate layer is 5 ° or more and 40 ° or less.
[8]
The conductive member according to any one of [1] to [7], wherein the base material is glass, polyethylene terephthalate, polycarbonate, or triacetyl cellulose.
[9]
The conductive member according to any one of [1] to [8], wherein the conductive layer includes metal nanowires having an average diameter of 50 nm or less and an average length of 5 μm or more as conductive fibers.
[10]
The conductive member according to any one of [1] to [9], wherein the conductive fiber is a silver nanowire.
[11]
The conductive layer according to any one of [1] to [10], wherein the conductive layer includes a conductive region and a non-conductive region, and at least one of the conductive region and the non-conductive region includes a conductive fiber. Sexual member.
[12]
(A) An aqueous solution containing a conductive fiber having a minor axis diameter of 150 nm or less and at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al is applied on a substrate. Forming a liquid film of the aqueous solution on the substrate; and (b) hydrolyzing and polycondensing the alkoxide compound in the liquid film of the aqueous solution to form a three-dimensional cross-linking bond represented by the following general formula (I): Prior to (a) in the method for producing a conductive member, wherein the conductive layer is formed on the base material, and the conductive layer includes a three-dimensional cross-linking bond. Furthermore, at least one intermediate layer is formed on the surface of the substrate on which the liquid film is formed.
-M 1 -OM 1- (I)
(In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
[13]
The method for producing a conductive member according to [12], wherein the intermediate layer in contact with the conductive layer includes a compound having a functional group capable of interacting with the conductive fiber.
[14]
The intermediate layer contains a silane coupling agent, and the functional groups are amide group, amino group, mercapto group, carboxylic acid group, sulfonic acid group, phosphoric acid group and phosphonic acid group, and salts of these groups and these groups The method for producing a conductive member according to [13], wherein the functional group is fixed on the base material by a reaction of a silane coupling agent.
[15]
[14] The method for producing a conductive member according to [14], wherein the silane coupling agent is contained in the intermediate layer in an amount of 1 μmol / m 2 to 1 mmol / m 2 .
[16]
Prior to (a), the method for producing a conductive member according to any one of [12] to [15], wherein surface treatment is performed so that the water contact angle on the intermediate layer surface is 5 ° or more and 40 ° or less.
[17]
[16] The method for producing a conductive member according to [16], wherein the surface treatment is corona discharge treatment, plasma treatment, or glow discharge treatment.
[18]
The method for producing a conductive member according to any one of [12] to [17], wherein the substrate is glass, polyethylene terephthalate, polycarbonate, or triacetylcellulose.
[19]
The method for producing a conductive member according to any one of [12] to [18], wherein the conductive layer includes metal nanowires having an average diameter of 50 nm or less and an average length of 5 μm or more as conductive fibers.
[20]
[12] to [19], further comprising: (c) forming a patterned non-conductive region on the conductive layer formed by the method of manufacturing a conductive member according to any one of [12] to [19]. A method for producing a conductive member comprising a conductive layer including a conductive region and a non-conductive region.
[21]
The method for producing a conductive member according to [20], wherein the patterned non-conductive region is formed by etching.
[22]
The method for producing a conductive member according to [20], wherein the conductive fiber is disconnected or disappeared by laser light irradiation to form a patterned non-conductive region.
[23]
[1] A touch panel comprising the conductive member according to any one of [11].
[24]
[1] A solar cell comprising the conductive member according to any one of [11].
 本発明によれば、キズ及び磨耗に対して高い耐性を有し、かつ導電性に優れた導電性部材、その製造方法、並びに当該導電性部材を用いたタッチパネル及び太陽電池が提供される。 According to the present invention, there are provided a conductive member having high resistance to scratches and abrasion and excellent in conductivity, a manufacturing method thereof, a touch panel and a solar cell using the conductive member.
本発明の第一の実施形態に係る導電性部材の概略断面図である。It is a schematic sectional drawing of the electroconductive member which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る導電性部材の概略断面図である。It is a schematic sectional drawing of the electroconductive member which concerns on 2nd embodiment of this invention.
 以下、本発明の導電性部材について詳細に説明する。
 以下、本発明の代表的な実施形態に基づいて記載されるが、本発明の主旨を超えない限りにおいて、本発明は記載された実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 更に、本明細書において、「□」は、「sq.」或いは「スクエア」ともいう。
Hereinafter, the conductive member of the present invention will be described in detail.
Hereinafter, although described based on typical embodiment of this invention, unless it exceeds the main point of this invention, this invention is not limited to described embodiment.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Further, in this specification, “□” is also referred to as “sq.” Or “square”.
 本明細書において「光」という語は、可視光線のみならず、紫外線、エックス線、ガンマ線などの高エネルギー線、電子線のような粒子線等を含む概念として用いる。
 本明細書中、アクリル酸、メタクリル酸のいずれか或いは双方を示すため「(メタ)アクリル酸」と、アクリレート、メタクリレートのいずれか或いは双方を示すため「(メタ)アクリレート」と、それぞれ表記することがある。
 また、含有量は特に断りのない限り、質量換算で示し、特に断りのない限り、質量%は、組成物の総量に対する割合を表し、「固形分」とは、組成物中の溶剤を除く成分を表す。
In this specification, the term “light” is used as a concept including not only visible light, but also high energy rays such as ultraviolet rays, X-rays, and gamma rays, and particle rays such as electron beams.
In this specification, “(meth) acrylic acid” is used to indicate either or both of acrylic acid and methacrylic acid, and “(meth) acrylate” is used to indicate either or both of acrylate and methacrylate. There is.
In addition, unless otherwise specified, the content is expressed in terms of mass, and unless otherwise specified, mass% represents a ratio to the total amount of the composition, and “solid content” is a component excluding the solvent in the composition. Represents.
<<<導電性部材>>>
 本発明の導電性部材は、基材上に、短軸径が150nm以下の導電性繊維を含み、かつ下記一般式(I)で示される結合を含む三次元架橋結合を含んで構成される導電性層を備える導電性部材であって、前記基材と前記導電性層との間に、更に少なくとも一層の中間層を有する。
   -M-O-M-    (I)
 (一般式(I)中、MはSi、Ti、Zr及びAlからなる群から選ばれた元素を示す。)
<<< Conductive Member >>>
The conductive member of the present invention includes a conductive fiber including a conductive fiber having a short axis diameter of 150 nm or less on a base material and including a bond represented by the following general formula (I). It is an electroconductive member provided with an electroconductive layer, Comprising: Between the said base material and the said electroconductive layer, it has at least one layer of intermediate | middle layer further.
-M 1 -OM 1- (I)
(In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
 また、本発明は、(a)基材上に、短軸径が150nm以下の導電性繊維と、Si、Ti、Zr及びAlからなる群より選ばれた元素のアルコキシド化合物の少なくとも一つと、を含む水溶液を塗布して、当該水溶液の液膜を前記基材上に形成させること、及び、(b)前記水溶液の液膜中のアルコキシド化合物を加水分解及び重縮合させて、上記一般式(I)で示される三次元架橋結合を形成すること、をこの順に含む、前記基材上に、前記導電性繊維を含み、かつ前記三次元架橋結合を含んで構成される導電性層を形成する導電性部材の製造方法において前記(a)に先だって、更に前記基材における前記液膜が形成される表面に、少なくとも一層の中間層を形成することを特徴とする導電性部材の製造方法にも関する。 Further, the present invention provides (a) a conductive fiber having a minor axis diameter of 150 nm or less and at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al on a substrate. Applying an aqueous solution containing the aqueous solution to form a liquid film of the aqueous solution on the substrate; and (b) hydrolyzing and polycondensing the alkoxide compound in the liquid film of the aqueous solution, And forming a three-dimensional cross-linking bond in this order, and forming a conductive layer including the conductive fiber and including the three-dimensional cross-linking bond on the base material. Prior to (a) in the method for producing a conductive member, the present invention also relates to a method for producing a conductive member, wherein at least one intermediate layer is formed on the surface of the substrate on which the liquid film is formed. .
<<基材>>
 上記基材としては、導電性層を担うことができるものである限り、目的に応じて種々のもの使用することができる。一般的には、板状又はシート状のものが使用される。
 基材は、透明であっても、不透明であってもよい。基材を構成する素材としては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス;ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、熱可塑性ノルボルネン系樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂;アルミニウム、銅、ニッケル、ステンレス等の金属;その他セラミック、半導体基板に使用されるシリコンウエハーなどを挙げることができる。中でも、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、トリアセチルセルロース(TAC)又は非晶質シクロオレフィンポリマー(COP)であることが好ましく、可撓性がありロールハンドリングが可能で光透過率が高く、偏光特性の制御がしやすいTAC、PC、COPがタッチパネルなどの用途に対してより好ましい。TAC、PC、COPは、(PETやガラスに対して)銀ナノワイヤーからなる導電性層が後述の導電性領域と非導電性領域とを含む導電性層のパターン間でのエレクトロマイグレーションに対する本発明の効果がより顕著となる組合せであり、より好ましい態様であるといえる。
<< Base material >>
As the base material, various materials can be used according to the purpose as long as the base material can bear the conductive layer. Generally, a plate shape or a sheet shape is used.
The substrate may be transparent or opaque. Examples of the material constituting the substrate include transparent glass such as white plate glass, blue plate glass, and silica coated blue plate glass; polycarbonate, polyethersulfone, polyester, acrylic resin, thermoplastic norbornene resin, vinyl chloride resin, aromatic polyamide Examples thereof include synthetic resins such as resin, polyamideimide, and polyimide; metals such as aluminum, copper, nickel, and stainless steel; other ceramics, and silicon wafers used for semiconductor substrates. Among them, glass, polyethylene terephthalate (PET), polycarbonate (PC), triacetyl cellulose (TAC), or amorphous cycloolefin polymer (COP) is preferable, and it is flexible and can handle rolls and has light transmittance. TAC, PC, and COP, which have a high polarization property and easily control the polarization characteristics, are more preferable for applications such as a touch panel. TAC, PC, COP is the present invention for electromigration between conductive layer patterns in which a conductive layer made of silver nanowires includes a conductive region and a non-conductive region described later (for PET or glass). It can be said that this is a more preferable embodiment.
(表面処理)
 これらの基材の導電性層が形成される表面は、所望により、アルカリ性水溶液による清浄化処理、シランカップリング剤などの薬品処理、コロナ放電処理、プラズマ処理、グロー放電処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などの前処理を行うことができる。中でも、コロナ放電処理、プラズマ処理、又はグロー放電処理を用いることが中間層のシランカップリング及び3次元架橋結合を有する-M1-O-M1-層の密着を改善する観点より好ましく、コロナ放電処理及びグロー放電処理がより好ましい。
 表面処理後の水接触角は3゜以上50゜以下が好ましく、より好ましくは5゜以上45゜以下であり、更に好ましくは5゜以上40゜以下であり、更に好ましくは5゜以上35゜以下であり、最も好ましくは5゜以上30゜以下である。
 水接触角が3°以上の場合には中間層の銀と相互作用する基の固定密度が高くなるため好ましい。一方、水接触角が50°以下の場合には、3次元架橋結合を有する-M1-O-M1-層のムラとハジキが小さくなるため好ましい。
 水接触角の測定は市販の接触角測定器と純水を用いて行うことができる。例えば協和界面化学株式会社製DM701全自動接触角計で測定できる。
 基材の厚さは、用途に応じて所望の範囲のものが使用される。一般的には、1μm~500μmの範囲から選択され、3μm~400μmがより好ましく、5μm~300μmが更に好ましい。
 導電性部材に透明性が要求される場合には、基材の全可視光透過率が70%以上のもの、より好ましくは85%以上のもの、更に好ましくは、90%以上のものから選ばれる。
(surface treatment)
The surface of the base material on which the conductive layer is formed is optionally cleaned with an alkaline aqueous solution, treated with a chemical such as a silane coupling agent, corona discharge treatment, plasma treatment, glow discharge treatment, ion plating, sputtering. Further, pretreatment such as vapor phase reaction method and vacuum deposition can be performed. Among these, the use of corona discharge treatment, plasma treatment, or glow discharge treatment is preferable from the viewpoint of improving the adhesion of the silane coupling of the intermediate layer and the -M1-O-M1-layer having a three-dimensional cross-linking, and the corona discharge treatment. And glow discharge treatment is more preferred.
The water contact angle after the surface treatment is preferably 3 ° to 50 °, more preferably 5 ° to 45 °, still more preferably 5 ° to 40 °, and still more preferably 5 ° to 35 °. Most preferably, it is 5 ° or more and 30 ° or less.
A water contact angle of 3 ° or more is preferable because the fixed density of the group that interacts with the silver in the intermediate layer is increased. On the other hand, when the water contact angle is 50 ° or less, the unevenness and repellency of the -M1-O-M1-layer having a three-dimensional cross-linking is reduced, which is preferable.
The water contact angle can be measured using a commercially available contact angle measuring device and pure water. For example, it can be measured with a DM701 fully automatic contact angle meter manufactured by Kyowa Interface Chemical Co., Ltd.
The thickness of the substrate is in a desired range depending on the application. Generally, it is selected from the range of 1 μm to 500 μm, more preferably 3 μm to 400 μm, and even more preferably 5 μm to 300 μm.
When transparency is required for the conductive member, the substrate is selected from those having a total visible light transmittance of 70% or more, more preferably 85% or more, and still more preferably 90% or more. .
<<導電性層>>
 本発明に係る導電性層は、短軸径が150nm以下の導電性繊維を含み、かつ下記一般式(I)で示される結合を含む三次元架橋結合を含んで構成される。
   -M-O-M-    (I)   
 (一般式(I)中、MはSi、Ti、Zr及びAlからなる群より選ばれた元素を示す。)
<< Conductive layer >>
The conductive layer according to the present invention includes a conductive fiber having a minor axis diameter of 150 nm or less and includes a three-dimensional cross-link including a bond represented by the following general formula (I).
-M 1 -OM 1- (I)
(In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
<短軸径が150nm以下の導電性繊維>
 本発明に係る導電性層には、短軸径150nm以下の導電性繊維を含有する。導電性繊維は、中実構造、多孔質構造及び中空構造のいずれの態様をとるものであってもよいが、中実構造及び中空構造のいずれかであることが好ましい。本発明においては、中実構造の繊維をワイヤー、中空構造の繊維をチューブと、それぞれ称することがある。
 前記繊維を形成する導電性材料としては、金属及びカーボンの少なくともいずれかであることが好ましく、例えば、ITOや酸化亜鉛、酸化スズのような金属酸化物、金属性カーボン、金属元素単体、複数金属元素からなるコアシェル構造、複数金属からなる合金などが挙げられる。また、繊維状とした後、表面処理されていてもよく、例えば、鍍金された金属繊維なども用いることができる。
<Conductive fiber with short axis diameter of 150 nm or less>
The conductive layer according to the present invention contains conductive fibers having a minor axis diameter of 150 nm or less. The conductive fiber may take any form of a solid structure, a porous structure, and a hollow structure, but preferably has a solid structure or a hollow structure. In the present invention, a solid structure fiber may be referred to as a wire, and a hollow structure fiber as a tube.
The conductive material forming the fibers is preferably at least one of metal and carbon. For example, metal oxides such as ITO, zinc oxide, and tin oxide, metallic carbon, simple metal elements, and multiple metals Examples thereof include a core-shell structure composed of elements and an alloy composed of a plurality of metals. Moreover, after making into fiber form, you may surface-treat, for example, the metal fiber etc. which were plated can be used.
(金属ナノワイヤー)
 透明導電膜を形成しやすいという観点からは、導電性繊維として、金属ナノワイヤーを用いることが好ましい。本発明における金属ナノワイヤーとは、例えば、アスペクト比(平均長軸長さ/平均短軸長さ)が30以上である金属微粒子であって、平均短軸長さが1nm~150nmであって、平均長軸長さが1μm~100μmのものが好ましい。
 前記金属ナノワイヤーの平均短軸長さ(平均直径)は、100nm以下であることが好ましく、30nm以下であることがより好ましい。前記平均短軸長さが小さすぎると、耐酸化性が悪化し、耐久性が悪くなることがあるため、前記平均短軸長さは5nm以上であることが好ましい。前記平均短軸長さが150nmを超えると、導電性の低下や光散乱等による光学特性の悪化が生じるおそれがあるため、好ましくない。
(Metal nanowires)
From the viewpoint of easily forming a transparent conductive film, it is preferable to use metal nanowires as the conductive fibers. The metal nanowire in the present invention is, for example, metal fine particles having an aspect ratio (average major axis length / average minor axis length) of 30 or more, and an average minor axis length of 1 nm to 150 nm, The average major axis length is preferably 1 μm to 100 μm.
The average minor axis length (average diameter) of the metal nanowire is preferably 100 nm or less, and more preferably 30 nm or less. If the average minor axis length is too small, the oxidation resistance deteriorates and the durability may deteriorate, so the average minor axis length is preferably 5 nm or more. If the average minor axis length exceeds 150 nm, it is not preferable because there is a possibility that the optical characteristics deteriorate due to a decrease in conductivity or light scattering.
 前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmであることが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。金属ナノワイヤーの平均長軸長さが長すぎると金属ナノワイヤー製造時に凝集物が生じる懸念があり、平均長軸長さ短すぎると、十分な導電性を得ることができないことがある。
 ここで、前記金属ナノワイヤーの平均短軸長さ(平均直径)及び平均長軸長さは、例えば、透過型電子顕微鏡(TEM)と光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができ、本発明においては、金属ナノワイヤーの平均短軸長さ(平均直径)及び平均長軸長さは、透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均軸長さを求めた。なお、前記金属ナノワイヤーの短軸方向断面が円形でない場合の短軸長さは、短軸方向の測定で最も長い箇所の長さを短軸長さとした。また。金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値を長軸長さとした。
 本発明においては、導電性層が透明であり、平均直径50nm以下、平均長さ5μm以上の金属ナノワイヤーを含むことが好ましい。
The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm. If the average long axis length of the metal nanowire is too long, there is a concern that aggregates are produced during the production of the metal nanowire, and if the average long axis length is too short, sufficient conductivity may not be obtained.
Here, the average minor axis length (average diameter) and average major axis length of the metal nanowires are, for example, to observe a TEM image and an optical microscope image using a transmission electron microscope (TEM) and an optical microscope. In the present invention, the average minor axis length (average diameter) and the average major axis length of the metal nanowires are measured with a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). Using 300 metal nanowires, the average axial length of the metal nanowires was determined from the average value. In addition, the short-axis length in case the short-axis direction cross section of the said metal nanowire is not circular made the length of the longest part the short-axis length by the measurement of a short-axis direction. Also. When the metal nanowire is bent, a circle with the arc as the arc is taken into consideration, and the value calculated from the radius and the curvature is taken as the major axis length.
In this invention, it is preferable that an electroconductive layer is transparent and contains metal nanowire with an average diameter of 50 nm or less and an average length of 5 micrometers or more.
 本発明においては、短軸長さ(直径)が150nm以下であり、かつ長軸長さが5μm以上500μm以下である金属ナノワイヤーが、全導電性繊維中に金属量で50質量%以上含まれていることが好ましく、60質量%以上がより好ましく、75質量%以上が更に好ましい。
 前記短軸長さ(直径)が150nm以下であり、長さが5μm以上500μm以下である金属ナノワイヤーの割合が、50質量%以上含まれることで、十分な伝導性が得られるとともに、電圧集中が生じがたく、これに起因する耐久性の低下を抑制しうるため好ましい。繊維状以外の導電性粒子が感光性層に含まれると、プラズモン吸収が強い場合には透明度が低下するおそれがあり好ましくない。
In the present invention, metal nanowires having a minor axis length (diameter) of 150 nm or less and a major axis length of 5 μm or more and 500 μm or less are contained in the total conductive fiber by 50% by mass or more in terms of metal amount. Preferably, it is 60 mass% or more, more preferably 75 mass% or more.
The short axis length (diameter) is 150 nm or less, and the ratio of metal nanowires having a length of 5 μm or more and 500 μm or less is contained by 50% by mass or more, so that sufficient conductivity is obtained and voltage concentration is achieved. Is less likely to occur, and a decrease in durability due to this can be suppressed, which is preferable. If the photosensitive layer contains conductive particles other than fibers, the transparency may decrease when plasmon absorption is strong, such being undesirable.
 本発明に係る導電性層に用いられる金属ナノワイヤーの短軸長さ(直径)の変動係数は、40%以下が好ましく、35%以下がより好ましく、30%以下が更に好ましい。
 前記変動係数が40%を超えると、短軸長さ(直径)の細いワイヤーに電圧が集中してしまうためか、耐久性が悪化することがある。
 前記金属ナノワイヤーの短軸長さ(直径)の変動係数は、例えば透過型電子顕微鏡(TEM)像から300個のナノワイヤーの短軸長さ(直径)を計測し、その標準偏差と平均値を計算することにより、求めることができる。
The coefficient of variation of the short axis length (diameter) of the metal nanowire used in the conductive layer according to the present invention is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
If the coefficient of variation exceeds 40%, the voltage may be concentrated on a wire having a short axis length (diameter), or the durability may deteriorate.
The coefficient of variation of the short axis length (diameter) of the metal nanowires is measured, for example, by measuring the short axis length (diameter) of 300 nanowires from a transmission electron microscope (TEM) image, and the standard deviation and average value thereof. Can be obtained by calculating.
 前記金属ナノワイヤーの形状としては、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状や断面が5角形以上の多角形であって鋭角的な角が存在しない断面形状であるものが好ましい。
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより検知することができる。
As the shape of the metal nanowire, for example, a columnar shape, a rectangular parallelepiped shape, a columnar shape having a polygonal cross section, and the like, a columnar shape or a cross section may be used in applications where high transparency is required. A polygon that is a pentagon or more and preferably has a cross-sectional shape that does not have an acute angle.
The cross-sectional shape of the metal nanowire can be detected by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
 前記金属ナノワイヤーにおける金属としては、特に制限はなく、いかなる金属であってもよく、1種の金属以外にも2種以上の金属を組み合わせて用いてもよく、合金として用いることも可能である。これらの中でも、金属又は金属化合物から形成されるものが好ましく、金属から形成されるものがより好ましい。
 前記金属としては、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2~14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
There is no restriction | limiting in particular as a metal in the said metal nanowire, Any metal may be used, 2 or more types of metals may be used in combination other than 1 type of metal, and it can also be used as an alloy. . Among these, those formed from metals or metal compounds are preferable, and those formed from metals are more preferable.
The metal is preferably at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC 1991), and at least one selected from Groups 2 to 14 More preferably, at least one metal selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, Group 14 is more preferable, It is particularly preferable to include it as a main component.
 前記金属としては、具体的には銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛、又はこれらの合金などが挙げられる。これらの中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム又はこれらの合金が好ましく、パラジウム、銅、銀、金、白金、錫及びこれらの合金がより好ましく、銀又は銀を含有する合金が特に好ましい。 Specific examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, and antimony. , Lead, or an alloy thereof. Among these, copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin and alloys thereof are more preferable, silver Or the alloy containing silver is especially preferable.
(金属ナノワイヤーの製造方法)
 前記金属ナノワイヤーは、特に制限はなく、いかなる方法で作製してもよいが、以下のようにハロゲン化合物と分散剤を溶解した溶媒中で金属イオンを還元することによって製造することが好ましい。また、金属ナノワイヤーを形成した後は、常法により脱塩処理を行うことが、分散性、感光性層の経時安定性の観点から好ましい。
 また、金属ナノワイヤーの製造方法としては、特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報などに記載の方法を用いることができる。
(Method for producing metal nanowires)
The metal nanowire is not particularly limited and may be produced by any method, but is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved as follows. Moreover, after forming metal nanowire, it is preferable from a viewpoint of dispersibility and temporal stability of a photosensitive layer to perform a desalting process by a conventional method.
In addition, as a method for producing metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-86714A are disclosed. Etc. can be used.
 金属ナノワイヤーの製造に用いられる溶媒としては、親水性溶媒が好ましく、例えば、水、アルコール類、エーテル類、ケトン類などが挙げられ、これらは1種単独で使用してもよく、2種以上を併用してもよい。
 アルコール類としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコールなどが挙げられる。
 エーテル類としては、例えば、ジオキサン、テトラヒドロフランなどが挙げられる。
 ケトン類としては、例えば、アセトンなどが挙げられる。
 加熱する場合、その加熱温度は、250℃以下が好ましく、20℃以上200℃以下がより好ましく、30℃以上180℃以下が更に好ましく、40℃以上170℃以下が特に好ましい。上記温度を20℃以上とすることで、形成される金属ナノワイヤーの長さが分散安定性を確保しうる好ましい範囲となり、かつ、250℃以下とすることで、金属ナノワイヤーの断面外周が鋭角を有しない、なめらかな形状となるため、透明性の観点から好適である。
 なお、必要に応じて、粒子形成過程で温度を変更してもよく、途中での温度変更は核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果があることがある。
The solvent used for the production of the metal nanowire is preferably a hydrophilic solvent, and examples thereof include water, alcohols, ethers, and ketones. These may be used alone or in combination of two or more. May be used in combination.
Examples of alcohols include methanol, ethanol, propanol, isopropanol, butanol, and ethylene glycol.
Examples of ethers include dioxane and tetrahydrofuran.
Examples of ketones include acetone.
In the case of heating, the heating temperature is preferably 250 ° C. or lower, more preferably 20 ° C. or higher and 200 ° C. or lower, further preferably 30 ° C. or higher and 180 ° C. or lower, and particularly preferably 40 ° C. or higher and 170 ° C. or lower. By setting the temperature to 20 ° C. or higher, the length of the formed metal nanowires is in a preferable range that can ensure dispersion stability, and by setting the temperature to 250 ° C. or lower, the cross-sectional outer periphery of the metal nanowires has an acute angle. Therefore, it is suitable from the viewpoint of transparency.
If necessary, the temperature may be changed during the grain formation process. Changing the temperature during the process has the effect of controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. There is.
 前記加熱の際には、還元剤を添加して行うことが好ましい。
 前記還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アルカノールアミン、脂肪族アミン、ヘテロ環式アミン、芳香族アミン、アラルキルアミン、アルコール、有機酸類、還元糖類、糖アルコール類、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオンなどが挙げられる。
 これらの中でも、還元糖類、その誘導体としての糖アルコール類、エチレングリコールが特に好ましい。
 前記還元剤によっては、機能として分散剤や溶媒としても機能する化合物があり、同様に好ましく用いることができる。
The heating is preferably performed by adding a reducing agent.
The reducing agent is not particularly limited and can be appropriately selected from those usually used. For example, borohydride metal salt, aluminum hydride salt, alkanolamine, aliphatic amine, heterocyclic amine, Aromatic amines, aralkylamines, alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, glutathione and the like can be mentioned.
Among these, reducing sugars, sugar alcohols as derivatives thereof, and ethylene glycol are particularly preferable.
Depending on the reducing agent, there is a compound that functions as a dispersant or a solvent as a function, and can be preferably used in the same manner.
 前記金属ナノワイヤー製造の際には分散剤と、ハロゲン化合物又はハロゲン化金属微粒子を添加して行うことが好ましい。
 分散剤とハロゲン化合物の添加のタイミングは、還元剤の添加前でも添加後でもよく、金属イオン或いはハロゲン化金属微粒子の添加前でも添加後でもよいが、単分散性のよりよいナノワイヤーを得るためには、核形成と成長を制御できるためか、ハロゲン化合物の添加を2段階以上に分けることが好ましい。
In producing the metal nanowires, it is preferable to add a dispersant and a halogen compound or metal halide fine particles.
The timing of addition of the dispersant and the halogen compound may be before or after the addition of the reducing agent, and may be before or after the addition of metal ions or metal halide fine particles. In order to control nucleation and growth, it is preferable to add the halogen compound in two or more stages.
 前記分散剤を添加する段階は、粒子調製する前に添加し、分散ポリマー存在下で添加してもよいし、粒子調整後に分散状態の制御のために添加しても構わない。分散剤の添加を2段階以上に分けるときには、その量は必要とする金属ワイヤーの長さにより変更する必要がある。これは核となる金属粒子量の制御による金属ワイヤーの長さに起因しているためと考えられる。
 前記分散剤としては、例えばアミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子類、などが挙げられる。これらのうち分散剤として用いられる各種高分子化合物類は、後述する(b)ポリマーに包含される化合物である。
The step of adding the dispersant may be added before preparing the particles and may be added in the presence of the dispersed polymer, or may be added for controlling the dispersion state after adjusting the particles. When the addition of the dispersant is divided into two or more steps, the amount needs to be changed depending on the length of the metal wire required. This is thought to be due to the length of the metal wire by controlling the amount of metal particles as a nucleus.
Examples of the dispersant include amino group-containing compounds, thiol group-containing compounds, sulfide group-containing compounds, amino acids or derivatives thereof, peptide compounds, polysaccharides, polysaccharide-derived natural polymers, synthetic polymers, or these. And polymers such as gels. Among these, various polymer compounds used as a dispersant are compounds included in the polymer (b) described later.
 分散剤として好適に用いられるポリマーとしては、例えば保護コロイド性のあるポリマーであるゼラチン、ポリビニルアルコール(P-3)、メチルセルロース、ヒドロキシプルピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン、ポリビニルピロリドン構造を含む共重合体、アミノ基やチオール基を有するポリアクリル酸、等の親水性基を有するポリマーが好ましく挙げられる。
 分散剤として用いるポリマーはGPC法により測定した重量平均分子量(Mw)が、3000以上300000以下であることが好ましく、5000以上100000以下であることがより好ましい。
 前記分散剤として使用可能な化合物の構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝倉書院発行、2000年)の記載を参照できる。
 使用する分散剤の種類によって得られる金属ナノワイヤーの形状を変化させることができる。
Examples of the polymer suitably used as the dispersant include gelatin, which is a protective colloidal polymer, polyvinyl alcohol (P-3), methyl cellulose, hydroxypropyl cellulose, polyalkyleneamine, a partial alkyl ester of polyacrylic acid, polyvinyl Preferred examples include pyrrolidone, a copolymer containing a polyvinylpyrrolidone structure, and a polymer having a hydrophilic group such as polyacrylic acid having an amino group or a thiol group.
The polymer used as the dispersant has a weight average molecular weight (Mw) measured by GPC method of preferably 3000 or more and 300000 or less, and more preferably 5000 or more and 100000 or less.
For the structure of the compound that can be used as the dispersant, for example, the description of “Encyclopedia of Pigments” (edited by Seijiro Ito, published by Asakura Shoin Co., Ltd., 2000) can be referred to.
The shape of the metal nanowire obtained by the kind of dispersing agent to be used can be changed.
 前記ハロゲン化合物としては、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウム等のアルカリハライドや下記の分散添加剤と併用できる化合物が好ましい。
 前記ハロゲン化合物によっては、分散添加剤として機能するものがありうるが、同様に好ましく用いることができる。
 前記ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
The halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose. For example, sodium bromide, sodium chloride, sodium iodide, potassium iodide Compounds that can be used in combination with alkali halides such as potassium bromide, potassium chloride, potassium iodide and the following dispersion additives are preferred.
Some halogen compounds may function as a dispersion additive, but can be preferably used in the same manner.
As an alternative to the halogen compound, silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
 また、分散剤とハロゲン化合物とは双方の機能を有する単一の物質を用いてもよい。即ち、分散剤としての機能を有するハロゲン化合物を用いることで、1つの化合物で、分散剤とハロゲン化合物の双方の機能を発現する。
 分散剤としての機能を有するハロゲン化合物としては、例えば、アミノ基と臭化物イオンを含むHTAB(ヘキサデシル-トリメチルアンモニウムブロミド)、アミノ基と塩化物イオンを含むHTAC(ヘキサデシル-トリメチルアンモニウムクロライド)、アミノ基と臭化物イオン又は塩化物イオンを含むドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムクロリド、ジメチルジステアリルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリド、ジメチルジパルミチルアンモニウムブロミド、ジメチルジパルミチルアンモニウムクロリド、などが挙げられる。
 なお、金属ナノワイヤー形成後の脱塩処理は、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により行うことができる。
Moreover, a single substance having both functions may be used as the dispersant and the halogen compound. That is, by using a halogen compound having a function as a dispersant, the functions of both the dispersant and the halogen compound are expressed with one compound.
Examples of the halogen compound having a function as a dispersant include HTAB (hexadecyl-trimethylammonium bromide) containing an amino group and a bromide ion, HTAC (hexadecyl-trimethylammonium chloride) containing an amino group and a chloride ion, Dodecyltrimethylammonium bromide containing bromide ion or chloride ion, dodecyltrimethylammonium chloride, stearyltrimethylammonium bromide, stearyltrimethylammonium chloride, decyltrimethylammonium bromide, decyltrimethylammonium chloride, dimethyldistearylammonium bromide, dimethyldistearylammonium chloride, Dilauryl dimethyl ammonium bromide, dilauryl dimethyl ammonium Mukurorido, dimethyl dipalmityl ammonium bromide, dimethyl dipalmityl ammonium chloride, and the like.
In addition, the desalting process after metal nanowire formation can be performed by techniques, such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation.
 前記金属ナノワイヤーは、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。前記金属ナノワイヤーを水性分散物させたときの電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
 前記金属ナノワイヤーを水性分散物させたときの20℃における粘度は、0.5mPa・s~100mPa・sが好ましく、1mPa・s~50mPa・sがより好ましい。
The metal nanowire preferably contains as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions. The electrical conductivity when the metal nanowire is dispersed in an aqueous dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
The viscosity at 20 ° C. when the metal nanowire is dispersed in an aqueous dispersion is preferably 0.5 mPa · s to 100 mPa · s, more preferably 1 mPa · s to 50 mPa · s.
 金属ナノワイヤー以外の、好ましい導電性繊維としては、中空繊維である金属ナノチューブやカーボンナノチューブが挙げられる。
(金属ナノチューブ)
 金属ナノチューブの材料としては、特に制限はなく、いかなる金属であってもよく、例えば、前記した金属ナノワイヤーの材料などを使用することができる。
 前記金属ナノチューブの形状としては、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層が好ましい。
Examples of preferable conductive fibers other than metal nanowires include hollow metal nanotubes and carbon nanotubes.
(Metal nanotube)
There is no restriction | limiting in particular as a material of a metal nanotube, What kind of metal may be sufficient, For example, the material of the above-mentioned metal nanowire etc. can be used.
The shape of the metal nanotube may be a single layer or a multilayer, but a single layer is preferable from the viewpoint of excellent conductivity and thermal conductivity.
 前記金属ナノチューブの厚み(外径と内径との差)としては、3nm~80nmが好ましく、3nm~30nmがより好ましい。
 前記厚みが、3nm以上であることで、十分な耐酸化性が得られ、80nm以下であることで、金属ナノチューブに起因する光散乱の発生が抑制される。
 前記金属ナノチューブの平均短軸長さは、金属ナノワイヤーと同様に150nm以下であることを要する。好ましい短軸径は金属ナノワイヤーにおけるのと同様である。また、長軸長さは、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
 前記金属ナノチューブの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、米国出願公開2005/0056118号明細書等に記載の方法などを用いることができる。
The thickness of the metal nanotube (difference between the outer diameter and the inner diameter) is preferably 3 nm to 80 nm, and more preferably 3 nm to 30 nm.
When the thickness is 3 nm or more, sufficient oxidation resistance is obtained, and when the thickness is 80 nm or less, the occurrence of light scattering due to the metal nanotubes is suppressed.
The average short axis length of the metal nanotubes is required to be 150 nm or less like the metal nanowires. The preferred minor axis diameter is the same as in metal nanowires. The major axis length is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
There is no restriction | limiting in particular as a manufacturing method of the said metal nanotube, According to the objective, it can select suitably, For example, the method as described in the US application publication 2005/0056118 grade | etc., Etc. can be used.
(カーボンナノチューブ)
 カーボンナノチューブ(CNT)は、グラファイト状炭素原子面(グラフェンシート)が、単層或いは多層の同軸管状になった物質である。単層のカーボンナノチューブはシングルウォールナノチューブ(SWNT)、多層のカーボンナノチューブはマルチウォールナノチューブ(MWNT)と呼ばれ、特に、2層のカーボンナノチューブはダブルウォールナノチューブ(DWNT)とも呼ばれる。本発明で用いられる導電性繊維において、カーボンナノチューブは、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層が好ましい。
(carbon nanotube)
A carbon nanotube (CNT) is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube. Single-walled carbon nanotubes are called single-walled nanotubes (SWNT), multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT), and in particular, double-walled carbon nanotubes are also called double-walled nanotubes (DWNT). In the conductive fiber used in the present invention, the carbon nanotube may be a single wall or a multilayer, but a single wall is preferable from the viewpoint of excellent conductivity and thermal conductivity.
(導電性繊維のアスペクト比)
 本発明に用いうる導電性繊維のアスペクト比としては、10以上であることが好ましい。アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長軸長さ/平均短軸長さの比)を意味する。
 アスペクト比の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子顕微鏡等により測定する方法などが挙げられる。
 前記導電性繊維のアスペクト比を電子顕微鏡で測定する場合、前記導電性繊維のアスペクト比が10以上であるか否かは、電子顕微鏡の1視野で確認できればよい。また、前記導電性繊維の長軸長さと短軸長さとを各々別に測定することによって、前記導電性繊維全体のアスペクト比を見積もることができる。
 なお、前記導電性繊維がチューブ状の場合には、前記アスペクト比を算出するための直径としては、該チューブの外径を用いる。
(Aspect ratio of conductive fiber)
The aspect ratio of the conductive fiber that can be used in the present invention is preferably 10 or more. The aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average major axis length / average minor axis length).
There is no restriction | limiting in particular as a measuring method of an aspect ratio, According to the objective, it can select suitably, For example, the method etc. which measure with an electron microscope etc. are mentioned.
When measuring the aspect ratio of the conductive fiber with an electron microscope, it is only necessary to confirm whether the aspect ratio of the conductive fiber is 10 or more with one field of view of the electron microscope. In addition, the aspect ratio of the entire conductive fiber can be estimated by measuring the major axis length and the minor axis length of the conductive fiber separately.
In addition, when the said conductive fiber is a tube shape, the outer diameter of this tube is used as a diameter for calculating the said aspect ratio.
 前記導電性繊維のアスペクト比としては、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50~1,000,000が好ましく、100~1,000,000がより好ましい。
 前記アスペクト比が、10未満であると、前記導電性繊維によるネットワーク形成がなされず導電性が十分取れないことがあり、1,000,000を超えると、導電性繊維の形成時やその後の取り扱いにおいて、成膜前に導電性繊維が絡まり凝集するため、安定な液が得られないことがある。
The aspect ratio of the conductive fiber is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, preferably 100 to 1,000,000. More preferred.
When the aspect ratio is less than 10, network formation by the conductive fibers may not be performed and sufficient conductivity may not be obtained. In this case, since the conductive fibers are entangled and aggregate before film formation, a stable liquid may not be obtained.
 上記の導電性層は、Si、Ti、Zr及びAlからなる群から選ばれた元素のアルコキシド化合物(以下、「特定アルコキシド化合物」ともいう。)を加水分解及び重縮合し、更に所望により加熱、乾燥して得られるゾルゲル硬化物で構成されたものであることが、キズ及び磨耗に対して高い耐性を有するものが容易に製造できるという点から好ましい。
 ここで、上記一般式(I)で示される結合を含む三次元架橋構造に含まれるMの価数は、一般式(I)中のMがSi、Ti及びZrのいずれかの場合には、4となり、MがAlの場合には、3となる。
The conductive layer is obtained by hydrolyzing and polycondensing an alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al (hereinafter also referred to as “specific alkoxide compound”), and further heating if desired. It is preferable that it is composed of a sol-gel cured product obtained by drying, because it can be easily manufactured having high resistance to scratches and abrasion.
Here, the valence of M 1 contained in the three-dimensional cross-linking structure including the bond represented by the general formula (I) is as follows when M 1 in the general formula (I) is any one of Si, Ti, and Zr. Is 4, and is 3 when M 1 is Al.
 本発明に係る導電性層は、上述の導電性繊維と共に、前記一般式(I)で示される結合を含む三次元架橋結合を含んで構成される。このような三次元結合は、製造上の利点から、特定アルコキシド化合物を加水分解及び重縮合させて得られたものが好ましい。
〔特定アルコキシド化合物〕
 特定アルコキシド化合物は、下記一般式(II)で示される化合物であることが入手が容易である点で好ましい。
   M(OR 4-a    (II)
 (一般式(II)中、MはSi、Ti及びZrから選択される元素を示し、R、Rはそれぞれ独立に水素原子又は炭化水素基を示し、aは2~4の整数を示す。)
The electroconductive layer which concerns on this invention is comprised including the three-dimensional bridge | crosslinking bond containing the coupling | bonding shown with the said general formula (I) with the above-mentioned electroconductive fiber. Such a three-dimensional bond is preferably obtained by hydrolysis and polycondensation of a specific alkoxide compound from the viewpoint of production.
[Specific alkoxide compound]
Specific alkoxide compound is a compound represented by the following general formula (II) is preferable in that it is easily available.
M 2 (OR 1 ) a R 2 4-a (II)
(In General Formula (II), M 2 represents an element selected from Si, Ti and Zr, R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group, and a represents an integer of 2 to 4 Show.)
 一般式(II)におけるR及びRの各炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
 アルキル基を示す場合の炭素数は好ましくは1~18、より好ましくは1~8であり、更により好ましくは1~4である。また、アリール基を示す場合は、フェニル基が好ましい。
 アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、この化合物は低分子化合物であり、分子量1000以下であることが好ましい。
Each hydrocarbon group of R 1 and R 2 in the general formula (II) is preferably an alkyl group or an aryl group.
The number of carbon atoms in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4. Moreover, when showing an aryl group, a phenyl group is preferable.
The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. This compound is a low molecular compound and preferably has a molecular weight of 1000 or less.
 以下に、一般式(II)で示される化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
 MがSiでaが2の場合、即ち2官能のアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジエチルジメトキシシラン、プロピルメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、γ-クロロプロピルジメチルジメトキシシラン、クロロジメチルジエトキシシラン、(p-クロロメチル)フェニルメチルジメトキシシラン、γ-ブロモプロピルメチルジメトキシシラン、アセトキシメチルメチルジエトキシシラン、アセトキシメチルメチルジメトキシシラン、アセトキシプロピルメチルジメトキシシラン、ベンゾイロキシプロピルメチルジメトキシシラン、2-(カルボメトキシ)エチルメチルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルエチルジエトキシシラン、フェニルメチルジプロポキシシラン、ヒドロキシメチルメチルジエトキシシラン、N-(メチルジエトキシシリルプロピル)-O-ポリエチレンオキシドウレタン、N-(3-メチルジエチキシシリルプロピル)-4-ヒドロキシブチルアミド、N-(3-メチルジエトキシシリルプロピル)グルコンアミド、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジブトキシシラン、イソプロペニルメチルジメトキシシラン、イソプロペニルメチルジエトキシシラン、イソプロペニルメチルジブトキシシラン、ビニルメチルビス(2-メトキシエトキシ)シラン、アリルメチルジメトキシシラン、ビニルデシルメチルジメトキシシラン、ビニルオクチルメチルジメトキシシラン、ビニルフェニルメチルジメトキシシラン、イソプロペニルフェニルメチルジメトキシシラン、2-(メタ)アクリロキシエチルメチルジメトキシシラン、2-(メタ)アクリロキシエチルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)-アクリロキシプロピルメチルジス(2-メトキシエトキシ)シラン、3-[2-(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルメチルジメトキシシラン、3-(ビニルフェニルアミノ)プロピルメチルジメトキシシラン、3-(ビニルフェニルアミノ)プロピルメチルジエトキシシラン、3-(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3-(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3-[2-(N-ビニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、3-[2-(N-イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、2-(ビニルオキシ)エチルメチルジメトキシシラン、3-(ビニルオキシ)プロピルメチルジメトキシシラン、4-(ビニルオキシ)ブチルメチルジエトキシシラン、2-(イソプロペニルオキシ)エチルメチルジメトキシシラン、3-(アリルオキシ)プロピルメチルジメトキシシラン、10-(アリルオキシカルボニル)デシルメチルジメトキシシラン、3-(イソプロペニルメチルオキシ)プロピルメチルジメトキシシラン、10-(イソプロペニルメチルオキシカルボニル)デシルメチルジメトキシシラン、3-[(メタ)アクリロキプロピル]メチルジメトキシシラン、3-[(メタ)アクリロキシプロピル]メチルジエトキシシラン、3-[(メタ)アクリロキメチル]メチルジメトキシシラン、3-[(メタ)アクリロキシメチル]メチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、N-[3-(メタ)アクリロキシ-2-ヒドロキシプロピル]-3-アミノプロピルメチルジエトキシシラン、O-「(メタ)アクリロキシエチル」-N-(メチルジエトキシシリルプロピル)ウレタン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、4-アミノブチルメチルジエトキシシラン、11-アミノウンデシルメチルジエトキシシラン、m-アミノフェニルメチルジメトキシシラン、p-アミノフェニルメチルジメトキシシラン、3-アミノプロピルメチルジス(メトキシエトキシエトキシ)シラン、2-(4-ピリジルエチル)メチルジエトキシシラン、2-(メチルジメトキシシリルエチル)ピリジン、N-(3-メチルジメトキシシリルプロピル)ピロール、3-(m-アミノフェノキシ)プロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(6-アミノヘキシル)アミノメチルメチルジエトキシシラン、N-(6-アミノヘキシル)アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルメチルジメトキシシラン、(アミノエチルアミノメチル)フェネチルメチルジメトキシシラン、N-3-[(アミノ(ポリプロピレンオキシ))]アミノプロピルメチルジメトキシシラン、n-ブチルアミノプロピルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジメトキシシラン、N-メチルアミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノメチルメチルジエトキシシラン、(シクロヘキシルアミノメチル)メチルジエトキシシラン、N-シクロヘキシルアミノプロピルメチルジメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルメチルジエトキシシラン、ジエチルアミノメチルメチルジエトキシシラン、ジエチルアミノプロピルメチルジメトキシシラン、ジメチルアミノプロピルメチルジメトキシシラン、N-3-メチルジメトキシシリルプロピル-m-フェニレンジアミン、N,N-ビス[3-(メチルジメトキシシリル)プロピル]エチレンジアミン、ビス(メチルジエトキシシリルプロピル)アミン、ビス(メチルジメトキシシリルプロピル)アミン、ビス[(3-メチルジメトキシシリル)プロピル]-エチレンジアミン、ビス[3-(メチルジエトキシシリル)プロピル]ウレア、ビス(メチルジメトキシシリルプロピル)ウレア、N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、ウレイドプロピルメチルジエトキシシラン、ウレイドプロピルメチルジメトキシシラン、アセトアミドプロピルメチルジメトキシシラン、2-(2-ピリジルエチル)チオプロピルメチルジメトキシシラン、2-(4-ピリジルエチル)チオプロピルメチルジメトキシシラン、ビス[3-(メチルジエトキシシリル)プロピル]ジスルフィド、3-(メチルジエトキシシリル)プロピルコハク酸無水物、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、イソシアナトプロピルメチルジメトキシシラン、イソシアナトプロピルメチルジエトキシシラン、イソシアナトエチルメチルジエトキシシラン、イソシアナトメチルメチルジエトキシシラン、カルボキシエチルメチルシランジオールナトリウム塩、N-(メチルジメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3-(メチルジヒドロキシシリル)-1-プロパンスルホン酸、ジエチルホスフェートエチルメチルジエトキシシラン、3-メチルジヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(メチルジエトキシシリル)エタン、ビス(メチルジメトキシシリル)エタン、ビス(メチルジエトキシシリル)メタン、1,6-ビス(メチルジエトキシシリル)ヘキサン、1,8-ビス(メチルジエトキシシリル)オクタン、p-ビス(メチルジメトキシシリルエチル)ベンゼン、p-ビス(メチルジメトキシシリルメチル)ベンゼン、3-メトキシプロピルメチルジメトキシシラン、2-[メトキシ(ポリエチレンオキシ)プロピル]メチルジメトキシシラン、メトキシトリエチレンオキシプロピルメチルジメトキシシラン、トリス(3-メチルジメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]メチルジエトキシシラン、N,N'-ビス(ヒドロキシエチル)-N,N'-ビス(メチルジメトキシシリルプロピル)エチレンジアミン、ビス-[3-(メチルジエトキシシリルプロピル)-2-ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N'-(メチルジエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(メチルジエトキシシリルプロピル)ポリエチレンオキシドを挙げることができる。これらのうち特に好ましいものとしては、入手容易な観点と親水性層との密着性の観点から、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン等を挙げることができる。
Specific examples of the compound represented by the general formula (II) are shown below, but the present invention is not limited thereto.
When M 2 is Si and a is 2, that is, as a bifunctional alkoxysilane, for example, dimethyldimethoxysilane, diethyldimethoxysilane, propylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, dipropyldiethoxysilane , Γ-chloropropylmethyldiethoxysilane, γ-chloropropyldimethyldimethoxysilane, chlorodimethyldiethoxysilane, (p-chloromethyl) phenylmethyldimethoxysilane, γ-bromopropylmethyldimethoxysilane, acetoxymethylmethyldiethoxysilane, Acetoxymethylmethyldimethoxysilane, acetoxypropylmethyldimethoxysilane, benzoyloxypropylmethyldimethoxysilane, 2- (carbomethoxy) ethylmethyldimethoxysilane, Phenylmethyldimethoxysilane, phenylethyldiethoxysilane, phenylmethyldipropoxysilane, hydroxymethylmethyldiethoxysilane, N- (methyldiethoxysilylpropyl) -O-polyethylene oxide urethane, N- (3-methyldiethoxysilyl Propyl) -4-hydroxybutyramide, N- (3-methyldiethoxysilylpropyl) gluconamide, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldibutoxysilane, isopropenylmethyldimethoxysilane, isopropenylmethyldi Ethoxysilane, isopropenylmethyldibutoxysilane, vinylmethylbis (2-methoxyethoxy) silane, allylmethyldimethoxysilane, vinyldecylmethyldimethoxysilane, vinyl Cutylmethyldimethoxysilane, vinylphenylmethyldimethoxysilane, isopropenylphenylmethyldimethoxysilane, 2- (meth) acryloxyethylmethyldimethoxysilane, 2- (meth) acryloxyethylmethyldiethoxysilane, 3- (meth) acryloxy Propylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) -acryloxypropylmethyldis (2-methoxyethoxy) silane, 3- [2- (allyloxycarbonyl) phenylcarbonyloxy] Propylmethyldimethoxysilane, 3- (vinylphenylamino) propylmethyldimethoxysilane, 3- (vinylphenylamino) propylmethyldiethoxysilane, 3- (vinylbenzylamino) propylmethyl Diethoxysilane, 3- (vinylbenzylamino) propylmethyldiethoxysilane, 3- [2- (N-vinylphenylmethylamino) ethylamino] propylmethyldimethoxysilane, 3- [2- (N-isopropenylphenylmethyl) Amino) ethylamino] propylmethyldimethoxysilane, 2- (vinyloxy) ethylmethyldimethoxysilane, 3- (vinyloxy) propylmethyldimethoxysilane, 4- (vinyloxy) butylmethyldiethoxysilane, 2- (isopropenyloxy) ethylmethyl Dimethoxysilane, 3- (allyloxy) propylmethyldimethoxysilane, 10- (allyloxycarbonyl) decylmethyldimethoxysilane, 3- (isopropenylmethyloxy) propylmethyldimethoxysilane, 10- (i Sopropenylmethyloxycarbonyl) decylmethyldimethoxysilane, 3-[(meth) acryloxypropyl] methyldimethoxysilane, 3-[(meth) acryloxypropyl] methyldiethoxysilane, 3-[(meth) acryloxymethyl] Methyldimethoxysilane, 3-[(meth) acryloxymethyl] methyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, N- [3- (meth) acryloxy-2-hydroxypropyl] -3-aminopropylmethyl Diethoxysilane, O-“(Meth) acryloxyethyl” -N- (methyldiethoxysilylpropyl) urethane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldimethoxy Silane, γ-aminopropylmethyl Diethoxysilane, γ-aminopropylmethyldimethoxysilane, 4-aminobutylmethyldiethoxysilane, 11-aminoundecylmethyldiethoxysilane, m-aminophenylmethyldimethoxysilane, p-aminophenylmethyldimethoxysilane, 3-amino Propylmethyldis (methoxyethoxyethoxy) silane, 2- (4-pyridylethyl) methyldiethoxysilane, 2- (methyldimethoxysilylethyl) pyridine, N- (3-methyldimethoxysilylpropyl) pyrrole, 3- (m- Aminophenoxy) propylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (6-aminohexyl) A) Nomethylmethyldiethoxysilane, N- (6-aminohexyl) aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -11-aminoundecylmethyldimethoxysilane, (aminoethylaminomethyl) phenethylmethyldimethoxysilane, N-3-[(amino (polypropyleneoxy))] aminopropylmethyldimethoxysilane, n-butylaminopropylmethyldimethoxysilane, N-ethylaminoisobutylmethyldimethoxysilane, N-methylaminopropylmethyldimethoxysilane, N-phenyl- γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminomethylmethyldiethoxysilane, (cyclohexylaminomethyl) methyldiethoxysilane, N-cyclohexylaminopropylmethyldimethyl Xysilane, bis (2-hydroxyethyl) -3-aminopropylmethyldiethoxysilane, diethylaminomethylmethyldiethoxysilane, diethylaminopropylmethyldimethoxysilane, dimethylaminopropylmethyldimethoxysilane, N-3-methyldimethoxysilylpropyl-m- Phenylenediamine, N, N-bis [3- (methyldimethoxysilyl) propyl] ethylenediamine, bis (methyldiethoxysilylpropyl) amine, bis (methyldimethoxysilylpropyl) amine, bis [(3-methyldimethoxysilyl) propyl] Ethylenediamine, bis [3- (methyldiethoxysilyl) propyl] urea, bis (methyldimethoxysilylpropyl) urea, N- (3-methyldiethoxysilylpropyl) -4,5 Dihydroimidazole, ureidopropylmethyldiethoxysilane, ureidopropylmethyldimethoxysilane, acetamidopropylmethyldimethoxysilane, 2- (2-pyridylethyl) thiopropylmethyldimethoxysilane, 2- (4-pyridylethyl) thiopropylmethyldimethoxysilane, Bis [3- (methyldiethoxysilyl) propyl] disulfide, 3- (methyldiethoxysilyl) propyl succinic anhydride, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, isocyanatopropylmethyldimethoxy Silane, isocyanatopropylmethyldiethoxysilane, isocyanatoethylmethyldiethoxysilane, isocyanatomethylmethyldiethoxysilane, carboxyethyl Rusilanediol sodium salt, N- (methyldimethoxysilylpropyl) ethylenediaminetriacetic acid trisodium salt, 3- (methyldihydroxysilyl) -1-propanesulfonic acid, diethyl phosphate ethylmethyldiethoxysilane, 3-methyldihydroxysilylpropylmethyl Phosphonate sodium salt, bis (methyldiethoxysilyl) ethane, bis (methyldimethoxysilyl) ethane, bis (methyldiethoxysilyl) methane, 1,6-bis (methyldiethoxysilyl) hexane, 1,8-bis (methyl Diethoxysilyl) octane, p-bis (methyldimethoxysilylethyl) benzene, p-bis (methyldimethoxysilylmethyl) benzene, 3-methoxypropylmethyldimethoxysilane, 2- [methoxy (polyethyleneio) Xy) propyl] methyldimethoxysilane, methoxytriethyleneoxypropylmethyldimethoxysilane, tris (3-methyldimethoxysilylpropyl) isocyanurate, [hydroxy (polyethyleneoxy) propyl] methyldiethoxysilane, N, N′-bis (hydroxy Ethyl) -N, N′-bis (methyldimethoxysilylpropyl) ethylenediamine, bis- [3- (methyldiethoxysilylpropyl) -2-hydroxypropoxy] polyethylene oxide, bis [N, N ′-(methyldiethoxysilyl) Propyl) aminocarbonyl] polyethylene oxide and bis (methyldiethoxysilylpropyl) polyethylene oxide. Among these, dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, and the like can be given from the viewpoint of easy availability and adhesiveness with the hydrophilic layer.
 MがSiでaが3の場合、即ち3官能のアルコキシシランとしては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、クロロメチルトリエトキシシラン、(p-クロロメチル)フェニルトリメトキシシラン、γ-ブロモプロピルトリメトキシシラン、アセトキシメチルトリエトキシシラン、アセトキシメチルトリメトキシシラン、アセトキシプロピルトリメトキシシラン、ベンゾイロキシプロピルトリメトキシシラン、2-(カルボメトキシ)エチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ヒドロキシメチルトリエトキシシラン、N-(トリエトキシシリルプロピル)-O-ポリエチレンオキシドウレタン、N-(3-トリエチキシシリルプロピル)-4-ヒドロキシブチルアミド、N-(3-トリエトキシシリルプロピル)グルコンアミド、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、イソプロペニルトリメトキシシラン、イソプロペニルトリエトキシシラン、イソプロペニルトリブトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、アリルトリメトキシシラン、ビニルデシルトリメトキシシラン、ビニルオクチルトリメトキシシラン、ビニルフェニルトリメトキシシラン、イソプロペニルフェニルトリメトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)-アクリロキシプロピルトリス(2-メトキシエトキシ)シラン、3-[2-(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルトリメトキシシラン、3-(ビニルフェニルアミノ)プロピルトリメトキシシラン、3-(ビニルフェニルアミノ)プロピルトリエトキシシラン、3-(ビニルベンジルアミノ)プロピルトリエトキシシラン、3-(ビニルベンジルアミノ)プロピルトリエトキシシラン、3-[2-(N-ビニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、3-[2-(N-イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、2-(ビニルオキシ)エチルトリメトキシシラン、3-(ビニルオキシ)プロピルトリメトキシシラン、4-(ビニルオキシ)ブチルトリエトキシシラン、2-(イソプロペニルオキシ)エチルトリメトキシシラン、3-(アリルオキシ)プロピルトリメトキシシラン、10-(アリルオキシカルボニル)デシルトリメトキシシラン、3-(イソプロペニルメチルオキシ)プロピルトリメトキシシラン、10-(イソプロペニルメチルオキシカルボニル)デシルトリメトキシシラン、3-[(メタ)アクリロキプロピル]トリメトキシシラン、3-[(メタ)アクリロキシプロピル]トリエトキシシラン、3-[(メタ)アクリロキメチル]トリメトキシシラン、3-[(メタ)アクリロキシメチル]トリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、N-[3-(メタ)アクリロキシ-2-ヒドロキシプロピル]-3-アミノプロピルトリエトキシシラン、O-「(メタ)アクリロキシエチル」-N-(トリエトキシシリルプロピル)ウレタン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、4-アミノブチルトリエトキシシラン、11-アミノウンデシルトリエトキシシラン、m-アミノフェニルトリメトキシシラン、p-アミノフェニルトリメトキシシラン、3-アミノプロピルトリス(メトキシエトキシエトキシ)シラン、2-(4-ピリジルエチル)トリエトキシシラン、2-(トリメトキシシリルエチル)ピリジン、N-(3-トリメトキシシリルプロピル)ピロール、3-(m-アミノフェノキシ)プロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(6-アミノヘキシル)アミノメチルトリエトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-3-[(アミノ(ポリプロピレンオキシ))]アミノプロピルトリメトキシシラン、n-ブチルアミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノメチルトリエトキシシラン、(シクロヘキシルアミノメチル)トリエトキシシラン、N-シクロヘキシルアミノプロピルトリメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、ジエチルアミノメチルトリエトキシシラン、ジエチルアミノプロピルトリメトキシシラン、ジメチルアミノプロピルトリメトキシシラン、N-3-トリメトキシシリルプロピル-m-フェニレンジアミン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス[(3-トリメトキシシリル)プロピル]-エチレンジアミン、ビス[3-(トリエトキシシリル)プロピル]ウレア、ビス(トリメトキシシリルプロピル)ウレア、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、ウレイドプロピルトリエトキシシラン、ウレイドプロピルトリメトキシシラン、アセトアミドプロピルトリメトキシシラン、2-(2-ピリジルエチル)チオプロピルトリメトキシシラン、2-(4-ピリジルエチル)チオプロピルトリメトキシシラン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、3-(トリエトキシシリル)プロピルコハク酸無水物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、イソシアナトプロピルトリメトキシシラン、イソシアナトプロピルトリエトキシシラン、イソシアナトエチルトリエトキシシラン、イソシアナトメチルトリエトキシシラン、カルボキシエチルシラントリオールナトリウム塩、N-(トリメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3-(トリヒドロキシシリル)-1-プロパンスルホン酸、ジエチルホスフェートエチルトリエトキシシラン、3-トリヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)メタン、1,6-ビス(トリエトキシシリル)ヘキサン、1,8-ビス(トリエトキシシリル)オクタン、p-ビス(トリメトキシシリルエチル)ベンゼン、p-ビス(トリメトキシシリルメチル)ベンゼン、3-メトキシプロピルトリメトキシシラン、2-[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン、メトキシトリエチレンオキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]トリエトキシシラン、N,N'-ビス(ヒドロキシエチル)-N,N'-ビス(トリメトキシシリルプロピル)エチレンジアミン、ビス-[3-(トリエトキシシリルプロピル)-2-ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N'-(トリエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(トリエトキシシリルプロピル)ポリエチレンオキシドを挙げることができる。これらのうち特に好ましいものとしては、入手容易な観点と親水性層との密着性の観点から、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン等を挙げることができる。 When M 2 is Si and a is 3, that is, as a trifunctional alkoxysilane, for example, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxy Silane, γ-chloropropyltriethoxysilane, γ-chloropropyltrimethoxysilane, chloromethyltriethoxysilane, (p-chloromethyl) phenyltrimethoxysilane, γ-bromopropyltrimethoxysilane, acetoxymethyltriethoxysilane, acetoxy Methyltrimethoxysilane, acetoxypropyltrimethoxysilane, benzoyloxypropyltrimethoxysilane, 2- (carbomethoxy) ethyltrimethoxysilane, phenyltrimethoxysilane, phenyltrie Toxisilane, phenyltripropoxysilane, hydroxymethyltriethoxysilane, N- (triethoxysilylpropyl) -O-polyethylene oxide urethane, N- (3-triethysilylpropyl) -4-hydroxybutyramide, N- (3 -Triethoxysilylpropyl) gluconamide, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, isopropenyltrimethoxysilane, isopropenyltriethoxysilane, isopropenyltributoxysilane, vinyltris (2-methoxyethoxy) silane , Allyltrimethoxysilane, vinyldecyltrimethoxysilane, vinyloctyltrimethoxysilane, vinylphenyltrimethoxysilane, isopropenylphenyltrimethoxysilane, 2 (Meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) ) -Acryloxypropyltris (2-methoxyethoxy) silane, 3- [2- (allyloxycarbonyl) phenylcarbonyloxy] propyltrimethoxysilane, 3- (vinylphenylamino) propyltrimethoxysilane, 3- (vinylphenyl) Amino) propyltriethoxysilane, 3- (vinylbenzylamino) propyltriethoxysilane, 3- (vinylbenzylamino) propyltriethoxysilane, 3- [2- (N-vinylphenylmethylamino) ethylamino] propyltrimethoxy Lan, 3- [2- (N-isopropenylphenylmethylamino) ethylamino] propyltrimethoxysilane, 2- (vinyloxy) ethyltrimethoxysilane, 3- (vinyloxy) propyltrimethoxysilane, 4- (vinyloxy) butyl Triethoxysilane, 2- (isopropenyloxy) ethyltrimethoxysilane, 3- (allyloxy) propyltrimethoxysilane, 10- (allyloxycarbonyl) decyltrimethoxysilane, 3- (isopropenylmethyloxy) propyltrimethoxysilane 10- (isopropenylmethyloxycarbonyl) decyltrimethoxysilane, 3-[(meth) acryloxypropyl] trimethoxysilane, 3-[(meth) acryloxypropyl] triethoxysilane, 3-[(meth) acrylo Chimethyl] trimethoxysilane, 3-[(meth) acryloxymethyl] triethoxysilane, γ-glycidoxypropyltrimethoxysilane, N- [3- (meth) acryloxy-2-hydroxypropyl] -3-aminopropyl Triethoxysilane, O-“(meth) acryloxyethyl” -N- (triethoxysilylpropyl) urethane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, 4-aminobutyltriethoxysilane, 11-aminoundecyltriethoxysilane, m-aminophenyltrimethoxysilane, p-aminophenyltrimethoxysilane, 3 -Aminopropyltris Toxiethoxyethoxy) silane, 2- (4-pyridylethyl) triethoxysilane, 2- (trimethoxysilylethyl) pyridine, N- (3-trimethoxysilylpropyl) pyrrole, 3- (m-aminophenoxy) propyltri Methoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (6-aminohexyl) aminomethyltriethoxysilane N- (6-aminohexyl) aminopropyltrimethoxysilane, N- (2-aminoethyl) -11-aminoundecyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N-3-[( Amino (polypropyleneoxy))] aminopropyltrimethoxy Silane, n-butylaminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminomethyltri Ethoxysilane, (cyclohexylaminomethyl) triethoxysilane, N-cyclohexylaminopropyltrimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, diethylaminomethyltriethoxysilane, diethylaminopropyltrimethoxysilane, dimethyl Aminopropyltrimethoxysilane, N-3-trimethoxysilylpropyl-m-phenylenediamine, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, (Triethoxysilylpropyl) amine, bis (trimethoxysilylpropyl) amine, bis [(3-trimethoxysilyl) propyl] -ethylenediamine, bis [3- (triethoxysilyl) propyl] urea, bis (trimethoxysilyl) Propyl) urea, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, ureidopropyltriethoxysilane, ureidopropyltrimethoxysilane, acetamidopropyltrimethoxysilane, 2- (2-pyridylethyl) thiopropyl Trimethoxysilane, 2- (4-pyridylethyl) thiopropyltrimethoxysilane, bis [3- (triethoxysilyl) propyl] disulfide, 3- (triethoxysilyl) propylsuccinic anhydride, γ-mercaptopropyltri Methoxysilane, γ-mercaptopropyltriethoxysilane, isocyanatopropyltrimethoxysilane, isocyanatopropyltriethoxysilane, isocyanatoethyltriethoxysilane, isocyanatomethyltriethoxysilane, carboxyethylsilanetriol sodium salt, N- (tri Methoxysilylpropyl) ethylenediaminetriacetic acid trisodium salt, 3- (trihydroxysilyl) -1-propanesulfonic acid, diethyl phosphate ethyltriethoxysilane, 3-trihydroxysilylpropylmethylphosphonate sodium salt, bis (triethoxysilyl) ethane Bis (trimethoxysilyl) ethane, bis (triethoxysilyl) methane, 1,6-bis (triethoxysilyl) hexane, 1,8-bis (triethoxy) Silyl) octane, p-bis (trimethoxysilylethyl) benzene, p-bis (trimethoxysilylmethyl) benzene, 3-methoxypropyltrimethoxysilane, 2- [methoxy (polyethyleneoxy) propyl] trimethoxysilane, methoxytri Ethyleneoxypropyltrimethoxysilane, tris (3-trimethoxysilylpropyl) isocyanurate, [hydroxy (polyethyleneoxy) propyl] triethoxysilane, N, N′-bis (hydroxyethyl) -N, N′-bis (tri Methoxysilylpropyl) ethylenediamine, bis- [3- (triethoxysilylpropyl) -2-hydroxypropoxy] polyethylene oxide, bis [N, N ′-(triethoxysilylpropyl) aminocarbonyl] polyethylene oxide, S (triethoxysilylpropyl) polyethylene oxide can be mentioned. Among these, particularly preferred are methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, and the like from the viewpoint of easy availability and the adhesion to the hydrophilic layer. .
 MがSiでaが4である場合、即ち4官能のアルコキシドシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシラン、メトキシトリエトキシシラン、エトキシトリメトキシシラン、メトキシトリプロポキシシラン、エトキシトリプロポキシシラン、プロポキシトリメトキシシラン、プロポキシトリエトキシシラン、ジメトキシジエトキシシラン等を挙げることができる。これらのうち特に好ましいものとしては、テトラメトキシシラン、テトラエトキシシラン等を挙げることができる。 When M 2 is Si and a is 4, that is, as tetrafunctional alkoxide silane, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, ethoxytrimethoxysilane, methoxy Examples include tripropoxysilane, ethoxytripropoxysilane, propoxytrimethoxysilane, propoxytriethoxysilane, and dimethoxydiethoxysilane. Of these, tetramethoxysilane, tetraethoxysilane and the like are particularly preferable.
 MがTiでaが2の場合、即ち2官能のアルコキシチタネートとしては、例えば、ジメチルジメトキシチタネート、ジエチルジメトキシチタネート、プロピルメチルジメトキシチタネート、ジメチルジエトキシチタネート、ジエチルジエトキシチタネート、ジプロピルジエトキシチタネート、フェニルエチルジエトキシチタネート、フェニルメチルジプロポキシチタネート、ジメチルジプロポキシチタネート等を挙げることができる。
 MがTiでaが3の場合、即ち3官能のアルコキシチタネートとしては、例えば、メチルトリメトキシチタネート、エチルトリメトキシチタネート、プロピルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、プロピルトリエトキシチタネート、クロロメチルトリエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート、フェニルトリプロポキシチタネート等を挙げることができる。
 MがTiでaが4の場合、即ち4官能のアルコキシチタネートとしては、例えば、テトラメトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、テトライソプロポキシチタネート、テトラブトキシチタネート等を挙げることができる。
When M 2 is Ti and a is 2, that is, as a bifunctional alkoxy titanate, for example, dimethyldimethoxytitanate, diethyldimethoxytitanate, propylmethyldimethoxytitanate, dimethyldiethoxytitanate, diethyldiethoxytitanate, dipropyldiethoxytitanate , Phenylethyldiethoxytitanate, phenylmethyldipropoxytitanate, dimethyldipropoxytitanate, and the like.
When M 2 is Ti and a is 3, that is, as trifunctional alkoxy titanate, for example, methyl trimethoxy titanate, ethyl trimethoxy titanate, propyl trimethoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, propyl triethoxy Examples include titanate, chloromethyl triethoxy titanate, phenyl trimethoxy titanate, phenyl triethoxy titanate, and phenyl tripropoxy titanate.
If M 2 is a is 4 Ti, as the words 4 alkoxy titanates functional, for example, tetramethoxysilane titanate, tetraethoxy titanate, tetrapropoxy titanate, tetraisopropoxy titanate, can be given Tetrabutoxytitanate like.
 MがZrである場合、即ち、ジルコニウムを含むものとしては、例えば、前記チタンを含むものとして例示した化合物に対応するジルコネートを挙げることができる。
 また、一般式(II)には含まれない化合物である、Alのアルコキシド化合物としては、例えば、トリメトキシアルミネート、トリエトキシアルミネート、トリプロポキシアルミネート、テトラエトキシアルミネート等を挙げることができる。
 特定アルコキシドは市販品として容易に入手できるし、公知の合成方法、たとえば各金属塩化物とアルコールとの反応によっても得られる。
 特定アルコキシドは、一種類の化合物を単独で用いても、二種類以上の化合物を組み合わせて使用してもよい。
When M 2 is Zr, that is, the one containing zirconium can include, for example, a zirconate corresponding to the compound exemplified as containing titanium.
Examples of Al alkoxide compounds that are not included in the general formula (II) include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, and tetraethoxy aluminate. .
The specific alkoxide can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
As the specific alkoxide, one kind of compound may be used alone, or two or more kinds of compounds may be used in combination.
 前記化合物(II)/導電性繊維の含有比が、質量比で、0.5/1~25/1の範囲、より好ましくは1/1~15/1の範囲、最も好ましは2/1~8/1の範囲にあることが、導電性が高く、ヘイズが少なく、かつ膜強度の高い導電性層が得られるという利点が得られるので好ましい。 The content ratio of the compound (II) / conductive fiber is in a mass ratio in the range of 0.5 / 1 to 25/1, more preferably in the range of 1/1 to 15/1, most preferably 2/1. It is preferable that the ratio be in the range of ˜8 / 1 because an advantage can be obtained that a conductive layer having high conductivity, low haze, and high film strength can be obtained.
 導電性層は、導電性繊維と特定アルコキシド化合物を含む水溶液を塗布液(以下、「ゾルゲル塗布液」ともいう。)として、基板上に塗布して塗布液膜を形成し、この塗布液膜中で特定アルコキシド化合物の加水分解と重縮合の反応(以下、この加水分解と重縮合の反応を「ゾルゲル反応」ともいう。)を起こさせ、更に必要に応じて溶媒としての水を加熱して蒸発させて乾燥することにより、形成される。ゾルゲル塗布液の調製に際しては、導電性繊維の水分散液を別に調製しておき、これと特定アルコキシド化合物とを混合してもよい。更に、特定アルコキシド化合物を含む水溶液を調製したのち、この水溶液を加熱して特定アルコキシド化合物の少なくとも一部を加水分解及び重縮合させてゾル状態とし、このゾル状態にある水溶液と導電性繊維の水分散液とを混合したものをゾルゲル塗布液としてもよい。
 ゾルゲル反応を促進させるために、酸性触媒又は塩基性触媒を併用することが反応効率を高められるので、実用上好ましい。以下、この触媒について、説明する。
The conductive layer is formed by applying an aqueous solution containing conductive fibers and a specific alkoxide compound as a coating liquid (hereinafter also referred to as “sol-gel coating liquid”) on a substrate to form a coating liquid film. Cause the hydrolysis and polycondensation reaction of the specific alkoxide compound (hereinafter, the hydrolysis and polycondensation reaction is also referred to as “sol-gel reaction”), and if necessary, heat the water as a solvent to evaporate. Formed by drying. In preparing the sol-gel coating solution, an aqueous dispersion of conductive fibers may be prepared separately and mixed with the specific alkoxide compound. Furthermore, after preparing an aqueous solution containing the specific alkoxide compound, the aqueous solution is heated to hydrolyze and polycondense at least a part of the specific alkoxide compound to form a sol state. A mixture of the dispersion and the sol-gel coating liquid may be used.
In order to promote the sol-gel reaction, it is practically preferable to use an acidic catalyst or a basic catalyst in combination because the reaction efficiency can be increased. Hereinafter, this catalyst will be described.
〔触媒〕
 触媒としては、アルコキシド化合物の加水分解及び重縮合の反応を促進させるものであれば使用することができる。
 このような触媒としては、酸、或いは塩基性化合物が含まれ、そのまま用いるか、又は、水又はアルコールなどの溶媒に溶解させた状態のもの(以下、これらを包括してそれぞれ酸性触媒、塩基性触媒とも称する)で使用される。
 酸、或いは塩基性化合物を溶媒に溶解させる際の濃度については特に限定はなく、用いる酸、或いは塩基性化合物の特性、触媒の所望の含有量などに応じて適宜選択すればよい。ここで、触媒を構成する酸或いは塩基性化合物の濃度が高い場合は、加水分解、重縮合速度が速くなる傾向がある。但し、濃度の高過ぎる塩基性触媒を用いると、沈殿物が生成して導電性層に欠陥となって現れる場合があるので、塩基性触媒を用いる場合、その濃度は水溶液での濃度換算で1N以下であることが望ましい。
〔catalyst〕
Any catalyst that promotes hydrolysis and polycondensation reactions of the alkoxide compound can be used.
Such a catalyst includes an acid or a basic compound and is used as it is or dissolved in a solvent such as water or alcohol (hereinafter, these are collectively included as an acidic catalyst and a basic compound, respectively). Also referred to as a catalyst).
The concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like. Here, when the concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase. However, if a basic catalyst having a too high concentration is used, a precipitate may be generated and appear as a defect in the conductive layer. Therefore, when a basic catalyst is used, the concentration is 1N in terms of concentration in an aqueous solution. The following is desirable.
 酸性触媒或いは塩基性触媒の種類は特に限定されないが、濃度の濃い触媒を用いる必要がある場合には、導電性層中にほとんど残留しないような元素から構成される触媒がよい。具体的には、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで示される構造式のRを他元素又は置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などが挙げられ、塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などが挙げられる。 The kind of acidic catalyst or basic catalyst is not particularly limited, but when a catalyst having a high concentration is required, a catalyst composed of an element that hardly remains in the conductive layer is preferable. Specifically, examples of the acidic catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structure represented by RCOOH. Examples thereof include substituted carboxylic acids in which R in the formula is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., and basic catalysts include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
 金属錯体からなるルイス酸触媒もまた好ましく使用できる。特に好ましい触媒は、金属錯体触媒であり、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
 構成金属元素の中では、Mg,Ca,St,Baなどの2A族元素、Al,Gaなどの3B族元素,Ti,Zrなどの4A族元素及びV,Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
A Lewis acid catalyst comprising a metal complex can also be preferably used. Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or their esters, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
Among constituent metal elements, 2A group elements such as Mg, Ca, St and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as V, Nb and Ta are preferable. , Each forming a complex with excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
 上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、本発明においては、アセチルアセトン(2,4-ペンタンジオン)、2,4-ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4-ヒドロキシー4-メチル-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ヘプタノン、4-ヒドロキシ-2-ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N-ジメチルエタノールアミン、N-メチル-モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4-ペンタンジオン)のメチル基、メチレン基又はカルボニル炭素に置換基を有する化合物が挙げられる。 In the present invention, the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a β-diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid and methyl tartrate, 4-hydroxy-4-methyl-2-pentanone, Keto alcohols such as 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone and 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl-mono Ethanolamine, diethanol Amino alcohols such as ethanol and triethanolamine, methylol melamine, methylol urea, methylol acrylamide, enol active compounds such as malonic acid diethyl ester, methyl group, methylene group or carbonyl carbon of acetylacetone (2,4-pentanedione) The compound which has a substituent is mentioned.
 好ましい配位子はアセチルアセトン誘導体であり、アセチルアセトン誘導体は、本発明においては、アセチルアセトンのメチル基、メチレン基又はカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1~3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1~3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1~3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。 A preferred ligand is an acetylacetone derivative. In the present invention, the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone The substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms. Is an alkyl group of 1 to 3, in which case a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.
 好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n-プロピルカルボニルアセトン、i-プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル-1-プロピオニル-アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3-ジアセトプロピオン酸、4,4-ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1~4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。 Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element. When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
 好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。 Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
 上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。金属錯体のシリカゾルゲル反応での挙動については、J.Sol-Gel.Sci. and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液の経時安定性、並びに導電性層の皮膜面質及び高耐久性に優れるものを得られる。
 上記の金属錯体触媒は、市販品として容易に入手でき、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。
Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, A salt form such as a halogenate salt, a sulfate salt, a phosphate salt, etc., that ensures stoichiometric neutrality is used. For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, by using this metal complex, it is possible to obtain a coating solution having excellent stability over time, film surface quality of the conductive layer and high durability.
The above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
 本発明に係る触媒は、前記ゾルゲル塗布液中に、その不揮発性成分に対して、好ましくは0~50質量%、更に好ましくは5~25質量%の範囲で使用される。触媒は、単独で用いても二種以上を組み合わせて使用してもよい。 The catalyst according to the present invention is used in the sol-gel coating solution in an amount of preferably 0 to 50% by mass, more preferably 5 to 25% by mass, based on the nonvolatile components. A catalyst may be used independently or may be used in combination of 2 or more type.
〔溶剤〕
 上記のゾルゲル塗布液には、基板上に均一な塗布液膜の形成性を確保するために、所望により、有機溶剤を含有させてもよい。
 このような有機溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2-プロパノール、1-プロパノール、1-ブタノール、tert-ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
 この場合、VOC(揮発性有機溶剤)の関連から問題が起こらない範囲での添加が有効であり、ゾルゲル塗布液の総質量に対して50質量%以下の範囲が好ましく、更に30質量%以下の範囲がより好ましい。
〔solvent〕
The sol-gel coating liquid may contain an organic solvent as desired in order to ensure the formation of a uniform coating liquid film on the substrate.
Examples of such organic solvents include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, chloroform, and chloride. Chlorine solvents such as methylene, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ethylene glycol monomethyl ether, ethylene glycol Examples thereof include glycol ether solvents such as dimethyl ether.
In this case, it is effective to add VOC (volatile organic solvent) in a range that does not cause a problem, and the range is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total mass of the sol-gel coating solution. A range is more preferred.
 基板上に形成されたゾルゲル塗布液の塗布液膜中においては、特定アルコキシド化合物の加水分解及び縮合の反応が起こるが、その反応を促進させるために、上記塗布液膜を加熱、乾燥することが好ましい。ゾルゲル反応を促進させるための加熱温度は、30℃~200℃の範囲が適しており、50℃~180℃の範囲がより好ましい。加熱、乾燥時間は10秒間~300分間が好ましく、1分間~120分間がより好ましい。 In the coating liquid film of the sol-gel coating liquid formed on the substrate, the hydrolysis and condensation reactions of the specific alkoxide compound occur. In order to accelerate the reaction, the coating liquid film may be heated and dried. preferable. The heating temperature for promoting the sol-gel reaction is suitably in the range of 30 ° C. to 200 ° C., more preferably in the range of 50 ° C. to 180 ° C. The heating and drying time is preferably 10 seconds to 300 minutes, more preferably 1 minute to 120 minutes.
 本発明の導電性層の厚さは、0.01μm~2μmが好ましく、0.02μm~1μmが更に好ましく、0.03μm~0.8μmがより好まく、0.05μm~0.5μmが更により好ましい。膜厚を0.01μm以上50μm以下とすることで、十分な耐久性、膜強度が得られる。特に、0.05μm~0.5μmの範囲とすれば、製造上の許容範囲が確保されるので好ましい。 The thickness of the conductive layer of the present invention is preferably 0.01 μm to 2 μm, more preferably 0.02 μm to 1 μm, more preferably 0.03 μm to 0.8 μm, and even more preferably 0.05 μm to 0.5 μm. preferable. By setting the film thickness to 0.01 μm or more and 50 μm or less, sufficient durability and film strength can be obtained. In particular, a range of 0.05 μm to 0.5 μm is preferable because a manufacturing tolerance is secured.
<マトリックス>
 導電性層は、更にマトリックスを含んでもよい。
 ここで、「マトリックス」とは、導電性繊維を含んで層を形成する物質の総称である。
 マトリックスは、導電性繊維の分散を安定に維持させる機能を有するもので、非感光性のものであっても、感光性のものであってもよい。マトリックスを含むことにより、導電性層における導電性繊維の分散が安定に維持される上、基材表面に導電性層を接着層を介することなく形成した場合においても基材と導電性層との強固な接着が確保される。
 導電性層が導電性繊維単独で構成される場合、基材上に予め接着層を設けておき、この接着層上に、導電性繊維単独で構成される導電性層を設けた態様が好ましい。
 本発明においては、場合によっては導電性層がマトリックスを含んでいてもよい。マトリックスを含むものが、導電性繊維の分散が安定した導電性を有する導電性部材が得られる点から好ましい。
 マトリックスは、有機高分子ポリマーのような非感光性のものであっても、フォトレジスト組成物のような感光性のものであっても良い。
 導電性層がマトリックスを含む場合、マトリックス/導電性繊維の含有比率は、質量比で0.001/1~100/1の範囲が適当である。このような範囲に選定することにより、基材への導電性層の接着力、及び表面抵抗の適切なものが得られる。マトリックス/導電性繊維の含有比率は、質量比で0.005/1~50/1の範囲がより好ましく、0.01/1~20/1の範囲が更に好ましい。
 マトリックスは、前述のとおり、非感光性のものであっても、感光性のものであっても良い。
<Matrix>
The conductive layer may further include a matrix.
Here, the “matrix” is a general term for substances that include conductive fibers to form a layer.
The matrix has a function of stably maintaining the dispersion of the conductive fibers, and may be non-photosensitive or photosensitive. By including the matrix, the dispersion of the conductive fibers in the conductive layer is stably maintained, and even when the conductive layer is formed on the surface of the base material without an adhesive layer, the base material and the conductive layer Strong adhesion is ensured.
In the case where the conductive layer is composed of conductive fibers alone, an embodiment in which an adhesive layer is provided on the substrate in advance and a conductive layer composed of conductive fibers alone is provided on the adhesive layer is preferable.
In the present invention, in some cases, the conductive layer may contain a matrix. What contains a matrix is preferable from the viewpoint of obtaining a conductive member having conductivity in which dispersion of conductive fibers is stable.
The matrix may be a non-photosensitive material such as an organic polymer or a photosensitive material such as a photoresist composition.
When the conductive layer contains a matrix, the content ratio of the matrix / conductive fiber is suitably in the range of 0.001 / 1 to 100/1 by mass ratio. By selecting in such a range, an appropriate adhesive strength and surface resistance of the conductive layer to the substrate can be obtained. The content ratio of the matrix / conductive fiber is more preferably in the range of 0.005 / 1 to 50/1 by mass ratio, and still more preferably in the range of 0.01 / 1 to 20/1.
As described above, the matrix may be non-photosensitive or photosensitive.
 好適な非感光性マトリックスには、有機高分子ポリマーが含まれる。有機高分子ポリマーの具体例には、ポリメタクリル酸(例えば、ポリ(メタクリル酸メチル))、ポリアクリレート、及びポリアクリロニトリルなどのポリアクリル酸、ポリビニルアルコール、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエステルナフタレート、及びポリカーボネート)、フェノール又はクレゾール-ホルムアルデヒド(Novolacs(登録商標))、ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、及びポリフェニルエーテルなどの高芳香性を有する高分子、ポリウレタン(PU)、エポキシ、ポリオレフィン(例えば、ポリプロピレン、ポリメチルペンテン、及び環状オレフィン)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、セルロース、シリコーン及びその他のシリコン含有高分子(例えば、ポリシルセスキオキサン及びポリシラン)、ポリ塩化ビニル(PVC)、ポリアセテート、ポリノルボルネン、合成ゴム(例えば、EPR、SBR、EPDM)、及びフッ素重合体(例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン(TFE)、又はポリヘキサフルオロプロピレン)、フルオロ-オレフィンの共重合体、及び炭化水素オレフィン(例えば、旭硝子株式会社製「LUMIFLON」(登録商標))、及び非晶質フルオロカーボン重合体又は共重合体(例えば、旭硝子株式会社製の「CYTOP」(登録商標)又はデュポン社製の「Teflon」(登録商標)AF)が挙げられるがそれだけに限定されない。 Suitable non-photosensitive matrices include organic polymer polymers. Specific examples of the organic polymer include polyacrylic acid (for example, poly (methyl methacrylate)), polyacrylate, polyacrylic acid such as polyacrylonitrile, polyvinyl alcohol, polyester (for example, polyethylene terephthalate (PET), polyester) Naphthalate and polycarbonate), phenol or cresol-formaldehyde (Novolacs®), polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, polyamideimide, polyetherimide, polysulfide, polysulfone, polyphenylene, polyphenyl ether, etc. Highly aromatic polymer, polyurethane (PU), epoxy, polyolefin (eg, polypropylene, polymethylpentene) And cyclic olefin), acrylonitrile-butadiene-styrene copolymer (ABS), cellulose, silicone and other silicon-containing polymers (eg, polysilsesquioxane and polysilane), polyvinyl chloride (PVC), polyacetate, poly Norbornene, synthetic rubber (eg, EPR, SBR, EPDM), and fluoropolymers (eg, polyvinylidene fluoride, polytetrafluoroethylene (TFE), or polyhexafluoropropylene), fluoro-olefin copolymers, and Hydrocarbon olefins (for example, “LUMIFLON” (registered trademark) manufactured by Asahi Glass Co., Ltd.) and amorphous fluorocarbon polymers or copolymers (for example, “CYTOP” (registered trademark) manufactured by Asahi Glass Co., Ltd.) or DuPont "Teflon" R) AF) although are not limited to much.
 感光性のマトリックスには、リソグラフィック・プロセスに好適なフォトレジスト組成物が含まれる。マトリックスとして、フォトレジスト組成物が含まれ場合には、導電性層を導電性領域と非導電性領域とをパターン上に有するものを、リソグラフィック・プロセスにより形成することが可能となる点で好ましい。このようなフォトレジスト組成物のうち、特に好ましいものとして、透明性及び柔軟性に優れ、かつ基材との接着性に優れた導電性層が得られるという点から、光重合性組成物が挙げられる。以下、この光重合性組成物について、説明する。
<光重合性組成物>
 光重合性組成物は、(a)付加重合性不飽和化合物と、(b)光に照射されるとラジカルを発生する光重合開始剤とを基本成分として含み、更に所望により(c)バインダー、(d)その他、上記成分(a)~(c)以外の添加剤を含むものである。
 以下、これらの成分について、説明する。
The photosensitive matrix includes a photoresist composition suitable for a lithographic process. When a photoresist composition is included as the matrix, a conductive layer having a conductive region and a non-conductive region on the pattern is preferable in that it can be formed by a lithographic process. . Among such photoresist compositions, a photopolymerizable composition is particularly preferable because a conductive layer having excellent transparency and flexibility and excellent adhesion to a substrate can be obtained. It is done. Hereinafter, this photopolymerizable composition will be described.
<Photopolymerizable composition>
The photopolymerizable composition includes (a) an addition polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light as basic components, and (c) a binder, if desired. (D) In addition, additives other than the above components (a) to (c) are included.
Hereinafter, these components will be described.
[(a)付加重合性不飽和化合物]
 成分(a)の付加重合性不飽和化合物(以下、「重合性化合物」ともいう。)は、ラジカルの存在下で付加重合反応を生じて高分子化される化合物であり、通常、分子末端に少なくとも一つの、より好ましくは二つ以上の、更に好ましくは四つ以上の、更により好ましくは六つ以上のエチレン性不飽和二重結合を有する化合物が使用される。
 これらは、例えば、モノマー、プレポリマー、即ち2量体、3量体及びオリゴマー、又はそれらの混合物などの化学的形態をもつ。
 このような重合性化合物としては、種々のものが知られており、それらは成分(a)として使用することができる。
 このうち、特に好ましい重合性化合物としては、膜強度の観点から、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。
[(A) Addition polymerizable unsaturated compound]
The component (a) addition-polymerizable unsaturated compound (hereinafter also referred to as “polymerizable compound”) is a compound that undergoes an addition-polymerization reaction in the presence of a radical to become a polymer, and usually has a molecular end. A compound having at least one, more preferably two or more, more preferably four or more, and even more preferably six or more ethylenically unsaturated double bonds is used.
These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
Among these, particularly preferred polymerizable compounds are trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) from the viewpoint of film strength. Acrylate is particularly preferred.
 成分(a)の含有量は、前述の導電性繊維を含む光重合性組成物の固形分の総質量を基準として、2.6質量%以上37.5質量%以下であることが好ましく、5.0質量%以上20.0質量%以下であることがより好ましい。 The content of the component (a) is preferably 2.6% by mass or more and 37.5% by mass or less based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers described above. More preferably, it is 0.0 mass% or more and 20.0 mass% or less.
[(b)光重合開始剤]
 成分(b)の光重合開始剤は、光に照射されるとラジカルを発生する化合物である。このよう光重合開始剤には、光照射により、最終的には酸となる酸ラジカルを発生する化合物及びその他のラジカルを発生する化合物などが挙げられる。以下、前者を「光酸発生剤」と呼び、後者を「光ラジカル発生剤」と呼ぶ。
-光酸発生剤-
 光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、或いはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸ラジカルを発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
[(B) Photopolymerization initiator]
The photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light. Examples of such photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals. Hereinafter, the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
-Photoacid generator-
Photoacid generators include photoinitiators for photocationic polymerization, photoinitiators for photoradical polymerization, photodecolorants for dyes, photochromic agents, irradiation with actinic rays or radiation used in microresists, etc. Thus, known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
 このような光酸発生剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジ-又はトリ-ハロメチル基を少なくとも一つ有するトリアジン又は1,3,4-オキサジアゾール、ナフトキノン-1,2-ジアジド-4-スルホニルハライド、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o-ニトロベンジルスルホネートが特に好ましい。
 また、活性光線又は放射線の照射により酸ラジカルを発生する基、或いは化合物を樹脂の主鎖又は側鎖に導入した化合物、例えば、米国特許第3,849,137号明細書、独国特許第3914407号明細書、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号の各公報等に記載の化合物を用いることができる。
 更に、米国特許第3,779,778号、欧州特許第126,712号等の各明細書に記載の化合物も、酸ラジカル発生剤として使用することができる。
Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose. For example, triazine or 1,3,4-oxadi having at least one di- or tri-halomethyl group may be used. Examples thereof include azole, naphthoquinone-1,2-diazido-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, and o-nitrobenzyl sulfonate. Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
Further, a group that generates an acid radical upon irradiation with actinic rays or radiation, or a compound in which a compound is introduced into the main chain or side chain of the resin, for example, US Pat. No. 3,849,137, German Patent No. 3914407. JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, JP-A-62-153853 And compounds described in JP-A-63-146029, etc. can be used.
Furthermore, compounds described in each specification such as US Pat. No. 3,779,778 and European Patent 126,712 can also be used as an acid radical generator.
 前記トリアジン系化合物としては、例えば2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)一s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4,6-トリス(モノクロロメチル)-s-トリアジン、2,4,6-トリス(ジクロロメチル)-s-トリアジン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-n-プロピル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(α,α,β-トリクロロエチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3,4-エポキシフェニル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2-(p-クロロフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔1-(p-メトキシフェニル)-2,4-ブタジエニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-スチリル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-i-プロピルオキシスチリル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニルチオ-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ベンジルチオ-4,6-ビス(トリクロロメチル)-s-トリアジン、4-(o-ブロモ-p-N,N-(ジエトキシカルボニルアミノ)-フェニル)-2,6-ジ(トリクロロメチル)-s-トリアジン、2,4,6-トリス(ジブロモメチル)-s-トリアジン、2,4,6-トリス(トリブロモメチル)-s-トリアジン、2-メチル-4,6-ビス(トリブロモメチル)-s-トリアジン、2-メトキシ-4,6-ビス(トリブロモメチル)-s-トリアジン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the triazine compound include 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6-bis (trichloromethyl)- s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) mono-s-triazine, 2- (4-ethoxycarbonylnaphthyl) -4,6-bis (trichloromethyl) -s-triazine 2,4,6-tris (monochloromethyl) -s-triazine, 2,4,6-tris (dichloromethyl) -s-triazine, 2,4,6-tris (trichloromethyl) -s-triazine, 2, -Methyl-4,6-bis (trichloromethyl) -s-triazine, 2-n-propyl-4,6-bis (trichloromethyl) -s-triazine, -(Α, α, β-trichloroethyl) -4,6-bis (trichloromethyl) -s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxy) Phenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3,4-epoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-chlorophenyl)- 4,6-bis (trichloromethyl) -s-triazine, 2- [1- (p-methoxyphenyl) -2,4-butadienyl] -4,6-bis (trichloromethyl) -s-triazine, 2-styryl -4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (pi-propipropyl) Oxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4 , 6-Bis (trichloromethyl) -s-triazine, 2-phenylthio-4,6-bis (trichloromethyl) -s-triazine, 2-benzylthio-4,6-bis (trichloromethyl) -s-triazine, 4, -(O-bromo-pN, N- (diethoxycarbonylamino) -phenyl) -2,6-di (trichloromethyl) -s-triazine, 2,4,6-tris (dibromomethyl) -s- Triazine, 2,4,6-tris (tribromomethyl) -s-triazine, 2-methyl-4,6-bis (tribromomethyl) -s-triazine, 2-methoxy-4, 6-bis (tribromomethyl) -s-triazine, and the like. These may be used individually by 1 type and may use 2 or more types together.
 本発明においては、前記(1)光酸発生剤の中でもスルホン酸を発生する化合物が好ましく、下記のようなオキシムスルホネート化合物が高感度である観点から特に好ましい。 In the present invention, among the above (1) photoacid generators, compounds that generate sulfonic acid are preferable, and the following oxime sulfonate compounds are particularly preferable from the viewpoint of high sensitivity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
-光ラジカル発生剤-
 光ラジカル発生剤は、光を直接吸収し、又は光増感されて分解反応若しくは水素引き抜き反応を起こし、ラジカルを発生する機能を有する化合物である。光ラジカル発生剤としては、波長300nm~500nmの領域に吸収を有するものであることが好ましい。
 このような光ラジカル発生剤としては、多数の化合物が知られており、例えば特開2008-268884号公報に記載されているようなカルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシムエステル化合物、アシルホスフィン(オキシド)化合物、が挙げられる。これらは目的に応じて適宜選択することができる。これらの中でも、ベンゾフェノン化合物、アセトフェノン化合物、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、及びアシルホスフィン(オキシド)化合物が露光感度の観点から特に好ましい。
-Photoradical generator-
The photoradical generator is a compound that directly absorbs light or is photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction to generate a radical. The photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
Many compounds are known as such photo radical generators. For example, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds as described in JP-A-2008-268884 are known. Azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds. These can be appropriately selected according to the purpose. Among these, benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable from the viewpoint of exposure sensitivity.
 前記ベンゾフェノン化合物としては、例えばベンゾフェノン、ミヒラーズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、N,N-ジエチルアミノベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the benzophenone compound include benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, N, N-diethylaminobenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
 前記アセトフェノン化合物としては、例えば2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、1-ヒドロキシシクロヘキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などが挙げられる。市販品の具体例としては、チバ・スペシャルティ・ケミカルズ社製のイルガキュア369、イルガキュア379、イルガキュア907などが好適である。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the acetophenone compound include 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 1-hydroxycyclohexyl phenyl ketone, α-hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl (p-isopropylphenyl) ketone, 1-hydroxy- 1- (p-dodecylphenyl) ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 1,1,1-trichloromethyl- (p-butylphenyl) ketone, 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butano -1 and the like. Specific examples of commercially available products are Irgacure 369, Irgacure 379, and Irgacure 907 manufactured by Ciba Specialty Chemicals. These may be used individually by 1 type and may use 2 or more types together.
 前記ヘキサアリールビイミダゾール化合物としては、例えば、特公平6-29285号公報、米国特許第3,479,185号、米国特許第4,311,783号、米国特許第4,622,286号等の各明細書に記載の種々の化合物、具体的には、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-ブロモフェニル))4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o,p-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラ(m-メトキシフェニル)ビイジダゾール、2,2’-ビス(o,o’-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-ニトロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-メチルフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-トリフルオロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the hexaarylbiimidazole compound include JP-B-6-29285, US Pat. No. 3,479,185, US Pat. No. 4,311,783, US Pat. No. 4,622,286, and the like. Various compounds described in each specification, specifically, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o -Bromophenyl)) 4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o, p-dichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2 , 2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetra (m-methoxyphenyl) biidazole, 2,2′-bis (o, o′-dichlorophenyl) -4,4 ′, 5,5'- Traphenylbiimidazole, 2,2′-bis (o-nitrophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-methylphenyl) -4,4 ′ , 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-trifluorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記オキシムエステル化合物としては、例えばJ.C.S.Perkin II(1979)1653-1660)、J.C.S.Perkin II(1979)156-162、Journal of Photopolymer Science and Technology(1995)202-232、特開2000-66385号公報記載の化合物、特開2000-80068号公報、特表2004-534797号公報記載の化合物等が挙げられる。具体例としては、チバ・スペシャルティ・ケミカルズ社製のイルガキュアOXE-01、OXE-02等が好適である。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the oxime ester compound include J.P. C. S. Perkin II (1979) 1653-1660), J.M. C. S. Perkin II (1979) 156-162, Journal of Photopolymer Science and Technology (1995) 202-232, JP-A 2000-66385, compounds described in JP-A 2000-80068, JP-T 2004-534797 Compounds and the like. Specific examples include Irgacure OXE-01 and OXE-02 manufactured by Ciba Specialty Chemicals. These may be used individually by 1 type and may use 2 or more types together.
 前記アシルホスフィン(オキシド)化合物としては、例えばチバ・スペシャルティ・ケミカルズ社製のイルガキュア819、ダロキュア4265、ダロキュアTPOなどが挙げられる。 Examples of the acylphosphine (oxide) compound include Irgacure 819, Darocur 4265, and Darocur TPO manufactured by Ciba Specialty Chemicals.
 光ラジカル発生剤としては、露光感度と透明性の観点から、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、N,N-ジエチルアミノベンゾフェノン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]が特に好ましい。 As the photoradical generator, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1- is used from the viewpoint of exposure sensitivity and transparency. Butanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2, 2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, N, N-diethylaminobenzophenone, 1,2-octanedione, 1- [4- (phenylthio)-, 2 -(O-benzoyloxime)] is particularly preferred.
 成分(b)の光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよく、その含有量は、導電性繊維を含む光重合性組成物の固形分の総質量を基準として、0.1質量%~50質量%であることが好ましく、0.5質量%~30質量%がより好ましく、1質量%~20質量%が更に好ましい。このような数値範囲において、後述の導電性領域と非導電性領域とを含むパターンを導電性層に形成する場合に、良好な感度とパターン形成性が得られる。 The photopolymerization initiator of component (b) may be used alone or in combination of two or more, and the content thereof is the total solid content of the photopolymerizable composition containing conductive fibers. The mass is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
[(c)バインダー]
 バインダーとしては、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 これらの中でも、有機溶剤に可溶でアルカリ水溶液に可溶なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。
 ここで、前記酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。
[(C) Binder]
The binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or styrene copolymer as a main chain) ( For example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like.
Among these, those that are soluble in an organic solvent and soluble in an aqueous alkali solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid are particularly preferable. preferable.
Here, the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
 前記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。前記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。 For the production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
 前記線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましい。
 前記側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
As the linear organic polymer, a polymer having a carboxylic acid in the side chain is preferable.
Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
 これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が特に好ましい。
 更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーからなる多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。
Among these, benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
Furthermore, a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer composed of (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful. The polymer can be used by mixing in an arbitrary amount.
 前記以外にも、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体、などが挙げられる。 In addition to the above, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Coalescence, etc.
 前記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。 As the specific structural unit in the alkali-soluble resin, (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
 前記(メタ)アクリル酸と共重合可能な他の単量体としては、例えばアルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。これらは、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。
 前記アルキル(メタ)アクリレート又はアリール(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of other monomers copolymerizable with the (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. In these, the hydrogen atom of the alkyl group and aryl group may be substituted with a substituent.
Examples of the alkyl (meth) acrylate or aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl (meth). Acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meta ) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and the like. These may be used individually by 1 type and may use 2 or more types together.
 前記ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH=CR、CH=C(R)(COOR)〔ただし、Rは水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数6~10の芳香族炭化水素環を表し、Rは炭素数1~8のアルキル基又は炭素数6~12のアラルキル基を表す。〕、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the vinyl compound include styrene, α-methylstyrene, vinyl toluene, glycidyl methacrylate, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, tetrahydrofurfuryl methacrylate, polystyrene macromonomer, polymethyl methacrylate macromonomer, CH 2 ═CR. 1 R 2 , CH 2 ═C (R 1 ) (COOR 3 ) [wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 2 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. R 3 represents an alkyl group having 1 to 8 carbon atoms or an aralkyl group having 6 to 12 carbon atoms. ] And the like. These may be used individually by 1 type and may use 2 or more types together.
 前記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000~500,000が好ましく、3,000~300,000がより好ましく、5,000~200,000が更に好ましい。
 ここで、前記重量平均分子量は、ゲルパーミエイションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて求めることができる。
The weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
Here, the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
 成分(c)のバインダーの含有量は、前述の導電性繊維を含む光重合性組成物の固形分の総質量を基準として、5質量%~90質量%であることが好ましく、10質量%~85質量%がより好ましく、20質量%~80質量%が更に好ましい。前記好ましい含有量範囲であると、現像性と金属ナノワイヤーの導電性の両立が図れる。 The content of the component (c) binder is preferably 5% by mass to 90% by mass, preferably 10% by mass to 90% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers. 85% by mass is more preferable, and 20% by mass to 80% by mass is even more preferable. When the content is within the preferable range, both developability and conductivity of the metal nanowire can be achieved.
[(d)その他、上記成分(a)~(c)以外の添加剤]
 上記成分(a)~(c)以外のその他の添加剤としては、例えば、連鎖移動剤、架橋剤、分散剤、溶媒、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種の添加剤などが挙げられる。
(d-1)連鎖移動剤
 連鎖移動剤は、光重合性組成物の露光感度向上のために使用されるものである。このような連鎖移動剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステルなどのN,N-ジアルキルアミノ安息香酸アルキルエステル、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、N-フェニルメルカプトベンゾイミダゾール、1,3,5-トリス(3-メルカブトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなどの複素環を有するメルカプト化合物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタンなどの脂肪族多官能メルカプト化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[(D) Other additives other than the above components (a) to (c)]
Other additives other than the above components (a) to (c) include, for example, a chain transfer agent, a crosslinking agent, a dispersant, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity. Various additives such as regulators and preservatives are listed.
(D-1) Chain transfer agent The chain transfer agent is used for improving the exposure sensitivity of the photopolymerizable composition. Examples of such chain transfer agents include N, N-dialkylaminobenzoic acid alkyl esters such as N, N-dimethylaminobenzoic acid ethyl ester, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzoic acid. Such as imidazole, N-phenylmercaptobenzimidazole, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, etc. Aliphatic polyfunctional compounds such as mercapto compounds having a heterocyclic ring, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) butane Examples include mercapto compounds. These may be used individually by 1 type and may use 2 or more types together.
 連鎖移動剤の含有量は、前述の導電性繊維を含む光重合性組成物の固形分の総質量を基準として、0.01質量%~15質量%が好ましく、0.1質量%~10質量%がより好ましく、0.5質量%~5質量%が更に好ましい。 The content of the chain transfer agent is preferably 0.01% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass, based on the total mass of the solid content of the photopolymerizable composition containing the conductive fibers. % Is more preferable, and 0.5% by mass to 5% by mass is still more preferable.
(d-2)架橋剤
 架橋剤は、フリーラジカル又は酸及び熱により化学結合を形成し、導電層を硬化させる化合物で、例えばメチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも1つの基で置換されたメラミン系化合物、グアナミン系化合物、グリコールウリル系化合物、ウレア系化合物、フェノール系化合物若しくはフェノールのエーテル化合物、エポキシ系化合物、オキセタン系化合物、チオエポキシ系化合物、イソシアネート系化合物、又はアジド系化合物、メタクリロイル基又はアクリロイル基などを含むエチレン性不飽和基を有する化合物、などが挙げられる。これらの中でも、膜物性、耐熱性、溶剤耐性の点でエポキシ系化合物、オキセタン系化合物、エチレン性不飽和基を有する化合物が特に好ましい。
 また、前記オキセタン樹脂は、1種単独で又はエポキシ樹脂と混合して使用することができる。特にエポキシ樹脂との併用で用いた場合には反応性が高く、膜物性を向上させる観点から好ましい。
 なお、架橋剤としてエチレン性不飽和二重結合基を有する化合物を用いる場合、当該架橋剤も、また、前記(c)重合性化合物に包含され、その含有量は、本発明における(c)重合性化合物の含有量に含まれることを考慮すべきである。
 架橋剤の含有量は、前述の導電性繊維を含む光重合性組成物の固形分の総質量を基準として、1質量部~250質量部が好ましく、3質量部~200質量部がより好ましい。
(D-2) Crosslinking agent A crosslinking agent is a compound that forms a chemical bond with a free radical or acid and heat and cures the conductive layer. For example, at least one selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group. Group-substituted melamine compound, guanamine compound, glycoluril compound, urea compound, phenol compound or phenol ether compound, epoxy compound, oxetane compound, thioepoxy compound, isocyanate compound, or azide compound Examples thereof include a compound, a compound having an ethylenically unsaturated group including a methacryloyl group or an acryloyl group. Among these, an epoxy compound, an oxetane compound, and a compound having an ethylenically unsaturated group are particularly preferable in terms of film properties, heat resistance, and solvent resistance.
Moreover, the said oxetane resin can be used individually by 1 type or in mixture with an epoxy resin. In particular, when used in combination with an epoxy resin, the reactivity is high, which is preferable from the viewpoint of improving film properties.
In addition, when using the compound which has an ethylenically unsaturated double bond group as a crosslinking agent, the said crosslinking agent is also included by the said (c) polymeric compound, The content is (c) superposition | polymerization in this invention. It should be considered that it is included in the content of the active compound.
The content of the crosslinking agent is preferably 1 part by weight to 250 parts by weight, and more preferably 3 parts by weight to 200 parts by weight, based on the total weight of the solid content of the photopolymerizable composition containing the conductive fibers.
(d-3)分散剤
 分散剤は、光重合性組成物中における前述の導電性繊維が凝集することを防止しつつ分散させるために用いられる。分散剤としては、前記導電性繊維を分散させることができれば特に制限はなく、目的に応じて適否選択することができる。例えば、顔料分散剤として市販されている分散剤を利用でき、特に導電性繊維に吸着する性質を持つ高分子分散剤が好ましい。このような高分子分散剤としては、例えばポリビニルピロリドン、BYKシリーズ(ビックケミー社製)、ソルスパースシリーズ(日本ルーブリゾール社製など)、アジスパーシリーズ(味の素株式会社製)などが挙げられる。
 なお、分散剤として高分子分散剤を、前記導電性繊維の製造に用いたもの以外を更に別に添加する場合、当該高分子分散剤も、また、前記成分(c)のバインダーに包含され、その含有量は、前述の成分(c)の含有量に含まれることを考慮すべきである。
 分散剤の含有量としては、成分(c)のバインダー100質量部に対し、0.1質量部~50質量部が好ましく、0.5質量部~40質量部がより好ましく、1質量部~30質量部が特に好ましい。
 分散剤の含有量を0.1質量部以上とすることで、分散液中での導電性繊維の凝集が効果的に抑制され、50質量部以下とすることで、塗布工程において安定な液膜が形成され、塗布ムラの発生が抑制されるため好ましい。
(D-3) Dispersant The dispersant is used for dispersing the conductive fibers in the photopolymerizable composition while preventing the conductive fibers from aggregating. The dispersant is not particularly limited as long as the conductive fibers can be dispersed, and can be appropriately selected according to the purpose. For example, a commercially available dispersant can be used as a pigment dispersant, and a polymer dispersant having a property of adsorbing to conductive fibers is particularly preferable. Examples of such polymer dispersants include polyvinyl pyrrolidone, BYK series (manufactured by Big Chemie), Solsperse series (manufactured by Nihon Lubrizol), Ajisper series (manufactured by Ajinomoto Co., Inc.), and the like.
In addition, when a polymer dispersant is added as a dispersant other than that used for the production of the conductive fiber, the polymer dispersant is also included in the binder of the component (c), It should be considered that the content is included in the content of the component (c) described above.
The content of the dispersant is preferably 0.1 part by weight to 50 parts by weight, more preferably 0.5 part by weight to 40 parts by weight, with respect to 100 parts by weight of the binder of component (c), and 1 part by weight to 30 parts by weight. Part by mass is particularly preferred.
By setting the content of the dispersant to 0.1 parts by mass or more, the aggregation of conductive fibers in the dispersion is effectively suppressed, and by setting the content to 50 parts by mass or less, a stable liquid film in the coating process Is preferable, and the occurrence of uneven coating is suppressed.
(d-4)溶媒
 溶媒は、前述の導電性繊維を含む光重合性組成物を基材表面に膜状に形成するための塗布液とするために使用される成分であり、目的に応じて適宜選択することができ、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、乳酸エチル、3-メトキシブタノール、水、1-メトキシ-2-プロパノール、イソプロピルアセテート、乳酸メチル、N-メチルピロリドン(NMP)、γ-ブチロラクトン(GBL)、プロピレンカーボネート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 このような溶媒を含む塗布液の固形分濃度は、0.1質量%~20質量%の範囲で含有させることが好ましい。
(D-4) Solvent The solvent is a component used to form a coating solution for forming the photopolymerizable composition containing the above-described conductive fibers on the surface of the base material in a film form, depending on the purpose. For example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl lactate, 3-methoxybutanol, water, 1-methoxy-2- Examples include propanol, isopropyl acetate, methyl lactate, N-methylpyrrolidone (NMP), γ-butyrolactone (GBL), propylene carbonate, and the like. These may be used individually by 1 type and may use 2 or more types together.
The solid content concentration of the coating solution containing such a solvent is preferably contained in the range of 0.1% by mass to 20% by mass.
(d-5)金属腐食防止剤
 導電性繊維として金属ナノワイヤーを使用した場合には、金属腐食防止剤を含有させておくことが好ましい。このような金属腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばチオール類、アゾール類などが好適である。
 金属腐食防止剤を含有することで、一段と優れた防錆効果を発揮することができる。金属腐食防止剤は感光性層形成用組成物中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述する導電層用塗布液による導電膜を作製後に、これを金属腐食防止剤浴に浸すことで付与することができる。
 金属腐食防止剤を添加する場合は、金属ナノワイヤーに対して0.5質量%~10質量%含有させることが好ましい。
(D-5) Metal corrosion inhibitor When metal nanowires are used as the conductive fibers, it is preferable to contain a metal corrosion inhibitor. There is no restriction | limiting in particular as such a metal corrosion inhibitor, Although it can select suitably according to the objective, For example, thiols, azoles, etc. are suitable.
By containing a metal corrosion inhibitor, a further excellent rust prevention effect can be exhibited. The metal corrosion inhibitor is added to the composition for forming the photosensitive layer in a state dissolved in a suitable solvent, or in the form of powder, or after preparing a conductive film with a conductive layer coating solution described later, this is added to the metal corrosion inhibitor. It can be applied by soaking in a bath.
When a metal corrosion inhibitor is added, it is preferable to contain 0.5% by mass to 10% by mass with respect to the metal nanowires.
 その他、マトリックスとしては、前述の導電性繊維の製造の際に使用された分散剤としての高分子化合物を、マトリックスを構成する成分の少なくとも一部として使用することが可能である。 In addition, as the matrix, it is possible to use, as at least a part of the components constituting the matrix, a polymer compound as a dispersant used in the production of the conductive fibers described above.
 本発明に係る導電性層には、導電性繊維に加え、他の導電性材料、例えば、導電性微粒子などを本発明の効果を損なわない限りにおいて併用しうるが、効果の観点からは、前記したアスペクト比が10以上の導電性繊維の比率は、感光性層形成用組成物中に体積比で、50%以上が好ましく、60%以上がより好ましく、75%以上が特に好ましい。これらの導電性繊維の割合を、以下、「導電性繊維の比率」と呼ぶことがある。
 前記導電性繊維の比率が、50%未満であると、導電性に寄与する導電性物質が減少し導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。また、導電性繊維以外の形状の粒子は、導電性に大きく寄与しない上に吸収を持つため好ましくない。特に金属の場合で、球形などのプラズモン吸収が強い場合には透明度が悪化してしまうことがある。
In the conductive layer according to the present invention, in addition to the conductive fibers, other conductive materials, for example, conductive fine particles can be used in combination as long as the effects of the present invention are not impaired. The ratio of the conductive fibers having an aspect ratio of 10 or more is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more by volume ratio in the composition for forming a photosensitive layer. Hereinafter, the ratio of these conductive fibers may be referred to as “the ratio of conductive fibers”.
If the ratio of the conductive fibers is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a voltage concentration may occur because a dense network cannot be formed. , Durability may be reduced. In addition, particles having a shape other than the conductive fiber are not preferable because they do not greatly contribute to conductivity and have absorption. In particular, in the case of metal, transparency may be deteriorated when plasmon absorption such as a spherical shape is strong.
 ここで、前記導電性繊維の比率は、例えば、導電性繊維が銀ナノワイヤーである場合には、銀ナノワイヤー水分散液をろ過して、銀ナノワイヤーと、それ以外の粒子とを分離し、ICP発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定することで、導電性繊維の比率を求めることができる。ろ紙に残っている導電性繊維をTEMで観察し、300個の導電性繊維の短軸長さを観察し、その分布を調べることにより検知される。
 導電性繊維の平均短軸長さ及び平均長軸長さの測定方法は既述の通りである。
Here, the ratio of the conductive fibers is, for example, when the conductive fibers are silver nanowires, the silver nanowire aqueous dispersion is filtered to separate the silver nanowires from the other particles. The ratio of conductive fibers can be determined by measuring the amount of silver remaining on the filter paper and the amount of silver transmitted through the filter paper using an ICP emission analyzer. This is detected by observing the conductive fibers remaining on the filter paper with a TEM, observing the short axis lengths of 300 conductive fibers, and examining their distribution.
The measuring method of the average minor axis length and the average major axis length of the conductive fiber is as described above.
 前述の導電性層を基材上に形成する方法としては一般的な塗布方法で行うことができ、特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。 A method for forming the conductive layer on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected according to the purpose. For example, a roll coating method or a bar coating method. Dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
<<中間層>>
 本発明の導電性部材は、基材と導電性層との間に少なくとも一層の中間層を有することを特徴とする。基材と導電性層との間に中間層を設けることにより、基材と導電性層との密着性、導電性層の全光透過率、導電性層のヘイズ、導電性層の膜強度、及び導電性層が後述の導電性領域と非導電性領域とを含む導電性層である場合におけるエレクロトロマイグレーションのうちの少なくとも一つの向上を図ることが可能となる。
 中間層としては、基材と導電性層との接着力を向上させるための接着剤層、導電性層に含まれる成分との相互作用により機能性を向上させる機能性層などが挙げられ、目的に応じて適宜設けられる。
<< Intermediate layer >>
The conductive member of the present invention is characterized by having at least one intermediate layer between the substrate and the conductive layer. By providing an intermediate layer between the base material and the conductive layer, the adhesion between the base material and the conductive layer, the total light transmittance of the conductive layer, the haze of the conductive layer, the film strength of the conductive layer, It is possible to improve at least one of electromigration in the case where the conductive layer is a conductive layer including a conductive region and a non-conductive region, which will be described later.
Examples of the intermediate layer include an adhesive layer for improving the adhesive force between the base material and the conductive layer, and a functional layer for improving functionality by interaction with components contained in the conductive layer. Depending on the situation, it is appropriately provided.
 図1は、本発明の第一の実施形態に係る導電性部材1を示す概略断面図である。図1において、基材10と導電性層20との間に、基材10との親和性に優れた第1の接着層31と、導電性層20との親和性に優れた第2の接着層32とを含む中間層30を備える。
 図2は、本発明の第二の実施形態に係る導電性部材2を示す概略断面図である。図2において、基材10と導電性層20との間に、前記第1の実施形態と同様の第1の接着層31及び第2の接着層32に加え、導電性層20に隣接して機能性層33を備えて構成される中間層30を有する。本明細書における中間層30は、前記第1の接着層31、第2の接着層32、及び、機能性層33から選択される少なくとも1層を含んで構成される層をさす。
FIG. 1 is a schematic cross-sectional view showing a conductive member 1 according to the first embodiment of the present invention. In FIG. 1, between the base material 10 and the electroconductive layer 20, the 1st contact bonding layer 31 excellent in affinity with the base material 10 and the 2nd adhesion excellent in affinity with the electroconductive layer 20 are shown. An intermediate layer 30 including a layer 32 is provided.
FIG. 2 is a schematic cross-sectional view showing a conductive member 2 according to the second embodiment of the present invention. In FIG. 2, in addition to the first adhesive layer 31 and the second adhesive layer 32 similar to those of the first embodiment, the conductive layer 20 is adjacent to the base material 10 and the conductive layer 20. The intermediate layer 30 is configured to include the functional layer 33. The intermediate layer 30 in this specification refers to a layer including at least one layer selected from the first adhesive layer 31, the second adhesive layer 32, and the functional layer 33.
 中間層30に使用される素材は特に限定されず、上記の特性のいずれか少なくとも一つを向上させるものであればよい。
 例えば、中間層として接着層を備える場合、接着剤に使用されるポリマー、シランカップリング剤、チタンカップリング剤、Siのアルコキシド化合物を加水分解及び重縮合させて得られるゾルゲル膜などから選ばれる素材が含まれる。
 また、導電性層と接する中間層(即ち、中間層30が単層の場合には、当該中間層が、そして中間層30が複数の層を含む場合には、そのうちの導電性層と接する中間層)が、当該導電性層20に含まれる導電性繊維と相互作用可能な官能基を有する化合物を含む機能性層33であることが、全光透過率、ヘイズ、及び膜強度に優れた導電性層が得られることから好ましい。このような中間層を有する場合においては、導電性層20が導電性繊維と有機高分子とを含むものであっても、膜強度に優れた導電性層が得られる。
 更に、導電性層が後述の導電性領域と非導電性領域とを含む導電性層である場合、エレクトロマイグレーション現象を抑制できるという点においても、機能性層33を設けることが好ましい。
The material used for the intermediate layer 30 is not particularly limited as long as it improves at least one of the above characteristics.
For example, when an adhesive layer is provided as an intermediate layer, a material selected from a polymer used for an adhesive, a silane coupling agent, a titanium coupling agent, a sol-gel film obtained by hydrolysis and polycondensation of an alkoxide compound of Si, etc. Is included.
Further, an intermediate layer in contact with the conductive layer (that is, if the intermediate layer 30 is a single layer, the intermediate layer, and if the intermediate layer 30 includes a plurality of layers, an intermediate layer in contact with the conductive layer) Layer) is a functional layer 33 containing a compound having a functional group capable of interacting with the conductive fibers contained in the conductive layer 20, the conductivity excellent in total light transmittance, haze, and film strength. It is preferable because a conductive layer is obtained. In the case of having such an intermediate layer, a conductive layer excellent in film strength can be obtained even if the conductive layer 20 contains conductive fibers and organic polymers.
Furthermore, when the conductive layer is a conductive layer including a conductive region and a non-conductive region, which will be described later, it is preferable to provide the functional layer 33 in that the electromigration phenomenon can be suppressed.
 この作用は明確ではないが、導電性層20に含まれる導電性繊維と相互作用可能な官能基を有する化合物を含む中間層を設けることで、導電性層に含まれる導電性繊維と中間層に含まれる上記の官能基を有する化合物との相互作用により、導電性層における導電性材料の凝集が抑制され、均一分散性が向上し、導電性層中における導電性材料の凝集に起因する透明性やヘイズの低下が抑制されるとともに、密着性に起因して膜強度の向上が達成されるものと考えられる。また、水分と電界により銀イオンが泳動しやすくなることがエレクトロイオンマイグレーションの原因と考えられているが、本発明の中間層によりイオンの易動度が小さくなりエレクトロイオンマイグレーションが抑制されると推定される。このような相互作用性を発現しうる中間層を、以下、機能性層と称することがある。機能性層は、導電性材料との相互作用によりその効果を発揮することから、本発明における前述の三次元架橋構造を有する導電性層のみならず、導電性繊維と有機高分子とを含む導電性層と隣接して設けられても、その効果を発現する。 Although this effect is not clear, by providing an intermediate layer containing a compound having a functional group capable of interacting with the conductive fiber contained in the conductive layer 20, the conductive fiber and the intermediate layer contained in the conductive layer are provided. Due to the interaction with the compound having the above functional group contained, the aggregation of the conductive material in the conductive layer is suppressed, the uniform dispersibility is improved, and the transparency resulting from the aggregation of the conductive material in the conductive layer It is considered that an increase in film strength is achieved due to adhesion, as well as a decrease in haze and haze. In addition, it is considered that the migration of silver ions due to moisture and electric field is considered to be the cause of electroion migration, but it is estimated that the mobility of ions is reduced by the intermediate layer of the present invention and electroion migration is suppressed. Is done. Hereinafter, the intermediate layer capable of exhibiting such interaction may be referred to as a functional layer. Since the functional layer exhibits its effect by interaction with the conductive material, not only the conductive layer having the aforementioned three-dimensional cross-linked structure in the present invention, but also a conductive layer containing conductive fibers and organic polymers. Even if it is provided adjacent to the sex layer, the effect is exhibited.
 上記の導電性繊維と相互作用可能な官能基としては、例えば導電性繊維が銀ナノワイヤーの場合には、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基、ホスホン酸基又はそれらの塩からなる群より選ばれる少なくとも一つであることがより好ましい。更に好ましくは、アミノ基、メルカプト基、リン酸基、ホスホン酸基又はそれらの塩であることが好ましく、最も好ましくはアミノ基である。
 上記のような官能基を有する化合物としては、例えばウレイドプロピルトリエトキシシラン、ポリアクリルアミド、ポリメタクリルアミドなどのようなアミド基を有する化合物、例えばN-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ビス(ヘキサメチレン)トリアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブタンジアミン四塩酸塩、スペルミン、ジエチレントリアミン、m-キシレンジアミン、メタフェニレンジアミンなどのようなアミノ基を有する化合物、例えば3-メルカプトプロピルトリメトキシシラン、2-メルカプトベンゾチアゾール、トルエン-3,4-ジチオールなどのようなメルカプト基を有する化合物、例えばポリ(p-スチレンスルホン酸ナトリウム)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)などのようなスルホン酸又はその塩の基を有する化合物、例えばポリアクリル酸、ポリメタクリル酸、ポリアスパラギン酸、テレフタル酸、ケイ皮酸、フマル酸、コハク酸などのようなカルボン酸基を有する化合物、例えばホスマーPE、ホスマーCL、ホスマーM、ホスマーMH、及びそれらの重合体、ポリホスマーM-101、ポリホスマーPE-201、ポリホスマーMH-301などのようなリン酸基を有する化合物、例えばフェニルホスホン酸、デシルホスホン酸、メチレンジホスホン酸、ビニルホスホン酸、アリルホスホン酸などのようなホスホン酸基を有する化合物が挙げられる。
 これらの官能基を選択することで、導電性層形成用の塗布液を塗布後、導電性繊維と中間層に含まれる官能基とが相互作用を生じて、乾燥する際に導電性繊維が凝集するのを抑制し、導電性繊維が均一に分散された導電性層を形成することができる。
Examples of the functional group capable of interacting with the conductive fiber include, for example, when the conductive fiber is silver nanowire, an amide group, an amino group, a mercapto group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic group. More preferably, it is at least one selected from the group consisting of acid groups or salts thereof. More preferred is an amino group, mercapto group, phosphoric acid group, phosphonic acid group or a salt thereof, and most preferred is an amino group.
Examples of the compound having a functional group as described above include compounds having an amide group such as ureidopropyltriethoxysilane, polyacrylamide, polymethacrylamide and the like, for example, N-β (aminoethyl) γ-aminopropyltrimethoxysilane. , 3-aminopropyltriethoxysilane, bis (hexamethylene) triamine, N, N′-bis (3-aminopropyl) -1,4-butanediamine tetrahydrochloride, spermine, diethylenetriamine, m-xylenediamine, metaphenylene Compounds having amino groups such as diamines, such as compounds having mercapto groups such as 3-mercaptopropyltrimethoxysilane, 2-mercaptobenzothiazole, toluene-3,4-dithiol, such as poly (p-styrene sulfone) Acid sodium ), Poly (2-acrylamido-2-methylpropanesulfonic acid) and other sulfonic acid or salts thereof, such as polyacrylic acid, polymethacrylic acid, polyaspartic acid, terephthalic acid, cinnamic acid , Compounds having a carboxylic acid group such as fumaric acid, succinic acid, etc., such as phosmer PE, phosmer CL, phosmer M, phosmer MH, and polymers thereof, polyphosmer M-101, polyphosmer PE-201, polyphosmer MH-301 And compounds having a phosphonic acid group such as phenylphosphonic acid, decylphosphonic acid, methylenediphosphonic acid, vinylphosphonic acid, and allylphosphonic acid.
By selecting these functional groups, after applying the coating liquid for forming the conductive layer, the conductive fibers interact with the functional groups contained in the intermediate layer, and the conductive fibers aggregate when dried. Thus, a conductive layer in which conductive fibers are uniformly dispersed can be formed.
 本発明においては、前記官能基が、シランカップリング剤の反応により前記基材上に固定される事が好ましい。
 シランカップリング反応によって直接固定することが困難な官能基の場合は、前記官能基の前駆体を固定しておき、その後の化学処理で官能基に変換しても良い。例えばカルボン酸前駆体を有するシランカップリング剤としては特開2005-255615に開示されている化合物等を用いることができる。
 官能基の適切な固定量は官能基の種類及びシランカップリング剤の構造により異なるが、適量よりも多すぎると返って金属ワイヤーの凝集を起こし、表面抵抗が上昇したり、エレクトロマイグレーションが悪化する。
 このため、官能基の固定量の管理は重要であり、固定量管理が可能な塗工方式が好ましく、具体的にはスロットダイ方式が好ましい。一方、浸漬法による固定も好ましく行われる。浸漬法での固定量の調整は浸漬液中のシランカップリング剤濃度及び浸漬時間の調製により可能である。
 前記中間層におけるシランカップリング剤の含有量としては、前記中間層中に1μmol/m以上1mmol/m以下含まれることが好ましく、2μmol/m以上500μmol/m以下含まれることがより好ましく、3μmol/m以上200μmol/m以下含まれることが更に好ましい。
 前記中間層におけるシランカップリング剤の含有量を1mmol/m以下とすることにより、表面抵抗値が低く抑えられ、導電性層が後述の導電性領域と非導電性領域とを含む導電性層である場合のエレクトロマイグレーション現象に起因する短絡時間を長くすることができる。また、前記含有量を1μmol/m以上とすることにより、エレクトロイオンマイグレーションが改良される。
 固定された官能基の定量には各種の表面分析、例えばTOF-SIMS、ESCA、EDX、FTIR-ATRなどの方法を用いることができる。また、アミノ基やカルボン酸基等の官能基では官能基固定前後の膜面pHの変化として固定量が確認できる。
In this invention, it is preferable that the said functional group is fixed on the said base material by reaction of a silane coupling agent.
In the case of a functional group that is difficult to fix directly by a silane coupling reaction, the functional group precursor may be fixed and converted to a functional group by subsequent chemical treatment. For example, as a silane coupling agent having a carboxylic acid precursor, compounds disclosed in JP-A-2005-255615 can be used.
The appropriate amount of the functional group depends on the type of functional group and the structure of the silane coupling agent. However, if the amount is too much, the metal wire will aggregate and the surface resistance will increase or electromigration will deteriorate. .
For this reason, management of the fixed amount of the functional group is important, and a coating method capable of managing the fixed amount is preferable, and specifically, a slot die method is preferable. On the other hand, fixation by an immersion method is also preferably performed. Adjustment of the fixed amount by the immersion method is possible by adjusting the concentration of the silane coupling agent in the immersion liquid and the immersion time.
The content of the silane coupling agent in the intermediate layer, wherein it is preferably contained 1 [mu] mol / m 2 or more 1 mmol / m 2 or less in the intermediate layer, may be included 2 [mu] mol / m 2 or more 500 [mu] mol / m 2 or less and more Preferably, it is more preferably 3 μmol / m 2 or more and 200 μmol / m 2 or less.
By setting the content of the silane coupling agent in the intermediate layer to 1 mmol / m 2 or less, the surface resistance value is kept low, and the conductive layer includes a conductive region and a non-conductive region described later. In this case, the short circuit time due to the electromigration phenomenon can be increased. Moreover, electroion migration is improved by setting the content to 1 μmol / m 2 or more.
Various methods of surface analysis such as TOF-SIMS, ESCA, EDX, and FTIR-ATR can be used for quantification of the immobilized functional group. In the case of a functional group such as an amino group or a carboxylic acid group, the amount of fixation can be confirmed as a change in membrane surface pH before and after the functional group is fixed.
 中間層は、中間層を構成する化合物が溶解した、若しくは分散、乳化した液を基板上に塗布し、乾燥することで形成することができ、塗布方法は一般的な方法を用いることができる。その方法としては特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。 The intermediate layer can be formed by applying a solution obtained by dissolving or dispersing or emulsifying the compound constituting the intermediate layer onto the substrate and drying it, and a general method can be used as the application method. The method is not particularly limited and can be appropriately selected depending on the purpose. For example, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method. , Gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
 中間層形成又は中間層形成に先立ちコロナ放電照射といった表面処理を施すことが好ましく、これらの表面処理によって水接触角が適正範囲に入ることが好ましい。
 表面処理は、上記の基材表面処理に用いうる方法で行うことができ、中でも、コロナ放電処理、プラズマ処理、又はグロー放電処理を用いることが基材に与えるダメージが少なく表面エネルギー付与が可能である観点より好ましい。
 表面処理後の水接触角は3゜以上50゜以下が好ましく、より好ましくは5゜以上45゜以下であり、更に好ましくは5゜以上40゜以下であり、更に好ましくは5゜以上35゜以下であり、最も好ましくは5゜以上30゜以下である。
 水接触角が3°以上の場合には中間層の銀と相互作用する基の固定密度が高くなるため好ましい。一方、水接触角が50°以下の場合には、3次元架橋結合を有する-M1-O-M1-層のムラとハジキが小さくなるため好ましい。
 水接触角の測定は市販の接触角測定器と純水を用いて行うことができる。例えば協和界面化学株式会社製DM701全自動接触角計で測定できる。
Prior to intermediate layer formation or intermediate layer formation, surface treatment such as corona discharge irradiation is preferably performed, and the water contact angle is preferably within an appropriate range by these surface treatments.
The surface treatment can be performed by a method that can be used for the above-described substrate surface treatment, and among them, the use of corona discharge treatment, plasma treatment, or glow discharge treatment causes less damage to the substrate and can impart surface energy. It is preferable from a certain viewpoint.
The water contact angle after the surface treatment is preferably 3 ° to 50 °, more preferably 5 ° to 45 °, still more preferably 5 ° to 40 °, and still more preferably 5 ° to 35 °. Most preferably, it is 5 ° or more and 30 ° or less.
A water contact angle of 3 ° or more is preferable because the fixed density of the group that interacts with the silver in the intermediate layer is increased. On the other hand, when the water contact angle is 50 ° or less, the unevenness and repellency of the -M1-O-M1-layer having a three-dimensional cross-linked bond are reduced, which is preferable.
The water contact angle can be measured using a commercially available contact angle measuring device and pure water. For example, it can be measured with a DM701 fully automatic contact angle meter manufactured by Kyowa Interface Chemical Co., Ltd.
<導電性層の形状>
 本発明に係る導電性部材における、基材表面に垂直な方向から観察した場合の形状としては、導電性層の全領域が導電性領域である(以下、この導電性層を「非パターン化導電性層」ともいう。)第一の態様、及び導電性層が導電性領域と非導電性領域とを含む(以下、この導電性層を「パターン化導電性層」ともいう。)第二の態様の何れであっても良い。第二の態様の場合には、非導電性領域に導電性繊維が含まれていても含まれていなくても良い。非導電性領域に導電性繊維が含まれている場合、非導電性領域に含まれる導電性繊維は断線される。
 第一の態様に係る導電性部材は、例えば太陽電池の透明電極として使用することができる。
 また、第二の態様に係る導電性部材は、例えばタッチパネルを作成する場合に使用される。この場合、所望の形状を有する導電性領域と非導電性領域が形成される。
<Shape of conductive layer>
The shape of the conductive member according to the present invention when observed from the direction perpendicular to the substrate surface is that the entire region of the conductive layer is a conductive region (hereinafter, this conductive layer is referred to as “unpatterned conductive”). Also referred to as a conductive layer.) The first embodiment, and the conductive layer includes a conductive region and a non-conductive region (hereinafter, this conductive layer is also referred to as a “patterned conductive layer”). Any of the embodiments may be used. In the case of the second embodiment, the non-conductive region may or may not contain conductive fibers. When conductive fibers are included in the nonconductive region, the conductive fibers included in the nonconductive region are disconnected.
The electroconductive member which concerns on a 1st aspect can be used as a transparent electrode of a solar cell, for example.
Moreover, the electroconductive member which concerns on a 2nd aspect is used when creating a touch panel, for example. In this case, a conductive region and a non-conductive region having a desired shape are formed.
〔導電性領域と非導電性領域とを含む導電性層(パターン化導電性層)〕
 パターン化導電性層は、例えば下記パターニング方法により製造される。
(1)予め非パターン化導電性層を形成しておき、この非パターン化導電性層の所望の領域に含まれる導電性繊維に炭酸ガスレーザー、YAGレーザー等の高エネルギーのレーザー光線を照射して、導電性繊維の一部を断線又は消失させて当該所望の領域を非導電性領域とするパターニング方法。この方法は、例えば、特開2010-4496号公報に記載されている。
(2)予め形成した非パターン化導電性層上にフォトレジスト層を設け、このフォトレジスト層に所望のパターン露光及び現像を行って、当該パターン状のレジストを形成したのちに、導電性繊維をエッチング可能なエッチング液で処理するウェットプロセスか、又は反応性イオンエッチングのようなドライプロセスにより、レジストで保護されていない領域の導電性層中の導電性繊維をエッチング除去するパターニング方法。この方法は、例えば特表2010-507199号公報(特に、段落0212~0217)に記載されている。
 上記(1)及び(2)の方法は、導電性層が導電性繊維単独で構成されている場合、及び導電性繊維と非感光性のマトリックス(例えば、有機高分子ポリマーなど)とを含む場合に好都合なパターンニング方法である。
[Conductive layer including conductive region and non-conductive region (patterned conductive layer)]
The patterned conductive layer is manufactured, for example, by the following patterning method.
(1) A non-patterned conductive layer is formed in advance, and a conductive fiber contained in a desired region of the non-patterned conductive layer is irradiated with a high-energy laser beam such as a carbon dioxide laser or a YAG laser. A patterning method in which a part of the conductive fiber is disconnected or disappeared to make the desired region a non-conductive region. This method is described in, for example, Japanese Patent Application Laid-Open No. 2010-496.
(2) A photoresist layer is provided on a previously formed non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist. A patterning method of etching away conductive fibers in a conductive layer in a region not protected by a resist by a wet process in which an etchable etchant is used or a dry process such as reactive ion etching. This method is described, for example, in JP-T-2010-507199 (particularly, paragraphs 0212 to 0217).
In the above methods (1) and (2), the conductive layer is composed of conductive fibers alone, and the conductive layer includes a non-photosensitive matrix (for example, an organic polymer). This is a convenient patterning method.
 上記パターン露光に用いる光源は、フォトレジスト組成物の感光波長域との関連で選定されるが、一般的にはg線、h線、i線、j線等の紫外線が好ましく用いられる。また、青色LEDを用いてもよい。
 パターン露光の方法にも特に制限はなく、フォトマスクを利用した面露光で行ってもよいし、レーザービーム等による走査露光で行ってもよい。この際、レンズを用いた屈折式露光でも反射鏡を用いた反射式露光でもよく、コンタクト露光、プロキシミティー露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。
The light source used for the pattern exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but generally ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used. A blue LED may be used.
The pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
 前記導電性繊維を溶解する溶解液としては、導電性繊維に応じて適宜選択することができる。例えば導電性繊維が銀ナノワイヤーの場合には、所謂写真科学業界において、主にハロゲン化銀カラー感光材料の印画紙の漂白、定着工程に使用される漂白定着液、強酸、酸化剤、過酸化水素などが挙げられる。これらの中でも、は漂白定着液、希硝酸、過酸化水素が特に好ましい。なお、前記導電性繊維を溶解する溶解液による銀ナノワイヤーの溶解は、溶解液を付与した部分の銀ナノワイヤーを完全に溶解しなくてもよく、導電性が消失していれば一部が残存していてもよい。
 前記希硝酸の濃度は、1質量%~20質量%であることが好ましい。
 前記過酸化水素の濃度は、3質量%~30質量%であることが好ましい。
The solution for dissolving the conductive fibers can be appropriately selected according to the conductive fibers. For example, when the conductive fiber is silver nanowire, in the so-called photographic science industry, bleaching fixer, strong acid, oxidizing agent, peroxidation used mainly in bleaching and fixing process of photographic paper of silver halide color photosensitive material Examples include hydrogen. Of these, bleach-fixing solution, dilute nitric acid, and hydrogen peroxide are particularly preferable. In addition, the dissolution of the silver nanowires with the solution for dissolving the conductive fibers may not completely dissolve the silver nanowires of the portion to which the solution is applied, and partly if the conductivity is lost. It may remain.
The concentration of the diluted nitric acid is preferably 1% by mass to 20% by mass.
The concentration of the hydrogen peroxide is preferably 3% by mass to 30% by mass.
 前記漂白定着液としては、例えば特開平2-207250号公報の第26頁右下欄1行目~34頁右上欄9行目、及び特開平4-97355号公報の第5頁左上欄17行目~18頁右下欄20行目に記載の処理素材や処理方法が好ましく適用できる。
 漂白定着時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましく、90秒間以下5秒間以上が更に好ましい。また、水洗又は安定化時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましい。
 前記漂白定着液としては、写真用漂白定着液であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、富士フイルム株式会社製CP-48S、CP-49E(カラーペーパー用漂白定着剤)、コダック社製エクタカラーRA漂白定着液、大日本印刷株式会社製漂白定着液D-J2P-02-P2、D-30P2R-01、D-22P2R-01などが挙げられる。これらの中でも、CP-48S、CP-49Eが特に好ましい。
Examples of the bleach-fixing solution include, for example, JP-A-2-207250, page 26, lower right column, line 1 to page 34, upper-right column, line 9 and JP-A-4-97355, page 5, upper left column, line 17. The processing materials and processing methods described in the 20th page, lower right column, line 20 are preferably applicable.
The bleach-fixing time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer, and still more preferably 90 seconds or shorter and 5 seconds or longer. The washing time or the stabilization time is preferably 180 seconds or shorter, more preferably 120 seconds or shorter and 1 second or longer.
The bleach-fixing solution is not particularly limited as long as it is a photographic bleach-fixing solution, and can be appropriately selected according to the purpose. For example, CP-48S and CP-49E (Fujifilm Co., Ltd.) Fixing agent), Kodak Ektacolor RA bleach-fixing solution, Dai Nippon Printing Co., Ltd. bleach-fixing solution D-J2P-02-P2, D-30P2R-01, D-22P2R-01, and the like. Among these, CP-48S and CP-49E are particularly preferable.
 前記導電性繊維を溶解する溶解液の粘度は、25℃で、5mPa・s~300,000mPa・sであることが好ましく、10mPa・s~150,000mPa・sであることがより好ましい。前記粘度を、5mPa・s以上とすることで、溶解液の拡散を所望の範囲に制御することが容易となって、導電性領域と非導電性領域との境界が明瞭なパターニングが確保され、他方、300,000mPa・s以下とすることで、溶解液の印刷を負荷なく行うことが確保されると共に、導電性繊維の溶解に要する処理時間を所望の時間内で完了させることができる。 The viscosity of the solution for dissolving the conductive fibers is preferably 5 mPa · s to 300,000 mPa · s at 25 ° C., more preferably 10 mPa · s to 150,000 mPa · s. By setting the viscosity to 5 mPa · s or more, it becomes easy to control the diffusion of the solution to a desired range, and a clear patterning between the conductive region and the non-conductive region is ensured, On the other hand, by setting it as 300,000 mPa * s or less, it is ensured that printing of a solution is performed without load, and the processing time required for dissolution of conductive fibers can be completed within a desired time.
 前記導電性繊維を溶解する溶解液のパターン状の付与としては、溶解液をパターン状に付与できれば特に制限はなく、目的に応じて適宜選択することができ、例えばスクリーン印刷、インクジェット印刷、予めレジスト剤などによりエッチングマスクを形成しておきその上に溶解液をコーター塗布、ローラー塗布、ディッピング塗布、スプレー塗布する方法、などが挙げられる。これらの中でも、スクリーン印刷、インクジェット印刷、コーター塗布、ディップ(浸漬)塗布が特に好ましい。
 前記インクジェット印刷としては、例えばピエゾ方式及びサーマル方式のいずれも使用可能である。
The application of the pattern of the solution for dissolving the conductive fibers is not particularly limited as long as the solution can be applied in a pattern, and can be appropriately selected according to the purpose. For example, screen printing, inkjet printing, resist Examples thereof include a method in which an etching mask is formed with an agent and a solution is applied on the coating mask, coater application, roller application, dipping application, and spray application. Among these, screen printing, ink jet printing, coater coating, and dip coating are particularly preferable.
As the ink jet printing, for example, either a piezo method or a thermal method can be used.
 前記パターンの種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、文字、記号、模様、図形、配線パターン、などが挙げられる。
 前記パターンの大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、ナノサイズからミリサイズのいずれの大きさであっても構わない。
There is no restriction | limiting in particular as a kind of said pattern, According to the objective, it can select suitably, For example, a character, a symbol, a pattern, a figure, a wiring pattern, etc. are mentioned.
There is no restriction | limiting in particular as the magnitude | size of the said pattern, Although it can select suitably according to the objective, You may be any magnitude | size from nano size to millimeter size.
 本発明に係る導電性部材は、表面抵抗が1,000Ω/□以下となるように調整されることが好ましい。
 上記表面抵抗は、本発明に係る導電性部材における導電性層の基材側とは反対側の表面を四探針法)により測定された値である。四探針法による表面抵抗の測定方法は、例えばJIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)などに準拠して測定することができ、市販の表面抵抗率計を用いて、簡便に測定することができる。表面抵抗を1,000Ω/□以下とするには、導電性層に含まれる導電性繊維の種類及び含有比率の少なくとも一つを調整すればよい。より具体的には、前述のように、前記一般式(II)で示される化合物と導電性繊維の含有比率を調製することにより、所望の範囲の表面抵抗を有する導電性層を形成することができる。
 本発明に係る導電性部材の表面抵抗は、0.1Ω/□~900Ω/□の範囲とすることが更に好ましい。タッチパネル用途及び積層型太陽電池用途には10Ω/□~250Ω/□が好ましい。
The conductive member according to the present invention is preferably adjusted so that the surface resistance is 1,000 Ω / □ or less.
The surface resistance is a value measured by a four-probe method on the surface of the conductive member according to the present invention on the side opposite to the base material side. The method of measuring the surface resistance by the four-probe method can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method by the four-probe method of conductive plastics). Can be easily measured. In order to set the surface resistance to 1,000 Ω / □ or less, it is only necessary to adjust at least one of the type and content ratio of the conductive fibers contained in the conductive layer. More specifically, as described above, a conductive layer having a desired range of surface resistance can be formed by adjusting the content ratio of the compound represented by the general formula (II) and the conductive fiber. it can.
The surface resistance of the conductive member according to the present invention is more preferably in the range of 0.1Ω / □ to 900Ω / □. 10Ω / □ to 250Ω / □ is preferable for touch panel applications and laminated solar cell applications.
 本発明に係る導電性部材は、導電性層が導電性繊維を含有し、かつ前記一般式(I)で示される三次元結合を含んで構成されることにより、導電性層の膜強度が高く、かつ表面抵抗が低いという特異的な効果を奏する。
 本発明に係る導電性層が、上に前述の特定アルコキシド化合物を含む水溶液を塗布液し、その塗布液膜に含まれる特定アルコキシド化合物を加水分解及び重縮合して得られるゾルゲル硬化物を含んで構成されるものであるという点と密接に関連して、表面抵抗が低いという効果を奏しているものと思われる。例えば、導電性繊維として銀ナノワイヤーを使用した場合、銀ナノワイヤーの調製時に使用された分散剤としての親水性基を有するポリマーが、銀ナノワイヤー同士の接触を少なくとも幾分かは妨げていると推測される。本発明による導電性要素においては、上記ゾルゲル硬化物の形成過程で、銀ナノワイヤーを覆っている上記の分散剤が剥離され、更に特定アルコキシド化合物が重縮合する際に収縮するために多数の銀ナノワイヤー同士の接触点が増加し、その結果として、表面抵抗の低い導電性部材が得られるものと推定される。
In the conductive member according to the present invention, the conductive layer contains conductive fibers and includes a three-dimensional bond represented by the general formula (I), so that the conductive layer has high film strength. And, there is a specific effect that the surface resistance is low.
The conductive layer according to the present invention includes a sol-gel cured product obtained by coating an aqueous solution containing the above-mentioned specific alkoxide compound on top, and hydrolyzing and polycondensing the specific alkoxide compound contained in the coating liquid film. It seems that the effect of low surface resistance is closely related to the fact that it is composed. For example, when silver nanowires are used as the conductive fibers, the polymer having a hydrophilic group as a dispersant used during the preparation of the silver nanowires prevents at least some of the contact between the silver nanowires. It is guessed. In the conductive element according to the present invention, in the process of forming the sol-gel cured product, the above-mentioned dispersant covering the silver nanowires is peeled off, and further, a large number of silver is contracted due to contraction when the specific alkoxide compound is polycondensed. It is estimated that the contact point between nanowires increases, and as a result, a conductive member having a low surface resistance is obtained.
 更に、本発明に係る導電性部材において、導電性層の設置に先立って、基材の表面処理によって水接触角を調整すること、及び上述の、中間層に含まれる導電性繊維と相互作用可能な官能基を有する化合物をシランカップリング処理によって基材に固定することが好ましい態様として挙げられる。これにより、パターン化導電性層を有する導電性部材において、マイグレーションを抑制できるという効果を奏する。
 なお、上記の水接触角とシランカップリング処理によるマイグレーションの抑制は、導電性層のバインダーマトリクスとして本発明以外の親水性バインダーや親水性バインダーの層を疎水性バインダーで被覆した場合でも効果があることがわかった。
Furthermore, in the conductive member according to the present invention, prior to the installation of the conductive layer, the water contact angle can be adjusted by the surface treatment of the base material, and the above-described conductive fibers included in the intermediate layer can interact. Fixing a compound having a functional group to a substrate by a silane coupling treatment is a preferred embodiment. Thereby, there exists an effect that migration can be controlled in a conductive member having a patterned conductive layer.
The suppression of migration by the water contact angle and the silane coupling treatment is effective even when a hydrophilic binder other than the present invention or a hydrophilic binder layer is coated with a hydrophobic binder as a binder matrix of the conductive layer. I understood it.
 本発明に係る導電性部材は、導電性層のキズ及び磨耗に対する耐久性に優れ、併せて表面抵抗が低いので、例えばタッチパネル、ディスプレイ用電極、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子パーパー、フレキシブルディスプレイ用電極、集積型太陽電池、液晶表示装置、タッチパネル機能付表示装置、その他の各種デバイスなどに幅広く適用される。これらの中でも、タッチパネル及び太陽電池への適用が特に好ましい。 Since the conductive member according to the present invention has excellent durability against scratches and abrasion of the conductive layer and has low surface resistance, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic EL display electrode, and an inorganic EL display It is widely applied to electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, liquid crystal display devices, display devices with touch panel functions, and other various devices. Among these, application to a touch panel and a solar cell is particularly preferable.
<<タッチパネル>>
 本発明に係る導電性部材は、例えば、表面型静電容量方式タッチパネル、投射型静電容量方式タッチパネル、抵抗膜式タッチパネルなどに適用される。ここで、タッチパネルとは、いわゆるタッチセンサ及びタッチパッドを含むものとする。
 前記タッチパネルにおけるタッチパネルセンサー電極部の層構成が、2枚の透明電極を貼合する貼合方式、1枚の基材の両面に透明電極を具備する方式、片面ジャンパー或いはスルーホール方式或いは片面積層方式のいずれかであることが好ましい。
<< Touch panel >>
The conductive member according to the present invention is applied to, for example, a surface capacitive touch panel, a projection capacitive touch panel, a resistive touch panel, and the like. Here, the touch panel includes a so-called touch sensor and a touch pad.
The layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. It is preferable that it is either.
 前記表面型静電容量方式タッチパネルについては、例えば特表2007-533044号公報に記載されている。 The surface capacitive touch panel is described in, for example, JP-T-2007-533044.
<<太陽電池>>
 本発明に係る導電性部材は、集積型太陽電池(以下、太陽電池デバイスと称することもある)における透明電極として有用である。
 集積型太陽電池としては、特に制限はなく、太陽電池デバイスとして一般的に用いられるものを使用することができる。例えば、単結晶シリコン系太陽電池デバイス、多結晶シリコン系太陽電池デバイス、シングル接合型、又はタンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池デバイス、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池デバイス、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイス、色素増感型太陽電池デバイス、有機太陽電池デバイスなどが挙げられる。これらの中でも、本発明においては、前記太陽電池デバイスが、タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、及び銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイスであることが好ましい。
<< Solar cell >>
The conductive member according to the present invention is useful as a transparent electrode in an integrated solar cell (hereinafter sometimes referred to as a solar cell device).
There is no restriction | limiting in particular as an integrated solar cell, What is generally used as a solar cell device can be used. For example, a single crystal silicon solar cell device, a polycrystalline silicon solar cell device, an amorphous silicon solar cell device composed of a single junction type or a tandem structure type, gallium arsenide (GaAs), indium phosphorus (InP), etc. Group III-V compound semiconductor solar cell devices, II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned. Among these, in the present invention, the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
 タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイスの場合、アモルファスシリコン、微結晶シリコン薄膜層、また、これらにGeを含んだ薄膜、更に、これらの2層以上のタンデム構造が光電変換層として用いられる。成膜はプラズマCVD等を用いる。 In the case of an amorphous silicon solar cell device composed of a tandem structure type or the like, amorphous silicon, a microcrystalline silicon thin film layer, a thin film containing Ge in these, and a tandem structure of these two or more layers is a photoelectric conversion layer Used as For film formation, plasma CVD or the like is used.
 本発明に係る導電性部材は、前記全ての太陽電池デバイスに関して適用できる。導電性部材は、太陽電池デバイスのどの部分に含まれてもよいが、光電変換層に隣接して導電性層が配置されていることがいることが好ましい。光電変換層との位置関係に関しては下記の構成が好ましいが、これに限定されるものではない。また、下記に記した構成は太陽電池デバイスを構成する全ての部分を記載しておらず、前記透明導電層の位置関係が分かる範囲の記載としている。ここで、[ ]で括られた構成が、本発明に係る導電性部材に相当する。
(A)[基材-導電性層]-光電変換層
(B)[基材-導電性層]-光電変換層-[導電性層-基材]
(C)基板-電極-光電変換層-[導電性層-基材]
(D)裏面電極-光電変換層-[導電性層-基材]
 このような太陽電池の詳細については、例えば特開2010-87105号公報に記載されている。
The conductive member according to the present invention can be applied to all the solar cell devices. The conductive member may be included in any part of the solar cell device, but it is preferable that the conductive layer is disposed adjacent to the photoelectric conversion layer. Although the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this. Moreover, the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood. Here, the configuration surrounded by [] corresponds to the conductive member according to the present invention.
(A) [base material-conductive layer] -photoelectric conversion layer (B) [base material-conductive layer] -photoelectric conversion layer- [conductive layer-base material]
(C) Substrate-electrode-photoelectric conversion layer- [conductive layer-base material]
(D) Back electrode-photoelectric conversion layer- [conductive layer-base material]
Details of such a solar cell are described in, for example, Japanese Patent Application Laid-Open No. 2010-87105.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、実施例中の含有率としての「%」、及び、「部」は、いずれも質量基準に基づくものである。
 以下の例において、金属ナノワイヤーの平均直径(平均短軸長さ)及び平均長軸長さ、短軸長さの変動係数、並びに、アスペクト比が10以上の銀ナノワイヤーの比率は、以下のようにして測定した。
Examples of the present invention will be described below, but the present invention is not limited to these examples. In the examples, “%” and “parts” as the contents are based on mass.
In the following examples, the average diameter (average minor axis length) and average major axis length of metal nanowires, the coefficient of variation of minor axis length, and the ratio of silver nanowires with an aspect ratio of 10 or more are as follows: The measurement was performed as described above.
<金属ナノワイヤーの平均直径(平均短軸長さ)及び平均長軸長さ>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用いて拡大観察される金属ナノワイヤーから、ランダムに選択した300個の金属ナノワイヤーの直径(短軸長さ)と長軸長を測定し、その平均値から金属ナノワイヤーの平均直径(平均短軸長さ)及び平均長軸長さ求めた。
<金属ナノワイヤーの短軸長さ(直径)の変動係数>
 上記電子顕微鏡(TEM)像からランダムに選択した300個のナノワイヤーの短軸長さ(直径)を測定し、その300個についての標準偏差と平均値を計算することにより、求めた。
<アスペクト比が10以上の銀ナノワイヤーの比率>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用い、銀ナノワイヤーの短軸長さを300個観察し、ろ紙を透過した銀の量を各々測定し、短軸長さが50nm以下であり、かつ長軸長さが5μm以上である銀ナノワイヤーをアスペクト比が10以上の銀ナノワイヤーの比率(%)として求めた。
 なお、銀ナノワイヤーの比率を求める際の銀ナノワイヤーの分離は、メンブレンフィルター(Millipore社製、FALP 02500、孔径1.0μm)を用いて行った。
<Average diameter (average minor axis length) and average major axis length of metal nanowires>
Diameters (short axis lengths) and long axes of 300 metal nanowires randomly selected from metal nanowires enlarged and observed using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.) The length was measured, and the average diameter (average minor axis length) and average major axis length of the metal nanowires were determined from the average value.
<Coefficient of variation of minor axis length (diameter) of metal nanowire>
The short axis length (diameter) of 300 nanowires randomly selected from the electron microscope (TEM) image was measured, and the standard deviation and the average value of the 300 nanowires were calculated.
<Ratio of silver nanowires with an aspect ratio of 10 or more>
Using a transmission electron microscope (TEM; JEM-2000FX, manufactured by JEOL Ltd.), 300 short axis lengths of the silver nanowires were observed, and the amount of silver transmitted through the filter paper was measured. Of silver nanowires having a major axis length of 5 μm or more was determined as the ratio (%) of silver nanowires having an aspect ratio of 10 or more.
The silver nanowires were separated when determining the ratio of silver nanowires using a membrane filter (Millipore, FALP 02500, pore size 1.0 μm).
(調製例1)
-銀ナノワイヤー分散物(1)の調製-
 予め、下記の添加液A、G、及びHを調製した。
〔添加液A〕
 硝酸銀粉末0.51gを純水50mLに溶解した。その後、1Nのアンモニア水を透明になるまで添加した。そして、全量が100mLになるように純水を添加した。
〔添加液G〕
 グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
〔添加液H〕
 HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
(Preparation Example 1)
-Preparation of silver nanowire dispersion (1)-
The following additive solutions A, G, and H were prepared in advance.
[Additive liquid A]
0.51 g of silver nitrate powder was dissolved in 50 mL of pure water. Then, 1N ammonia water was added until it became transparent. And pure water was added so that the whole quantity might be 100 mL.
[Additive liquid G]
An additive solution G was prepared by dissolving 0.5 g of glucose powder in 140 mL of pure water.
[Additive liquid H]
An additive solution H was prepared by dissolving 0.5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 27.5 mL of pure water.
 次に、以下のようにして、銀ナノワイヤー水分散液を調製した。
 純水410mLを三口フラスコ内に入れ、20℃にて攪拌しながら、前記添加液H 82.5mL、及び前記添加液G 206mLをロートにて添加した(一段目)。この液に、前記添加液A 206mLを流量2.0mL/min、攪拌回転数800rpmで添加した(二段目)。その10分間後、添加液Hを82.5mL添加した(三段目)。その後、3℃/分で内温73℃まで昇温した。その後、攪拌回転数を200rpmに落とし、5.5時間加熱した。
 得られた分散液を冷却した後、限外濾過モジュールSIP1013(旭化成株式会社製、分画分子量6,000)、マグネットポンプ、及びステンレスカップをシリコーン製チューブで接続して、限外濾過装置とした。
 銀ナノワイヤー水分散液をステンレスカップに入れ、ポンプを稼動させて限外濾過を行った。モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。前記の洗浄を伝導度が50μS/cm以下になるまで繰り返した後、濃縮を行い、0.84質量%の銀ナノワイヤー分散物(1)を得た。得られた分散液中の銀ナノワイヤーについて、前述のようにして平均短軸長さ、平均長軸長さ、アスペクト比が10以上の銀ナノワイヤーの比率、及び銀ナノワイヤー短軸長さの変動係数を測定した。
Next, a silver nanowire aqueous dispersion was prepared as follows.
410 mL of pure water was placed in a three-necked flask, and 82.5 mL of the additive solution H and 206 mL of the additive solution G were added through a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of the additive solution A was added at a flow rate of 2.0 mL / min and a stirring rotation speed of 800 rpm (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 73 ° C. at 3 ° C./min. Then, the stirring rotation speed was reduced to 200 rpm and heated for 5.5 hours.
After cooling the obtained dispersion, an ultrafiltration module SIP1013 (manufactured by Asahi Kasei Co., Ltd., molecular weight cut off 6,000), a magnet pump, and a stainless steel cup were connected with a silicone tube to obtain an ultrafiltration device. .
The silver nanowire aqueous dispersion was put into a stainless steel cup, and the ultrafiltration was performed by operating the pump. When the filtrate from the module reached 50 mL, 950 mL of distilled water was added to the stainless steel cup for washing. The above washing was repeated until the conductivity reached 50 μS / cm or less, and then concentrated to obtain a 0.84 mass% silver nanowire dispersion (1). For the silver nanowires in the obtained dispersion, the average minor axis length, the average major axis length, the ratio of silver nanowires with an aspect ratio of 10 or more, and the silver nanowire minor axis length are as described above. The coefficient of variation was measured.
 その結果、平均短軸長さ17.2nm、平均長軸長さ34.2μm、変動係数が17.8%の銀ナノワイヤーを得た。得られた銀ナノワイヤーのうち、アスペクト比が10以上の銀ナノワイヤーの占める比率は81.8%であった。以後、「銀ナノワイヤー水分散液(1)」と表記する場合は、上記方法で得られた銀ナノワイヤー水分散液を示す。 As a result, silver nanowires having an average minor axis length of 17.2 nm, an average major axis length of 34.2 μm, and a coefficient of variation of 17.8% were obtained. Among the obtained silver nanowires, the ratio of silver nanowires having an aspect ratio of 10 or more was 81.8%. Hereinafter, when it describes with "silver nanowire aqueous dispersion (1)", the silver nanowire aqueous dispersion obtained by the said method is shown.
(調製例2)
-ゾルゲルシリカバインダー銀塗布液の調製-
 下記アルコキシド化合物の溶液(1)3.44部と前記調製例1で得られた銀ナノワイヤー水分散液(1)16.56部を混合し、更に蒸留水で希釈してゾルゲル塗布液を得た。
(Preparation Example 2)
-Preparation of sol-gel silica binder silver coating solution-
The following alkoxide compound solution (1) 3.44 parts and the silver nanowire aqueous dispersion (1) 16.56 parts obtained in Preparation Example 1 were mixed, and further diluted with distilled water to obtain a sol-gel coating solution. It was.
[アルコキシド化合物の溶液(1)]
・テトラエトキシシラン                  5.0部
(KBE-04、信越化学工業(株)製)
・1%酢酸水溶液                    11.0部
・蒸留水                         4.0部
 蒸気組成のアルコキシド化合物溶液(1)を60℃1時間攪拌して均一になったことを確認して、25℃に急冷した。
[Solution of Alkoxide Compound (1)]
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
-1% aqueous acetic acid solution 11.0 parts-distilled water 4.0 parts The alkoxide compound solution (1) having a vapor composition was stirred at 60 ° C for 1 hour to confirm that it was uniform, and then rapidly cooled to 25 ° C.
〔実施例1〕
 下記調製例に従い、ガラス基板を得た。
[Example 1]
A glass substrate was obtained according to the following preparation example.
(調製例3)
-ガラス基板の前処理-
 はじめに、水酸化ナトリウム1%水溶液に浸漬した厚み0.35mmの無アルカリガラス基材を超音波洗浄機によって適宜1分~30分超音波照射し(アルカリ性水溶液による清浄化処理)、ついでイオン交換水で60秒間水洗した後100℃で60分間加熱乾燥処理を行った。その後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより適宜5~60秒間吹き付け、純水シャワー洗浄した。以後、「ガラス基板」と表記する場合は、上記前処理で得られた無アルカリガラス基板を示す。
(Preparation Example 3)
-Pretreatment of glass substrate-
First, an alkali-free glass substrate with a thickness of 0.35 mm immersed in a 1% aqueous solution of sodium hydroxide is ultrasonically irradiated for 1 to 30 minutes with an ultrasonic cleaner (cleaning treatment with an alkaline aqueous solution), and then ion-exchanged water. After washing with water for 60 seconds, heat drying treatment was performed at 100 ° C. for 60 minutes. Thereafter, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed for 5 to 60 seconds as appropriate using a shower. Washed with pure water shower. Hereinafter, the “glass substrate” refers to the alkali-free glass substrate obtained by the pretreatment.
 銀の塗工量が17mg/mになるように前記ゾルゲルシリカバインダー銀塗布液を前記ガラス基板上にバー塗布を行い、110℃75秒乾燥してパターニング前試料101Aを得た。 The sol-gel silica binder silver coating solution was bar coated on the glass substrate so that the silver coating amount was 17 mg / m 2 and dried at 110 ° C. for 75 seconds to obtain a pre-patterning sample 101A.
 試料101Aに富士フイルム社製ポジレジストを10g/mとなる様に塗設し、1cm×1cmの正方形が30μmのギャップで2つ並ぶパターンのポジパターンマスクを介してレジスト層の露光を行い、3.4%テトラメチルアンモニウムヒドロキシド(TMAH)現像液で25℃45秒現像を行い水洗乾燥しマスク済み透明導電ガラスを得た。富士フイルム社製CP-45X漂白定着液(スタートアップ母液)を用いて非マスク部分の銀ナノワイヤーのエッチングを行った後、後露光、TMAH現像、水洗、乾燥して1cm×1cmの正方形が30μmのギャップで2つ並ぶパターンを形成し、更に、4-ヒドロキシ-6-メチル-1,3,3a,7-テトラザインデン1%と1-フェニル-5-メルカプト-1H-テトラゾール1%を含む水溶液に30秒間浸漬、水洗、乾燥し、パターニング済み試料101Bを得た。 The sample 101A is coated with a positive resist manufactured by Fuji Film Co., Ltd. at 10 g / m 2, and the resist layer is exposed through a positive pattern mask having a pattern in which two 1 cm × 1 cm squares are arranged with a gap of 30 μm. Development was carried out with a 3.4% tetramethylammonium hydroxide (TMAH) developer at 25 ° C. for 45 seconds, followed by washing with water and drying to obtain a masked transparent conductive glass. After etching non-masked silver nanowires using CP-45X bleach-fixing solution (startup mother liquor) manufactured by Fujifilm, post-exposure, TMAH development, washing with water, and drying, a 1 cm × 1 cm square is 30 μm An aqueous solution which forms a pattern in which two gaps are arranged and further contains 1% 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene and 1% 1-phenyl-5-mercapto-1H-tetrazole For 30 seconds, washed with water, and dried to obtain a patterned sample 101B.
〔実施例2~6、比較例1~2〕
 適宜水酸化ナトリウム1%水溶液への浸漬時間とシランカップリング液浸漬時間とを変更し、表1に記載の水接触角となるように調整する以外は実施例1と同様にして、パターニング済み試料102B~108Bを得た。
[Examples 2-6, Comparative Examples 1-2]
Patterned sample in the same manner as in Example 1 except that the immersion time in a 1% aqueous solution of sodium hydroxide and the immersion time of the silane coupling solution are appropriately changed so that the water contact angles shown in Table 1 are adjusted. 102B to 108B were obtained.
〔実施例7〕
 下記調製例に従い、表面処理PET基板を得た。
Example 7
A surface-treated PET substrate was obtained according to the following preparation example.
(調製例4)
-PET基板の前処理-
 下記の配合で接着用溶液1を調製した。
 [接着用溶液1]
・タケラックWS-4000                5.0部
(固形分濃度30%、三井化学(株)製)
・界面活性剤                       0.3部
(ナローアクティHN-100、三洋化成工業(株)製)
・界面活性剤                       0.3部
(サンデットBL、固形分濃度43%、三洋化成工業(株)製)
・水                          94.4部
(Preparation Example 4)
-Pretreatment of PET substrate-
A bonding solution 1 was prepared with the following composition.
[Adhesive solution 1]
-Takelac WS-4000 5.0 parts (solid content concentration 30%, manufactured by Mitsui Chemicals, Inc.)
・ Surfactant 0.3 part (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries, Ltd.)
・ Surfactant 0.3 part (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.)
・ 94.4 parts of water
 厚さ125μmのPET基材の一方の面にコロナ放電処理を施した。このコロナ放電処理を施した面に、上記の接着用溶液1を塗布し120℃で2分乾燥させて、厚さが0.11μmの接着層1を形成した。 A corona discharge treatment was performed on one surface of a PET substrate having a thickness of 125 μm. The adhesive solution 1 was applied to the surface subjected to the corona discharge treatment and dried at 120 ° C. for 2 minutes to form an adhesive layer 1 having a thickness of 0.11 μm.
 以下の配合で、接着用溶液2を調製した。
[接着用溶液2]
・テトラエトキシシラン                  5.0部
(KBE-04、信越化学工業(株)製)
・3-グリシドキシプロピルトリメトキシシラン       3.2部
(KBM-403、信越化学工業(株)製)
・2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン 
(KBM-303、信越化学工業(株)製)         1.8部
・酢酸水溶液(酢酸濃度=0.05%、pH=5.2)   10.0部
・硬化剤                         0.8部
(ホウ酸、和光純薬工業(株)製)
・コロイダルシリカ                   60.0部
(スノーテックスO、平均粒子径10nm~20nm、固形分濃度20%、
pH=2.6、日産化学工業(株)製)
・界面活性剤                       0.2部
(ナローアクティHN-100、三洋化成工業(株)製)
・界面活性剤                       0.2部
(サンデットBL、固形分濃度43%、三洋化成工業(株)製)
An adhesive solution 2 was prepared with the following composition.
[Adhesive solution 2]
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 3.2 parts of 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
(KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.) 1.8 parts. Acetic acid aqueous solution (acetic acid concentration = 0.05%, pH = 5.2) 10.0 parts. Curing agent 0.8 parts (boric acid, Wako Pure Chemical Industries, Ltd.)
Colloidal silica 60.0 parts (Snowtex O, average particle size 10 nm to 20 nm, solid content concentration 20%,
(pH = 2.6, manufactured by Nissan Chemical Industries Ltd.)
・ Surfactant 0.2 parts (Narrow Acty HN-100, manufactured by Sanyo Chemical Industries, Ltd.)
・ Surfactant 0.2 part (Sandet BL, solid content concentration 43%, Sanyo Chemical Industries, Ltd.)
 接着用溶液2は、以下の方法で調製した。酢酸水溶液を激しく攪拌しながら、3-グリシドキシプロピルトリメトキシシランを、この酢酸水溶液中に3分間かけて滴下した。次に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを酢酸水溶液中に強く攪拌しながら3分間かけて添加した。次に、テトラメトキシシランを、酢酸水溶液中に強く攪拌しながら5分かけて添加し、その後2時間攪拌を続けた。次に、コロイダルシリカと、硬化剤と、界面活性剤とを順次添加し、接着用溶液2を調製した。
 この接着用溶液2をコロナ放電処理を施した接着層1の上にバーコート法により塗布し、170℃で5分間加熱して乾燥し、厚さ0.7μmの接着層2を形成した。その後、接着層2の上にコロナ放電処理を施し、表面処理PET基板を得た。
The bonding solution 2 was prepared by the following method. While the aqueous acetic acid solution was vigorously stirred, 3-glycidoxypropyltrimethoxysilane was dropped into the aqueous acetic acid solution over 3 minutes. Next, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added to the aqueous acetic acid solution over 3 minutes with vigorous stirring. Next, tetramethoxysilane was added to the acetic acid aqueous solution with vigorous stirring over 5 minutes, and then stirring was continued for 2 hours. Next, colloidal silica, a curing agent, and a surfactant were sequentially added to prepare an adhesive solution 2.
The adhesive solution 2 was applied onto the adhesive layer 1 subjected to corona discharge treatment by a bar coating method, heated at 170 ° C. for 5 minutes and dried to form an adhesive layer 2 having a thickness of 0.7 μm. Thereafter, corona discharge treatment was performed on the adhesive layer 2 to obtain a surface-treated PET substrate.
 上記表面処理PET基板に対し、下記のシランカップリング用溶液をバーコートし、100℃60秒の温風乾燥によりシランカップリング処理を行った。塗布液量は、シランカップリング処理前後の膜面pH変化が+1になるように調節した。
 膜面pHは東亜DKK製GST-5423SpH電極とpHメーターにて、0.5mlの純水を膜面に滴下して測定した。
The following surface-treated PET substrate was bar-coated with the following silane coupling solution and subjected to silane coupling treatment by hot air drying at 100 ° C. for 60 seconds. The amount of the coating solution was adjusted so that the change in pH of the film surface before and after the silane coupling treatment was +1.
The membrane surface pH was measured by dropping 0.5 ml of pure water onto the membrane surface with a GST-5423 SpH electrode manufactured by Toa DKK and a pH meter.
[シランカップリング用溶液]
・N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン
(KBM603、信越化学工業(株)製)         0.3部
・水                         99.7部
[Silane coupling solution]
・ N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane (KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.3 part ・ Water 99.7 parts
 シランカップリング用溶液をKBM-603が1.35mg/mとなる様に塗設、100℃1分乾燥の後、調整例2の塗布液を銀ナノワイヤー塗工量が15mg/mとなる様にバーコーターにて塗設、100℃1分乾燥してパターニング前試料109Aを得た。 The solution for silane coupling was applied so that KBM-603 was 1.35 mg / m 2 , dried at 100 ° C. for 1 minute, and then the coating solution of Preparation Example 2 was applied with a silver nanowire coating amount of 15 mg / m 2 . In this manner, coating with a bar coater and drying for 1 minute at 100 ° C. yielded a pre-patterning sample 109A.
 109Aの試料に対して、101Aと同様の操作をしてパターニング済み試料109Bを得た。 The 109A sample was subjected to the same operation as 101A to obtain a patterned sample 109B.
(実施例8~18)
 PET基材に対してコロナ照射量を表1記載の水接触角になる様に調整した以外は実施例7と同様にして、試料110B~120Bを作成た。
(Examples 8 to 18)
Samples 110B to 120B were prepared in the same manner as in Example 7 except that the corona irradiation amount was adjusted to the water contact angle shown in Table 1 with respect to the PET substrate.
<<評価>>
 得られた試料101B~120Bに対して、表面抵抗及びマイグレーション短絡時間を測定した。結果を表1に示す。なお、表1において、O.L.とは、10の7乗Ω/□以上の抵抗を意味する。
<< Evaluation >>
Surface resistance and migration short circuit time were measured for the obtained samples 101B to 120B. The results are shown in Table 1. In Table 1, O.D. L. Means a resistance of 10 7 Ω / □ or more.
<表面抵抗>
 パターニング前の試料の1cm角のパターンが形成される部分の表面抵抗を三菱化学株式会社製Loresta-GP MCP-T600を用いて測定した。
<Surface resistance>
The surface resistance of the portion where the 1 cm square pattern of the sample before patterning was formed was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation.
<マイグレーション短絡時間測定>
 作製した各導電材料について、ヘイズ、及び表面抵抗を測定した後、65℃で85%RHの雰囲気下にて両電極間に直流5Vの電圧を印加し、短絡するまでの時間を1時間単位で計測した。なお、短絡が発生したか否かの判断は、電極間の抵抗が1×10Ω以下になったことにより行った。
<Measurement of migration short circuit time>
About each produced conductive material, after measuring haze and surface resistance, the voltage of DC 5V is applied between both electrodes in the atmosphere of 85% RH at 65 degreeC, and the time until it short-circuits is a unit of 1 hour Measured. Note that whether or not a short circuit occurred was determined when the resistance between the electrodes became 1 × 10 6 Ω or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表面処理なしではシランカップリング剤の塗布ができず(試料102B)、ゾルゲルシリカバインダー銀塗布液の塗布もできなかった。シランカップリング剤塗布をしない場合は銀の凝集が生じ(試料103B)導電性が得られなかった。
 更に、表1から分かるように、表面処理の程度を接触角が5゜以上40゜以下に調節した試料では、エレクトロマイグレーションによる短絡時間が長く(110B~113B)好ましいが、シランカップリング剤の塗布量が多すぎると表面抵抗は高く、短絡時間は短くなる(例試料106B、120B)。接触角が4゜以下では表面抵抗は良好なものの短絡時間が短く、50゜では銀ナノワイヤー凝集が見られ高抵抗化している。これらの傾向はガラス基板でもPET基板と同様であることが分かる。
 更に、試料109Bの表面処理方法を大気圧プラズマ及びグロー照射に変更しても同様の結果がえられたことから、表面処理方法によらず、エレクトロマイグレーションによる短絡時間を長くする効果があることがわかる。
Without the surface treatment, the silane coupling agent could not be applied (Sample 102B), and the sol-gel silica binder silver coating solution could not be applied. When no silane coupling agent was applied, silver aggregation occurred (sample 103B), and conductivity was not obtained.
Further, as can be seen from Table 1, in the sample in which the degree of surface treatment is adjusted to a contact angle of 5 ° or more and 40 ° or less, it is preferable that the short-circuit time by electromigration is long (110B to 113B). If the amount is too large, the surface resistance is high and the short circuit time is short (example samples 106B and 120B). When the contact angle is 4 ° or less, the surface resistance is good, but the short-circuit time is short, and when it is 50 °, silver nanowire aggregation is observed and the resistance is increased. It can be seen that these tendencies are the same for the glass substrate as for the PET substrate.
Further, since the same result was obtained even when the surface treatment method of the sample 109B was changed to atmospheric pressure plasma and glow irradiation, there is an effect of extending the short-circuiting time due to electromigration regardless of the surface treatment method. Recognize.
(実施例19~30)
 基材をポリカーボネート(PC)基材(厚み75μm)に換え、接着層1、2を塗工せず、コロナ放電処理を施すことによりポリカーボネート(PC)基板を得たこと以外は試料109B~120Bと同様にして、表2に示す試料201B~212Bを作製し、表面抵抗及びマイグレーション短絡時間の評価を行った。
(Examples 19 to 30)
Samples 109B to 120B except that the polycarbonate (PC) substrate was obtained by changing the substrate to a polycarbonate (PC) substrate (thickness 75 μm) and applying the corona discharge treatment without applying the adhesive layers 1 and 2. Similarly, samples 201B to 212B shown in Table 2 were prepared, and surface resistance and migration short-circuit time were evaluated.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示されるように、表面処理の程度を接触角が5゜以上40゜以下に調節した試料では、エレクトロマイグレーションによる短絡時間が長く(例試料202B~205B)、また、KBM603塗布量が0.5mg/m~5mg/mの試料で短絡時間が長く(例試料207B~210B)、本発明の目的に対して好ましい態様であることがわかる。 As shown in Table 2, in the sample in which the degree of surface treatment was adjusted to a contact angle of 5 ° or more and 40 ° or less, the short-circuiting time due to electromigration was long (example samples 202B to 205B), and the KBM603 coating amount was 0 It can be seen that the short-circuiting time is long for the samples of 5 mg / m 2 to 5 mg / m 2 (example samples 207B to 210B), which is a preferable embodiment for the purpose of the present invention.
(実施例31~42)
 基材をトリアセチルセルロース(TAC)基材(厚み100μm)に換え、接着層1、2を塗工せずコロナ放電処理を施すことによりトリアセチルセルロース(TAC)基板を得たこと以外は試料109B~120Bと同様にして、表3に示す試料301B~312Bを作製した。そして、表面抵抗及びマイグレーション短絡時間の評価を行った。
(Examples 31 to 42)
Sample 109B except that the substrate was replaced with a triacetylcellulose (TAC) substrate (thickness 100 μm), and a triacetylcellulose (TAC) substrate was obtained by applying corona discharge treatment without applying adhesive layers 1 and 2. Samples 301B to 312B shown in Table 3 were produced in the same manner as for .about.120B. And the surface resistance and the migration short circuit time were evaluated.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示されるように、表面処理の程度を接触角が5゜以上40゜以下に調節した試料では、エレクトロマイグレーションによる短絡時間が長く(例試料302B~305B)、KBM603塗布量が0.5mg/m~5mg/mの試料で短絡時間が長い(例試料307B~310B)ため、本発明の目的に対して好ましい態様であることがわかる。また、PET基板及びポリカーボネート基板よりも、本発明の効果が顕著であり、TAC基板との組合せがより好ましいことが分かった。 As shown in Table 3, in the sample in which the degree of surface treatment was adjusted to a contact angle of 5 ° to 40 °, the short-circuiting time due to electromigration was long (example samples 302B to 305B), and the KBM603 coating amount was 0.5 mg. Since the short-circuit time is long in the sample of / m 2 to 5 mg / m 2 (example samples 307B to 310B), it can be seen that this is a preferable embodiment for the purpose of the present invention. Moreover, it turned out that the effect of this invention is remarkable than a PET board | substrate and a polycarbonate board | substrate, and the combination with a TAC board | substrate is more preferable.
(実施例43~49)
 KBM603に変えて、下記の表4に示す化合物SA-1~7を使用する以外は試料301Bと同様にして、表5に示す試料401B~407Bを作製し、表面抵抗及びマイグレーション短絡時間の評価を行った。
(Examples 43 to 49)
Samples 401B to 407B shown in Table 5 were prepared in the same manner as Sample 301B except that compounds SA-1 to 7 shown in Table 4 below were used instead of KBM603, and surface resistance and migration short circuit time were evaluated. went.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5に示されるように、シランカップリング剤を用いて官能基を固定した場合、エレクトロマイグレーションによる短絡時間が長いことが分かる(試料401B~404B)。SA-5は銀ナノワイヤーと相互作用する官能基が無いため、銀ナノワイヤーの塗布時に凝集を起こし、導電性が得られなかった。ポリアクリル酸、ポリアクリルアミドからなる中間層でも導電性が得られ、マイグレーション抑制の効果も確認された。(試料406B、407B) As shown in Table 5, it can be seen that when the functional group is fixed using a silane coupling agent, the short-circuiting time due to electromigration is long (samples 401B to 404B). Since SA-5 has no functional group that interacts with silver nanowires, aggregation occurred when silver nanowires were applied, and conductivity was not obtained. Conductivity was obtained even in an intermediate layer composed of polyacrylic acid and polyacrylamide, and the effect of suppressing migration was also confirmed. (Samples 406B and 407B)
(実施例50)
-タッチパネルの作製-
 上記試料No.305Bの透明導電材料を用いて、『最新タッチパネル技術』(2009年7月6日発行、株式会社テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004年12月発行)、「FPD International 2009 Forum T-11講演テキストブック」、「Cypress Semiconductor Corporation アプリケーションノートAN2292」等に記載の片面、ブリッジ方法により、タッチパネルを作製した。このとき、X方向とY方向の電極パターンの略正方形状のパッド部の隣接する辺と辺との間隔を30μmにした。
 作製したタッチパネルを使用した場合、透過率の向上により視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作できることが分かった。
 また、この実施態様において、長時間短絡しないことからマイグレーションが生じず、タッチパネルの電気特性が長期間にわたり安定していることが分かった。
(Example 50)
-Fabrication of touch panel-
Sample No. above. Using the 305B transparent conductive material, "The latest touch panel technology" (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, "Touch panel technology and development", CMC Publishing (issued in December 2004) ), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292” and the like, a touch panel was manufactured by a single-sided bridge method. At this time, the distance between adjacent sides of the substantially square pad portion of the electrode pattern in the X direction and the Y direction was set to 30 μm.
When using the manufactured touch panel, it improves visibility by improving transmittance, and responds to input of characters, etc. or screen operations with at least one of bare hands, hands with gloves, or pointing tools by improving conductivity It was found that a touch panel with excellent performance can be produced.
Moreover, in this embodiment, since it did not short-circuit for a long time, migration did not arise and it turned out that the electrical property of a touch panel is stable over a long period of time.
(実施例51)
 実施例50において、X方向とY方向の電極パターンの略正方形状のパッド部の隣接する辺と辺との間隔を50μmにした以外は、実施例50と同様にして、タッチパネルを作製した。
 作製した実施例51のタッチパネルについて、実施例50と同様に性能を評価したところ、実施例50と同レベルの性能が得られた。
(Example 51)
In Example 50, a touch panel was produced in the same manner as in Example 50 except that the interval between adjacent sides of the substantially square pad portion of the electrode pattern in the X direction and the Y direction was 50 μm.
When the performance of the manufactured touch panel of Example 51 was evaluated in the same manner as in Example 50, the same level of performance as in Example 50 was obtained.
(実施例52)
 実施例50において、X方向とY方向の電極パターンの略正方形状のパッド部の隣接する辺と辺との間隔を60μmにした以外は、実施例50と同様にして、タッチパネルを作製した。
 作製した実施例52のタッチパネルは、目視の観察にて透明電極のパターンが視認され、パターン間隔が60μm以上は好ましくない態様であることが分かった。
(Example 52)
In Example 50, a touch panel was produced in the same manner as in Example 50 except that the interval between adjacent sides of the substantially square pad portion of the electrode pattern in the X direction and the Y direction was set to 60 μm.
As for the produced touch panel of Example 52, it turned out that the pattern of a transparent electrode is visually recognized by visual observation, and a pattern space | interval of 60 micrometers or more is an unpreferable aspect.
(実施例53)
<集積型太陽電池の作製>
-アモルファス太陽電池(スーパーストレート型)の作製-
 上記試料No.117Bの透明導電材料の上部にプラズマCVD法により厚み約15nmのp型、前記p型の上部に厚み約350nmのi型、前記i型の上部に厚み約30nmのn型アモルファスシリコンを形成し、前記n型アモルファスシリコンの上部に裏面反射電極として厚み20nmのガリウム添加酸化亜鉛層、前記ガリウム添加酸化亜鉛層の上部に厚み200nmの銀層を形成し、光電変換素子を作製した。
(Example 53)
<Production of integrated solar cell>
-Fabrication of amorphous solar cells (super straight type)-
Sample No. above. A p-type film having a thickness of about 15 nm is formed on the top of the transparent conductive material 117B by plasma CVD, an i-type film having a thickness of about 350 nm is formed on the p-type, and an n-type amorphous silicon film having a thickness of about 30 nm is formed on the i-type. A gallium-doped zinc oxide layer having a thickness of 20 nm was formed as a back surface reflecting electrode on the n-type amorphous silicon, and a silver layer having a thickness of 200 nm was formed on the gallium-doped zinc oxide layer to produce a photoelectric conversion element.
<太陽電池特性(変換効率)の評価>
 各太陽電池について、AM1.5、100mW/cmの疑似太陽光を照射することで効率を測定したところ、変換効率は9%であった。
<Evaluation of solar cell characteristics (conversion efficiency)>
About each solar cell, when efficiency was measured by irradiating simulated sunlight of AM1.5 and 100 mW / cm < 2 >, the conversion efficiency was 9%.
 本発明の導電膜形成用積層体は、そのまま使用しても、転写材料として用いても、現像によるパターニング性に優れ、透明性、導電性及び耐久性(膜強度)に優れるため、例えばパターン状透明導電膜、タッチパネル、ディスプレイ用帯電防止材、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、フレキシブルディスプレイ用帯電防止膜、表示素子、集積型太陽電池の作製に好適に用いることができる。 The laminate for forming a conductive film of the present invention can be used as it is or as a transfer material, and has excellent patternability by development, and excellent transparency, conductivity and durability (film strength). Transparent conductive film, touch panel, antistatic material for display, electromagnetic wave shield, electrode for organic EL display, electrode for inorganic EL display, electronic paper, electrode for flexible display, antistatic film for flexible display, display element, integrated solar cell It can be suitably used for production.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年4月28日出願の日本特許出願(特願2011-102135)及び2012年3月26日出願の日本特許出願(特願2012-069932)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on April 28, 2011 (Japanese Patent Application No. 2011-102135) and a Japanese patent application filed on March 26, 2012 (Japanese Patent Application No. 2012-069932). Incorporated herein by reference.
1  導電性部材
10 基材
20 導電性層
30 中間層
DESCRIPTION OF SYMBOLS 1 Conductive member 10 Base material 20 Conductive layer 30 Intermediate layer

Claims (24)

  1.  基材上に、短軸径が150nm以下の導電性繊維を含み、かつ下記一般式(I)で示される結合を含む三次元架橋結合を含んで構成される導電性層を備える導電性部材であって、前記基材と前記導電性層との間に、更に少なくとも一層の中間層を有する導電性部材。
       -M-O-M-    (I)
     (一般式(I)中、MはSi、Ti、Zr及びAlからなる群から選ばれた元素を示す。)
    A conductive member comprising a conductive layer including a conductive fiber having a minor axis diameter of 150 nm or less on a base material and including a three-dimensional cross-linking bond including a bond represented by the following general formula (I) A conductive member further comprising at least one intermediate layer between the substrate and the conductive layer.
    -M 1 -OM 1- (I)
    (In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
  2.  前記導電性層が、Si、Ti、Zr及びAlからなる群より選ばれた元素のアルコキシド化合物の少なくとも一つを加水分解及び重縮合して得られるゾルゲル硬化物を含む請求項1に記載の導電性部材。 The conductive layer according to claim 1, wherein the conductive layer includes a sol-gel cured product obtained by hydrolysis and polycondensation of at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al. Sexual member.
  3.  前記中間層のうち、前記導電性層に接する中間層が、前記導電性繊維と相互作用可能な官能基を有する化合物を含む請求項1又は2に記載の導電性部材。 The conductive member according to claim 1 or 2, wherein an intermediate layer in contact with the conductive layer of the intermediate layer includes a compound having a functional group capable of interacting with the conductive fiber.
  4.  前記官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びに、これらの基の塩及びこれらの基の前駆体からなる群より選ばれる少なくとも1つである請求項3に記載の導電性部材。 The functional group is selected from the group consisting of an amide group, an amino group, a mercapto group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group and a phosphonic acid group, and salts of these groups and precursors of these groups. The conductive member according to claim 3, wherein there is at least one.
  5.  前記中間層がシランカップリング剤を含み、前記官能基がシランカップリング剤の反応により前記基材上に固定される請求項3又は4に記載の導電性部材。 The conductive member according to claim 3 or 4, wherein the intermediate layer contains a silane coupling agent, and the functional group is fixed on the substrate by a reaction of the silane coupling agent.
  6.  前記シランカップリング剤が前記中間層中に1μmol/m以上1mmol/m以下含まれる請求項5に記載の導電性部材。 The conductive member according to claim 5, wherein the silane coupling agent is contained in the intermediate layer in an amount of 1 μmol / m 2 or more and 1 mmol / m 2 or less.
  7.  前記中間層表面における水接触角が5゜以上40゜以下である請求項1~6のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 6, wherein a water contact angle on the surface of the intermediate layer is 5 ° or more and 40 ° or less.
  8.  前記基材が、ガラス、ポリエチレンテレフタレート、ポリカーボネート、又はトリアセチルセルロースである請求項1~7のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 7, wherein the base material is glass, polyethylene terephthalate, polycarbonate, or triacetyl cellulose.
  9.  前記導電性層が、導電性繊維として平均直径50nm以下、平均長さ5μm以上の金属ナノワイヤーを含む請求項1~8のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 8, wherein the conductive layer includes metal nanowires having an average diameter of 50 nm or less and an average length of 5 µm or more as conductive fibers.
  10.  前記導電性繊維が、銀ナノワイヤーである請求項1~9のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 9, wherein the conductive fiber is a silver nanowire.
  11.  前記導電性層が、導電性領域及び非導電性領域を含み、かつ前記導電性領域及び非導電性領域の少なくとも一方が前記導電性繊維を含む請求項1~10のいずれか一項に記載の導電性部材。 The conductive layer according to any one of claims 1 to 10, wherein the conductive layer includes a conductive region and a non-conductive region, and at least one of the conductive region and the non-conductive region includes the conductive fiber. Conductive member.
  12.  (a)基材上に、短軸径が150nm以下の導電性繊維と、Si、Ti、Zr及びAlからなる群より選ばれた元素のアルコキシド化合物の少なくとも一つと、を含む水溶液を塗布して、当該水溶液の液膜を前記基材上に形成させること、及び、(b)前記水溶液の液膜中のアルコキシド化合物を加水分解及び重縮合させて、下記一般式(I)で示される三次元架橋結合を形成すること、をこの順に含む、前記基材上に、前記導電性繊維を含み、かつ前記三次元架橋結合を含んで構成される導電性層を形成する導電性部材の製造方法において前記(a)に先だって、更に前記基材における前記液膜が形成される表面に、少なくとも一層の中間層を形成することを特徴とする導電性部材の製造方法。
       -M-O-M-    (I)   
     (一般式(I)中、MはSi、Ti、Zr及びAlからなる群より選ばれた元素を示す。)
    (A) An aqueous solution containing a conductive fiber having a minor axis diameter of 150 nm or less and at least one alkoxide compound of an element selected from the group consisting of Si, Ti, Zr and Al is applied on a substrate. Forming a liquid film of the aqueous solution on the substrate; and (b) hydrolyzing and polycondensing the alkoxide compound in the liquid film of the aqueous solution to form a three-dimensional structure represented by the following general formula (I): In the method for manufacturing a conductive member, including forming the cross-linked bond in this order, forming the conductive layer including the conductive fiber and including the three-dimensional cross-linked bond on the base material. Prior to (a), at least one intermediate layer is further formed on the surface of the substrate on which the liquid film is formed.
    -M 1 -OM 1- (I)
    (In the general formula (I), M 1 represents an element selected from the group consisting of Si, Ti, Zr and Al.)
  13.  前記中間層のうち、前記導電性層に接する中間層が、前記導電性繊維と相互作用可能な官能基を有する化合物を含む請求項12に記載の導電性部材の製造方法。 The method for producing a conductive member according to claim 12, wherein the intermediate layer in contact with the conductive layer of the intermediate layer includes a compound having a functional group capable of interacting with the conductive fiber.
  14.  前記中間層がシランカップリング剤を含み、前記官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びに、これらの基の塩及びこれらの基の前駆体からなる群より選ばれる少なくとも1つであり、シランカップリング剤の反応により前記基材上に前記官能基を固定する請求項13に記載の導電性部材の製造方法。 The intermediate layer includes a silane coupling agent, and the functional group includes an amide group, an amino group, a mercapto group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group and a phosphonic acid group, and salts of these groups and these The method for producing a conductive member according to claim 13, wherein the functional group is fixed on the base material by a reaction of a silane coupling agent.
  15.  前記シランカップリング剤が前記中間層中に1μmol/m以上1mmol/m以下含まれる請求項14に記載の導電性部材の製造方法。 The method for producing a conductive member according to claim 14, wherein the silane coupling agent is contained in the intermediate layer in an amount of 1 μmol / m 2 or more and 1 mmol / m 2 or less.
  16.  前記(a)に先立って、中間層表面における水接触角が5゜以上40゜以下となるように表面処理する請求項12~15のいずれか一項に記載の導電性部材の製造方法。 The method for producing a conductive member according to any one of claims 12 to 15, wherein the surface treatment is performed so that the water contact angle on the surface of the intermediate layer is 5 ° or more and 40 ° or less prior to (a).
  17.  前記表面処理が、コロナ放電処理、プラズマ処理、又はグロー放電処理である請求項16に記載の導電性部材の製造方法。 The method for producing a conductive member according to claim 16, wherein the surface treatment is corona discharge treatment, plasma treatment, or glow discharge treatment.
  18.  前記基材が、ガラス、ポリエチレンテレフタレート、ポリカーボネート、又はトリアセチルセルロースである請求項12~17のいずれか一項に記載の導電性部材の製造方法。 The method for producing a conductive member according to any one of claims 12 to 17, wherein the base material is glass, polyethylene terephthalate, polycarbonate, or triacetyl cellulose.
  19.  前記導電性層が、導電性繊維として平均直径50nm以下、平均長さ5μm以上の金属ナノワイヤーを含む請求項12~18のいずれか一項に記載の導電性部材の製造方法。 The method for producing a conductive member according to any one of claims 12 to 18, wherein the conductive layer includes metal nanowires having an average diameter of 50 nm or less and an average length of 5 µm or more as conductive fibers.
  20.  請求項12~19のいずれか一項に記載の導電性部材の製造方法によって形成された導電性層に、更に
     (c)パターン状の非導電性領域を形成すること、を含む、導電性領域と非導電性領域とを含む導電性層を備える導電性部材の製造方法。
    A conductive region comprising: (c) forming a patterned non-conductive region on the conductive layer formed by the method for manufacturing a conductive member according to any one of claims 12 to 19. And a method for producing a conductive member comprising a conductive layer including a non-conductive region.
  21.  エッチングによってパターン状の非導電性領域を形成する請求項20に記載の導電性部材の製造方法。 21. The method for producing a conductive member according to claim 20, wherein the pattern-like non-conductive region is formed by etching.
  22.  レーザー光照射によって導電性繊維を断線又は消失させてパターン状の非導電性領域を形成する請求項20に記載の導電性部材の製造方法。 21. The method for producing a conductive member according to claim 20, wherein the conductive fiber is disconnected or disappeared by laser light irradiation to form a patterned non-conductive region.
  23.  請求項1~11のいずれか一項に記載の導電性部材を含むタッチパネル。 A touch panel comprising the conductive member according to any one of claims 1 to 11.
  24.  請求項1~11のいずれか一項に記載の導電性部材を含む太陽電池。 A solar cell comprising the conductive member according to any one of claims 1 to 11.
PCT/JP2012/061137 2011-04-28 2012-04-25 Electroconductive member, method for manufacturing same, touch panel, and solar cell WO2012147815A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011102135 2011-04-28
JP2011-102135 2011-04-28
JP2012-069932 2012-03-26
JP2012069932A JP2012238579A (en) 2011-04-28 2012-03-26 Conductive member, manufacturing method thereof, touch panel, and solar cell

Publications (1)

Publication Number Publication Date
WO2012147815A1 true WO2012147815A1 (en) 2012-11-01

Family

ID=47072332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061137 WO2012147815A1 (en) 2011-04-28 2012-04-25 Electroconductive member, method for manufacturing same, touch panel, and solar cell

Country Status (2)

Country Link
JP (1) JP2012238579A (en)
WO (1) WO2012147815A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148287A1 (en) * 2013-03-19 2014-09-25 東レ株式会社 Conductive laminate and manufacturing method therefor
US20170145737A1 (en) * 2014-08-27 2017-05-25 Fujifilm Corporation Heat insulating film, manufacturing method of heat insulating film, heat insulating glass, and window
WO2018056052A1 (en) * 2016-09-21 2018-03-29 バンドー化学株式会社 Electroconductive film composite and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952119B2 (en) * 2012-03-23 2016-07-13 富士フイルム株式会社 Conductive member and manufacturing method thereof
EP2960691B1 (en) 2013-02-19 2017-09-27 Fujifilm Corporation Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module
KR101436849B1 (en) 2013-03-04 2014-09-02 한국과학기술원 Multilayer structure including graphene and methods for manufacturing thereof
JP2015018624A (en) * 2013-07-09 2015-01-29 日東電工株式会社 Transparent conductive film and manufacturing method of transparent conductive film
JP2017510994A (en) * 2013-12-19 2017-04-13 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Transparent nanowire electrode with functional organic layer
WO2015182745A1 (en) 2014-05-30 2015-12-03 富士フイルム株式会社 Heat-insulating film for window, heat-insulating material for window, and window
JP6295224B2 (en) * 2015-03-25 2018-03-14 富士フイルム株式会社 Far-infrared reflective film, dispersion for forming far-infrared reflective film, method for producing far-infrared reflective film, far-infrared reflective glass and window
JP6826362B2 (en) * 2015-06-30 2021-02-03 リンテック株式会社 Adhesive sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253326A (en) * 2003-02-21 2004-09-09 Toyobo Co Ltd Conductive film
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2010140859A (en) * 2008-12-15 2010-06-24 Nissha Printing Co Ltd Conductive nanofiber sheet, and method for manufacturing the same
JP2011060686A (en) * 2009-09-14 2011-03-24 Konica Minolta Holdings Inc Method of manufacturing pattern electrode, and pattern electrode
JP2011070820A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253326A (en) * 2003-02-21 2004-09-09 Toyobo Co Ltd Conductive film
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2010140859A (en) * 2008-12-15 2010-06-24 Nissha Printing Co Ltd Conductive nanofiber sheet, and method for manufacturing the same
JP2011060686A (en) * 2009-09-14 2011-03-24 Konica Minolta Holdings Inc Method of manufacturing pattern electrode, and pattern electrode
JP2011070820A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148287A1 (en) * 2013-03-19 2014-09-25 東レ株式会社 Conductive laminate and manufacturing method therefor
CN105190784A (en) * 2013-03-19 2015-12-23 东丽株式会社 Conductive laminate and manufacturing method therefor
US20170145737A1 (en) * 2014-08-27 2017-05-25 Fujifilm Corporation Heat insulating film, manufacturing method of heat insulating film, heat insulating glass, and window
WO2018056052A1 (en) * 2016-09-21 2018-03-29 バンドー化学株式会社 Electroconductive film composite and method for manufacturing same
JPWO2018056052A1 (en) * 2016-09-21 2018-09-20 バンドー化学株式会社 Conductive coating composite and method for producing the same

Also Published As

Publication number Publication date
JP2012238579A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5868771B2 (en) Conductive member, manufacturing method thereof, touch panel and solar cell
JP5930833B2 (en) Conductive member, manufacturing method thereof, touch panel and solar cell
WO2012147815A1 (en) Electroconductive member, method for manufacturing same, touch panel, and solar cell
WO2013047147A1 (en) Conductive composition, method for producing same, conductive member, touch panel, and solar cell
WO2012141058A1 (en) Conductive member, method for producing conductive member, touch panel, and solar cell
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
JP5788923B2 (en) Conductive composition, conductive member, method for manufacturing conductive member, touch panel and solar cell
JP5832943B2 (en) Conductive composition, conductive member, method for manufacturing conductive member, touch panel and solar cell
WO2013140971A1 (en) Conductive member and method for manufacturing same
WO2013038891A1 (en) Electroconductive member, process for producing electro- conductive member, touch panel and solar cell
JP2013201004A (en) Conductive pattern member, manufacturing method therefor, touch panel, and solar cell
JP2013200997A (en) Conductive member, manufacturing method therefor, and touch panel
JP2013201005A (en) Conductive pattern member manufacturing method, conductive pattern member, touch panel and solar cell
JP2014036002A (en) Method of forming conductive member
JP5669781B2 (en) Conductive member, method for manufacturing the same, and touch panel
JP2013201003A (en) Conductive pattern member, manufacturing method of the same, touch panel and solar battery
JP5606769B2 (en) Conductive film and method for manufacturing the same, touch panel and integrated solar cell
JP2013200996A (en) Method for manufacturing conductive material, conductive material manufactured thereby, touch panel with the same, and display device with touch panel function
JP2013200998A (en) Method for manufacturing conductive material, conductive material manufactured thereby, touch panel with the same, and display device with touch panel function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776154

Country of ref document: EP

Kind code of ref document: A1