WO2018043217A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2018043217A1
WO2018043217A1 PCT/JP2017/029988 JP2017029988W WO2018043217A1 WO 2018043217 A1 WO2018043217 A1 WO 2018043217A1 JP 2017029988 W JP2017029988 W JP 2017029988W WO 2018043217 A1 WO2018043217 A1 WO 2018043217A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot pressure
pressure oil
hydraulic
actuator
circuit
Prior art date
Application number
PCT/JP2017/029988
Other languages
English (en)
French (fr)
Inventor
岩崎 仁
明紀 阿部
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2018043217A1 publication Critical patent/WO2018043217A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors

Definitions

  • the present invention relates to a construction machine including a plurality of actuators driven by hydraulic pressure and a traveling motor.
  • Construction machines such as hydraulic excavators generally employ a system in which a plurality of devices are driven using hydraulic oil supplied from a common hydraulic source.
  • power obtained from a power source such as a diesel engine is converted into hydraulic pressure using hydraulic oil as a medium in a hydraulic pump, and various driving driving, turning driving, and various types such as a boom, an arm, and a bucket are performed using the hydraulic pressure.
  • the actuator is driven.
  • Patent Document 1 discloses a hydraulic excavator capable of traveling in a low speed mode or a high speed mode.
  • switching between the low speed mode and the high speed mode is performed via a changeover switch operable by the driver.
  • the solenoid valve is driven and controlled based on the instruction signal from the changeover switch and the detection signal from the pressure switch, and the introduction and shut-off of the pilot pressure to the displacement control valve are switched, so that the capacity variable portion of the traveling hydraulic motor is changed. It can be tilted to the large capacity side or the small capacity side.
  • the actuator provided in the construction machine can be driven according to a plurality of operation modes, and the operation modes are switched as necessary.
  • the actuator capable of switching the operation mode is not limited to the traveling hydraulic motor, and various types of operation modes can be switched according to the operation characteristics of various devices.
  • a hydraulic excavator provided with actuators such as a swing hydraulic motor, a boom and an arm
  • priority can be set for the amount of hydraulic oil supplied to these actuators according to the operating conditions. That is, by supplying hydraulic oil preferentially to a specific actuator, it is possible to ensure the operation power of the specific actuator, and it is possible to accurately execute a desired operation.
  • “Switching the mode related to the speed of the hydraulic motor” and “Switching the mode related to the priority of hydraulic fluid supplied to the actuator” can be executed by controlling the pilot pressure applied to the valve that controls the switching of the mode.
  • pilot pressure application control is often performed via a solenoid valve such as a solenoid.
  • the driving mode of the traveling hydraulic motor is switched to the high speed mode or the low speed mode by switching whether the pilot pressure is introduced to the displacement control valve by the electromagnetic valve.
  • a solenoid valve and a control valve for switching the speed mode of the traveling hydraulic motor For example, “a solenoid valve and a control valve for switching the speed mode of the traveling hydraulic motor”, “a solenoid valve and a control valve for switching the priority of the hydraulic oil supply amount between the swing hydraulic motor and the arm” and “ By separately providing a “solenoid valve and control valve for switching the priority of the hydraulic oil supply amount between the boom and the arm”, the mode can be switched flexibly and reliably.
  • the present invention has been made in view of the above-mentioned circumstances, and realizes low-cost operation with simple configuration and mode switching relating to the speed of the traveling motor and mode switching relating to the priority of the amount of hydraulic oil supplied between the actuators.
  • An object is to provide a construction machine that can be used.
  • One aspect of the present invention is a first actuator and a second actuator that are driven by hydraulic oil supplied from a hydraulic source, the hydraulic oil path from the hydraulic source to the first actuator, and the hydraulic source to the second actuator.
  • the hydraulic fluid path to reach the first actuator and the second actuator including a common hydraulic circuit, and priority to control the priority between the first actuator and the second actuator with respect to the supply amount of hydraulic oil from the common hydraulic circuit
  • a traveling mode control unit that controls the speed of the traveling motor according to the pilot pressure oil from A mode switching valve connected to the pressure oil source, connected to the priority mode control unit via the first pilot pressure oil supply circuit, and connected to the travel mode control unit via the second pilot pressure oil supply circuit.
  • a mode switching valve for controlling the pilot pressure oil supplied to the priority mode control unit and the pilot pressure oil supplied to the travel mode control unit, and a first pilot pressure oil supply circuit and a second pilot pressure oil supply circuit Relates to a construction machine including a common common pilot pressure oil circuit connected to a mode switching valve.
  • the mode switching valve switches on / off of the supply of pilot pressure oil from the pilot pressure oil source to the common pilot pressure oil circuit, and when supplying pilot pressure oil to the common pilot pressure oil circuit, the first pilot pressure oil supply circuit and When the pilot pressure oil is supplied to both the priority mode control unit and the travel mode control unit via the second pilot pressure oil supply circuit and the pilot pressure oil is not supplied to the common pilot pressure oil circuit, the priority mode control unit and the travel The pilot pressure oil may not be supplied to both of the mode control units.
  • the priority mode control unit When the pilot pressure oil is supplied via the first pilot pressure oil supply circuit, the priority mode control unit operates to be supplied from the common hydraulic circuit to the first actuator than when the pilot pressure oil is not supplied.
  • the traveling mode control unit increases the priority of the oil supply amount, and the travel mode control unit does not supply the pilot pressure oil. You may increase the speed.
  • the hydraulic fluid path from the hydraulic source to the first actuator includes a first individual circuit provided between the common hydraulic circuit and the first actuator, and the hydraulic oil path from the hydraulic source to the second actuator is common.
  • a second individual circuit provided between the hydraulic circuit and the second actuator, the priority mode control unit controls a part of the opening area of the second individual circuit, and when pilot pressure oil is supplied.
  • the opening area of a part of the second individual circuit is made smaller than when pilot pressure oil is not supplied, and a part of the flow path of hydraulic oil in the second individual circuit is narrowed.
  • the first individual circuit is provided with a first directional switching valve
  • the second individual circuit is provided with a second directional switching valve
  • the first directional switching valve has a mode in which hydraulic oil passes toward the first actuator.
  • a mode in which the hydraulic oil does not pass toward the first actuator and the second direction switching valve has a mode in which the hydraulic oil passes toward the second actuator and does not allow the hydraulic oil to pass toward the second actuator.
  • the hydraulic oil path from the hydraulic pressure source to the traveling motor is provided with a third direction switching valve.
  • the third direction switching valve has a mode in which the hydraulic oil is passed toward the traveling motor, and the hydraulic oil is directed toward the traveling motor. You may have a mode which does not let it pass.
  • the mode switching valve has either a pilot pressure oil supply pipe through which pilot pressure oil from a pilot pressure oil source flows, or a drain pipe from which pilot pressure oil from a common pilot pressure oil circuit is discharged, and a common pilot pressure. It may be a solenoid valve that connects to the oil circuit.
  • the construction machine includes a lower frame, an upper frame provided to be rotatable with respect to the lower frame, and a turning motor for turning the upper frame, and the first actuator may be an actuator that drives the turning motor. .
  • the construction machine may include a boom and an arm attached to the upper frame, and the second actuator may be an actuator that drives the arm.
  • the construction machine includes a lower frame, an upper frame provided so as to be rotatable with respect to the lower frame, a turning motor for turning the upper frame, and a boom and an arm attached to the upper frame. It may be an actuator that drives.
  • the second actuator may be an actuator that drives the arm.
  • the pilot pressure oil supplied to the priority mode control unit and the travel mode control unit is controlled by the common mode switching valve. For this reason, the mode switching relating to the priority of the hydraulic oil supply amount between the actuators and the mode switching relating to the traveling motor speed can be realized at low cost by a construction machine having a simple configuration.
  • FIG. 1 is an external view schematically showing a typical configuration example of a hydraulic excavator.
  • FIG. 2 is a circuit diagram illustrating a part of a functional configuration of a hydraulic excavator based on the conventional technology compared with the hydraulic excavator according to the first embodiment shown in FIG. 3.
  • FIG. 3 is a circuit diagram illustrating a part of the functional configuration of the excavator according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of the travel motor, the travel mode control unit, and the hydraulic power source.
  • FIG. 5 is a circuit diagram illustrating a part of the functional configuration of the excavator according to the second embodiment.
  • FIG. 1 is an external view showing an outline of a typical configuration example of the excavator 10.
  • the construction machine according to the present invention will be described using the excavator 10 as an example.
  • the object to which the present invention can be applied is not limited to the hydraulic excavator 10 shown in FIG. 1, and the present invention can be applied to a construction machine including a traveling motor and a plurality of actuators.
  • the excavator 10 generally includes a lower frame 44 having a crawler, an upper frame 45 provided so as to be rotatable with respect to the lower frame 44, a boom 47 attached to the upper frame 45, and an arm 48 attached to the boom 47. And a bucket 49 attached to the arm 48. Hydraulic cylinders 67, 68, and 69 as actuators are boom, arm, and bucket hydraulic cylinders, and drive the boom 47, arm 48, and bucket 49, respectively.
  • a rotational driving force from the turning motor 46 is transmitted to the upper frame 45 so that the upper frame 45 is turned by the turning motor 46.
  • the rotational driving force from the traveling motor 51 is transmitted to the crawlers of the lower frame 44 so that the crawler is driven by the traveling motor 51 and the excavator 10 travels.
  • the inventor has characteristics related to the operation of a construction machine (hydraulic excavator 10) including a plurality of actuators (swing motor 46, boom hydraulic cylinder 67, arm hydraulic cylinder 68, bucket hydraulic cylinder 69, etc.) and travel motor 51. Attention has been made, and a new construction machine has been found that has a simpler and cheaper configuration than conventional construction machines but can perform substantially the same function as conventional construction machines.
  • the present inventor provides a construction machine that has a common mode switching valve (for example, an electromagnetic valve) for switching the traveling mode and a mode switching valve for switching the operation mode of the actuator. Newly found. According to this new construction machine, the construction can be simplified and the manufacturing cost can be reduced, but there is no substantial adverse effect on the switching of the traveling mode and the switching of the operation mode of the actuator.
  • a common mode switching valve for example, an electromagnetic valve
  • the operation mode (that is, the priority) related to the supply of hydraulic oil to these actuators may be any mode.
  • an operation mode related to the supply of hydraulic oil to these actuators that is, priority
  • the traveling motor is not used. Therefore, it is basically not necessary to switch the traveling mode while the actuator of the construction machine is operating. Therefore, the mode switching valve for switching the traveling mode in the conventional construction machine functions when the construction machine is traveling, and does not substantially function while the construction machine is not traveling.
  • a device such as a valve for switching the traveling mode (see first mode switching valve 33a and second mode switching valve 33b in FIGS. 2 and 3 to be described later)”
  • a device such as a valve for switching between running and non-running of the construction machine (refer to a third direction switching valve 53 in FIG. 4 described later)
  • the “device such as a valve for switching the operation mode of the actuator (refer to the first mode switching valve 33a described later)”
  • the “device such as a valve for switching the operation and non-operation of the actuator (refer to FIG. 2 described later).
  • the first direction switching valve 14 and the second direction switching valve 15 in FIG. 3) are generally provided.
  • the operation mode of the actuator is whatever mode There is no substantial effect on the operation of construction machinery.
  • the travel mode is any mode. However, there is no substantial effect on the operation of the construction machine.
  • pilot pressure oil is supplied to the priority mode control unit that switches the operation mode of the actuator
  • the travel mode control unit that switches the travel mode is also used. Pilot pressure oil is supplied. That is, when the pilot pressure oil is supplied to the traveling mode control unit, the pilot pressure oil is also supplied to the priority mode control unit.
  • the supply of pilot pressure oil to the priority mode control unit is stopped, the supply of pilot pressure oil to the travel mode control unit is also stopped. That is, when the supply of pilot pressure oil to the travel mode control unit is stopped, the supply of pilot pressure oil to the priority mode control unit is also stopped.
  • the presence or absence of the supply of pilot pressure oil to the traveling mode control unit is switched in order to switch the traveling mode when the construction machine is traveling, the presence or absence of the supply of pilot pressure oil to the priority mode control unit is similarly switched.
  • the presence / absence of supply of pilot pressure oil to the priority mode control unit is switched in order to switch the operation mode of the actuator when the construction machine is stopped, the presence / absence of supply of pilot pressure oil to the traveling mode control unit is similarly switched.
  • the travel mode is switched by the travel mode control unit when the construction machine is stopped, there is no substantial adverse effect on the operation of the construction machine.
  • FIG. 2 is a circuit diagram illustrating a part of the functional configuration of the hydraulic excavator 10 based on the prior art compared with the hydraulic excavator 10 according to the first embodiment shown in FIG. 3.
  • FIG. 3 is a circuit diagram illustrating a part of the functional configuration of the excavator 10 according to the first embodiment.
  • the priority of the hydraulic oil supply amount between the first actuator 11 and the second actuator 12 is controlled by the priority mode control unit 19. Specifically, “a mode in which hydraulic oil is supplied to both the first actuator 11 and the second actuator 12 almost equally (see the left block of the priority mode control unit 19 shown in FIGS. 2 and 3)” and “second” Any of the modes in which the hydraulic oil is supplied to the first actuator 11 with priority over the actuator 12 (see the right block of the priority mode control unit 19 shown in FIGS. 2 and 3) is the priority mode control. Selected by section 19. In the hydraulic excavator 10 shown in FIGS. 2 and 3, the first actuator 11 is the turning motor 46, and the second actuator 12 is the arm hydraulic cylinder 68.
  • the hydraulic oil from the hydraulic power source 13 is supplied to the swing motor 46 in a mode in which the hydraulic oil is supplied from the hydraulic power source 13 almost equally to both the swing motor 46 and the arm hydraulic cylinder 68.
  • One of the preferentially supplied modes is selected by the priority mode control unit 19.
  • the travel mode control unit 52 controls the travel speed of a travel motor (described later) driven by hydraulic oil. Specifically, the travel mode control unit 52 determines the travel mode as one of “a low speed mode in which the travel motor rotates at a low speed with high torque” and “a high speed mode in which the travel motor rotates at a high speed with a low torque”.
  • the control of the priority mode control unit 19 and the travel mode control unit 52 is performed based on whether or not the pilot pressure oil is supplied in any of the hydraulic excavators 10 in FIGS.
  • the excavator 10 includes a hydraulic power source 13, a swing motor 46 (first actuator 11), an arm hydraulic cylinder 68 (second actuator 12), a priority mode control unit 19, a traveling motor (reference numeral “51” in FIG. 4 described later).
  • a travel mode control unit 52, and a mode switching valve 33 that is, a first mode switching valve 33a, a second mode switching valve 33b, and a third mode switching valve 33c).
  • the swing motor 46 and the arm hydraulic cylinder 68 are driven by hydraulic oil supplied from the hydraulic power source 13.
  • the hydraulic oil path from the hydraulic source 13 to the turning motor 46 and the hydraulic oil path from the hydraulic source 13 to the arm hydraulic cylinder 68 include a common hydraulic circuit 16.
  • the hydraulic fluid path from the hydraulic source 13 to the turning motor 46 further includes a first individual circuit 17 provided between the common hydraulic circuit 16 and the turning motor 46.
  • the hydraulic fluid path from the hydraulic source 13 to the arm hydraulic cylinder 68 further includes a second individual circuit 18 provided between the common hydraulic circuit 16 and the arm hydraulic cylinder 68.
  • the first individual circuit 17 and the second individual circuit 18 branch from the common hydraulic circuit 16, and the hydraulic oil supplied from the hydraulic source 13 to the common hydraulic circuit 16 is the first. It branches and flows into the individual circuit 17 and the second individual circuit 18.
  • the first individual circuit 17 is provided with a first directional switching valve 14 of 6-port valve
  • the second individual circuit 18 is provided with a second directional switching valve 15 of 6-port valve.
  • the first direction switching valve 14 is configured to allow hydraulic oil to pass toward the swing motor 46 (see the left block (reverse driving) and the right block (forward driving) of the first direction switching valve 14 shown in the figure), and the swing. A mode in which hydraulic oil does not pass toward the motor 46 (see the middle block (neutral state) of the illustrated first direction switching valve 14).
  • the second direction switching valve 15 has a mode in which hydraulic oil is passed toward the arm hydraulic cylinder 68 (see the left block (reverse driving) and the right block (forward driving) of the illustrated second direction switching valve 15)).
  • first directional switching valve 14 and the second directional switching valve 15 are not particularly limited, but can typically be configured by a spool valve.
  • the priority mode control unit 19 controls priority between the swing motor 46 and the arm hydraulic cylinder 68 with respect to the amount of hydraulic oil supplied from the hydraulic source 13 and the common hydraulic circuit 16. Specifically, the priority mode control unit 19 can change the opening area of a part of the second individual circuit 18 and is second when pilot pressure oil is supplied than when pilot pressure oil is not supplied. The opening area of a part of the individual circuit 18 is reduced, and a part of the flow path of the hydraulic oil in the second individual circuit 18 is narrowed. As a result, the hydraulic oil from the common hydraulic circuit 16 flows more easily into the first individual circuit 17 than the second individual circuit 18, and operates preferentially toward the first individual circuit 17 over the second individual circuit 18. Oil is supplied.
  • the priority control of the hydraulic oil supply amount by the priority mode control unit 19 is performed according to whether pilot pressure oil is supplied from the pilot pressure oil source 30 to the priority mode control unit 19 or not. That is, when the pilot pressure oil is supplied via the first pilot pressure oil supply circuit 21, the priority mode control unit 19 uses the common hydraulic circuit 16 to the first individual circuit more than when the pilot pressure oil is not supplied. 17 and the priority of the amount of hydraulic oil supplied to the turning motor 46 are increased. For example, when the bucket 49 is pressed against the excavation target while turning the upper frame 45 and the excavation target is to be cut, the priority of the supply amount of hydraulic oil to the swivel motor 46 is increased to increase the power of the swivel motor 46. The object to be excavated can be efficiently shaved by the bucket 49.
  • the traveling mode control unit 52 controls the speed of the traveling motor in accordance with the pilot pressure oil from the pilot pressure oil source 30.
  • the first mode switching valve 33a controls whether or not the pilot pressure oil is supplied to the travel mode control unit 52.
  • the mode switching valve 33 (that is, the first mode switching valve 33 a, the second mode switching valve 33 b and the third mode switching valve 33 c) is an electromagnetic valve constituted by a solenoid, and the pilot pressure is supplied via the pilot pressure oil supply pipe 31.
  • a pressure oil drain unit 34 is connected to the oil source 30 via a drain pipe 32.
  • the first pilot pressure oil supply circuit 21 is communicated with the pilot pressure oil supply pipe 31 or the drain pipe 32 via the first mode switching valve 33a, and the second pilot pressure oil is supplied.
  • the supply circuit 22 is communicated with the pilot pressure oil supply pipe 31 or the drain pipe 32 via the second mode switching valve 33b.
  • the common pilot pressure oil circuit 23 is connected to the first mode switching valve 33a, and the common pilot pressure oil circuit 23 is piloted via the first mode switching valve 33a.
  • the pressure oil supply pipe 31 or the drain pipe 32 is communicated.
  • the common pilot pressure oil circuit 23 is connected to the first mode switching valve 33a.
  • the third pilot pressure oil supply circuit 28 is connected to the pilot pressure oil supply pipe 31 or the drain pipe 32 via the third mode switching valve 33c, and the third excavator 10 shown in FIG.
  • the mode switching valve 33 c is connected to the hydraulic lock control unit 71 via the third pilot pressure oil supply circuit 28.
  • the hydraulic lock control unit 71 holds the stopped state of various actuators. When the pilot pressure oil is supplied to the hydraulic lock control unit 71, the holding of the various actuators is released, and when the pilot pressure oil is not supplied to the hydraulic lock control unit 71, the holding is maintained.
  • the first pilot pressure oil supply circuit 21 communicated with the pilot pressure oil supply pipe 31 through these mode switching valves 33 (that is, the first mode switching valve 33a, the second mode switching valve 33b, and the third mode switching valve 33c).
  • the pilot pressure oil from the pilot pressure oil source 30 is supplied to the second pilot pressure oil supply circuit 22, the common pilot pressure oil circuit 23 and / or the third pilot pressure oil supply circuit 28.
  • the first pilot pressure oil supply circuit 21 connected to the drain pipe 32 via the mode switching valve 33 that is, the first mode switching valve 33a, the second mode switching valve 33b, and the third mode switching valve 33c
  • the second The pilot pressure oil in the flow path of the pilot pressure oil supply circuit 22, the common pilot pressure oil circuit 23 and / or the third pilot pressure oil supply circuit 28 is discharged to the pressure oil drain section 34 via the drain pipe 32.
  • the first mode switching valve 33a of the present embodiment shown in FIG. 3 is turned on (see the upper block of the first mode switching valve 33a in FIG. 3) by the driver of the excavator 10, the pilot pressure oil The supply pipe 31 and the common pilot pressure oil circuit 23 are connected, and the pilot pressure oil from the pilot pressure oil source 30 and the pilot pressure oil supply pipe 31 is sent to the priority mode control unit 19 and the travel mode control unit 52.
  • the first mode switching valve 33a of the present embodiment shown in FIG. 3 is turned off (see the lower block of the first mode switching valve 33a of FIG. 3)
  • the drain pipe 32 and the common pilot pressure oil circuit 23 the pilot pressure oil supply pipe 31 and the common pilot pressure oil circuit 23 are disconnected, and the pilot pressure in the priority mode control unit 19 and the travel mode control unit 52 is released.
  • the second pilot pressure oil supply circuit 22 is connected to the pilot pressure oil via the second mode switching valve 33b.
  • the travel mode control unit 52 communicates with the pilot pressure oil source 30 by being connected to the supply pipe 31.
  • the common pilot pressure oil circuit 23 is connected to the pilot pressure oil supply pipe 31 via the first mode switching valve 33a, so that the travel mode control unit 52 is The pilot pressure oil source 30 is communicated.
  • the first mode switching valve 33 a switches on / off of the supply of pilot pressure oil from the pilot pressure oil source 30 to the common pilot pressure oil circuit 23.
  • the priority mode control unit is connected via the first pilot pressure oil supply circuit 21 and the second pilot pressure oil supply circuit 22.
  • the pilot pressure oil is supplied to both 19 and the traveling mode control unit 52.
  • the pilot pressure oil is not supplied to the common pilot pressure oil circuit 23 via the first mode switching valve 33a, the pilot pressure oil is not supplied to both the priority mode control unit 19 and the travel mode control unit 52.
  • a first check valve 24 is provided in the first individual circuit 17 (particularly upstream of the first direction switching valve 14), and the second individual circuit. 18 (particularly upstream of the second direction switching valve 15) is provided with a second check valve 25 to prevent backflow of hydraulic fluid flowing through the first individual circuit 17 and the second individual circuit 18.
  • the hydraulic oil drain part 26 is provided, and the hydraulic oil discharged from the swing motor 46 and the arm hydraulic cylinder 68 is collected in the hydraulic oil drain part 26.
  • FIG. 4 is a block diagram illustrating a configuration example of the traveling motor 51, the traveling mode control unit 52, and the hydraulic power source 13.
  • the pilot pressure oil from the pilot pressure oil source 30 is supplied to the travel mode control unit 52 via the first mode switching valve 33a.
  • the traveling mode control unit 52 of this example controls the motor regulator 54 according to whether or not the pilot pressure oil is supplied, and the motor regulator 54 adjusts the capacity of the traveling motor 51.
  • a member such as a swash plate that adjusts the capacity of the traveling motor 51 is adjusted by the motor regulator 54 so that the traveling motor 51 has a large capacity.
  • the travel mode control unit 52 controls the motor regulator 54.
  • the travel mode control unit 52 is adjusted so that the travel motor 51 is reduced in capacity by adjusting a member such as a swash plate by the motor regulator 54.
  • the motor regulator 54 is controlled.
  • the capacity of the travel motor 51 is increased, the travel motor 51 is shifted to the low speed mode and can rotate at a low speed with a high torque.
  • the travel motor 51 is reduced in capacity, the travel motor 51 is shifted to the high speed mode and can be rotated at high speed with low torque.
  • a third direction switching valve 53 is provided in the hydraulic oil path from the hydraulic source 13 to the traveling motor 51.
  • the third direction switching valve 53 has a mode in which the hydraulic oil is allowed to pass from the hydraulic source 13 toward the travel motor 51 and a mode in which the hydraulic oil is not allowed to pass from the hydraulic source 13 toward the travel motor 51. Therefore, while the third direction switching valve 53 is in the “mode in which hydraulic oil does not pass from the hydraulic source 13 toward the traveling motor 51”, even if the traveling mode controlled by the traveling mode control unit 52 is the high speed mode. Even in the low speed mode, the traveling motor 51 does not operate and the excavator 10 does not travel. In order to drive the hydraulic excavator 10, it is necessary to shift the third direction switching valve 53 to “a mode in which hydraulic oil is passed from the hydraulic power source 13 toward the traveling motor 51”.
  • the priority regarding the supply of hydraulic oil between the actuators is appropriately controlled by the common mode switching valve (that is, the first mode switching valve 33a shown in FIG. 3).
  • the traveling mode can be appropriately controlled, and the configuration can be simplified and the cost can be effectively reduced. That is, in the hydraulic excavator 10 shown in FIG. 2 based on the prior art, it is necessary to provide the second mode switching valve 33b for the traveling mode control unit 52 in addition to the first mode switching valve 33a for the priority mode control unit 19.
  • the configuration is complicated and the manufacturing cost is increased, the hydraulic excavator 10 according to the present embodiment does not have such inconvenience.
  • the first mode switching valve 33a for the priority mode control unit 19 is not substantially functioning during traveling, and the first mode switching valve for the traveling mode control unit 52 is stopped when stopped.
  • the two-mode switching valve 33b was not substantially functioning.
  • the first mode switching valve 33a substantially functions both when traveling and when stopped, and functional waste can be eliminated. That is, according to the hydraulic excavator 10 of the present embodiment, the non-traveling actuator (for example, the boom hydraulic cylinder 67 and the arm) is used by using the traveling speed switching solenoid that was used only during traveling in the conventional hydraulic excavator 10.
  • the priority of the hydraulic cylinder 68 for bucket or the hydraulic cylinder 69 for bucket) can be changed.
  • the single mode switching valve 33 (that is, the first mode switching valve 33a) is also used for both the switching of the traveling mode and the switching of the priority of the actuator without increasing the number of mode switching valves 33. , Work efficiency can be improved.
  • the configuration of the above-described embodiment is particularly effective for the small hydraulic excavator 10 in which the rate of cost increase due to the addition of the mode switching valve 33 (for example, the switching solenoid) is large.
  • the function can be improved substantially and the working efficiency can be improved without excessively increasing the operating efficiency.
  • FIG. 5 is a circuit diagram illustrating a part of the functional configuration of the excavator 10 according to the second embodiment.
  • the arrows in FIG. 5 mainly indicate the direction of the hydraulic oil flow in each circuit.
  • the first actuator 11 is a boom hydraulic cylinder 67
  • the second actuator 12 is an arm hydraulic cylinder 68
  • the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68 are supplied from a common hydraulic source 13. Driven by hydraulic oil.
  • the hydraulic fluid path from the hydraulic source 13 to the boom hydraulic cylinder 67 includes the common hydraulic circuit 16 and the first individual circuit 17, and the hydraulic oil path from the hydraulic source 13 to the arm hydraulic cylinder 68 is the common hydraulic circuit. 16 and a second individual circuit 18. Therefore, the hydraulic oil path from the hydraulic source 13 to the boom hydraulic cylinder 67 and the hydraulic oil path from the hydraulic source 13 to the arm hydraulic cylinder 68 include the common hydraulic circuit 16.
  • the priority mode control unit 19 controls a part of the opening area of the second individual circuit 18, and when pilot pressure oil is supplied from the first mode switching valve 33a (see the upper block of the priority mode control unit 19 in FIG. 5). ), When the pilot pressure oil is not supplied (see the lower block of the priority mode control unit 19 in FIG. 5), a part of the opening area of the second individual circuit 18 is made smaller, and the second individual circuit 18 Squeeze part of the hydraulic fluid flow path.
  • the first pilot pressure oil supply circuit 21 includes a common pilot pressure oil circuit 23 and a first branch circuit 36
  • the second pilot pressure oil supply circuit 22 includes a common pilot pressure oil circuit 23 and a second branch circuit 37
  • the first pilot pressure oil supply circuit 21 and the second pilot pressure oil supply circuit 22 include a common common pilot pressure oil circuit 23.
  • the first individual circuit 17 is provided with the first direction switching valve 14, and the second individual circuit 18 (particularly between the priority mode control unit 19 and the arm hydraulic cylinder 68) is provided with the second direction switching valve 15.
  • the 1st direction switching valve 14 of this embodiment is comprised as a 9 port valve as shown in figure
  • the 2nd direction switching valve 15 is comprised as an 8 port valve.
  • the middle block in the figure indicates a neutral position, and hydraulic oil is not supplied from the hydraulic source 13 to the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68. Indicates.
  • the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68 are not supplied with hydraulic oil and are not driven.
  • the right block in the figure shows the forward drive state
  • the left block in the figure shows the reverse drive state.
  • the hydraulic oil is supplied from the hydraulic source 13 to the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68, respectively.
  • a state is shown in which the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68 are driven.
  • first check valve 24 is provided in the first individual circuit 17 (particularly upstream from the first direction switching valve 14), and the second individual circuit 18 (particularly upstream from the second direction switching valve 15) is provided.
  • a second check valve 25 is provided.
  • the hydraulic excavator 10 uses a hydraulic source 13 of a dual bypass type two-pump system.
  • the hydraulic oil discharged from the two pumps constituting the hydraulic power source 13 of the present embodiment passes through the supply passage 56 branched from the unload passage 57, and each of the first directional switching valve 14 and the second directional switching valve 15. Are joined to each of the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68.
  • the priority mode control unit 19 shown in FIG. 5 is provided in the second individual circuit 18 through which hydraulic oil supplied from one pump flows. Further, the hydraulic oil discharged from the two pumps constituting the hydraulic power source 13 is also flowed to the unload passage 57.
  • the hydraulic oil discharged from the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68 and the hydraulic oil that has passed through the unload passage 57 are discharged to the hydraulic oil drain section 26 via the tank passage 58.
  • the first mode switching valve 33a controls whether or not the pilot pressure oil is supplied to the priority mode control unit 19 and the travel mode control unit 52, The “mode relating to the priority of the amount of hydraulic oil supplied between the cylinder 67 and the arm hydraulic cylinder 68” and the “travel mode” are switched.
  • the common pilot pressure oil circuit 23 is connected to the pilot pressure oil supply pipe 31 via the first mode switching valve 33a, the pilot pressure oil is sent to the priority mode control unit 19 and the travel mode control unit 52 to pilot Pressure is applied.
  • the flow path of the second individual circuit 18 is throttled by the priority mode control unit 19, and hydraulic oil is preferentially supplied to the boom hydraulic cylinder 67 rather than the arm hydraulic cylinder 68, and the travel mode control unit
  • the traveling motor 51 is switched to the high speed mode by 52.
  • the loading operation is performed by the hydraulic excavator 10
  • the common pilot pressure oil circuit 23 is connected to the drain pipe 32 via the first mode switching valve 33a, the pilot pressure oil in the priority mode control unit 19 and the travel mode control unit 52 is supplied to the first pilot pressure oil supply circuit. 21 and the second pilot pressure oil supply circuit 22 are discharged to the drain pipe 32.
  • the flow path of the second individual circuit 18 returns to a state where it is not throttled by the priority mode control unit 19, and hydraulic oil is evenly supplied to the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68, and the travel mode control is performed.
  • the traveling motor 51 is switched to the low speed mode by the unit 52.
  • the boom hydraulic cylinder 67 and the arm hydraulic cylinder 68 are not given priority over the boom hydraulic cylinder 68 in this way. It may be preferable to supply the hydraulic oil evenly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

走行モータの速度に関するモードの切り換えと、アクチュエータ間における作動油の供給の優先度に関するモードの切り換えとを、簡素な構成で安価に実現できる建設機械を提供する。油圧ショベル10は、油圧源13からの作動油によって駆動される第1アクチュエータ11及び第2アクチュエータ12と、作動油の供給量に関して第1アクチュエータ11と第2アクチュエータ12との間で優先度をコントロールする優先モード制御部19と、走行モータの速度をコントロールする走行モード制御部52と、優先モード制御部19及び走行モード制御部52に供給されるパイロット圧油をコントロールする第1モード切換弁33aとを備える。第1パイロット圧油供給回路21及び第2パイロット圧油供給回路22は、モード切換弁に接続される共有の共通パイロット圧油回路23を含む。

Description

建設機械
 本発明は、油圧によって駆動される複数のアクチュエータ及び走行モータを備える建設機械に関する。
 油圧ショベル等の建設機械は、一般に、共通の油圧源から供給される作動油を利用して複数の機器を駆動する方式を採用する。すなわちディーゼルエンジン等の動力源から得られる動力が、油圧ポンプにおいて作動油を媒体とした油圧力に変換され、その油圧力を利用して走行駆動、旋回駆動、及びブーム、アーム及びバケット等の各種アクチュエータが駆動される。
 例えば特許文献1は、低速モード又は高速モードで走行可能な油圧ショベルを開示する。この油圧ショベルにおいて、低速モード及び高速モードの切り換えは、運転者によって操作可能な切換スイッチを介して行われる。この切換スイッチからの指示信号及び圧力スイッチからの検出信号に基づいて電磁弁が駆動制御されて、容量制御弁に対するパイロット圧の導入及び遮断が切り換えられることで、走行用油圧モータの容量可変部を大容量側又は小容量側に傾転駆動することができる。
特開2011-001970号公報
 建設機械が具備するアクチュエータは、複数の作動モードに従って駆動されることが可能であり、必要に応じてその作動モードが切り換えられる。そのような作動モードの切り換えが可能なアクチュエータは、走行用油圧モータに限定されず、各種機器においてその作動特性に応じた様々なタイプの作動モードの切り換えが可能である。
 例えば旋回用油圧モータ、ブーム及びアーム等のアクチュエータを備える油圧ショベルでは、作動状況に応じて、これらのアクチュエータに対する作動油の供給量に優先度を設定することができる。すなわち、特定のアクチュエータに対して優先的に作動油を供給することで、その特定のアクチュエータの作動パワーを確保することができ、所望の作動を的確に実行することが可能である。
 「油圧モータの速度に関するモードの切り換え」や「アクチュエータに供給される作動油の優先度に関するモードの切り換え」は、モードの切り換えを制御する弁に付与されるパイロット圧をコントロールすることで実行できる。そのようなパイロット圧の付与のコントロールは、ソレノイド等の電磁弁を介して行われることが多い。例えば特許文献1に開示の建設機械では、容量制御弁に対するパイロット圧の導入の有無が電磁弁によって切り換えられることにより、走行用油圧モータの駆動モードが高速モード又は低速モードに切り換えられる。
 また1つの建設機械において、複数タイプのモードの切り換えを行うことが可能である。例えば、走行用の油圧モータを高速モード又は低速モードで作動させることを可能にしつつ、旋回用油圧モータをアームよりも優先的に作動させることを可能にしたり、ブームをアームよりも優先的に作動させることを可能にしたりすることもできる。複数タイプのモードの切り換えを行うことが可能な場合には、タイプ毎にモード切り換え用の電磁弁及び制御弁が設けられる。例えば「走行用油圧モータの速度モードを切り換えるための電磁弁及び制御弁」、「旋回用油圧モータとアームとの間における作動油供給量の優先度を切り換えるための電磁弁及び制御弁」及び「ブームとアームとの間における作動油供給量の優先度を切り換えるための電磁弁及び制御弁」を別個に設けることによって、モード切り換えを柔軟且つ確実に行うことが可能である。
 しかしながらタイプ毎にモード切り換え用の電磁弁が設けられる場合には、モード切り換えのタイプが増えるに従って、モード切り換え用の電磁弁の数が比例的に増える。モード切り換え用の電磁弁の数が増えると、建設機械の構成が複雑化して製造コストも増大する。そのため、低コストでの製造が求められている建設機械にそのような複数タイプのモード切り換え機能を搭載することは、実際的には難しい場合がある。
 本発明は上述の事情に鑑みてなされたものであり、走行モータの速度に関するモードの切り換えと、アクチュエータ間における作動油の供給量の優先度に関するモードの切り換えとを、簡素な構成で安価に実現できる建設機械を提供することを目的とする。
 本発明の一態様は、油圧源から供給される作動油によって駆動される第1アクチュエータ及び第2アクチュエータであって、油圧源から第1アクチュエータに至る作動油の経路及び油圧源から第2アクチュエータに至る作動油の経路は共通の油圧回路を含む第1アクチュエータ及び第2アクチュエータと、共通の油圧回路からの作動油の供給量に関して第1アクチュエータと第2アクチュエータとの間で優先度をコントロールする優先モード制御部であって、パイロット圧油源からのパイロット圧油に応じて優先度をコントロールする優先モード制御部と、油圧源から供給される作動油によって駆動される走行モータと、パイロット圧油源からのパイロット圧油に応じて、走行モータの速度をコントロールする走行モード制御部と、パイロット圧油源に接続され、第1パイロット圧油供給回路を介して優先モード制御部に接続され、第2パイロット圧油供給回路を介して走行モード制御部に接続されるモード切換弁であって、優先モード制御部に供給されるパイロット圧油及び走行モード制御部に供給されるパイロット圧油をコントロールするモード切換弁と、を備え、第1パイロット圧油供給回路及び第2パイロット圧油供給回路は、モード切換弁に接続される共有の共通パイロット圧油回路を含む建設機械に関する。
 モード切換弁は、パイロット圧油源から共通パイロット圧油回路へのパイロット圧油の供給のオンオフを切り換え、共通パイロット圧油回路にパイロット圧油を供給する場合には第1パイロット圧油供給回路及び第2パイロット圧油供給回路を介して優先モード制御部及び走行モード制御部の両者にパイロット圧油が供給され、共通パイロット圧油回路にパイロット圧油を供給しない場合には優先モード制御部及び走行モード制御部の両者にパイロット圧油が供給されなくてもよい。
 優先モード制御部は、第1パイロット圧油供給回路を介してパイロット圧油が供給される場合には、パイロット圧油が供給されない場合よりも、共通の油圧回路から第1アクチュエータに供給される作動油の供給量の優先度を高くし、走行モード制御部は、第2パイロット圧油供給回路を介してパイロット圧油が供給される場合には、パイロット圧油が供給されない場合よりも、走行モータの速度を速くしてもよい。
 油圧源から第1アクチュエータに至る作動油の経路は、共通の油圧回路と第1アクチュエータとの間に設けられる第1個別回路を含み、油圧源から第2アクチュエータに至る作動油の経路は、共通の油圧回路と第2アクチュエータとの間に設けられる第2個別回路を含み、優先モード制御部は、第2個別回路の一部の開口面積をコントロールし、パイロット圧油が供給される場合にはパイロット圧油が供給されない場合よりも第2個別回路の一部の開口面積を小さくし、第2個別回路における作動油の流路の一部を絞る。
 第1個別回路には第1方向切換弁が設けられ、第2個別回路には第2方向切換弁が設けられ、第1方向切換弁は、第1アクチュエータに向かって作動油を通過させるモードと、第1アクチュエータに向かって作動油を通過させないモードとを有し、第2方向切換弁は、第2アクチュエータに向かって作動油を通過させるモードと、第2アクチュエータに向かって作動油を通過させないモードとを有してもよい。
 油圧源から走行モータに至る作動油の経路には第3方向切換弁が設けられ、第3方向切換弁は、走行モータに向かって作動油を通過させるモードと、走行モータに向かって作動油を通過させないモードとを有してもよい。
 モード切換弁は、パイロット圧油源からのパイロット圧油が流れるパイロット圧油供給管、及び共通パイロット圧油回路からのパイロット圧油が排出されるドレーン管のうちのいずれか一方と、共通パイロット圧油回路とを接続する電磁弁であってもよい。
 建設機械は、下部フレームと、下部フレームに対して旋回可能に設けられる上部フレームと、上部フレームを旋回させる旋回モータと、を備え、第1アクチュエータは、旋回モータを駆動するアクチュエータであってもよい。
 建設機械は、上部フレームに取り付けられるブーム及びアームを備え、第2アクチュエータは、アームを駆動するアクチュエータであってもよい。
 建設機械は、下部フレームと、下部フレームに対して旋回可能に設けられる上部フレームと、上部フレームを旋回させる旋回モータと、上部フレームに取り付けられるブーム及びアームと、を備え、第1アクチュエータは、ブームを駆動するアクチュエータであってもよい。
 第2アクチュエータは、アームを駆動するアクチュエータであってもよい。
 本発明によれば、優先モード制御部及び走行モード制御部に供給されるパイロット圧油が共通のモード切換弁によってコントロールされる。そのため、アクチュエータ間における作動油の供給量の優先度に関するモードの切り換えと、走行モータの速度に関するモードの切り換えとを、簡素な構成の建設機械によって安価に実現できる。
図1は、油圧ショベルの典型的な構成例の概略を示す外観図である。 図2は、図3に示す第1実施形態に係る油圧ショベルと比較される従来技術に基づく油圧ショベルの機能構成の一部を例示する回路図である。 図3は、第1実施形態に係る油圧ショベルの機能構成の一部を例示する回路図である。 図4は、走行モータ、走行モード制御部及び油圧源の構成例を示すブロック図である。 図5は、第2実施形態に係る油圧ショベルの機能構成の一部を例示する回路図である。
 図1は、油圧ショベル10の典型的な構成例の概略を示す外観図である。以下では、油圧ショベル10を例にして本発明に係る建設機械を説明する。ただし、本発明を適用可能な対象は図1に示す油圧ショベル10に限定されず、走行モータ及び複数のアクチュエータを備える建設機械に対して本発明を適用することが可能である。
 油圧ショベル10は、一般に、クローラを具備する下部フレーム44と、下部フレーム44に対して旋回可能に設けられる上部フレーム45と、上部フレーム45に取り付けられるブーム47と、ブーム47に取り付けられるアーム48と、アーム48に取り付けられるバケット49とを備える。アクチュエータとしての油圧シリンダ67、68、69は、ブーム用、アーム用、及びバケット用の油圧シリンダであり、それぞれブーム47、アーム48及びバケット49を駆動する。旋回モータ46によって上部フレーム45が旋回させられるように、上部フレーム45には旋回モータ46からの回転駆動力が伝達される。また走行モータ51によりクローラが駆動されて油圧ショベル10が走行するように、下部フレーム44のクローラには走行モータ51からの回転駆動力が伝達される。
 本件発明者は、複数のアクチュエータ(旋回モータ46、ブーム用油圧シリンダ67、アーム用油圧シリンダ68及びバケット用油圧シリンダ69等)及び走行モータ51を備える建設機械(油圧ショベル10)の作動に関する特性に注目し、従来の建設機械と比べて簡素且つ安価な構成を持つが従来の建設機械と実質的にほぼ同等の機能を果たすことができる建設機械を新たに見出した。
 すなわち建設機械(特に油圧ショベル10等の掘削機)の走行時には、建設機械のアクチュエータ(例えば、旋回モータ46、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68等)の作動自体やアクチュエータの作動モードの切り換えを行うことは原則的に必要とされない。一方、建設機械(特に油圧ショベル10等の掘削機)のアクチュエータの作動時には、建設機械の走行自体や走行モードの切り換えを行うことは原則的に必要とされない。このように建設機械の走行自体や走行モードの切り換えを行う必要がある期間(すなわち建設機械の走行期間及び走行準備期間)と、建設機械のアクチュエータの作動自体やアクチュエータの作動モードの切り換えを行う必要がある期間(すなわち建設機械の作業期間)とは基本的には相互に重ならず、走行モードの切り換えとアクチュエータの作動モードの切り換えとを個別的に同じタイミングで行うことは必要とされていない。
 本件発明者は、建設機械のこの動作特性を考慮し、走行モードを切り換えるためのモード切換弁(例えば電磁弁)と、アクチュエータの作動モードを切り換えるためのモード切換弁とを共通化した建設機械を新たに見出した。この新たな建設機械によれば、構成を簡素化して製造コストを低減できる一方で、走行モードの切り換え及びアクチュエータの作動モードの切り換えに関しては実質的な悪影響がない。
 例えば、建設機械を走行させる際には走行モード(例えば高速モード及び低速モード)の切り換えが求められるが、旋回モータ、ブーム用油圧シリンダ及びアーム用油圧シリンダ等のアクチュエータは走行時には使用されない。そのため建設機械が走行している間は、これらのアクチュエータに対する作動油の供給に関する作動モード(すなわち優先度)はどのようなモードであっても構わない。一方、建設機械の停止時において旋回モータ、ブーム用油圧シリンダ及びアーム用油圧シリンダ等のアクチュエータを作動させて所望の作業を行う際には、これらのアクチュエータに対する作動油の供給に関する作動モード(すなわち優先度)の切り換えは求められるが、走行モータは使用されない。そのため建設機械のアクチュエータが作動している間は、走行モードの切り換えは基本的に必要とされない。したがって従来の建設機械において走行モードを切り換えるためのモード切換弁は、建設機械を走行させる際に機能するものであって、建設機械が走行していない間は実質的に機能しない。
 特に上述のような建設機械では、「走行モードを切り換えるための弁等の装置(後述の図2及び図3の第1モード切換弁33a及び第2モード切換弁33b参照)」とは別個に「建設機械の走行及び非走行を切り換えるための弁等の装置(後述の図4の第3方向切換弁53参照)」が設けられるのが一般的である。また「アクチュエータの作動モードを切り換えるための弁等の装置(後述の第1モード切換弁33a参照)」とは別個に「アクチュエータの作動及び非作動を切り換えるための弁等の装置(後述の図2及び図3の第1方向切換弁14及び第2方向切換弁15参照)」が設けられるのが一般的である。そのため、例えば建設機械の走行時に「アクチュエータの作動及び非作動を切り換えるための弁等の装置」によってアクチュエータが停止状態に置かれている限りは、アクチュエータの作動モードがどのようなモードであっても、建設機械の動作に対して実質的な影響はない。同様に、アクチュエータの作動時に「建設機械の走行及び非走行を切り換えるための弁等の装置」によって建設機械の走行が停止状態に置かれている限りは、走行モードがどのようなモードであっても、建設機械の動作に対して実質的な影響はない。
 このような建設機械の動作特性に基づいて、以下の実施形態では、アクチュエータの作動モードを切り換える優先モード制御部にパイロット圧油が供給される場合には、走行モードを切り換える走行モード制御部にもパイロット圧油が供給される。すなわち走行モード制御部にパイロット圧油が供給される場合には、優先モード制御部にもパイロット圧油が供給される。一方、優先モード制御部へのパイロット圧油の供給が停止される場合には、走行モード制御部へのパイロット圧油の供給も停止される。すなわち走行モード制御部へのパイロット圧油の供給が停止される場合には、優先モード制御部へのパイロット圧油の供給も停止される。
 この構成によれば、建設機械の走行時に走行モードを切り換えるために走行モード制御部に対するパイロット圧油の供給の有無を切り換えると、優先モード制御部に対するパイロット圧油の供給の有無も同様に切り換えられる。ただし上述のように、建設機械の走行時に優先モード制御部によってアクチュエータの作動モードの切り換えが行われても、建設機械の動作に対して実質的な悪影響はない。同様に、建設機械の停止時にアクチュエータの作動モードを切り換えるために優先モード制御部に対するパイロット圧油の供給の有無を切り換えると、走行モード制御部に対するパイロット圧油の供給の有無も同様に切り換えられる。ただし上述のように、建設機械の停止時に走行モード制御部によって走行モードの切り換えが行われても、建設機械の動作に対して実質的な悪影響はない。
 以下、上述の建設機械の動作特性を応用した具体的な実施形態について、図面を参照して説明する。
<第1実施形態>
 図2は、図3に示す第1実施形態に係る油圧ショベル10と比較される従来技術に基づく油圧ショベル10の機能構成の一部を例示する回路図である。図3は、第1実施形態に係る油圧ショベル10の機能構成の一部を例示する回路図である。
 図2及び図3に示す油圧ショベル10では、第1アクチュエータ11と第2アクチュエータ12との間における作動油の供給量の優先度が優先モード制御部19によってコントロールされる。具体的には「第1アクチュエータ11及び第2アクチュエータ12の両者にほぼ均等に作動油が供給されるモード(図2及び図3に示す優先モード制御部19の左側ブロック参照)」及び「第2アクチュエータ12よりも第1アクチュエータ11の方に作動油が優先的に供給されるモード(図2及び図3に示す優先モード制御部19の右側ブロック参照)」のうちのいずれかが、優先モード制御部19によって選択される。なお図2及び図3に示す油圧ショベル10において、第1アクチュエータ11は旋回モータ46であり、第2アクチュエータ12はアーム用油圧シリンダ68である。そのため、旋回モータ46及びアーム用油圧シリンダ68の両者に油圧源13からほぼ均等に作動油が供給されるモード及びアーム用油圧シリンダ68よりも旋回モータ46の方に油圧源13からの作動油が優先的に供給されるモードのうちのいずれかが、優先モード制御部19によって選択される。
 また図2及び図3に示す油圧ショベル10では、作動油によって駆動される後述の走行モータの走行速度が走行モード制御部52によってコントロールされている。具体的には、走行モード制御部52によって走行モードが「走行モータが高トルクで低速回転する低速モード」及び「走行モータが低トルクで高速回転する高速モード」のうちのいずれかに決められる。
 これらの優先モード制御部19及び走行モード制御部52の制御は、図2及び図3のいずれの油圧ショベル10においても、パイロット圧油の供給の有無に基づいて行われる。
 ただし図2に示す従来技術に基づく油圧ショベル10では、優先モード制御部19に対するパイロット圧油の供給の有無が第1モード切換弁33aによってコントロールされ、走行モード制御部52に対するパイロット圧油の供給の有無が第2モード切換弁33bによってコントロールされる。すなわち図2に示す油圧ショベル10では、別個に設けられる電磁弁(すなわち第1モード切換弁33a及び第2モード切換弁33b)によって、優先モード制御部19及び走行モード制御部52に対するパイロット圧油の供給の有無がコントロールされている。
 一方、図3に示す本実施形態に係る油圧ショベル10では、第1モード切換弁33aのみによって、優先モード制御部19及び走行モード制御部52の両者に対するパイロット圧油の供給の有無がコントロールされており、第2モード切換弁33bは設けられていない。
 他の構成は、図2に示す従来技術に基づく油圧ショベル10と図3に示す本実施形態の油圧ショベル10との間で基本的に共通する。
 すなわち油圧ショベル10は、油圧源13、旋回モータ46(第1アクチュエータ11)、アーム用油圧シリンダ68(第2アクチュエータ12)、優先モード制御部19、走行モータ(後述の図4の符号「51」参照)、走行モード制御部52、及びモード切換弁33(すなわち第1モード切換弁33a、第2モード切換弁33b、及び第3モード切換弁33c)を備える。
 旋回モータ46及びアーム用油圧シリンダ68は、油圧源13から供給される作動油によって駆動される。
 油圧源13から旋回モータ46に至る作動油の経路及び油圧源13からアーム用油圧シリンダ68に至る作動油の経路は、共通の油圧回路16を含む。油圧源13から旋回モータ46に至る作動油の経路は、共通の油圧回路16と旋回モータ46との間に設けられる第1個別回路17を更に含む。一方、油圧源13からアーム用油圧シリンダ68に至る作動油の経路は、共通の油圧回路16とアーム用油圧シリンダ68との間に設けられる第2個別回路18を更に含む。図2及び図3に示す例では、共通の油圧回路16から第1個別回路17及び第2個別回路18が分岐し、油圧源13から共通の油圧回路16に供給される作動油は、第1個別回路17及び第2個別回路18に分岐して流入する。
 第1個別回路17には6ポート弁の第1方向切換弁14が設けられ、第2個別回路18には6ポート弁の第2方向切換弁15が設けられている。第1方向切換弁14は、旋回モータ46に向かって作動油を通過させるモード(図示の第1方向切換弁14の左ブロック(逆方向駆動)及び右ブロック(順方向駆動)参照)と、旋回モータ46に向かって作動油を通過させないモード(図示の第1方向切換弁14の真ん中のブロック(中立状態)参照)とを有する。第2方向切換弁15は、アーム用油圧シリンダ68に向かって作動油を通過させるモード(図示の第2方向切換弁15の左ブロック(逆方向駆動)及び右ブロック(順方向駆動)参照)と、アーム用油圧シリンダ68に向かって作動油を通過させないモード(図示の第2方向切換弁15の真ん中のブロック(中立状態)参照)とを有する。このような第1方向切換弁14及び第2方向切換弁15の具体的な構成は特に限定されないが、典型的にはスプール弁によって構成可能である。
 優先モード制御部19は、油圧源13及び共通の油圧回路16からの作動油の供給量に関して、旋回モータ46とアーム用油圧シリンダ68との間で優先度をコントロールする。具体的には、優先モード制御部19は、第2個別回路18の一部の開口面積を変えることができ、パイロット圧油が供給される場合にはパイロット圧油が供給されない場合よりも第2個別回路18の一部の開口面積を小さくし、第2個別回路18における作動油の流路の一部を絞る。これにより共通の油圧回路16からの作動油は、第2個別回路18よりも第1個別回路17に流入しやすくなり、第2個別回路18よりも第1個別回路17の方に優先的に作動油が供給される。
 このような優先モード制御部19による作動油供給量の優先度のコントロールは、パイロット圧油源30から優先モード制御部19へのパイロット圧油の供給の有無に応じて行われる。すなわち優先モード制御部19は、第1パイロット圧油供給回路21を介してパイロット圧油が供給される場合には、パイロット圧油が供給されない場合よりも、共通の油圧回路16から第1個別回路17及び旋回モータ46に供給される作動油の供給量の優先度を高くする。例えば上部フレーム45を旋回させながらバケット49を掘削対象に押しつけてその掘削対象を削ろうとする場合に、旋回モータ46に対する作動油の供給量の優先度を高くすることで、旋回モータ46のパワーを確保して、バケット49によって掘削対象を効率良く削ることができる。
 一方、走行モード制御部52は、パイロット圧油源30からのパイロット圧油に応じて、走行モータの速度をコントロールする。図2に示す従来技術に基づく油圧ショベル10では、走行モード制御部52に対するパイロット圧油の供給の有無が第2モード切換弁33bによってコントロールされる。一方、図3に示す本実施形態の油圧ショベル10では、第1モード切換弁33aによって走行モード制御部52に対するパイロット圧油の供給の有無がコントロールされる。なお、走行モード制御部52にパイロット圧油が供給される場合には走行モータが高速モードで作動し、走行モード制御部52にパイロット圧油が供給されない場合には走行モータが低速モードで作動する。
 モード切換弁33(すなわち第1モード切換弁33a、第2モード切換弁33b及び第3モード切換弁33c)は、ソレノイドにより構成される電磁弁であり、パイロット圧油供給管31を介してパイロット圧油源30に接続され、ドレーン管32を介して圧油ドレーン部34が接続される。
 図2に示す従来技術に基づく油圧ショベル10では、第1パイロット圧油供給回路21が第1モード切換弁33aを介してパイロット圧油供給管31又はドレーン管32に連通され、第2パイロット圧油供給回路22が第2モード切換弁33bを介してパイロット圧油供給管31又はドレーン管32に連通される。一方、図3に示す本実施形態の油圧ショベル10では、第1モード切換弁33aには共通パイロット圧油回路23が接続され、共通パイロット圧油回路23は第1モード切換弁33aを介してパイロット圧油供給管31又はドレーン管32に連通される。共通パイロット圧油回路23からは第1分岐回路36及び第2分岐回路37が分岐し、共通パイロット圧油回路23は、第1分岐回路36を介して優先モード制御部19に接続され、第2分岐回路37を介して走行モード制御部52に接続される。すなわち「優先モード制御部19に接続される第1パイロット圧油供給回路21」及び「走行モード制御部52に接続される第2パイロット圧油供給回路22」の各々の一部が共通パイロット圧油回路23によって構成され、この共通パイロット圧油回路23が第1モード切換弁33aに接続される。
 なお図2及び図3に示す油圧ショベル10のいずれにおいても、第3モード切換弁33cを介して第3パイロット圧油供給回路28がパイロット圧油供給管31又はドレーン管32に連通され、第3モード切換弁33cは第3パイロット圧油供給回路28を介して油圧ロック制御部71に接続されている。油圧ロック制御部71は、各種アクチュエータの停止状態を保持する。油圧ロック制御部71にパイロット圧油が供給される場合、その各種アクチュエータの停止状態の保持が解除され、油圧ロック制御部71にパイロット圧油が供給されない場合、その保持を維持する。
 これらのモード切換弁33(すなわち第1モード切換弁33a、第2モード切換弁33b及び第3モード切換弁33c)を介してパイロット圧油供給管31と連通された第1パイロット圧油供給回路21、第2パイロット圧油供給回路22、共通パイロット圧油回路23及び/又は第3パイロット圧油供給回路28には、パイロット圧油源30からのパイロット圧油が供給される。一方、モード切換弁33(すなわち第1モード切換弁33a、第2モード切換弁33b及び第3モード切換弁33c)を介してドレーン管32と連通された第1パイロット圧油供給回路21、第2パイロット圧油供給回路22、共通パイロット圧油回路23及び/又は第3パイロット圧油供給回路28の流路内のパイロット圧油は、ドレーン管32を介して圧油ドレーン部34に排出される。
 したがって図3に示す本実施形態の第1モード切換弁33aが油圧ショベル10の運転者等によってオンの状態(図3の第1モード切換弁33aの上側ブロック参照)にされると、パイロット圧油供給管31と共通パイロット圧油回路23とがつながれ、パイロット圧油源30及びパイロット圧油供給管31からのパイロット圧油が優先モード制御部19及び走行モード制御部52に送られる。一方、図3に示す本実施形態の第1モード切換弁33aがオフの状態(図3の第1モード切換弁33aの下側ブロック参照)にされると、ドレーン管32と共通パイロット圧油回路23とがつながれ、パイロット圧油供給管31と共通パイロット圧油回路23とのつながりが断たれ、優先モード制御部19及び走行モード制御部52におけるパイロット圧は解放される。
 一方、走行モード制御部52へのパイロット圧油の供給に関し、図2に示す従来技術に基づく油圧ショベル10では、第2モード切換弁33bを介して第2パイロット圧油供給回路22がパイロット圧油供給管31につながれることで、走行モード制御部52がパイロット圧油源30に連通される。それに対して図3に示す本実施形態の油圧ショベル10では、第1モード切換弁33aを介して共通パイロット圧油回路23がパイロット圧油供給管31につながれることで、走行モード制御部52がパイロット圧油源30に連通される。
 このように優先モード制御部19及び走行モード制御部52を制御するためのモード切換弁として、図2に示す従来技術に基づく油圧ショベル10では別個に設けられる第1モード切換弁33a及び第2モード切換弁33bが必要とされるのに対し、図3に示す本実施形態の油圧ショベル10では単一の第1モード切換弁33aのみで足りる。すなわち本実施形態の油圧ショベル10では、第1パイロット圧油供給回路21及び第2パイロット圧油供給回路22が共有の共通パイロット圧油回路23を含み、第1モード切換弁33aが、優先モード制御部19に供給されるパイロット圧油及び走行モード制御部52に供給されるパイロット圧油の両方をコントロールする。このように第1モード切換弁33aは、パイロット圧油源30から共通パイロット圧油回路23へのパイロット圧油の供給のオンオフを切り換える。第1モード切換弁33aを介して共通パイロット圧油回路23にパイロット圧油を供給する場合には、第1パイロット圧油供給回路21及び第2パイロット圧油供給回路22を介し、優先モード制御部19及び走行モード制御部52の両者にパイロット圧油が供給される。一方、第1モード切換弁33aを介して共通パイロット圧油回路23にパイロット圧油を供給しない場合には、優先モード制御部19及び走行モード制御部52の両者にパイロット圧油が供給されない。
 なお、図2及び図3に示す油圧ショベル10では、その他に、第1個別回路17(特に第1方向切換弁14よりも上流側)に第1逆止弁24が設けられ、第2個別回路18(特に第2方向切換弁15よりも上流側)に第2逆止弁25が設けられ、第1個別回路17及び第2個別回路18を流れる作動油の逆流が防がれている。また作動油ドレーン部26が設けられ、旋回モータ46及びアーム用油圧シリンダ68から排出される作動油が作動油ドレーン部26に回収される。
 次に、油圧源13から供給される作動油によって駆動される走行モータの一例について説明する。
 図4は、走行モータ51、走行モード制御部52及び油圧源13の構成例を示すブロック図である。
 上述のようにパイロット圧油源30からのパイロット圧油は、第1モード切換弁33aを介して走行モード制御部52に供給される。本例の走行モード制御部52は、パイロット圧油の供給の有無に応じてモータレギュレータ54を制御し、モータレギュレータ54は、走行モータ51の容量を調整する。
 例えば走行モード制御部52にパイロット圧油が供給されない場合には、走行モータ51の容量を調整する斜板等の部材がモータレギュレータ54により調節されて走行モータ51が大容量化されるように、走行モード制御部52はモータレギュレータ54を制御する。一方、走行モード制御部52にパイロット圧油が供給される場合には、斜板等の部材がモータレギュレータ54により調節されて走行モータ51が小容量化されるように、走行モード制御部52はモータレギュレータ54を制御する。走行モータ51が大容量化されると、走行モータ51は低速モードに移行され、高トルクで低速回転することが可能になる。一方、走行モータ51が小容量化されると、走行モータ51は高速モードに移行され、低トルクで高速回転することが可能になる。
 なお油圧源13から走行モータ51に至る作動油の経路には第3方向切換弁53が設けられている。第3方向切換弁53は、油圧源13から走行モータ51に向かって作動油を通過させるモードと、油圧源13から走行モータ51に向かって作動油を通過させないモードとを有する。したがって、第3方向切換弁53が「油圧源13から走行モータ51に向かって作動油を通過させないモード」にある間は、走行モード制御部52によってコントロールされる走行モードが高速モードであっても低速モードであっても、走行モータ51は作動せず、油圧ショベル10は走行しない。油圧ショベル10を走行させるには、第3方向切換弁53を「油圧源13から走行モータ51に向かって作動油を通過させるモード」に移行する必要がある。
 以上説明したように本実施形態の油圧ショベル10によれば、共通のモード切換弁(すなわち図3に示す第1モード切換弁33a)によって、アクチュエータ間における作動油の供給に関する優先度を適切にコントロールしつつ、走行モードを適切にコントロールでき、構成の簡素化及び低コスト化を効果的に行うことができる。すなわち従来技術に基づく図2に示す油圧ショベル10では、優先モード制御部19用の第1モード切換弁33aに加えて走行モード制御部52用の第2モード切換弁33bを設ける必要があるため、構成が複雑化して製造コストの上昇を招いていたが、本実施形態の油圧ショベル10ではそのような不都合がない。
 また従来技術に基づく図2に示す油圧ショベル10では、走行時には優先モード制御部19用の第1モード切換弁33aが実質的に機能しておらず、また停止時には走行モード制御部52用の第2モード切換弁33bが実質的に機能していなかった。一方、本実施形態の油圧ショベル10では、走行時及び停止時の両者において第1モード切換弁33aが実質的に機能しており、機能的な無駄をなくすことができる。すなわち本実施形態の油圧ショベル10によれば、従来技術に基づく油圧ショベル10では走行時にしか使用されていなかった走行速度切換ソレノイドを用いて、非走行時におけるアクチュエータ(例えばブーム用油圧シリンダ67、アーム用油圧シリンダ68或いはバケット用油圧シリンダ69等)の優先度を変更することができる。このように走行モードの切り換え及びアクチュエータの優先度の切り換えの両方に対して1つのモード切換弁33(すなわち第1モード切換弁33a)を兼用することで、モード切換弁33の数を増やすことなく、作業効率を向上できる。
 なお上述の本実施形態の構成は、モード切換弁33(例えば切換ソレノイド)の追加によるコスト増大の割合が大きい小型の油圧ショベル10に対して特に有効であるが、大型の油圧ショベル10においてもコストを過度に増大させることなく実質的な機能向上及び作業効率の向上を図ることができる。
<第2実施形態>
 本実施形態において、上述の第1実施形態に係る油圧ショベル10と同一又は類似の要素には同一の符号を付し、その詳細な説明は省略する。
 図5は、第2実施形態に係る油圧ショベル10の機能構成の一部を例示する回路図である。なお図5における矢印は、主として、各回路における作動油の流れの方向を示す。
 本実施形態において、第1アクチュエータ11はブーム用油圧シリンダ67であり、第2アクチュエータ12はアーム用油圧シリンダ68であり、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68は共通の油圧源13から供給される作動油によって駆動される。
 油圧源13からブーム用油圧シリンダ67に至る作動油の経路は共通の油圧回路16及び第1個別回路17を含み、油圧源13からアーム用油圧シリンダ68に至る作動油の経路は共通の油圧回路16及び第2個別回路18を含む。したがって、油圧源13からブーム用油圧シリンダ67に至る作動油の経路及び油圧源13からアーム用油圧シリンダ68に至る作動油の経路は共通の油圧回路16を含む。
 優先モード制御部19は、第2個別回路18の一部の開口面積をコントロールし、第1モード切換弁33aからパイロット圧油が供給される場合(図5の優先モード制御部19の上側ブロック参照)には、パイロット圧油が供給されない場合(図5の優先モード制御部19の下側ブロック参照)よりも、第2個別回路18の一部の開口面積を小さくし、第2個別回路18における作動油の流路の一部を絞る。
 優先モード制御部19により第2個別回路18の流路が絞られると、優先モード制御部19により第2個別回路18の流路が絞られない場合に比べ、共通の油圧回路16からの作動油は第2個別回路18よりも第1個別回路17に優先的に流入する。これにより、アーム用油圧シリンダ68よりもブーム用油圧シリンダ67に対して作動油が優先的に供給される。
 一方、第1パイロット圧油供給回路21は共通パイロット圧油回路23及び第1分岐回路36を含み、第2パイロット圧油供給回路22は共通パイロット圧油回路23及び第2分岐回路37を含み、第1パイロット圧油供給回路21及び第2パイロット圧油供給回路22は共有の共通パイロット圧油回路23を含む。
 他の構成は、基本的に上述の第1実施形態に係る油圧ショベル10と同様である。
 例えば、第1個別回路17には第1方向切換弁14が設けられ、第2個別回路18(特に優先モード制御部19とアーム用油圧シリンダ68との間)には第2方向切換弁15が設けられている。ただし本実施形態の第1方向切換弁14は図示のように9ポート弁として構成され、第2方向切換弁15は8ポート弁として構成される。第1方向切換弁14及び第2方向切換弁15の各々に関し、図の真ん中のブロックは中立位置を示し、油圧源13からブーム用油圧シリンダ67及びアーム用油圧シリンダ68に作動油が供給されない状態を示す。したがって、第1方向切換弁14及び第2方向切換弁15の各々が中立位置にある限りは、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68は作動油が供給されず駆動されない。一方、図の右側のブロックは順方向の駆動状態を示し、図の左側のブロックは逆方向の駆動状態を示し、それぞれ油圧源13からブーム用油圧シリンダ67及びアーム用油圧シリンダ68に作動油が供給され、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68が駆動される状態を示す。
 また第1個別回路17(特に第1方向切換弁14よりも上流側)には第1逆止弁24が設けられ、第2個別回路18(特に第2方向切換弁15よりも上流側)には第2逆止弁25が設けられている。
 なお本実施形態の油圧ショベル10では、第1実施形態に係る油圧ショベル10とは異なり、デュアルバイパス方式の2ポンプシステムの油圧源13が用いられている。本実施形態の油圧源13を構成する2つのポンプから吐出された作動油は、アンロード通路57から分岐した供給通路56を通って、第1方向切換弁14及び第2方向切換弁15の各々の手前で合流した後に、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68の各々に供給される。なお図5に示す優先モード制御部19は、一方のポンプから供給される作動油が流れる第2個別回路18に設けられている。また油圧源13を構成する2つのポンプから吐出された作動油は、アンロード通路57にも流される。そして、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68から排出される作動油や、アンロード通路57を経た作動油は、タンク通路58を介して作動油ドレーン部26に排出される。
 以上説明したように本実施形態の油圧ショベル10においても、第1モード切換弁33aが優先モード制御部19及び走行モード制御部52へのパイロット圧油の供給の有無をコントロールし、「ブーム用油圧シリンダ67とアーム用油圧シリンダ68との間における作動油の供給量の優先度に関するモード」及び「走行モード」が切り換えられる。
 例えば、第1モード切換弁33aを介して共通パイロット圧油回路23がパイロット圧油供給管31に接続されると、優先モード制御部19及び走行モード制御部52にパイロット圧油が送られてパイロット圧が付与される。これにより、第2個別回路18の流路が優先モード制御部19により絞られてアーム用油圧シリンダ68よりもブーム用油圧シリンダ67の方に作動油が優先的に供給され、また走行モード制御部52によって走行モータ51が高速モードに切り換えられる。例えば油圧ショベル10によって積み込み作業を行う際には、このようにアーム用油圧シリンダ68よりもブーム用油圧シリンダ67の方を優先する方が好ましい場合がある。
 一方、第1モード切換弁33aを介して共通パイロット圧油回路23がドレーン管32に接続されると、優先モード制御部19及び走行モード制御部52におけるパイロット圧油が第1パイロット圧油供給回路21及び第2パイロット圧油供給回路22を介してドレーン管32に排出される。これにより、第2個別回路18の流路が優先モード制御部19により絞られない状態に復帰してブーム用油圧シリンダ67及びアーム用油圧シリンダ68に均等に作動油が供給され、また走行モード制御部52によって走行モータ51が低速モードに切り換えられる。例えば油圧ショベル10によって水平方向に関する均し作業を行う際には、このようにブーム用油圧シリンダ67をアーム用油圧シリンダ68よりも優先させることなく、ブーム用油圧シリンダ67及びアーム用油圧シリンダ68に均等に作動油を供給することが好ましい場合がある。
 本発明は、上述の実施形態及び変形例に限定されるものではなく、当業者が想到しうる種々の変形が加えられた各種態様も含みうるものであり、本発明によって奏される効果も上述の事項に限定されない。したがって、本発明の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲及び明細書に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。
10 油圧ショベル、11 第1アクチュエータ、12 第2アクチュエータ、13 油圧源、14 第1方向切換弁、15 第2方向切換弁、16 共通の油圧回路、17 第1個別回路、18 第2個別回路、19 優先モード制御部、21 第1パイロット圧油供給回路、22 第2パイロット圧油供給回路、23 共通パイロット圧油回路、24 第1逆止弁、25 第2逆止弁、26 作動油ドレーン部、28 第3パイロット圧油供給回路、30 パイロット圧油源、31 パイロット圧油供給管、32 ドレーン管、33 モード切換弁、33a 第1モード切換弁、33b 第2モード切換弁、33c 第3モード切換弁、34 圧油ドレーン部、36 第1分岐回路、37 第2分岐回路、44 下部フレーム、45 上部フレーム、46 旋回モータ、47 ブーム、48 アーム、49 バケット、51 走行モータ、52 走行モード制御部、53 第3方向切換弁、54 モータレギュレータ、56 供給通路、57 アンロード通路、58 タンク通路、67 ブーム用油圧シリンダ、68 アーム用油圧シリンダ、69 バケット用油圧シリンダ、71 油圧ロック制御部

Claims (11)

  1.  油圧源から供給される作動油によって駆動される第1アクチュエータ及び第2アクチュエータであって、前記油圧源から第1アクチュエータに至る前記作動油の経路及び前記油圧源から第2アクチュエータに至る前記作動油の経路は共通の油圧回路を含む第1アクチュエータ及び第2アクチュエータと、
     前記共通の油圧回路からの前記作動油の供給量に関して前記第1アクチュエータと前記第2アクチュエータとの間で優先度をコントロールする優先モード制御部であって、パイロット圧油源からのパイロット圧油に応じて前記優先度をコントロールする優先モード制御部と、
     前記油圧源から供給される前記作動油によって駆動される走行モータと、
     前記パイロット圧油源からの前記パイロット圧油に応じて、前記走行モータの速度をコントロールする走行モード制御部と、
     前記パイロット圧油源に接続され、第1パイロット圧油供給回路を介して前記優先モード制御部に接続され、第2パイロット圧油供給回路を介して前記走行モード制御部に接続されるモード切換弁であって、前記優先モード制御部に供給される前記パイロット圧油及び前記走行モード制御部に供給される前記パイロット圧油をコントロールするモード切換弁と、を備え、
     前記第1パイロット圧油供給回路及び前記第2パイロット圧油供給回路は、前記モード切換弁に接続される共有の共通パイロット圧油回路を含む建設機械。
  2.  前記モード切換弁は、前記パイロット圧油源から前記共通パイロット圧油回路への前記パイロット圧油の供給のオンオフを切り換え、前記共通パイロット圧油回路に前記パイロット圧油を供給する場合には前記第1パイロット圧油供給回路及び前記第2パイロット圧油供給回路を介して前記優先モード制御部及び前記走行モード制御部の両者に前記パイロット圧油が供給され、前記共通パイロット圧油回路に前記パイロット圧油を供給しない場合には前記優先モード制御部及び前記走行モード制御部の両者に前記パイロット圧油が供給されない請求項1に記載の建設機械。
  3.  前記優先モード制御部は、前記第1パイロット圧油供給回路を介して前記パイロット圧油が供給される場合には、前記パイロット圧油が供給されない場合よりも、前記共通の油圧回路から前記第1アクチュエータに供給される前記作動油の供給量の優先度を高くし、 前記走行モード制御部は、前記第2パイロット圧油供給回路を介して前記パイロット圧油が供給される場合には、前記パイロット圧油が供給されない場合よりも、前記走行モータの速度を速くする請求項1又は2に記載の建設機械。
  4.  前記油圧源から前記第1アクチュエータに至る前記作動油の経路は、前記共通の油圧回路と前記第1アクチュエータとの間に設けられる第1個別回路を含み、
     前記油圧源から前記第2アクチュエータに至る前記作動油の経路は、前記共通の油圧回路と前記第2アクチュエータとの間に設けられる第2個別回路を含み、
     前記優先モード制御部は、前記第2個別回路の一部の開口面積をコントロールし、前記パイロット圧油が供給される場合には前記パイロット圧油が供給されない場合よりも前記第2個別回路の一部の開口面積を小さくし、前記第2個別回路における前記作動油の流路の一部を絞る請求項1~3のいずれか一項に記載の建設機械。
  5.  前記第1個別回路には第1方向切換弁が設けられ、
     前記第2個別回路には第2方向切換弁が設けられ、
     前記第1方向切換弁は、前記第1アクチュエータに向かって前記作動油を通過させるモードと、前記第1アクチュエータに向かって前記作動油を通過させないモードとを有し、 前記第2方向切換弁は、前記第2アクチュエータに向かって前記作動油を通過させるモードと、前記第2アクチュエータに向かって前記作動油を通過させないモードとを有する請求項4に記載の建設機械。
  6.  前記油圧源から前記走行モータに至る前記作動油の経路には第3方向切換弁が設けられ、
     前記第3方向切換弁は、前記走行モータに向かって前記作動油を通過させるモードと、前記走行モータに向かって前記作動油を通過させないモードとを有する請求項1~5のいずれか一項に記載の建設機械。
  7.  前記モード切換弁は、前記パイロット圧油源からの前記パイロット圧油が流れるパイロット圧油供給管、及び前記共通パイロット圧油回路からの前記パイロット圧油が排出されるドレーン管のうちのいずれか一方と、前記共通パイロット圧油回路とを接続する電磁弁である請求項1~6のいずれか一項に記載の建設機械。
  8.  下部フレームと、
     前記下部フレームに対して旋回可能に設けられる上部フレームと、
     前記上部フレームを旋回させる旋回モータと、を備え、
     前記第1アクチュエータは、前記旋回モータを駆動するアクチュエータである請求項1~7のいずれか一項に記載の建設機械。
  9.  前記上部フレームに取り付けられるブーム及びアームを備え、
     前記第2アクチュエータは、前記アームを駆動するアクチュエータである請求項8に記載の建設機械。
  10.  下部フレームと、
     前記下部フレームに設けられる上部フレームと、
     前記上部フレームに取り付けられるブーム及びアームと、を備え、
     前記第1アクチュエータは、前記ブームを駆動するアクチュエータである請求項1~7のいずれか一項に記載の建設機械。
  11.  前記第2アクチュエータは、前記アームを駆動するアクチュエータである請求項10に記載の建設機械。
PCT/JP2017/029988 2016-09-01 2017-08-22 建設機械 WO2018043217A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-171130 2016-09-01
JP2016171130A JP2018035620A (ja) 2016-09-01 2016-09-01 建設機械

Publications (1)

Publication Number Publication Date
WO2018043217A1 true WO2018043217A1 (ja) 2018-03-08

Family

ID=61301761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029988 WO2018043217A1 (ja) 2016-09-01 2017-08-22 建設機械

Country Status (2)

Country Link
JP (1) JP2018035620A (ja)
WO (1) WO2018043217A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176328A (ja) * 1982-04-06 1983-10-15 Kobe Steel Ltd 油圧シヨベルの油圧回路
JPH0633487A (ja) * 1992-07-17 1994-02-08 Yutani Heavy Ind Ltd チルトドーザ装置の操作回路
JP2007064455A (ja) * 2005-09-02 2007-03-15 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2007120222A (ja) * 2005-10-31 2007-05-17 Hitachi Constr Mach Co Ltd ホイール式建設機械
JP2010101448A (ja) * 2008-10-24 2010-05-06 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2010285828A (ja) * 2009-06-12 2010-12-24 Komatsu Ltd 作業機械および作業機械の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176328A (ja) * 1982-04-06 1983-10-15 Kobe Steel Ltd 油圧シヨベルの油圧回路
JPH0633487A (ja) * 1992-07-17 1994-02-08 Yutani Heavy Ind Ltd チルトドーザ装置の操作回路
JP2007064455A (ja) * 2005-09-02 2007-03-15 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2007120222A (ja) * 2005-10-31 2007-05-17 Hitachi Constr Mach Co Ltd ホイール式建設機械
JP2010101448A (ja) * 2008-10-24 2010-05-06 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2010285828A (ja) * 2009-06-12 2010-12-24 Komatsu Ltd 作業機械および作業機械の制御方法

Also Published As

Publication number Publication date
JP2018035620A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
KR101088753B1 (ko) 굴삭기용 유압구동 시스템
JP5669448B2 (ja) 掘削機用油圧駆動システム
JP5564215B2 (ja) 建設機械用油圧システム
JP5528276B2 (ja) 作業機の油圧システム
JP2005331011A (ja) 油圧制御装置
JP2007064455A (ja) 作業機械の油圧制御装置
JP2007218028A (ja) 作業機械の油圧制御装置
EP2799723B1 (en) System for reducing fuel consumption in excavator
JP2010101095A (ja) 作業機械の油圧制御装置
JP2014031827A (ja) 建設機械の油圧回路システム
JP4817974B2 (ja) 建設機械の動力装置
JP2004346485A (ja) 油圧駆動装置
WO2012017622A1 (ja) 油圧回路を有する建設機械
KR100797315B1 (ko) 굴삭기의 주행 및 프론트작업의 복합작업용 유압제어장치
KR102461096B1 (ko) 건설기계의 주행 속도 제어 방법 및 장치
JP7121642B2 (ja) 流体圧制御装置
KR20070069876A (ko) 굴삭기의 복합동작 제어용 유압제어시스템
WO2018043217A1 (ja) 建設機械
JP5429099B2 (ja) 建設機械の油圧回路
WO2017170352A1 (ja) ショベル
JP6694260B2 (ja) 油圧駆動装置
KR102500484B1 (ko) 방향 전환 밸브
JP5429098B2 (ja) 建設機械の油圧回路
JP4260850B2 (ja) 油圧回路
JP5934669B2 (ja) 建設機械の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846222

Country of ref document: EP

Kind code of ref document: A1