WO2017170352A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2017170352A1
WO2017170352A1 PCT/JP2017/012303 JP2017012303W WO2017170352A1 WO 2017170352 A1 WO2017170352 A1 WO 2017170352A1 JP 2017012303 W JP2017012303 W JP 2017012303W WO 2017170352 A1 WO2017170352 A1 WO 2017170352A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic oil
valve
accumulator
boom
Prior art date
Application number
PCT/JP2017/012303
Other languages
English (en)
French (fr)
Inventor
圭二 本田
塚根 浩一郎
英祐 松嵜
匠 伊藤
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2017170352A1 publication Critical patent/WO2017170352A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present invention relates to an excavator provided with an accumulator.
  • the above-described means provides an excavator that can more efficiently use the hydraulic oil flowing out from the bottom oil chamber of the boom cylinder when the boom is lowered.
  • FIG. 1 is a side view showing an excavator (excavator) as a construction machine to which the present invention is applied.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the excavator via a swing mechanism 2.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 as work elements constitute a drilling attachment that is an example of an attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, respectively.
  • the upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as the engine 11 and a controller 30.
  • the controller 30 is a control device as a main control unit that performs drive control of the excavator.
  • the controller 30 includes an arithmetic processing unit that includes a CPU and an internal memory, and realizes various functions by causing the CPU to execute a drive control program stored in the internal memory.
  • the turning hydraulic motor 21 is a hydraulic motor for turning the upper turning body 3, and has ports 21L and 21R.
  • the ports 21L and 21R are connected to the first accumulator 85L via the relief valves 22L and 22R, connected to the hydraulic oil tank T and the first accumulator 85L via the check valves 23L and 23R, and the check valves 24L and 24R.
  • the relief valve 22L opens when the pressure on the port 21L side reaches a predetermined relief pressure, and can discharge the hydraulic oil on the port 21L side to the first accumulator 85L.
  • the relief valve 22R opens when the pressure on the port 21R side reaches a predetermined relief pressure, and can discharge the hydraulic oil on the port 21R side to the first accumulator 85L.
  • the check valve 23L opens when the pressure on the port 21L side becomes lower than the pressure on the opposite side, and can supply hydraulic oil from the hydraulic oil tank T or the first accumulator 85L to the port 21L side.
  • the check valve 23R opens when the pressure on the port 21R side becomes lower than the pressure on the opposite side, and can supply hydraulic oil from the hydraulic oil tank T or the first accumulator 85L to the port 21R side.
  • the check valves 23L and 23R constitute a supply mechanism that can supply hydraulic oil to the suction side port when the hydraulic motor 21 for turning is braked.
  • the check valve 24L opens when the pressure on the port 21L side becomes higher than the pressure on the opposite side, and can supply hydraulic oil to the second accumulator 85H or the regenerative hydraulic motor 14A from the port 21L side.
  • the check valve 24R opens when the pressure on the port 21R side becomes higher than the pressure on the opposite side, and can supply hydraulic oil from the port 21R side to the second accumulator 85H or the regenerative hydraulic motor 14A. In this manner, the check valves 24L and 24R can supply hydraulic oil at the discharge port to at least one of the second accumulator 85H and the regenerative hydraulic motor 14A during braking of the turning hydraulic motor 21.
  • the proportional valve 22G is a valve that controls the flow rate by adjusting the size of the opening in accordance with a command from the controller 30.
  • the proportional valve 22G is a 1-port 2-position electromagnetic proportional valve capable of switching between communication and blocking between the turning hydraulic motor 21 and the second accumulator 85H.
  • the proportional valve 22G can communicate between the turning hydraulic motor 21 and the second accumulator 85H with a maximum opening when in the first position, and can block the communication when in the second position.
  • the regenerative hydraulic motor 14 ⁇ / b> A is a hydraulic motor that assists the engine 11 by regenerating energy of hydraulic oil flowing out from the hydraulic actuator.
  • a swash plate type variable displacement hydraulic motor the discharge side port of which is connected to the hydraulic oil tank T. Therefore, the hydraulic oil discharged by the regeneration hydraulic motor 14A can be returned to the hydraulic oil tank T when the boom is lowered.
  • the regenerative hydraulic motor 14A is connected to a regulator in the same manner as the first pump 14L and the second pump 14R.
  • the regulator changes the swash plate tilt angle of the regenerative hydraulic motor 14A in accordance with a command from the controller 30 to control the displacement of the regenerative hydraulic motor 14A.
  • the regulator may be capable of setting the displacement volume (swash plate tilt angle) of the regeneration hydraulic motor 14A to zero. This is because the hydraulic oil can be rotated without being consumed (sucked and discharged), and the flow of the hydraulic oil passing through the regeneration hydraulic motor 14A can be blocked.
  • the relief valve 90 opens when the pressure of the hydraulic oil in the first accumulator 85L reaches a predetermined relief pressure, and discharges the hydraulic oil to the hydraulic oil tank.
  • a second accumulator 85H is arranged via a switching valve 87 on the upstream side (suction side) of the regeneration hydraulic motor 14A.
  • the second accumulator 85H is a hydraulic device that accumulates hydraulic oil flowing out from the discharge side port of the turning hydraulic motor 21.
  • the accumulation of hydraulic oil is controlled by the proportional valve 22G, and the discharge of hydraulic oil is controlled by the switching valve 87.
  • the working pressure of the second accumulator 85H is higher than the working pressure of the first accumulator 85L, and is, for example, in the range of 15 to 30 MPa.
  • the working pressure of the second accumulator 85H is lower than the relief pressure of the relief valves 22L and 22R.
  • the switching valve 87 is a valve that operates in response to a command from the controller 30.
  • the switching valve 87 is a 1-port 2-position electromagnetic valve that can switch communication / blocking between the second accumulator 85 ⁇ / b> H and the regenerative hydraulic motor 14 ⁇ / b> A. Specifically, the switching valve 87 communicates between the second accumulator 85H and the regenerative hydraulic motor 14A when in the first position, and shuts off the communication when in the second position.
  • each drive shaft is connected to the output shaft of the engine 11 at a predetermined gear ratio via a transmission 13 as a pump drive. That is, the transmission 13 is connected to the output shaft of the engine 11 and the output shaft of the regenerative hydraulic motor 14A, and the power of the engine 11 and the power of the regenerative hydraulic motor 14A are transferred to the first pump 14L and the second pump 14R. Can communicate. Therefore, if the engine speed is constant, each speed is also constant. However, the first pump 14L, the second pump 14R, and the regenerative hydraulic motor 14A are connected to the engine 11 via a continuously variable transmission or the like so that the rotational speed can be changed even if the engine rotational speed is constant. May be.
  • the first pump 14L and the second pump 14R circulate the hydraulic oil to the hydraulic oil tank T via the center bypass pipelines 40L and 40R, the parallel pipelines 42L and 42R, or the return pipelines 43L, 43R and 43C.
  • the center bypass conduit 40L is a hydraulic oil line that passes through the flow control valves 170, 172L, and 173L disposed in the control valve 17.
  • the center bypass conduit 40 ⁇ / b> R is a hydraulic oil line that passes through the flow control valves 171, 172 ⁇ / b> R, and 173 ⁇ / b> R disposed in the control valve 17.
  • the parallel pipeline 42L is a hydraulic oil line parallel to the center bypass pipeline 40L.
  • the parallel pipe line 42L can supply the hydraulic oil to the flow control valve further downstream when the flow of the hydraulic oil passing through the center bypass pipe 40L is restricted or blocked by the flow control valve 170 or the flow control valve 172L.
  • the parallel pipeline 42R is a hydraulic oil line parallel to the center bypass pipeline 40R.
  • the parallel pipe line 42R can supply the hydraulic oil to the downstream flow rate control valve when the flow of the hydraulic oil passing through the center bypass pipe line 40R is restricted or blocked by the flow rate control valve 171 or the flow rate control valve 172R.
  • the return pipeline 43L is a hydraulic oil line parallel to the center bypass pipeline 40L.
  • the return line 43L distributes hydraulic oil flowing from the hydraulic actuator through the flow rate control valves 170, 172L, and 173L to the return line 43C.
  • the return pipeline 43R is a hydraulic oil line parallel to the center bypass pipeline 40R.
  • the return line 43R distributes hydraulic oil flowing from the hydraulic actuator through the flow rate control valves 171, 172R, 173R to the return line 43C.
  • the center bypass pipelines 40L and 40R include negative control throttles 18L and 18R and relief valves 19L and 19R between the hydraulic control tanks T and the flow control valves 173L and 173R located on the most downstream side.
  • the flow of hydraulic oil discharged from the first pump 14L and the second pump 14R is limited by the negative control throttles 18L and 18R.
  • the negative control throttles 18L and 18R generate a control pressure (negative control pressure) for controlling the regulator.
  • the relief valves 19L and 19R are opened when the negative control pressure reaches a predetermined relief pressure, and the hydraulic oil in the center bypass pipes 40L and 40R is discharged to the hydraulic oil tank T.
  • the control valve 17 is a hydraulic control device that controls a hydraulic drive system in the excavator.
  • the control valve 17 mainly includes flow control valves 170, 171, 172L, 172R, 173L, and 173R.
  • the flow control valves 170, 171, 172L, 172R, 173L, and 173R are configured to control the direction and flow rate of the hydraulic oil flowing into and out of the hydraulic actuator.
  • each of the flow control valves 170, 171, 172 L, 172 R, 173 L, and 173 R has a pilot pressure generated by an operating device (not shown) such as a corresponding operating lever.
  • an operating device such as a corresponding operating lever.
  • a three-port, three-position spool valve that receives and operates at the port. The operating device causes the pilot pressure generated according to the operation amount (operation angle) to act on the pilot port on the side corresponding to the operation direction.
  • the flow control valve 170 is a spool valve that controls the direction and flow rate of the hydraulic oil flowing into and out of the turning hydraulic motor 21, and the flow control valve 171 is the hydraulic oil flowing into and out of the bucket cylinder 9.
  • the flow control valves 172L and 172R are spool valves that control the direction and flow rate of the hydraulic oil flowing into and out of the boom cylinder 7, and the flow control valves 173L and 173R are the direction and flow rate of the hydraulic oil flowing into and out of the arm cylinder 8. It is a spool valve that controls.
  • the boom lowering regeneration circuit in the hydraulic circuit of FIG. 2 will be described.
  • the boom lowering regeneration circuit mainly includes a pipe 45, a pipe 46, a proportional valve 70, and a switching valve 71.
  • the pipe line 45 is configured to connect the bottom side oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regenerative hydraulic motor 14A.
  • the pipe 46 is configured to branch from the pipe 45 and connect the pipe 45 and the first accumulator 85L.
  • the proportional valve 70 is configured to control the flow rate by adjusting the size of the opening in accordance with a command from the controller 30.
  • the proportional valve 70 is a 1-port 2-position electromagnetic proportional valve capable of switching communication / blocking between the bottom oil chamber of the boom cylinder 7 and the first accumulator 85 ⁇ / b> L.
  • the proportional valve 70 is provided in the pipe 46. Specifically, when the proportional valve 70 is in the first position, the bottom side oil chamber of the boom cylinder 7 and the first accumulator 85L communicate with each other at the maximum opening, and when in the second position, the proportional valve 70 communicates with the communication. Can be blocked.
  • the switching valve 71 is configured to operate in accordance with a command from the controller 30.
  • the switching valve 71 is an electromagnetic proportional one-port and two-position that can switch communication / blocking between the bottom oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regenerative hydraulic motor 14 ⁇ / b> A. It is a valve.
  • the switching valve 71 is provided in the pipeline 45. Specifically, when the switching valve 71 is in the first position, the switching valve 71 communicates between the bottom side oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regenerative hydraulic motor 14A and is in the second position. In that case, the communication is cut off.
  • the controller 30 When the controller 30 detects that the boom lowering operation has been performed based on the outputs of various sensors, the controller 30 outputs a command to the switching valve 71. Upon receiving the command, the switching valve 71 switches to the first position, and communicates between the bottom oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regeneration hydraulic motor 14A.
  • the controller 30 outputs a command to the regulator of the regeneration hydraulic motor 14A.
  • the regenerative hydraulic motor 14 ⁇ / b> A directly receives hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 and rotates to assist the engine 11.
  • the regenerative hydraulic motor 14A can directly regenerate the hydraulic energy of the hydraulic oil flowing out from the boom cylinder 7 (the potential energy of the boom 4) when the boom is lowered. Therefore, it is possible to save energy by effectively using the energy that was discarded as heat (pressure loss) when the boom is lowered.
  • the hydraulic oil flowing out of the boom cylinder 7 is temporarily stored in the accumulator, and then it is more efficient than indirectly regenerating the hydraulic energy of the hydraulic oil flowing out of the accumulator.
  • the controller 30 may output a command to the proportional valve 70 when the flow rate of the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 exceeds the flow rate acceptable by the regenerative hydraulic motor 14A. .
  • the proportional valve 70 switches to the first position, and communicates between the bottom side oil chamber of the boom cylinder 7 and the first accumulator 85L. Therefore, the first accumulator 85L can accumulate the hydraulic oil that cannot be absorbed by the regenerative hydraulic motor 14A among the hydraulic oil flowing out from the boom cylinder 7 when the boom is lowered. That is, hydraulic oil that cannot be sucked by the regenerative hydraulic motor 14A can be accumulated in the first accumulator 85L.
  • the controller 30 can adjust the pressure of the hydraulic oil in the pipe 45 by adjusting the opening degree of the proportional valve 70 when the boom is lowered. That is, it is possible to adjust the back pressure due to the working oil from the bottom oil chamber of the boom cylinder 7 toward the regeneration hydraulic motor 14A. Therefore, the back pressure that increases due to the response delay of the regenerative hydraulic motor 14A can be adjusted, and the responsiveness and fine operability of the boom operation can be ensured.
  • the controller 30 adjusts the opening degree of the proportional valve 70 to be larger when the boom is lowered, so that the hydraulic oil that flows out from the bottom side oil chamber of the boom cylinder 7. Most of the pressure can be accumulated in the first accumulator 85L. Therefore, it is possible to prevent engine overspeed due to excessive assist.
  • FIG. 3 is a schematic view showing another configuration example of a hydraulic circuit mounted on the excavator of FIG.
  • the hydraulic circuit of FIG. 3 differs from the hydraulic circuit of FIG. 2 mainly in that the control valve 17 includes variable load check valves 51 to 53, a merging valve 55, and unified bleed-off valves 56L and 56R. It is common in. Therefore, description of common parts is omitted, and different parts are described in detail.
  • FIG. 3 clearly shows the regeneration valves 7a, 8a and 9a and the holding valves 7b and 8b.
  • the ports 21L and 21R of the turning hydraulic motor 21 are connected to the hydraulic oil tank T via relief valves 22L and 22R, connected to the proportional valve 22G via a shuttle valve 22S, and via check valves 23L and 23R. And connected to the hydraulic oil tank T.
  • the relief valve 22L is opened when the pressure on the port 21L side reaches a predetermined relief pressure, and the hydraulic oil on the port 21L side can be discharged to the hydraulic oil tank T.
  • the relief valve 22R is opened when the pressure on the port 21R side reaches a predetermined relief pressure, and the hydraulic oil on the port 21R side can be discharged to the hydraulic oil tank T.
  • the proportional valve 22G is configured to operate in accordance with a command from the controller 30.
  • the proportional valve 22 ⁇ / b> G is a 1-port 2-position electromagnetic valve that can switch communication / blocking between the swing hydraulic motor 21 (shuttle valve 22 ⁇ / b> S) and the second accumulator 85 ⁇ / b> H.
  • variable load check valves 51 to 53 are configured to operate in response to a command from the controller 30.
  • the variable load check valves 51 to 53 can switch communication / blocking between each of the flow control valves 171 to 173 and at least one of the first pump 14L and the second pump 14R. It is a solenoid valve at the port 2 position.
  • the variable load check valves 51 to 53 have a check valve that blocks the flow of hydraulic oil returning to the pump side at the first position. Specifically, when the variable load check valve 51 is in the first position, the flow control valve 173 communicates with at least one of the first pump 14L and the second pump 14R and is in the second position. In that case, the communication is cut off. The same applies to the variable load check valve 52 and the variable load check valve 53.
  • the unified bleed-off valves 56L and 56R are configured to operate in response to a command from the controller 30.
  • the unified bleed-off valve 56 ⁇ / b> L is a 1-port 2-position electromagnetic valve that can control the discharge amount of the first hydraulic oil to the hydraulic oil tank T.
  • the unified bleed-off valves 56L and 56R can realize the combined opening of the associated flow control valves among the flow control valves 170 to 173.
  • the unified bleed-off valve 56L when the merging valve 55 is in the second position, the unified bleed-off valve 56L can realize a combined opening of the flow control valve 170 and the flow control valve 173, and the unified bleed-off valve 56R includes the flow control valve 171 and A synthetic opening of the flow control valve 172 can be realized.
  • the unified bleed-off valve 56L functions as a variable throttle that adjusts the opening area of the synthetic opening in accordance with a command from the controller 30 when in the first position, and opens the synthetic opening when in the second position. Cut off. The same applies to the unified bleed-off valve 56R.
  • the check valve 89 shuts off the flow of hydraulic oil flowing out to the hydraulic oil tank T.
  • the check valve 89 can prevent a part of the hydraulic oil flowing from the second accumulator 85H to the regenerative hydraulic motor 14A from flowing out to the hydraulic oil tank T.
  • the check valve 89 does not block the flow of hydraulic oil from the hydraulic oil tank T to the third pump when the regenerative hydraulic motor 14A functions as the third pump.
  • the boom lowering regeneration circuit mainly includes a pipe 45, a pipe 46, a proportional valve 70, and a switching valve 71.
  • the proportional valve 70 is configured to operate in response to a command from the controller 30.
  • the proportional valve 70 is a 1-port 2-position electromagnetic proportional valve capable of switching communication / blocking between the bottom oil chamber of the boom cylinder 7 and the first accumulator 85 ⁇ / b> L.
  • the proportional valve 70 is provided in the pipe 46. Specifically, the proportional valve 70 communicates between the bottom oil chamber of the boom cylinder 7 and the first accumulator 85L when in the first position, and blocks communication when in the second position.
  • the switching valve 71 is configured to operate in accordance with a command from the controller 30.
  • the switching valve 71 is an electromagnetic proportional one-port and two-position capable of switching communication / blocking between the bottom side oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regenerative hydraulic motor 14 ⁇ / b> A. It is a valve.
  • the switching valve 71 is provided in the pipeline 45. Specifically, when the proportional valve 70 is in the first position, it communicates between the bottom side oil chamber of the boom cylinder 7 and the upstream side (suction side) of the regenerative hydraulic motor 14A, and is in the second position. In that case, the communication is cut off.
  • the controller 30 outputs a command to the regulator of the regeneration hydraulic motor 14A.
  • the regenerative hydraulic motor 14 ⁇ / b> A directly receives hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 and rotates to assist the engine 11.
  • the regenerative hydraulic motor 14A can directly regenerate the hydraulic energy of the hydraulic oil flowing out from the boom cylinder 7 (the potential energy of the boom 4) when the boom is lowered. Therefore, it is possible to save energy by effectively using the energy that was discarded as heat (pressure loss) when the boom is lowered.
  • the hydraulic oil flowing out of the boom cylinder 7 is temporarily stored in the accumulator, and then it is more efficient than indirectly regenerating the hydraulic energy of the hydraulic oil flowing out of the accumulator.
  • the controller 30 may output a command to the proportional valve 70 when the flow rate of the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 exceeds the flow rate acceptable by the regenerative hydraulic motor 14A. .
  • the proportional valve 70 switches to the first position, and communicates between the bottom side oil chamber of the boom cylinder 7 and the first accumulator 85L. Therefore, the first accumulator 85L can accumulate the hydraulic oil that cannot be absorbed by the regenerative hydraulic motor 14A among the hydraulic oil flowing out from the boom cylinder 7 when the boom is lowered.
  • the above hydraulic circuit may be mounted on other construction machines such as a forklift and a wheel loader that move up and down by a hydraulic cylinder.
  • Shuttle valve 23L, 23R, 24 , 24R ... check valve 30 ... controller 40L, 40R ... center bypass conduit 42L, 42R ... parallel conduit 43C, 43L, 43R ... return conduit 44, 45, 46 ... Pipe line 50, 51, 52, 53 ... Variable load check valve 55 ... Junction valve 56L, 56R ... Unified bleed-off valve 70 ... Proportional valve 71 ... Switching valve 85L ... First accumulator 85H: Second accumulator 86, 87 ... Switching valve 89 ... Check valve 90 ... Relief valve 170, 171, 172, 172L, 172R, 173, 173L, 173R ... Flow control valve T ..Working oil tank

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本発明の実施例に係るショベルは、油圧ポンプ(14L、14R)と、油圧ポンプ(14L、14R)を駆動するエンジン(11)と、油圧ポンプ(14L、14R)を駆動する可変容量型の回生用油圧モータ(14A)と、エンジン(11)の出力軸と回生用油圧モータ(14A)の出力軸とに接続され、エンジン(11)の動力と回生用油圧モータ(14A)の動力とを油圧ポンプ(14L、14R)に伝達する変速機(13)と、油圧ポンプ(14L、14R)が吐出する作動油が供給されるブームシリンダ(7)と、ブームシリンダ(7)と回生用油圧モータ(14A)とを繋ぐ管路(45)と、管路(45)から分岐する管路(46)と、ブームシリンダ(7)から吐出されて管路(45)及び管路(46)を通って流れる作動油を蓄圧する第1アキュムレータ(85L)と、を備える。

Description

ショベル
 本発明は、アキュムレータを備えたショベルに関する。
 ブーム下げの際にブームシリンダのボトム側油室から流出する作動油の圧力をポンプモータで増大させてアキュムレータに蓄圧するショベルが知られている(特許文献1参照。)。このショベルは、アキュムレータに蓄圧された作動油をブームシリンダのボトム側油室に供給する場合にポンプモータをモータとして作用させる。
特許第5412077号公報
 しかしながら、上述のショベルは、アキュムレータに蓄圧する場合にはポンプモータをポンプとして作用させるため、エンジン負荷を増大させてしまう。
 上述に鑑み、ブーム下げの際にブームシリンダのボトム側油室から流出する作動油をより効率的に利用できるショベルを提供することが望まれる。
 本発明の実施例に係るショベルは、作動油を吐出する油圧ポンプと、前記油圧ポンプを駆動するエンジンと、前記油圧ポンプを駆動する可変容量型の油圧モータと、前記エンジンの出力軸と前記油圧モータの出力軸とに接続され、前記エンジンの動力と前記油圧モータの動力とを前記油圧ポンプに伝達するポンプドライブと、前記油圧ポンプが吐出する作動油が供給されるブーム用油圧アクチュエータと、前記ブーム用油圧アクチュエータと前記油圧モータとを繋ぐ第1管路と、前記第1管路から分岐する第2管路と、前記ブーム用油圧アクチュエータから吐出されて前記第1管路及び前記第2管路を通って流れる作動油を蓄圧するアキュムレータと、を備える。
 上述の手段により、ブーム下げの際にブームシリンダのボトム側油室から流出する作動油をより効率的に利用できるショベルが提供される。
本発明の実施例に係るショベルの側面図である。 図1のショベルに搭載される駆動系の構成例を示す図である。 図1のショベルに搭載される駆動系の別の構成例を示す図である。
 図1は、本発明が適用される建設機械としてのショベル(掘削機)を示す側面図である。ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられている。作業要素としてのブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、キャビン10が設けられ、且つエンジン11等の動力源及びコントローラ30等が搭載される。
 コントローラ30は、ショベルの駆動制御を行う主制御部としての制御装置である。図1の例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成され、内部メモリに格納された駆動制御用のプログラムをCPUに実行させて各種機能を実現する。
 図2は、図1のショベルに搭載される油圧回路の構成例を示す概略図である。図2の例では、油圧回路は、主に、第1ポンプ14L、第2ポンプ14R、回生用油圧モータ14A、コントロールバルブ17、第1アキュムレータ85L、第2アキュムレータ85H、及び油圧アクチュエータを含む。油圧アクチュエータは、主に、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、及び旋回用油圧モータ21を含む。油圧アクチュエータは、左側走行用油圧モータ(図示せず。)及び右側走行用油圧モータ(図示せず。)を含んでいてもよい。
 旋回用油圧モータ21は、上部旋回体3を旋回させる油圧モータであり、ポート21L、21Rを有する。ポート21L、21Rは、リリーフ弁22L、22Rを介して第1アキュムレータ85Lに接続され、チェック弁23L、23Rを介して作動油タンクT及び第1アキュムレータ85Lに接続され、且つ、チェック弁24L、24Rを介して第2アキュムレータ85H及び回生用油圧モータ14Aに接続されている。
 リリーフ弁22Lは、ポート21L側の圧力が所定のリリーフ圧に達した場合に開き、ポート21L側の作動油を第1アキュムレータ85Lに排出できる。リリーフ弁22Rは、ポート21R側の圧力が所定のリリーフ圧に達した場合に開き、ポート21R側の作動油を第1アキュムレータ85Lに排出できる。
 チェック弁23Lは、ポート21L側の圧力が反対側の圧力より低くなった場合に開き、作動油タンクT又は第1アキュムレータ85Lからポート21L側に作動油を補給できる。チェック弁23Rは、ポート21R側の圧力が反対側の圧力より低くなった場合に開き、作動油タンクT又は第1アキュムレータ85Lからポート21R側に作動油を補給できる。このように、チェック弁23L、23Rは、旋回用油圧モータ21の制動時に吸い込み側ポートに作動油を補給できる補給機構を構成する。
 チェック弁24Lは、ポート21L側の圧力が反対側の圧力より高くなった場合に開き、ポート21L側から第2アキュムレータ85H又は回生用油圧モータ14Aに作動油を供給できる。チェック弁24Rは、ポート21R側の圧力が反対側の圧力より高くなった場合に開き、ポート21R側から第2アキュムレータ85H又は回生用油圧モータ14Aに作動油を供給できる。このように、チェック弁24L、24Rは、旋回用油圧モータ21の制動時に吐出側ポートの作動油を第2アキュムレータ85H及び回生用油圧モータ14Aの少なくとも一方に供給できる。
 比例弁22Gは、コントローラ30からの指令に応じて開口の大きさを調整して流量を制御する弁である。図2の例では、比例弁22Gは、旋回用油圧モータ21と第2アキュムレータ85Hとの間の連通・遮断を切り替え可能な1ポート2位置の電磁比例弁である。具体的には、比例弁22Gは、第1位置にある場合に旋回用油圧モータ21と第2アキュムレータ85Hとの間を最大開口で連通させ、第2位置にある場合にその連通を遮断できる。
 第1ポンプ14Lは、作動油タンクTから作動油を吸い込んで吐出する油圧ポンプである。図2の例では斜板式可変容量型油圧ポンプである。また、第1ポンプ14Lはレギュレータ(図示せず。)に接続される。レギュレータは、コントローラ30からの指令に応じて第1ポンプ14Lの斜板傾転角を変更して第1ポンプ14Lの押し退け容積(1回転当たりの吐出量)を制御する。第2ポンプ14Rについても同様である。
 回生用油圧モータ14Aは、油圧アクチュエータから流出する作動油が有するエネルギを回生してエンジン11をアシストする油圧モータである。図2の例では斜板式可変容量型油圧モータであり、その吐出側ポートは作動油タンクTに接続されている。そのため、回生用油圧モータ14Aが吐出した作動油はブーム下げの際に作動油タンクTへ戻され得る。
 回生用油圧モータ14Aは、第1ポンプ14L及び第2ポンプ14Rと同様にレギュレータに接続される。レギュレータは、コントローラ30からの指令に応じて回生用油圧モータ14Aの斜板傾転角を変更して回生用油圧モータ14Aの押し退け容積を制御する。レギュレータは、回生用油圧モータ14Aの押し退け容積(斜板傾転角)をゼロに設定可能であってもよい。作動油を消費(吸い込み及び吐出)することなく回転できるようにするためであり、また、回生用油圧モータ14Aを通過する作動油の流れを遮断できるようにするためである。
 第1アキュムレータ85Lは、ブームシリンダ7が吐出する作動油を蓄積する油圧装置である。図2の例では、第1アキュムレータ85Lは、切替弁86により作動油の蓄積・放出が制御される。また、第1アキュムレータ85Lの使用圧力は、作動油タンクTの作動油の圧力よりも高く、例えば、0.2~5MPaの範囲内とされる。旋回減速時における旋回用油圧モータ21の吸い込み側ポートに確実に作動油を補給してキャビテーションの発生を防止できるようにするためである。また、旋回減速時に旋回用油圧モータ21の吐出側ポートが吐出する作動油が第2アキュムレータ85Hに蓄積されると、吐出側ポートが吐出する作動油が吸い込み側に循環しなくなり、キャビテーションが発生し易くなるためである。
 切替弁86はコントローラ30からの指令に応じて動作する弁である。図2の例では、切替弁86は、第1アキュムレータ85Lと旋回用油圧モータ21との間の連通・遮断を切り替え可能な1ポート2位置の電磁弁である。具体的には、切替弁86は、第1位置にある場合に第1アキュムレータ85Lと旋回用油圧モータ21との間を連通させ、第2位置にある場合にその連通を遮断する。
 リリーフ弁90は、第1アキュムレータ85Lにおける作動油の圧力が所定のリリーフ圧に達した場合に開き、作動油を作動油タンクに排出する。
 回生用油圧モータ14Aの上流側(吸い込み側)には切替弁87を介して第2アキュムレータ85Hが配置される。
 第2アキュムレータ85Hは、旋回用油圧モータ21の吐出側ポートから流出する作動油を蓄積する油圧装置である。図2の例では、第2アキュムレータ85Hは、比例弁22Gにより作動油の蓄積が制御され、且つ、切替弁87により作動油の放出が制御される。また、第2アキュムレータ85Hの使用圧力は、第1アキュムレータ85Lの使用圧力よりも高く、例えば、15~30MPaの範囲内とされる。但し、第2アキュムレータ85Hの使用圧力はリリーフ弁22L、22Rのリリーフ圧より低い。
 切替弁87はコントローラ30からの指令に応じて動作する弁である。図2の例では、切替弁87は、第2アキュムレータ85Hと回生用油圧モータ14Aとの間の連通・遮断を切り替え可能な1ポート2位置の電磁弁である。具体的には、切替弁87は、第1位置にある場合に第2アキュムレータ85Hと回生用油圧モータ14Aとの間を連通させ、第2位置にある場合にその連通を遮断する。
 図2の例では、第1ポンプ14L、第2ポンプ14R、及び回生用油圧モータ14Aは、それぞれの駆動軸が機械的に連結されている。具体的には、それぞれの駆動軸は、ポンプドライブとしての変速機13を介して所定の変速比でエンジン11の出力軸に連結されている。すなわち、変速機13は、エンジン11の出力軸と回生用油圧モータ14Aの出力軸とに接続され、エンジン11の動力と回生用油圧モータ14Aの動力とを第1ポンプ14L、第2ポンプ14Rに伝達できる。そのため、エンジン回転数が一定であれば、それぞれの回転数も一定となる。但し、第1ポンプ14L、第2ポンプ14R、及び回生用油圧モータ14Aは、エンジン回転数が一定であっても回転数を変更できるよう、無段変速機等を介してエンジン11に接続されていてもよい。
 第1ポンプ14L、第2ポンプ14Rは、センターバイパス管路40L、40R、パラレル管路42L、42R、又は、戻り管路43L、43R、43Cを経て作動油タンクTまで作動油を循環させる。
 センターバイパス管路40Lは、コントロールバルブ17内に配置された流量制御弁170、172L、及び173Lを通る作動油ラインである。センターバイパス管路40Rは、コントロールバルブ17内に配置された流量制御弁171、172R、及び173Rを通る作動油ラインである。
 パラレル管路42Lは、センターバイパス管路40Lに並行する作動油ラインである。パラレル管路42Lは、流量制御弁170又は流量制御弁172Lによってセンターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の流量制御弁に作動油を供給できる。パラレル管路42Rは、センターバイパス管路40Rに並行する作動油ラインである。パラレル管路42Rは、流量制御弁171又は流量制御弁172Rによってセンターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の流量制御弁に作動油を供給できる。
 戻り管路43Lは、センターバイパス管路40Lに並行する作動油ラインである。戻り管路43Lは、油圧アクチュエータから流量制御弁170、172L、173Lを通って流れる作動油を戻り管路43Cに流通させる。戻り管路43Rは、センターバイパス管路40Rに並行する作動油ラインである。戻り管路43Rは、油圧アクチュエータから流量制御弁171、172R、173Rを通って流れる作動油を戻り管路43Cに流通させる。
 センターバイパス管路40L、40Rは、最も下流にある流量制御弁173L、173Rのそれぞれと作動油タンクTとの間にネガティブコントロール絞り18L、18R及びリリーフ弁19L、19Rを備える。第1ポンプ14L、第2ポンプ14Rが吐出した作動油の流れは、ネガティブコントロール絞り18L、18Rで制限される。そして、ネガティブコントロール絞り18L、18Rは、レギュレータを制御するための制御圧(ネガコン圧)を発生させる。リリーフ弁19L、19Rは、ネガコン圧が所定のリリーフ圧に達した場合に開き、センターバイパス管路40L、40Rの作動油を作動油タンクTに排出する。
 戻り管路43Cの最下流にはバネ付きチェック弁20が設置されている。バネ付きチェック弁20は、旋回用油圧モータ21と戻り管路43Cとを繋ぐ管路44内の作動油の圧力を高める機能を果たす。この構成により、旋回減速時における旋回用油圧モータ21の吸い込み側ポートに確実に作動油を補給してキャビテーションの発生を防止できる。
 コントロールバルブ17は、ショベルにおける油圧駆動系の制御を行う油圧制御装置である。コントロールバルブ17は、主に、流量制御弁170、171、172L、172R、173L、及び173Rを含む。
 流量制御弁170、171、172L、172R、173L、及び173Rは、油圧アクチュエータに流出入する作動油の向き及び流量を制御するように構成されている。図2の例では、流量制御弁170、171、172L、172R、173L、及び173Rのそれぞれは、対応する操作レバー等の操作装置(図示せず。)が生成するパイロット圧を左右何れかのパイロットポートで受けて動作する3ポート3位置のスプール弁である。操作装置は、操作量(操作角度)に応じて生成したパイロット圧を、操作方向に対応する側のパイロットポートに作用させる。
 具体的には、流量制御弁170は、旋回用油圧モータ21に流出入する作動油の向き及び流量を制御するスプール弁であり、流量制御弁171は、バケットシリンダ9に流出入する作動油の向き及び流量を制御するスプール弁である。
 流量制御弁172L、172Rは、ブームシリンダ7に流出入する作動油の向き及び流量を制御するスプール弁であり、流量制御弁173L、173Rは、アームシリンダ8に流出入する作動油の向き及び流量を制御するスプール弁である。
 ここで、図2の油圧回路におけるブーム下げ回生回路について説明する。ブーム下げ回生回路は、主に、管路45、管路46、比例弁70、及び切替弁71を含む。
 管路45は、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)とを繋ぐように構成されている。管路46は、管路45から分岐して管路45と第1アキュムレータ85Lとを繋ぐように構成されている。
 比例弁70は、コントローラ30からの指令に応じて開口の大きさを調整して流量を制御するように構成されている。図2の例では、比例弁70は、ブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間の連通・遮断を切り替え可能な1ポート2位置の電磁比例弁である。比例弁70は、管路46に設けられている。具体的には、比例弁70は、第1位置にある場合にブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間を最大開口で連通させ、第2位置にある場合にその連通を遮断できる。
 切替弁71は、コントローラ30からの指令に応じて動作するように構成されている。図2の例では、切替弁71は、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間の連通・遮断を切り替え可能な1ポート2位置の電磁比例弁である。切替弁71は、管路45に設けられている。具体的には、切替弁71は、第1位置にある場合にブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間を連通させ、第2位置にある場合にその連通を遮断する。
 コントローラ30は、各種センサの出力に基づいてブーム下げ操作が行われたことを検知すると、切替弁71に指令を出力する。指令を受けた切替弁71は第1位置に切り替わり、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間を連通させる。
 また、コントローラ30は、回生用油圧モータ14Aのレギュレータに指令を出力する。回生用油圧モータ14Aは、ブームシリンダ7のボトム側油室から流出する作動油を直接受け入れて回転し、エンジン11をアシストする。
 このようにして、回生用油圧モータ14Aは、ブーム下げの際にブームシリンダ7から流出する作動油の油圧エネルギ(ブーム4の位置エネルギ)を直接的に回生できる。そのため、ブーム下げの際に熱(圧損)として捨てられていたエネルギを有効に利用して省エネ化を図ることができる。また、ブームシリンダ7から流出する作動油がアキュムレータに一時的に蓄圧された後でアキュムレータから流出する作動油の油圧エネルギを間接的に回生する場合に比べて効率的である。
 また、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の流量が、回生用油圧モータ14Aが受け入れ可能な流量を上回る場合、比例弁70に対して指令を出力してもよい。指令を受けた比例弁70は第1位置に切り替わり、ブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間を連通させる。そのため、第1アキュムレータ85Lは、ブーム下げの際にブームシリンダ7から流出する作動油のうち、回生用油圧モータ14Aで吸収しきれない作動油を蓄圧できる。すなわち、回生用油圧モータ14Aが吸いきれない作動油を第1アキュムレータ85Lに蓄圧できる。
 また、コントローラ30は、ブーム下げの際に比例弁70の開度を調整することで、管路45内の作動油の圧力を調整できる。すなわち、ブームシリンダ7のボトム側油室から回生用油圧モータ14Aに向かう作動油による背圧を調整できる。そのため、回生用油圧モータ14Aの応答遅れに起因して増大する背圧を調整でき、ブーム操作の即応性及び微操作性を確保できる。
 また、コントローラ30は、エンジン11をアシストする必要がない場合には、ブーム下げの際に比例弁70の開度を大きめに調整することで、ブームシリンダ7のボトム側油室から流出する作動油の大部分を第1アキュムレータ85Lに蓄圧できる。そのため、過度のアシストによるエンジンの過回転を防止できる。
 次に図3を参照し、図1のショベルに搭載される油圧回路の別の構成例について説明する。図3は、図1のショベルに搭載される油圧回路の別の構成例を示す概略図である。図3の油圧回路は、主に、コントロールバルブ17が可変ロードチェック弁51~53、合流弁55、及び統一ブリードオフ弁56L、56Rを含む点で図2の油圧回路と異なるが、その他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。図3は、再生弁7a、8a、9aと、保持弁7b、8bとを明示している。
 旋回用油圧モータ21のポート21L、21Rは、リリーフ弁22L、22Rを介して作動油タンクTに接続され、シャトル弁22Sを介して比例弁22Gに接続され、且つ、チェック弁23L、23Rを介して作動油タンクTに接続されている。
 リリーフ弁22Lは、ポート21L側の圧力が所定のリリーフ圧に達した場合に開き、ポート21L側の作動油を作動油タンクTに排出できる。リリーフ弁22Rは、ポート21R側の圧力が所定のリリーフ圧に達した場合に開き、ポート21R側の作動油を作動油タンクTに排出できる。
 シャトル弁22Sは、ポート21L側及びポート21R側のうちの圧力が高い方の作動油を比例弁22Gに供給できる。
 比例弁22Gは、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、比例弁22Gは、旋回用油圧モータ21(シャトル弁22S)と第2アキュムレータ85Hとの間の連通・遮断を切り替え可能な1ポート2位置の電磁弁である。
 チェック弁23Lは、ポート21L側の圧力が反対側の圧力より低くなった場合に開き、作動油タンクT又は第1アキュムレータ85Lからポート21L側に作動油を補給できる。チェック弁23Rは、ポート21R側の圧力が反対側の圧力より低くなった場合に開き、作動油タンクT又は第1アキュムレータ85Lからポート21R側に作動油を補給できる。このように、チェック弁23L、23Rは、旋回用油圧モータ21の制動時に吸い込み側ポートに作動油を補給できる補給機構を構成する。
 可変ロードチェック弁51~53は、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、可変ロードチェック弁51~53は、流量制御弁171~173のそれぞれと第1ポンプ14L及び第2ポンプ14Rのうちの少なくとも一方との間の連通・遮断を切り替え可能な1ポート2位置の電磁弁である。可変ロードチェック弁51~53は、第1位置において、ポンプ側に戻る作動油の流れを遮断するチェック弁を有する。具体的には、可変ロードチェック弁51は、第1位置にある場合に流量制御弁173と第1ポンプ14L及び第2ポンプ14Rのうちの少なくとも一方との間を連通させ、第2位置にある場合にその連通を遮断する。可変ロードチェック弁52及び可変ロードチェック弁53についても同様である。
 合流弁55は、合流切替部の一例であり、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、合流弁55は、第1ポンプ14Lが吐出する作動油(以下、「第1作動油」とする。)と第2ポンプ14Rが吐出する作動油(以下、「第2作動油」とする。)とを合流させるか否かを切り替え可能な1ポート2位置の電磁弁である。具体的には、合流弁55は、第1位置にある場合に第1作動油と第2作動油とを合流させ、第2位置にある場合に第1作動油と第2作動油とを合流させないようにする。
 統一ブリードオフ弁56L、56Rは、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、統一ブリードオフ弁56Lは、第1作動油の作動油タンクTへの排出量を制御可能な1ポート2位置の電磁弁である。統一ブリードオフ弁56Rについても同様である。この構成により、統一ブリードオフ弁56L、56Rは、流量制御弁170~173のうちの関連する流量制御弁の合成開口を実現できる。具体的には、合流弁55が第2位置にある場合に、統一ブリードオフ弁56Lは流量制御弁170及び流量制御弁173の合成開口を実現でき、統一ブリードオフ弁56Rは流量制御弁171及び流量制御弁172の合成開口を実現できる。また、統一ブリードオフ弁56Lは、第1位置にある場合にコントローラ30からの指令に応じてその合成開口の開口面積を調整する可変絞りとして機能し、第2位置にある場合にその合成開口を遮断する。統一ブリードオフ弁56Rについても同様である。
 可変ロードチェック弁51~53、合流弁55、及び統一ブリードオフ弁56L、56Rのそれぞれは、パイロット圧駆動のスプール弁であってもよい。
 チェック弁89は作動油タンクTに流出する作動油の流れを遮断する。図3の例では、チェック弁89は第2アキュムレータ85Hから回生用油圧モータ14Aへ流れる作動油の一部が作動油タンクTに流出するのを防止できる。チェック弁89は、回生用油圧モータ14Aが第3ポンプとして機能する場合には、作動油タンクTから第3ポンプへの作動油の流れを遮断しない。
 ここで、図3の油圧回路におけるブーム下げ回生回路について説明する。ブーム下げ回生回路は、主に、管路45、管路46、比例弁70、及び切替弁71を含む。
 管路45は、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)とを繋ぐように構成されている。管路46は、管路45と第1アキュムレータ85Lとを繋ぐように構成されている。
 比例弁70は、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、比例弁70は、ブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間の連通・遮断を切り替え可能な1ポート2位置の電磁比例弁である。比例弁70は、管路46に設けられている。具体的には、比例弁70は、第1位置にある場合にブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間を連通させ、第2位置にある場合にその連通を遮断する。
 切替弁71は、コントローラ30からの指令に応じて動作するように構成されている。図3の例では、切替弁71は、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間の連通・遮断を切り替え可能な1ポート2位置の電磁比例弁である。切替弁71は、管路45に設けられている。具体的には、比例弁70は、第1位置にある場合にブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間を連通させ、第2位置にある場合にその連通を遮断する。
 コントローラ30は、各種センサの出力に基づいてブーム下げ操作が行われたことを検知すると、切替弁71に指令を出力する。指令を受けた切替弁71は第1位置に切り替わり、ブームシリンダ7のボトム側油室と回生用油圧モータ14Aの上流側(吸い込み側)との間を連通させる。
 また、コントローラ30は、回生用油圧モータ14Aのレギュレータに指令を出力する。回生用油圧モータ14Aは、ブームシリンダ7のボトム側油室から流出する作動油を直接受け入れて回転し、エンジン11をアシストする。
 このようにして、回生用油圧モータ14Aは、ブーム下げの際にブームシリンダ7から流出する作動油の油圧エネルギ(ブーム4の位置エネルギ)を直接的に回生できる。そのため、ブーム下げの際に熱(圧損)として捨てられていたエネルギを有効に利用して省エネ化を図ることができる。また、ブームシリンダ7から流出する作動油がアキュムレータに一時的に蓄圧された後でアキュムレータから流出する作動油の油圧エネルギを間接的に回生する場合に比べて効率的である。
 また、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油の流量が、回生用油圧モータ14Aが受け入れ可能な流量を上回る場合、比例弁70に対して指令を出力してもよい。指令を受けた比例弁70は第1位置に切り替わり、ブームシリンダ7のボトム側油室と第1アキュムレータ85Lとの間を連通させる。そのため、第1アキュムレータ85Lは、ブーム下げの際にブームシリンダ7から流出する作動油のうち、回生用油圧モータ14Aで吸収しきれない作動油を蓄圧できる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはない。上述した実施例には、本発明の範囲を逸脱することなしに種々の変形及び置換が適用され得る。
 例えば、上述の油圧回路は、油圧シリンダにより上下運動を行うフォークリフト、ホイールローダ等の他の建設機械に搭載されてもよい。
 本願は、2016年3月29日に出願した日本国特許出願2016-066693号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 7a、8a、9a・・・再生弁 7b、8b・・・保持弁 10・・・キャビン 11・・・エンジン 13・・・変速機 14L・・・第1ポンプ 14R・・・第2ポンプ 14A・・・回生用油圧モータ 17・・・コントロールバルブ 18L、18R・・・ネガティブコントロール絞り 19L、19R・・・リリーフ弁 20・・・バネ付きチェック弁 21・・・旋回用油圧モータ 21L、21R・・・ポート 22G・・・比例弁 22L、22R・・・リリーフ弁 22S・・・シャトル弁 23L、23R、24L、24R・・・チェック弁 30・・・コントローラ 40L、40R・・・センターバイパス管路 42L、42R・・・パラレル管路 43C、43L、43R・・・戻り管路 44、45、46・・・管路 50、51、52、53・・・可変ロードチェック弁 55・・・合流弁 56L、56R・・・統一ブリードオフ弁 70・・・比例弁 71・・切替弁 85L・・・第1アキュムレータ 85H・・・第2アキュムレータ 86、87・・・切替弁 89・・・チェック弁 90・・・リリーフ弁 170、171、172、172L、172R、173、173L、173R・・・流量制御弁 T・・・作動油タンク

Claims (5)

  1.  作動油を吐出する油圧ポンプと、
     前記油圧ポンプを駆動するエンジンと、
     前記油圧ポンプを駆動する可変容量型の油圧モータと、
     前記エンジンの出力軸と前記油圧モータの出力軸とに接続され、前記エンジンの動力と前記油圧モータの動力とを前記油圧ポンプに伝達するポンプドライブと、
     前記油圧ポンプが吐出する作動油が供給されるブーム用油圧アクチュエータと、
     前記ブーム用油圧アクチュエータと前記油圧モータとを繋ぐ第1管路と、
     前記第1管路から分岐する第2管路と、
     前記ブーム用油圧アクチュエータから吐出されて前記第1管路及び前記第2管路を通って流れる作動油を蓄圧するアキュムレータと、を備える、
     ショベル。
  2.  ブーム下げの際に前記ブーム用油圧アクチュエータから吐出される作動油を直接的に前記油圧モータへ供給し、且つ、前記第1管路及び前記第2管路を介して前記アキュムレータに蓄圧する、
     請求項1に記載のショベル。
  3.  前記アキュムレータに蓄圧された作動油は、旋回減速時に旋回用油圧アクチュエータの吸い込み側ポートへ供給される、
     請求項1に記載のショベル。
  4.  旋回減速時に旋回用油圧アクチュエータの吐出側ポートから吐出される作動油を蓄圧する別のアキュムレータを備える、
     請求項1に記載のショベル。
  5.  前記油圧モータが吐出した作動油は、ブーム下げの際に作動油タンクへ戻される、
     請求項1に記載のショベル。
PCT/JP2017/012303 2016-03-29 2017-03-27 ショベル WO2017170352A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066693A JP2019094608A (ja) 2016-03-29 2016-03-29 ショベル
JP2016-066693 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170352A1 true WO2017170352A1 (ja) 2017-10-05

Family

ID=59964452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012303 WO2017170352A1 (ja) 2016-03-29 2017-03-27 ショベル

Country Status (2)

Country Link
JP (1) JP2019094608A (ja)
WO (1) WO2017170352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025170A1 (ja) * 2019-08-08 2021-02-11 住友重機械工業株式会社 ショベル
WO2021256059A1 (ja) * 2020-06-17 2021-12-23 日立建機株式会社 建設機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084888A (ja) * 2008-10-01 2010-04-15 Caterpillar Japan Ltd 油圧式作業機械の動力回生機構
JP2010121726A (ja) * 2008-11-20 2010-06-03 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP2015105686A (ja) * 2013-11-29 2015-06-08 コベルコ建機株式会社 油圧作業機械
JP2015172400A (ja) * 2014-03-11 2015-10-01 住友重機械工業株式会社 ショベル
JP2015222099A (ja) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 油圧回生装置及びこれを備えた建設機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084888A (ja) * 2008-10-01 2010-04-15 Caterpillar Japan Ltd 油圧式作業機械の動力回生機構
JP2010121726A (ja) * 2008-11-20 2010-06-03 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP2015105686A (ja) * 2013-11-29 2015-06-08 コベルコ建機株式会社 油圧作業機械
JP2015172400A (ja) * 2014-03-11 2015-10-01 住友重機械工業株式会社 ショベル
JP2015222099A (ja) * 2014-05-22 2015-12-10 株式会社神戸製鋼所 油圧回生装置及びこれを備えた建設機械

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025170A1 (ja) * 2019-08-08 2021-02-11 住友重機械工業株式会社 ショベル
WO2021256059A1 (ja) * 2020-06-17 2021-12-23 日立建機株式会社 建設機械
JPWO2021256059A1 (ja) * 2020-06-17 2021-12-23
US20230085648A1 (en) * 2020-06-17 2023-03-23 Hitachi Construction Machinery Co., Ltd. Construction Machine
JP7324370B2 (ja) 2020-06-17 2023-08-09 日立建機株式会社 建設機械
US11946224B2 (en) 2020-06-17 2024-04-02 Hitachi Construction Machinery Co., Ltd. Construction machine

Also Published As

Publication number Publication date
JP2019094608A (ja) 2019-06-20

Similar Documents

Publication Publication Date Title
KR102483963B1 (ko) 쇼벨 및 쇼벨의 구동방법
JP5412077B2 (ja) 油圧式作業機械の動力回生機構
JP5528276B2 (ja) 作業機の油圧システム
JP6302772B2 (ja) 建設機械の油圧システム
JP6941517B2 (ja) 建設機械の油圧駆動システム
US10604916B2 (en) Shovel
JP6891079B2 (ja) 建設機械の油圧駆動システム
JP6013503B2 (ja) 建設機械
WO2015151895A1 (ja) 油圧システム及び作業機
WO2017170352A1 (ja) ショベル
JP2015172400A (ja) ショベル
WO2017170256A1 (ja) ショベル
WO2017164169A1 (ja) ショベル及びショベル用コントロールバルブ
JP6282523B2 (ja) 作業機械
JP6522386B2 (ja) ショベル
JP6999320B2 (ja) ショベル
JP6896528B2 (ja) ショベル
JP4260850B2 (ja) 油圧回路
JP2015172393A (ja) ショベル
JP2015172396A (ja) ショベル
JP6615868B2 (ja) ショベルおよびショベルの駆動方法
JP2015172397A (ja) ショベル
JP2015172398A (ja) ショベル
KR20110072706A (ko) 굴삭기의 암과 버킷의 유압회로
JP2015172395A (ja) ショベル

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774889

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP