WO2018020768A1 - 電磁誘導加熱装置および軽合金ホイール製造方法 - Google Patents

電磁誘導加熱装置および軽合金ホイール製造方法 Download PDF

Info

Publication number
WO2018020768A1
WO2018020768A1 PCT/JP2017/017121 JP2017017121W WO2018020768A1 WO 2018020768 A1 WO2018020768 A1 WO 2018020768A1 JP 2017017121 W JP2017017121 W JP 2017017121W WO 2018020768 A1 WO2018020768 A1 WO 2018020768A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated
rotating body
electromagnetic induction
temperature
induction heating
Prior art date
Application number
PCT/JP2017/017121
Other languages
English (en)
French (fr)
Inventor
忠 窪野
精次 河本
Original Assignee
Tsk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsk株式会社 filed Critical Tsk株式会社
Priority to KR1020177033285A priority Critical patent/KR101962672B1/ko
Priority to EP17833779.6A priority patent/EP3331320A4/en
Priority to CN201780001645.9A priority patent/CN108141920B/zh
Priority to US15/574,844 priority patent/US10375770B2/en
Publication of WO2018020768A1 publication Critical patent/WO2018020768A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/26Making other particular articles wheels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/06Disc wheels, i.e. wheels with load-supporting disc body formed by casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications

Definitions

  • the present invention relates to an electromagnetic induction heating device and a light alloy wheel manufacturing method.
  • Patent Document 1 describes a manufacturing method in which a semi-finished aluminum wheel is cast and then a part of the semi-finished aluminum wheel is processed to form a rim portion.
  • Patent Document 1 describes heating using a heating furnace, but it takes time to preheat a semi-finished aluminum wheel in the heating furnace, leading to an increase in the scale of the aluminum wheel manufacturing facility. There is a problem. Then, this invention is providing the electromagnetic induction heating apparatus which can heat to-be-heated objects, such as a semi-finished light alloy wheel, efficiently and can be made predetermined temperature in a short time.
  • the inventors of the present application have found that by using electromagnetic induction heating, an object to be heated can be efficiently heated in a shorter time than a manufacturing method using a conventional heating furnace, and the present invention has been achieved.
  • the present invention provided to solve the above-described problems is as follows. [1] A rotating body in which a plurality of magnets are arranged so that the same pole is located on the heated object side, and a rotation driving unit that rotates the rotating body, and is generated by rotating the rotating body. An electromagnetic induction heating apparatus, wherein the object to be heated is heated by an induction current.
  • Temperature measuring means for measuring the temperature of the heated object, and moving means for changing the distance by moving at least one of the rotating body and the heated object [1] Or the electromagnetic induction heating apparatus as described in [2].
  • the temperature measuring means measures a first temperature on the rotating body side and a second temperature on the opposite side of the rotating body in the semi-finished light alloy wheel, and the first temperature is measured.
  • the electromagnetic induction heating device according to [3], wherein at least one of a rotation speed of the rotating body and the distance is changed based on the second temperature.
  • At least one of the rotation of the rotating body and the distance between the magnet and the object to be heated is changed so that the difference between the first temperature and the second temperature is 50 to 150 ° C. [ 4].
  • the apparatus further includes distance measuring means for measuring the distance between the plurality of magnets and the object to be heated, and the moving means is configured to measure the rotating body and the object to be measured based on the distance measured by the distance measuring means.
  • the electromagnetic induction heating device according to [3], [4], or [5] that moves at least one of the heated objects.
  • a plurality of the distance measuring means are provided, and the moving means is configured to detect the object to be heated and the rotation based on a maximum value or a minimum value among a plurality of distances detected by the plurality of distance measuring means.
  • the distance measuring unit measures the distance based on a change in capacitance between the magnet of the rotating body and the object to be heated, or a change in laser light. Or the electromagnetic induction heating apparatus as described in [7].
  • a method for manufacturing a light alloy wheel comprising a heating step of heating a semi-finished light alloy wheel by electromagnetic induction.
  • the semi-finished light alloy wheel is formed by an induced current generated by rotating the rotating body of the electromagnetic induction heating device according to claim 1 below the semi-finished light alloy wheel.
  • the light process according to [9] or [10], comprising: a casting process for forming the semi-finished light alloy wheel; and a processing process for processing the light alloy wheel heated by the heating process. Alloy wheel manufacturing method.
  • the magnetic field lines are parallel and reach far away, so that the induced current generated by the rotation of the rotating body
  • the object to be heated can be efficiently heated. Therefore, an object to be heated such as a semi-finished light alloy wheel can be efficiently heated to a predetermined temperature in a short time.
  • the block diagram which shows typically the modification of the electromagnetic induction heating apparatus 1 of FIG. Flowchart of the aluminum wheel manufacturing method according to the second embodiment
  • the graph which shows the measurement result of Example 1 The graph which shows the measurement result of Example 2
  • the graph which shows the measurement result of Example 3 The graph which shows the measurement result of Example 3
  • the graph which shows the measurement result of Example 3 The graph which shows the measurement result of Example 3
  • FIG. 1 is a block diagram schematically showing a schematic configuration of an electromagnetic induction heating device 1 according to the first embodiment of the present invention.
  • an electromagnetic induction heating apparatus 1 of this embodiment includes a rotating body 2, a rotation drive motor (rotation drive means) 3, a distance measurement means 4, a temperature measurement means 5, and a movement motor (movement means) 6. And control means 7 are provided.
  • FIG. 2 is an AA arrow view in FIG. 1 and is a front view as viewed from the surface (hereinafter also referred to as “magnet surface”) on which the rotating body 2 is provided with the magnet 21.
  • the rotating body 2 is configured by arranging a plurality of magnets 21 concentrically (annularly) on one surface of a disk.
  • the rotating body 2 is connected to the rotary drive motor 3 via the rotating shaft 22 at the position of the center of the concentric circle of the magnet 21 on the surface opposite to the magnet surface.
  • the rotary drive motor 3 rotates the rotating body 2 to generate an induced current in the object to be heated 8 and heat it.
  • other known means such as a chain and a belt may be used in addition to the rotating shaft 22.
  • a rare earth magnet such as a ferrite magnet, a Samakoba magnet (Sm—Co magnet) or a neodymium magnet (Nd—Fe—B magnet), an alnico magnet (Al / Ni / Co magnet), or the like can be used.
  • a magnet having a strong magnetic force such as a rare earth magnet is preferable.
  • FIG. 3 is a side view of the rotating body 2 and the object 8 to be heated.
  • the start point side indicates the S pole side
  • the end point side indicates the N pole side.
  • FIG. 3 shows an example in which the N poles of all the magnets 21 are located on the heated object 8 side
  • the S poles of all the magnets 21 may be located on the heated object 8 side.
  • FIG. 3 shows a configuration in which the rotating body 2 is rotated in order to generate an induced current in the article 8 to be heated.
  • the configuration may be such that an induced current is generated by fixing the rotating body 2 by rotating the object 8 to be heated.
  • the electromagnetic induction heating device 1 may cool the magnet 21 using a cooling means such as a cooling fan.
  • the rotation drive motor 3 (see FIG. 1) is configured to rotate the rotating body 2 via the rotation shaft 22, and is configured to be able to change the rotation torque, the number of rotations, and the like by the control means 7 described later. .
  • the distance measuring means 4 measures the distance D between the heated object 8 side end of the magnet 21 of the rotating body 2 and the heated object 8.
  • Examples of the distance measuring means 4 include a means for detecting a change in electrostatic capacitance between the magnet 21 of the rotating body 2 and the object to be heated 8 and a change in laser light passing through the gap between the two.
  • FIG. 1 shows an example in which two distance measuring means 4 are provided, but the distance measuring means 4 may be one or three or more. From the viewpoint of measurement accuracy, it is preferable to measure the distance D using a plurality of distance measuring means 4.
  • the temperature measuring means 5 measures the temperature of the article 8 to be heated and outputs the result to the control means 7.
  • a known temperature sensor such as a thermocouple can be used. Although it is good also as a structure which measures the temperature of the to-be-heated object 8 in one place as shown in FIG. 1, when it is necessary to measure temperature for every site
  • the moving motor 6 moves the rotation drive motor 3 in a direction parallel to the rotation shaft 22 to change the distance D between the rotating body 2 and the object to be heated 8. For example, when the object to be heated 8 is thermally expanded by the distance measuring means 4 and the distance D becomes small, the rotational drive motor 3 is moved in a direction away from the object to be heated 8 to make the distance D a size with good heating efficiency. Can be maintained.
  • FIG. 1 shows a configuration including a moving motor 6 that moves the rotation drive motor 3 in order to change the position of the rotating body 2, a configuration that moves the position of the object to be heated 8 or rotation. It is good also as a structure which moves the position of the body 2 and the to-be-heated material 8, respectively.
  • the control means 7 is electrically connected to the above-described rotation drive motor 3, distance measurement means 4, temperature measurement means 5 and movement motor 6 by wire or wirelessly, and controls each of them, for example, using a computer or the like. Can be configured. Control by the control means 7 will be described below.
  • the control means 7 controls the rotation drive motor 3 and the movement motor 6 using the distance D measured by the distance measurement means 4.
  • the rotation drive motor 3 is stopped or the rotating body 2 is moved by the moving motor 6.
  • the rotating body 2 is moved in a direction away from the object to be heated 8. At this time, if the distance D is maintained at a distance with good heating efficiency, the heating efficiency can be improved.
  • the control means 7 can control the rotation drive motor 3 and the moving motor 6 by using the temperature of the heated object 8 measured by the temperature measurement means 5. For example, until the object to be heated 8 reaches a predetermined temperature, the heating efficiency 8 is maintained at the distance D and the number of rotations, and the distance D and the number of rotations are changed as the temperature approaches the target temperature. The temperature can be precisely controlled. When the object to be heated 8 reaches a predetermined temperature, the rotation driving motor 3 may be stopped and the rotating body 2 may be moved away from the object to be heated 8.
  • control means 7 may control each part using the maximum value or the minimum value among the detected distances D.
  • the object to be heated 8 is made of a material that generates an eddy current by changing a magnetic field.
  • the article to be heated 8 include an aluminum alloy containing aluminum, specifically, an aluminum sash, an aluminum wheel, and the like.
  • an object made of a light alloy that is an alloy mainly composed of light metals such as aluminum, magnesium, and titanium can be heated as the article to be heated 8.
  • FIG. 4 is a block diagram schematically showing a modification of the electromagnetic induction heating device 1 of the present embodiment.
  • the electromagnetic induction heating device 1 may be arranged on both sides of the article 8 to be heated.
  • FIG. 5 is a flowchart of an aluminum wheel manufacturing method according to the second embodiment of the present invention.
  • the aluminum wheel manufacturing method of the present embodiment includes a casting step S1 in which a predetermined aluminum alloy material is cast to form a semi-finished aluminum wheel, and a half step formed in the casting step S1.
  • a heating step S2 for heating the product-like aluminum wheel, and a processing step S3 for processing the semi-finished aluminum wheel heated in the heating step S2 to form a rim portion having a predetermined form are provided.
  • the casting step S1 is a step of injecting molten metal into a cavity formed by a mold, cooling, and then opening the mold to form a semi-finished aluminum wheel that is an aluminum alloy casting.
  • a semi-finished aluminum wheel that is an aluminum alloy casting.
  • the rim portion and the disk portion are integrally formed.
  • a rim part and a disk part are formed separately.
  • a part of the rim portion is deformed in the subsequent processing step S3 to make the rim portion into a predetermined shape.
  • the aluminum alloy casting formed by the casting step S1 is referred to as a semi-finished aluminum wheel (near net shape).
  • the heating step S2 is a step of heating the semi-finished aluminum wheel in advance to a temperature suitable for processing in the subsequent processing step S3.
  • a heating furnace has been used to heat a semi-finished aluminum wheel to a temperature suitable for processing such as about 150 to 400 ° C. before the processing step.
  • heating with a heating furnace requires a long time to heat a semi-finished aluminum wheel to a predetermined temperature, and the heating furnace requires a large installation location, so the economics of aluminum wheel production It was one of the causes of lowering.
  • the entire semi-finished aluminum wheel is heated to a predetermined temperature.
  • only the rim portion on one side surface of the semi-finished aluminum wheel is processed in the processing step S3.
  • the semi-finished aluminum wheel is heated by electromagnetic induction using the electromagnetic induction heating device 1.
  • the electromagnetic induction heating device 1 can efficiently heat a semi-finished aluminum wheel and can also be installed in a narrow place. Therefore, it is possible to suppress time, energy, space and the like required for manufacturing the aluminum wheel.
  • one side surface of the semi-finished aluminum wheel is selectively heated to a high temperature, that is, heated so that a temperature gradient is generated in the semi-finished aluminum wheel. can do. Accordingly, in the processing step S3, one side can be set to a temperature suitable for processing, and the other side can be set to a temperature at which unintended deformation does not occur.
  • the heating step S2 using the electromagnetic induction heating device 1 it is possible to heat the semi-finished aluminum wheel to, for example, about 150 to 500 ° C.
  • the processing step S3 is a step of deforming the semi-finished aluminum wheel formed in the casting step S1 into a predetermined shape.
  • Examples of the processing step S3 include a plastic processing step and a forging (pressing) step.
  • a semi-finished aluminum wheel is placed in a pressure-resistant formwork and rotated together with the formwork, while the roller is pressed against the part where the rim part will be formed later at a predetermined pressure and moved. This is a step of forming a predetermined shape.
  • a semi-finished aluminum wheel is subjected to a process of stretching a rim portion formed thicker than the finished product.
  • the forging process is a process in which a semi-finished aluminum wheel is placed in a pressure-resistant mold and an aluminum wheel having a predetermined shape is formed by a high-pressure press.
  • the forging process is suitably used for manufacturing aluminum wheels for large vehicles such as buses and trucks.
  • the temperature of the entire aluminum wheel is uniform when the processing step S3 is completed.
  • the temperature decrease is greater in the rim portion on one side stretched in the processing step S3 than on the other side. For this reason, it can be set as the aluminum wheel by which distortion was suppressed by making temperature of the rim part of one side processed high by the time of processing process S3 starting.
  • the temperature difference between the stretched rim portion and the other rim portion is preferably within 100 ° C. and within 50 ° C. when the processing step S3 is completed. Is more preferable, and it is more preferably within 30 ° C.
  • the “temperature difference” means an average value of the temperatures of the stretched rim portions on one side and the other side.
  • FIG. 6 is a block diagram schematically showing a heating step S2 using the electromagnetic induction heating device 1 in the present embodiment.
  • the electromagnetic induction heating apparatus 1 shown in the figure includes, as temperature measuring means 5, temperature measuring means 5 ⁇ / b> A that measures the first temperature on the rotating body side of the semi-finished aluminum wheel 81, and the first on the side opposite to the rotating body 2. Temperature measuring means 5B for measuring the temperature of No. 2.
  • the “semi-finished aluminum wheel 81” is also referred to as “aluminum wheel 81” as appropriate.
  • the rotating body 2 is rotated only on the lower side of the semi-finished aluminum wheel 81 that is the article to be heated 8.
  • the rotating body 2 is rotated only on the lower side of the semi-finished aluminum wheel 81 that is the article to be heated 8.
  • only one side of the semi-finished aluminum wheel 81 can be heated, so that a temperature gradient can be generated in the aluminum wheel 81 and the side surface processed in the processing step can be selectively heated to a high temperature. It is.
  • by rotating the rotating body 2 below the aluminum wheel 81 it is possible to suppress the heat of the heated aluminum wheel 81 from affecting the magnet 21.
  • the control means 7 controls the rotary drive motor 3 and the moving motor 6 using the first temperature and the second temperature measured by the temperature measuring means 5A and 5B. . Accordingly, the side surface on the rotating body 2 side of both side surfaces of the semi-finished aluminum wheel 81 is set to a predetermined temperature suitable for processing, and the side surface on the opposite side of the rotating body 2 is set to a temperature at which unintended deformation does not occur. Can do.
  • the first temperature measured by the temperature measuring means 5A and 5B in the heating step S2 and the above-mentioned is preferably 50 to 150 ° C., more preferably 70 to 130 ° C., and still more preferably 80 to 130 ° C.
  • 2nd embodiment demonstrated the case where the electromagnetic induction heating apparatus 1 of this invention was used for the manufacturing method of an aluminum wheel.
  • the electromagnetic induction heating apparatus 1 of this invention it is necessary to heat the columnar aluminum alloy raw material to a predetermined temperature before passing it through a die so as to have a predetermined shape.
  • the electromagnetic induction heating device 1 of the present invention if used, the columnar aluminum alloy raw material can be heated so as to generate a temperature gradient.
  • the temperature of the aluminum sash at the end of the machining process is made uniform, and distortion due to uneven temperature is reduced. A small number of aluminum sashes can be manufactured efficiently.
  • thermocouple that has a hole in the end surface on the rotating body 2 side of the object to be heated 8 and is embedded 44 mm from the side end surface. Measured using means 5A.
  • -Material to be heated-Material Made of aluminum alloy-External shape: Diameter 425mm x 118mm ⁇ Weight: 11.8kg Specific heat: 900 (J / Kg K) (20 ° C) ⁇ Thermal conductivity: 204 (W / m K)
  • Example 1 The electromagnetic induction heating apparatus 1 provided with the rotating body 2 in which 28 neodymium magnets were uniformly arranged on the circumference of 390 mm in diameter and the rotation drive motor 3 with an output of 11 KW was used.
  • the distance D from the article to be heated 8 to the magnet 21 of the rotating body 2 was set to 2.0 mm, 2.5 mm, and 3.0 mm.
  • Example 2 Using the same electromagnetic induction heating apparatus 1 as in Example 1, the distance D from the end of the heated object 8 to the magnet 21 of the rotating body 2 was set to 2.6 mm, 2.8 mm, and 3.0 mm. The time required until the temperature difference between the room temperature and the heated object 8 reaches 200 ° C., that is, the temperature of the heated object 8 rises by 200 ° C. from the room temperature by changing the rotation speed of the rotating body 2 for each distance. Seconds). The results are shown in Table 2 and FIG.
  • Example 4 The electromagnetic induction heating device 1 different from that in Example 1 was used in that the rotating body 2 including a ferrite magnet was used instead of the neodymium magnet, and the output of the rotary drive motor 3 was 3.5 kW.
  • the distance D from the end of the article to be heated 8 to the magnet 21 of the rotating body 2 was set to 1.8 mm, 2.0 mm, 2.2 mm, 2.4 mm, 2.6 mm, and 2.8 mm.
  • the rotation speed of the rotary body 2 was changed and the time (second) required until the to-be-heated material 8 of room temperature became 40 degreeC was measured. The results are shown in Table 3 and FIGS.
  • Example 4 using an anisotropic ferrite magnet, an object to be heated made of an aluminum alloy could be heated by magnetic induction.
  • a heated object made of aluminum alloy could be heated to 350 ° C. sufficient for processing.
  • a neodymium magnet and an anisotropic ferrite magnet have different rotation speeds with good heating efficiency. In this example, about 1750 (rpm) was optimum for the neodymium magnet, and about 3100 (rpm) was optimum for the anisotropic ferrite magnet.
  • the electromagnetic induction heating device of the present invention is useful, for example, as a device for efficiently heating a semi-finished light alloy wheel or the like to a predetermined temperature suitable for a machining process in a short time.
  • Electromagnetic induction heating apparatus Rotating body 21 Magnet 22 Rotating shaft 3 Rotation drive motor (rotation drive means) 4 Distance measuring means 5, 5A, 5B Temperature measuring means 6 Moving motor (moving means) 7 Control means 8 Heated object 81 Semi-finished aluminum wheel D Distance between magnet and heated object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)

Abstract

半製品状の軽合金ホイールなどの被加熱物を効率的に加熱して短時間で所定温度とすることができる電磁誘導加熱装置1は、被加熱物8側に同じ極が位置するように複数の磁石21が配置された回転体2と、回転体2を回転させる回転駆動モータ3と、を備えており、回転体2を回転させて生じる誘導電流により被加熱物8を加熱する。移動用モータ6で回転体2の磁石21と被加熱物8との距離Dを制御することにより、熱膨張係数の大きな軽合金ホイールなどを効率的によく加熱できる。

Description

電磁誘導加熱装置および軽合金ホイール製造方法
 本発明は電磁誘導加熱装置および軽合金ホイール製造方法に関する。
 アルミニウム合金製のアルミホイールなどの軽合金ホイールの製造方法として、従来、半製品状のアルミホイールを鋳造し、当該アルミホイールにスピニング加工を施して所定のリム形状を形成する製造方法がある。例えば、特許文献1には、半製品状のアルミホイールを鋳造し、次に半製品状のアルミホイールの一部を加工してリム部を形成する製造方法が記載されている。
特開2003-127030号公報
 加工によりアルミホイールのリム部の一部を形成する製造方法では、半製品状のアルミホイールを加工する前にあらかじめ加熱して加工に適した温度にしておく必要がある。特許文献1には加熱炉を用いて加熱することが記載されているが、加熱炉で半製品状のアルミホイールをあらかじめ加熱する工程には時間がかかり、アルミホイール製造設備の大規模化につながるという問題がある。
 そこで、本発明は、半製品状の軽合金ホイールなどの被加熱物を効率的に加熱して短時間で所定温度とすることができる電磁誘導加熱装置を提供することにある。
 本出願の発明者らは、電磁誘導加熱を用いることにより、従来の加熱炉による製造方法よりも短時間で被加熱物を効率よく加熱できることを見出し、本発明に至った。
 上記の課題を解決するために提供される本発明は次のとおりである。
 [1]被加熱物側に同じ極が位置するように複数の磁石が配置された回転体と、前記回転体を回転させる回転駆動手段と、を備えており、前記回転体を回転させて生じる誘導電流により前記被加熱物を加熱することを特徴とする電磁誘導加熱装置。
 [2]前記回転体には複数の前記磁石が配置されており、前記被加熱物は、半製品状の軽合金ホイールである[1]に記載の電磁誘導加熱装置。
 [3]前記被加熱物の温度を測定する温度測定手段と、前記回転体および前記被加熱物の少なくとも一方を移動させることにより前記距離を変化させる移動手段と、をさらに備えている[1]または[2]に記載の電磁誘導加熱装置。
 [4]前記温度測定手段は、前記半製品状の軽合金ホイールにおける、前記回転体側の第1の温度と、前記回転体と反対側の第2の温度とを測定し、前記第1の温度および前記第2の温度に基づいて、前記回転体の回転数および前記距離の少なくとも一方を変化させる[3]に記載の電磁誘導加熱装置。
 [5]前記第1の温度と前記第2の温度との差が50~150℃になるように、前記回転体の回転および前記磁石と前記被加熱物との距離の少なくとも一方を変化させる[4]に記載の電磁誘導加熱装置。
 [6]複数の前記磁石と前記被加熱物との距離を測定する距離測定手段をさらに備えており、前記移動手段は、前記距離測定手段が測定した距離に基づいて、前記回転体および前記被加熱物の少なくとも一方を移動させる[3]、[4]または[5]に記載の電磁誘導加熱装置。
 [7]前記距離測定手段を複数備えており、前記移動手段は、前記複数の距離測定手段によって検出された複数の距離のうちの最大値または最小値に基づいて、前記被加熱物および前記回転駆動手段の少なくとも一方を移動させる[6]に記載の電磁誘導加熱装置。
 [8]前記距離測定手段は、前記回転体の前記磁石と前記被加熱物との間の静電容量の変化、またはレーザー光の変化に基づいて、前記距離を測定するものである[6]または[7]に記載の電磁誘導加熱装置。
 [9]電磁誘導によって半製品状の軽合金ホイールを加熱する加熱工程を備えている、軽合金ホイールの製造方法。
 [10]前記加熱工程は、前記半製品状の軽合金ホイールの下方において、請求項1の電磁誘導加熱装置の前記回転体を回転させることによって生じる誘導電流により前記半製品状の軽合金ホイールを加熱する[9]に記載の軽合金ホイールの製造方法。
 [11]前記半製品状の軽合金ホイールを形成する鋳造工程と、前記加熱工程により加熱された軽合金ホイールを加工する加工工程と、を備えている[9]または[10]に記載の軽合金ホイールの製造方法。
 本発明によれば、被加熱物側に同じ極が位置するように複数の磁石が配置されていることによって、磁力線が平行となって遠くにまで到達するから、回転体の回転により生じる誘導電流により効率よく被加熱物を加熱することができる。したがって、半製品状の軽合金ホイールのような被加熱物を効率よく加熱して短時間で所定温度とすることが可能である。
第一の実施形態に係る電磁誘導加熱装置1の概略構成を模式的に示すブロック図 図1におけるAA矢視図であり、回転体2を磁石21が設けられた磁石面側から見た正面図 回転体2および被加熱物8の側面図 図1の電磁誘導加熱装置1の変形例を模式的に示すブロック図 第二の実施形態に係るアルミホイールの製造方法のフローチャート 第二の実施形態に係るアルミホイールの製造方法における、電磁誘導加熱装置1を用いた加熱工程を模式的に示すブロック図 実施例1の測定結果を示すグラフ 実施例2の測定結果を示すグラフ 実施例3の測定結果を示すグラフ 実施例3の測定結果を示すグラフ 実施例3の測定結果を示すグラフ
(第一の実施形態)
 本発明の実施形態について、図面を参照しつつ以下に説明する。
 図1は、本発明の第一の実施形態に係る電磁誘導加熱装置1の概略構成を模式的に示すブロック図である。同図に示すように、本実施形態の電磁誘導加熱装置1は、回転体2、回転駆動モータ(回転駆動手段)3、距離測定手段4、温度測定手段5、移動用モータ(移動手段)6、および制御手段7を備えている。
 図2は、図1におけるAA矢視図であり、回転体2に磁石21が設けられた面(以下、「磁石面」ともいう)側から見た正面図である。図1および図2に示すように、回転体2は円盤の一方の面に複数の磁石21が、同心円状(円環状)に配置されて構成されている。回転体2は、磁石面とは反対の面において、磁石21の同心円の中心の位置で回転軸22を介して回転駆動モータ3と接続されている。回転駆動モータ3で回転体2を回転し、被加熱物8に誘導電流を生じさせて加熱する。回転体2と回転駆動モータ3とを繋げる手段としては回転軸22の他、チェーン、ベルトなど他の公知の手段を用いてもよい。
 磁石21としては、フェライト磁石、サマコバ磁石(Sm-Co系マグネット)、ネオジウム磁石(Nd-Fe-B系マグネット)などの希土類磁石、アルニコ磁石(Al・Ni・Co磁石)等を用いることができる。被加熱物8を効率よく加熱する観点から、希土類磁石等の磁力が強い磁石が好ましい。
 図3は回転体2および被加熱物8の側面図である。同図中の磁石21に付した矢印は、始点側がS極側を示しており、終点側がN極側を示している。図3には、全ての磁石21のN極が被加熱物8側に位置する例を示したが、全ての磁石21のS極が被加熱物8側に位置する構成としてもよい。全ての磁石21を被加熱物8側に同じ極が位置するように配置することにより図3に点線矢印で示すように磁束が平行になり、回転体2から遠くの位置にまで磁力線が到達する。したがって、回転体2を回転させることにより、被加熱物8の広い範囲において大きな渦状の誘導電流(以下、「渦電流」ともいう。)を発生させることができるから、被加熱物8を効率良く加熱することができる。
 図3では、被加熱物8に誘導電流を生じさせるために、回転体2を回転させる構成を示した。しかし、被加熱物8を回転させて、回転体2を固定することにより、誘導電流を生じさせる構成としてもよい。ただし、回転体2を回転させることによって磁石21の冷却効果が得られることから、キュリー点が比較的低い希土類磁石を磁石21として用いる場合、回転体2を回転させる構成が好ましい。電磁誘導加熱装置1は、冷却ファンなどの冷却手段を用いて磁石21を冷却することとしてもよい。
 回転駆動モータ3(図1に参照)は、回転軸22を介して回転体2を回転駆動するものであり、後述する制御手段7により、回転トルク、回転数等を変更可能に構成されている。
 距離測定手段4は、回転体2の磁石21の被加熱物8側端と被加熱物8との距離Dを測定するものである。距離測定手段4としては、例えば、回転体2の磁石21と被加熱物8との間の静電容量の変化や、両者の間隙を通過するレーザー光の変化を検知する手段が挙げられる。
 図1には距離測定手段4を2つ備えた例を示したが、距離測定手段4は、1個または3個以上であってもよい。測定精度の観点から、複数の距離測定手段4を用いて距離Dを測定することが好ましい。
 温度測定手段5は、被加熱物8の温度を測定して結果を制御手段7に出力する。温度測定手段5として、熱電対等の公知の温度センサを用いることができる。図1に示すように被加熱物8の温度を1箇所で測定する構成としてもよいが、被加熱物8の部位ごとに温度を測定する必要がある場合には、複数の温度測定手段5を用いて被加熱物8の温度を測定することが好ましい。
 移動用モータ6は、回転駆動モータ3を回転軸22と平行な方向に移動させて、回転体2と被加熱物8との距離Dを変化させるものである。例えば、距離測定手段4によって被加熱物8が熱膨張して距離Dが小さくなった場合、被加熱物8から離れる方向に回転駆動モータ3を移動させて距離Dを加熱効率の良好な大きさに維持することができる。
 図1には、回転体2の位置を変化させるために、回転駆動モータ3を移動させる移動用モータ6を備えた構成を示したが、被加熱物8の位置を移動させる構成、または、回転体2および被加熱物8の位置をそれぞれ移動させる構成としてもよい。
 制御手段7は、上述した回転駆動モータ3、距離測定手段4、温度測定手段5および移動用モータ6と有線または無線で電気的に接続され、それぞれを制御するものであり、例えばコンピュータなどを用いて構成することができる。制御手段7による制御について、以下に説明する。
 制御手段7は、距離測定手段4により測定された距離Dを用いて回転駆動モータ3や移動用モータ6を制御する。被加熱物8の加熱により膨張変形していること検知した場合、回転駆動モータ3を停止したり、移動用モータ6により回転体2を移動させたりする。これにより、回転体2と被加熱物8とが接触することを防止できる。例えば、回転体2と被加熱物8との距離Dが接触の危険があるほど小さくなった場合、被加熱物8から離れる方向に回転体2を移動させる。この際、距離Dを加熱効率が良好な距離に維持すれば、加熱効率を良好にすることができる。
 制御手段7は、温度測定手段5により測定された被加熱物8の温度を用いて回転駆動モータ3や移動用モータ6を制御することができる。例えば、被加熱物8が所定温度に到達するまでは、加熱効率が高い距離Dおよび回転数に維持し、目的の温度に近づくにつれて距離Dおよび回転数を変化させることにより、被加熱物8の温度を精緻に制御できる。被加熱物8が所定温度に到達した時点で、回転駆動モータ3を停止させて、回転体2を被加熱物8から離れる方向に移動させてもよい。
 電磁誘導加熱装置1が距離測定手段4を複数備えている場合、制御手段7は、検出された複数の距離Dのうちの最大値または最小値を用いて各部を制御してもよい。
 被加熱物8は、磁界を変化させることにより渦電流が生じる素材からなるものである。被加熱物8は、例えば、アルミニウムを含有するアルミニウム合金などからなる物、具体的には、アルミサッシ、アルミホイールなどが挙げられる。また、アルミニウム、マグネシウム、チタンなど軽金属を主体とする合金である軽合金からなる物も被加熱物8として加熱することができる。
 図4は本実施形態の電磁誘導加熱装置1の変形例を模式的に示すブロック図である。同図に示すように、被加熱物8の両側にそれぞれ電磁誘導加熱装置1を配置する構成としてもよい。電磁誘導加熱装置1を複数用いることにより、被加熱物8が所定の温度に達するまでの時間を短縮したり、被加熱物8をより高温にしたりすることができる。
(第二の実施形態)
 第一の実施形態において説明した電磁誘導加熱装置1を用いて、軽合金ホイールの一例であるアルミニウム合金製の半製品状のアルミホイールを加熱するアルミホイールの製造方法について説明する。
 図5は本発明の第2の実施形態に係るアルミホイールの製造方法のフローチャートである。同図に示すように、本実施形態のアルミホイールの製造方法は、所定のアルミニウム合金材を鋳造して半製品状のアルミホイールを形成する鋳造工程S1と、鋳造工程S1にて形成された半製品状のアルミホイールを加熱する加熱工程S2と、加熱工程S2において加熱された半製品状のアルミホイールを加工して所定の形態からなるリム部を形成する加工工程S3とを備えている。
 (鋳造工程S1)
 鋳造工程S1は、鋳型により形成されるキャビティ内に溶湯を注入し、冷却した後、型開きしアルミニウム合金製鋳物である半製品状のアルミホイールを形成する工程である。一体型(ワンピースタイプ)のアルミホイールを製造する場合、リム部とディスク部とを一体的に形成する。分離型(ツーピースタイプ)のアルミホイールを製造する場合、リム部とディスク部とを別々に形成する。いずれの場合にも、後の加工工程S3によってリム部の一部を変形させてリム部を所定の形状とする。
 本発明においては、鋳造工程S1により形成されたアルミニウム合金製鋳物を半製品状のアルミホイール(ニアネットシェープ)という。
 (加熱工程S2)
 加熱工程S2は、後の加工工程S3において加工に適した温度に半製品状のアルミホイールを予め加熱しておく工程である。
 従来、加工工程の前に半製品状のアルミホイールを例えば150~400℃程度の加工に適した温度に加熱するために加熱炉が用いられていた。しかし、加熱炉を用いた加熱は、半製品状のアルミホイールを所定温度に加熱するまでに長時間を要すること、および加熱炉が広い設置場所を必要とすることから、アルミホイール製造の経済性を低下させる一因となっていた。
 また、従来の加熱炉を用いた加熱では、半製品のアルミホイールの全体が所定温度にまで加熱される。しかし、加工工程S3において加工されるのは半製品のアルミホイールの一方の側面のリム部のみである。例えば、一体型のアルミホイールを加工する場合、鋳造工程S1で形成されたディスク部が加工工程S3によって変形しないように、他方の側面は低い温度に維持することが好ましい。したがって、半製品のアルミホイールの側面うち、塑性変形される一方の側面が他方よりも高い温度になるように加熱することができれば、アルミホイール製造における効率をさらに向上させることができる。
 そこで、本実施形態のアルミホイールの製造方法の加熱工程S2は、電磁誘導加熱装置1を用いた電磁誘導によって半製品状のアルミホイールを加熱する。電磁誘導加熱装置1は、半製品状のアルミホイールを効率よく加熱でき、また、狭い場所にも設置できる。したがって、アルミホイールの製造に要する時間、エネルギー、空間等を抑制することが可能である。
 また、電磁誘導加熱装置1を用いることにより、半製品状のアルミホイールの一方の側面を選択的に加熱して高い温度とすること、すなわち半製品状のアルミホイールに温度勾配が生じるように加熱することができる。したがって、加工工程S3において、一方の側面を加工に適した温度とし、他方の側面を意図しない変形などが生じない温度とすることができる。
 電磁誘導加熱装置1を用いた加熱工程S2によれば、半製品状のアルミホイールを例えば150~500℃程度に加熱することが可能である。
(加工工程S3)
 加工工程S3は、鋳造工程S1において形成された半製品状のアルミホイールを所定形状に変形する工程である。加工工程S3としては、例えば、塑性加工工程や、鍛造(プレス)工程等が挙げられる。
 塑性加工工程は、半製品状のアルミホイールを耐圧性の型枠に入れて型枠ごと回転させながら、後にリム部を形成することとなる部分にローラを所定圧力にて押しつけて移動させることにより、所定形状とする工程である。塑性加工工程において、半製品状のアルミホイールにおいて、完成品よりも肉厚に形成されているリム部を引き伸ばす加工を行う。
 鍛造工程は、半製品状のアルミホイールを耐圧性の金型に入れ、高圧プレスにより所定形状のアルミホイールを形成する工程である。鍛造工程は、バスやトラックのような大型車のアルミホイールの製造に好適に用いられる。
 完成品のアルミホイールに変形を生じさせない観点から、加工工程S3が終了した時点においてアルミホイール全体の温度が均一であることが好ましい。塑性加工によって所定形状とされる場合、加工工程S3で引き伸ばされる一方の側のリム部のほうが他方の側よりも温度低下の程度が大きい。このため、加工工程S3が開始する時点において、加工される一方の側のリム部の温度を高くしておくことにより、ひずみが抑えられたアルミホイールとすることができる。この観点から、引き伸ばされる一方の側のリム部と他方の側のリム部との温度差は、加工工程S3が終了した時点おいて、100℃以内であることが好ましく、50℃以内であることがより好ましく、30℃以内であることがさらに好ましい。なお、ここでいう「温度差」は、引き伸ばされる一方の側と、他方の側のそれぞれのリム部の温度の平均値をいう。
 図6は、本実施形態における電磁誘導加熱装置1を用いた加熱工程S2を模式的に示すブロック図である。同図に示す電磁誘導加熱装置1は、温度測定手段5として、半製品状のアルミホイール81の回転体側の第1の温度を測定する温度測定手段5Aと、回転体2とは反対側の第2の温度を測定する温度測定手段5Bとを備えている。以下では、「半製品状のアルミホイール81」を、適宜、「アルミホイール81」ともいう。
 図6に示すように、加熱工程S2では、被加熱物8である半製品状のアルミホイール81の下方側のみにおいて回転体2を回転させる。これにより、半製品状のアルミホイール81の一方側のみを加熱することができるから、アルミホイール81に温度勾配を生じさせて、加工工程において加工される側面を選択的に高温にすることが可能である。また、回転体2をアルミホイール81の下方で回転させることにより、加熱されたアルミホイール81の熱が磁石21に対して影響を及ぼすことを抑制できる。
 加熱工程S2(図5参照)では、制御手段7は、温度測定手段5Aおよび5Bにより測定される第1の温度および第2の温度を用いて、回転駆動モータ3および移動用モータ6を制御する。これにより、半製品状のアルミホイール81の両側面のうち、回転体2側の側面を加工に適した所定温度とし、回転体2の反対側の側面を意図しない変形が生じない温度とすることができる。
 加熱工程S2における加熱効率および半製品状のアルミホイール81の両側面を加工工程S3に適した温度にする観点から、加熱工程S2における温度測定手段5Aおよび5Bにより測定される第1の温度と前記第2の温度との差を、50~150℃とすることが好ましく、70~130℃とすることがより好ましく、80~130℃とすることがさらに好ましい。
 なお、第二の実施形態では、本発明の電磁誘導加熱装置1をアルミホイールの製造方法に用いる場合について説明した。アルミサッシを製造する場合、ダイスを通過させて柱状のアルミニウム合金原料を所定形状とする前に所定温度に加熱しておく必要がある。この場合、本発明の電磁誘導加熱装置1を用いれば、温度勾配が生じるように柱状のアルミニウム合金原料を加熱することができる。柱状のアルミニウム合金原料の最初にダイスを通過する側を後にダイスを通過する側よりも高温に加熱することで、加工工程の終了時におけるアルミサッシの温度を均一として、温度の不均一によるひずみの少ないアルミサッシを効率よく製造することができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の構成を備えた電磁誘導加熱装置1(図5参照)を用いて、被加熱物8の回転体2側端面に穴をあけて側端面から44mmのところに埋め込んだ熱電対よりなる温度測定手段5Aを用いて測定した。
・被加熱物
  ・材質:アルミニウム合金製
  ・外形:直径425mm×118mm
  ・重量:11.8kg
  ・比熱:900(J/Kg K)(20℃)
  ・熱伝導率:204(W/m K)
(実施例1)
 直径390mmの円周上に28個のネオジウム磁石が均等配置された回転体2、および出力11KWの回転駆動モータ3を備えた電磁誘導加熱装置1を用いた。被加熱物8から回転体2の磁石21までの距離Dを2.0mm、2.5mm、3.0mmに設定した。それぞれの距離について回転体2の回転数を変化させて、室温と被加熱物8の温度差が100℃になるまで、すなわち被加熱物8の温度が室温から100℃上昇するまでに要する時間(秒)を測定した。表1および図7に結果を示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例1と同じ電磁誘導加熱装置1を用いて、被加熱物8の端から回転体2の磁石21までの距離Dを2.6mm、2.8mm、3.0mmに設定した。それぞれの距離について回転体2の回転数を変化させて、室温と被加熱物8の温度差が200℃になるまで、すなわち被加熱物8の温度が室温から200℃上昇するまでに要する時間(秒)を測定した。表2および図8に結果を示す。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 実施例1と同じ電磁誘導加熱装置1を用いて、実施例1において最も短い時間で加熱できたD=2.0mmで、回転数1750rpmで、846秒間加熱することにより、被加熱物を350℃とすることができた。
(実施例4)
 ネオジウム磁石の代わりにフェライト磁石を備えた回転体2を用いた点、および回転駆動モータ3の出力が3.5KWである点において、実施例1とは異なる電磁誘導加熱装置1を用いた。被加熱物8の端から回転体2の磁石21までの距離Dを1.8mm、2.0mm、2.2mm、2.4mm、2.6mm、2.8mmに設定した。それぞれについて、回転体2の回転数を変化させて、室温の被加熱物8が40℃になるまでに要する時間(秒)を測定した。表3および図9~図11に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~4の結果から以下のことが分かった。
(1)ネオジウム磁石を用いた実施例1~3および異方性フェライト磁石を用いた実施例4のいずれも、磁気誘導によってアルミニウム合金製の被加熱物を加熱することができた。
(2)ネオジウム磁石を用いることによりアルミニウム合金製の被加熱物を加工に十分な350℃にまで加熱することができた。
(3)ネオジウム磁石と異方性フェライト磁石とでは、加熱効率の良好な回転数が異なる。本実施例においては、ネオジウム磁石では約1750(rpm)、異方性フェライト磁石では約3100(rpm)がそれぞれ最適であった。
(4)被加熱物と磁石との距離Dを小さくすることが、加熱効率の向上に有効であった。(5)被加熱物の回転体側の第1の温度とその反対側の第2の温度との差が100℃程度となる条件で加熱した場合に、200℃程度となる条件で加熱した場合よりも、加熱効率が良好であった。
 本発明の電磁誘導加熱装置は、例えば、半製品状の軽合金ホイールなどを効率的に加熱して短時間で加工工程に適した所定温度とする装置として有用である。
1 電磁誘導加熱装置
2 回転体
21 磁石
22 回転軸
3 回転駆動モータ(回転駆動手段)
4 距離測定手段
5,5A,5B 温度測定手段
6 移動用モータ(移動手段)
7 制御手段
8 被加熱物
81 半製品状のアルミホイール
D 磁石と被加熱物との距離

Claims (11)

  1.  被加熱物側に同じ極が位置するように複数の磁石が配置された回転体と、
     前記回転体を回転させる回転駆動手段と、を備えており、
     前記回転体を回転させて生じる誘導電流により前記被加熱物を加熱することを特徴とする電磁誘導加熱装置。
  2.  前記回転体には複数の前記磁石が配置されており、
     前記被加熱物は、半製品状の軽合金ホイールである請求項1に記載の電磁誘導加熱装置。
  3.  前記被加熱物の温度を測定する温度測定手段と、
     前記回転体および前記被加熱物の少なくとも一方を移動させることにより前記距離を変化させる移動手段と、をさらに備えている請求項1または2に記載の電磁誘導加熱装置。
  4.  前記温度測定手段は、前記半製品状の軽合金ホイールにおける、前記回転体側の第1の温度と、前記回転体と反対側の第2の温度とを測定し、
     前記第1の温度および前記第2の温度に基づいて、前記回転体の回転数および前記距離の少なくとも一方を変化させる請求項3に記載の電磁誘導加熱装置。
  5.  前記第1の温度と前記第2の温度との差が50~150℃になるように、前記回転体の回転および前記磁石と前記被加熱物との距離の少なくとも一方を変化させる請求項4に記載の電磁誘導加熱装置。
  6.  複数の前記磁石と前記被加熱物との距離を測定する距離測定手段をさらに備えており、
     前記移動手段は、前記距離測定手段が測定した距離に基づいて、前記回転体および前記被加熱物の少なくとも一方を移動させる請求項3、4または5に記載の電磁誘導加熱装置。
  7.  前記距離測定手段を複数備えており、
     前記移動手段は、前記複数の距離測定手段によって検出された複数の距離のうちの最大値または最小値に基づいて、前記被加熱物および前記回転駆動手段の少なくとも一方を移動させる請求項6に記載の電磁誘導加熱装置。
  8.  前記距離測定手段は、前記回転体の前記磁石と前記被加熱物との間の静電容量の変化、またはレーザー光の変化に基づいて、前記距離を測定するものである請求項6または7に記載の電磁誘導加熱装置。
  9.  電磁誘導によって半製品状の軽合金ホイールを加熱する加熱工程を備えている、軽合金ホイールの製造方法。
  10.  前記加熱工程は、前記半製品状の軽合金ホイールの下方において、請求項1の電磁誘導加熱装置の前記回転体を回転させることによって生じる誘導電流により前記半製品状の軽合金ホイールを加熱する請求項9に記載の軽合金ホイールの製造方法。
  11.  前記半製品状の軽合金ホイールを形成する鋳造工程と、
     前記加熱工程により加熱された軽合金ホイールを加工する加工工程と、を備えている請求項9または10に記載の軽合金ホイールの製造方法。
PCT/JP2017/017121 2016-07-25 2017-05-01 電磁誘導加熱装置および軽合金ホイール製造方法 WO2018020768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177033285A KR101962672B1 (ko) 2016-07-25 2017-05-01 전자 유도 가열 장치 및 경합금 휠 제조 방법
EP17833779.6A EP3331320A4 (en) 2016-07-25 2017-05-01 ELECTROMAGNETIC INDUCTION HEATING DEVICE AND METHOD FOR MANUFACTURING LIGHT ALLOY WHEEL
CN201780001645.9A CN108141920B (zh) 2016-07-25 2017-05-01 电磁感应加热装置以及轻合金轮圈制造方法
US15/574,844 US10375770B2 (en) 2016-07-25 2017-05-01 Electromagnetic induction heating apparatus and light alloy wheel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-145702 2016-07-25
JP2016145702A JP6120192B1 (ja) 2016-07-25 2016-07-25 電磁誘導加熱装置および軽合金ホイール製造方法

Publications (1)

Publication Number Publication Date
WO2018020768A1 true WO2018020768A1 (ja) 2018-02-01

Family

ID=58666616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017121 WO2018020768A1 (ja) 2016-07-25 2017-05-01 電磁誘導加熱装置および軽合金ホイール製造方法

Country Status (7)

Country Link
US (1) US10375770B2 (ja)
EP (1) EP3331320A4 (ja)
JP (1) JP6120192B1 (ja)
KR (1) KR101962672B1 (ja)
CN (1) CN108141920B (ja)
TW (1) TWI610597B (ja)
WO (1) WO2018020768A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515396B1 (ja) * 2018-06-14 2019-05-22 Tsk株式会社 電磁誘導加熱装置用の被加熱対象物、被加熱対象物の加熱方法およびアルミホイールの製造方法
JP6515397B1 (ja) * 2018-08-07 2019-05-22 Tsk株式会社 電磁誘導加熱装置
CN109302760A (zh) * 2018-11-30 2019-02-01 葛氏控股有限公司 电磁感应加热电机及加热***和加热方法
KR102477779B1 (ko) 2020-11-25 2022-12-15 장경옥 절삭 휠의 변형 보정장치
CN117282911B (zh) * 2023-11-27 2024-01-26 江苏威鹰机械有限公司 一种多规格通用式驱动轴加工用精锻装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127030A (ja) * 2001-10-22 2003-05-08 Enkei Kk アルミニウム合金製ホイールの製造方法
WO2009048049A1 (ja) * 2007-10-09 2009-04-16 Tsugumitsu Matsui 電磁誘導式発熱装置・熱風発生装置及び発電装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513391B1 (en) * 1990-11-30 1999-04-07 Kubota Corporation Joint by electric welding
JPH0582248A (ja) 1991-08-08 1993-04-02 Berumateitsuku:Kk 誘導加熱方法並びにその装置
JP3199201B2 (ja) 1993-08-31 2001-08-13 セントラル硝子株式会社 ガラスアンテナ
EP1410690A2 (en) 2001-07-24 2004-04-21 Magtec, LLC Magnetic heater apparatus and method
KR100544882B1 (ko) 2003-07-01 2006-01-24 재단법인 포항산업과학연구원 용접 공구, 용접 장치 및 용접 방법
US7732734B2 (en) * 2004-09-17 2010-06-08 Noble Advanced Technologies, Inc. Metal forming apparatus and process with resistance heating
JP2006236856A (ja) 2005-02-25 2006-09-07 Tok Engineering Kk 金属製缶の加熱装置
JP5105228B2 (ja) * 2007-02-20 2012-12-26 高周波熱錬株式会社 高周波熱処理装置
FR2915053B1 (fr) * 2007-04-13 2009-07-17 Roctool Sa Procede et dispositif de chauffage de pieces tubulaires ou pleines par induction.
FI20095213A0 (fi) * 2009-03-04 2009-03-04 Prizztech Oy Induktiokuumennusmenetelmä ja -laitteisto
JP5527685B2 (ja) 2009-08-25 2014-06-18 嗣光 松井 電磁誘導式熱風発生及び発電装置
US8993942B2 (en) * 2010-10-11 2015-03-31 The Timken Company Apparatus for induction hardening
WO2012050552A1 (en) 2010-10-11 2012-04-19 The Timken Company Apparatus for induction hardening
JP2012160369A (ja) 2011-02-01 2012-08-23 Kiyoshi Aizu 磁石回転型発熱装置
TWI551194B (zh) * 2014-01-06 2016-09-21 Bearing heater
KR101541417B1 (ko) 2014-06-05 2015-08-06 남지현 와전류 유도 발열장치
TWI574584B (zh) * 2014-09-03 2017-03-11 新日鐵住金股份有限公司 金屬帶板之感應加熱裝置
CN105063521A (zh) 2015-08-05 2015-11-18 浙江万丰摩轮有限公司 一种铝合金轮毂的热处理工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127030A (ja) * 2001-10-22 2003-05-08 Enkei Kk アルミニウム合金製ホイールの製造方法
WO2009048049A1 (ja) * 2007-10-09 2009-04-16 Tsugumitsu Matsui 電磁誘導式発熱装置・熱風発生装置及び発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331320A4 *

Also Published As

Publication number Publication date
KR101962672B1 (ko) 2019-03-27
EP3331320A4 (en) 2019-03-27
CN108141920A (zh) 2018-06-08
KR20180034312A (ko) 2018-04-04
EP3331320A1 (en) 2018-06-06
CN108141920B (zh) 2019-10-25
US10375770B2 (en) 2019-08-06
JP2018018604A (ja) 2018-02-01
TW201811108A (zh) 2018-03-16
JP6120192B1 (ja) 2017-04-26
TWI610597B (zh) 2018-01-01
US20180235035A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018020768A1 (ja) 電磁誘導加熱装置および軽合金ホイール製造方法
CN109792805B (zh) 用于冲压的片状金属坯料的快速加热
JP6211366B2 (ja) リング状部材の熱処理方法およびリング状部材の熱処理設備
JP3572618B2 (ja) 転動部品の矯正テンパ方法及び装置
US9931682B2 (en) Spinning forming device and spinning forming method
CN101008044A (zh) 一种冷轧辊整体感应加热深层淬火用盾牌形感应装置
JP2006291248A (ja) 高周波熱処理方法、高周波熱処理設備、薄肉部材およびスラスト軸受
CN104582869A (zh) 旋压成型方法以及旋压成型装置
JP6533911B1 (ja) 電磁誘導加熱装置
WO2015166634A1 (ja) スピニング成形装置
JP2017030023A (ja) ディファレンシャル用リングギヤの製造方法
JP2019502226A (ja) 非鉄金属材料の加熱金属ビレットに適した磁気誘導炉
JP2018003123A (ja) クランクシャフトの焼き入れ方法
JP2017128777A (ja) 焼入方法及び焼入装置
US20140030969A1 (en) Grinding disk and apparatus
WO2017053917A4 (en) Large billet electric induction pre-heating for a hot working process
CN107240994A (zh) 电枢的制造方法
JP2015000993A (ja) 板ばねの製造方法
KR20150088608A (ko) 트랜지션 노즐 제조 방법과 제조 장치
JP2018065158A (ja) スピニング加工方法及びそれを用いて製造された容器
JPH04235214A (ja) 高周波加熱焼き鈍し法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177033285

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017833779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE