WO2018055718A1 - エッジヒータ制御装置 - Google Patents

エッジヒータ制御装置 Download PDF

Info

Publication number
WO2018055718A1
WO2018055718A1 PCT/JP2016/077938 JP2016077938W WO2018055718A1 WO 2018055718 A1 WO2018055718 A1 WO 2018055718A1 JP 2016077938 W JP2016077938 W JP 2016077938W WO 2018055718 A1 WO2018055718 A1 WO 2018055718A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
edge heater
temperature distribution
calculation unit
heating mode
Prior art date
Application number
PCT/JP2016/077938
Other languages
English (en)
French (fr)
Inventor
宏幸 今成
下田 直樹
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018540550A priority Critical patent/JP6737339B2/ja
Priority to KR1020197003938A priority patent/KR102230316B1/ko
Priority to CN201680088404.8A priority patent/CN109562423B/zh
Priority to PCT/JP2016/077938 priority patent/WO2018055718A1/ja
Priority to TW105137252A priority patent/TWI635912B/zh
Publication of WO2018055718A1 publication Critical patent/WO2018055718A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Definitions

  • the present invention relates to an edge heater control device for an edge heater that heats the widthwise end of a rolled material.
  • the edge heater is used to heat the width direction end (sheet width direction end) of the rolled material.
  • the temperature at the end in the width direction tends to decrease, and the metal material such as strength and ductility decreases when the temperature decreases.
  • the purpose of heating the end portion in the width direction by the edge heater is to obtain a uniform material over the entire plate width direction of the rolled material.
  • cracks may occur at the width direction end due to a decrease in temperature at the width direction end, which may impair rolling stability or cause the product to become defective.
  • the rolled material is heated and heated by an edge heater.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-147216 is a patent document that describes accurate calculation of the temperature distribution in the sheet width direction of a rolled material using a difference method in hot rolling. Patent Document 1 discloses a temperature distribution prediction device that approximately calculates a temperature distribution in the width direction based on a temperature calculation value at a central portion of the plate width.
  • the temperature at the end in the width direction of the rolled material is likely to be lower than the center in the width direction, and the material is likely to deteriorate.
  • an edge heater is installed in the rolling line.
  • the heating control with the conventional edge heater is only for heating the rolled material with electric power determined by trial and error, and the temperature at the end in the width direction of the rolled material on the rolling stand exit side, which has a large effect on the material. The decrease could not be sufficiently suppressed.
  • the present invention has been made to solve the above-described problems, and is necessary for satisfying the temperature condition of the end in the width direction of the rolled material on the exit side of the rolling stand before the rolled material reaches the edge heater.
  • Another object of the present invention is to provide an edge heater control device capable of determining the electrical energy to be supplied to the edge heater.
  • the present invention is provided with at least one edge heater that heats the widthwise end of the rolled material by receiving the supply of electrical energy according to the indicated value, and at the downstream side of the edge heater.
  • An edge heater control device for a rolling line having a rolling stand A first temperature distribution prediction unit for predicting a width direction temperature distribution (first temperature distribution) of the rolled material on the outlet side of the edge heater, based on a temporary value indicating electric energy supplied to the edge heater; Based on the first temperature distribution, a second temperature distribution prediction unit that predicts a width direction temperature distribution (second temperature distribution) of the rolled material on the rolling stand exit side; Before the rolled material reaches the edge heater, the instruction value indicating the electric energy to be supplied to the edge heater, which is necessary for satisfying the temperature condition regarding the end in the width direction of the second temperature distribution, is calculated. And a supply energy calculation unit.
  • the edge heater before the rolled material reaches the edge heater, it is possible to determine the electrical energy to be supplied to the edge heater, which is necessary to satisfy the temperature condition of the width direction end of the rolled material on the rolling stand exit side. . Therefore, according to this invention, the fall of the material in the rolling stand exit side can be suppressed.
  • FIG. 1 is a schematic diagram showing a system configuration of a rolling line according to Embodiment 1.
  • FIG. 3 is a functional block diagram of an edge heater control device 3 according to Embodiment 1.
  • FIG. It is a flowchart of the routine which the 1st supply energy calculation part 32 and the 2nd temperature distribution prediction part 34 perform. It is a flowchart of the routine which the 1st supply energy calculation part 32 and the 1st temperature distribution prediction part 33 perform.
  • 1 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of a rolled material 1. It is a graph which shows an example which calculated the temperature of the rolling material 1 in the 2nd temperature distribution estimation part 34.
  • FIG. It shows how the mesh is cut for analysis by the finite element method.
  • FIG. 6 is a functional block diagram of an edge heater control device 3 according to Embodiment 2.
  • FIG. 7 is a flowchart of a routine executed by the edge heater control device 3 according to the second embodiment. It is a graph for demonstrating an example of the relationship between the electrical energy supplied to the edge heater 23, and the temperature of the width direction edge part of 2nd temperature distribution. It is a graph for demonstrating an example of the relationship between the electrical energy supplied to the edge heater 23, and the temperature of the width direction edge part of 2nd temperature distribution. It is a graph for demonstrating the other example of the relationship between the electrical energy supplied to the edge heater 23, and the temperature change of the edge part of the width direction.
  • FIG. 6 is a functional block diagram of an edge heater control device 3 according to Embodiment 3.
  • FIG. 10 is a flowchart of a routine executed by the edge heater control device 3 according to the third embodiment. It is a block diagram which shows the hardware structural example of the processing circuit which the edge heater control apparatus 3 which concerns on each embodiment has.
  • FIG. 1 is a schematic diagram showing a system configuration of a rolling line according to the first embodiment.
  • a rolled material 1 is thinly extended while being processed in a rolling line 2, and the width is also controlled to a desired value.
  • the rolling line 2 is a hot rolling line for steel.
  • the rolling line 2 includes a heating furnace 21, a rough rolling mill 22, an edge heater 23, a finishing rolling mill 24, a cooling table 25, and a winder 26 as main facilities.
  • the rolled material 1 When the rolled material 1 exits the heating furnace 21, it is a lump of iron formed into a rectangular parallelepiped shape called a slab having a thickness of 250 mm, a width of 800 to 2000 mm, and a length of 5 to 10 m, for example.
  • the slab is heated in the heating furnace 21 and extracted from the heating furnace 21 at about 1200 ° C.
  • the rough rolling mill 22 is often composed of one to three units, and performs multiple pass rolling in the forward direction (from upstream to downstream) and in the reverse direction (from downstream to upstream).
  • a device for adjusting the width called an edger may be attached to the roughing mill 22.
  • the edge heater 23 is installed between the rough rolling mill 22 and the finish rolling mill 24 and is an apparatus for heating the width direction end of the rolled material 1.
  • a crop shear that cuts off the leading end of the rolled material, a scale breaker that removes an oxide film formed on the surface of the rolled material with high-pressure water, a bar heater that heats the entire width direction, and the like are provided between the roughing mill 22 and the finishing mill 24. Sometimes installed.
  • the finish rolling mill 24 provided downstream of the edge heater 23 includes a plurality of rolling stands, performs unidirectional rolling from upstream to downstream, and determines the final quality related to the size of the rolled material 1 such as the plate thickness and the plate width. .
  • the temperature of the rolled material 1 is about 900 ° C. on the exit side of the finish rolling mill 24.
  • the rolling stand includes devices such as a rolling roll and a support roll.
  • the rolled material 1 is rolled by the upper and lower rolling rolls. At this time, the heat of the rolled material 1 is removed by a rolling roll or cooling water sprayed directly onto the rolled material 1. At the end in the width direction, the area that comes into contact with water and air is larger than that at the center in the width direction, so heat easily escapes and the temperature tends to decrease.
  • the cooling table 25 pours water into the rolled material 1 to lower the temperature.
  • the temperature before being wound into a coil by the winder 26 is 200 ° C. when it is low, such as special steel, and around 600 ° C. when it is ordinary steel.
  • the edge heater 23 is connected to the edge heater control device 3.
  • the edge heater control device 3 is connected to an edge heater inlet side thermometer 27 provided between the rough rolling mill 22 and the edge heater 23 and the host computer 5.
  • FIG. 2 is a functional block diagram of the edge heater control device 3 according to the first embodiment.
  • the edge heater control device 3 includes a data acquisition unit 31, a first supply energy calculation unit 32, a first temperature distribution prediction unit 33, and a second temperature distribution prediction unit 34.
  • the data acquisition unit 31 receives various data relating to the rolled material 1 from the host computer 5 (steel type / thickness / conveying speed of the rolled material 1, control amount of the finishing mill 24, rolled material 1 on the final rolling stand exit side of the finishing mill 24). Temperature condition at the end in the width direction). Further, the data acquisition unit 31 acquires the initial temperature of the rolled material 1 on the entry side of the edge heater 23 from the edge heater entry side thermometer 27.
  • the first temperature distribution prediction unit 33 is based on a temporary value indicating the electric energy supplied to the edge heater 23, and the temperature distribution in the width direction of the rolled material 1 on the outlet side of the edge heater (hereinafter referred to as "first temperature distribution"). Predict.
  • the second temperature distribution prediction unit 34 predicts the temperature distribution in the width direction of the rolled material 1 (hereinafter referred to as “second temperature distribution”) on the exit side of the final rolling stand of the finish rolling mill 24 based on the first temperature distribution. To do.
  • the edge heater control device 3 indicates the electrical energy to be supplied to the edge heater 23 that is necessary for satisfying the temperature condition regarding the width direction end portion of the second temperature distribution before the rolled material 1 reaches the edge heater 23. The indicated value is calculated.
  • the purpose of the system according to the first embodiment is to set the target temperature at the width direction end of the width direction temperature distribution of the rolled material 1 on the final rolling stand exit side of the finish rolling mill 24, that is, the width direction end of the second temperature distribution.
  • the target temperature is given as a temperature condition
  • an instruction value indicating electric energy to be supplied to the edge heater 23 necessary to achieve the target temperature is obtained.
  • the first supply energy calculation unit 32 executes the following processes (1) to (3) before the rolled material 1 reaches the edge heater 23. .
  • the 1st supply energy calculation part 32 acquires the target temperature in the width direction edge part of 2nd temperature distribution as temperature conditions mentioned above.
  • This target temperature is given from the host computer 5 via the data acquisition unit 31.
  • similar to the center part of the width direction of 2nd temperature distribution is set to target temperature.
  • the target temperature may be set for one point at the end in the width direction or may be set for a plurality of points. It may also be a representative value.
  • the first supply energy calculation unit 32 uses the second temperature distribution prediction unit 34 so that the temperature at the end in the width direction of the second temperature distribution satisfies the target temperature acquired in (1).
  • the first temperature distribution necessary for the calculation is calculated.
  • the first supply energy calculation unit 32 should supply the edge heater 23 necessary for satisfying the first temperature distribution calculated in (2) using the first temperature distribution prediction unit 33.
  • An indication value indicating electric energy is calculated.
  • the second temperature distribution prediction unit 34 generally calculates the temperature of the rolled material 1 from the upstream side toward the downstream side.
  • the rolling material 1 is divided
  • this method it is impossible to calculate the first temperature distribution from the second temperature distribution, that is, the temperature distribution from the downstream side to the upstream side at once. If a simple temperature model is used, it may be possible to calculate from the downstream side to the upstream side at once, but the accuracy of the temperature model cannot often be maintained.
  • the first supply energy calculation unit 32 performs the following iterative calculation to calculate a target distribution of the temperature direction temperature distribution (first temperature distribution) of the rolled material 1 on the outlet side of the edge heater.
  • the process (2) will be described.
  • FIG. 3 is a flowchart of a routine executed by the first supply energy calculation unit 32 and the second temperature distribution prediction unit 34. This routine is executed before the rolled material 1 reaches the edge heater 23.
  • step S100 the first supply energy calculation unit 32 sets a temporary target distribution of the first temperature distribution.
  • step S110 the second temperature distribution prediction unit 34 uses the thickness direction temperature model 36 to be described later based on the temporary target distribution set in step S100, and the rolling material 1 on the exit side of the finish rolling mill.
  • the width direction temperature distribution (second temperature distribution) is calculated.
  • step S120 the first supply energy calculation unit 32 determines whether or not the temperature at the end in the width direction of the second temperature distribution is within the target temperature range with respect to the second temperature distribution calculated in step S110.
  • the target temperature range is a temperature range in which an error range ( ⁇ ⁇ ) is added to the target temperature at the end in the width direction of the second temperature distribution acquired in (1) above.
  • step S120 If the determination condition in step S120 is not satisfied, the process returns to step S100, and the first supply energy calculation unit 32 slightly changes the temporary target distribution of the first temperature distribution in an appropriate direction. Specifically, when the temperature at the end in the width direction of the second temperature distribution calculated in step S110 is lower than the target temperature range, the next value of the temporary target distribution is set higher than the previous value. On the other hand, when the temperature is higher than the target temperature range, the next value of the temporary target distribution is set lower than the previous value. The temporary target distribution is repeatedly updated until the determination process of step S120 is established.
  • step S120 determines whether the determination condition in step S120 is satisfied. If the determination condition in step S120 is satisfied, the process proceeds to step S130.
  • step S ⁇ b> 130 the first supply energy calculation unit 32 determines the temporary target distribution as the target distribution of the first temperature distribution. Thereafter, the routine shown in FIG. 4 is executed.
  • FIG. 4 is a flowchart of a routine executed by the first supply energy calculation unit 32 and the first temperature distribution prediction unit 33. This routine is executed after the execution of the routine shown in FIG. 3 and before the rolled material 1 reaches the edge heater 23.
  • step S ⁇ b> 140 the first supply energy calculation unit 32 sets a temporary value indicating the electric energy to be supplied to the edge heater 23.
  • step S150 the first temperature distribution prediction unit 33 calculates the first temperature distribution using the edge heater temperature calculation simplified model 35 described later based on the temporary value set in step S140.
  • the first supply energy calculation unit 32 determines whether or not the first temperature distribution calculated in step S150 matches or sufficiently approaches the target distribution of the first temperature distribution determined in (2) above. Determine whether. For example, it is determined whether or not the calculated temperature at the end portion in the width direction of the first temperature distribution is within the target temperature range at the end portion in the width direction in the target distribution of the first temperature distribution.
  • the target temperature range is a temperature range in which an error range ( ⁇ ⁇ ) is added to the temperature at the end in the width direction of the target distribution of the first temperature distribution.
  • step S160 When the determination condition in step S160 is not satisfied, the process returns to step S140, and the first supply energy calculation unit 32 slightly changes the temporary value indicating the electric energy to be supplied to the edge heater 23 in an appropriate direction. Specifically, when the temperature at the end in the width direction of the first temperature distribution calculated in step S150 is lower than the target temperature range, the next value of the temporary value is set higher than the previous value. On the other hand, when the temperature is higher than the target temperature range, the next value of the temporary value is set lower than the previous value. The provisional value is repeatedly updated until the determination process of step S160 is established.
  • step S160 determines whether the determination condition in step S160 is satisfied. If the determination condition in step S160 is satisfied, the process proceeds to step S170.
  • step S ⁇ b> 170 the first supply energy calculation unit 32 determines the provisional value as an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • the edge heater control device 3 transmits an instruction value to the edge heater 23, and the edge heater 23 receives the supply of electric energy corresponding to the instruction value and heats the end in the width direction of the rolled material 1.
  • the instruction value indicating the electric energy supplied to the edge heater 23 may be a voltage value, a current value, or the like in addition to the power value, and is matched with the input of the edge heater 23.
  • the thickness direction temperature model 36 will be described with reference to FIG. As shown in FIG. 2, the second temperature distribution prediction unit 34 performs a temperature calculation in cooperation with the thickness direction temperature model 36.
  • FIG. 5 is a cross-sectional view showing a cross section perpendicular to the longitudinal direction of the rolled material 1.
  • the thickness-width direction temperature model 36 uses a difference method in which the temperature distribution in the thickness direction and the width direction of the cross section perpendicular to the longitudinal direction of the rolled material 1 is taken into account the heat conduction inside the material and the heat transfer between the material surface and the outside. Model. As shown in FIG. 5, the cross section is divided into a plurality of rectangular elements. Black points in FIG. 5 indicate points at which temperatures are calculated by a difference method, and are referred to as nodes. The heat conduction between the nodes and the heat transfer between the nodes and the outside world (air or water) are described by the following mathematical formulas, and the temperature change is calculated based on these equations.
  • the above-described heat conduction represents the heat transfer inside the steel plate, and is expressed by equation (1).
  • Equation (1) is also used to describe heat transfer between the rolling roll and the rolled material 1.
  • the heat transfer described above represents heat transfer between the steel plate and the outside world, and includes heat transfer by radiation, heat transfer by air-cooled convection, and heat transfer by water-cooled convection.
  • Factors that affect the temperature of the rolled material 1 include processing heat generated when processed by the upper and lower rolling rolls, and heat generated by friction between the rolling roll and the rolled material, so these factors should also be considered. is there.
  • the second temperature distribution prediction unit 34 repeats the above-described heat flow calculation and temperature calculation using the heat flow from the edge heater 23 to the exit side of the finishing mill 24.
  • FIG. 6 is a graph showing an example in which the temperature of the rolled material 1 is calculated by the second temperature distribution prediction unit 34.
  • the temperature change of the rolling material 1 from the thermometer FET which is downstream from the edge heater 23 and which is on the entry side of the finishing mill 24 to the thermometer FDT on the exit side of the finishing mill 24 is shown.
  • the edge heater 23 heats the edge in the width direction, and the temperature of the edge in the width direction rises at the position of the FET. Even at the FDT position, the temperature drop at the end in the width direction is suppressed as compared with the case where the edge heater 23 is not heated.
  • the edge heater temperature calculation simplified model 35 will be described with reference to FIGS.
  • the first temperature distribution prediction unit 33 cooperates with the edge heater temperature calculation simplified model 35 to obtain various data and edges related to the rolled material 1 acquired from the host computer 5 and the edge heater entry side thermometer 27. Based on the electrical energy supplied to the heater 23, the temperature distribution in the width direction (first temperature distribution) of the rolled material 1 on the edge heater outlet side is calculated.
  • the edge heater 23 heats the rolled material 1 by induction heating.
  • a current flows through the width direction end of the rolled material 1 under the influence of the magnetic field generated by the edge heater 23, the rolled material 1 generates heat.
  • the finite element method is applied to the electromagnetic field analysis and the heat conduction analysis, but the analysis takes a very long time.
  • FIG. 7 shows a state where the mesh is cut for analysis by the finite element method. In order to shorten the analysis time, it is necessary to express the results of electromagnetic field analysis and heat conduction analysis by the finite element method (detailed model constructed offline) as a simplified model and use it for online control etc. is there.
  • FIG. 8 is a diagram showing an example of the edge heater temperature calculation simplified model 35.
  • FIG. 8 is a simplified version of the analysis result of FIG. 7.
  • FIG. 8 shows a relationship in which the temperature rise at the end in the width direction increases as the thickness of the rolled material 1 decreases, and the temperature increase at the end in the width direction increases as the initial temperature of the rolled material 1 decreases.
  • the steel type of the rolled material 1, the conveyance speed, and the like must be taken into consideration as parameters, so that all parameters of the simple model cannot be represented by a three-dimensional graph.
  • the edge heater temperature calculation simplified model 35 can be represented by a model combining several two dimensions (planes).
  • the edge heater temperature calculation simple model 35 includes input parameters including the electric energy supplied to the edge heater 23, the initial temperature of the rolled material 1 on the inlet side of the edge heater, the plate thickness, the steel type, and the conveyance speed, and the edge heater.
  • 23 is a model in which the output parameter indicating the amount of temperature rise of the rolled material 1 heated to 23 is associated.
  • This model is a simple model defined by, for example, a mathematical expression or a map.
  • the edge heater control device 3 before the rolled material reaches the edge heater, the target of the end in the width direction of the rolled material 1 on the exit side of the finish rolling mill 24.
  • the electrical energy to be supplied to the edge heater necessary to meet the temperature can be determined. Since the temperature of the end portion in the width direction of the rolled material 1 can be appropriately controlled on the exit side of the finish rolling mill 24 that greatly affects the material, it is possible to suppress deterioration of the material.
  • the edge heater entrance side thermometer 27 may not be installed.
  • the edge heater inlet side temperature can be predicted using the predicted temperature value of the rolled material 1 calculated for the control of the rough rolling mill 22. The initial temperature of the rolled material 1 on the entry side of the edge heater 23 described above is substituted with this predicted temperature. This point is the same in the following embodiments.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the system of this embodiment can be realized by causing the edge heater control device 3 to execute a routine of FIG. 10 described later in the configuration shown in FIGS. 1 and 9.
  • the target temperature at the end in the width direction of the width direction temperature distribution (second temperature distribution) of the rolled material 1 on the exit side of the finish rolling mill 24 is given as the temperature condition.
  • the target temperature is not necessarily given to all rolled materials 1.
  • the target temperature is given in the rolling of high-grade steel sheets, it may not be given in ordinary steel. Therefore, in the second embodiment, when the target temperature is not given, a command value indicating the electric energy supplied to the edge heater 23 is determined so that the energy consumed by the edge heater 23 is used efficiently.
  • FIG. 9 is a functional block diagram of the edge heater control device 3 according to the second embodiment.
  • the edge heater control device 3 includes a second supply energy calculation unit in addition to the data acquisition unit 31, the first temperature distribution prediction unit 33, and the second temperature distribution prediction unit 34 described in the first embodiment. 37, a heating mode selector 38, a first heating mode calculator 39, and a second heating mode calculator 40.
  • the second supply energy calculation unit 37 uses the first temperature distribution prediction unit 33 and the second temperature distribution prediction unit 34 to provide a temporary value indicating the electric energy supplied to the edge heater 23 and a second value corresponding to the temporary value. The relationship with the predicted temperature at the end in the width direction of the temperature distribution is calculated. Furthermore, the second supply energy calculation unit 37 uses the provisional value calculated by the first heating mode calculation unit 39 or the second heating mode calculation unit 40 as an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • the temporary value indicating the electric energy supplied to the edge heater 23 is also simply referred to as “temporary value”, and the predicted temperature at the end in the width direction of the second temperature distribution corresponding to the temporary value is also simply referred to as “predicted temperature”. .
  • the heating mode selection unit 38 selects one of the first heating mode and the second heating mode based on the data including the steel type acquired by the data acquisition unit 31.
  • the first heating mode calculation unit 39 calculates a provisional value at which the predicted temperature is maximum based on the relationship calculated by the second supply energy calculation unit 37 when the first heating mode is selected.
  • the second heating mode calculation unit 40 calculates the temperature increase rate of the predicted temperature according to the increase in the temporary value based on the relationship calculated by the second supply energy calculation unit 37.
  • a provisional value that is equal to or greater than a predetermined positive value and has the maximum predicted temperature is calculated.
  • FIG. 10 is a flowchart of a routine executed by the edge heater control device 3 according to the second embodiment. This routine is executed before the rolled material 1 reaches the edge heater 23.
  • step S200 the data acquisition unit 31 performs various data relating to the rolled material 1 (the steel type / thickness / conveying speed of the rolled material 1, the control amount of the finishing mill 24, the width of the second temperature distribution). Temperature conditions at the direction end, initial temperature of the rolled material 1 on the edge heater entrance side, and the like) are acquired.
  • step S205 the second supply energy calculation unit 37 determines N provisional values (N> 2) of electric energy supplied to the edge heater 23.
  • the second supply energy calculation unit 37 uses the first temperature distribution prediction unit 33 and the second temperature distribution prediction unit 34 to calculate the second temperature distribution according to the temporary value of electric energy. Is repeated N times (steps S210 to S225).
  • step S210 the second supply energy calculation unit 37 increments the counter i (initial value 0) of the number of repetitions. A temporary value indicating the i-th electrical energy is set.
  • step S215 the second supply energy calculation unit 37 uses the first temperature distribution prediction unit 33 to predict the first temperature distribution based on the temporary value indicating the i-th electrical energy.
  • step S220 the second supply energy calculation unit 37 uses the second temperature distribution prediction unit 34 to predict the second temperature distribution based on the first temperature distribution.
  • step S225 the second supply energy calculation unit 37 determines whether or not the counter i is greater than or equal to N. If the counter i is less than N, the process returns to step S210. If the counter i is greater than or equal to N, the process proceeds to step S230.
  • the second supply energy calculation unit 37 calculates the relationship between the N temporary values and the predicted temperature at the end in the width direction of the second temperature distribution corresponding to each temporary value. Specifically, an orthogonal coordinate system having a horizontal axis (X axis) as a temporary value indicating the electric energy supplied to the edge heater 23 and a vertical axis (Y axis) as a predicted temperature at the end in the width direction of the second temperature distribution. The points represented by the combination of the provisional value and the predicted temperature are plotted.
  • FIG. 11 is a graph for explaining an example of the relationship between the electric energy supplied to the edge heater 23 and the temperature at the end in the width direction of the second temperature distribution.
  • the electric energy supplied to the edge heater at the calculation point j (1 to 6) is represented by Ej.
  • Ej the electric energy supplied to the edge heater at the calculation point j (1 to 6)
  • the relationship between the electrical energy supplied to the edge heater 23 (temporary value) and the temperature at the end of the second temperature distribution in the width direction (predicted temperature) increases as the temporary value increases. Is represented by a curved line (as an example, an upwardly convex curve).
  • step S235 the heating mode selection unit 38 selects one of the first heating mode and the second heating mode based on the data including the steel type.
  • the process proceeds to step S240, and when the second heating mode is selected, the process proceeds to step S245.
  • step S240 the first heating mode calculation unit 39 calculates a provisional value at which the predicted temperature is maximized based on the relationship calculated in step S230. Thereafter, in step S250, the second supply energy calculation unit 37 determines the provisional value of the electric energy calculated in step S240 as an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • the temperature condition at which the temperature at the end in the width direction on the exit side of the finishing mill is highest that is, the temperature condition at point 5 is adopted.
  • the value indicating the electric energy in FIG. 11 is E5.
  • electrical energy with high energy efficiency can be selected, and the temperature at the end in the width direction on the exit side of the finishing mill can be maintained high.
  • step S245 based on the relationship calculated in step S230, the second heating mode calculation unit 40 has a temperature increase rate of the predicted temperature corresponding to the increase in the temporary value equal to or higher than a predetermined positive value, To calculate a provisional value at which the predicted temperature is maximized. Thereafter, in step S250, the second supply energy calculation unit 37 determines the temporary value of the electric energy calculated in step S245 as an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • the energy efficiency of the edge heater 23 is defined as the temperature rise at the end in the width direction on the exit side of the finishing mill per unit energy supplied by the edge heater.
  • the slope at each calculation point when connecting each calculation point becomes the energy efficiency of the edge heater 23, and the energy efficiency decreases in the order of points 2, 3, 4, and 5.
  • the slope at the calculation point 2 is the largest and the efficiency is good, but the temperature rise is not sufficient. Therefore, the electrical energy at the point where the energy efficiency of the edge heater 23 is equal to or higher than a certain value and the temperature at the end in the width direction on the exit side of the finishing mill is highest is supplied to the edge heater 23.
  • This constant value is influenced by the number of rolling mills positioned downstream of the edge heater 23 and the presence or absence of a water cooling device for the steel sheet, and is a numerical value that should be determined for each plant.
  • the number of calculation points can be determined according to the ability of the computer. That is, if the number of calculation points is large, the computer load increases, so the number of points is set so as not to impair the calculation accuracy.
  • each point is approximated by connecting the points with straight lines or higher-order curves and interpolating the values between the points as in the above example. It is possible to obtain energy continuously in addition to the energy of the individual.
  • the reason for the upwardly convex curve as shown in FIGS. 11 and 12 is that when the rolled material 1 is heated and the temperature rises, the effects of heat radiation and air / water cooling heat transfer are increased, and it may be easy to cool. Because. This is based on the aforementioned equations (2) to (4). According to the equations (2) to (4), the heat flow deprived from the rolled material 1 increases when the difference between the temperature of the rolled material 1 and the temperature around the rolled material 1 is large.
  • the heat transfer by radiation represented by the formula (2) includes a difference between the fourth power of the temperature of the rolled material 1 and the fourth power of the temperature around the rolled material, so that in a region where the temperature of the rolled material 1 is high, Radiation heat dissipation is greater than the effect of air-cooled convection. That is, when the temperature of the rolled material 1 is increased, the effect of heat removal due to radiation increases, and the temperature of the rolled material 1 may decrease even when more energy is applied from the edge heater 23.
  • the curve does not always have an upwardly convex curve, but at least becomes a curve where the temperature rise becomes dull as the temperature rises.
  • the edge heater is within the limits.
  • the electric energy supplied to 23 is stopped.
  • the first heating mode calculation unit 39 sets a plurality of predicted temperatures that are the upper limit temperatures based on the relationship calculated in step S230.
  • the minimum provisional value is calculated among the provisional values.
  • the first heating mode calculation unit 39 has a predetermined rate of temperature increase corresponding to the increase in the temporary value based on the relationship calculated in step S230.
  • a provisional value that is greater than or equal to the positive value and includes the predicted temperature between the upper limit temperature and the lower limit temperature is calculated.
  • FIG. 13 is a graph for explaining another example of the relationship between the electric energy supplied to the edge heater 23 and the temperature change at the end in the width direction.
  • the horizontal coordinate of the point that does not exceed the upper limit is E4 and E6, but the energy to be supplied is small, and the point where E4 is the horizontal coordinate is selected.
  • the electrical energy indicated by the provisional value is supplied to the edge heater.
  • the second heating mode is selected, energy that falls within the set upper and lower limit values is supplied to the edge heater.
  • the temperature rise at the end in the width direction of the rolling material 1 on the exit side of the finish rolling mill is the optimum energy consumed by the edge heater 23. Can be controlled by point.
  • Embodiment 3 FIG. Next, Embodiment 3 will be described with reference to FIGS.
  • the system of this embodiment can be realized by causing the edge heater control device 3 to execute the routine of FIG. 15 described later in the configuration shown in FIGS.
  • Embodiment 1 the case where the target temperature at the end in the width direction of the second temperature distribution is given as the temperature condition has been described.
  • the second embodiment the case where the target temperature is not given has been described.
  • the object is to select and execute the processing of the first embodiment and the processing of the second embodiment according to the presence or absence of the target temperature.
  • FIG. 14 is a functional block diagram of the edge heater control device 3 according to the third embodiment.
  • the edge heater control device 3 according to the third embodiment includes the data acquisition unit 31, the first temperature distribution prediction unit 33, the second temperature distribution prediction unit 34 described in the first embodiment, and the first described in the second embodiment. 2
  • a rolling mode selection unit 41 is provided.
  • the rolling mode selection unit 41 selects the first rolling mode when the target temperature at the end in the width direction of the second temperature distribution is given as the temperature condition, and the second rolling when the target temperature is not given. Select a mode.
  • the first supply energy calculation unit 32 described in the first embodiment calculates an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • the provisional value calculated by the first heating mode calculation unit 39 or the second heating mode calculation unit 40 by the second supply energy calculation unit 37 described in the second embodiment is an instruction value indicating the electric energy to be supplied to the edge heater 23.
  • FIG. 15 is a flowchart of a routine executed by the edge heater control device 3 according to the third embodiment. This routine is executed before the rolled material 1 reaches the edge heater 23.
  • step S300 the data acquisition unit 31 performs various data related to the rolled material 1 (the steel type / thickness / conveying speed of the rolled material 1, the control amount of the finishing mill 24, the width of the second temperature distribution). Temperature conditions at the direction end, initial temperature of the rolled material 1 on the edge heater entrance side, and the like) are acquired.
  • step S310 the rolling mode selection unit 41 selects a rolling mode.
  • the target temperature at the end in the width direction of the second temperature distribution is given as the temperature condition
  • the first rolling mode is selected.
  • the second rolling mode is selected.
  • the target temperature is set according to the steel type of the rolled material 1. For example, the target temperature is often not set for ordinary steel.
  • step S320 the first supply energy calculation unit 32 described in the first embodiment calculates an instruction value indicating the electric energy to be supplied to the edge heater 23. Since the description of the processing contents is the same as that of the first embodiment, the description thereof is omitted.
  • step S330 the second heating energy calculation unit 37 described in the second embodiment calculates the first heating mode calculation unit 39 or the second heating mode calculation unit 40.
  • the provisional value is set as an instruction value indicating the electric energy to be supplied to the edge heater 23. Since the description of the processing contents is the same as that in the second embodiment, a description thereof will be omitted.
  • the processing of the first embodiment and the second embodiment are performed according to the presence or absence of the target temperature at the end in the width direction of the second temperature distribution. Can be selected and executed. Thereby, the edge heater 23 can be optimally operated from the viewpoint of control performance and energy consumption.
  • FIG. 16 is a block diagram illustrating a hardware configuration example of a processing circuit included in the edge heater control device 3 according to each embodiment.
  • Each part of the edge heater control device 3 shown in FIG. 2, FIG. 9, and FIG. 14 shows a part of the functions of the control device, and each function is realized by a processing circuit.
  • the processing circuit includes a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, an input / output interface 104, a system bus 105, an input device 106, a display device 107, a storage 108, and
  • the computer includes a communication device 109.
  • the CPU 101 is a processing device that executes various arithmetic processes using programs, data, and the like stored in the ROM 102 and the RAM 103.
  • the ROM 102 is a read-only storage device that stores a basic program, an environment file, and the like for causing a computer to realize each function.
  • a RAM 103 is a main storage device that stores a program executed by the CPU 101 and data necessary for the execution of each program, and can be read and written at high speed.
  • the input / output interface 104 is a device that mediates connections between various hardware and the system bus 105.
  • a system bus 105 is an information transmission path shared by the CPU 101, ROM 102, RAM 103, and input / output interface 104.
  • the input / output interface 104 is connected to hardware such as an input device 106, a display device 107, a storage 108, and a communication device 109.
  • the input device 106 is a device that processes input from a user.
  • the display device 107 is a device that displays the system status and the like.
  • the storage 108 is a large-capacity auxiliary storage device that stores programs and data, and is, for example, a hard disk device or a nonvolatile semiconductor memory.
  • the communication device 109 is a device capable of data communication with an external device (the host computer 5, the edge heater inlet side thermometer 27) by wire or wireless.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

エッジヒータ制御装置(3)は、第1温度分布予測部(33)、第2温度分布予測部(34)、供給エネルギー算出部(32)を備える。第1温度分布予測部(33)は、エッジヒータ(23)へ供給する電気エネルギーを示す仮値に基づいて、エッジヒータ出側における圧延材(1)の幅方向温度分布(第1温度分布)を予測する。第2温度分布予測部(34)は、前記第1温度分布に基づいて、圧延スタンド(24)の出側における圧延材(1)の幅方向温度分布(第2温度分布)を予測する。供給エネルギー算出部(32)は、圧延材(1)がエッジヒータ(23)へ到達する前に、前記第2温度分布の幅方向端部に関する温度条件を満たすために必要な、エッジヒータ(23)に供給すべき電気エネルギーを示す指示値を算出する。

Description

エッジヒータ制御装置
 本発明は、圧延材の幅方向端部を加熱するエッジヒータのエッジヒータ制御装置に関する。
 圧延ライン、特に熱間圧延ラインにおいて、エッジヒータは、圧延材の幅方向端部(板幅方向端部)を加熱するために使われる。幅方向端部は温度が低下しやすく、温度が低下すると強度や延性といった金属材料の材質が低下する。エッジヒータによる幅方向端部の加熱は、圧延材の板幅方向すべてに亘って均一な材質を得ることが目的である。また、ステンレスなどの材料では、幅方向端部の温度低下により、幅方向端部にクラックが生じ、圧延の安定性を阻害したり、製品が不良品になったりする場合もあるため、これを防ぐために、圧延材はエッジヒータにより加熱・昇温される。
 熱間圧延において、差分法を用いて圧延材の板幅方向の温度分布を精度良く計算することを記載した特許文献として、特開2015-147216号公報(特許文献1)がある。特許文献1は、板幅中央部の温度計算値に基づいて、幅方向の温度分布を近似的に計算する温度分布予測装置を開示する。
日本特開2015-147216号公報
 圧延材の幅方向端部の温度は、幅方向中央部に比して低下しやすく、材質が劣化しやすい。それを改善するため、圧延ラインにはエッジヒータが設置される。しかし、従来のエッジヒータでの加熱制御は、試行錯誤的に定めた電力で圧延材を加熱するものにすぎず、材質への影響が大きい圧延スタンド出側における圧延材の幅方向端部の温度低下を十分に抑制できるものではなかった。
 本発明は、上述のような課題を解決するためになされたもので、圧延材がエッジヒータに到達する前に、圧延スタンド出側における圧延材の幅方向端部の温度条件を満たすために必要な、エッジヒータに供給すべき電気エネルギーを決定できるエッジヒータ制御装置を提供することを目的とする。
 本発明は、上記の目的を達成するため、指示値に応じた電気エネルギーの供給を受けて圧延材の幅方向端部を加熱するエッジヒータと、前記エッジヒータの下流側に少なくとも1つ設けられた圧延スタンドとを有する圧延ラインのためのエッジヒータ制御装置であって、
 前記エッジヒータへ供給する電気エネルギーを示す仮値に基づいて、前記エッジヒータ出側における前記圧延材の幅方向温度分布(第1温度分布)を予測する第1温度分布予測部と、
 前記第1温度分布に基づいて、前記圧延スタンド出側における前記圧延材の幅方向温度分布(第2温度分布)を予測する第2温度分布予測部と、
 前記圧延材が前記エッジヒータへ到達する前に、前記第2温度分布の幅方向端部に関する温度条件を満たすために必要な、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値を算出する供給エネルギー算出部と、を備えることを特徴とする。
 本発明によれば、圧延材がエッジヒータに到達する前に、圧延スタンド出側における圧延材の幅方向端部の温度条件を満たすために必要な、エッジヒータに供給すべき電気エネルギーを決定できる。そのため、本発明によれば、圧延スタンド出側における材質の低下を抑制することができる。
実施の形態1に係る圧延ラインのシステム構成を示す概略図である。 実施の形態1に係るエッジヒータ制御装置3の機能ブロック図である。 第1供給エネルギー算出部32および第2温度分布予測部34が実行するルーチンのフローチャートである。 第1供給エネルギー算出部32および第1温度分布予測部33が実行するルーチンのフローチャートである。 圧延材1の長手方向に垂直な断面を表す断面図である。 第2温度分布予測部34で圧延材1の温度を計算した一例を示すグラフである。 有限要素法による解析のためにメッシュを切った様子を示している。 エッジヒータ温度計算簡易モデル35の一例を示す図である。 実施の形態2に係るエッジヒータ制御装置3の機能ブロック図である。 実施の形態2に係るエッジヒータ制御装置3が実行するルーチンのフローチャートである。 エッジヒータ23に供給する電気エネルギーと第2温度分布の幅方向端部の温度の関係の一例を説明するためのグラフである。 エッジヒータ23に供給する電気エネルギーと第2温度分布の幅方向端部の温度の関係の一例を説明するためのグラフである。 エッジヒータ23に供給する電気エネルギーと幅方向端部の温度変化の関係の他の例を説明するためのグラフである。 実施の形態3に係るエッジヒータ制御装置3の機能ブロック図である。 実施の形態3に係るエッジヒータ制御装置3が実行するルーチンのフローチャートである。 各実施の形態に係るエッジヒータ制御装置3が有する処理回路のハードウェア構成例を示すブロック図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
<圧延ラインのシステム構成>
 図1は、実施の形態1に係る圧延ラインのシステム構成を示す概略図である。図1において、圧延材1は、圧延ライン2で加工される間に薄く延ばされ、幅も所望の値に制御される。説明をわかりやすくするため、圧延ライン2は、鉄鋼の熱間圧延ラインであるとする。圧延ライン2は、主な設備として、加熱炉21、粗圧延機22、エッジヒータ23、仕上圧延機24、冷却テーブル25、巻取機26を備える。
 圧延材1は、加熱炉21を出たときは、例えば厚さ250mm、幅800~2000mm、長さ5~10mほどのスラブと呼ばれる直方体状に成形された鉄の塊である。スラブは加熱炉21で加熱され、約1200℃で加熱炉21から抽出される。粗圧延機22は1基から3基で構成されることが多く、順方向(上流から下流へ)、逆方向(下流から上流へ)で複数パス圧延する。粗圧延機22にエッジャと呼ばれる幅を調整する装置が付属することもある。
 エッジヒータ23は、粗圧延機22と仕上圧延機24の間に設置され、圧延材1の幅方向端部を加熱するための装置である。なお、圧延材の先尾端を切り落とすクロップシア、圧延材の表面にできる酸化膜を高圧水で除去するスケールブレーカ、幅方向全部を加熱するバーヒータなどが、粗圧延機22と仕上圧延機24の間に設置されることもある。
 エッジヒータ23の下流に設けられた仕上圧延機24は、複数の圧延スタンドを備え、上流から下流へ一方向の圧延を行い、圧延材1の板厚、板幅などのサイズに関する最終品質を決定づける。圧延材1の温度は、仕上圧延機24の出側では、約900℃である。圧延スタンドには圧延ロール、支持ロールなどの装置がある。上下の圧延ロールで圧延材1が圧延される。このとき、圧延材1の熱は圧延ロールや、圧延材1に直接噴射される冷却水により抜熱される。幅方向端部では、幅方向中央部よりも水や空気と触れる面積が大きいため、熱が逃げやすく、温度が下がりやすい。
 冷却テーブル25は、圧延材1に注水して温度を下げる。巻取機26でコイル状に巻かれる前の温度は、特殊鋼など低い場合で200℃、普通鋼では、600℃前後である。
 エッジヒータ23は、エッジヒータ制御装置3に接続している。エッジヒータ制御装置3は、粗圧延機22とエッジヒータ23との間に設けられたエッジヒータ入側温度計27、および、上位計算機5に接続している。
<実施の形態1に係るエッジヒータ制御装置>
 図2を用いて、実施の形態1に係るエッジヒータ制御装置3の全体概要を説明する。図2は、実施の形態1に係るエッジヒータ制御装置3の機能ブロック図である。
 実施の形態1に係るエッジヒータ制御装置3は、データ取得部31、第1供給エネルギー算出部32、第1温度分布予測部33、第2温度分布予測部34を備える。
 データ取得部31は、上位計算機5から圧延材1に関する各種データ(圧延材1の鋼種・厚み・搬送速度、仕上圧延機24の制御量、仕上圧延機24の最終圧延スタンド出側における圧延材1の幅方向端部の温度条件等)を取得する。また、データ取得部31は、エッジヒータ入側温度計27から、エッジヒータ23の入側における圧延材1の初期温度を取得する。
 第1温度分布予測部33は、エッジヒータ23へ供給する電気エネルギーを示す仮値に基づいて、エッジヒータ出側における圧延材1の幅方向温度分布(以下、「第1温度分布」と記す)を予測する。
 第2温度分布予測部34は、第1温度分布に基づいて、仕上圧延機24の最終圧延スタンド出側における圧延材1の幅方向温度分布(以下、「第2温度分布」と記す)を予測する。
 エッジヒータ制御装置3は、圧延材1がエッジヒータ23へ到達する前に、第2温度分布の幅方向端部に関する温度条件を満たすために必要な、エッジヒータ23に供給すべき電気エネルギーを示す指示値を算出する。
 実施の形態1に係るシステムの目的は、仕上圧延機24の最終圧延スタンド出側における圧延材1の幅方向温度分布の幅方向端部の目標温度、すなわち第2温度分布の幅方向端部の目標温度が、温度条件として与えられた場合に、この目標温度を達成するために必要なエッジヒータ23に供給すべき電気エネルギーを示す指示値を求めることである。
 この目的を実現するために、実施の形態1に係る第1供給エネルギー算出部32は、圧延材1がエッジヒータ23へ到達する前に、以下の(1)~(3)の処理を実行する。
(1)第1供給エネルギー算出部32は、上述した温度条件として、第2温度分布の幅方向端部における目標温度を取得する。この目標温度は、データ取得部31を介して上位計算機5から与えられる。また、圧延材1の板幅方向すべてに亘って均一な材質を得るため、目標温度には、第2温度分布の幅方向中央部に近い温度が設定される。なお、目標温度は幅方向端部の1点について設定されてよいし、複数点について設定されてもよい。また、代表値であってもよい。
(2)次に、第1供給エネルギー算出部32は、第2温度分布予測部34を用いて、第2温度分布の幅方向端部の温度が、(1)で取得した目標温度を満たすために必要な第1温度分布を算出する。
(3)その後、第1供給エネルギー算出部32は、第1温度分布予測部33を用いて、(2)で算出された第1温度分布を満たすために必要な、エッジヒータ23に供給すべき電気エネルギーを示す指示値を算出する。
 このとき、第2温度分布予測部34は、一般には、圧延材1の温度を上流側から下流側に向かって計算する。高精度の温度計算を行う場合は、差分法などを用いて、圧延材1を小さな部分に分け、その部分の熱の出入りを数式で記述する。この方法を使う場合、(2)において、第2温度分布から第1温度分布を、すなわち下流側から上流側に向かって温度分布を一気に計算することは不可能である。なお、簡便な温度モデルを用いれば、下流側から上流側に向かって一気に計算することは可能である場合もあるが、温度モデルの精度が保てないことが多い。
<第1温度分布の目標分布を算出する処理の流れ>
 そこで、第1供給エネルギー算出部32は、以下の繰返し計算をして、エッジヒータ出側における圧延材1の幅方向温度分布(第1温度分布)の目標分布を算出する。図3を参照して、上記(2)の処理について説明する。
 図3は、第1供給エネルギー算出部32および第2温度分布予測部34が実行するルーチンのフローチャートである。本ルーチンは、圧延材1がエッジヒータ23に到達する前に実行される。
 図3に示すルーチンでは、まずステップS100において、第1供給エネルギー算出部32は、第1温度分布の仮の目標分布を設定する。
 次にステップS110において、第2温度分布予測部34は、ステップS100で設定した仮の目標分布に基づいて、後述する厚幅方向温度モデル36を用いて、仕上圧延機出側における圧延材1の幅方向温度分布(第2温度分布)を計算する。
 次にステップS120において、第1供給エネルギー算出部32は、ステップS110により算出された第2温度分布に関して、第2温度分布の幅方向端部の温度が目標温度範囲内であるか否かを判定する。目標温度範囲は、上記(1)において取得した第2温度分布の幅方向端部の目標温度に、誤差範囲(±α)を加味した温度範囲である。
 ステップS120における判定条件が成立しない場合は、ステップS100に戻り、第1供給エネルギー算出部32は、第1温度分布の仮の目標分布を適正な方向に少し変更する。具体的には、ステップS110により算出された第2温度分布の、幅方向端部の温度が目標温度範囲よりも低い場合には、仮の目標分布の次回値を前回値よりも高く設定する。一方、目標温度範囲よりも高い場合には、仮の目標分布の次回値を前回値よりも低く設定する。仮の目標分布は、ステップS120の判定処理が成立するまで繰り返し更新される。
 ステップS120における判定条件が成立する場合は、次にステップS130の処理に進む。ステップS130において、第1供給エネルギー算出部32は、仮の目標分布を第1温度分布の目標分布に決定する。その後、図4に示すルーチンが実行される。
<エッジヒータに供給すべき電気エネルギーを算出する処理の流れ>
 上記(2)と同様に、上記(3)の計算においても、第1温度分布の目標分布からエッジヒータ23に供給すべき電気エネルギーを、下流側から上流側に向かって一気に計算することは不可能である。そこで、第1供給エネルギー算出部32は、以下の繰り返し計算をして、エッジヒータ23に供給すべき電気エネルギーを算出する。図4を参照して、上記(3)の処理について説明する。
 図4は、第1供給エネルギー算出部32および第1温度分布予測部33が実行するルーチンのフローチャートである。本ルーチンは、図3に示すルーチンの実行後、かつ、圧延材1がエッジヒータ23に到達する前に実行される。
 図4に示すルーチンでは、まずステップS140において、第1供給エネルギー算出部32は、エッジヒータ23に供給すべき電気エネルギーを示す仮値を設定する。
 次にステップS150において、第1温度分布予測部33は、ステップS140で設定した仮値に基づいて、後述するエッジヒータ温度計算簡易モデル35を用いて、第1温度分布を計算する。
 次にステップS160において、第1供給エネルギー算出部32は、ステップS150により算出された第1温度分布が、上記(2)において決定した第1温度分布の目標分布に一致または十分に近づいているか否かを判定する。例えば、算出された第1温度分布の幅方向端部の温度が、第1温度分布の目標分布における幅方向端部の目標温度範囲内であるか否かを判定する。目標温度範囲は、第1温度分布の目標分布の幅方向端部の温度に誤差範囲(±β)を加味した温度範囲である。
 ステップS160における判定条件が成立しない場合は、ステップS140に戻り、第1供給エネルギー算出部32は、エッジヒータ23に供給すべき電気エネルギーを示す仮値を適正な方向に少し変更する。具体的には、ステップS150において算出された第1温度分布の、幅方向端部の温度が目標温度範囲よりも低い場合には、仮値の次回値を前回値よりも高く設定する。一方、目標温度範囲よりも高い場合には、仮値の次回値を前回値よりも低く設定する。仮値は、ステップS160の判定処理が成立するまで繰り返し更新される。
 ステップS160における判定条件が成立する場合は、次にステップS170の処理に進む。ステップS170において、第1供給エネルギー算出部32は、仮値をエッジヒータ23に供給すべき電気エネルギーを示す指示値に決定する。
 その後、エッジヒータ制御装置3は、エッジヒータ23に指示値と送信し、エッジヒータ23は指示値に応じた電気エネルギーの供給を受けて圧延材1の幅方向端部を加熱する。
 なお、エッジヒータ23に供給する電気エネルギーを示す指示値は、電力値の他、電圧値、電流値などであってもよく、エッジヒータ23の入力に合わせるものとする。
<厚幅方向温度モデル>
 次に、図5を参照して厚幅方向温度モデル36について説明する。図2に示すように、第2温度分布予測部34は、厚幅方向温度モデル36と連携して、温度計算を行う。
 図5は、圧延材1の長手方向に垂直な断面を表す断面図である。厚幅方向温度モデル36は、圧延材1の長手方向に垂直な断面の厚み方向および幅方向の温度分布を、材内部の熱伝導および材表面と外界との熱伝達を鑑みた差分法を用いて定めたモデルである。図5に示すように断面は、複数の矩形要素に分割されている。図5中の黒点は、差分法で温度を計算するポイントを示しノードと称する。ノード間での熱伝導、およびノードと外界(空気や水)との熱伝達は以下の数式で記述され、これらに基づいて温度の変化が計算される。
 上述した熱伝導とは、鋼板内部における熱の移動を表し、(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 (1)式は、圧延ロールと圧延材1との間の熱の移動の記述にも使用される。
 また、上述した熱伝達は、鋼板と外界との熱の移動を表し、放射による熱伝達、空冷対流による熱伝達、水冷対流による熱伝達がある。
 放射による熱伝達は、(2)式で表される。以下、熱流が負である場合、ノードから熱が奪われることを示す。
Figure JPOXMLDOC01-appb-M000002
 空冷対流による熱伝達は、(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 水冷対流による熱伝達は、(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 圧延材1の温度に影響する要素として、上下の圧延ロールによって加工されるときに発生する加工発熱、圧延ロールと圧延材の間の摩擦による発熱などがあるので、これらの要素も考慮すべきである。
 1つのノードについて全ての熱流を記述し、次の(5)式でノードNo.iの温度の変化ΔTを計算する。
Figure JPOXMLDOC01-appb-M000005
 第2温度分布予測部34は、上述した熱流の計算および熱流を用いた温度の計算を、エッジヒータ23から仕上圧延機24の出側まで繰り返す。
 図6は、第2温度分布予測部34で圧延材1の温度を計算した一例を示すグラフである。エッジヒータ23よりも下流かつ仕上圧延機24の入側にある温度計FETから、仕上圧延機24の出側にある温度計FDTまでの圧延材1の温度変化を示す。エッジヒータ23で幅方向端部を加熱し、FETの位置では幅方向端部の温度が上昇している。FDTの位置でも幅方向端部の温度降下は、エッジヒータ23で加熱しない場合よりも抑えられている。
<エッジヒータ温度計算簡易モデル>
 次に、図7、図8を用いて、エッジヒータ温度計算簡易モデル35について説明する。図2に示すように、第1温度分布予測部33は、エッジヒータ温度計算簡易モデル35と連携して、上位計算機5およびエッジヒータ入側温度計27から取得した圧延材1に関する各種データやエッジヒータ23に供給する電気エネルギーに基づいて、エッジヒータ出側における圧延材1の幅方向温度分布(第1温度分布)を算出する。
 エッジヒータ23は、誘導加熱により圧延材1を加熱する。エッジヒータ23により発生した磁界の影響を受けて、圧延材1の幅方向端部に電流が流れると、圧延材1は発熱する。このため、モデル化のためには、エッジヒータ23で発生する磁界の解析と、磁界の影響を受けて圧延材1に電流が流れることにより発生する熱の解析が必要になる。電磁界解析と熱伝導解析には、一般に、有限要素法が適用されるが、その解析には非常に長い時間がかかる。図7は、有限要素法による解析のためにメッシュを切った様子を示している。解析時間を短縮するためには、有限要素法による電磁界解析と熱伝導解析の結果(オフラインで構築された詳細モデル)を簡易化したモデルで表し、オンラインの制御等に利用することが必要である。
 図8は、エッジヒータ温度計算簡易モデル35の一例を示す図である。図8は、図7の解析結果を簡易化したもので、例えば、エッジヒータ23に任意の電力を与えたときの、圧延材1の初期温度および厚みに応じた、幅方向端部の昇温量を表している。図8には、圧延材1の厚みが薄いほど幅方向端部の昇温量が大きく、圧延材1の初期温度が低いほど幅方向端部の昇温量が大きい関係が表わされている。実際には、圧延材1の鋼種、搬送速度などもパラメータとして考慮しなければならないので、簡易モデルの全てのパラメータを3次元のグラフで表すことはできない。エッジヒータ温度計算簡易モデル35は、いくつかの2次元(平面)を組み合わせたモデルで表すことができる。
 具体的には、エッジヒータ温度計算簡易モデル35は、エッジヒータ23へ供給する電気エネルギー、エッジヒータ入側における圧延材1の初期温度、板厚、鋼種、搬送速度を含む入力パラメータと、エッジヒータ23に加熱される圧延材1の昇温量を示す出力パラメータとを関連付けたモデルである。このモデルは、例えば数式やマップで定められた簡易モデルである。簡易モデルを予め用意しておき、オンラインでの計算に用いることで、制御時の計算時間を大幅に短縮できる。
<効果>
 以上説明したように、実施の形態1に係るエッジヒータ制御装置3によれば、圧延材がエッジヒータに到達する前に、仕上圧延機24の出側における圧延材1の幅方向端部の目標温度を満たすために必要な、エッジヒータに供給すべき電気エネルギーを決定できる。材質に大きな影響を与える仕上圧延機24の出側において、圧延材1の幅方向端部の温度を適切に制御できるため、材質の低下を抑制することができる。
<変形例>
 ところで、上述した実施の形態1のシステムでは、エッジヒータ入側温度計27が設置されているが、エッジヒータ入側温度計27が設置されていない場合もある。エッジヒータ入側温度計27が設置されていない場合は、粗圧延機22の制御のために算出する圧延材1の温度予測値を用いてエッジヒータ入側温度を予測することができる。上述したエッジヒータ23の入側における圧延材1の初期温度は、この予測温度で代用される。なお、この点は以下の実施の形態でも同様である。
実施の形態2.
 次に、図9~図13を参照して本発明の実施の形態2について説明する。本実施形態のシステムは図1および図9に示す構成において、エッジヒータ制御装置3に後述する図10のルーチンを実行させることで実現することができる。
 上述した実施の形態1では、温度条件として、仕上圧延機24の出側における圧延材1の幅方向温度分布(第2温度分布)の幅方向端部の目標温度が与えられることを前提とした。しかしながら、全ての圧延材1に対して、その目標温度が与えられるとは限らない。例えば、高級鋼板の圧延ではその目標温度が与えられるものの、普通鋼では与えられない場合もある。そこで、実施の形態2では、目標温度が与えられない場合に、エッジヒータ23で消費するエネルギーを効率的に使用するように、エッジヒータ23に供給する電気エネルギーを示す指令値を決定する。
<実施の形態2に係るエッジヒータ制御装置>
 図9を用いて、実施の形態2に係るエッジヒータ制御装置3の全体概要を説明する。図9は、実施の形態2に係るエッジヒータ制御装置3の機能ブロック図である。
 実施の形態2に係るエッジヒータ制御装置3は、実施の形態1で説明したデータ取得部31、第1温度分布予測部33、第2温度分布予測部34に加えて、第2供給エネルギー算出部37、加熱モード選択部38、第1加熱モード計算部39、第2加熱モード計算部40を備える。
 第2供給エネルギー算出部37は、第1温度分布予測部33および第2温度分布予測部34を用いて、エッジヒータ23に供給する電気エネルギーを示す仮値と、該仮値に応じた第2温度分布の幅方向端部の予測温度との関係を算出する。さらに、第2供給エネルギー算出部37は、第1加熱モード計算部39または第2加熱モード計算部40により算出された仮値を、エッジヒータ23に供給すべき電気エネルギーを示す指示値とする。
 以下、エッジヒータ23に供給する電気エネルギーを示す仮値を、単に「仮値」とも記し、仮値に応じた第2温度分布の幅方向端部の予測温度を、単に「予測温度」とも記す。
 加熱モード選択部38は、データ取得部31により取得された鋼種を含むデータに基づいて、第1加熱モードと第2加熱モードのいずれか一方を選択する。
 第1加熱モード計算部39は、第1加熱モードが選択された場合に、第2供給エネルギー算出部37により算出された関係に基づいて、予測温度が最大となる仮値を算出する。
 第2加熱モード計算部40は、第2加熱モードが選択された場合に、第2供給エネルギー算出部37により算出された関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、その中で予測温度が最大となる仮値を算出する。
<実施の形態2における処理の流れ>
 図10~図13を参照して、第2圧延分布の目標温度が与えられない場合に、実施の形態2に係るエッジヒータ制御装置3が実行するエネルギー効率を考慮した処理について説明する。
 図10は、実施の形態2に係るエッジヒータ制御装置3が実行するルーチンのフローチャートである。本ルーチンは、圧延材1がエッジヒータ23に到達する前に実行される。
 図10に示すルーチンでは、まずステップS200において、データ取得部31は、圧延材1に関する各種データ(圧延材1の鋼種・厚み・搬送速度、仕上圧延機24の制御量、第2温度分布の幅方向端部の温度条件、エッジヒータ入側における圧延材1の初期温度等)を取得する。
 次にステップS205において、第2供給エネルギー算出部37は、エッジヒータ23に供給する電気エネルギーの仮値をN個(N>2)決める。実施の形態2では、第2供給エネルギー算出部37は、第1温度分布予測部33および第2温度分布予測部34を用いて、電気エネルギーの仮値に応じた第2温度分布を計算する処理をN回繰り返す(ステップS210~S225)。
 ステップS210において、第2供給エネルギー算出部37は、繰り返し回数のカウンタi(初期値0)をインクリメントする。第i番目の電気エネルギーを示す仮値が設定される。
 ステップS215において、第2供給エネルギー算出部37は、第1温度分布予測部33を用いて、第i番目の電気エネルギーを示す仮値に基づいて第1温度分布を予測する。
 ステップS220において、第2供給エネルギー算出部37は、第2温度分布予測部34を用いて、第1温度分布に基づいて第2温度分布を予測する。
 ステップS225において、第2供給エネルギー算出部37は、カウンタiがN以上であるか否かを判定する。カウンタiがN未満である場合には、ステップS210の処理に戻る。カウンタiがN以上である場合には、ステップS230の処理に進む。
 ステップS230において、第2供給エネルギー算出部37は、N個の仮値と、各仮値に応じた第2温度分布の幅方向端部の予測温度との関係を算出する。具体的には、エッジヒータ23に供給する電気エネルギーを示す仮値を横軸(X軸)、第2温度分布の幅方向端部の予測温度を縦軸(Y軸)とする直交座標系に、仮値と予測温度との組み合わせで表す点をプロットする。
 図11は、エッジヒータ23に供給する電気エネルギーと第2温度分布の幅方向端部の温度の関係の一例を説明するためのグラフである。図11に示す例では、6点(N=6)において計算し、各プロット点に番号1~6を付している。計算点j(1~6)におけるエッジヒータに供給する電気エネルギーをEjで表す。エッジヒータ23に供給する電気エネルギー(仮値)と第2温度分布の幅方向端部の温度(予測温度)との関係は、図11に示すように、仮値が大きくなるほど予測温度の上昇率が低下する曲線(一例として、上に凸の曲線)で表わされる。
 図10に戻り説明を続ける。ステップS235において、加熱モード選択部38は、鋼種を含むデータに基づいて、第1加熱モードと第2加熱モードのいずれか一方を選択する。第1加熱モードが選択された場合には、ステップS240の処理に進み、第2加熱モードが選択された場合には、ステップS245の処理に進む。
 ステップS240において、第1加熱モード計算部39は、ステップS230により算出された関係に基づいて、予測温度が最大となる仮値を算出する。その後、ステップS250において、第2供給エネルギー算出部37は、ステップS240において算出された電気エネルギーの仮値を、エッジヒータ23に供給すべき電気エネルギーを示す指示値として決定する。
 図11に示す例では、計算結果のうち、仕上圧延機出側における幅方向端部の温度が最も高くなる温度条件、すなわち点5の温度条件を採用する。このとき図11中の電気エネルギーを示す値はE5である。第1加熱モードによれば、エネルギー効率が高い電気エネルギーを選択して、仕上圧延機出側における幅方向端部の温度を高く維持できる。
 図10に戻り説明を続ける。ステップS245において、第2加熱モード計算部40は、ステップS230により算出された関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、その中で予測温度が最大となる仮値を算出する。その後、ステップS250において、第2供給エネルギー算出部37は、ステップS245において算出された電気エネルギーの仮値を、エッジヒータ23に供給すべき電気エネルギーを示す指示値として決定する。
 図12を参照して、ステップS250における第2加熱モードの処理について具体的に説明する。エッジヒータ23のエネルギー効率を、エッジヒータが供給する単位エネルギーあたりの仕上圧延機出側における幅方向端部の上昇温度、と定義する。図12において、各計算点を結んだときの各計算点における傾きが、エッジヒータ23のエネルギー効率となり、点2、3、4、5の順で、エネルギー効率は小さくなる。この場合、計算点2における傾きが最も大きくなり、効率は良いが、温度上昇が十分ではない。そのため、エッジヒータ23のエネルギー効率が一定値以上で、かつ、仕上圧延機出側における幅方向端部の温度が最も高くなる点における電気エネルギーをエッジヒータ23に供給する。この一定値は、エッジヒータ23の下流側に位置する圧延機の台数や鋼板の水冷装置の有無にも影響されるので、プラント毎に決めるべき数値である。
 図11および図12において、計算点の数としては、計算機の能力に応じて点数を決めることができる。つまり、計算点数が多いと、計算機負荷が大きくなるため、計算精度を損なわない程度の点数とする。計算点が図6のように数点である場合は、点と点を直線や高次曲線で結び近似し、点と点の間の値を補間することで、上述した例のように各点におけるとびとびのエネルギーだけではなく、連続してエネルギーを求めることもできる。
 図11および図12に示すように上に凸の曲線になる理由は、圧延材1を加熱し温度が上昇すると、熱の放射や空冷・水冷熱伝達の効果が高まり、冷えやすくなることがあるためである。これは前述の(2)~(4)式に基づく。(2)~(4)式によれば、圧延材1から奪われる熱流は、圧延材1の温度と、圧延材1の周囲の温度との差が大きい時に、大きくなる。特に(2)式で表される放射による熱伝達では、圧延材1の温度の4乗と圧延材の周囲の温度の4乗との差を含むため、圧延材1の温度が高い領域では、放射による熱の放散が空冷対流の影響より大きい。つまり圧延材1の温度を高くすると、放射による抜熱の効果が大きくなり、エッジヒータ23から、より多くのエネルギーを与えても圧延材1の温度が下がる場合がある。もちろん常に上に凸の曲線になるとは限らないが、少なくとも、高温になるにつれ、温度上昇が鈍る曲線となる。
 また、仕上圧延機出側における幅方向端部の温度に上限温度(温度上限値)や下限温度(温度下限値)などの制約が設けられている場合は、その制約の範囲内で、エッジヒータ23に供給する電気エネルギーを留める。
 具体的には、第1加熱モードが選択された場合には、ステップS240において、第1加熱モード計算部39は、ステップS230において算出された関係に基づいて、予測温度が上限温度となる複数の仮値のうち最小の仮値を算出する。また、第2加熱モードが選択された場合には、第1加熱モード計算部39は、ステップS230において算出された関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、予測温度が上限温度と下限温度との間に含まれる仮値を算出する。
 図13は、エッジヒータ23に供給する電気エネルギーと幅方向端部の温度変化の関係の他の例を説明するためのグラフである。図13において、第1加熱モードが選択された場合、上限値を超えない点の横軸座標はE4とE6とがあるが、供給するエネルギー小さい、E4が横軸座標である点を選び、E4という仮値が示す電気エネルギーをエッジヒータに供給する。また、図13において、第2加熱モードが選択された場合は、設定された上下限値内に入るエネルギーをエッジヒータに供給する。
<効果>
 以上説明したように、実施の形態2に係るエッジヒータ制御装置3によれば、仕上圧延機出側における圧延材1の幅方向端部の温度上昇を、エッジヒータ23で消費するエネルギーの最適な点で制御することができる。
実施の形態3.
 次に、図14および図15を参照して実施の形態3について説明する。本実施形態のシステムは図1及び図14に示す構成において、エッジヒータ制御装置3に後述する図15のルーチンを実行させることで実現することができる。
 実施の形態1では、温度条件として第2温度分布の幅方向端部の目標温度が与えられたケースについて説明した。一方、実施の形態2では、目標温度が与えられていないケースについて説明した。実施の形態3では、目標温度の有無に応じて、実施の形態1の処理と実施の形態2の処理とを選択して実行することを目的とする。
<実施の形態3に係るエッジヒータ制御装置>
 図14は、実施の形態3に係るエッジヒータ制御装置3の機能ブロック図である。実施の形態3に係るエッジヒータ制御装置3は、実施の形態1で説明したデータ取得部31、第1温度分布予測部33、第2温度分布予測部34、および実施の形態2で説明した第2供給エネルギー算出部37、加熱モード選択部38、第1加熱モード計算部39、第2加熱モード計算部40に加えて、圧延モード選択部41を備える。
 圧延モード選択部41は、温度条件として第2温度分布の幅方向端部の目標温度が与えられている場合に第1圧延モードを選択し、前記目標温度が与えられていない場合に第2圧延モードを選択する。第1圧延モードが選択された場合には、実施の形態1で説明した第1供給エネルギー算出部32により、エッジヒータ23に供給すべき電気エネルギーを示す指示値が算出される。また、第2圧延モードが選択された場合には、実施の形態2で説明した第2供給エネルギー算出部37により、第1加熱モード計算部39または第2加熱モード計算部40により算出された仮値を、エッジヒータ23に供給すべき電気エネルギーを示す指示値とする。
<実施の形態3における処理の流れ>
 図15は、実施の形態3に係るエッジヒータ制御装置3が実行するルーチンのフローチャートである。本ルーチンは、圧延材1がエッジヒータ23に到達する前に実行される。
 図10に示すルーチンでは、まずステップS300において、データ取得部31は、圧延材1に関する各種データ(圧延材1の鋼種・厚み・搬送速度、仕上圧延機24の制御量、第2温度分布の幅方向端部の温度条件、エッジヒータ入側における圧延材1の初期温度等)を取得する。
 次にステップS310において、圧延モード選択部41は、圧延モードを選択する。温度条件として第2温度分布の幅方向端部の目標温度が与えられている場合には、第1圧延モードが選択される。また、目標温度が与えられていない場合には、第2圧延モードが選択される。目標温度は、圧延材1の鋼種に応じて設定されている。例えば目標温度は、普通鋼については設定されていないことも多い。
 第1モードが選択された場合には、ステップS320において、実施の形態1で説明した第1供給エネルギー算出部32により、エッジヒータ23に供給すべき電気エネルギーを示す指示値が算出される。処理内容の説明は実施の形態1と同様であるため省略する。
 第2モードが選択された場合には、ステップS330において、実施の形態2で説明した第2供給エネルギー算出部37により、第1加熱モード計算部39または第2加熱モード計算部40により算出された仮値を、エッジヒータ23に供給すべき電気エネルギーを示す指示値とする。処理内容の説明は実施の形態2と同様であるため省略する。
<効果>
 以上説明したように、実施の形態3に係るエッジヒータ制御装置3によれば、第2温度分布の幅方向端部の目標温度の有無に応じて、実施の形態1の処理と実施の形態2の処理とを選択して実行できる。これにより、制御性能の点からも消費エネルギーの点からも、エッジヒータ23を最適に運転することが可能となる。
 なお、本発明の適用範囲は、上述した各実施の形態で示した対象に限定されるものではない。
<ハードウェア構成例>
 図16は、各実施の形態に係るエッジヒータ制御装置3が有する処理回路のハードウェア構成例を示すブロック図である。図2、図9、図14に示すエッジヒータ制御装置3の各部は、制御装置が有する機能の一部を示し、各機能は処理回路により実現される。例えば、処理回路は、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103、入出力インターフェース104、システムバス105、入力装置106、表示装置107、ストレージ108および通信装置109を備えたコンピュータである。
 CPU101は、ROM102やRAM103に格納されたプログラムやデータなどを用いて各種の演算処理を実行する処理装置である。ROM102は、コンピュータに各機能を実現させるための基本プログラムや環境ファイルなどを記憶する読み取り専用の記憶装置である。RAM103は、CPU101が実行するプログラムおよび各プログラムの実行に必要なデータを記憶する主記憶装置であり、高速な読み出しと書き込みが可能である。入出力インターフェース104は、各種のハードウェアとシステムバス105との接続を仲介する装置である。システムバス105は、CPU101、ROM102、RAM103および入出力インターフェース104で共有される情報伝達路である。
 また、入出力インターフェース104には、入力装置106、表示装置107、ストレージ108および通信装置109などのハードウェアが接続されている。入力装置106は、ユーザからの入力を処理する装置である。表示装置107は、システムの状態等を表示する装置である。ストレージ108は、プログラムやデータを蓄積する大容量の補助記憶装置であり、例えばハードディスク装置や不揮発性の半導体メモリなどである。通信装置109は、有線又は無線で外部装置(上位計算機5、エッジヒータ入側温度計27)とデータ通信可能な装置である。
1 圧延材
2 圧延ライン
3 エッジヒータ制御装置
5 上位計算機
21 加熱炉
22 粗圧延機
23 エッジヒータ
24 仕上圧延機
25 冷却テーブル
26 巻取機
27 エッジヒータ入側温度計
31 データ取得部
32 第1供給エネルギー算出部
33 第1温度分布予測部
34 第2温度分布予測部
35 エッジヒータ温度計算簡易モデル
36 厚幅方向温度モデル
37 第2供給エネルギー算出部
38 加熱モード選択部
39 第1加熱モード計算部
40 第2加熱モード計算部
41 圧延モード選択部
101 CPU
102 ROM
103 RAM
104 入出力インターフェース
105 システムバス
106 入力装置
107 表示装置
108 ストレージ
109 通信装置

Claims (6)

  1.  指示値に応じた電気エネルギーの供給を受けて圧延材の幅方向端部を加熱するエッジヒータと、前記エッジヒータの下流に少なくとも1つ設けられた圧延スタンドとを有する圧延ラインのためのエッジヒータ制御装置であって、
     前記エッジヒータへ供給する電気エネルギーを示す仮値に基づいて、前記エッジヒータ出側における前記圧延材の幅方向温度分布(第1温度分布)を予測する第1温度分布予測部と、
     前記第1温度分布に基づいて、前記圧延スタンド出側における前記圧延材の幅方向温度分布(第2温度分布)を予測する第2温度分布予測部と、
     前記圧延材が前記エッジヒータへ到達する前に、前記第2温度分布の幅方向端部に関する温度条件を満たすために必要な、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値を算出する供給エネルギー算出部と、
     を備えることを特徴とするエッジヒータ制御装置。
  2.  前記第1温度分布予測部は、前記エッジヒータへ供給する電気エネルギー、前記エッジヒータ入側における前記圧延材の初期温度、板厚、鋼種、搬送速度を含む入力パラメータと、前記エッジヒータに加熱される前記圧延材の昇温量を示す出力パラメータとを関連付けたエッジヒータ温度計算簡易モデルを用いて、前記第1温度分布を予測し、
     前記第2温度分布予測部は、前記圧延材の長手方向に垂直な断面の厚み方向および幅方向の温度分布を、材内部の熱伝導および材表面と外界との熱伝達を鑑みた差分法を用いて定めた厚幅方向温度モデルを用いて、前記第1温度分布に基づいて前記第2温度分布を予測すること、
     を特徴とする請求項1記載のエッジヒータ制御装置。
  3.  前記供給エネルギー算出部は、
     前記温度条件が前記第2温度分布の幅方向端部の目標温度である場合に、前記第2温度分布予測部を用いて、前記第2温度分布の幅方向端部の温度が前記目標温度を満たすために必要な前記第1温度分布を算出し、その後、前記第1温度分布予測部を用いて、算出された前記第1温度分布を満たすために必要な、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値を算出する第1供給エネルギー算出部、
     を備えることを特徴とする請求項1又は2記載のエッジヒータ制御装置。
  4.  前記供給エネルギー算出部は、
     前記第1温度分布予測部および前記第2温度分布予測部を用いて、前記エッジヒータに供給する電気エネルギーを示す仮値と、該仮値に応じた前記第2温度分布の幅方向端部の予測温度との関係を算出する第2供給エネルギー算出部と、
     第1加熱モードと第2加熱モードのいずれか一方を選択する加熱モード選択部と、
     前記第1加熱モードが選択された場合に、前記関係に基づいて、予測温度が最大となる仮値を算出する第1加熱モード計算部と、
     前記第2加熱モードが選択された場合に、前記関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、その中で予測温度が最大となる仮値を算出する第2加熱モード計算部と、を備え、
     前記第2供給エネルギー算出部は、さらに前記第1加熱モード計算部または前記第2加熱モード計算部により算出された仮値を、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値とすること、
     を特徴とする請求項1又は2記載のエッジヒータ制御装置。
  5.  前記温度条件は、前記圧延スタンド出側における前記圧延材の幅方向端部の上限温度および下限温度を含み、
     前記第1加熱モード計算部は、前記第1加熱モードが選択された場合に、前記関係に基づいて、予測温度が前記上限温度となる複数の仮値のうち最小の仮値を算出し、
     前記第2加熱モード計算部は、前記第2加熱モードが選択された場合に、前記関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、予測温度が前記上限温度と前記下限温度との間に含まれる仮値を算出すること、
     を特徴とする請求項4記載のエッジヒータ制御装置。
  6.  前記供給エネルギー算出部は、
     前記第1温度分布予測部および前記第2温度分布予測部を用いて、前記エッジヒータに供給する電気エネルギーを示す仮値と、該仮値に応じた前記第2温度分布の幅方向端部の予測温度との関係を算出する第2供給エネルギー算出部と、
     第1加熱モードと第2加熱モードのいずれか一方を選択する加熱モード選択部と、
     前記第1加熱モードが選択された場合に、前記関係に基づいて、予測温度が最大となる仮値を算出する第1加熱モード計算部と、
     前記第2加熱モードが選択された場合に、前記関係に基づいて、仮値の上昇に応じた予測温度の温度上昇率が所定の正値以上であり、かつ、その中で予測温度が最大となる仮値を算出する第2加熱モード計算部と、
     前記温度条件として前記目標温度が与えられている場合に第1圧延モードを選択し、前記目標温度が与えられていない場合に第2圧延モードを選択する圧延モード選択部と、を備え、
     前記第1供給エネルギー算出部は、前記第1圧延モードが選択された場合に、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値を算出し、
     前記第2供給エネルギー算出部は、前記第2圧延モードが選択された場合に、前記第1加熱モード計算部または前記第2加熱モード計算部により算出された仮値を、前記エッジヒータに供給すべき電気エネルギーを示す前記指示値とすること、
     を特徴とする請求項3記載のエッジヒータ制御装置。
PCT/JP2016/077938 2016-09-23 2016-09-23 エッジヒータ制御装置 WO2018055718A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018540550A JP6737339B2 (ja) 2016-09-23 2016-09-23 エッジヒータ制御装置
KR1020197003938A KR102230316B1 (ko) 2016-09-23 2016-09-23 에지 히터 제어 장치
CN201680088404.8A CN109562423B (zh) 2016-09-23 2016-09-23 边缘加热器控制装置
PCT/JP2016/077938 WO2018055718A1 (ja) 2016-09-23 2016-09-23 エッジヒータ制御装置
TW105137252A TWI635912B (zh) 2016-09-23 2016-11-15 邊緣加熱器控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077938 WO2018055718A1 (ja) 2016-09-23 2016-09-23 エッジヒータ制御装置

Publications (1)

Publication Number Publication Date
WO2018055718A1 true WO2018055718A1 (ja) 2018-03-29

Family

ID=61690379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077938 WO2018055718A1 (ja) 2016-09-23 2016-09-23 エッジヒータ制御装置

Country Status (5)

Country Link
JP (1) JP6737339B2 (ja)
KR (1) KR102230316B1 (ja)
CN (1) CN109562423B (ja)
TW (1) TWI635912B (ja)
WO (1) WO2018055718A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111940517A (zh) * 2019-05-14 2020-11-17 东芝三菱电机产业***株式会社 边缘加热器的控制***
TWI716240B (zh) * 2019-12-27 2021-01-11 長聖儀器股份有限公司 熱擴散性能量測系統與方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268811A (ja) * 1990-03-15 1991-11-29 Nkk Corp 熱間圧延材の幅方向温度制御方法
JPH0422504A (ja) * 1990-05-18 1992-01-27 Toshiba Corp 熱間圧延機のエッジ加熱制御装置
JPH11221606A (ja) * 1998-02-02 1999-08-17 Nkk Corp 熱延鋼帯の圧延方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8326652D0 (en) * 1983-10-05 1983-11-09 Davy Mckee Sheffield Rolling mill
JP3329186B2 (ja) * 1996-05-28 2002-09-30 日本鋼管株式会社 熱延鋼帯の圧延方法および装置
JP2001300626A (ja) * 2000-04-25 2001-10-30 Sumitomo Metal Ind Ltd 鋼板の誘導加熱方法および鋼板の製造装置
KR100698502B1 (ko) * 2002-06-07 2007-03-22 신닛뽄세이테쯔 카부시키카이샤 강판의 열연 방법 및 열연 장치
AT501314B1 (de) * 2004-10-13 2012-03-15 Voest Alpine Ind Anlagen Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes
DE102007053523A1 (de) * 2007-05-30 2008-12-04 Sms Demag Ag Vorrichtung zur Beeinflussung der Temperaturverteilung über der Breite
EP2527054A1 (de) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Steuerverfahren für eine Walzstraße
US10464112B2 (en) * 2013-02-04 2019-11-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving control device for rolling line
JP6197676B2 (ja) * 2014-02-04 2017-09-20 東芝三菱電機産業システム株式会社 温度分布予測装置
US11052441B2 (en) * 2015-02-02 2021-07-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Meandering control device for rolling line
KR101607055B1 (ko) * 2015-04-23 2016-03-29 현대제철 주식회사 에지히터 제어 장치 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268811A (ja) * 1990-03-15 1991-11-29 Nkk Corp 熱間圧延材の幅方向温度制御方法
JPH0422504A (ja) * 1990-05-18 1992-01-27 Toshiba Corp 熱間圧延機のエッジ加熱制御装置
JPH11221606A (ja) * 1998-02-02 1999-08-17 Nkk Corp 熱延鋼帯の圧延方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111940517A (zh) * 2019-05-14 2020-11-17 东芝三菱电机产业***株式会社 边缘加热器的控制***
CN111940517B (zh) * 2019-05-14 2022-07-08 东芝三菱电机产业***株式会社 边缘加热器的控制***
TWI716240B (zh) * 2019-12-27 2021-01-11 長聖儀器股份有限公司 熱擴散性能量測系統與方法
US11346796B2 (en) 2019-12-27 2022-05-31 Long Victory Instruments Co., Ltd. Method for measuring thermal diffusivity performance and system thereof

Also Published As

Publication number Publication date
CN109562423A (zh) 2019-04-02
CN109562423B (zh) 2020-08-11
KR20190026880A (ko) 2019-03-13
TW201813733A (zh) 2018-04-16
JPWO2018055718A1 (ja) 2019-08-15
KR102230316B1 (ko) 2021-03-19
JP6737339B2 (ja) 2020-08-05
TWI635912B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
JP6435234B2 (ja) 熱間圧延仕上げミル出側温度制御装置およびその制御方法
JP5054369B2 (ja) 巻取り温度制御装置および制御方法
US10710133B2 (en) Temperature calculation method, temperature calculation apparatus, heating control method, and heating control apparatus
JP5789958B2 (ja) 冷却停止温度制御装置および冷却停止温度制御方法
WO2014006681A1 (ja) 温度制御装置
WO2018055718A1 (ja) エッジヒータ制御装置
JP5565200B2 (ja) 熱間圧延における仕上温度制御装置
JP6015033B2 (ja) ミルペーシング制御装置およびミルペーシング制御方法
Li et al. Online Monitor and Control of Cooling Temperature on Run‐out Table of Hot Strip Mill
JP5463743B2 (ja) スラブの熱間圧延スケジュール決定方法とスラブの熱間圧延スケジュール決定装置
JP5056294B2 (ja) スラブ設計方法および装置
JP2015167976A (ja) 熱延鋼板の巻取温度制御方法
JP2018196888A (ja) スラブの加熱炉抽出間隔決定方法及び熱延鋼板の製造方法並びにスラブの加熱炉抽出間隔決定装置
JP6485196B2 (ja) 厚鋼板の冷却制御方法、冷却制御装置、製造方法、および、製造装置
JP2019181500A (ja) 熱間圧延ライン制御装置
JP2014079778A (ja) 熱延鋼板の製造方法及び製造装置
JP2013116506A (ja) 巻取り温度制御装置およびその制御方法
JP2017177172A (ja) 冷却制御方法及び冷却装置
JP2011147967A (ja) 熱間圧延機の板厚制御方法
JP4920458B2 (ja) 被圧延材の温度予測方法および圧延方法ならびに被圧延材の温度予測システムおよび圧延システム
JP2017177135A (ja) 圧下レベリング制御装置および圧下レベリング制御方法
JP3518504B2 (ja) 鋼板の冷却条件設定方法
JP6323563B2 (ja) 圧延方法及び圧延装置
JP2015167967A (ja) 冷間圧延におけるセットアップ条件の決定方法
JP2023030272A (ja) 鋼材の温度予測装置、冷却制御装置、方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003938

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018540550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916787

Country of ref document: EP

Kind code of ref document: A1