WO2018012940A1 - 음극 및 이를 포함하는 이차 전지 - Google Patents

음극 및 이를 포함하는 이차 전지 Download PDF

Info

Publication number
WO2018012940A1
WO2018012940A1 PCT/KR2017/007610 KR2017007610W WO2018012940A1 WO 2018012940 A1 WO2018012940 A1 WO 2018012940A1 KR 2017007610 W KR2017007610 W KR 2017007610W WO 2018012940 A1 WO2018012940 A1 WO 2018012940A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
current collector
binder
stress relaxation
Prior art date
Application number
PCT/KR2017/007610
Other languages
English (en)
French (fr)
Inventor
이정필
이희원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170089109A external-priority patent/KR102056455B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/771,276 priority Critical patent/US11094937B2/en
Priority to PL17828010T priority patent/PL3343674T3/pl
Priority to JP2018535279A priority patent/JP6665306B2/ja
Priority to EP17828010.3A priority patent/EP3343674B1/en
Priority to CN201780003923.4A priority patent/CN108352501B/zh
Publication of WO2018012940A1 publication Critical patent/WO2018012940A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode and a secondary battery including the same, wherein the negative electrode comprises a current collector; A first active material layer disposed on the current collector and including at least one recessed portion indented toward the current collector; A stress relaxation part disposed in the recess; And a second active material layer disposed on the first active material layer and spaced apart from the current collector.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and reciprocates positive and negative electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again when discharged. Since it plays a role of transmitting energy, charging and discharging becomes possible.
  • the capacity of the negative electrode in the cell must be large.
  • Group 14 and Group 15 transition metals and oxides thereof are used as the negative electrode active material.
  • the active material layer including the above materials since the volume is excessively expanded due to charge and discharge, stress is excessively applied to the electrode current collector and the active material layer, so that detachment of the active material particles or peeling of the active material layer may occur. For this reason, a problem may occur in that the life of the battery is shortened or the stability is lowered.
  • One problem to be solved by the present invention is to provide a negative electrode capable of alleviating the stress applied to the electrode current collector and the active material layer while maintaining a high capacity.
  • One embodiment of the invention the current collector; A first active material layer disposed on the current collector and including at least one recessed portion indented toward the current collector; A stress relaxation part disposed in the recess; And a second active material layer disposed on the first active material layer and spaced apart from the current collector.
  • Another embodiment of the present invention provides a secondary battery including the negative electrode.
  • the negative electrode according to the exemplary embodiment of the present invention uses a transition metal, an alloy thereof, and an oxide of each of the transition metal and their alloy as an active material, a high capacity battery may be derived.
  • the stress relaxation portion is disposed in the concave portion of the first active material layer, the stress applied to the current collector and the active material layer can be alleviated, so that detachment of the active material particles and peeling of the active material layer can be prevented.
  • FIG. 1 is a schematic cross-sectional view of a negative electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a negative electrode according to another embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a negative electrode according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a negative electrode according to another embodiment of the present invention.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the "upper” is disposed not only in the case where two components are in contact, but also in a structure disposed up and down at a predetermined interval.
  • a negative electrode according to an embodiment of the present invention, referring to Figure 1, the current collector 100; A first active material layer 110 disposed on the current collector 100 and including at least one concave portion 110a recessed toward the current collector 100; A stress relaxation part 120 disposed in the recess 110a; And a second active material layer disposed on the first active material layer 110 and including the second active material layer 130 spaced apart from the current collector 100.
  • the current collector is conductive without causing chemical change in the secondary battery, and includes, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, on the surface of aluminum or stainless steel.
  • the surface-treated with titanium, silver, etc. can be used.
  • the first active material layer may be disposed on the current collector, and the first active material layer may be disposed on the current collector, and specifically, may be disposed on one or both surfaces of the current collector.
  • the first active material layer may include first active material particles and a first binder.
  • the first active material particles may be at least one active material particle selected from the group consisting of graphite-based materials, transition metals, transition metal oxides, transition metal alloys, oxides of transition metal alloys, and transition metal-containing composites.
  • the graphite material may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers and graphitized mesocarbon microbeads.
  • the transition metal may be any one of Group 14 and Group 15 transition metals, and specifically, the transition metal may be any one of a silicon-based material, a tin-based material, and a germanium-based material.
  • the transition metal oxide, the transition metal alloy, the oxide of the transition metal alloy, and the transition metal included in the transition metal-containing composite may be the above-described transition metal.
  • the first active material particles and the second active material particles are Si, SiOx (0 ⁇ x ⁇ 2), Si-C composite and Si-Y alloy (where Y is At least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, group 13 elements, group 14 elements, rare earth elements, and combinations thereof.
  • the first binder may include at least one of an aqueous binder and an oily binder.
  • the first binder is polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyacrylonitrile, polymethyl Polymethylmethacrylate, Polyvinyl alcohol, Starch, Hydroxypropylcellulose, Regenerated cellulose, Polyvinyl pyrrolidone, Tetrafluoroethylene, Polyethylene , Polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, fluororubber and hydrogens thereof by Li, Na or Ca Polymers, or various copolymers such as polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber Luer binary may be at least one and hexafluorotitanate different types of binder such as a copolymer of propylene (
  • the first active material layer may include at least one concave portion.
  • the recess may be indented toward the current collector. Specifically, referring to FIG. 1, the recess may be indented to the current collector to penetrate the first active material layer. That is, the concave portion may be indented toward the current collector as much as the entire thickness of the first active material layer.
  • the concave portion may have a hole shape surrounded by the first active material layer. Alternatively, the concave portion may correspond to the spaced space when the first active material layer includes two or more portions spaced apart from each other.
  • the recesses may be formed at regular intervals, or may be formed at random intervals.
  • the concave portion may be formed in a constant shape, or may be formed in a non-uniform shape.
  • the stress relaxation part may be disposed in the recess.
  • the stress relief part may fill part or all of the recess.
  • the stress relaxation part 120 of the cathode according to the present exemplary embodiment may fill all of the recesses 110a.
  • the stress relaxation part and the first active material layer may contact each other while the stress relaxation part is disposed in the recess.
  • the first active material layer includes two or more portions spaced apart by the concave portion, one surface of the stress relaxation part contacts a portion of the first active material layer, and the other surface of the stress relaxation part is a portion of the first active material layer. Can touch other parts.
  • the stress relaxation part absorbs the stress generated by the volume expansion of the first active material layer and the second active material layer during charging and discharging of the battery, thereby alleviating the stress applied to the current collector, the first active material layer, and the second active material layer. can do. Thereby, desorption of the 1st active material particle and the 2nd active material particle of the 2nd active material layer mentioned later can be prevented, and peeling of a 1st active material layer and a 2nd active material layer can be prevented.
  • the stress relaxation part may include at least one of an aqueous polymer and an organic polymer.
  • the aqueous polymer is polyvinylpyrrolidone (poly (vinyl pyrrolidone)), polyacrylamide (polyacrylamide), polyacrylic acid (polyacrylic acid), polyvinyl methyl ether (poly (vinyl methyl ether)), polypropylene glycol (poly ( propylene glycol), cellulose, cellulose, polyN-isopropylmethacrylamide (poly (N-isopropylmethacrylamide)), and at least one selected from the group consisting of polyethylene oxide.
  • the aqueous polymer is dispersed in an aqueous solvent to form the stress relaxation part.
  • the stress relaxation part is preferably an aqueous polymer.
  • the organic polymer is polystyrene, poly (methylmethacrylate), polyethylene, polypropylene, polyethylene oxide, polyvinyl alcohol, poly Polyvinyl chloride, polyimide, polyamide, polyamide, polyamide imide, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene -co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polybutylacrylate, polyacrylonitrile, polyvinylacetate, ethylene vinyl acetate Copolymer (polyethylene-co-vinyl acetate), polyethylene oxide , Polyarylate, and at least one selected from the group consisting of copolymers thereof.
  • the organic polymer In the case of using the organic polymer, it is possible to minimize the change of the electrode structure during electrode coating or wet etching in the production of the aqueous cathode.
  • the organic polymer When the organic polymer is used as the stress relaxation part, the organic polymer is dispersed in an organic solvent to form the stress relaxation part.
  • the stress relaxation part is preferably an organic polymer.
  • the stress relaxation part and the first active material layer may be included in the negative electrode in a volume ratio of 1:99 to 50:50, specifically 5:95 to 30:70, and more specifically 10:90 to 20: 80 may be.
  • the volume ratio is satisfied, the stress relaxation effect is more excellent, and an excessive increase in electrode resistance can be prevented.
  • the stress relaxation unit may be a square column, a cylinder, a cone, a pyramid, or the like, but is not necessarily limited thereto.
  • the second active material layer may be disposed on the first active material layer.
  • the second active material layer may cover the stress relaxation part.
  • the second active material layer and the stress relaxation portion may or may not be in contact.
  • the second active material layer may be spaced apart from the current collector with the first active material layer and the stress relaxation part interposed therebetween.
  • the second active material layer may serve to prevent desorption of the first active material particles and desorption of constituent materials of the stress relaxation unit.
  • the second active material layer may include second active material particles and a second binder.
  • the second active material particles may be at least one active material particle selected from the group consisting of graphite-based materials, transition metals, transition metal oxides, transition metal alloys, oxides of transition metal alloys, and transition metal-containing composites.
  • the graphite material may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers and graphitized mesocarbon microbeads.
  • the transition metal may be any one of Group 14 and Group 15 transition metals, and specifically, the transition metal may be any one of a silicon-based material, a tin-based material, and a germanium-based material.
  • the transition metal oxide, the transition metal alloy, the oxide of the transition metal alloy, and the transition metal included in the transition metal-containing composite may be the above-described transition metal.
  • the first active material particles and the second active material particles are Si, SiOx (0 ⁇ x ⁇ 2), Si-C composite and Si-Y alloy (where Y is At least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, group 13 elements, group 14 elements, rare earth elements, and combinations thereof.
  • the second binder is polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyacrylonitrile, polymethyl Polymethylmethacrylate, Polyvinyl alcohol, Starch, Hydroxypropylcellulose, Regenerated cellulose, Polyvinyl pyrrolidone, Tetrafluoroethylene, Polyethylene , Polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, fluororubber and hydrogens thereof by Li, Na or Ca Polymers, or various copolymers such as polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber Luer binary may be at least one and hexafluorotitanate different types of binder such as a copolymer of propylene (Hexafluoropropylene, HFP) is selected from the group.
  • PVdF polyvin
  • Each of the first active material layer and the second active material layer may further include a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the cathode according to another embodiment of the present invention is similar to the cathode according to the embodiment described with reference to FIG. 1, but the stress relief part 120 may fill a part of the recess 110a. The difference is that there is.
  • differences from the embodiment described with reference to FIG. 1 will be mainly described.
  • an area other than the region filled with the stress relaxation portion in the recess portion may exist as an empty space.
  • the empty space may serve to reduce a stress caused by volume expansion by securing a region in which the first active material layer and the second active material layer which are volume expanded during charge / discharge of the battery may be located.
  • the stress relaxation part may contact at least one of the first active material layer, the second active material layer, and the current collector.
  • the negative electrode of the embodiment according to FIG. 2 may include not only a recess partially filled with the stress relaxed part but also a recess partially filled with the stress relaxed part.
  • the negative electrode according to another embodiment of the present invention is similar to the negative electrode according to the exemplary embodiment described with reference to FIG. 1, except that some recesses are not filled by the stress relaxation unit.
  • some recesses are not filled by the stress relaxation unit.
  • the cathode of the embodiment according to FIG. 3 may include a plurality of recesses, and the stress relaxation unit may fill some of the recesses of the plurality of recesses. At least one recess of the portion may be at least one. Accordingly, the concave portion, in which the stress relaxation portion is not filled, may secure a region in which the first active material layer and the second active material layer may be located when the battery is charged and discharged, thereby reducing the stress caused by the volume expansion. have.
  • the stress relaxation portion disposed in the recessed portion absorbs the stress generated by the volume expansion of the first active material layer and the second active material layer during charge and discharge of the battery, so that the current collector, the first active material layer and the second active material layer It can serve to relieve the stress applied.
  • the negative electrode according to another embodiment of the present invention is similar to the negative electrode according to the exemplary embodiment described with reference to FIG. 1, except that the recess does not penetrate the first active material layer.
  • the recess does not penetrate the first active material layer.
  • the recess may be indented toward the current collector, but the current collector and the recess may not be connected to each other.
  • the first active material layer may be positioned between the concave portion and the current collector in a direction perpendicular to the current collector. In this case, while the effect of preventing the active material detachment by the stress relaxation unit is maintained at a certain level, the content of the first active material particles can be maintained at a high level, thereby further improving the battery capacity.
  • the negative electrode according to the embodiments of the present invention can be manufactured by the following method.
  • the first active material layer may be manufactured by applying a slurry for preparing the first active material layer prepared by mixing the electrode mixture including the first active material particles, the binder, and the conductive material to a solvent, followed by drying and rolling.
  • the manufactured first active material layer may be selectively etched through a mask to form at least one concave portion. Thereafter, after the stress relief portion is formed in the manufactured recess, the mask may be removed.
  • the stress relaxation part may be formed by applying a slurry in which the material for forming the stress relaxation part is dispersed in a solvent and then drying.
  • a slurry for preparing the second active material layer prepared by mixing the electrode mixture including the second active material particles, the binder, and the conductive material in a solvent is applied on the first active material layer and the stress relaxation part, and then dried and By rolling, a second active material layer may be produced.
  • a screen printing method an inkjet method, a spray method, a gravure printing method, a thermal transfer method, a plate printing method, an intaglio printing method, and an offset printing method may be used to form the first active material layer, the stress relaxation part, and the second active material layer.
  • a screen printing method an inkjet method, a spray method, a gravure printing method, a thermal transfer method, a plate printing method, an intaglio printing method, and an offset printing method may be used to form the first active material layer, the stress relaxation part, and the second active material layer.
  • One or more may be used.
  • the solvent used to prepare the negative electrode may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP ), Acetone (acetone) or water, and the like, one of these may be used alone or a mixture of two or more thereof.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • Acetone acetone
  • water and the like, one of these may be used alone or a mixture of two or more thereof.
  • the first active material layer and the concave portion may be formed by another method.
  • the slurry for producing the first active material layer before applying the slurry for producing the first active material layer, after placing a mask on the current collector, the slurry for producing the first active material layer is applied, dried and rolled to prepare a first active material layer.
  • the recess may be formed by removing the mask.
  • the production of a cathode in which only a part of the recess is filled with the stress relaxation portion may be as follows. There is no difference in the point of forming a 1st active material layer and a recessed part by the same method as mentioned above. However, polymers such as polymethyl methacrylate, polyethylene, and polyethyloxide may be formed before the stress relaxation portion is formed or after the stress relaxation portion is formed only in a part of the recess portion. You can fill in the remaining areas. Thereafter, after the second active material layer is formed in the same manner as described above, the polymer may be removed by wet etching or the like to form a recessed space.
  • some of the plurality of recesses may be filled only with the polymer, not the stress relaxation part, and then the polymer may be removed in the same manner after the second active material layer is formed. Accordingly, the recess may be formed without filling the stress relaxation portion.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode may be an electrode according to an embodiment of the present invention.
  • the positive electrode may be formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxides such as LiFe 3 O 4 ; Lithium manganese oxides such as Li 1 + c1 Mn 2 - c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Formula LiNi 1 - c2 M c2 O 2 ( where, M is a least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, satisfies
  • the cathode active material layer may include a cathode conductive material and a cathode binder together with the cathode active material described above.
  • the cathode conductive material is used to impart conductivity to the electrode, and in the battery constituted, the cathode conductive material may be used without particular limitation as long as it has electron conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the positive electrode binder serves to improve adhesion between the positive electrode active material particles and the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like that can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • Production Example 1 first Active material layer Slurry for Formation
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the slurry for forming the first active material layer prepared in Preparation Example 1 was applied to a copper thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m, and dried and roll pressed to have a thickness of 18 ⁇ m and a loading amount of 2.1 mAh / cm 2.
  • the first active material layer of was formed.
  • the first active material layer was partially etched by lithography to remove a portion reaching 30% of the volume of the first active material layer. Thereafter, a solution of 2.5% by weight of polyvinylidene fluoride (PVdF) dissolved in N-methylpyrrolidone (NMP) was applied to the etched portion and dried to form a stress relaxation part. The stress relaxation part filled all of the inside of the etching region.
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the slurry for forming the second active material layer was applied onto the first active material layer and the stress relaxation part, and dried. Thereafter, roll pressing was performed to form a second active material layer having a thickness of 20 ⁇ m and a loading amount of 0.3 mAh / cm 2 to prepare a negative electrode.
  • Li metal was used as the counter electrode.
  • An electrode assembly was prepared by interposing a polyolefin separator between the cathode and the Li metal. Meanwhile, 0.5 wt% of vinylene carbonate (VC) was dissolved in a mixed solution in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 7: 3, and LiPF 6 was dissolved (1M concentration) in an electrolyte solution. was prepared. The electrolyte solution was injected into the electrode assembly to prepare a coin-type half cell.
  • VC vinylene carbonate
  • EMC ethylmethyl carbonate
  • Example 2 manufacture of a battery
  • Example 2 was prepared in the same manner as in Example 1, except that polyvinylidene fluoride (PVdF) was dissolved in 1% by weight of N-methylpyrrolidone (NMP). Coin-type half cells were prepared.
  • the cathode included a structure in which the stress relaxation part filled only a part of the inside of the etching region.
  • a first active material layer was formed in the same manner as in Example 1.
  • the first active material layer was partially etched by lithography to remove a portion reaching 15% of the volume of the first active material layer. Thereafter, a solution of 2.5% by weight of polyvinylidene fluoride (PVdF) dissolved in N-methylpyrrolidone (NMP) was applied to the etched portion and dried to form a stress relaxation part. Subsequently, an unetched portion of the first active material layer was etched through lithography to further remove 15% of the volume of the first active material layer.
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a second active material layer was formed in the same manner as in Example 1.
  • a coin-type half cell of Example 3 was prepared in the same manner as in Example 1.
  • the negative electrode slurry was applied to a copper thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m, and dried and roll pressed to prepare a negative electrode having an active material layer having a thickness of 38 ⁇ m and a loading amount of 1.7 mAh / cm 2 .
  • Li metal was used as the counter electrode.
  • An electrode assembly was prepared by interposing a polyolefin separator between the cathode and the Li metal. Meanwhile, 0.5 wt% of vinylene carbonate (VC) was dissolved in a mixed solution in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 7: 3, and LiPF 6 was dissolved (1M concentration) in an electrolyte solution. was prepared. The electrolyte solution was injected into the electrode assembly to prepare a coin-type half cell.
  • VC vinylene carbonate
  • EMC ethylmethyl carbonate
  • Comparative example 2 manufacture of a battery
  • the slurry for forming the first active material layer prepared in Preparation Example 1 was applied to a copper thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m, and dried and roll pressed to have a thickness of 18 ⁇ m and a loading amount of 1.4 mAh / cm 2.
  • the first active material layer of was formed.
  • the slurry for forming the second active material layer was applied onto the first active material layer and dried. Thereafter, roll pressing was performed to form a second active material layer having a thickness of 20 ⁇ m and a loading amount of 0.3 mAh / cm 2 to prepare a negative electrode.
  • Li metal was used as the counter electrode.
  • An electrode assembly was prepared by interposing a polyolefin separator between the cathode and the Li metal. Meanwhile, 0.5 wt% of vinylene carbonate (VC) was dissolved in a mixed solution in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 7: 3, and LiPF 6 was dissolved (1M concentration) in an electrolyte solution. was prepared. The electrolyte solution was injected into the electrode assembly to prepare a coin-type half cell.
  • VC vinylene carbonate
  • EMC ethylmethyl carbonate
  • Cycle characteristics were evaluated for the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, respectively.
  • One cycle and two cycles were charged and discharged at 0.1C, and charged and discharged at 0.5C from three cycles to 30 cycles. Thereafter, the discharge capacity after 10 cycles and 30 cycles was evaluated relative to the discharge capacity after one cycle, and the results are shown in Table 1.
  • the battery of Examples 1 to 3 shows excellent cycle characteristics compared to the batteries of Comparative Examples 1 and 2. This is considered to be based on the relaxation of the stress generated in the active material layer during charge and discharge by the stress relaxation unit.
  • Example 2 in which only a part of the etching region (corresponding to the concave described in the detailed description) is filled with the stress relaxation portion and in Example 3 where the some etching region does not include the stress relaxation portion, the stress relaxation effect is more excellent. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 및 이를 포함하는 이차 전지에 관한 것으로, 집전체; 상기 집전체 상에 배치되며 상기 집전체의 일부를 노출시키는 적어도 1 이상의 오목부를 포함하는 제1 활물질층; 상기 오목부 내에 배치된 응력완화부; 및 상기 제1 활물질층 상 및 상기 응력완화부 상에 배치되며 상기 집전체와 이격된 제2 활물질층을 포함하는 음극 및 이를 포함하는 이차 전지에 관한 것이다.

Description

음극 및 이를 포함하는 이차 전지
관련출원과의 상호인용
본 출원은 2016년 07월 15일자 한국 특허 출원 제10-2016-0089735호 및 2017년 07월 13일자 한국 특허 출원 제10-2017-0089109호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 및 이를 포함하는 이차 전지에 관한 것으로, 상기 음극은 집전체; 상기 집전체 상에 배치되며 상기 집전체를 향해 만입된 적어도 1 이상의 오목부를 포함하는 제1 활물질층; 상기 오목부 내에 배치된 응력완화부; 및 상기 제1 활물질층 상에 배치되며 상기 집전체와 이격된 제2 활물질층을 포함할 수 있다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성되며, 첫 번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 카본 입자와 같은 음극 활물질 내에 삽입되고 방전 시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.
높은 에너지 밀도의 전지가 제조되기 위해서는, 전지 내 음극의 용량이 커야 한다. 이에 음극 활물질로 흑연 외에 14족, 15족의 전이 금속 및 이들의 산화물 등을 사용하고 있다. 다만, 상기 물질들을 포함하는 활물질층의 경우, 충방전에 따라 부피가 지나치게 팽창하여 전극 집전체와 활물질층에 응력이 과도하게 가해지므로, 활물질 입자의 탈리 또는 활물질층의 박리가 발생하게 된다. 이로 인해, 전지의 수명이 짧아지거나, 안정성이 저하되는 문제가 발생할 수 있다.
상기 탈리나 박리의 문제를 해결하기 위해, 접착력이 높은 바인더를 사용하거나, 기타 첨가제를 투입하는 방법이 소개되고 있으나, 전극 집전체와 활물질층에 가해지는 과도한 응력을 제거하지는 못하는 상황이다.
따라서, 고용량을 유지하면서, 전극 집전체와 활물질층에 가해지는 응력을 완화시킬 수 있는 음극이 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 일 과제는 고용량을 유지하면서, 전극 집전체와 활물질층에 가해지는 응력을 완화시킬 수 있는 음극을 제공하는 것이다.
본 발명의 일 실시예는 집전체; 상기 집전체 상에 배치되며 상기 집전체를 향해 만입된 적어도 1 이상의 오목부를 포함하는 제1 활물질층; 상기 오목부 내에 배치된 응력완화부; 및 상기 제1 활물질층 상에 배치되며 상기 집전체와 이격된 제2 활물질층을 포함하는 음극을 제공한다.
본 발명의 다른 실시예는 상기 음극을 포함하는 이차 전지를 제공한다.
본 발명의 일 실시예에 따른 음극은 전이 금속, 이들의 합금, 및 전이 금속과 이들의 합금 각각의 산화물 등을 활물질로 사용하므로, 고용량의 전지가 도출될 수 있다. 또한, 제1 활물질층의 오목부 내에 응력완화부가 배치되어, 집전체와 활물질층에 가해지는 응력이 완화될 수 있으므로, 활물질 입자의 탈리 및 활물질층의 박리가 방지될 수 있다.
도 1은 본 발명의 일 실시예에 따른 음극의 단면 모식도이다.
도 2는 본 발명의 다른 실시예에 따른 음극의 단면 모식도이다.
도 3은 본 발명의 또 다른 실시예에 따른 음극의 단면 모식도이다.
도 4는 본 발명의 또 다른 실시예에 따른 음극의 단면 모식도이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 본 명세서에서, "상"에 배치되어 있는 것은 두 구성이 접하는 경우뿐만 아니라, 일정 간격 이격되어 상하로 배치된 구조를 포함하는 것으로 이해되어야 한다.
본 발명의 일 실시예에 따른 음극은, 도 1을 참조하면, 집전체(100); 상기 집전체(100) 상에 배치되며 상기 집전체(100)를 향해 만입된 적어도 1 이상의 오목부(110a)를 포함하는 제1 활물질층(110); 상기 오목부(110a) 내에 배치된 응력완화부(120); 및 상기 제1 활물질층(110) 상에 배치되며 상기 집전체(100)와 이격된 제2 활물질층(130)을 포함하는 음극일 수 있다.
상기 집전체는, 이차 전지에 화학적 변화를 유발하지 않으면서 도전성을 지닌 것으로서, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 제1 활물질층은 상기 집전체 상에 배치될 수 있으며, 상기 제1 활물질층은 상기 집전체 상에 배치될 수 있으며, 구체적으로 상기 집전체의 일면 또는 양면 상에 배치될 수 있다. 상기 제1 활물질층은 제1 활물질 입자 및 제1 바인더를 포함할 수 있다.
상기 제1 활물질 입자는 흑연계 물질, 전이금속, 전이금속 산화물, 전이금속 합금, 전이금속 합금의 산화물, 및 전이금속 함유 복합체로 이루어진 군에서 선택되는 적어도 하나의 활물질 입자일 수 있다. 상기 흑연계 물질은 인조흑연, 천연흑연, 흑연화 탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다. 상기 전이금속은 14족 및 15족 전이금속 중 어느 하나일 수 있으며, 구체적으로 상기 전이금속은 실리콘계 물질, 주석계 물질, 게르마늄계 물질 중 어느 하나일 수 있다. 상기 전이금속 산화물, 전이금속 합금, 전이금속 합금의 산화물, 및 전이금속 함유 복합체에 포함되는 전이금속은 상술한 전이금속일 수 있다. 예를 들어, 상기 전이금속이 실리콘계 물질인 경우, 상기 제1 활물질 입자 및 상기 제2 활물질 입자는 Si, SiOx(0<x<2), Si-C 복합체 및 Si-Y 합금(여기서, Y는 알칼리 금속, 알칼리 토금속, 전이금속, 13족 원소, 14족 원소, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임)으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다.
상기 제1 바인더는 수계 바인더 및 유계 바인더 중 적어도 어느 하나를 포함할 수 있다. 상기 제1 바인더는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF), 카르복시메틸 셀룰로즈(Carboxymethyl cellulose, CMC), 스티렌-부타디엔 러버(Styrene-butadiene rubber, SBR), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리메틸메타크릴레이트(Polymethylmethacrylate), 폴리비닐알코올(Polyvinyl alcohol), 전분, 히드록시프로필셀룰로오스(Hydroxypropylcellulose), 재생 셀룰로오스, 폴리비닐피롤리돈(Polyvinyl pyrrolidone), 테트라플루오로에틸렌(Tetrafluoroethylene), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene), 폴리아크릴산(Polyacrylic acid), 에틸렌-프로필렌-디엔 모노머(Ethylene-Propylene-Diene monomer, EPDM), 술폰화 EPDM, 불소 고무 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체, 예컨대 폴리비닐리덴 플루오라이드, 카르복시메틸 셀룰로즈, 스티렌-부타디엔 러버로 이루어진 군으로부터 선택되는 적어도 하나와 헥사플루오르 프로필렌(Hexafluoropropylene, HFP)의 공중합체 등의 다양한 종류의 바인더일 수 있다.
상기 제1 활물질층은 적어도 1 이상의 오목부를 포함할 수 있다. 상기 오목부는 상기 집전체를 향해 만입된 형태일 수 있다. 구체적으로, 도 1을 참조하면, 상기 오목부는 상기 집전체까지 만입되어 상기 제1 활물질층을 관통할 수 있다. 즉, 상기 오목부는 상기 제1 활물질층의 두께 전체에 해당하는 만큼 상기 집전체를 향해 만입된 형태일 수 있다. 상기 오목부는 상기 제1 활물질층에 의해 둘러 쌓인 홀 형태일 수 있다. 또는 상기 오목부는 제1 활물질층이 서로 이격된 2 이상의 부분을 포함할 시, 상기 이격된 공간에 해당할 수 있다.
상기 오목부는 일정 간격을 가지고 형성될 수도 있고, 일정한 간격을 가지지 않고 불규칙(random)적인 간격을 가지며 형성될 수도 있다. 또한, 상기 오목부는 일정한 모양으로 형성될 수도 있고, 일정하지 않은 모양으로 형성될 수도 있다.
상기 응력완화부는 상기 오목부 내에 배치될 수 있다. 상기 응력완화부는 상기 오목부 내의 일부 또는 전부를 채울 수 있다. 도 1을 참조하면, 본 실시예에 따른 음극의 응력완화부(120)는 상기 오목부(110a)를 전부를 채울 수 있다. 상기 응력완화부가 상기 오목부 내에 배치되면서, 상기 응력완화부와 상기 제1 활물질층은 서로 접할 수 있다. 상기 제1 활물질층이 상기 오목부에 의해 이격된 2이상의 부분을 포함할 시, 상기 응력완화부의 일면은 상기 제1 활물질층의 일 부분과 접하며, 상기 응력완화부의 타면은 상기 제1 활물질층의 타 부분과 접할 수 있다.
상기 응력완화부는 전지의 충방전 시 제1 활물질층 및 제2 활물질층의 부피 팽창에 의해 발생하는 응력을 흡수하여, 집전체, 제1 활물질층 및 제2 활물질층에 가해지는 응력을 완화시키는 역할을 할 수 있다. 이에 따라, 제1 활물질 입자와 후술할 제2 활물질층의 제2 활물질 입자의 탈리를 방지하고, 제1 활물질층 및 제2 활물질층의 박리를 방지할 수 있다.
상기 응력완화부는 수계 고분자 및 유기계 고분자 중 적어도 어느 하나를 포함할 수 있다.
상기 수계 고분자는 폴리비닐피롤리돈(poly(vinyl pyrrolidone)), 폴리아크릴아미드(polyacrylamide), 폴리아크릴산(polyacrylic acid), 폴리비닐메틸에테르(poly (vinyl methyl ether)), 폴리프로필렌글리콜(poly(propylene glycol)), 셀룰로오스(cellulose), 폴리N-이소프로필메트아크릴아미드(poly(N-isopropylmethacrylamide)), 폴리에틸렌옥사이드(polyethylene oxide)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 상기 응력완화부로 수계 고분자를 사용하는 경우, 상기 응력완화부를 형성하기 위해 상기 수계 고분자를 수계 용매에 분산시킨다. 이 때, 상기 제1 활물질층의 제1 바인더로 수계 바인더를 사용하게 되면, 상기 수계 용매를 상기 오목부에 배치시킬 때 상기 수계 용매에 의해 상기 제1 활물질층의 부피 팽창이 과도하게 발생하여 제1 활물질층의 안정성이 악화될 수 있다. 따라서, 상기 제1 활물질층의 제1 바인더가 유기계 바인더인 경우에는 상기 응력완화부가 수계 고분자인 것이 바람직하다.
상기 유기계 고분자는 폴리스티렌(polystyrene), 폴리(메틸메타크릴레이트)(poly(methylmethacrylate)), 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리에틸렌 옥사이드(polyethylene oxide), 폴리비닐 알코올(polyvinyl alcohol), 폴리비닐 클로라이드(polyvinyl chloride), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리아미드이미드(polyamide imide), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 이들의 공중합체로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다. 상기 유기계 고분자를 사용하는 경우, 수계 음극 제작에 있어서, 전극 코팅이나 습식 에칭 시에 전극 구조의 변화를 최소화 할 수 있다. 상기 응력완화부로 유기계 고분자를 사용하는 경우, 상기 응력완화부를 형성하기 위해 상기 유기계 고분자를 유기 용매에 분산시킨다. 이 때, 상기 제1 활물질층의 제1 바인더로 유기계 바인더를 사용하게 되면, 상기 유기 용매를 상기 오목부에 배치시킬 때 상기 유기 용매에 의해 상기 제1 활물질층의 부피 팽창이 과도하게 발생하여 제1 활물질층의 안정성이 악화될 수 있다. 따라서, 상기 제1 활물질층의 제1 바인더가 수계 바인더인 경우 상기 응력완화부가 유기계 고분자인 것이 바람직하다.
상기 응력완화부와 상기 제1 활물질층은 1:99 내지 50:50의 부피비로 상기 음극 내에 포함될 수 있으며, 구체적으로 5:95 내지 30:70일 수 있고, 더욱 구체적으로 10:90 내지 20:80일 수 있다. 상기 부피비를 만족하는 경우, 응력 완화 효과가 더욱 우수하며, 전극 저항의 과도한 증가가 방지될 수 있다.
상기 응력완화부는 사각기둥형, 원기둥형, 원뿔형, 피라미드형 등일 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 제2 활물질층은 상기 제1 활물질층 상에 배치될 수 있다. 상기 제2 활물질층은 상기 응력완화부를 덮을 수 있다. 이 때, 상기 제2 활물질층와 상기 응력완화부는 접할 수도 있고, 접하지 않을 수도 있다.
상기 제2 활물질층은 상기 제1 활물질층 및 상기 응력완화부를 사이에 두고 상기 집전체와 이격되어 배치될 수 있다. 상기 제2 활물질층은 제1 활물질 입자의 탈리 및 상기 응력완화부의 구성 물질의 탈리를 방지하는 역할을 할 수 있다. 상기 제2 활물질층은 제2 활물질 입자 및 제2 바인더를 포함할 수 있다.
상기 제2 활물질 입자는 흑연계 물질, 전이금속, 전이금속 산화물, 전이금속 합금, 전이금속 합금의 산화물, 및 전이금속 함유 복합체로 이루어진 군에서 선택되는 적어도 하나의 활물질 입자일 수 있다. 상기 흑연계 물질은 인조흑연, 천연흑연, 흑연화 탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다. 상기 전이금속은 14족 및 15족 전이금속 중 어느 하나일 수 있으며, 구체적으로 상기 전이금속은 실리콘계 물질, 주석계 물질, 게르마늄계 물질 중 어느 하나일 수 있다. 상기 전이금속 산화물, 전이금속 합금, 전이금속 합금의 산화물, 및 전이금속 함유 복합체에 포함되는 전이금속은 상술한 전이금속일 수 있다. 예를 들어, 상기 전이금속이 실리콘계 물질인 경우, 상기 제1 활물질 입자 및 상기 제2 활물질 입자는 Si, SiOx(0<x<2), Si-C 복합체 및 Si-Y 합금(여기서, Y는 알칼리 금속, 알칼리 토금속, 전이금속, 13족 원소, 14족 원소, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임)으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다.
상기 제2 바인더는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF), 카르복시메틸 셀룰로즈(Carboxymethyl cellulose, CMC), 스티렌-부타디엔 러버(Styrene-butadiene rubber, SBR), 폴리아크릴로니트릴(Polyacrylonitrile), 폴리메틸메타크릴레이트(Polymethylmethacrylate), 폴리비닐알코올(Polyvinyl alcohol), 전분, 히드록시프로필셀룰로오스(Hydroxypropylcellulose), 재생 셀룰로오스, 폴리비닐피롤리돈(Polyvinyl pyrrolidone), 테트라플루오로에틸렌(Tetrafluoroethylene), 폴리에틸렌(Polyethylene), 폴리프로필렌(Polypropylene), 폴리아크릴산(Polyacrylic acid), 에틸렌-프로필렌-디엔 모노머(Ethylene-Propylene-Diene monomer, EPDM), 술폰화 EPDM, 불소 고무 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체, 예컨대 폴리비닐리덴 플루오라이드, 카르복시메틸 셀룰로즈, 스티렌-부타디엔 러버로 이루어진 군으로부터 선택되는 적어도 하나와 헥사플루오르 프로필렌(Hexafluoropropylene, HFP)의 공중합체 등의 다양한 종류의 바인더일 수 있다.
상기 제1 활물질층 및 상기 제2 활물질층은 각각 도전재를 더 포함할 수 있다. 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
도 2를 참조하면, 본 발명의 다른 실시예에 따른 음극은 도 1을 통해 설명한 일 실시예에 따른 음극과 유사하나, 상기 응력완화부(120)가 상기 오목부(110a) 내의 일부를 채울 수 있다는 점에서 차이가 있다. 이하, 도 1을 통해 설명한 실시예와의 차이점을 중점적으로 설명하도록 한다.
도 2에 따른 실시예의 음극의 응력완화부는 상기 오목부의 일부만을 채우기 때문에, 상기 오목부 내에서 응력완화부로 채우진 영역 외의 영역은 비어있는 공간으로 존재할 수 있다. 상기 비어있는 공간은 전지의 충방전 시 부피 팽창하는 제1 활물질층과 제2 활물질층이 위치할 수 있는 영역을 확보하여, 부피 팽창에 따른 응력 발생을 줄이는 역할을 할 수 있다. 상기 응력완화부는 제1 활물질층, 제2 활물질층, 및 집전체 중 적어도 어느 하나와 접할 수 있다.
도 2에 도시되어 있지 않으나, 도 2에 따른 실시예의 음극은 일부가 상기 응력완화부로 채우진 오목부 뿐만 아니라, 전부가 상기 응력완화부로 채우진 오목부도 동시에 포함할 수도 있다.
도 3을 참조하면, 본 발명의 또 다른 실시예에 따른 음극은 도 1을 통해 설명한 일 실시예에 따른 음극과 유사하나, 일부 오목부들은 응력완화부에 의해 채워지지 않은 점에서 차이가 있다. 이하, 도 1을 통해 설명한 실시예와의 차이점을 중점적으로 설명하도록 한다.
도 3에 따른 실시예의 음극은 오목부를 복수개 포함할 수 있으며, 상기 응력완화부는 상기 복수의 오목부들 중 일부의 오목부를 채울 수 있다. 상기 일부의 오목부는 적어도 하나 이상일 수 있다. 이에 따라, 응력완화부가 채워지지 않은 오목부는 전지의 충방전 시 부피 팽창하는 제1 활물질층과 제2 활물질층이 위치할 수 있는 영역을 확보하여, 부피 팽창에 따른 응력 발생을 줄이는 역할을 할 수 있다. 또한, 일부 오목부에 배치된 응력완화부는 전지의 충방전 시 제1 활물질층 및 제2 활물질층의 부피 팽창에 의해 발생하는 응력을 흡수하여, 집전체, 제1 활물질층 및 제2 활물질층에 가해지는 응력을 완화시키는 역할을 할 수 있다.
도 4를 참조하면, 본 발명의 또 다른 실시예에 따른 음극은 도 1을 통해 설명한 일 실시예에 따른 음극과 유사하나, 상기 오목부가 상기 제1 활물질층을 관통하지 않는 점에서 차이가 있다. 이하, 도 1을 통해 설명한 실시예와의 차이점을 중점적으로 설명하도록 한다.
상기 오목부는 상기 집전체를 향하여 만입되어 있는 형태이나, 상기 집전체와 오목부가 연결되어 있지 않을 수 있다. 구체적으로, 상기 집전체에 수직한 방향에 있어서, 상기 오목부와 상기 집전체 사이에 상기 제1 활물질층이 위치할 수 있다. 이 경우, 응력완화부에 의한 활물질 탈리 방지 효과가 어느 수준으로 유지되면서도, 제1 활물질 입자의 함량이 높은 수준으로 유지될 수 있어서 전지의 용량이 더욱 개선될 수 있다.
본 발명의 실시예들에 따른 음극은 다음과 같은 방법에 의해 제조될 수 있다.
제1 활물질 입자, 바인더, 및 도전재를 포함하는 전극 합제를 용매에 혼합하여 만들어진 제1 활물질층 제조용 슬러리를 집전체 상에 도포한 후 건조 및 압연하여 제1 활물질층을 제조할 수 있다. 제조된 제1 활물질층은 마스크를 통해 을 선택적으로 식각되어, 적어도 하나 이상의 오목부가 형성될 수 있다. 이후, 제조된 오목부 내에 응력완화부 형성한 뒤, 마스크를 제거할 수 있다. 상기 응력완화부는 상기 응력완화부 형성용 물질을 용매에 분산시킨 슬러리를 도포한 뒤, 건조시켜서 형성될 수 있다. 응력완화부가 형성된 뒤, 제2 활물질 입자, 바인더, 및 도전재를 포함하는 전극 합제를 용매에 혼합하여 만들어진 제2 활물질층 제조용 슬러리를 제1 활물질층 상 및 응력완화부 상에 도포한 후 건조 및 압연하여 제2 활물질층을 제조할 수 있다. 상기 제1 활물질층, 상기 응력완화부, 및 상기 제2 활물질층의 형성에는 스크린 인쇄법, 잉크젯법, 스프레이법, 그라비어 인쇄법, 열전사법, 톳판 인쇄법, 요판 인쇄법 및 오프셋 인쇄법 중 적어도 1 이상이 사용될 수 있다. 또한, 상기 음극 제조에 사용된 상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
그러나 반드시 상술한 제조 방법에 한정되는 것은 아니다. 예를 들어, 상기 제1 활물질층 및 상기 오목부는 다른 방법으로 형성될 수도 있다. 상술한 제조 방법과 달리, 상기 제1 활물질층 제조용 슬러리의 도포 전, 집전체 상에 마스크를 배치한 후 상기 제1 활물질층 제조용 슬러리를 도포하고, 건조 및 압연하여 제1 활물질층을 제조한 뒤, 마스크를 제거하는 방식으로 오목부를 형성할 수도 있다.
오목부의 일부만이 응력완화부로 채워진 음극의 제조는 다음과 같을 수 있다. 상술한 바와 동일한 방법으로 제1 활물질층 및 오목부를 형성하는 점에서는 차이가 없다. 다만, 상기 응력완화부 형성 전에, 또는 상기 응력완화부를 상기 오목부의 일부 영역에만 형성 후에 폴리메틸 메타크릴레이트(Polymethyl methacrylate), 폴리에틸렌(Polyethylene) 및 폴리에틸옥사이드(Polyethyloxide) 등의 고분자를 상기 오목부의 나머지 영역에 채울 수 있다. 이후, 상술한 바와 동일한 방법으로 제2 활물질층을 형성한 뒤, 습식 에칭 등을 통해 상기 고분자를 제거하여 오목부가 비어있는 공간을 포함하도록 형성할 수 있다.
이와 유사한 방법으로, 복수의 오목부들 중 일부 오목부는 응력완화부가 아닌 상기 고분자로만 채운 뒤, 제2 활물질층이 형성된 후에 동일한 방법으로 상기 고분자를 제거할 수 있다. 이에 따라, 응력완화부가 채워지지 않고 비어있는 오목부가 형성될 수도 있다.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 본 발명의 일 실시예에 따른 전극일 수 있다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1 + c1Mn2 - c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
제조예 1: 제1 활물질층 형성용 슬러리 제조
제1 활물질 입자인 평균 입경(D50) 4.9㎛의 실리콘 입자(신에츠 社) 94중량%, 도전재인 슈퍼피 1.5중량%, 바인더인 스티렌 부타디엔 고무(SBR) 3중량% 및 카르복시메틸셀룰로오스(CMC) 1.5중량%를 혼합한 뒤, 용매인 물을 첨가하여 제1 활물질층 형성용 슬러리를 제조하였다.
제조예 2: 제2 활물질층 형성용 슬러리 제조
제2 활물질 입자인 평균 입경(D50) 12㎛의 탄소 분말 95.8중량%, 도전재인 슈퍼피 0.5중량%, 바인더인 스티렌 부타디엔 고무(SBR) 2.5중량% 및 카르복시메틸셀룰로오스(CMC) 1.2중량%를 혼합한 뒤, 용매인 물을 첨가하여 제2 활물질층 형성용 슬러리를 제조하였다.
실시예 1: 전지의 제조
(1) 음극의 제조
1) 제1 활물질층의 형성
제조예 1에서 제조된 제1 활물질층 형성용 슬러리를 두께 20㎛의 음극 집전체인 구리 박막에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 두께 18㎛, 로딩량 2.1 mAh/cm2의 제1 활물질층을 형성하였다.
2) 응력완화부의 형성
리소그래피(lithography)를 통해 상기 제1 활물질층을 부분적으로 식각하여 상기 제1 활물질층의 부피의 30%에 달하는 부분을 제거하였다. 이 후, 폴리비닐리덴플루오라이드(PVdF)가 N-메틸피롤리돈(NMP)에 2.5중량%로 용해된 용액을 식각된 부분에 도포 및 건조시켜서 응력완화부를 형성하였다. 상기 응력완화부는 식각 영역의 내부를 모두 채우고 있었다.
3) 제2 활물질층의 형성
상기 제1 활물질층 및 상기 응력완화부 상에 상기 제2 활물질층 형성용 슬러리를 도포하고, 건조시켰다. 이 후, 롤 프레스를 실시하여 두께 20㎛, 로딩량 0.3 mAh/cm2의 제2 활물질층을 형성하여, 음극을 제조하였다.
(2) 전지의 제조
상대(counter) 전극으로 Li 금속을 사용하였다. 상기 음극과 상기 Li 금속 사이에 폴리올레핀 분리막을 개재시켜서 전극 조립체를 제조하였다. 한편, 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)가 7:3의 부피비로 혼합된 혼합 용액에 0.5중량%로 비닐렌 카보네이트(VC)를 용해시키고, LiPF6를 용해(1M 농도)시켜 전해액을 제조하였다. 상기 전해액을 상기 전극 조립체에 주입하여 코인형 하프 셀을 제조하였다.
실시예 2: 전지의 제조
(1) 음극 및 전지의 제조
응력완화부 형성 시, 폴리비닐리덴플루오라이드(PVdF)가 N-메틸피롤리돈(NMP)에 1중량%로 용해된 용액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2의 코인형 하프 셀을 제조하였다. 이 때, 음극은 응력완화부가 식각 영역 내부의 일부만을 채운 구조를 포함하였다.
실시예 3: 전지의 제조
(1) 음극의 제조
1) 제1 활물질층의 형성
실시예 1과 동일한 방법으로 제1 활물질층을 형성하였다.
2) 응력완화부의 형성
리소그래피를 통해 상기 제1 활물질층을 부분적으로 식각하여 상기 제1 활물질층 부피의 15%에 달하는 부분을 제거하였다. 이 후, 폴리비닐리덴플루오라이드(PVdF)가 N-메틸피롤리돈(NMP)에 2.5중량%로 용해된 용액을 식각된 부분에 도포 및 건조시켜서 응력완화부를 형성하였다. 이 후, 리소그래피를 통해 상기 제1 활물질층 중 식각되지 않은 부분을 식각하여 상기 제1 활물질층 부피의 15%에 달하는 부분을 추가적으로 제거하였다.
3) 제2 활물질층의 형성
실시예 1과 동일한 방법으로 제2 활물질층을 형성하였다.
(2) 전지의 제조
실시예 1과 동일한 방법으로 실시예 3의 코인형 하프 셀을 제조하였다.
비교예 1: 전지의 제조
(1) 음극의 제조
평균 입경(D50) 4.9㎛의 실리콘 입자(신에츠 社)와 평균 입경(D50) 12㎛의 탄소 분말을 1:1의 중량비로 혼합한 활물질 94중량%, 도전재인 슈퍼피 1.5중량%, 바인더인 스티렌 부타디엔 고무(SBR) 3중량% 및 카르복시메틸셀룰로오스(CMC) 1.5중량%를 혼합한 뒤, 용매인 물을 첨가하여 음극 슬러리를 제조하였다.
상기 음극 슬러리를 두께 20㎛의 음극 집전체인 구리 박막에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 두께 38㎛, 로딩량 1.7 mAh/cm2의 활물질층이 형성된 음극을 제조하였다.
(2) 전지의 제조
상대(counter) 전극으로 Li 금속을 사용하였다. 상기 음극과 상기 Li 금속 사이에 폴리올레핀 분리막을 개재시켜서 전극 조립체를 제조하였다. 한편, 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)가 7:3의 부피비로 혼합된 혼합 용액에 0.5중량%로 비닐렌 카보네이트(VC)를 용해시키고, LiPF6를 용해(1M 농도)시켜 전해액을 제조하였다. 상기 전해액을 상기 전극 조립체에 주입하여 코인형 하프 셀을 제조하였다.
비교예 2: 전지의 제조
1) 제1 활물질층의 형성
제조예 1에서 제조된 제1 활물질층 형성용 슬러리를 두께 20㎛의 음극 집전체인 구리 박막에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 두께 18㎛, 로딩량 1.4 mAh/cm2의 제1 활물질층을 형성하였다.
2) 제2 활물질층의 형성
상기 제1 활물질층 상에 상기 제2 활물질층 형성용 슬러리를 도포하고, 건조시켰다. 이 후, 롤 프레스를 실시하여 두께 20㎛, 로딩량 0.3 mAh/cm2의 제2 활물질층을 형성하여, 음극을 제조하였다.
(2) 전지의 제조
상대(counter) 전극으로 Li 금속을 사용하였다. 상기 음극과 상기 Li 금속 사이에 폴리올레핀 분리막을 개재시켜서 전극 조립체를 제조하였다. 한편, 에틸렌 카보네이트(EC)와 에틸메틸 카보네이트(EMC)가 7:3의 부피비로 혼합된 혼합 용액에 0.5중량%로 비닐렌 카보네이트(VC)를 용해시키고, LiPF6를 용해(1M 농도)시켜 전해액을 제조하였다. 상기 전해액을 상기 전극 조립체에 주입하여 코인형 하프 셀을 제조하였다.
실험예 1
실시예 1 내지 3 및 비교예 1, 2의 전지 각각에 대해 사이클 특성을 평가하였다. 1회 사이클과 2회 사이클은 0.1C로 충방전을 실시하였고, 3회 사이클부터 30회 사이클까지는 0.5C로 충방전을 실시하였다. 이 후, 1회 사이클 후의 방전 용량 대비 10회 사이클, 30회 사이클 후의 방전 용량을 평가하여, 그 결과를 표 1에 나타내었다.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5V
10사이클 후 방전 용량(%) 30사이클 후 방전 용량(%)
실시예 1 95.2 87.1
실시예 2 95.7 88.9
실시예 3 96.1 90.3
비교예 1 94.5 81.7
비교예 2 94.9 82.9
상기 표 1을 참조하면, 실시예 1 내지 3의 전지는 비교예 1, 2의 전지에 비하여 우수한 사이클 특성을 나타낸다. 이는 응력완화부에 의해, 충방전 시 활물질층에 발생하는 응력이 완화된 것에 기한 것으로 생각된다.
한편, 식각 영역(상세한 설명에서 설명한 오목부에 해당)의 일부만이 응력완화부로 채워진 실시예 2와 일부 식각 영역은 응력완화부를 포함하지 않는 실시예 3의 경우, 응력 완화 효과가 더욱 우수한 것을 확인할 수 있다.

Claims (11)

  1. 집전체;
    상기 집전체 상에 배치되며 상기 집전체를 향해 만입된 적어도 1 이상의 오목부를 포함하는 제1 활물질층;
    상기 오목부 내에 배치된 응력완화부; 및
    상기 제1 활물질층 상에 배치되며 상기 집전체와 이격된 제2 활물질층을 포함하는 음극.
  2. 청구항 1에 있어서,
    상기 응력완화부는 수계 고분자 및 유기계 고분자 중 적어도 어느 하나를 포함하는 음극.
  3. 청구항 1에 있어서,
    상기 제2 활물질층은 상기 응력 완화부를 덮는 음극.
  4. 청구항 1에 있어서,
    상기 응력완화부와 상기 제1 활물질층을 1:99 내지 50:50의 부피비로 포함하는 음극.
  5. 청구항 1에 있어서,
    상기 응력완화부는 상기 오목부 내의 일부 또는 전부를 채우는 음극.
  6. 청구항 1에 있어서,
    상기 오목부는 복수개이며,
    상기 응력완화부는 상기 복수의 오목부들 중 적어도 일부의 오목부를 채우는 음극.
  7. 청구항 1에 있어서,
    상기 오목부는 상기 집전체까지 만입되어 상기 제1 활물질층을 관통하는 음극.
  8. 청구항 1에 있어서,
    상기 오목부와 상기 집전체 사이에 상기 제1 활물질층이 위치하는 음극.
  9. 청구항 1에 있어서,
    상기 제1 활물질층은 제1 활물질 입자 및 제1 바인더를 포함하고,
    상기 제2 활물질층은 제2 활물질 입자 및 제2 바인더를 포함하며,
    상기 제1 활물질 입자와 상기 제2 활물질 입자는 각각 독립적으로 흑연계 물질, 전이금속, 전이금속 산화물, 전이금속 합금, 전이금속 합금의 산화물 및 전이금속 함유 복합체로 이루어진 군에서 선택되는 적어도 하나의 활물질 입자인 음극.
  10. 청구항 9에 있어서,
    상기 제1 바인더는 수계 바인더 및 유기계 바인더 중 적어도 어느 하나를 포함하며,
    상기 제1 바인더가 상기 수계 바인더인 경우, 상기 응력완화부는 상기 유기계 고분자며,
    상기 제1 바인더가 상기 유기계 바인더인 경우, 상기 응력완화부는 상기 수계 고분자인 음극.
  11. 청구항 1 내지 10 중 어느 하나의 음극;
    양극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질을 포함하는 이차 전지.
PCT/KR2017/007610 2016-07-15 2017-07-14 음극 및 이를 포함하는 이차 전지 WO2018012940A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/771,276 US11094937B2 (en) 2016-07-15 2017-07-14 Negative electrode and secondary battery including the same
PL17828010T PL3343674T3 (pl) 2016-07-15 2017-07-14 Anoda i zawierający ją akumulator
JP2018535279A JP6665306B2 (ja) 2016-07-15 2017-07-14 負極およびこれを含む二次電池
EP17828010.3A EP3343674B1 (en) 2016-07-15 2017-07-14 Anode and secondary battery including same
CN201780003923.4A CN108352501B (zh) 2016-07-15 2017-07-14 负极和包含它的二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0089735 2016-07-15
KR20160089735 2016-07-15
KR1020170089109A KR102056455B1 (ko) 2016-07-15 2017-07-13 음극 및 이를 포함하는 이차 전지
KR10-2017-0089109 2017-07-13

Publications (1)

Publication Number Publication Date
WO2018012940A1 true WO2018012940A1 (ko) 2018-01-18

Family

ID=60953240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007610 WO2018012940A1 (ko) 2016-07-15 2017-07-14 음극 및 이를 포함하는 이차 전지

Country Status (1)

Country Link
WO (1) WO2018012940A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939315A (zh) * 2023-03-08 2023-04-07 中创新航材料科技(四川)有限公司 电极片及包含它的电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003544A1 (en) * 2006-08-04 2010-01-07 Koninklijke Philips Electronics N.V. Electrochemical energy source, electronic device, and method manufacturing such an electrochemical energy source
JP2010176980A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2012038528A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 負極板、リチウムイオン二次電池及び負極板の製造方法
WO2014116029A1 (ko) * 2013-01-25 2014-07-31 주식회사 엘지화학 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR20160059408A (ko) * 2014-11-18 2016-05-26 에스케이이노베이션 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003544A1 (en) * 2006-08-04 2010-01-07 Koninklijke Philips Electronics N.V. Electrochemical energy source, electronic device, and method manufacturing such an electrochemical energy source
JP2010176980A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2012038528A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 負極板、リチウムイオン二次電池及び負極板の製造方法
WO2014116029A1 (ko) * 2013-01-25 2014-07-31 주식회사 엘지화학 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR20160059408A (ko) * 2014-11-18 2016-05-26 에스케이이노베이션 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939315A (zh) * 2023-03-08 2023-04-07 中创新航材料科技(四川)有限公司 电极片及包含它的电池

Similar Documents

Publication Publication Date Title
WO2018008953A1 (en) Negative electrode for secondary battery
WO2017171409A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2012165758A1 (ko) 리튬 이차전지
WO2019172661A1 (ko) 음극의 제조 방법
WO2020149622A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018216970A1 (ko) 플렉시블 전극, 이의 제조방법 및 이를 포함하는 이차전지
WO2019156461A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2022010121A1 (ko) 급속충전 성능이 향상된 음극 및 리튬 이차전지
WO2020153790A1 (ko) 이차전지용 음극의 제조방법
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019045552A1 (ko) 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2019221450A1 (ko) 음극, 및 상기 음극을 포함하는 리튬 이차 전지
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019182361A1 (ko) 음극의 제조방법 및 이로부터 제조된 음극

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017828010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15771276

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018535279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE