WO2018030140A1 - 撮像素子、製造方法、および電子機器 - Google Patents

撮像素子、製造方法、および電子機器 Download PDF

Info

Publication number
WO2018030140A1
WO2018030140A1 PCT/JP2017/026768 JP2017026768W WO2018030140A1 WO 2018030140 A1 WO2018030140 A1 WO 2018030140A1 JP 2017026768 W JP2017026768 W JP 2017026768W WO 2018030140 A1 WO2018030140 A1 WO 2018030140A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive member
sensor substrate
adhesive
region
pixel region
Prior art date
Application number
PCT/JP2017/026768
Other languages
English (en)
French (fr)
Inventor
佳明 桝田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2018532920A priority Critical patent/JPWO2018030140A1/ja
Priority to US16/322,307 priority patent/US10748947B2/en
Priority to KR1020197003594A priority patent/KR102455438B1/ko
Priority to CN201780047068.7A priority patent/CN109952647B/zh
Publication of WO2018030140A1 publication Critical patent/WO2018030140A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present disclosure relates to an imaging device, a manufacturing method, and an electronic device, and more particularly, to an imaging device, a manufacturing method, and an electronic device that can have better characteristics.
  • WCSP Wafer Level Chip Size Package
  • a process of bonding a silicon substrate and a glass substrate is performed, but it is necessary to appropriately perform the bonding structure.
  • Patent Document 1 for the purpose of improving moisture resistance, a transparent member smaller than a solid-state image sensor is bonded to the light-receiving surface side of the solid-state image sensor via a transparent adhesive.
  • An optical device having a structure in which the outer periphery is sealed with a sealing resin is disclosed.
  • Patent Document 2 for the purpose of improving moisture resistance, a glass wafer larger than the imaging chip is bonded to the light receiving surface side of the imaging chip via an adhesive, and the outermost periphery of the imaging chip and the adhesive is sealed.
  • An imaging apparatus having a structure sealed with a member is disclosed.
  • Patent Documents 1 and 2 conventionally, various techniques have been developed for bonding the silicon substrate and the glass substrate. However, the development of a technique capable of further improving the characteristics. Is required.
  • the present disclosure has been made in view of such a situation, and is intended to provide better characteristics.
  • An imaging device includes a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array, and a transparent sealing member that seals the surface of the sensor substrate on the effective pixel region side
  • the sensor substrate and the sealing member in a region including at least the effective pixel region, and the sensor in an outer peripheral region that is outside the effective pixel region when viewed in plan.
  • Product of the perimeter adhesive force and the adhesive area bonded in the outer peripheral region is the adhesive force per unit area by the first adhesive member in the effective pixel region and the effective pixel region. It is set to be larger than the product of the bonding area to be bonded in.
  • a manufacturing method includes a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array, and a transparent sealing member that seals the surface of the sensor substrate on the effective pixel region side
  • the sensor substrate and the sealing member in a region including at least the effective pixel region, and the sensor in an outer peripheral region that is outside the effective pixel region when viewed in plan.
  • Product of the perimeter adhesive force and the adhesive area bonded in the outer peripheral region is the adhesive force per unit area by the first adhesive member in the effective pixel region and the effective pixel region.
  • the second adhesive member is formed on one of the sensor substrate and the sealing member so as to have a discontinuous portion in the outer peripheral region, and the region where the second adhesive member is formed Forming the first adhesive member over the entire surface, and bonding the sensor substrate and the sealing member with the first adhesive member and the second adhesive member.
  • the second adhesive member is formed so as to be arranged in a region other than the location that becomes the chip end of the image pickup device in the outer peripheral region, Forming the first adhesive member in a region other than the region where the second adhesive member is formed, and joining the sensor substrate and the sealing member by the first adhesive member and the second adhesive member; A step of dicing at a position to be a chip end of the image sensor.
  • An electronic apparatus includes a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array, and a transparent sealing member that seals the surface of the sensor substrate on the effective pixel region side
  • the sensor substrate and the sealing member in a region including at least the effective pixel region, and the sensor in an outer peripheral region that is outside the effective pixel region when viewed in plan.
  • the product of the adhesive force per area and the adhesive area bonded in the outer peripheral region is the adhesive force per unit area by the first adhesive member in the effective pixel region and the effective pixel region.
  • An imaging element is set larger than the product of the bonding area to be bonded in.
  • a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array, a transparent sealing member that seals a surface of the sensor substrate on the effective pixel region side, and at least effective A first adhesive member that adheres the sensor substrate and the sealing member in a region including the pixel region, and a sensor substrate and the sealing member in an outer peripheral region that is outside the effective pixel region when viewed in plan, A second adhesive member having higher rigidity than the first adhesive member.
  • the product of the adhesive force per unit area by the first adhesive member and the second adhesive member in the outer peripheral region and the adhesive area bonded in the outer peripheral region is the unit area by the first adhesive member in the effective pixel region. It is set to be larger than the product of the per-bonding force and the bonding area bonded in the effective pixel region.
  • FIG. It is a figure explaining the manufacturing method of the image pick-up element shown in FIG. It is a figure which shows the 2nd modification of the image pick-up element shown in FIG. It is a figure which shows the 5th structural example of an image pick-up element. It is a figure which expands and shows a pad opening part. It is a figure explaining the manufacturing method of the image pick-up element shown in FIG. It is a figure which shows the modification of the image pick-up element shown in FIG. It is a figure explaining the manufacturing method of the image pick-up element shown in FIG. It is a figure which shows the cross-sectional modification of a pad opening part. It is a figure which shows the modification of the planar shape of a pad opening part. It is a figure which shows the modification of the vicinity of a pad opening part. It is a block diagram which shows the structural example of an imaging device. It is a figure which shows the usage example which uses an image sensor.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of an image sensor to which the present technology is applied.
  • FIG. 1A shows a planar configuration example of the image sensor 11
  • FIG. 1B shows a cross-sectional configuration example of the image sensor 11.
  • the imaging device 11 is configured by laminating a support substrate 12, a sensor substrate 13, a seal resin 14, a reinforcing resin 15, and a sealing glass 16 in order from the bottom.
  • the imaging element 11 is a backside illumination in which light is irradiated to the effective pixel region 17 provided on the backside (upper side in FIG. 1B) facing the opposite side to the surface of the semiconductor layer constituting the sensor substrate 13.
  • Type CMOS Complementary Metal Oxide Semiconductor
  • the support substrate 12 is bonded to the surface of the sensor substrate 13 to be thin-film processed from the back side, and supports the sensor substrate 13.
  • the support substrate 12 may be formed with a signal processing circuit that performs signal processing on the pixel signal output from the sensor substrate 13.
  • the sensor substrate 13 is formed with pixels made of photodiodes, transistors, and the like, and a plurality of pixels are arranged in an array in the effective pixel region 17.
  • the effective pixel area 17 of the sensor substrate 13 is an area where pixels effective for use in image construction when an image is picked up by the image sensor 11 are arranged.
  • the sealing resin 14 is an adhesive member for adhering the sensor substrate 13 and the sealing glass 16 at least in a region including the effective pixel region 17.
  • a resin material giving priority to optical characteristics is selected for the seal resin 14 so that the effective pixel region 17 can receive light incident on the image sensor 11 satisfactorily.
  • the reinforcing resin 15 adheres the sensor substrate 13 and the sealing glass 16 in an outer region outside the effective pixel region 17 when the imaging device 11 is viewed in a plan view. It is an adhesive member.
  • a resin material having a rigidity higher than that of the sealing resin 14 is selected as the reinforcing resin 15 in order to reinforce the bonding strength between the sensor substrate 13 and the sealing glass 16.
  • the outer region is a region outside the effective pixel region 17 and includes the chip end of the image sensor 11.
  • the reinforcing resins 15-1 and 15-2 are disposed in a region including the chip end of the imaging element 11 in the outer region and are formed to have discontinuous portions. Is done.
  • the reinforcing resins 15-1 and 15-2-2 are independent (so as not to be continuous) and extend along two opposite sides when the image pickup device 11 is viewed in plan. Formed as follows.
  • the sealing resin 14 and the reinforcing resin 15 for example, any of a siloxane resin, an acrylic resin, and an epoxy resin can be used.
  • the sensor substrate 13 and the sealing glass 16 are bonded using an inorganic film such as SiO (silicon oxide) or SiN (silicon nitride) instead of the organic resin as the sealing resin 14 and the reinforcing resin 15. It is good also as a structure.
  • only the sealing resin 14 may be replaced with an inorganic film, only the reinforcing resin 15 may be replaced with an inorganic film, or both the sealing resin 14 and the reinforcing resin 15 may be replaced with an inorganic film. Good.
  • the sealing glass 16 is a transparent member for sealing the effective pixel region 17 of the sensor substrate 13 and air-tightly molding it.
  • transmits as the sealing glass 16, and you may employ
  • the seal resin 14 and the reinforcing resins 15-1 and 15-2 have an adhesive force per unit area by the seal resin 14 and the reinforcing resins 15-1 and 15-2 in the outer peripheral region.
  • the product of the adhesion area in the outer peripheral region is set larger than the product of the adhesion force per unit area by the seal resin 14 in the effective pixel region 17 and the adhesion area in the effective pixel region 17.
  • the image pickup device 11 can satisfactorily bond the sensor substrate 13 and the sealing glass 16 by the sealing resin 14 and the reinforcing resins 15-1 and 15-2.
  • the image pickup element 11 eliminates the trade-off between the characteristics by selecting the resin material giving priority to the optical characteristics as the seal resin 14 and selecting the resin material giving priority to the peel resistance strength as the reinforcing resin 15. Each resin material can be easily selected. By making such a selection, the effective pixel region 17 of the sensor substrate 13 can receive light well, and the peeling of the sealing glass 16 from the sensor substrate 13 can be reliably suppressed. In other words, the image pickup device 11 can have better light receiving characteristics and peeling characteristics than conventional ones. Thereby, the image pick-up element 11 has higher imaging capability and reliability.
  • the sealing resin 14 is applied as compared with a configuration in which the reinforcing resin 15 is continuously formed. It is possible to reduce uneven coating. Thereby, the characteristics of the image sensor 11 can be further improved.
  • the image sensor 11 can avoid the seal resin 14 from having a convex shape or a concave shape, and can increase the yield.
  • the imaging element 11 has a structure in which moisture that has entered inside during the manufacturing process can easily escape to the outside, and is resistant to condensation. Improvements can be made.
  • a resin material to be the reinforcing resin 15 is applied to the entire surface of the sensor substrate 13 on the effective pixel region 17 side.
  • the reinforcing resins 15-1 and 15-2 are patterned so as to be discontinuous in the outer region of the image sensor 11. That is, a photoresist is applied to the resin material applied to the entire surface of the sensor substrate 13, or an unnecessary portion of the resin material is removed by performing a photoresist and dry etching to thereby remove the reinforcing resin 15-1 and 15-2 is formed.
  • a resin material that becomes the seal resin 14 is applied to the effective pixel region 17 of the sensor substrate 13 on the entire surface other than the portions where the reinforcing resins 15-1 and 15-2 are formed.
  • the surface of the sealing resin 14 and the reinforcing resins 15-1 and 15-2 is flattened by applying a small amount of a resin material to be the sealing resin 14 and then performing CMP (Chemical Mechanical Mechanical Polishing).
  • the imaging element 11 is formed with the reinforcing resins 15-1 and 15-2, and then the sealing resin 14 is applied, and the sensor substrate 13 is sealed with the sealing resin 14 and the reinforcing resins 15-1 and 15-2. It can be manufactured by a manufacturing process in which the glass 16 is bonded.
  • FIG. 2 the manufacturing process of applying the sealing resin 14 and the reinforcing resin 15 to the sensor substrate 13 and bonding the sealing glass 16 has been described.
  • the sealing resin 16 and the reinforcing resin 15 are applied to the sealing glass 16.
  • the sensor substrate 13 may be adhered by coating.
  • the imaging device 11 has a configuration in which the reinforcing resin 15 is not continuously formed along the outer periphery of the chip of the imaging device 11, that is, if the reinforcing resin 15 is formed discontinuously, as shown in FIG. It is not limited to a simple configuration.
  • FIG. 3A shows a first modification of the image sensor 11
  • FIG. 3B shows a second modification of the image sensor 11.
  • Reinforcing resins 15-1 and 15-2 are formed over the entire area of the two sides. That is, in the imaging device 11 of FIG. 1, the reinforcing resins 15-1 and 15-2 are formed in the central regions of the two opposite sides of the chip of the imaging device 11-a, whereas the imaging device 11-a Reinforcing resins 15-1 and 15-2 are formed over the entire area of these two sides.
  • a plurality of reinforcing resins 15 are provided along the outer periphery of the chip of the image pickup device 11-b in the region including the chip end in the outer peripheral region of the image pickup device 11-b. It is formed to be scattered.
  • the imaging element 11-a and the imaging element 11-b having such a configuration have the reinforcing resin 15 discontinuously formed in the outer peripheral region, and have better characteristics like the imaging element 11 of FIG. Can do. Also in the image pickup device 11-a and the image pickup device 11-b, as in the image pickup device 11 of FIG. 1, the adhesive force and the bonding area by the seal resin 14 and the reinforcing resin 15 are set.
  • the sealing glass 16 can be favorably bonded.
  • the wafer is at the wafer level before the plurality of image sensors 11 are diced, and in the example of FIG. 4, the wafer is at the wafer level before the three image sensors 11-1 to 11-3 are diced.
  • the support substrate 12 side is attached to the adhesive sheet 51.
  • the imaging elements 11-1 to 11-3 are each laminated with a support substrate 12, a sensor substrate 13, a seal resin 14, and a sealing glass 16, and each of them is laminated. It is continuous.
  • slits are formed between the imaging elements 11-1 to 11-3 by the dicing blade 52 having a step.
  • the gap between the sealing resin 14 and the sealing glass 16 between the adjacent imaging elements 11 is wider than the gap between the supporting substrate 12 and the sensor board 13 between the adjacent imaging elements 11.
  • the thing of the shape which can form a slit is used. Therefore, in the image pickup devices 11-1 to 11-3, the widths of the sealing resin 14 and the sealing glass 16 are narrower than the widths of the support substrate 12 and the sensor substrate 13, and the image pickup devices 11-1 to 11-11.
  • a slit is formed between -3.
  • a resin material that becomes the reinforcing resin 15 is applied to the entire surface, and the resin material that becomes the reinforcing resin 15 is also filled in the slits formed between the imaging elements 11-1 to 11-3.
  • each of the image sensors 11-1 to 11-3 is diced by the dicing blade 53.
  • the dicing blade 53 a blade having a width corresponding to the distance between the support substrate 12 and the sensor substrate 13 between the adjacent image sensors 11 is used. Therefore, in each of the image sensors 11-1 to 11-3, the reinforcing resin 15-1 and 15-2 are formed without removing the resin material on the side surfaces of the sealing resin 14 and the sealing glass 16. That is, when the image pickup device 11 is viewed in a plan view, as shown in FIG. 3A, the reinforcing resins 15-1 and 15-2 along the two opposite sides of the chip are replaced with the sealing resin 14 and the sealing glass 16 as shown in FIG. Formed on both sides.
  • the resin material remaining on the surfaces of the image sensors 11-1 to 11-3 is removed by dry etching or CMP, and the image sensors 11-1 to 11-3 are picked up from the adhesive sheet 51.
  • the imaging device 11 can be manufactured by a manufacturing process in which the reinforcing resin 15 is formed before picking up. Further, by manufacturing the image sensor 11 at the wafer level, it can be manufactured at low cost and with high accuracy.
  • FIG. 5 is a diagram illustrating a second configuration example of the image sensor 11.
  • FIG. 5A illustrates a planar configuration example of the image sensor 11A
  • FIG. 5B illustrates a cross-sectional configuration example of the image sensor 11A.
  • the same reference numerals are given to configurations common to the image sensor 11 in FIG. 1, and detailed description thereof is omitted.
  • the image pickup device 11A includes a support substrate 12, a sensor substrate 13, a seal resin 14 and a reinforcing resin 15A, and sealing glass in order from the bottom, like the image pickup device 11 of FIG. 16 is laminated.
  • the reinforcing resins 15A-1 and 15A-2 are regions that do not include the chip end of the image pickup device 11A, that is, inside the chip end of the image pickup device 11A. Formed in the region.
  • the reinforcing resins 15A-1 and 15A-2 are formed along two opposing sides of the chip of the image sensor 11A so as to be discontinuous, similarly to the reinforcing resins 15-1 and 15-2 in FIG. Is done.
  • the reinforcing resins 15A-1 and 15A-2 in the region not including the chip end of the image pickup device 11A, for example, it is possible to easily perform singulation processing in the manufacturing process of the image pickup device 11A. . That is, when the reinforcing resin 15 is formed in the region including the chip end, there is a concern that chipping defects are likely to occur in the dicing of the manufacturing process manufactured at the wafer level and the yield is deteriorated.
  • the imaging device 11A suppresses the occurrence of chipping defects and increases the yield because the processing is performed on the sealing resin 14 having rigidity lower than that of the reinforcing resin 15A in the dicing of the manufacturing process manufactured at the wafer level. Can do. In addition, this makes it possible to perform processing with higher accuracy.
  • the adhesive force and the adhesive area by the sealing resin 14 and the reinforcing resin 15A are set, and the sensor substrate 13 and the sealing glass 16 are excellent. Can be glued.
  • the wafer at the wafer level before the three image pickup devices 11A-1 to 11A-3 are diced.
  • a resin material to be used as the reinforcing resin 15A is applied to the entire surface of the sensor substrate 13 on the effective pixel region 17 side.
  • the reinforcing resins 15A-1 and 15A-2 are patterned so as to be discontinuous in the outer region of the image sensor 11A. That is, a photoresist is applied to the resin material applied to the entire surface of the sensor substrate 13, or a photoresist and dry etching are performed to remove unnecessary portions of the resin material, thereby reinforcing the resins 15A-1 and 15A. -2.
  • a resin material that becomes the sealing resin 14 is applied to the effective pixel region 17 of the sensor substrate 13 on the entire surface other than the portions where the reinforcing resins 15A-1 and 15A-2 are formed.
  • the surface of the sealing resin 14 and the reinforcing resins 15A-1 and 15A-2 is flattened by applying a little resin material to be the sealing resin 14 and then performing CMP.
  • the sealing glass 16 is bonded to the sealing resin 14 and the reinforcing resins 15A-1 and 15A-2 at the wafer level.
  • each of the image sensors 11A-1 to 11A-3 is diced using a dicing blade.
  • the processing for the reinforcing resins 15A-1 and 15A-2 is not performed, and the processing for the seal resin 14 is performed, so that the image sensor 11A can be separated.
  • the image pickup device 11A is formed by forming the sealing resin 14 and the reinforcing resins 15A-1 and 15A-2 at the wafer level and bonding the sensor substrate 13 and the sealing glass 16 to each other. It can be manufactured by a manufacturing process such as Then, it is possible to avoid processing the reinforcing resins 15A-1 and 15A-2 when the image pickup device 11A is separated.
  • FIG. 7A shows a first modification of the image sensor 11A
  • FIG. 7B shows a second modification of the image sensor 11A.
  • the image sensor 11A-a has the reinforcing resin 15A continuously formed so as to surround the effective pixel region 17 in a region not including the chip end in the outer peripheral region of the image sensor 11A-a. Yes. That is, in the image pickup device 11A-a, if the reinforcing resin 15A is formed in a region not including the chip end in the outer peripheral region of the image pickup device 11A-a, the above-described singulation processing can be easily performed. The effect that can be obtained.
  • the image sensor 11A-b includes a plurality of reinforcing resins 15A along the outer periphery of the chip of the image sensor 11A-b in a region not including the chip end in the outer peripheral region of the image sensor 11A-b. Are formed to be scattered.
  • the imaging element 11A-a and the imaging element 11A-b having such a configuration are formed in a region where the reinforcing resin 15 does not include the chip end, and have better characteristics as in the imaging element 11A of FIG. be able to. Also in the image pickup device 11A-a and the image pickup device 11A-b, similarly to the image pickup device 11A in FIG. 5, the adhesive force and the bonding area by the seal resin 14 and the reinforcing resin 15A are set.
  • the sealing glass 16 can be favorably bonded.
  • the image sensor 11 and the image sensor 11A may be formed so that the side surfaces thereof are tapered.
  • FIG. 8A shows an image sensor 11A that is formed in a taper shape such that the width decreases toward the light receiving surface of the image sensor 11A by dicing from the light receiving surface side of the image sensor 11A with the dicing blade 54. It is shown.
  • a dicing blade 54 is used for dicing from the opposite side to the light receiving surface of the image sensor 11A to form a taper shape that widens toward the light receiving surface of the image sensor 11A.
  • An image sensor 11A is shown.
  • the side surface of the image sensor 11A to have a tapered shape, for example, flare caused by reflected light reflected on the chip end surface can be suppressed, and the chip set can be downsized.
  • the above-described imaging element 11 can be provided with better light receiving characteristics and peeling characteristics than before.
  • material selection for the sealing resin 14 and the reinforcing resin 15 can be easily performed, and various manufacturing methods can be employed as described above, thereby improving mass productivity.
  • FIG. 9 is a diagram illustrating a third configuration example of the image sensor 11.
  • 9A shows a planar configuration example of the image sensor 11C
  • FIG. 9B shows an ab cross-sectional view shown in FIG. 9A.
  • the same reference numerals are given to the same components as those in the image sensor 11 shown in FIG. 1, and the detailed description thereof is omitted.
  • the image sensor 11C is configured by laminating a sensor substrate 13, a sealing resin 14, and a sealing glass 16 in order from the lower side. Then, as shown in FIG. 9A, the image sensor 11C is an outer peripheral region outside the effective pixel region 17, and has the dug portions 101-1 to 101-4 at four locations near the four corners. It has a formed structure.
  • the digging portions 101-1 to 101-4 are each formed in the same cross-sectional shape, and are hereinafter simply referred to as the digging portion 101 when it is not necessary to distinguish them.
  • the digging portion 101 has a structure in which a countersink portion 102 is formed so as to dig up the sensor substrate 13 and the seal resin 14 is embedded in the countersink portion 102.
  • the image pickup device 11C is provided with the digging portions 101 at a plurality of locations (four locations in the example of FIG. 9A) in the outer peripheral region, so that the sensor substrate 13 and the seal resin 14 are joined to the stress from the lateral direction. It becomes a strong structure, and the shear strength of the joint portion can be improved.
  • the digging portion 101 is not limited to the structure in which the counterbore portion 102 is provided on the sensor substrate 13, and other structures may be adopted.
  • FIG. 10A shows a digging portion 101A having a structure in which a countersink 103 is formed so as to dig the sealing glass 16, and the sealing resin 14 is embedded in the countersink 103.
  • 10B shows a digging portion 101B having a structure in which the sealing resin 14 is embedded in both the counterboring portion 102 provided on the sensor substrate 13 and the counterboring portion 103 provided on the sealing glass 16. It is shown.
  • the image sensor 11C can also improve the shear strength by adopting the digging portion 101A and the digging portion 101B as shown in FIG.
  • the cross-sectional shape of the counterbore 102 constituting the digging portion 101 is a trapezoidal concave shape having a tapered surface that narrows as the sensor substrate 13 is dug as shown in FIG. 9B.
  • Other cross-sectional shapes may be adopted without limitation.
  • FIG. 11A shows a countersink 102a having a cross-sectional shape formed so as to have a trapezoidal concave shape having a tapered surface that expands as the sensor substrate 13 is dug.
  • 11B shows a countersink portion 102b having a cross-sectional shape formed so as to have a concave curved surface shape
  • FIG. 11C shows a concave shape consisting of a tapered surface having a vertex.
  • a countersink portion 102c having a cross-sectional shape is shown.
  • FIG. 11D shows a countersink part 102d having a cross-sectional shape formed so as to have a concave shape whose side surface is substantially perpendicular to the surface of the sensor substrate 13.
  • the imaging element 11C can be provided with the digging portion 101 formed by the countersink portions 102a to 102d having various cross-sectional shapes.
  • the manufacturing method of the image pick-up element 11C is demonstrated.
  • the ab cross-section portion shown in FIG. 9A will be described, but the manufacturing method of the other portions is the same as the conventional method.
  • the effective pixel region 17 as shown in FIG. 9A is formed in the central region of the sensor substrate 13.
  • the region other than the formation portion is patterned with the photoresist 111 so that the formation portions of the digging portion 101 in the outer peripheral region of the sensor substrate 13 (four locations in the example of FIG. 9A) are opened. To do.
  • the third step for example, dry etching is performed to form a countersink portion 102 on the sensor substrate 13 at a location where the photoresist 111 is opened.
  • a resin material to be the sealing resin 14 is applied to the entire surface of the sensor substrate 13. At this time, a resin material is applied so that the counterbore 102 is also filled.
  • the imaging element 11C provided with the digging portion 101 can be manufactured by dicing the wafer. .
  • it can be manufactured by the same manufacturing process.
  • FIG. 13A shows a planar configuration example of the image sensor 11C-a
  • FIG. 13B shows an ab cross-sectional view shown in FIG. 13A. Note that in the image sensor 11C-a, the same reference numerals are given to configurations common to the image sensor 11C of FIG. 9, and detailed description thereof is omitted.
  • the image sensor 11C-a has the digging portions 101-1 to 101-4 formed in the same manner as the image sensor 11C of FIG. 15-4 is formed.
  • a resin material having higher rigidity than the sealing resin 14 is selected for the reinforcing resins 15-1 to 15-4 in order to reinforce the bonding strength between the sensor substrate 13 and the sealing glass 16.
  • the reinforcing resins 15-1 to 15-4 are formed at, for example, four locations in the outer peripheral region outside the effective pixel region 17 and in the vicinity of the four sides. Further, as shown in FIG. 13B, the reinforcing resin 15-1 is formed so as to adhere the sensor substrate 13 and the sealing glass 16, and although not shown, the reinforcing resins 15-3 to 15-4 are also reinforced. It is formed in the same manner as the resin 15-1.
  • the imaging element 11C-a formed in this manner can favorably bond the sensor substrate 13 and the sealing glass 16 and can increase the bonding strength between them.
  • FIG. 14 a manufacturing method of the image sensor 11C-a will be described.
  • the ab cross-sectional portion shown in FIG. 13A will be described, but the manufacturing method of the other portions is the same as the conventional method.
  • an effective pixel region 17 as shown in FIG. 13A is formed in the central region of the sensor substrate 13.
  • the region other than the formation portion is patterned with the photoresist 111 so that the formation portions of the digging portion 101 in the outer peripheral region of the sensor substrate 13 (four locations in the example of FIG. 9A) are opened. To do.
  • the third step for example, dry etching is performed to form a countersink portion 102 on the sensor substrate 13 at a location where the photoresist 111 is opened.
  • reinforcing resins 15-1 to 15-4 are formed.
  • a resin material to be the reinforcing resin 15 is applied to the entire surface of the sensor substrate 13 on the effective pixel region 17 side, and a photoresist is applied to the resin material, or a photoresist and dry etching are performed to obtain a resin.
  • Reinforcing resins 15-1 to 15-4 are formed by removing unnecessary portions of the material.
  • a resin material to be the sealing resin 14 is applied to the effective pixel region 17 of the sensor substrate 13 on the entire surface other than the portions where the reinforcing resins 15-1 to 15-4 are formed.
  • the surface of the sealing resin 14 and the reinforcing resins 15-1 to 15-4 is flattened by applying a small amount of the resin material to be the sealing resin 14 and then performing CMP (Chemical Mechanical Mechanical Polishing).
  • the sealing glass 16 is bonded to the sealing resin 14 and the reinforcing resins 15-1 to 15-4, so that the digging portion 101 and the reinforcing resins 15-1 to 15-4 are provided.
  • the image sensor 11C-a can be manufactured.
  • it can be manufactured by the same manufacturing process.
  • the image pickup device 11C provided with the digging portion 101 and the image pickup device 11C-a provided with the digging portion 101 and the reinforcing resins 15-1 to 15-4 are shown, for example, in FIG.
  • the share strength can be improved.
  • FIG. 16 is a diagram illustrating a fourth configuration example of the image sensor 11.
  • the same reference numerals are given to the same components as those in the image sensor 11 shown in FIG. 1, and detailed description thereof is omitted.
  • FIG. 16 shows a cross-sectional configuration example of the image pickup device 11D, and the image pickup device 11D is bonded to the circuit board 121 using a solder ball 122.
  • the imaging element 11D is formed so that the central region of the sensor substrate 13 is recessed when viewed in cross section, so that an outer peripheral wall 13a is formed so as to surround the outer periphery of the sensor substrate 13, and is surrounded by the outer peripheral wall 13a.
  • An effective pixel region 17 is formed in the recessed portion 13b.
  • the sealing resin 14 is formed along the outer peripheral wall 13a of the sensor substrate 13 and the surface of the concave portion 13b, and the convex portion 16a is formed in a convex shape in accordance with the shape of the concave portion 13b. Glass 16 is laminated.
  • the imaging element 11D is configured such that the convex portion 16a of the sealing glass 16 enters the concave portion 13b of the sensor substrate 13. Thereby, image pick-up element 11D can suppress generation
  • the imaging element 11D has a configuration in which the effective pixel region 17 is formed in the concave portion 13b of the sensor substrate 13 and the outer peripheral wall 13a is provided so as to surround the outer periphery.
  • the effective pixel region 17 is lost due to the outer peripheral wall 13a. Light can be prevented from entering.
  • FIG. 17 a modified example of the image sensor 11D will be described.
  • the same reference numerals are given to the same components as those in the image pickup device 11D shown in FIG. 16, and detailed description thereof is omitted.
  • the image sensor 11D-a is configured such that the convex portion 16a of the sealing glass 16 enters the concave portion 13b of the sensor substrate 13 in the same manner as the image sensor 11D of FIG.
  • the reinforcing resin 15 and the anchor member 123 are formed.
  • the reinforcing resin 15 is formed so as to adhere the sensor substrate 13 and the sealing glass 16 along the outer peripheral wall 13a of the sensor substrate 13.
  • the anchor member 123 reinforces the fixing of the sensor substrate 13 and the sealing glass 16 so as to reach the sealing glass 16 from the sensor substrate 13 side through the reinforcing resin 15 in the outer peripheral region of the imaging element 11D-a. Formed as follows.
  • the anchor member 123 is formed by forming a groove portion that penetrates the reinforcing resin 15 from the sensor substrate 13 to reach the sealing glass 16 and embeds a material having higher strength than the reinforcing resin 15 in the groove portion.
  • anchor members 123-1 to 123-4 can be formed at four locations near the four corners.
  • the imaging element 11D-a can form an anchor member 123 on the outer peripheral portion so as to surround the effective pixel region 17.
  • the image pickup device 11D-a configured in this manner is caused by heat peeling due to a stress difference between the sensor substrate 13 and the sealing glass 16 and insufficient adhesion compared to the image pickup device 11D of FIG. It is possible to increase the resistance against peeling of the boundary surface.
  • the imaging element 11D-a can prevent stray light from entering the effective pixel region 17 in the same manner as the imaging element 11D of FIG.
  • a manufacturing method of the image sensor 11D-a will be described with reference to FIGS. 19 and 20, the cross-sectional portion similar to that of FIG. 17 will be described, but the manufacturing method of the other portions is the same as the conventional method.
  • a region other than the formation portion is patterned with a photoresist 124 so that the formation portion of the concave portion 13 b in the central region of the sensor substrate 13 is opened.
  • the concave portion 13b is formed in the sensor substrate 13 at the location where the photoresist 124 is opened. Thereafter, the photoresist 124 is removed, and the effective pixel region 17 is formed in the central region of the concave portion 13b.
  • the sealing resin 14 and the reinforcing resin 15 are applied to the surface of the sensor substrate 13.
  • the sealing glass 16 is bonded to the sensor substrate 13 so that the convex portion 16 a enters the concave portion 13 b of the sensor substrate 13.
  • the region other than the formation portion is patterned with a photoresist 125 so that the formation portion of the anchor member 123 in the outer peripheral region of the sensor substrate 13 is opened.
  • the groove 126 is formed in the sensor substrate 13 at a location where the photoresist 125 is opened, for example, by performing dry etching. Thereafter, the photoresist 125 is removed.
  • the anchor member 123 is formed by embedding, for example, copper in the groove 126 of the sensor substrate 13.
  • the convex portion 16a of the sealing glass 16 enters the concave portion 13b of the sensor substrate 13, and the imaging element 11D-a provided with the anchor member 123 can be manufactured. .
  • FIG. 21 is a diagram illustrating a second modification of the image sensor 11D.
  • the same reference numerals are given to the same components as those in the image pickup device 11D shown in FIG. 16, and detailed description thereof is omitted.
  • the image sensor 11D-b is provided with a convex portion 13c in which the central region of the sensor substrate 13 is formed in a convex shape when viewed in cross section, and the effective pixel region 17 is formed in the convex portion 13c.
  • an outer peripheral wall 16b is formed so as to surround the outer periphery of the sealing glass 16, and the sensor substrate 13 so that the convex portion 13c enters the concave portion 16c surrounded by the outer peripheral wall 16b.
  • the image sensor 11D-b is configured such that the concave-convex relationship between the sensor substrate 13 and the sealing glass 16 is reversed with respect to the image sensor 11D of FIG. Accordingly, the image pickup device 11D-b is caused by, for example, heat peeling due to a stress difference between the sensor substrate 13 and the sealing glass 16 or insufficient adhesion, similarly to the image pickup device 11D of FIG. Occurrence of boundary peeling can be suppressed.
  • the reinforcing resin 15 and the anchor member 123 may be provided in the same manner as the image sensor 11D-a in FIG.
  • FIG. 22 is a diagram illustrating a fifth configuration example of the image sensor 11.
  • 22A shows an example of a planar configuration of the image sensor 11E
  • FIG. 22B shows an enlarged pad opening region 131 provided in the image sensor 11E.
  • the same reference numerals are given to the same components as those in the image sensor 11 shown in FIG. 1, and detailed description thereof is omitted.
  • the image sensor 11E is configured by providing a pad opening region 131 along one side of the outer peripheral region that is outside the effective pixel region 17.
  • a pad opening 132 for opening a pad for connecting the image pickup device 11E to the outside using a bonding wire is formed as shown in FIG. 22B. .
  • FIG. 23 shows a cross-sectional configuration example of the pad opening 132 formed in the image sensor 11E.
  • the pad opening 132 is formed so as to dig into the sensor substrate 13.
  • a thin film 133 is formed on the surface of the sensor substrate 13 on which the pad openings 132 are formed, and the seal resin 14 is laminated on the sensor substrate 13 via the thin film 133. Yes.
  • the stepped portion provided with the pad opening 132 is formed at an acute angle. Then, by forming the thin film 133 on the sensor substrate 13, as shown in an enlarged manner in FIG. 23, the acute angle of the stepped portion is relaxed, that is, the thin film 133 is formed in a curved surface. In this way, by providing roundness in the stepped portion of the pad opening 132 with the thin film 133, for example, generation of local stress assumed in a configuration in which the seal resin 14 is directly laminated on the stepped portion of the pad opening 132 is generated. Can be suppressed.
  • the image pickup element 11E can suppress the local stress by forming the thin film 133 on the sensor substrate 13 to avoid the stress concentration at the stepped portion of the pad opening 132.
  • the resin 14 can be prevented from breaking.
  • FIG. 24 a method for manufacturing the image sensor 11E will be described. 24, the cross-sectional portion shown in FIG. 23 will be described, but the manufacturing method of the other portions is the same as the conventional method.
  • a recess to be the pad opening 132 is formed on the sensor substrate 13 by dry etching or the like.
  • a thin film 133 is formed on the sensor substrate 13 to form a stepped portion of the concave portion that becomes the pad opening 132 in a curved surface.
  • a resin material to be the sealing resin 14 is applied, and in the fourth step, the sealing glass 16 is bonded.
  • the imaging element 11E with a reduced acute angle formed at the stepped portion of the pad opening 132 can be manufactured.
  • FIG. 25 shows a cross-sectional configuration example of the pad opening 132 formed in the image sensor 11E-a, as in FIG. Note that in the image sensor 11E-a, the same reference numerals are given to the same components as those in the image sensor 11E in FIGS. 22 and 23, and detailed description thereof is omitted.
  • the slope ⁇ of the side surface 134 of the pad opening 132 is formed so as to be gentler than that of the image sensor 11E of FIGS.
  • the acute angle of the stepped portion provided with the pad opening 132 of the image sensor 11E-a can be relaxed. Therefore, also in the image sensor 11E-a, it is possible to suppress the occurrence of local stress as in the image sensor 11E of FIGS.
  • the side surface 134 of the pad opening 132 provided in the image sensor 11E-a is formed by multi-stage processing. Therefore, the inclination of each side of the side surface formed in multiple stages is formed in the same manner as the pad opening 132 of the image sensor 11E shown in FIG. 23. However, as shown in FIG. The slope ⁇ of 134 can be made gentle.
  • the imaging element 11E suppresses local stress by avoiding the occurrence of stress concentration in the stepped portion of the pad opening 132 by reducing the gradient ⁇ of the side surface 134 of the pad opening 132. be able to.
  • the imaging element 11E-a can suppress the sealing resin 14 from being broken even if the sealing resin 14 is directly laminated on the sensor substrate 13.
  • FIG. 26 a manufacturing method of the image sensor 11E-a will be described.
  • the cross-sectional portion shown in FIG. 25 will be described, but the manufacturing method of the other portions is the same as the conventional method.
  • the sensor substrate 13 is formed with recesses to be the pad openings 132 in multiple stages by dry etching or the like.
  • the side surface 134 with a gentle gradient ⁇ can be formed. Note that an example in which the side surface 134 is formed in three stages will be described here, but the side surface 134 is formed in three or more stages.
  • a resin material to be the sealing resin 14 is applied, and in the fifth step, the sealing glass 16 is bonded.
  • the gradient of the side surface 134 of the pad opening 132 is gently formed, so that the imaging element 11E-a in which the acute angle of the stepped portion is relaxed can be manufactured.
  • the imaging element 11E and the imaging element 11E-a configured as described above can avoid stress concentration due to, for example, expansion or contraction of the sealing resin 14 due to a temperature change when performing a thermal shock test. The occurrence of breakage can be suppressed.
  • an air gap 135 is provided in the pad opening 132.
  • the reinforced resin 15 is filled in the digging portion to be the pad opening 132b, and the reinforcing resin 15 is formed to be flat with the surface of the sensor substrate 13. Then, the sealing resin 14 is formed in a plane with respect to the surfaces of the sensor substrate 13 and the reinforcing resin 15.
  • the sealing resin 14 is filled in the digging portion to be the pad opening 132c, and the sealing resin 14 is formed to be flat with the surface of the sensor substrate 13. Then, the reinforcing resin 15 is formed in a plane with respect to the surfaces of the sensor substrate 13 and the seal resin 14.
  • the reinforcing resin 15 is formed from the digging portion that becomes the pad opening 132d to the sealing glass 16, and the sealing resin 14 is formed around the reinforcing resin 15. That is, when viewed in a plan view, only the reinforcing resin 15 is formed in the region where the pad opening 132d is formed, and the sealing resin 14 does not enter the pad opening 132d. In the pad opening portion 132d having such a configuration, it is possible to avoid the occurrence of breakage in the seal resin 14 as a result of preventing a step from being formed in the seal resin 14.
  • the sealing resin 14 is formed from the digging portion that becomes the pad opening 132e to the sealing glass 16, and the reinforcing resin 15 is formed around the sealing resin 14. That is, when viewed in plan, the sealing resin 14 is formed only in the region where the pad opening 132e is formed, and the sealing resin 14 is not formed in the stepped portion of the pad opening 132e. . In the pad opening portion 132e having such a configuration, it is possible to prevent the seal resin 14 from being broken as a result of preventing a step from being formed in the seal resin 14.
  • the planar shape of the pad opening 132A can be made circular so as to be rounded when viewed in plan, and the corner of the step can be chamfered.
  • the pad resin 132A having such a shape can also prevent the sealing resin 14 from being broken.
  • a large pad opening 132B is provided and formed so as to reduce the numerical aperture, and the corner of the step can be chamfered.
  • the pad resin 132 having such a shape can also prevent the sealing resin 14 from being broken.
  • the reinforcing resin 15 is formed so as to surround the pad opening 132C, and is filled in the pad opening 132C and formed in the vicinity of the seal resin 14 and other regions.
  • the sealing resin 14 can be divided. Thereby, for example, even if the sealing resin 14 is broken due to the stress concentration at the stepped portion of the pad opening 132C, the sealing resin 14 is broken by surrounding the pad opening 132C with the reinforcing resin 15 and the like. Propagation to the region can be avoided.
  • the pad opening 132 ⁇ / b> C is separated from the surroundings by providing an air gap, or the pad opening 132 ⁇ / b> C is divided from the surroundings by providing both the reinforcing resin 15 and the air gap. May be.
  • the imaging device 11 as described above is applied to various electronic devices such as an imaging system such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. can do.
  • FIG. 30 is a block diagram illustrating a configuration example of an imaging device mounted on an electronic device.
  • the imaging apparatus 201 includes an optical system 202, an imaging element 203, a signal processing circuit 204, a monitor 205, and a memory 206, and can capture still images and moving images.
  • the optical system 202 includes one or more lenses, guides image light (incident light) from a subject to the image sensor 203, and forms an image on a light receiving surface (sensor unit) of the image sensor 203.
  • the image sensor 11 described above is applied as the image sensor 203.
  • the image sensor 203 electrons are accumulated for a certain period according to the image formed on the light receiving surface via the optical system 202. Then, a signal corresponding to the electrons accumulated in the image sensor 203 is supplied to the signal processing circuit 204.
  • the signal processing circuit 204 performs various signal processing on the pixel signal output from the image sensor 203.
  • An image (image data) obtained by performing signal processing by the signal processing circuit 204 is supplied to the monitor 205 and displayed, or supplied to the memory 206 and stored (recorded).
  • the imaging apparatus 201 configured as described above, by applying the above-described imaging element 11, for example, as a result of improvement in characteristics of the imaging element 11, better imaging can be performed.
  • FIG. 31 is a diagram showing a usage example in which the above-described image sensor is used.
  • the above-described image sensor (imaging device 11) can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • this technique can also take the following structures.
  • a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array;
  • a transparent sealing member for sealing the surface of the sensor substrate on the effective pixel region side;
  • a first adhesive member that adheres the sensor substrate and the sealing member in a region including at least the effective pixel region;
  • a second adhesive member having a higher rigidity than the first adhesive member, the sensor substrate and the sealing member being adhered in an outer peripheral region outside the effective pixel region when viewed in a plan view.
  • the product of the adhesive force per unit area by the first adhesive member and the second adhesive member in the outer peripheral region and the adhesive area bonded in the outer peripheral region An imaging device that is set to be larger than a product of an adhesive force per unit area by the first adhesive member in the effective pixel region and an adhesive area bonded in the effective pixel region.
  • the second adhesive member is disposed in a region including the chip end of the imaging device in the outer peripheral region, and is formed to have a discontinuous portion when the imaging device is viewed in plan.
  • the second adhesive member is continuously formed so as to surround the effective pixel region side inside the chip end of the image sensor when the image sensor is viewed in a plane.
  • the imaging device described. The second adhesive member is formed at a plurality of locations so as to be scattered along the outer periphery of the image pickup element inside the chip end of the image pickup element when the image pickup element is viewed in a plane.
  • the imaging device according to (5) or (6). Any one of (1) to (9) above, wherein a digging portion is provided in at least one of the outer peripheral regions of the sensor substrate and the sealing member, and the first adhesive member is embedded in the digging portion.
  • a concave portion is formed in a central region of the sensor substrate where the effective pixel region is provided, and a convex portion of the sealing member formed into a convex shape is formed through the first adhesive member to match the shape of the concave portion.
  • the imaging device according to any one of (1) to (10), wherein the sealing member is stacked on the sensor substrate.
  • a pad opening for opening a pad is formed in the outer peripheral region of the sensor substrate, and a thin film is formed in the pad opening.
  • a pad opening for opening a pad is formed, and the pad opening is formed so as to open in multiple stages.
  • a pad opening for opening a pad is formed, and a structure is avoided in which a step is formed in the first adhesive member at the step of the pad opening. The imaging device according to any one of (1) to (12).
  • a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array;
  • a transparent sealing member for sealing the surface of the sensor substrate on the effective pixel region side;
  • a first adhesive member that adheres the sensor substrate and the sealing member in a region including at least the effective pixel region;
  • a second adhesive member having a higher rigidity than the first adhesive member, the sensor substrate and the sealing member being adhered in an outer peripheral region outside the effective pixel region when viewed in a plan view.
  • An image pickup device manufacturing method wherein the image pickup element is set to be larger than a product of an adhesive force per unit area by the first adhesive member in the effective pixel region and an adhesive area bonded in the effective pixel region,
  • the second adhesive member is formed on one of the sensor substrate and the sealing member so as to have a discontinuous portion in the outer peripheral region, Forming the first adhesive member on the entire surface other than the region where the second adhesive member is formed;
  • a manufacturing method including a step of bonding the sensor substrate and the sealing member by the first adhesive member and the second adhesive member.
  • a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array;
  • a transparent sealing member for sealing the surface of the sensor substrate on the effective pixel region side;
  • a first adhesive member that adheres the sensor substrate and the sealing member in a region including at least the effective pixel region;
  • a second adhesive member having a higher rigidity than the first adhesive member, the sensor substrate and the sealing member being adhered in an outer peripheral region outside the effective pixel region when viewed in a plan view.
  • An image pickup device manufacturing method wherein the image pickup element is set to be larger than a product of an adhesive force per unit area by the first adhesive member in the effective pixel region and an adhesive area bonded in the effective pixel region,
  • the second adhesive member is formed so as to be disposed in a region other than the location that becomes the chip end of the imaging element in the outer peripheral region, Forming the first adhesive member on the entire surface other than the region where the second adhesive member is formed;
  • the sensor substrate and the sealing member are joined by the first adhesive member and the second adhesive member,
  • the manufacturing method including the process of dicing in the location used as the chip end of the said image pick-up element.
  • a sensor substrate provided with an effective pixel region in which a plurality of pixels are arranged in an array;
  • a transparent sealing member for sealing the surface of the sensor substrate on the effective pixel region side;
  • a first adhesive member that adheres the sensor substrate and the sealing member in a region including at least the effective pixel region;
  • the sensor substrate and the sealing member are bonded to each other in an outer peripheral region that is outside the effective pixel region when viewed in a plan view, and a second adhesive member having higher rigidity than the first adhesive member is provided.
  • An electronic apparatus comprising: an imaging device that is set to be larger than a product of an adhesive force per unit area by the first adhesive member in the effective pixel region and an adhesive area bonded in the effective pixel region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本開示は、より良好な特性を備えることができるようにする撮像素子、製造方法、および電子機器に関する。 撮像素子は、複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、センサ基板の有効画素領域側の面を封止する透明な封止部材と、少なくとも有効画素領域を含む領域においてセンサ基板および封止部材を接着するシール樹脂と、平面的に見たときに有効画素領域よりも外側となる外周領域においてセンサ基板および封止部材を接着し、シール樹脂よりも剛性の高い補強樹脂とを備える。そして、外周領域におけるシール樹脂および補強樹脂による単位面積あたりの接着力と、外周領域において接着される接着面積との積が、有効画素領域におけるシール樹脂による単位面積あたりの接着力と、有効画素領域において接着される接着面積との積よりも大きく設定される。本技術は、例えば、WCSPのCMOSイメージセンサに適用できる。

Description

撮像素子、製造方法、および電子機器
 本開示は、撮像素子、製造方法、および電子機器に関し、特に、より良好な特性を備えることができるようにした撮像素子、製造方法、および電子機器に関する。
 従来、固体撮像素子の製造技術の1つとして、端子の形成や配線などを行った後にウェハを切り出すWCSP(Wafer level Chip Size Package:ウェハレベルチップサイズパッケージ)が確立している。また、WCSPにより固体撮像素子を製造する際に、シリコン基板とガラス基板とを接着する処理が行われるが、その接着構造を適切に行う必要があった。
 例えば、特許文献1には、耐湿性向上を目的として、固体撮像素子よりも小さな透明部材を、固体撮像素子の受光面側に透明接着剤を介して接着し、透明接着剤および透明部材の最外周を封止樹脂により封止した構造の光学デバイスが開示されている。
 また、特許文献2には、耐湿性向上を目的として、撮像チップよりも大きなガラスウエハを、撮像チップの受光面側に接着剤を介して接着し、撮像チップおよび接着剤の最外周を封止部材で封止した構造の撮像装置が開示されている。
特開2008-219854号公報 国際公開第13/179766号パンフレット
 ところで、特許文献1および2に開示されているように、従来、シリコン基板とガラス基板とを接着する構成について様々な技術が開発されているが、さらなる特性の向上を図ることができる技術の開発が求められている。
 本開示は、このような状況に鑑みてなされたものであり、より良好な特性を備えることができるようにするものである。
 本開示の一側面の撮像素子は、複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材とを備え、前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される。
 本開示の一側面の製造方法は、複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材とを備え、前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される撮像素子の製造方法である。そして、前記センサ基板および前記封止部材のいずれか一方に、前記外周領域において不連続となる箇所を有するように前記第2の接着部材を形成し、前記第2の接着部材が形成された領域以外の全面に前記第1の接着部材を形成し、前記第1の接着部材および前記第2の接着部材により前記センサ基板と前記封止部材とを接着する工程を含む。または、前記撮像素子が個片化される前のウェハレベルで、前記第2の接着部材を、前記外周領域における前記撮像素子のチップ端となる箇所以外の領域に配置されるように形成し、前記第1の接着部材を、前記第2の接着部材が形成された領域以外に形成し、前記第1の接着部材および前記第2の接着部材により前記センサ基板および前記封止部材を接合し、前記撮像素子のチップ端となる箇所でダイシングする工程を含む。
 本開示の一側面の電子機器は、複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材とを有し、前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される撮像素子を備える。
 本開示の一側面においては、複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、センサ基板の有効画素領域側の面を封止する透明な封止部材と、少なくとも有効画素領域を含む領域においてセンサ基板および封止部材を接着する第1の接着部材と、平面的に見たときに有効画素領域よりも外側となる外周領域においてセンサ基板および封止部材を接着し、第1の接着部材よりも剛性の高い第2の接着部材とを備える。そして、外周領域における第1の接着部材および第2の接着部材による単位面積あたりの接着力と、外周領域において接着される接着面積との積が、有効画素領域における第1の接着部材による単位面積あたりの接着力と、有効画素領域において接着される接着面積との積よりも大きく設定される。
 本開示の一側面によれば、より良好な特性を備えることができる。
本技術を適用した撮像素子の第1の実施の形態の構成例を示す図である。 撮像素子の第1の製造方法について説明する図である。 撮像素子の変形例を示す図である。 撮像素子の第2の製造方法について説明する図である。 撮像素子の第2の構成例を示す図である。 撮像素子の製造方法について説明する図である。 撮像素子の変形例を示す図である。 側面がテーパ形状に形成された撮像素子を示す図である。 撮像素子の第3の構成例を示す図である。 掘り込み部の他の構造を示す図である。 断面形状の変形例を示す図である。 図9に示す撮像素子の製造方法について説明する図である。 図9に示す撮像素子の変形例を示す図である。 図13に示す撮像素子の製造方法について説明する図である。 シェア強度向上について説明する図である。 撮像素子の第4の構成例を示す図である。 図16に示す撮像素子の第1の変形例を示す図である。 図17に示す撮像素子の平面的な構成例を示す図である。 図17に示す撮像素子の製造方法について説明する図である。 図17に示す撮像素子の製造方法について説明する図である。 図16に示す撮像素子の第2の変形例を示す図である。 撮像素子の第5の構成例を示す図である。 パッド開口部を拡大して示す図である。 図22に示す撮像素子の製造方法について説明する図である。 図22に示す撮像素子の変形例を示す図である。 図25に示す撮像素子の製造方法について説明する図である。 パッド開口部の断面的な変形例を示す図である。 パッド開口部の平面的な形状の変形例を示す図である。 パッド開口部の近傍の変形例を示す図である。 撮像装置の構成例を示すブロック図である。 イメージセンサを使用する使用例を示す図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <撮像素子の第1の構成例>
 図1は、本技術を適用した撮像素子の第1の実施の形態の構成例を示す図である。図1のAには、撮像素子11の平面的な構成例が示されており、図1のBには、撮像素子11の断面的な構成例が示されている。
 図1のBに示すように、撮像素子11は、下側から順に、支持基板12、センサ基板13、シール樹脂14および補強樹脂15、並びに、封止ガラス16が積層されて構成される。例えば、撮像素子11は、センサ基板13を構成する半導体層の表面に対して反対側を向く裏面(図1のBで上側の面)に設けられる有効画素領域17に光が照射される裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。
 支持基板12は、裏面側から薄膜加工されるセンサ基板13の表面に対して接合され、センサ基板13を支持する。例えば、支持基板12には、センサ基板13から出力される画素信号に対して信号処理を施す信号処理回路が形成されていてもよい。
 センサ基板13には、フォトダイオードやトランジスタなどからなる画素が形成され、有効画素領域17に、複数の画素がアレイ状に配置される。例えば、センサ基板13の有効画素領域17は、撮像素子11により画像を撮像する際に、画像の構築に用いるのに有効な画素が配置されている領域である。
 シール樹脂14は、少なくとも有効画素領域17を含む領域においてセンサ基板13および封止ガラス16を接着するための接着部材である。例えば、シール樹脂14には、撮像素子11に入射する光を有効画素領域17が良好に受光することができるように、光学特性(屈折率や消衰係数など)を優先した樹脂材料が選択される。
 補強樹脂15は、図1のAに示すように、撮像素子11を平面的に見たときに、有効画素領域17よりも外側となる外側領域においてセンサ基板13および封止ガラス16を接着するための接着部材である。例えば、補強樹脂15には、センサ基板13および封止ガラス16の接合強度を補強するために、シール樹脂14よりも剛性の高い樹脂材料が選択される。
 ここで、外側領域は、有効画素領域17よりも外側の領域であって、撮像素子11のチップ端までを含む領域である。そして、図1のAに示すように、補強樹脂15-1および15-2は、外側領域における撮像素子11のチップ端を含む領域に配置され、かつ、不連続となる箇所を有して形成される。つまり、図示するように、補強樹脂15-1および15-2-2は、それぞれ独立して(連続的にならないように)、撮像素子11を平面的に見たときに対向する2辺に沿うように形成される。
 なお、シール樹脂14および補強樹脂15としては、例えば、シロキサン系樹脂、アクリル系樹脂、エポキシ系樹脂の何れかを使用することができる。または、シール樹脂14および補強樹脂15として、有機材料の樹脂に置き換えて、SiO(酸化ケイ素)やSiN(窒化ケイ素)などの無機膜を使用して、センサ基板13および封止ガラス16を接合する構成としてもよい。また、この場合、シール樹脂14だけを無機膜に置き換えてもよいし、補強樹脂15だけを無機膜に置き換えてもよく、または、シール樹脂14および補強樹脂15の両方を無機膜に置き換えてもよい。
 封止ガラス16は、センサ基板13の有効画素領域17を封止して気密モールドするための透明な部材である。なお、封止ガラス16としては、光を透過する部材を使用すればよく、ガラス以外の透明な材質を封止部材として採用してもよい。
 このように構成される撮像素子11において、シール樹脂14並びに補強樹脂15-1および15-2は、外周領域におけるシール樹脂14並びに補強樹脂15-1および15-2による単位面積あたりの接着力と、外周領域での接着面積との積が、有効画素領域17におけるシール樹脂14による単位面積あたりの接着力と、有効画素領域17での接着面積との積よりも大きく設定される。これにより、撮像素子11は、シール樹脂14並びに補強樹脂15-1および15-2により、センサ基板13と封止ガラス16とを良好に接着することができる。
 また、撮像素子11は、光学特性を優先した樹脂材料をシール樹脂14に選択し、剥離耐性強度を優先した樹脂材料を補強樹脂15に選択することで、それぞれの特性のトレードオフを解消し、それぞれの樹脂材料の選定を容易に行うことができる。そして、このような選択を行うことで、センサ基板13の有効画素領域17が光を良好に受光することができるとともに、センサ基板13に対する封止ガラス16の剥離を確実に抑制することができる。即ち、撮像素子11は、受光特性や剥離特性について、従来よりも、より良好な特性を備えることができる。これにより、撮像素子11は、より高い撮像能力および信頼性を有することになる。
 また、撮像素子11は、補強樹脂15-1および15-2が不連続に形成されているので、例えば、補強樹脂15が連続的に形成される構成と比較して、シール樹脂14を塗布する際の塗布ムラを軽減することができる。これにより、撮像素子11の特性をさらに向上させることができる。
 例えば、補強樹脂15が連続的に形成される構成では、補強樹脂15に囲まれた範囲において、シール樹脂14が凸形状または凹形状となるようなバラツキが発生し、ボイド不良として歩留りが悪化することが懸念される。これに対し、撮像素子11は、シール樹脂14が凸形状または凹形状となるようなことを回避し、歩留まりを高めることができる。
 さらに、撮像素子11は、補強樹脂15-1および15-2が不連続に形成されているので、例えば、製造工程で内部に入り込んだ水分が外部に逃げ易い構造となっており、結露耐性の向上を図ることができる。
 図2を参照して、撮像素子11の第1の製造方法について説明する。
 第1の工程において、センサ基板13の有効画素領域17側の全面に対して、補強樹脂15となる樹脂材料を塗布する。
 第2の工程において、撮像素子11の外側領域において不連続となるように補強樹脂15-1および15-2をパターニングする。即ち、センサ基板13の全面に塗布された樹脂材料に対してフォトレジストを行い、または、フォトレジストおよびドライエッチングを行って、樹脂材料の不要な部分を除去することにより、補強樹脂15-1および15-2を形成する。
 第3の工程において、センサ基板13の有効画素領域17に対してシール樹脂14となる樹脂材料を、補強樹脂15-1および15-2が形成された箇所以外の全面に塗布する。このとき、シール樹脂14となる樹脂材料を少なめに塗布して、その後、CMP(Chemical Mechanical Polishing)を行うことによりシール樹脂14並びに補強樹脂15-1および15-2の表面を平坦化する。
 そして、シール樹脂14並びに補強樹脂15-1および15-2に対して封止ガラス16を貼り合わせることで、センサ基板13と封止ガラス16とを接着して、図1に示したような撮像素子11が形成される。
 このように、撮像素子11は、補強樹脂15-1および15-2を形成した後に、シール樹脂14を塗布し、シール樹脂14並びに補強樹脂15-1および15-2によりセンサ基板13と封止ガラス16とを接合する製造工程により製造することができる。
 なお、図2では、センサ基板13にシール樹脂14および補強樹脂15を塗布して封止ガラス16を接着する製造工程について説明したが、例えば、封止ガラス16にシール樹脂14および補強樹脂15を塗布してセンサ基板13を接着してもよい。
 さらに、撮像素子11は、撮像素子11のチップ外周に沿って補強樹脂15が連続的に形成されない構成であれば、即ち、補強樹脂15が不連続に形成されていれば、図1に示すような構成に限定されることはない。
 図3を参照して、撮像素子11の変形例について説明する。図3のAには、撮像素子11の第1の変形例が示されており、図3のBには、撮像素子11の第2の変形例が示されている。
 図3のAに示すように、撮像素子11-aでは、撮像素子11-aの外周領域におけるチップ端を含む領域に、撮像素子11-aのチップの対向する2辺に沿って、それらの2辺の全域にわたって補強樹脂15-1および15-2が形成される。即ち、図1の撮像素子11では、撮像素子11-aのチップの対向する2辺の中央領域に補強樹脂15-1および15-2が形成されていたのに対し、撮像素子11-aは、それらの2辺の全域にわたって補強樹脂15-1および15-2が形成されている。
 図3のBに示すように、撮像素子11-bでは、撮像素子11-bの外周領域におけるチップ端を含む領域に、撮像素子11-bのチップ外周に沿って、複数の補強樹脂15が点在するように形成される。
 このような構成の撮像素子11-aおよび撮像素子11-bは、外周領域において補強樹脂15が不連続に形成されており、図1の撮像素子11と同様に、より良好な特性を備えることができる。また、撮像素子11-aおよび撮像素子11-bにおいても、図1の撮像素子11と同様に、シール樹脂14および補強樹脂15による接着力と接着面積とが設定されており、センサ基板13と封止ガラス16とを良好に接着することができる。
 図4を参照して、撮像素子11の第2の製造方法について説明する。
 第1の工程において、複数の撮像素子11がダイシングされる前のウェハレベルで、図4の例では、3つの撮像素子11-1乃至11-3がダイシングされる前のウェハレベルで、そのウェハの支持基板12側を粘着シート51に貼着する。また、図示するように、ダイシングされる前のウェハレベルでは、撮像素子11-1乃至11-3は、支持基板12、センサ基板13、シール樹脂14、および封止ガラス16が積層され、それぞれが連続したものとなっている。
 第2の工程において、段差を有するダイシングブレード52により、撮像素子11-1乃至11-3それぞれの間にスリットが形成される。このとき、ダイシングブレード52には、隣接する撮像素子11どうしの支持基板12およびセンサ基板13の間隔よりも、隣接する撮像素子11どうしのシール樹脂14および封止ガラス16の間隔が広くなるようなスリットを形成することが可能な形状のものが用いられる。従って、撮像素子11-1乃至11-3では、シール樹脂14および封止ガラス16の幅が、支持基板12およびセンサ基板13の幅よりも狭くなるような形状で、撮像素子11-1乃至11-3の間にスリットが形成される。
 第3の工程において、補強樹脂15となる樹脂材料が全面に塗布され、撮像素子11-1乃至11-3の間に形成されたスリットにも補強樹脂15となる樹脂材料が充填される。
 第4の工程において、ダイシングブレード53において、撮像素子11-1乃至11-3それぞれがダイシングされる。このとき、ダイシングブレード53には、隣接する撮像素子11どうしの支持基板12およびセンサ基板13の間隔に応じた幅の形状のものが用いられる。従って、撮像素子11-1乃至11-3それぞれにおいて、シール樹脂14および封止ガラス16の側面の樹脂材料は除去されることなく、補強樹脂15-1および15-2が形成される。即ち、撮像素子11を平面的に見て、図3のAに示したように、チップの対向する2辺に沿った補強樹脂15-1および15-2が、シール樹脂14および封止ガラス16の両側面に形成される。
 そして、撮像素子11-1乃至11-3の表面に残った樹脂材料を、ドライエッチングまたはCMPにより除去し、撮像素子11-1乃至11-3が粘着シート51からピックアップされる。
 このように、撮像素子11は、ピックアップを行う前に、補強樹脂15を形成するような製造工程により製造することができる。また、撮像素子11をウェハレベルで製造することにより、低コストかつ高精度に製造することができる。
 <撮像素子の第2の構成例>
 図5は、撮像素子11の第2の構成例を示す図である。図5のAには、撮像素子11Aの平面的な構成例が示されており、図5のBには、撮像素子11Aの断面的な構成例が示されている。なお、撮像素子11Aにおいて、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図5のBに示すように、撮像素子11Aは、図1の撮像素子11と同様に、下側から順に、支持基板12、センサ基板13、シール樹脂14および補強樹脂15A、並びに、封止ガラス16が積層されて構成される。
 但し、図5のAに示すように、撮像素子11Aでは、補強樹脂15A-1および15A-2が、撮像素子11Aのチップ端を含まない領域、即ち、撮像素子11Aのチップ端よりも内側の領域に形成される。また、補強樹脂15A-1および15A-2は、図1の補強樹脂15-1および15-2と同様に、不連続となるように、撮像素子11Aのチップの対向する2辺に沿って形成される。
 このように、撮像素子11Aのチップ端を含まない領域に補強樹脂15A-1および15A-2を形成することで、例えば、撮像素子11Aの製造工程における個片化加工を容易に行うことができる。即ち、チップ端を含む領域に補強樹脂15が形成されている場合、ウェハレベルで製造する製造工程のダイシングにおいて、チッピング不良が発生し易く、歩留まりが悪化することが懸念される。
 これに対し、撮像素子11Aは、ウェハレベルで製造する製造工程のダイシングにおいて、補強樹脂15Aよりも剛性の低いシール樹脂14に対する加工が行われるため、チッピング不良の発生を抑制し、歩留まりを高めることができる。また、これにより、より高精度な加工を行うことができる。
 また、撮像素子11Aにおいても、図1の撮像素子11と同様に、シール樹脂14および補強樹脂15Aによる接着力と接着面積とが設定されており、センサ基板13と封止ガラス16とを良好に接着することができる。
 図6を参照して、撮像素子11Aの製造方法について説明する。
 第1の工程において、複数の撮像素子11Aがダイシングされる前のウェハレベルで、図6の例では、3つの撮像素子11A-1乃至11A-3がダイシングされる前のウェハレベルで、そのウェハのセンサ基板13の有効画素領域17側の全面に対して、補強樹脂15Aとなる樹脂材料を塗布する。
 第2の工程において、撮像素子11Aの外側領域において不連続となるように補強樹脂15A-1および15A-2をパターニングする。即ち、センサ基板13の全面に塗布された樹脂材料に対してフォトレジストを行い、または、フォトレジストおよびドライエッチングを行って、樹脂材料の不要な部分を除去することにより補強樹脂15A-1および15A-2を形成する。
 第3の工程において、センサ基板13の有効画素領域17に対してシール樹脂14となる樹脂材料を、補強樹脂15A-1および15A-2が形成された箇所以外の全面に塗布する。このとき、シール樹脂14となる樹脂材料を少なめに塗布して、その後、CMPを行うことによりシール樹脂14並びに補強樹脂15A-1および15A-2の表面を平坦化する。
 第4の工程において、シール樹脂14並びに補強樹脂15A-1および15A-2に対して、ウェハレベルで封止ガラス16を貼り合わせる。
 第5の工程において、ダイシングブレードを用いて、撮像素子11A-1乃至11A-3それぞれをダイシングする。このとき、撮像素子11Aでは、補強樹脂15A-1および15A-2に対する加工が行われることはなく、シール樹脂14に対する加工が行われ、撮像素子11Aを個片化することができる。
 このように、撮像素子11Aは、ウェハレベルでシール樹脂14並びに補強樹脂15A-1および15A-2を形成して、センサ基板13と封止ガラス16とを接合した後に、撮像素子11Aを個片化するような製造工程により製造することができる。そして、撮像素子11Aを個片化する際に補強樹脂15A-1および15A-2に対する加工が行われることを回避することができる。
 図7を参照して、撮像素子11Aの変形例について説明する。図7のAには、撮像素子11Aの第1の変形例が示されており、図7のBには、撮像素子11Aの第2の変形例が示されている。
 図7のAに示すように撮像素子11A-aは、撮像素子11A-aの外周領域におけるチップ端を含まない領域に、有効画素領域17を囲うように連続的に補強樹脂15Aが形成されている。即ち、撮像素子11A-aでは、補強樹脂15Aが撮像素子11A-aの外周領域におけるチップ端を含まない領域に形成されていれば、上述したような個片化加工を容易に行うことができるという効果を得ることができる。
 図7のBに示すように、撮像素子11A-bは、撮像素子11A-bの外周領域におけるチップ端を含まない領域に、撮像素子11A-bのチップ外周に沿って、複数の補強樹脂15Aが点在するように形成される。
 このような構成の撮像素子11A-aおよび撮像素子11A-bは、補強樹脂15がチップ端を含まない領域に形成されており、図5の撮像素子11Aと同様に、より良好な特性を備えることができる。また、撮像素子11A-aおよび撮像素子11A-bにおいても、図5の撮像素子11Aと同様に、シール樹脂14および補強樹脂15Aによる接着力と接着面積とが設定されており、センサ基板13と封止ガラス16とを良好に接着することができる。
 なお、例えば、撮像素子11および撮像素子11Aは、その側面がテーパ形状となるように形成してもよい。
 即ち、図8に示すように、先端に向かうに従い先細るような形状のダイシングブレード54を使用することで、撮像素子11Aの側面がテーパ形状となるように形成することができる。例えば、図8のAには、撮像素子11Aの受光面側からダイシングブレード54によりダイシングすることによって、撮像素子11Aの受光面に向かって幅が狭まるようなテーパ形状に形成された撮像素子11Aが示されている。また、図8のBには、撮像素子11Aの受光面に対して反対側からダイシングブレード54によりダイシングすることによって、撮像素子11Aの受光面に向かって幅が広がるようなテーパ形状に形成された撮像素子11Aが示されている。
 このように、撮像素子11Aの側面がテーパ形状となるように形成することで、例えば、チップ端面において反射する反射光によるフレアを抑制したり、チップセットの小型化を図ることができる。
 以上のように、上述した撮像素子11は、受光特性や剥離特性について、従来よりも、より良好な特性を備えることができる。また、シール樹脂14および補強樹脂15の材料選定も容易に行うことができるとともに、上述したように各種の製造方法を採用することができ、量産性の向上を図ることができる。
 <撮像素子の第3の構成例>
 図9は、撮像素子11の第3の構成例を示す図である。図9のAには、撮像素子11Cの平面的な構成例が示されており、図9のBには、図9のAに示すa-b断面図が示されている。なお、図9に示す撮像素子11Cにおいて、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 撮像素子11Cは、下側から順に、センサ基板13、シール樹脂14、および封止ガラス16が積層されて構成される。そして、図9のAに示すように、撮像素子11Cは、有効画素領域17よりも外側となる外周領域であって、四隅の近傍となる4カ所に掘り込み部101-1乃至101-4が形成された構造となっている。なお、掘り込み部101-1乃至101-4は、それぞれ同様の断面形状に形成されており、以下、それらを区別する必要がない場合、単に、掘り込み部101と称する。
 図9のBに示すように、掘り込み部101は、センサ基板13を掘り込むように座繰り部102を形成して、座繰り部102にシール樹脂14を埋め込んだ構造となっている。
 撮像素子11Cは、掘り込み部101を外周領域の複数箇所(図9のAの例では4カ所)に設けることで、センサ基板13およびシール樹脂14の接合部分における横方向からの応力に対して強い構造となり、その接合部分のシェア強度を向上させることができる。
 なお、掘り込み部101は、図9に示すように、センサ基板13に座繰り部102を設ける構造に限定されることなく、その他の構造を採用してもよい。
 例えば、図10のAには、封止ガラス16を掘り込むように座繰り部103を形成し、座繰り部103にシール樹脂14を埋め込んだ構造の掘り込み部101Aが示されている。また、図10のBには、センサ基板13に設けられた座繰り部102と、封止ガラス16に設けられた座繰り部103との両方にシール樹脂14を埋め込んだ構造の掘り込み部101Bが示されている。
 撮像素子11Cは、図10に示すような掘り込み部101Aおよび掘り込み部101Bを採用することによっても、シェア強度の向上を図ることができる。
 なお、掘り込み部101を構成する座繰り部102の断面形状は、図9のBに示したように、センサ基板13を掘り込んでいくのに従って狭まるようなテーパ面を有する台形の凹形状に限定されることなく、その他の断面形状を採用してもよい。
 例えば、図11のAには、センサ基板13を掘り込んでいくのに従って広がるようなテーパ面を有する台形の凹形状となるように断面形状が形成された座繰り部102aが示されている。また、図11のBには、凹曲面形状となるように断面形状が形成された座繰り部102bが示されており、図11のCには、頂点を有するテーパ面からなる凹形状となるように断面形状が形成された座繰り部102cが示されている。また、図11のDには、センサ基板13の表面に対して側面が略直行するような凹形状となるように断面形状が形成された座繰り部102dが示されている。
 このように、撮像素子11Cは、様々な断面形状の座繰り部102a乃至102dにより形成される掘り込み部101を設けることができる。
 図12を参照して、撮像素子11Cの製造方法について説明する。なお、図12では、図9のAに示すa-b断面部分ついて説明するが、それ以外の部分の製造方法は、従来と同様である。
 第1の工程において、図9のAに示したような有効画素領域17を、センサ基板13の中央領域に形成する。
 第2の工程において、センサ基板13の外周領域における掘り込み部101の形成箇所(図9のAの例では、4カ所)が開口するように、その形成箇所以外の領域をフォトレジスト111でパターニングする。
 第3の工程において、例えば、ドライエッチングを行ことにより、フォトレジスト111が開口している箇所で、センサ基板13に座繰り部102を形成する。
 第4の工程において、センサ基板13の全面に、シール樹脂14となる樹脂材料を塗布する。このとき、座繰り部102にも充填されるように、樹脂材料が塗布される。
 第5の工程において、シール樹脂14に対して、ウェハレベルで封止ガラス16を貼り合わせた後に、ウェハをダイシングすることで、掘り込み部101が設けられた撮像素子11Cを製造することができる。なお、図10に示したような掘り込み部101Aおよび掘り込み部101Bが設けられた構造であっても、同様の製造工程により製造することができる。
 図13を参照して、撮像素子11Cの変形例について説明する。図13のAには、撮像素子11C-aの平面的な構成例が示されており、図13のBには、図13のAに示すa-b断面図が示されている。なお、撮像素子11C-aにおいて、図9の撮像素子11Cと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図13のAに示すように、撮像素子11C-aは、図9の撮像素子11Cと同様に掘り込み部101-1乃至101-4が形成されるのに加えて、補強樹脂15-1乃至15-4が形成された構造となっている。例えば、補強樹脂15-1乃至15-4には、センサ基板13および封止ガラス16の接合強度を補強するために、シール樹脂14よりも剛性の高い樹脂材料が選択される。
 補強樹脂15-1乃至15-4は、例えば、有効画素領域17よりも外側となる外周領域であって、4辺の近傍となる4カ所に形成される。また、図13のBに示すように、補強樹脂15-1は、センサ基板13および封止ガラス16を接着するように形成され、図示しないが、補強樹脂15-3乃至15-4も、補強樹脂15-1と同様に形成される。
 このように形成される撮像素子11C-aは、センサ基板13と封止ガラス16とを良好に接着することができ、それらの接合強度を高めることができる。
 図14を参照して、撮像素子11C-aの製造方法について説明する。なお、図14では、図13のAに示すa-b断面部分ついて説明するが、それ以外の部分の製造方法は、従来と同様である。
 第1の工程において、図13のAに示したような有効画素領域17を、センサ基板13の中央領域に形成する。
 第2の工程において、センサ基板13の外周領域における掘り込み部101の形成箇所(図9のAの例では、4カ所)が開口するように、その形成箇所以外の領域をフォトレジスト111でパターニングする。
 第3の工程において、例えば、ドライエッチングを行ことにより、フォトレジスト111が開口している箇所で、センサ基板13に座繰り部102を形成する。
 第4の工程において、補強樹脂15-1乃至15-4を形成する。例えば、センサ基板13の有効画素領域17側の全面に対して補強樹脂15となる樹脂材料を塗布し、その樹脂材料に対してフォトレジストを行い、または、フォトレジストおよびドライエッチングを行って、樹脂材料の不要な部分を除去することにより、補強樹脂15-1乃至15-4を形成する。
 第5の工程において、センサ基板13の有効画素領域17に対してシール樹脂14となる樹脂材料を、補強樹脂15-1乃至15-4が形成された箇所以外の全面に塗布する。このとき、シール樹脂14となる樹脂材料を少なめに塗布して、その後、CMP(Chemical Mechanical Polishing)を行うことによりシール樹脂14並びに補強樹脂15-1乃至15-4の表面を平坦化する。
 第6の工程において、シール樹脂14および補強樹脂15-1乃至15-4に対して封止ガラス16を貼り合わせることで、掘り込み部101および補強樹脂15-1乃至15-4が設けられた撮像素子11C-aを製造することができる。なお、図10に示したような掘り込み部101Aおよび掘り込み部101Bが設けられた構造であっても、同様の製造工程により製造することができる。
 以上のように、掘り込み部101が設けられた撮像素子11C、および、掘り込み部101および補強樹脂15-1乃至15-4が設けられた撮像素子11C-aは、例えば、図15に示すように、それらが設けられていない従来技術と比較して、シェア強度の向上を図ることができる。
 <撮像素子の第4の構成例>
 図16は、撮像素子11の第4の構成例を示す図である。なお、図16に示す撮像素子11Dにおいて、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図16には、撮像素子11Dの断面的な構成例が示されており、撮像素子11Dは、回路基板121に対してハンダボール122を用いてボンディングされている。
 撮像素子11Dは、断面的に見て、センサ基板13の中央領域が凹むように形成されることで、センサ基板13の外周を囲うように外周壁13aが形成されており、外周壁13aに囲われた凹部分13bに有効画素領域17が形成されている。そして、センサ基板13の外周壁13aおよび凹部分13bの表面に沿うようにシール樹脂14が形成されるとともに、凹部分13bの形状に合わせて凸形状に形成された凸部分16aを設けた封止ガラス16が積層されている。
 このように、撮像素子11Dは、封止ガラス16の凸部分16aがセンサ基板13の凹部分13bに入り込むように構成されている。これにより、撮像素子11Dは、例えば、センサ基板13と封止ガラス16との間の応力差による熱剥がれや、接着が不十分であることに起因する境界面剥がれの発生を抑制することができる。
 また、撮像素子11Dは、センサ基板13の凹部分13bに有効画素領域17を形成し、その外周を囲うように外周壁13aを設ける構成であり、この外周壁13aにより、有効画素領域17に迷い光が入り込むことを防止することができる。
 図17を参照して、撮像素子11Dの変形例について説明する。なお、図17に示す撮像素子11D-aにおいて、図16の撮像素子11Dと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図17に示すように、撮像素子11D-aは、図16の撮像素子11Dと同様に、封止ガラス16の凸部分16aがセンサ基板13の凹部分13bに入り込むように構成されるのに加えて、補強樹脂15およびアンカー部材123が形成された構造となっている。
 撮像素子11D-aにおいて、補強樹脂15は、センサ基板13の外周壁13aに沿って、センサ基板13および封止ガラス16を接着するように形成される。
 アンカー部材123は、撮像素子11D-aの外周領域において、センサ基板13側から補強樹脂15を貫通して封止ガラス16まで到達するように、センサ基板13および封止ガラス16の固定を補強するように形成される。例えば、アンカー部材123は、センサ基板13から補強樹脂15を貫通して封止ガラス16まで到達するような溝部を形成し、その溝部に補強樹脂15よりも強度の高い材料を埋め込むことで形成される。
 例えば、撮像素子11D-aは、図18のAに示すように、四隅の近傍となる4カ所にアンカー部材123-1乃至123-4を形成することができる。また、撮像素子11D-aは、図18のBに示すように、有効画素領域17を囲うように、その外周部分にアンカー部材123を形成することができる。
 このように構成される撮像素子11D-aは、図16の撮像素子11Dよりも、センサ基板13と封止ガラス16との間の応力差による熱剥がれや、接着が不十分であることに起因する境界面剥がれに対する耐性を高めることができる。また、撮像素子11D-aは、図16の撮像素子11Dと同様に、有効画素領域17に迷い光が入り込むことを防止することができる。
 図19および図20を参照して、撮像素子11D-aの製造方法について説明する。なお、図19および図20では、図17と同様の断面部分ついて説明するが、それ以外の部分の製造方法は、従来と同様である。
 まず、図19に示すように、第1の工程において、センサ基板13の中央領域における凹部分13bの形成箇所が開口するように、その形成箇所以外の領域をフォトレジスト124でパターニングする。
 第2の工程において、例えば、ドライエッチングを行ことにより、フォトレジスト124が開口している箇所で、センサ基板13に凹部分13bを形成する。その後、フォトレジスト124を除去し、凹部分13bの中央領域に有効画素領域17を形成する。
 第3の工程において、センサ基板13の表面にシール樹脂14および補強樹脂15を塗布する。
 第4の工程において、センサ基板13の凹部分13bに凸部分16aが入り込むように、センサ基板13に対して封止ガラス16を貼り合わせる。
 続いて、図20に示すように、第5の工程において、センサ基板13の外周領域におけるアンカー部材123の形成箇所が開口するように、その形成箇所以外の領域をフォトレジスト125でパターニングする。
 第6の工程において、例えば、ドライエッチングを行ことにより、フォトレジスト125が開口している箇所で、センサ基板13に溝部126を形成する。その後、フォトレジスト125を除去する。
 第7の工程において、センサ基板13の溝部126に対して、例えば、銅を埋め込むことによりアンカー部材123を形成する。
 第8の工程において、ウェハをダイシングすることにより、センサ基板13の凹部分13bに封止ガラス16の凸部分16aが入り込み、アンカー部材123が設けられた撮像素子11D-aを製造することができる。
 図21は、撮像素子11Dの第2の変形例を示す図である。なお、図21に示す撮像素子11D-bにおいて、図16の撮像素子11Dと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図21に示すように、撮像素子11D-bは、断面的に見て、センサ基板13の中央領域が凸形状に形成された凸部分13cが設けられ、凸部分13cに有効画素領域17が形成されている。そして、撮像素子11D-bでは、封止ガラス16の外周を囲うように外周壁16bが形成されており、外周壁16bに囲われた凹部分16cに、凸部分13cが入り込むようにセンサ基板13に積層されている。
 つまり、撮像素子11D-bは、図16の撮像素子11Dに対してセンサ基板13および封止ガラス16の凹凸関係が逆となるような構成となっている。従って、撮像素子11D-bは、図16の撮像素子11Dと同様に、例えば、センサ基板13と封止ガラス16との間の応力差による熱剥がれや、接着が不十分であることに起因する境界面剥がれの発生を抑制することができる。
 なお、撮像素子11D-bの構成においても、図17の撮像素子11D-aと同様に、補強樹脂15およびアンカー部材123を設けてもよい。
 <撮像素子の第5の構成例>
 図22は、撮像素子11の第5の構成例を示す図である。図22のAには、撮像素子11Eの平面的な構成例が示されており、図22のBには、撮像素子11Eに設けられるパッド開口領域131が拡大されて示されている。なお、図22に示す撮像素子11Eにおいて、図1の撮像素子11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図22のAに示すように、撮像素子11Eは、有効画素領域17よりも外側となる外周領域の一辺に沿って、パッド開口領域131が設けられて構成される。パッド開口領域131には、例えば、ボンディングワイヤを利用して、撮像素子11Eを外部と接続するためのパッドを開口するためのパッド開口部132が、図22のBに示すように形成されている。
 図23には、撮像素子11Eに形成されるパッド開口部132の断面的な構成例が示されている。
 図23に示すように、パッド開口部132は、センサ基板13を掘り込むように形成される。そして、図23に示す構成例では、パッド開口部132が形成されたセンサ基板13の表面に薄膜133が成膜されており、薄膜133を介して、センサ基板13にシール樹脂14が積層されている。
 例えば、センサ基板13にパッド開口部132を形成するためにエッチングを行うと、パッド開口部132が設けられる段差部は鋭角に形成される。そして、センサ基板13に薄膜133を成膜することにより、図23において拡大して示すように、その段差部の鋭角が緩和され、即ち、薄膜133が曲面的に形成される。このように、薄膜133によりパッド開口部132の段差部に丸みを設けることで、例えば、パッド開口部132の段差部に直接的にシール樹脂14が積層された構成において想定される局所応力の発生を抑制することができる。
 従って、撮像素子11Eは、センサ基板13に薄膜133を成膜することで、パッド開口部132の段差部において応力集中が発生することを回避して、局所応力を抑制することができる結果、シール樹脂14が破断することを抑制することができる。
 図24を参照して、撮像素子11Eの製造方法について説明する。なお、図24では、図23に示した断面部分ついて説明するが、それ以外の部分の製造方法は、従来と同様である。
 第1の工程において、センサ基板13に対して、ドライエッチングなどにより、パッド開口部132となる凹部を形成する。
 第2の工程において、センサ基板13に対して薄膜133を成膜することにより、パッド開口部132となる凹部の段差部を曲面的に形成する。
 第3の工程において、シール樹脂14となる樹脂材料を塗布し、第4の工程において、封止ガラス16を貼り合わせる。
 以上のような工程により、パッド開口部132の段差部に形成される鋭角を緩和した撮像素子11Eを製造することができる。
 図25を参照して、撮像素子11Eの変形例について説明する。図25には、図23と同様に、撮像素子11E-aに形成されるパッド開口部132の断面な構成例が示されている。なお、撮像素子11E-aにおいて、図22および図23の撮像素子11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図25に示すように、撮像素子11E-aでは、パッド開口部132の側面134の勾配θが、図22および図23の撮像素子11Eよりも緩やかになるように形成されている。これにより、撮像素子11E-aのパッド開口部132が設けられる段差部の鋭角を緩和することができる。従って、撮像素子11E-aにおいても、図22および図23の撮像素子11Eと同様に、局所応力の発生を抑制することができる。
 例えば、図23において拡大して示されているように、撮像素子11E-aに設けられるパッド開口部132の側面134は、多段加工することにより形成される。従って、多段に形成される側面の1段ごとの傾斜は、図23に示した撮像素子11Eのパッド開口部132と同様に形成されるが、図示するように多段加工することで、全体として側面134の勾配θを緩やかにすることができる。
 このように、撮像素子11Eは、パッド開口部132の側面134の勾配θを緩やかにすることで、パッド開口部132の段差部において応力集中が発生することを回避して、局所応力を抑制することができる。その結果、撮像素子11E-aは、センサ基板13に直接的にシール樹脂14を積層する構成であっても、シール樹脂14が破断することを抑制することができる。
 図26を参照して、撮像素子11E-aの製造方法について説明する。なお、図26では、図25に示した断面部分ついて説明するが、それ以外の部分の製造方法は、従来と同様である。
 第1乃至図3の工程において、センサ基板13に対して、ドライエッチングなどにより、パッド開口部132となる凹部を、多段階で形成する。これにより、勾配θを緩やかな側面134を形成することができる。なお、ここでは側面134が3段階で形成される例について説明するが、側面134は、3段階以上の多段階で形成される。
 第4の工程において、シール樹脂14となる樹脂材料を塗布し、第5の工程において、封止ガラス16を貼り合わせる。
 以上のような工程により、パッド開口部132の側面134の勾配が緩やかに形成されることで、段差部の鋭角を緩和した撮像素子11E-aを製造することができる。
 上述したように構成される撮像素子11Eおよび撮像素子11E-aは、例えば、熱衝撃試験を行うときの温度変化によるシール樹脂14の膨張や収縮などによっても、応力集中を回避することができる結果、破断が発生することを抑制することができる。
 図27を参照して、パッド開口部132の断面的な変形例について説明する。
 図27のAに示すパッド開口部132aでは、パッド開口部132にエアギャップ135が設けられている。即ち、パッド開口部132aにシール樹脂14が充填されずに、中空となるように構成される。このような構成のパッド開口部132aを設けることにより、シール樹脂14に段差が形成されないようにする結果、シール樹脂14に破断が発生することを回避することができる。
 図27のBに示すパッド開口部132bでは、パッド開口部132bとなる掘り込み部に補強樹脂15が充填され、補強樹脂15はセンサ基板13の表面と平坦となるように形成される。そして、センサ基板13および補強樹脂15の表面に対して平面的にシール樹脂14が形成される。このようにパッド開口部132bに補強樹脂15を充填することにより、シール樹脂14に段差が形成されないようにする結果、シール樹脂14に破断が発生することを回避することができる。
 図27のCに示すパッド開口部132cでは、パッド開口部132cとなる掘り込み部にシール樹脂14が充填され、シール樹脂14はセンサ基板13の表面と平坦となるように形成される。そして、センサ基板13およびシール樹脂14の表面に対して平面的に補強樹脂15が形成される。このようにパッド開口部132cにシール樹脂14を充填することにより、シール樹脂14に段差が形成されないようにする結果、シール樹脂14に破断が発生することを回避することができる。
 図27のDに示すパッド開口部132dでは、パッド開口部132dとなる掘り込み部から封止ガラス16に亘って補強樹脂15が形成され、補強樹脂15の周囲にシール樹脂14が形成される。即ち、平面的に見たときに、パッド開口部132dが形成される領域には補強樹脂15のみが形成され、パッド開口部132dにはシール樹脂14が入り込まないような構成となっている。このような構成のパッド開口部132dでは、シール樹脂14に段差が形成されないようにする結果、シール樹脂14に破断が発生することを回避することができる。
 図27のEに示すパッド開口部132eでは、パッド開口部132eとなる掘り込み部から封止ガラス16に亘ってシール樹脂14が形成され、シール樹脂14の周囲に補強樹脂15が形成される。即ち、平面的に見たときに、シール樹脂14は、パッド開口部132eが形成される領域のみ形成され、パッド開口部132eの段差部にはシール樹脂14が形成されないような構成となっている。このような構成のパッド開口部132eでは、シール樹脂14に段差が形成されないようにする結果、シール樹脂14に破断が発生することを回避することができる。
 図27を参照して説明したように、パッド開口部132a乃至132eの段差部おいてシール樹脂14に段差が形成されることを回避する構造とすることで、例えば、熱衝撃試験を行うときの温度変化によるシール樹脂14の膨張や収縮などによって、シール樹脂14に破断が発生することを回避することができる。
 図28を参照して、パッド開口部132の平面的な変形例について説明する。
 図28のAに示すように、パッド開口部132Aの平面的な形状を円形にし、平面的に見て丸く開口するように形成し、段差の角部を面取りすることができる。このような形状のパッド開口部132Aによっても、シール樹脂14の破断を防止することができる。
 図28のBに示すように、大きな形状のパッド開口部132Bを設け、開口数を削減するように形成し、段差の角部を面取りすることができる。このような形状のパッド開口部132Bによっても、シール樹脂14の破断を防止することができる。
 図29を参照して、パッド開口部132の近傍の変形例について説明する。
 図29に示すように、パッド開口部132Cの周囲を囲うように、補強樹脂15を形成し、パッド開口部132Cに充填され、その近傍に形成されるシール樹脂14と、その他の領域に形成されるシール樹脂14とを分断することができる。これにより、例えば、パッド開口部132Cの段差部における応力集中によってシール樹脂14に破断が発生したとしても、補強樹脂15によりパッド開口部132Cの周囲を囲うことで、シール樹脂14の破断が、その他の領域まで伝搬することを回避することができる。
 なお、補強樹脂15を設ける代わりに、エアギャップを設けることによりパッド開口部132Cを周囲と分断したり、補強樹脂15およびエアギャップの両方を設けることによりパッド開口部132Cを周囲と分断したりしてもよい。
 なお、上述したような撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 <撮像装置の構成例>
 図30は、電子機器に搭載される撮像装置の構成例を示すブロック図である。
 図9に示すように、撮像装置201は、光学系202、撮像素子203、信号処理回路204、モニタ205、およびメモリ206を備えて構成され、静止画像および動画像を撮像可能である。
 光学系202は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子203に導き、撮像素子203の受光面(センサ部)に結像させる。
 撮像素子203としては、上述した撮像素子11が適用される。撮像素子203には、光学系202を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子203に蓄積された電子に応じた信号が信号処理回路204に供給される。
 信号処理回路204は、撮像素子203から出力された画素信号に対して各種の信号処理を施す。信号処理回路204が信号処理を施すことにより得られた画像(画像データ)は、モニタ205に供給されて表示されたり、メモリ206に供給されて記憶(記録)されたりする。
 このように構成されている撮像装置201では、上述した撮像素子11を適用することで、例えば、撮像素子11の特性が向上した結果、より良好な撮像を行うことができる。
 <イメージセンサの使用例>
 図31は、上述のイメージセンサを使用する使用例を示す図である。
 上述したイメージセンサ(撮像素子11)は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
 前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
 少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
 平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
 を備え、
 前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
 前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
 撮像素子。
(2)
 前記第2の接着部材は、前記外周領域において前記撮像素子のチップ端を含む領域に配置され、かつ、前記撮像素子を平面的に見たときに不連続となる箇所を有して形成される
 上記(1)に記載の撮像素子。
(3)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに対向する2辺に沿う少なくとも2カ所に形成される
 上記(1)または(2)に記載の撮像素子。
(4)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに前記チップ端の外周に沿って点在するように複数個所に形成される
 上記(1)または(2)に記載の撮像素子。
(5)
 前記第2の接着部材は、前記外周領域において前記撮像素子のチップ端を含まない領域に配置される
 上記(1)に記載の撮像素子。
(6)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに不連続となる箇所を有して形成される
 上記(5)に記載の撮像素子。
(7)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに対向する2辺に沿って、前記撮像素子のチップ端よりも内側に形成される
 上記(5)または(6)に記載の撮像素子。
(8)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに前記撮像素子のチップ端よりも内側で、前記有効画素領域側を囲うように連続的に形成される
 上記(5)に記載の撮像素子。
(9)
 前記第2の接着部材は、前記撮像素子を平面的に見たときに前記撮像素子のチップ端よりも内側で、前記撮像素子の外周に沿って点在するように複数個所に形成される
 上記(5)または(6)に記載の撮像素子。
(10)
 前記センサ基板および前記封止部材のうち、少なくとも一方の前記外周領域に掘り込み部を設け、前記掘り込み部に、前記第1の接着部材を埋め込む
 上記(1)から(9)までのいずれかに記載の撮像素子。
(11)
 前記センサ基板の前記有効画素領域が設けられる中央領域に凹部を形成し、前記第1の接着部材を介して、前記凹部の形状合わせて凸形状に形成された前記封止部材の凸部分が入り込むように、前記センサ基板に前記封止部材が積層される
 上記(1)から(10)までのいずれかに記載の撮像素子。
(12)
 前記センサ基板の前記外周領域において、前記センサ基板側から前記封止部材まで到達するようにアンカー部材が形成される
 上記(11)に記載の撮像素子。
(13)
 前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部に薄膜が成膜される
 上記(1)から(12)までのいずれかに記載の撮像素子。
(14)
 前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部が多段階で開口するように形成される
 上記(1)から(12)までのいずれかに記載の撮像素子。
(15)
 前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部の段差部で前記第1の接着部材に段差が形成されることを回避する構造となっている
 上記(1)から(12)までのいずれかに記載の撮像素子。
(16)
 複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
 前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
 少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
 平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
 を備え、
 前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
 前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
 撮像素子の製造方法であって、
 前記センサ基板および前記封止部材のいずれか一方に、前記外周領域において不連続となる箇所を有するように前記第2の接着部材を形成し、
 前記第2の接着部材が形成された領域以外の全面に前記第1の接着部材を形成し、
 前記第1の接着部材および前記第2の接着部材により前記センサ基板と前記封止部材とを接着する
 工程を含む製造方法。
(17)
 複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
 前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
 少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
 平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
 を備え、
 前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
 前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
 撮像素子の製造方法であって、
 前記撮像素子が個片化される前のウェハレベルで、
  前記第2の接着部材を、前記外周領域における前記撮像素子のチップ端となる箇所以外の領域に配置されるように形成し、
  前記第1の接着部材を、前記第2の接着部材が形成された領域以外の全面に形成し、
  前記第1の接着部材および前記第2の接着部材により前記センサ基板および前記封止部材を接合し、
  前記撮像素子のチップ端となる箇所でダイシングする
 工程を含む製造方法。
(18)
 複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
 前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
 少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
 平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
 を有し、
 前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
 前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
 撮像素子を備える電子機器。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 11 撮像素子, 12 支持基板, 13 センサ基板, 14 シール樹脂, 15 補強樹脂, 16 封止ガラス, 17 有効画素領域

Claims (18)

  1.  複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
     前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
     少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
     平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
     を備え、
     前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
     前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
     撮像素子。
  2.  前記第2の接着部材は、前記外周領域において前記撮像素子のチップ端を含む領域に配置され、かつ、前記撮像素子を平面的に見たときに不連続となる箇所を有して形成される
     請求項1に記載の撮像素子。
  3.  前記第2の接着部材は、前記撮像素子を平面的に見たときに対向する2辺に沿う少なくとも2カ所に形成される
     請求項2に記載の撮像素子。
  4.  前記第2の接着部材は、前記撮像素子を平面的に見たときに前記チップ端の外周に沿って点在するように複数個所に形成される
     請求項2に記載の撮像素子。
  5.  前記第2の接着部材は、前記外周領域において前記撮像素子のチップ端を含まない領域に配置される
     請求項1に記載の撮像素子。
  6.  前記第2の接着部材は、前記撮像素子を平面的に見たときに不連続となる箇所を有して形成される
     請求項5に記載の撮像素子。
  7.  前記第2の接着部材は、前記撮像素子を平面的に見たときに対向する2辺に沿って、前記撮像素子のチップ端よりも内側に形成される
     請求項6に記載の撮像素子。
  8.  前記第2の接着部材は、前記撮像素子を平面的に見たときに前記撮像素子のチップ端よりも内側で、前記有効画素領域側を囲うように連続的に形成される
     請求項5に記載の撮像素子。
  9.  前記第2の接着部材は、前記撮像素子を平面的に見たときに前記撮像素子のチップ端よりも内側で、前記撮像素子の外周に沿って点在するように複数個所に形成される
     請求項6に記載の撮像素子。
  10.  前記センサ基板および前記封止部材のうち、少なくとも一方の前記外周領域に掘り込み部を設け、前記掘り込み部に、前記第1の接着部材を埋め込む
     請求項1に記載の撮像素子。
  11.  前記センサ基板の前記有効画素領域が設けられる中央領域に凹部を形成し、前記第1の接着部材を介して、前記凹部の形状合わせて凸形状に形成された前記封止部材の凸部分が入り込むように、前記センサ基板に前記封止部材が積層される
     請求項1に記載の撮像素子。
  12.  前記センサ基板の前記外周領域において、前記センサ基板側から前記封止部材まで到達するようにアンカー部材が形成される
     請求項11に記載の撮像素子。
  13.  前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部に薄膜が成膜される
     請求項1に記載の撮像素子。
  14.  前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部が多段階で開口するように形成される
     請求項1に記載の撮像素子。
  15.  前記センサ基板の前記外周領域において、パッドを開口するためのパッド開口部が形成されており、前記パッド開口部の段差部で前記第1の接着部材に段差が形成されることを回避する構造となっている
     請求項1に記載の撮像素子。
  16.  複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
     前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
     少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
     平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
     を備え、
     前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
     前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
     撮像素子の製造方法であって、
     前記センサ基板および前記封止部材のいずれか一方に、前記外周領域において不連続となる箇所を有するように前記第2の接着部材を形成し、
     前記第2の接着部材が形成された領域以外の全面に前記第1の接着部材を形成し、
     前記第1の接着部材および前記第2の接着部材により前記センサ基板と前記封止部材とを接着する
     工程を含む製造方法。
  17.  複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
     前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
     少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
     平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
     を備え、
     前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
     前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
     撮像素子の製造方法であって、
     前記撮像素子が個片化される前のウェハレベルで、
      前記第2の接着部材を、前記外周領域における前記撮像素子のチップ端となる箇所以外の領域に配置されるように形成し、
      前記第1の接着部材を、前記第2の接着部材が形成された領域以外の全面に形成し、
      前記第1の接着部材および前記第2の接着部材により前記センサ基板および前記封止部材を接合し、
      前記撮像素子のチップ端となる箇所でダイシングする
     工程を含む製造方法。
  18.  複数の画素がアレイ状に配置された有効画素領域が設けられるセンサ基板と、
     前記センサ基板の前記有効画素領域側の面を封止する透明な封止部材と、
     少なくとも前記有効画素領域を含む領域において前記センサ基板および前記封止部材を接着する第1の接着部材と、
     平面的に見たときに前記有効画素領域よりも外側となる外周領域において前記センサ基板および前記封止部材を接着し、前記第1の接着部材よりも剛性の高い第2の接着部材と
     を有し、
     前記外周領域における前記第1の接着部材および前記第2の接着部材による単位面積あたりの接着力と、前記外周領域において接着される接着面積との積が、
     前記有効画素領域における前記第1の接着部材による単位面積あたりの接着力と、前記有効画素領域において接着される接着面積との積よりも大きく設定される
     撮像素子を備える電子機器。
PCT/JP2017/026768 2016-08-08 2017-07-25 撮像素子、製造方法、および電子機器 WO2018030140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018532920A JPWO2018030140A1 (ja) 2016-08-08 2017-07-25 撮像素子、製造方法、および電子機器
US16/322,307 US10748947B2 (en) 2016-08-08 2017-07-25 Imaging device, manufacturing method, and electronic apparatus
KR1020197003594A KR102455438B1 (ko) 2016-08-08 2017-07-25 촬상 소자, 제조 방법, 및 전자 기기
CN201780047068.7A CN109952647B (zh) 2016-08-08 2017-07-25 成像元件、制造方法和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016155293 2016-08-08
JP2016-155293 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018030140A1 true WO2018030140A1 (ja) 2018-02-15

Family

ID=61162957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026768 WO2018030140A1 (ja) 2016-08-08 2017-07-25 撮像素子、製造方法、および電子機器

Country Status (6)

Country Link
US (1) US10748947B2 (ja)
JP (1) JPWO2018030140A1 (ja)
KR (1) KR102455438B1 (ja)
CN (1) CN109952647B (ja)
TW (1) TW201806045A (ja)
WO (1) WO2018030140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017205A1 (ja) * 2018-07-19 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 撮像素子および電子機器
WO2021095193A1 (ja) * 2019-11-14 2021-05-20 株式会社ティエーブル イメージセンサモジュール、及び、イメージセンサモジュールの製造方法
WO2023067891A1 (ja) * 2021-10-18 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 半導体装置、固体撮像装置及び半導体装置の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522505B2 (en) * 2017-04-06 2019-12-31 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method for manufacturing the same
JP7091696B2 (ja) * 2018-02-20 2022-06-28 株式会社デンソー 物理量センサおよび半導体装置
CN108899302A (zh) * 2018-07-04 2018-11-27 南通沃特光电科技有限公司 一种背照式cmos感光器件单片化方法
JP7427410B2 (ja) * 2019-10-11 2024-02-05 キヤノン株式会社 撮像装置及びカメラ
KR20220093553A (ko) * 2020-12-28 2022-07-05 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 광학기기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135302A (ja) * 1993-11-10 1995-05-23 Fuji Xerox Co Ltd 固体撮像装置及びその製造方法
JP2002009205A (ja) * 2000-06-26 2002-01-11 Ricoh Co Ltd 固体撮像装置、その製造方法、画像読取ユニット及び画像走査装置
JP2003298890A (ja) * 2002-04-04 2003-10-17 Mitsubishi Electric Corp 固体撮像装置
JP2004194204A (ja) * 2002-12-13 2004-07-08 Ricoh Co Ltd 半導体装置、画像読取ユニット及び画像形成装置
JP2009088407A (ja) * 2007-10-02 2009-04-23 Panasonic Corp 固体撮像装置およびその製造方法
JP2010040621A (ja) * 2008-08-01 2010-02-18 Toshiba Corp 固体撮像デバイス及びその製造方法
JP2010205773A (ja) * 2009-02-27 2010-09-16 Panasonic Corp 固体撮像装置およびその製造方法
JP2012049335A (ja) * 2010-08-26 2012-03-08 Dainippon Printing Co Ltd 封止型デバイス及びその製造方法
WO2015115553A1 (ja) * 2014-01-29 2015-08-06 日立化成株式会社 接着剤組成物、接着剤組成物を用いた半導体装置の製造方法、及び固体撮像素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092417A (ja) * 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd 半導体撮像素子およびその製造方法並びに半導体撮像装置および半導体撮像モジュール
JP2008219854A (ja) * 2007-02-05 2008-09-18 Matsushita Electric Ind Co Ltd 光学デバイス,光学デバイスウエハおよびそれらの製造方法、ならびに光学デバイスを搭載したカメラモジュールおよび内視鏡モジュール
JP2008305972A (ja) * 2007-06-07 2008-12-18 Panasonic Corp 光学デバイス及びその製造方法、並びに、光学デバイスを用いたカメラモジュール及び該カメラモジュールを搭載した電子機器
JP2009301816A (ja) * 2008-06-12 2009-12-24 Sony Corp 表示装置および表示装置の製造方法
CN104364894B (zh) 2012-05-30 2019-04-23 奥林巴斯株式会社 摄像装置、半导体装置及摄像单元
JP6310216B2 (ja) * 2013-09-06 2018-04-11 キヤノン株式会社 放射線検出装置及びその製造方法並びに放射線検出システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135302A (ja) * 1993-11-10 1995-05-23 Fuji Xerox Co Ltd 固体撮像装置及びその製造方法
JP2002009205A (ja) * 2000-06-26 2002-01-11 Ricoh Co Ltd 固体撮像装置、その製造方法、画像読取ユニット及び画像走査装置
JP2003298890A (ja) * 2002-04-04 2003-10-17 Mitsubishi Electric Corp 固体撮像装置
JP2004194204A (ja) * 2002-12-13 2004-07-08 Ricoh Co Ltd 半導体装置、画像読取ユニット及び画像形成装置
JP2009088407A (ja) * 2007-10-02 2009-04-23 Panasonic Corp 固体撮像装置およびその製造方法
JP2010040621A (ja) * 2008-08-01 2010-02-18 Toshiba Corp 固体撮像デバイス及びその製造方法
JP2010205773A (ja) * 2009-02-27 2010-09-16 Panasonic Corp 固体撮像装置およびその製造方法
JP2012049335A (ja) * 2010-08-26 2012-03-08 Dainippon Printing Co Ltd 封止型デバイス及びその製造方法
WO2015115553A1 (ja) * 2014-01-29 2015-08-06 日立化成株式会社 接着剤組成物、接着剤組成物を用いた半導体装置の製造方法、及び固体撮像素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017205A1 (ja) * 2018-07-19 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 撮像素子および電子機器
WO2021095193A1 (ja) * 2019-11-14 2021-05-20 株式会社ティエーブル イメージセンサモジュール、及び、イメージセンサモジュールの製造方法
JP6889452B1 (ja) * 2019-11-14 2021-06-18 株式会社ティエーブル イメージセンサモジュール、及び、イメージセンサモジュールの製造方法
WO2023067891A1 (ja) * 2021-10-18 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 半導体装置、固体撮像装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2018030140A1 (ja) 2019-06-06
US20190172863A1 (en) 2019-06-06
CN109952647A (zh) 2019-06-28
US10748947B2 (en) 2020-08-18
KR102455438B1 (ko) 2022-10-14
KR20190034553A (ko) 2019-04-02
TW201806045A (zh) 2018-02-16
CN109952647B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2018030140A1 (ja) 撮像素子、製造方法、および電子機器
US20210183927A1 (en) Image sensor, method of manufacturing the same, and electronic apparatus
US11437423B2 (en) Image sensor, manufacturing method, and electronic device
JP2010098066A (ja) 固体撮像装置、固体撮像装置の製造方法
JPWO2017014072A1 (ja) 半導体装置およびその製造方法、並びに電子機器
WO2018012314A1 (ja) 固体撮像素子および製造方法、並びに電子機器
WO2017169881A1 (ja) 半導体装置、半導体装置の製造方法、集積基板、及び、電子機器
WO2017061296A1 (ja) 固体撮像素子パッケージおよび製造方法、並びに電子機器
JP6743035B2 (ja) 撮像装置、製造方法
JP2017022200A (ja) イメージセンサ、および電子機器
WO2018047665A1 (ja) 固体撮像装置およびその製造方法、並びに、電子機器
JPWO2014156704A1 (ja) 固体撮像素子、撮像装置、電子装置、および製造方法
WO2016203967A1 (ja) 半導体装置、電子機器、並びに製造方法
US10986292B2 (en) Solid-state image pickup device and electronic apparatus to increase yield
JP2009086092A (ja) 光学部品の製造方法及び撮影装置の製造方法
WO2017104439A1 (ja) 固体撮像装置および固体撮像装置の製造方法、並びに電子機器
US11594564B2 (en) Solid-state imaging element, manufacturing method, and electronic apparatus
JP4521938B2 (ja) 撮像装置
WO2023188849A1 (ja) 半導体装置
US10998372B1 (en) Hybrid focal-plane array and method of manufacturing the same
US20160322410A1 (en) Imaging device, and solid-state image element for use therein
WO2018008389A1 (ja) 半導体装置およびその製造方法、並びに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532920

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003594

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839213

Country of ref document: EP

Kind code of ref document: A1