JP2018003123A - クランクシャフトの焼き入れ方法 - Google Patents

クランクシャフトの焼き入れ方法 Download PDF

Info

Publication number
JP2018003123A
JP2018003123A JP2016133845A JP2016133845A JP2018003123A JP 2018003123 A JP2018003123 A JP 2018003123A JP 2016133845 A JP2016133845 A JP 2016133845A JP 2016133845 A JP2016133845 A JP 2016133845A JP 2018003123 A JP2018003123 A JP 2018003123A
Authority
JP
Japan
Prior art keywords
crankshaft
quenching
hardening
journal
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016133845A
Other languages
English (en)
Inventor
宏諭 清水
Hirosato Shimizu
宏諭 清水
哲也 松川
Tetsuya Matsukawa
哲也 松川
元康 町野
Motoyasu Machino
元康 町野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016133845A priority Critical patent/JP2018003123A/ja
Publication of JP2018003123A publication Critical patent/JP2018003123A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

【課題】焼き入れ深さを均一化することができるクランクシャフトの焼き入れ方法を提供する。【解決手段】焼き入れステーション2において、クランクシャフト4の回転位相と回転速度との関係を規定するジャーナル部焼き入れマップおよびピン部焼き入れマップに従ってクランクシャフト4のジャーナル部41およびピン部42の焼き入れを行う。焼き入れ後のクランクシャフト4を測定ステーション3に移してジャーナル部41およびピン部42それぞれの焼き入れ深さを検出する。この焼き入れ深さの検出データに基づき、焼き入れ深さが小さい位相箇所での回転速度を低下させ、焼き入れ深さが大きい位相箇所での回転速度を上昇させて焼き入れ深さを均一にするように、ジャーナル部焼き入れマップおよびピン部焼き入れマップを更新する。【選択図】図1

Description

本発明はクランクシャフトの焼き入れ方法に係る。特に、本発明は、焼き入れ深さを均一化するための改良に関する。
従来、自動車用エンジン等に用いられるクランクシャフトは、その摺動部位の表面を硬化させる処理として焼き入れ処理が行われる。一般的には、クランクシャフトのピン部やジャーナル部に対し高周波焼き入れが行われる。
特許文献1には、クランクシャフトのピン部に高周波焼き入れを行うことが開示されている。この特許文献1に開示されている高周波焼き入れでは、加熱コイルに投入する電力を一定に維持し、高周波焼き入れ時のクランクシャフトの回転速度を、ピン部が上死点位置を通過する際に最も高くし、ピン部が下死点位置を通過する際に最も低くするようにしている。つまり、熱容量が比較的小さい領域が加熱コイルに対向する際にはクランクシャフトの回転速度を高くし、熱容量が比較的大きい領域が加熱コイルに対向する際にはクランクシャフトの回転速度を低くしている。これにより、熱容量が異なるピン部の各所における加熱温度の均一化を図っている。
特開2001−181739号公報
しかしながら、クランクシャフト(ワーク)の材料比率、高周波焼き入れ時の周囲温度、クランクシャフトの成形(鍛造成形等)に使用する型の摩耗の影響による粗形材の肉厚変化等の条件変化が生じた場合には、焼き入れ深さを均一化するための加工条件は異なるものとなる。特許文献1に開示されている技術では、この条件変化に応じて焼き入れ深さを均一化するための手段については考慮されていない。このため、条件変化によっては焼き入れ深さが不均一になってしまう虞があった。
その結果、焼き入れ歪み、および、焼き入れ後の研削工程における残留応力解放の影響によって、クランクシャフトに変形が生じてしまう可能性があった。このような状況では、その後の加工におけるクランクシャフトの取り代が増加することになり、加工工数が増大し、加工に要するエネルギが増大してしまうことになる。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、焼き入れ深さを均一化することができるクランクシャフトの焼き入れ方法を提供することにある。
前記の目的を達成するための本発明の解決手段は、加熱源に対してクランクシャフトを相対的に回転させながら当該クランクシャフトの摺動部位をその周方向に亘って焼き入れするクランクシャフトの焼き入れ方法を前提とする。そして、このクランクシャフトの焼き入れ方法は、前記加熱源に対する前記クランクシャフトの回転位相と前記クランクシャフトの回転速度との関係を規定するマップに従って前記焼き入れを行う工程と、焼き入れ後の前記クランクシャフトの前記摺動部位の周方向に亘る各所の焼き入れ深さのデータを取得する工程と、前記焼き入れ深さのデータに基づき、前記クランクシャフトの前記摺動部位の周方向に亘る各所の焼き入れ深さを均一にするように、前記加熱源に対する前記クランクシャフトの回転位相に応じた前記クランクシャフトの回転速度を調整する工程とを有することを特徴としている。
この特定事項により、焼き入れ後のクランクシャフトの摺動部位の周方向に亘る各所の焼き入れ深さのデータに基づき、各所の焼き入れ深さを均一にするように、加熱源に対するクランクシャフトの回転位相に応じたクランクシャフトの回転速度が調整されることになる。例えば、焼き入れ深さが小さくなっている位相箇所に対しては、次回の焼き入れ時において、その位相箇所が加熱源に対向する際のクランクシャフトの回転速度を低くするように変更する。これにより、この位相箇所での焼き入れ深さが大きくなる。一方、焼き入れ深さが大きくなっている位相箇所に対しては、次回の焼き入れ時において、その位相箇所が加熱源に対向する際のクランクシャフトの回転速度を高くするように変更する。これにより、この位相箇所での焼き入れ深さが小さくなる。このように焼き入れ時におけるクランクシャフトの回転速度を調整することによって、摺動部位の周方向に亘る各所の焼き入れ深さの均一化を図ることが可能になる。
本発明では、焼き入れ後のクランクシャフトの摺動部位の周方向に亘る各所の焼き入れ深さのデータに基づき、加熱源に対するクランクシャフトの回転位相に応じたクランクシャフトの回転速度を調整するようにしている。このため、クランクシャフトの摺動部位の周方向に亘る各所の焼き入れ深さの均一化を図ることが可能になり、クランクシャフトの変形を抑制することができる。
クランクシャフト焼き入れ装置の概略構成を示す模式図である。 高周波焼き入れ時におけるクランクシャフトの回転速度とクランクシャフトへの入熱エネルギとの関係を示す図である。 高周波焼き入れ時におけるクランクシャフトでの伝熱量を説明するための図である。 図3におけるIV−IV線に沿ったクランクシャフトの断面図である。 ジャーナル部焼き入れマップの一例を示す図である。 図3におけるVI−VI線に沿ったクランクシャフトの断面図である。 ピン部焼き入れマップの一例を示す図である。 高周波焼き入れ動作、焼き入れ深さ検出動作、焼き入れマップ更新動作の手順を示すフローチャート図である。 焼き入れ深さ検出動作を説明するための図6相当図である。
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車用エンジン(例えば4気筒ガソリンエンジン)に用いられるクランクシャフトを高周波焼き入れする場合を例に挙げて説明する。
(クランクシャフト焼き入れ装置)
図1は、本発明に係る焼き入れ方法を実施するためのクランクシャフト焼き入れ装置1の概略構成を示す模式図である。
この図1に示すように、クランクシャフト焼き入れ装置1は、焼き入れステーション2と測定ステーション3とを備えている。焼き入れステーション2は、クランクシャフト4の焼き入れ処理を行うステーションである。測定ステーション3は、後述する焼き入れマップの更新を行うために、焼き入れ後のクランクシャフト4の焼き入れ深さを測定(検出)するステーションである。
尚、前記クランクシャフト4の構成としては、シリンダブロック(図示省略)に回転可能に支持されるジャーナル部41と、コネクティングロッド(図示省略)が揺動自在に支持されるピン部42と、これらジャーナル部41とピン部42とを連結するアーム部43と、ピン部42とは反対側に設けられたカウンタウェイト部44とを備えている。このため、前記ジャーナル部41およびピン部42が本発明でいう「クランクシャフトの摺動部位」に相当する。本実施形態に係るクランクシャフト焼き入れ装置1が対象とするワークは、4気筒ガソリンエンジンに用いられるクランクシャフト4である。このため、このクランクシャフト4は、5つのジャーナル部41と、4つのピン部42と、8つのアーム部43と、8つのカウンタウェイト部44とを有している。
以下、前記各ステーション2,3について説明する。
−焼き入れステーション−
焼き入れステーション2は、クランプ装置21、回転駆動モータ22、回転制御装置23、演算制御装置24、および、高周波焼き入れ装置25を備えている。
クランプ装置21は、クランクシャフト4を回転自在に支持するものである。このクランプ装置21によってクランクシャフト4が支持された状態では、クランクシャフト4は、その中心線Oを回転中心として回転自在となる。
回転駆動モータ22は、電動モータで構成され、前記クランプ装置21に支持されたクランクシャフト4に回転力を伝達して、このクランクシャフト4を、その中心線Oを回転中心として回転させるものである。
回転制御装置23は、前記回転駆動モータ22に回転速度指令信号を出力し、これによって回転駆動モータ22の回転速度を制御する。つまり、クランクシャフト4の回転速度を制御する。
演算制御装置24は、内部にジャーナル部焼き入れマップおよびピン部焼き入れマップを格納しており、これら焼き入れマップに従った制御信号を回転制御装置23に出力する。具体的には、ジャーナル部焼き入れマップとしては、各ジャーナル部41それぞれに対応した複数が格納されている。同様に、ピン部焼き入れマップとしては、各ピン部42それぞれに対応した複数が格納されている。そして、クランクシャフト4のジャーナル部41を焼き入れする際には、その焼き入れ対象であるジャーナル部41に対応したジャーナル部焼き入れマップに従った制御信号(クランクシャフト4の回転位相に応じた回転速度の制御信号)が演算制御装置24から回転制御装置23に出力される。これに伴い、回転制御装置23から回転駆動モータ22に回転速度指令信号(ジャーナル部焼き入れマップに従った回転速度を指令する信号)が出力されることで、回転駆動モータ22の回転速度が制御される。一方、クランクシャフト4のピン部42を焼き入れする際には、その焼き入れ対象であるピン部42に対応したピン部焼き入れマップに従った制御信号(クランクシャフト4の回転位相に応じた回転速度の制御信号)が演算制御装置24から回転制御装置23に出力される。これに伴い、回転制御装置23から回転駆動モータ22に回転速度指令信号(ピン部焼き入れマップに従った回転速度を指令する信号)が出力されることで、回転駆動モータ22の回転速度が制御されるようになっている。
高周波焼き入れ装置25は、本発明でいう加熱源としての加熱コイル25a、焼き入れ制御装置25b、設備制御装置25cを備えている。加熱コイル25aは、図示しない高周波電源からの高周波電力を受けることで高周波電流が流れ、これによりジャーナル部41やピン部42の表面を高周波誘導加熱するものである。また、この加熱コイル25aは、図示しない移動機構を備えており、クランクシャフト4の中心線Oに沿う方向への移動が可能となっている。また、この移動機構は、ピン部42を焼き入れする際、加熱コイル25aとピン部42との間隔を一定に維持するように、加熱コイル25aを前記中心線Oに対して直交する方向へ移動させる機能も備えている。焼き入れ制御装置25bは、加熱コイル25aへの高周波電力の供給および遮断を制御すると共に、前記移動機構による加熱コイル25aの移動を制御して、この加熱コイル25aをジャーナル部41やピン部42に対向させるようになっている。設備制御装置25cは、焼き入れ制御装置25bに焼き入れ制御信号を送信する。つまり、この焼き入れ制御信号に従って、焼き入れ制御装置25bが加熱コイル25aへの高周波電力の供給および遮断、移動機構による加熱コイル25aの移動を行わせる構成となっている。
また、前記回転駆動モータ22の出力軸には、この出力軸と一体的に回転可能なロータ22aが設けられている。このロータ22aの外周囲には、このロータ22aの回転角度位置に応じた信号を出力する角度エンコーダ22bが配置されている。この角度エンコーダ22bの出力信号は演算制御装置24に入力される。これによって回転駆動モータ22の出力軸の回転角度位置(クランクシャフト4の回転角度位置(回転位相)に相当)が求められるようになっている。
ここで、前記演算制御装置24に格納されている前記ジャーナル部焼き入れマップおよび前記ピン部焼き入れマップについて説明する。これら焼き入れマップは、高周波焼き入れ時における、ワークであるクランクシャフト4の回転位相と、それに応じたクランクシャフト4の回転速度(回転駆動モータ22の回転速度)との関係を規定するマップである。
加熱コイル25aへの高周波電力が一定である場合、図2に示すように、クランクシャフト4の回転速度が低いほど、クランクシャフト4への入熱エネルギは大きくなる。つまり、クランクシャフト4における加熱部分の熱容量や加熱部分からの伝熱量が一定であった場合、クランクシャフト4の回転速度が低いほど、焼き入れ深さは大きく(深く)なる。このように高周波焼き入れ時におけるクランクシャフト4の回転速度を調整することによって、焼き入れ深さを調整することが可能である。
各焼き入れマップは、この点に鑑み、クランクシャフト4のジャーナル部41およびピン部42それぞれに対し、熱容量が比較的小さい領域や伝熱量が少ない領域(熱の逃げ量が少ない領域)が加熱コイル25aに対向する際にはクランクシャフト4の回転速度を高くし、熱容量が比較的大きい領域や伝熱量が多い領域(熱の逃げ量が多い領域)が加熱コイル25aに対向する際にはクランクシャフト4の回転速度を低くするようになっている。
図3は、ジャーナル部41の高周波焼き入れ時におけるクランクシャフト4での伝熱量を説明するための図である。この図3では、ジャーナル部41から他の部位へ伝達される単位時間当たりの伝熱量の大きさを矢印の長さで表している。この図3に示すように、ジャーナル部41に熱を与えた場合、比較的体積の小さいピン部42側への伝熱量は少なく、比較的体積の大きいカウンタウェイト部44側への伝熱量は多くなっている。このため、ジャーナル部41におけるピン部42側の領域とカウンタウェイト部44側の領域とのそれぞれに対する焼き入れ深さを均一化するためには、ジャーナル部41におけるピン部42側の領域が加熱コイル25aに対向する時間を相対的に短くし、ジャーナル部41におけるカウンタウェイト部44側の領域が加熱コイル25aに対向する時間を相対的に長くする必要がある。つまり、前記ピン部42側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度を高くし、前記カウンタウェイト部44側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度を低くすることになる。
図4は、図3におけるIV−IV線に沿ったクランクシャフト4の断面図(ジャーナル部41での断面図)であり、図5はジャーナル部焼き入れマップの一例を示す図である。これらの図におけるクランクシャフト4の各位相(0°、90°、180°、270°)は、その位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転位相を表している。このため、ジャーナル部焼き入れマップは、ジャーナル部41の高周波焼き入れ時において各位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度を規定するものとなっている。
これらの図に示すように、ジャーナル部41においてピン部42側の領域(伝熱量が少ない領域)が加熱コイル25aに対向する際(図中の位相90°の領域が加熱コイル25aに対向する際)のクランクシャフト4の回転速度を高くし、ジャーナル部41においてカウンタウェイト部44側の領域(伝熱量が多い領域)が加熱コイル25aに対向する際(図中の位相270°の領域が加熱コイル25aに対向する際)のクランクシャフト4の回転速度を低くするようにジャーナル部焼き入れマップは作成されている。
また、図6は、図3におけるVI−VI線に沿ったクランクシャフト4の断面図(ピン部42での断面図)であり、図7はピン部焼き入れマップの一例を示す図である。これらの図においても、クランクシャフト4(ピン部42)の各位相(0°、90°、180°、270°)は、その位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転位相を表している。このため、ピン部焼き入れマップは、ピン部42の高周波焼き入れ時において各位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度を規定するものとなっている。
図6中におけるピン部42の上側(クランクシャフト4の中心線Oとは反対側)の領域は熱容量が比較的小さいのに対し、図6中におけるピン部42の下側(クランクシャフト4の中心線O側)は熱容量が比較的大きくなっている。このことに鑑み、ピン部42の上側の領域が加熱コイル25aに対向する際(図中の位相90°の領域が加熱コイル25aに対向する際)のクランクシャフト4の回転速度を高くし、ピン部42の下側の領域が加熱コイル25aに対向する際(図中の位相270°の領域が加熱コイル25aに対向する際)のクランクシャフト4の回転速度を低くするようにピン部焼き入れマップは作成されている。
本実施形態は、これら焼き入れマップの更新動作を行うことに特徴がある。この焼き入れマップの更新動作の詳細については後述する。
−測定ステーション−
測定ステーション3は、クランプ装置31、回転駆動モータ32、回転制御装置33、および、焼き入れ深さ検出器34を備えている。
クランプ装置31、回転駆動モータ32および回転制御装置33は、前述した焼き入れステーション2に備えられたものと同様の構成となっている。つまり、回転制御装置33が、前記演算制御装置24からの制御信号を受け、この回転制御装置33からの回転指令信号が回転駆動モータ32に出力されることで、クランプ装置31に支持されたクランクシャフト4が回転する構成となっている。
焼き入れ深さ検出器34は、前記演算制御装置24からの指令信号を受けて、ジャーナル部41やピン部42における焼き入れ深さを検出するものであって、超音波を利用して、これらジャーナル部41やピン部42における焼き入れ深さを検出することが可能となっている。この超音波を利用した焼き入れ深さの検出原理については公知であるので、ここでの説明は省略する。尚、この焼き入れ深さを検出する手段としては超音波を利用したものには限定されない。
また、焼き入れ深さ検出器34は、図示しない移動機構を備えており、クランクシャフト4の中心線Oに沿う方向への移動が可能となっている。また、この移動機構は、ピン部42の焼き入れ深さを検出する際、焼き入れ深さ検出器34とピン部42との間隔を一定に維持するように、焼き入れ深さ検出器34を前記中心線Oに対して直交する方向へ移動させる機能も備えている。
焼き入れ深さ検出器34は、前記演算制御装置24からの制御信号を受けることで、クランクシャフト4の中心線Oに沿う方向に移動し、ジャーナル部41やピン部42に対向する位置まで移動して、各所の焼き入れ深さを検出可能となっている。このジャーナル部41やピン部42における焼き入れ深さの情報は、演算制御装置24に入力される。
また、この測定ステーション3においても、前記回転駆動モータ32の出力軸には、この出力軸と一体的に回転可能なロータ32aが設けられている。このロータ32aの外周囲には、このロータ32aの回転角度位置に応じた信号を出力する角度エンコーダ32bが配置されている。この角度エンコーダ32bの出力信号は演算制御装置24に入力される。これによって回転駆動モータ32の出力軸の回転角度位置(クランクシャフト4の回転角度位置(回転位相)に相当)が求められるようになっている。
(高周波焼き入れ動作および焼き入れマップ更新動作)
次に、前述したクランクシャフト焼き入れ装置1による高周波焼き入れ動作、焼き入れ深さ検出動作、および、焼き入れマップ更新動作の手順について、図8のフローチャートを用いて説明する。尚、以下に説明する手順では、10個のワーク(クランクシャフト4)に対して高周波焼き入れ動作および焼き入れ深さ検出動作を順に行い、この焼き入れ深さ検出動作によって得られたデータ(10個のクランクシャフト4における焼き入れ深さ検出データ)に基づいて焼き入れマップを更新する場合について説明する。
−高周波焼き入れ動作−
クランクシャフト焼き入れ装置1による高周波焼き入れ動作の開始時には、先ず、鍛造成形等によって成形された焼き入れ処理前のクランクシャフト4(10個のクランクシャフト4のうち第1番目のクランクシャフト4)を、焼き入れステーション2のクランプ装置21に、回転自在にセットする。このクランクシャフト4のセットに伴い、ステップST1において、前記演算制御装置24に記憶されているワークカウンタの値Nが「0」にリセットされる。このワークカウンタは、1個のクランクシャフト4に対して高周波焼き入れ動作が完了する度にインクリメント(ステップST6)されるカウンタである。
この状態で、回転制御装置23からの指令信号によって回転駆動モータ22を作動させ、クランクシャフト4を回転させる。そして、角度エンコーダ22bからの出力信号に基づいて検出されているクランクシャフト4の回転角度位置が所定の初期位置に達した時点で、回転駆動モータ22を停止させ、クランクシャフト4の回転角度位置を、焼き入れ動作の初期回転角度位置に設定する(ステップST2)。
その後、演算制御装置24に格納されている各ジャーナル部焼き入れマップからクランクシャフト4の各ジャーナル部41それぞれを焼き入れする際の回転位相に応じた回転速度情報、および、演算制御装置24に格納されている各ピン部焼き入れマップからクランクシャフト4のピン部42それぞれを焼き入れする際の回転位相に応じた回転速度情報をそれぞれ読み出す(ステップST3)。
そして、クランクシャフト4に対する高周波焼き入れを開始する(ステップST4)。この際、設備制御装置25cからの焼き入れ制御信号によって、焼き入れ制御装置25bは、加熱コイル25aを、前記移動機構によってクランクシャフト4のジャーナル部41(例えば図1における左端のジャーナル部41)に対向させ、加熱コイル25aに高周波電力を供給する。この際の高周波電力は、焼き入れ動作中は一定に維持される。
そして、このジャーナル部41を焼き入れする際には、この焼き入れ対象であるジャーナル部41に対応したジャーナル部焼き入れマップから読み出した回転速度情報に従った回転速度指令信号が回転制御装置23から回転駆動モータ22に出力される。これにより、ジャーナル部41の焼き入れ時における回転駆動モータ22の回転速度(クランクシャフト4の回転速度)が制御されて高周波焼き入れが実行される。つまり、ジャーナル部41におけるピン部42側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度は高く設定され、ジャーナル部41におけるカウンタウェイト部44側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度は低く設定されてジャーナル部41の全周囲に亘って高周波焼き入れが行われる。
クランクシャフト4のジャーナル部41(例えば図1における左端のジャーナル部41)の全周囲を高周波焼き入れした後、移動機構によって加熱コイル25aをクランクシャフト4の中心線Oに沿う方向に移動させ、この加熱コイル25aをクランクシャフト4のピン部42(例えば図1における左端のピン部42)に対向させ、加熱コイル25aに高周波電力を供給する。そして、このピン部42を焼き入れする際には、この焼き入れ対象であるピン部42に対応したピン部焼き入れマップから読み出した回転速度情報に従った回転速度指令信号が回転制御装置23から回転駆動モータ22に出力される。これにより、ピン部42の焼き入れ時における回転駆動モータ22の回転速度(クランクシャフト4の回転速度)が制御されて高周波焼き入れが実行される。つまり、ピン部42におけるクランクシャフト4の中心線Oとは反対側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度は高く設定され、ピン部42におけるクランクシャフト4の中心線O側の領域が加熱コイル25aに対向する際のクランクシャフト4の回転速度は低く設定されることになる。これにより、このピン部42に対しても、前述したジャーナル部41と同様に、その全周囲に亘って高周波焼き入れが行われる。
このようにして、加熱コイル25aをクランクシャフト4の中心線Oに沿う方向に移動させていきながら、全てのジャーナル部41(5箇所のジャーナル部41)および全てのピン部42(4箇所のピン部42)の全周囲を高周波焼き入れしていく。
全てのジャーナル部41および全てのピン部42に対して高周波焼き入れが完了すると、ステップST5でYES判定される。その後、高周波焼き入れが行われたクランクシャフト4を、焼き入れステーション2から測定ステーション3に移す。つまり、焼き入れステーション2のクランプ装置21によるクランクシャフト4の支持状態を解除し、そのクランクシャフト4を測定ステーション3のクランプ装置31にセットする。このクランクシャフト4のセットに伴い、ステップST6において、前記ワークカウンタの値Nはインクリメント(N←N+1)される。
−焼き入れ深さ検出動作−
次に、測定ステーション3における焼き入れ深さ検出動作が行われる。この焼き入れ深さ検出動作では、回転制御装置33からの指令信号によって回転駆動モータ32を作動させ、クランクシャフト4を回転させる。そして、角度エンコーダ32bからの出力信号に基づいて検出されているクランクシャフト4の回転角度位置が所定の初期位置に達した時点で、回転駆動モータ32を停止させ、クランクシャフト4の回転角度位置を、焼き入れ深さ検出動作の初期回転角度位置に設定する。
その後、クランクシャフト4に対する焼き入れ深さ検出動作を開始する(ステップST7)。この際、演算制御装置24からの制御信号に従い、焼き入れ深さ検出器34を、前記移動機構によってクランクシャフト4のジャーナル部41(例えば図1における左端のジャーナル部41)に対向させ、このジャーナル部41の全周囲に亘って焼き入れ深さのデータを取得して演算制御装置24に送信していく。
クランクシャフト4のジャーナル部41(例えば図1における左端のジャーナル部41)の全周囲に亘って焼き入れ深さのデータを取得した後、移動機構によって焼き入れ深さ検出器34をクランクシャフト4の中心線Oに沿う方向に移動させ、この焼き入れ深さ検出器34をクランクシャフト4のピン部42(例えば図1における左端のピン部42)に対向させ、このピン部42の全周囲に亘って焼き入れ深さのデータを取得して演算制御装置24に送信していく。図9は、この焼き入れ深さ検出動作時におけるクランクシャフト4の断面図である。この図に示すように、ピン部42に焼き入れ深さ検出器34を対向させ、クランクシャフト4を回転させながら、このピン部42の全周囲に亘って焼き入れ深さのデータを取得して演算制御装置24に送信していく。
このようにして、焼き入れ深さ検出器34をクランクシャフト4の中心線Oに沿う方向に移動させていきながら、全てのジャーナル部41(5箇所のジャーナル部41)および全てのピン部42(4箇所のピン部42)の全周囲の焼き入れ深さのデータを取得していく。
全てのジャーナル部41および全てのピン部42に対する焼き入れ深さのデータの取得が完了すると、ステップST8でYES判定される。その後、ステップST9において、前記ワークカウンタの値Nは「10」となっているか、つまり、10個のクランクシャフト4に対して、高周波焼き入れ動作および焼き入れ深さ検出動作が完了したか否かを判定する。
高周波焼き入れ動作および焼き入れ深さ検出動作が完了したクランクシャフト4の個数が未だ10個に達しておらず、ステップST9でNO判定された場合には、ステップST2に戻り、次のクランクシャフト4に対する高周波焼き入れ動作および焼き入れ深さ検出動作が開始される。
−焼き入れマップ更新動作−
このようにしてクランクシャフト4に対する高周波焼き入れ動作および焼き入れ深さ検出動作が繰り返され、この高周波焼き入れ動作および焼き入れ深さ検出動作が完了したクランクシャフト4の個数が10個に達すると、ステップST9でYES判定されてステップST10に移る。このステップST10では、前記焼き入れ深さ検出動作で取得された各ジャーナル部41および各ピン部42それぞれの焼き入れ深さの平均値を算出する。具体的には、焼き入れ深さの平均値を、各ジャーナル部41および各ピン部42それぞれにおいて個別に算出する。
そして、ステップST11では、これら各ジャーナル部41および各ピン部42それぞれの焼き入れ深さの平均値と、各ジャーナル部41および各ピン部42それぞれの各所における焼き入れ深さとの偏差を求め、これを、前記各所における焼き入れ深さ補正量として算出する。例えば、図1における左端のジャーナル部41の周方向に亘る各所の焼き入れ深さの平均値に対し、これら各所の実際の焼き入れ深さの偏差を求めていき、これを、前記各所における焼き入れ深さ補正量として算出する。その他のジャーナル部41およびピン部42においても同様にして、各所における焼き入れ深さ補正量を算出する。
つまり、前記焼き入れ深さの平均値に対して実際の焼き入れ深さが小さい位相箇所にあっては、前記偏差分だけ焼き入れ深さを大きくするように、その位相箇所の焼き入れ深さ補正量が与えられる。逆に、前記焼き入れ深さの平均値に対して実際の焼き入れ深さが大きい位相箇所にあっては、前記偏差分だけ焼き入れ深さを小さくするように、その位相箇所の焼き入れ深さ補正量が与えられる。
そして、ステップST12では、この焼き入れ深さ補正量に応じて、各ジャーナル部焼き入れマップの回転速度情報および各ピン部焼き入れマップの回転速度情報を補正し、これによって各焼き入れマップを更新する。つまり、焼き入れ深さを大きくする焼き入れ深さ補正量が与えられた位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度が低くなるように焼き入れマップを更新する。また、焼き入れ深さを小さくする焼き入れ深さ補正量が与えられた位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度が高くなるように焼き入れマップを更新する。
次回のクランクシャフト4の高周波焼き入れ動作では、この更新された各ジャーナル部焼き入れマップの回転速度情報および各ピン部焼き入れマップの回転速度情報を利用して、高周波焼き入れ時のクランクシャフト4の回転速度が制御されることになる。つまり、焼き入れ深さが小さくなっていた位相箇所に対しては、次回の高周波焼き入れ動作において、その位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度は低くされ、これにより、この位相箇所での焼き入れ深さが大きくされることになる。一方、焼き入れ深さが大きくなっていた位相箇所に対しては、次回の高周波焼き入れ動作において、その位相箇所が加熱コイル25aに対向する際のクランクシャフト4の回転速度は高くされ、これにより、この位相箇所での焼き入れ深さが小さくされることになる。このように焼き入れ時におけるクランクシャフト4の回転速度を調整することによって、各ジャーナル部41および各ピン部42それぞれの焼き入れ深さの均一化を図ることができる。
以上の高周波焼き入れ動作、焼き入れ深さ検出動作、および、焼き入れマップ更新動作が行われるため、ステップST3およびステップST4の動作が、本発明でいう「加熱源に対するクランクシャフトの回転位相とクランクシャフトの回転速度との関係を規定するマップに従って焼き入れを行う工程」に相当する。また、ステップST7の動作が、本発明でいう「焼き入れ後のクランクシャフトの摺動部位の周方向に亘る各所の焼き入れ深さのデータを取得する工程」に相当する。また、ステップST10〜ST12の動作およびステップST12で更新された焼き入れマップを利用した次回の焼き入れ動作が、本発明でいう「焼き入れ深さのデータに基づき、クランクシャフトの摺動部位の周方向に亘る各所の焼き入れ深さを均一にするように、加熱源に対するクランクシャフトの回転位相に応じたクランクシャフトの回転速度を調整する工程」に相当する。
以上説明したように、本実施形態では、焼き入れ後のクランクシャフト4の各ジャーナル部41および各ピン部42の周方向に亘る各所の焼き入れ深さのデータに基づき、各所の焼き入れ深さを均一にするように、ジャーナル部焼き入れマップおよびピン部焼き入れマップを更新するようにしている。つまり、加熱コイル25aに対するクランクシャフト4の回転位相に応じたクランクシャフト4の回転速度が調整されるようになっている。これにより、各ジャーナル部41および各ピン部42の周方向に亘る各所の焼き入れ深さの均一化を図ることが可能になる。このため、高周波焼き入れ後の加工におけるクランクシャフト4の取り代を削減することが可能になり、加工工数が減少し、加工に要するエネルギの削減を図ることができる。
また、本実施形態では、加熱コイル25aに供給する高周波電力を、焼き入れ動作中は一定に維持している。焼き入れ深さを調整する手段として、この高周波電力を調整することも知られているが、この場合、高周波電力の調整タイミングとクランクシャフト4に所定の入熱量が得られるタイミングとにズレが生じてしまい、焼き入れ深さを適切に調整することが困難である。本実施形態によれば、この高周波電力を調整する必要がないため、焼き入れ深さを適切に調整することが可能である。
また、従来技術にあっては、焼き入れされたクランクシャフトの後加工を行うに当たり、焼き入れ歪み等によるクランクシャフトに変形量を測定しておく必要があった。本実施形態によれば、クランクシャフト4の焼き入れ深さのバラツキデータを反映させてクランクシャフト4の回転速度を制御して高周波焼き入れを行っているため、クランクシャフトに変形量のバラツキが小さくなり、クランクシャフト4毎に変形量を測定する必要をなくすことが可能になる。また、前記焼き入れ深さのバラツキデータの蓄積量が増大していくに従って(各焼き入れマップが更新されていくに従って)焼き入れ深さが均一になっていき、クランクシャフト4の変形量も小さくなっていく。その結果、クランクシャフト4の不良品数を大幅に削減することもできる。
(他の実施形態)
以上説明した実施形態は、4気筒ガソリンエンジンに用いられるクランクシャフトを高周波焼き入れする場合を例に挙げて説明した。本発明はこれに限らず、気筒数が3気筒以下のエンジンや5気筒以上のエンジンに用いられるクランクシャフトに対しても適用が可能である。また、ディーゼルエンジンに用いられるクランクシャフトに対しても本発明は適用が可能である。
また、前記実施形態では、各ジャーナル部41毎に対応してジャーナル部焼き入れマップが格納され、また、各ピン部42毎に対応してピン部焼き入れマップが格納されていた。本発明はこれに限らず、各ジャーナル部41それぞれにおける熱容量および伝熱量が略同一であると扱える場合には、各ジャーナル部41それぞれの焼き入れに使用するジャーナル部焼き入れマップを共通化してもよい。同様に、各ピン部42それぞれにおける熱容量および伝熱量が略同一であると扱える場合には、各ピン部42それぞれの焼き入れに使用するピン部焼き入れマップを共通化してもよい。
本発明は、自動車用エンジンに用いられるクランクシャフトのジャーナル部およびピン部を高周波焼き入れする焼き入れ方法に適用可能である。
1 クランクシャフト焼き入れ装置
2 焼き入れステーション
22 回転駆動モータ
23 回転制御装置
24 演算制御装置
25a 加熱コイル(加熱源)
3 測定ステーション
34 焼き入れ深さ検出器
4 クランクシャフト
41 ジャーナル部(摺動部位)
42 ピン部(摺動部位)

Claims (1)

  1. 加熱源に対してクランクシャフトを相対的に回転させながら当該クランクシャフトの摺動部位をその周方向に亘って焼き入れするクランクシャフトの焼き入れ方法であって、
    前記加熱源に対する前記クランクシャフトの回転位相と前記クランクシャフトの回転速度との関係を規定するマップに従って前記焼き入れを行う工程と、
    焼き入れ後の前記クランクシャフトの前記摺動部位の周方向に亘る各所の焼き入れ深さのデータを取得する工程と、
    前記焼き入れ深さのデータに基づき、前記クランクシャフトの前記摺動部位の周方向に亘る各所の焼き入れ深さを均一にするように、前記加熱源に対する前記クランクシャフトの回転位相に応じた前記クランクシャフトの回転速度を調整する工程と、を有することを特徴とするクランクシャフトの焼き入れ方法。
JP2016133845A 2016-07-06 2016-07-06 クランクシャフトの焼き入れ方法 Pending JP2018003123A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016133845A JP2018003123A (ja) 2016-07-06 2016-07-06 クランクシャフトの焼き入れ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133845A JP2018003123A (ja) 2016-07-06 2016-07-06 クランクシャフトの焼き入れ方法

Publications (1)

Publication Number Publication Date
JP2018003123A true JP2018003123A (ja) 2018-01-11

Family

ID=60947613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133845A Pending JP2018003123A (ja) 2016-07-06 2016-07-06 クランクシャフトの焼き入れ方法

Country Status (1)

Country Link
JP (1) JP2018003123A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115772592A (zh) * 2022-12-08 2023-03-10 辽宁科创重型内燃机曲轴有限公司 一种曲轴淬火设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115772592A (zh) * 2022-12-08 2023-03-10 辽宁科创重型内燃机曲轴有限公司 一种曲轴淬火设备

Similar Documents

Publication Publication Date Title
US5001917A (en) Method and apparatus for truing or straightening out of true work pieces
US5235838A (en) Method and apparatus for truing or straightening out of true work pieces
CN101730801B (zh) 曲柄轴及其原材料的制造方法
JP6693335B2 (ja) 環状ワークの焼入れ方法
JP2018514399A5 (ja)
JP2009203498A (ja) 高周波誘導加熱方法、加熱装置、及び軸受
JP2018003123A (ja) クランクシャフトの焼き入れ方法
JP5771399B2 (ja) クランクシャフトへの焼入方法及びそのクランクシャフト
JP5446410B2 (ja) 環状ワークの熱処理方法
JP2001522314A (ja) コンピューター数値制御のピン研削測定のための方法および装置
US7914730B2 (en) Equipment and method for hardening treatment of metallic parts
KR20200019680A (ko) 크랭크 샤프트 후 처리 방법 및 디바이스
US8399815B2 (en) Apparatus and method for hardening bearing surfaces of a crankshaft
US9880074B2 (en) Pressing load setting method of tire testing machine
JP6570405B2 (ja) クランクシャフトの高周波焼入装置
CN104582869A (zh) 旋压成型方法以及旋压成型装置
JP2016191415A (ja) クランクシャフトの製造方法
JP6334973B2 (ja) クランクシャフトの高周波焼き入れ方法および焼き入れ装置
RU2254383C1 (ru) Способ термосиловой обработки длинномерных осесимметричных деталей и устройство для его осуществления
JP2574869B2 (ja) 長軸材の表面熱処理方法
JP3931318B2 (ja) クランクシャフトの焼き入れ方法及び焼き入れ装置
JPH0135226B2 (ja)
JP6460529B2 (ja) クランク軸のレーザ焼入れ方法
JPH04218621A (ja) 長軸材の表面熱処理方法
JP2006307300A (ja) 軸体曲がり矯正方法及び軸体の高周波誘導加熱装置