WO2017217156A1 - 燃料噴射弁 - Google Patents

燃料噴射弁 Download PDF

Info

Publication number
WO2017217156A1
WO2017217156A1 PCT/JP2017/017994 JP2017017994W WO2017217156A1 WO 2017217156 A1 WO2017217156 A1 WO 2017217156A1 JP 2017017994 W JP2017017994 W JP 2017017994W WO 2017217156 A1 WO2017217156 A1 WO 2017217156A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
hole
valve
injection valve
central axis
Prior art date
Application number
PCT/JP2017/017994
Other languages
English (en)
French (fr)
Inventor
一樹 吉村
泰介 杉井
石井 英二
義人 安川
清隆 小倉
威生 三宅
智 飯塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017217156A1 publication Critical patent/WO2017217156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, wherein a valve body abuts against a valve seat to prevent fuel leakage, and injection is performed when the valve body is separated from a valve seat surface.
  • the present invention relates to a fuel injection valve.
  • Patent Document 1 discloses a technique for preventing the fuel from adhering to the injection opening by having a volume between the fuel jet and the inner wall of the outflow region at the injection opening.
  • Patent Document 2 discloses a technique for avoiding the interference between the spray and the wall surface by decentering the center axis of the diffusion region to the side farther from the center axis of the fuel injection valve than the center axis of the guide region.
  • an object of the present invention is to provide a fuel injection valve that can reduce the amount of fuel droplets scattered during spraying attached to the tip of the fuel injection valve.
  • the fuel injection valve of the present invention comprises: a valve body; a valve seat surface that contacts the valve body to seat fuel; and a position where the valve seat surface and the valve body abut.
  • the hole formation is seen when the fuel injection hole is viewed from the downstream direction.
  • the distance formed between the seat-side wall surface of the inner periphery of the section and the center axis of the fuel injection hole is smaller than the distance formed between the wall surface of the hole forming section on the center axis side of the fuel injection valve. Configured.
  • FIG. 1 is a cross-sectional view showing an example of an electromagnetic fuel injection valve as an example of a fuel injection valve according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve according to the present invention.
  • FIG. 3 is a cross-sectional view of the vicinity of the fuel injection hole and the counterbore of the fuel injection valve according to the present embodiment.
  • FIG. 4 is a diagram for explaining that the counterbore is eccentric with respect to the fuel injection hole in FIG. 3.
  • FIG. 5 is a diagram for explaining the fuel flow and the effects of the invention in this embodiment.
  • FIG. 1 is a cross-sectional view showing an example of an electromagnetic fuel injection valve as an example of a fuel injection valve according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve according to the present invention.
  • FIG. 3 is a cross-sectional view of the vicinity of the fuel injection hole and the counterbore of the fuel injection valve according to the present embodiment
  • FIG. 6 is a diagram for explaining an optimum counterbore eccentric direction with respect to the inclination angle of the fuel injection hole.
  • FIG. 7 is a view for explaining the fuel flow in a structure to which the present embodiment is not applied.
  • the electromagnetic fuel injection valve 100 shown in FIG. 1 is an example of an electromagnetic fuel injection valve for a direct injection type gasoline engine, but the effect of the present invention is an electromagnetic type for a port injection type gasoline engine. It is also effective in a fuel injection valve or a fuel injection valve driven by a piezo element or a magnetostrictive element.
  • FIG. 1 Fuel is supplied from a fuel supply port 112 and is supplied into the fuel injection valve.
  • the electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed. The valve body 101 can be displaced in the axial direction of the fuel injection valve 100. At this time, in the in-cylinder injection type fuel injection valve that injects fuel directly into the cylinder of the engine, the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.
  • FIG. 2 is an enlarged cross-sectional view of the tip of the fuel injection valve.
  • the nozzle body 104 is a member that is disposed on the outer peripheral side of the valve body 101 and forms a fuel flow path.
  • the outer peripheral portion of the sheet member 102 is joined to the nozzle body 104 by welding with a welding beam from the downstream direction.
  • the method for fixing the sheet member 102 to the nozzle pair 104 is not limited to welding, and may be screwing or press-fitting.
  • a conical valve seat surface 203 is formed on the surface of the seat member 102 facing the valve body 101.
  • a fuel injection hole 201 is provided at the tip of the sheet member 102. More specifically, the fuel injection hole 201 is provided in the seat member 102 on the downstream side of the contact portion (contact position) with the valve body 101.
  • the fuel injection hole 201 of this embodiment is formed by punching to form a substantially cylindrical fuel injection hole 201, and a counterbore 202 having a larger diameter than the fuel injection hole 201 is punched downstream of the fuel injection hole 201.
  • the length of the fuel injection hole 201 in the longitudinal direction is adjusted by being formed by processing.
  • 202 is referred to as a counterbore, but may be simply referred to as a dent or a hole forming portion.
  • the method of forming the fuel injection hole 201 by punching has been described, but the present invention is not limited to this, and may be formed by, for example, laser processing.
  • the valve body 101 is guided by the guide member 103 in the downstream portion, and is guided by the valve body guide 105 configured separately from the guide portion 103 in the upstream portion.
  • the guide member 103 and the valve body guide 105 are also fixedly supported by the inner peripheral portion of the nozzle body 104.
  • the anchor 106 is configured separately and independently from the valve body 101, and the rod portion of the valve body 101 is inserted into a valve body insertion hole formed on the inner peripheral side. Further, a flange portion having an outer diameter larger than that of the rod portion is formed in the upstream portion of the valve body 101, and this flange portion contacts the valve body support portion of the anchor 106 when the valve is closed in a non-energized state. Thus, the anchor 106 is energized to form a gap between the anchor 106 and the core 107.
  • the anchor 106 is attracted toward the core 107 by the magnetic attraction force. At this time, the valve body support portion of the anchor 106 and the collar portion of the valve body 101 are engaged, and the valve body 101 is engaged. Is biased toward the core 107, so that the valve can be opened.
  • FIG. 3 is an enlarged cross-sectional view of the fuel injection hole 201 and the counterbore 201.
  • the fuel injection hole 201 provided in the seat member 102 is provided with a counterbore 202a provided on the downstream side (exit side) of the fuel injection hole 201 and further on a downstream side (exit side) of the counterbore 202a.
  • the injection hole length is adjusted by the second counterbore 202b.
  • the injection hole length of the fuel injection hole 201 is defined by the length of a line connecting the center of the inlet surface and the center of the outlet surface of the fuel injection hole 201.
  • the central axis 211 of the fuel injection hole has an inclination of ⁇ with respect to the central axis 210 of the fuel injection valve.
  • the distance formed by the center axis 211 of the fuel injection hole and the side wall surface on the seat side of the counterbore 202a is indicated by an arrow L1
  • the distance formed by the side wall surface on the side of the central axis 210 of the fuel injection valve is indicated by an arrow.
  • the seat side means a direction in which a contact portion between the valve body 101 and the valve seat surface 203 of the seat member 102 is formed.
  • the distance formed by the center axis 211 of the fuel injection hole and the side wall surface on the seat side of the counterbore 202b is indicated by an arrow L1b
  • the distance formed by the side wall surface on the side of the central axis 210 of the fuel injection valve is indicated by an arrow. .
  • FIG. 4 is a view for explaining the positional relationship between the fuel injection hole 201 and the counterbore 202a and 202b, as viewed from the fuel injection hole outlet side. It consists of a fuel injection hole 201 and counterbore 202a and 202b. Similarly to FIG. 3, the distances L1a, L2a, L1b, and L2b formed by the central axis 211 of the fuel injection hole and the side wall surface of the counterbore are shown by arrows.
  • the fuel injection hole 201 has a counterbore 202a formed on the downstream side thereof, and a second counterbore 202b formed on the downstream side of the counterbore 202a.
  • the relationship between the distance L1a between the center axis 211 of the fuel injection hole and the seat-side wall surface of the counterbore 202a with respect to the fuel injection hole 201 and the distance L2a between the wall surface on the center axis 210 side is L1a.
  • ⁇ L2a is configured. That is, as shown in FIG. 4, the counterbore 202a is eccentric to the fuel injection hole 201 toward the center axis 210 of the fuel injection valve.
  • the counterbore 202b on the downstream side of the counterbore 202a is similarly eccentric to the center axis 210 side. That is, with respect to the fuel injection hole 201, a distance L1b formed by the distance between the center axis 211 of the fuel injection hole and the wall surface on the seat side of the inner periphery of the counterbore 202b, and a distance formed by the wall surface on the side of the central axis 210.
  • L2b is configured to satisfy L1b ⁇ L2b.
  • FIG. 5 is a diagram for explaining the flow of fuel and air and the effects of the invention in this embodiment.
  • the fuel is supplied mainly from the seat side as in 301.
  • the inclination angle ⁇ of the central axis 211 of the fuel injection hole 201 with respect to the central axis 210 of the fuel injection valve is large (for example, in the range of 20 ° to 90 ° for ⁇ in the figure)
  • the fuel on the seat side of the fuel injection hole 201 The angle 205 of the nozzle hole edge formed by the wall surface of the injection hole and the valve seat surface 203 becomes small, and it becomes difficult for the fuel that has flown to adhere to the wall surface of the fuel injection hole.
  • the counterbore 202a or 202b is decentered toward the central axis 210 of the fuel injection valve. That is, the wall surface on the sheet side of the counterbore (202a, 202b) is brought closer to the spray region 302 with respect to the side where the fuel is likely to adhere, that is, the side where the separation region 301 is likely to occur.
  • the fuel injection hole 201 is moved from the downstream direction.
  • distances (L1a, L1b) between the seat-side wall surface of the inner peripheral portion of the hole forming portion (borebore 202a, 202b) provided on the downstream side of the fuel injection hole 201 and the central axis 211 of the fuel injection hole 201 is configured to be smaller than the distance (L2a, L2b) formed by the wall surface of the hole forming portion (counterbore 202a, 202b) on the side of the central axis 210 of the fuel injection valve. That is, the relationship is L1a ⁇ L2a or L1b ⁇ L2b.
  • the upper limit value of the inclination angle ⁇ at which separation occurs is about 90 °. Therefore, the predetermined range of the inclination angle ⁇ to which this embodiment is applied is desirably about 20 ° to 90 °.
  • the fuel injection hole 201 is centered.
  • the wall surface on the seat side is the wall surface on the inner peripheral portion of the hole forming portion (the counterbore 202a, 202b) provided on the downstream side of the fuel injection hole 201. It can be said that the wall surface of the hole forming portion (the counterbore 202a, 202b) on the side of the central axis 210 of the fuel injection valve is the wall surface on the side that is difficult to peel off.
  • the wall surface of the inner peripheral portion of the hole forming portion (bore 202a, 202b) provided on the downstream side of the fuel injection hole 201 is on the side that is easy to peel off.
  • the distance (L1a, L1b) between the wall surface of the hole forming portion (borebore 202a, 202b) and the central axis 211 of the fuel injection hole 201 is the surface of the hole forming portion (borebore 202a, 202b) that is difficult to peel off and the fuel injection. It may be said that the configuration is such that the distance (L2a, L2b) between the hole 201 and the central axis 211 is smaller.
  • the scattered droplets 306 and the adhering fuels 303, 304, and 305 are easily caught in and sprayed by the air currents 311 and 312 induced by the spray region 302. Therefore, it is possible to reduce the amount of fuel (303, 304, 305) adhering to the hole forming portions (bore 202a, 202b) and the tip of the fuel injection valve.
  • the attached fuel 303 in the counterbore 202a can be reduced by the eccentricity of the counterbore 202a, and the attached fuel 304 and the fuel 305 attached to the tip of the fuel injection valve can be reduced by the eccentricity of the counterbore 202b.
  • the adhering fuel 305 may be referred to as fuel adhering to the vicinity of the outer peripheral side of the most downstream outlet surface of the fuel injection hole 201.
  • the relationship between the distance L1a formed by the distance between the center axis 211b of the fuel injection hole and the wall surface on the seat side of the inner periphery of the counterbore 202c, and the distance L2a formed by the wall surface on the side of the central axis 210 is L1a> L2a.
  • the relationship between the distance L1b formed by the distance between the center axis 211b of the fuel injection hole and the wall surface on the seat side of the inner periphery of the counterbore 202d and the distance L2b formed by the wall surface on the side of the central axis 210 are L1b> It is configured to be L2b.
  • the fuel injection hole 201 is directed downstream of the central axis 211.
  • the distance (L1a, L1b) formed between the seat-side wall surface of the inner peripheral portion of the hole forming portion (counterbore 202a, 202b) provided on the downstream side of the fuel injection hole 201 and the central axis 211 of the fuel injection hole 201 ) Is larger than the distance (L2a, L2b) formed by the wall surface of the hole forming portion (counterbore 202a, 202b) on the central axis 210 side of the fuel injection valve. That is, the relationship is L1a> L2a or L1b> L2b.
  • FIG. 7 is a diagram for explaining the flow of fuel and air in a structure to which the present embodiment is not applied, for comparison with the present embodiment.
  • the fuel injection hole 201 and the center axes of the counterbore 202e, 202f are coincident.
  • the gap between the spray region 302 and the counterbore side wall surface is larger on the separation region 310 side, so the velocity of the air flow 311b induced by the spray is small.
  • the velocity of the airflow induced by spraying is greatest in the vicinity of the spray region 302, and the velocity of the airflow decreases as the distance from the spray region 302 increases.
  • the distance between the fuel attachment positions 303b, 304b, and 305b and the spray region 302 is farther than in this embodiment. Therefore, in the structure of FIG. 7, the force for blowing off the attached fuel by the airflows 311 b and 312 at the attachment position is weaker than that of this embodiment. That is, it is important for reducing the amount of attached fuel that the spray region and the counterbore wall are brought closer to the side where the flow field peels in the fuel injection hole.
  • the inclination angle ⁇ of the central axis 211 of the fuel injection hole 201 with respect to the central axis 210 of the fuel injection valve among the plurality of fuel injection holes 201 is It is desirable to perform the eccentricity shown in FIGS. 3 and 4 for the fuel injection valve of a predetermined value or more (for example, 20 ° or more). That is, when the inclination angle ⁇ is within a predetermined large range (20 ° to 90 °), the hole provided on the downstream side of the fuel injection hole 201 when the fuel injection hole 201 in the relationship is viewed from the downstream direction.
  • the distance (L1a, L1b) formed between the seat-side wall surface of the inner peripheral portion of the forming portion (counterbore 202a, 202b) and the central axis 211 of the fuel injection hole 201 is the hole forming portion on the central axis 210 side of the fuel injection valve. It is configured so as to be smaller than the distance (L2a, L2b) formed by the wall surface of (the counterbore 202a, 202b).
  • the inclination angles ⁇ of all the plurality of fuel injection valves are within a large range, they may be similarly decentered with respect to the hole forming portions (counterbore 202a, 202b) of all the fuel injection valves.
  • the fuel injection hole 201b whose inclination angle ⁇ of the center axis 211b of the fuel injection hole 201b with respect to the center axis 210 of the fuel injection valve is less than a predetermined value (for example, less than 20 °)
  • a predetermined value for example, less than 20 °
  • the fuel droplets scattered during spraying and the fuel adhering to the tip of the fuel injection valve can be efficiently blown off by the airflow induced by the spraying. Therefore, it is possible to provide a fuel injection valve that can reduce the fuel adhering to the tip of the fuel injection valve and realize an internal combustion engine with improved exhaust performance.
  • FIG. 8 is a cross-sectional view showing the configuration of the valve body of the fuel injection valve in the present embodiment, and those assigned the same numbers as those in FIG. 3 have the same or equivalent functions as those in the first embodiment. .
  • the first embodiment is different from the first embodiment in that a hole forming portion (counterbore 202g) provided downstream of the fuel injection valve 201 is in one stage. Even when the counterbore has one stage, the effect of the present invention can be obtained if the separation position in the fuel injection hole and the relationship between L1a and L2a satisfy the conditions described in the first embodiment.
  • FIG. 9 is a cross-sectional view showing the configuration of the fuel injector and the flow field of the fuel in this embodiment.
  • the same reference numerals as those in FIG. 3 denote the same or equivalent functions as those in the first embodiment. It is what has.
  • This embodiment differs from the first embodiment in that R machining is applied to the connection portion between the side wall surface and the end surface of the counterbore 202h or the counterbore 202i provided downstream of the fuel injection valve 201. R processing is given to the said connection part.
  • the connection portion where the upstream end surface and the wall surface are connected is configured as an R portion.
  • the attached fuel 303c or 304c is likely to spread thinly due to surface tension, so that the area of contact between the airflow 311c induced between the spray region 302 and the counterbore and the attached fuel 303c or 304c increases, and the airflow 311c is increased. It becomes easy to be removed by being pulled.
  • FIG. 10 is a diagram showing an example of a counterbore shape of the fuel injection valve in the present embodiment.
  • the first embodiment is different from the first embodiment in that the counterbore 202j is configured by two curves having different curvatures, and thus L1a ⁇ L2a. That is, when the fuel injection hole 201 is viewed from the downstream direction, the cross-sectional shape of the hole forming portion 202j is formed from a plurality of curves having different curvatures, and thus L1a ⁇ L2a.
  • the effect of the present invention can be obtained without making the counterbore eccentric. Two or more curves forming a counterbore shape may be used.
  • Electromagnetic fuel injection valve 101 ... Valve body 102 ... Seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Anchor 107 ... Core 108 ... Coil 109 ... Yoke 110 ... Spring 111 ... Connector 112 ... Fuel supply Ports 201, 201b ... Fuel injection holes 202, 202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h, 202i, 202j ... Counterbore 203 ... Valve seat surface 204 ... Valve seat surface side contact portion 205, 206 ... Fuel Injection hole edge 210 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

内燃機関に用いる燃料噴射弁において、燃料噴射弁の先端に付着する燃料量を低減する。 弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、前記燃料噴射孔よりも下流側に形成された孔形成部と、を有する燃料噴射弁において、前記燃料噴射孔を下流方向から見て、前記孔形成部の内周部のシート側の壁面と前記燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して小さくなるように構成された。

Description

燃料噴射弁
 本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁であって、弁体が弁座と当接することで燃料の漏洩を防止し、弁体が弁座面から離れることによって噴射を行なう、燃料噴射弁に関する。
 近年、自動車の排ガス規制が強化されており、この排ガス規制の強化に対応するため、筒内壁面(燃焼室内)や燃料噴射弁先端への液体燃料の付着低減が求められている。特に燃料噴射弁先端へ燃料が付着すると不完全燃焼によってデポジットが発生し、噴霧性能の変化や、未燃粒子状物質の発生要因となることが課題となっている。
 これに対して、特許文献1では、噴射開口において燃料噴流と流出領域の内壁の間に容積を有することで、噴射開口に対する燃料付着を阻止する技術が開示されている。特許文献2では、拡散領域の中心軸をガイド領域の中心軸よりも燃料噴射弁の中心軸から遠い側に偏心することで、噴霧と壁面の干渉を回避する技術が開示されている。
特表2006-510849号公報 特開2014-001660号公報
 上記従来技術においては、噴霧と壁面の干渉を回避することにより、燃料噴射弁先端への燃料付着を回避するザグリ形成の技術が公開されている。一方で、噴霧中に燃料噴射弁の先端近傍で細かな液滴に***して飛散する燃料液滴が、燃料噴射弁の先端に付着することについては考慮されていない。
 そこで、本発明の目的は、噴霧中に飛散する燃料液滴が燃料噴射弁の先端へ付着する量を低減できる燃料噴射弁を提供することである。
 上記目的を達成するために、本発明の燃料噴射弁は、 弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、前記燃料噴射孔よりも下流側に形成された孔形成部と、を有する燃料噴射弁において、前記燃料噴射孔を下流方向から見て、前記孔形成部の内周部のシート側の壁面と前記燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して小さくなるように構成された。
 本発明によれば、噴霧中に飛散する燃料液滴が燃料噴射弁の先端へ付着する量を低減できる燃料噴射弁を提供することが可能となる。本発明の上記した以外の構成、作用、効果については、以下の実施例において詳細に説明する。
本発明に係る燃料噴射弁の実施例を示す断面図である。 本発明に係る燃料噴射弁の先端の実施例を示す断面図である。 本発明の第1実施例に係る燃料噴射弁の燃料噴射孔とザグリ近傍の断面図である。 本発明の第1実施例に係る燃料噴射孔とザグリの位置関係を説明するための図である。 本発明の第1実施例に係る燃料噴射孔とザグリ近傍の燃料流れを説明するための図である。 本発明の第1実施例に係る燃料噴射孔の傾斜角度の変化に対する最適構造を説明するための図である。 本発明の第1実施例との比較のための本実施例を適用しない構造における燃料流れを説明するための図である。 本発明の第2実施例に係る燃料噴射弁の燃料噴射孔とザグリ近傍の断面図である。 本発明の第3実施例に係る燃料噴射弁の燃料噴射孔とザグリ近傍の断面図である。 本発明の第4実施例に係る燃料噴射孔とザグリ形状近傍を説明するための図である。
 以下、本発明に係る実施例を説明する。
 本発明の第1の実施例に係る燃料噴射弁について、図1から図7を用いて以下説明する。 
 図1は、本発明に係わる燃料噴射弁の例として、電磁式燃料噴射弁の例を示す断面図である。図2は、本発明に係る燃料噴射弁の先端を拡大した断面図である。図3は、本実施例に係る燃料噴射弁の燃料噴射孔とザグリ近傍の断面図である。図4は、図3において燃料噴射孔に対してザグリが偏心していることを説明する図である。図5は、本実施例における燃料流れと発明の効果を説明するための図である。図6は、燃料噴射孔の傾斜角度に対する最適なザグリ偏心方向を説明するための図である。図7は、本実施例を適用しない構造における燃料流れを説明するための図である。図1に示した電磁式燃料噴射弁100は、筒内直接噴射式のガソリンエンジン向けの電磁式燃料噴射弁の例であるが、本発明の効果は、ポート噴射式のガソリンエンジン向けの電磁式燃料噴射弁や、ピエゾ素子や磁歪素子で駆動される燃料噴射弁においても有効である。
 [電磁式燃料噴射弁の基本動作]
 図1において、燃料は燃料供給口112から供給され、燃料噴射弁の内部に供給される。図1に示す電磁式燃料噴射弁100は、通常時閉型の電磁駆動式であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢されてシート部材102に押し付けられ、燃料がシールされるようになっている。弁体101は燃料噴射弁100の軸方向に変位可能である。このとき、エンジンの筒内に直接、燃料を噴射する筒内噴射型燃料噴射弁では、供給される燃料圧力がおよそ1MPaから50MPaの範囲である。
 図2は燃料噴射弁の先端を拡大した断面図である。ノズル体104は、弁体101の外周側に配置され、燃料の流路を形成する部材である。ノズル体104にはシート部材102の外周部が下流方向からの溶接ビームにより溶接で接合される。なお、このシート部材102のノズル対104への固定方法は溶接に限ったものではなく、ネジ止めや圧入であっても良い。シート部材102の弁体101との対向面には、円錐形状の弁座面203が形成される。
 電磁式燃料噴射弁100が閉弁状態にあるときには、弁体101の先端部がシート部材102の弁座面203と当接することによって燃料のシールを保つようになっている。シート部材102の先端には燃料噴射孔201が設けられる。より具体的には、シート部材102には、弁体101との当接部(当接位置)よりも下流側において、燃料噴射孔201が設けられる。本実施例の燃料噴射孔201は打ち抜き加工により、ほぼ円筒形状の燃料噴射孔201が形成され、そして、燃料噴射孔201よりも下流側において、燃料噴射孔201よりも大径のザグリ202が打ち抜き加工により形成されることによって燃料噴射孔201の長手方向の長さが調整される。以下においては、202をザグリと呼ぶが、単に凹み部と呼んでも良いし、孔形成部と呼んでも良い。本実施例では打ち抜き加工により燃料噴射孔201を形成する方法を説明したが、本発明はこれに限定される訳では無く、たとえばレーザ加工により形成しても良い。
 図1に示したコネクタ111を介してコイル108に通電されると、電磁弁の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー106に磁束密度が生じる。そして、コア107とアンカー106の間には非通電時において空隙が形成されており、コア107にアンカー106が吸引されるような磁気吸引力が生じる。アンカー106には下流方向に向かってスプリング110の付勢力と前述の燃料圧力による付勢力がかかっているが、通電による磁気吸引力がこれらの付勢力よりも大きくなると、アンカー106がコア107に向かって移動する。
 弁体101は下流部においてガイド部材103によりガイドされ、上流部においてガイド部103とは別体で構成された弁体ガイド105にガイドされる。なお、ガイド部材103、弁体ガイド105もノズル体104の内周部により固定支持される。アンカー106は弁体101とは別体で独立して構成され、内周側に形成された弁体挿入穴に弁体101のロッド部が挿入される。また弁体101の上流部にはロッド部よりも外径の大きいつば部が形成されており、非通電状態の閉弁時においては、このつば部がアンカー106の弁体支持部に接触することで、アンカー106を付勢し、アンカー106とコア107との空隙を形成する。
 一方で、コイル108に通電されると磁気吸引力によりアンカー106がコア107の側に吸引され、このときアンカー106の弁体支持部と弁体101のつば部が係合して、弁体101をコア107の側に付勢するため、開弁状態とすることができる。
 開弁状態となると、弁座面203と弁体101の当接部に隙間(ストローク)を生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換されて燃料噴射孔201に至り、図示していないが、エンジンの筒内に向かって噴射される。
 [燃料噴射孔の詳細な形状]
 次に、燃料噴射孔201とザグリ202の詳細な形状について図3及び図4を用いて説明する。 
 図3は、燃料噴射孔201とザグリ201の拡大断面図である。本実施例において、シート部材102に設けられた燃料噴射孔201は、燃料噴射孔201の下流側(出口側)に設けられたザグリ202aと、さらにザグリ202aの下流側(出口側)に設けられた第二のザグリ202bと、により噴射孔長さが調整される。燃料噴射孔201の噴射孔長さは、燃料噴射孔201の入口面中心と出口面中心とを結ぶ線の長さで定義される。
 燃料噴射孔の中心軸211は燃料噴射弁の中心軸210に対してθの傾斜を持つ。燃料噴射孔の中心軸211と、ザグリ202aのシート側の側壁面とが成す距離をL1a、燃料噴射弁の中心軸210側の側壁面とが成す距離をL2aとして矢印で図示している。ここで、シート側とは弁体101とシート部材102の弁座面203との当接部が構成される方向を意味している。また、燃料噴射孔の中心軸211と、ザグリ202bのシート側の側壁面とが成す距離をL1b、燃料噴射弁の中心軸210側の側壁面とが成す距離をL2bとして矢印で図示している。
 図4は燃料噴射孔出口側から見た、燃料噴射孔201とザグリ202aと202bの位置関係を説明するための図である。燃料噴射孔201とザグリ202a及び202bで構成されている。また、図3と同様に燃料噴射孔の中心軸211とザグリの側壁面が成す距離L1a、L2a、L1b、L2bを矢印で図示している。
 図3と図4を用いて本実施例の構造による作用、効果を説明する。図3に示したように、燃料噴射孔201は、その下流側にザグリ202aが形成され、さらにザグリ202aの下流側に第二のザグリ202bが形成される。そして燃料噴射孔201に対して、燃料噴射孔の中心軸211とザグリ202aの内周部のシート側の壁面との成す距離L1a、中心軸210の側の壁面とが成す距離L2aの関係がL1a<L2aとなるように構成する。つまり、図4に示すように、燃料噴射孔201に対して、ザグリ202aが燃料噴射弁の中心軸210側に偏心させる。
 また、本実施例では、ザグリ202aの下流側のザグリ202bについても同様に中心軸210の側に偏心させる。つまり、燃料噴射孔201に対して、燃料噴射孔の中心軸211とザグリ202bの内周部のシート側の壁面との成す距離とが成す距離L1b、中心軸210の側の壁面とが成す距離L2bの関係がL1b<L2bとなるように構成する。
 ザグリ202a、またはザグリ202bを偏心させたことによる作用、効果は以下に説明するが、本発明はザグリ202aだけでも同様の作用、効果を得ることができ、必ずしもザグリ202a及びザグリ202bに限定される訳ではない。
 [本実施例の流れ、効果]
 上記のように燃料噴射孔及びザグリを構成したことによる作用効果を、図5から図7を用いて説明する。
 図5は、本実施例における燃料と空気の流れ及び発明の効果を説明するための図である。燃料の供給が開始されると、燃料は301のように主にシート側から供給される。このとき、燃料噴射弁の中心軸210に対する燃料噴射孔201の中心軸211の傾斜角θが大きい場合(例えば図のθでは20°から90°の範囲)、燃料噴射孔201のシート側では燃料噴射孔壁面と弁座面203が成す噴孔縁の角度205が小さくなり、流入した燃料が燃料噴射孔の壁面に付着しにくくなるため、はく離領域310が生じる。はく離領域310が生じると、燃料噴射孔201の内部へ空気が侵入する虞が生じる。またはく離領域310によりキャビテーションが生じ燃料の流れの乱れを発生させる虞がある。そしてこれらの現象により気液界面で流れの乱れが発生し、液滴への***が促進される。
 これにより、噴霧領域302以外の領域に飛散する液滴306が多く発生する。この液滴が壁面に付着することで、一段目のザグリ202aの角部に付着した燃料303や、二段目のザグリ202bの角部に付着した燃料304、燃料噴射弁の先端に付着した305が形成されることが問題となる。
 そこで、本実施例では図3、4に示したように、燃料噴射弁の中心軸210に向かってザグリ202a、または202bを偏心させる。つまり、燃料が付着しやすい側、つまりはく離領域301の発生しやすい側に対して、ザグリ(202a、202b)のシート側の壁面を噴霧領域302と近づける。
 より具体的には、燃料噴射弁の中心軸210に対する燃料噴射孔201の中心軸211の傾斜角θが所定値以上(たとえば20°以上)であった場合に、燃料噴射孔201を下流方向から見て、燃料噴射孔201の下流側に設けられた孔形成部(ザグリ202a、202b)の内周部のシート側の壁面と燃料噴射孔201の中心軸211との成す距離(L1a、L1b)が、燃料噴射弁の中心軸210の側の孔形成部(ザグリ202a、202b)の壁面とが成す距離(L2a、L2b)に対して小さくなるように構成する。つまり、L1a<L2a、又はL1b<L2bの関係となる。
 なお、本発明者らの鋭意検討の結果によれば、はく離が生じる傾斜角θの上限値はだいたい90°付近であることがわかっている。したがって、本実施例を適用する傾斜角θの所定範囲はおよそ20°~90°程度であることが望ましい。
 別の言い方をすると燃料噴射弁の中心軸210に対する燃料噴射孔201の中心軸211の傾斜角θが所定範囲(20°≦θ≦90°)であった場合には、燃料噴射孔201を中心軸211の下流方向から見て、燃料噴射孔201の下流側に設けられた孔形成部(ザグリ202a、202b)の内周部の壁面において、シート側の壁面がはく離し易い側の壁面であり、燃料噴射弁の中心軸210の側の孔形成部(ザグリ202a、202b)の壁面ははく離し難い側の壁面であると言える。
 したがって、燃料噴射孔201を中心軸211の下流方向から見て、燃料噴射孔201の下流側に設けられた孔形成部(ザグリ202a、202b)の内周部の壁面において、はく離し易い側の孔形成部(ザグリ202a、202b)の壁面と燃料噴射孔201の中心軸211との成す距離(L1a、L1b)が、はく離し難い側の孔形成部(ザグリ202a、202b)の壁面と燃料噴射孔201の中心軸211との成す距離(L2a、L2b)に対して小さくなるように構成するといっても良い。
 これにより、飛散した液滴306や付着燃料303、304、305を、噴霧領域302が誘起する気流311、312によって噴霧に巻き込んで吹き飛ばしやすくしている。
したがって、孔形成部(ザグリ202a、202b)や燃料噴射弁先端への付着燃料(303、304、305)の量を低減することが可能となる。
 ザグリ202aの偏心によりザグリ内での付着燃料303を低減することができ、またザグリ202bの偏心によりザグリ内での付着燃料304と燃料噴射弁先端への付着燃料305を低減することができる。付着燃料305は燃料噴射孔201の最下流側出口面の外周側近傍に付着する燃料と言っても良い。
 以上においては燃料噴射孔内のシート側において、はく離が生じる場合について説明した。一方で、図6のようにθが小さい、もしくは燃料噴射孔が燃料噴射弁の中心軸210方向に向かって開口している場合、燃料噴射孔201bの内部において、図5とは逆に燃料噴射弁の中心軸210側において燃料噴射孔壁面と弁座面203が成す噴孔縁の角度206が小さくなり、流入する燃料が燃料噴射孔の壁面に付着しにくくなるため、はく離310bが生じる。
 この場合、図6には図示していないが、図5のザグリ202aの角部に付着した燃料303、ザグリ202bの角部に付着した燃料304、燃料噴射弁の先端に付着した燃料305が、それぞれ図5とは逆に燃料噴射弁の中心軸210の側に付着する虞がある。そこで、これに対しては、シート側に向かってザグリ202a、または202bを偏心させる。
 つまり燃料噴射孔の中心軸211bとザグリ202cの内周部のシート側の壁面との成す距離とが成す距離L1a、中心軸210の側の壁面とが成す距離L2aの関係がL1a>L2aとなるように構成する。また一方で、燃料噴射孔の中心軸211bとザグリ202dの内周部のシート側の壁面との成す距離とが成す距離L1b、中心軸210の側の壁面とが成す距離L2bの関係がL1b>L2bとなるように構成する。これにより、それぞれの付着燃料を、噴霧領域が誘起する気流によって噴霧311、312に巻き込んで吹き飛ばしやすくしている。
 つまり、燃料噴射弁の中心軸210に対する燃料噴射孔201の中心軸211の傾斜角θが所定値未満(θ<20°)であった場合には、燃料噴射孔201を中心軸211の下流方向から見て、燃料噴射孔201の下流側に設けられた孔形成部(ザグリ202a、202b)の内周部のシート側の壁面と燃料噴射孔201の中心軸211との成す距離(L1a、L1b)が、燃料噴射弁の中心軸210の側の孔形成部(ザグリ202a、202b)の壁面とが成す距離(L2a、L2b)に対して大きくなるように構成する。つまり、L1a>L2a、又はL1b>L2bの関係となる。
 図7は、本実施例と比較するための、本実施例を適用しない構造における燃料と空気の流れを説明する図である。図7の構造では燃料噴射孔201とザグリ202e、202fの中心軸が一致している。実施例と比較して、はく離領域310側において噴霧領域302とザグリの側壁面の隙間が大きいため、噴霧によって誘起される気流311bの速度は小さい。また、噴霧によって誘起される気流の速度は噴霧領域302の近傍が最も大きく、噴霧領域302から離れるほど気流の速度が小さくなる。
 図7の構造では燃料付着位置303b、304b、305bと噴霧領域302との距離が本実施例よりも遠い。そのため、図7の構造では付着位置における気流311b、312によって付着燃料を吹きとばす力が本実施例よりも弱い。つまり、燃料噴射孔内で流れ場がはく離する側に対して、噴霧領域とザグリ壁面を近づけることが付着燃料量の低減には重要となる。
 また、図7の構造において、単にザグリ径を狭くすることで燃料噴射孔の中心軸とザグリ側壁面の距離を小さくすることが可能である。しかしながら、噴霧は燃料噴射孔の中心軸に対して対称であるとは限らず、噴霧がザグリの角等に接触することを考えると、ザグリ径を変更できる自由度は低くなる。噴霧干渉を回避するようにザグリ径を最適化した上で、本実施例により、さらに燃料付着量を低減するためのザグリ位置の最適化が可能となる。
 なお、シート部材102に複数の燃料噴射孔201が形成される場合には、複数の燃料噴射孔201のうち、燃料噴射弁の中心軸210に対する燃料噴射孔201の中心軸211の傾斜角θが所定値以上(たとえば20°以上)の燃料噴射弁に対して、図3、4で示した偏心を行うことが望ましい。つまり、傾斜角θが所定の大きな範囲(20°~90°)である場合には、その関係にある燃料噴射孔201を下流方向から見て、燃料噴射孔201の下流側に設けられた孔形成部(ザグリ202a、202b)の内周部のシート側の壁面と燃料噴射孔201の中心軸211との成す距離(L1a、L1b)が、燃料噴射弁の中心軸210の側の孔形成部(ザグリ202a、202b)の壁面とが成す距離(L2a、L2b)に対して小さくなるように構成する。
 全ての複数の燃料噴射弁の傾斜角θが大きな範囲にあれば、全ての燃料噴射弁の孔形成部(ザグリ202a、202b)に対して、同じように偏心させても良い。
 一方で複数の燃料噴射孔のうち、当該燃料噴射弁の中心軸210に対する燃料噴射孔201bの中心軸211bの傾斜角θが所定値未満(たとえば20°未満)の燃料噴射孔201bは、燃料噴射孔201bを下流方向から見て、孔形成部(ザグリ202c、202d)の内周部のシート側の壁面と当該燃料噴射孔201bの中心軸211bとの成す距離が、燃料噴射弁の中心軸210の側の孔形成部(ザグリ202c、202d)の壁面とが成す距離に対して大きくなるように構成する。あるいは同じになるように構成しても良い。
 以上の本実施例によれば、噴霧が誘起する気流によって、噴霧中に飛散した燃料液滴及び燃料噴射弁先端に付着した燃料を効率よく吹き飛ばすことが可能となる。したがって、燃料噴射弁先端に付着する燃料を低減でき、排気性能を高めた内燃機関を実現する燃料噴射弁を提供できる。
 本発明の第2の実施例に係わる燃料噴射弁について、図8を用いて以下説明する。図8は本実施例における燃料噴射弁の弁体の構成を示す断面図であり、図3と同一の番号が割り当てられているものは、実施例1と同一もしくは同等の機能を有するものである。
 第1の実施例とは、燃料噴射弁201の下流に設けられる孔形成部(ザグリ202g)が一段になっている点が異なる。ザグリが1段になった場合でも、燃料噴射孔内のはく離位置と、L1aとL2aの関係が実施例1で説明した条件を満たしていれば、本発明の効果が得られる。
 本発明の第3の実施例に係わる燃料噴射弁について、図9を用いて以下説明する。図9は本実施例における燃料噴射弁の弁体の構成と燃料の流れ場を示す断面図であり、図3と同一の番号が割り当てられているものは、実施例1と同一もしくは同等の機能を有するものである。
 第1の実施例とは、燃料噴射弁201の下流に設けられるザグリ202hまたはザグリ202iの側壁面と端面の接続部にR加工が施されている点が異なる。前記接続部にR加工が施されている。具体的には孔形成部(ザグリ202h、202i)のそれぞれにおいて、上流側端面と壁面とが繋がる接続部がR部となるように構成される。これにより、付着燃料303cまたは304cが表面張力によって薄く広がりやすくなるため、噴霧領域302とザグリの間で誘起される気流311cと、付着燃料303cまたは304cとの接触する面積が増加し、気流311cに引っ張られて除去されやすくなる。
 本発明の第4の実施例に係わる燃料噴射弁について、図10を用いて以下説明する。図10は本実施例における燃料噴射弁のザグリ形状の例を示す図である。
 第1の実施例とは、ザグリ202jが異なる曲率を持つ二つの曲線によって構成されており、これによりL1a<L2aを成している点が異なる。つまり燃料噴射孔201を下流方向から見て、孔形成部202jの断面形状が異なる曲率を持つ複数の曲線から形成され、これによりL1a<L2aを成している。このように、ザグリ形状により燃料噴射孔201の中心軸とザグリ側壁面の距離を変化させることにより、ザグリを偏心させなくても本発明の効果を得ることができる。なお、ザグリ形状を成す曲線は二つ以上でも良い。
100…電磁式燃料噴射弁
101…弁体
102…シート部材
103…ガイド部材
104…ノズル体
105…弁体ガイド
106…アンカー
107…コア
108…コイル
109…ヨーク
110…スプリング
111…コネクタ
112…燃料供給口
201、201b…燃料噴射孔
202、202a、202b、202c、202d、202e、202f、202g、202h、202i、202j…ザグリ
203…弁座面
204…弁座面側当接部
205、206…燃料噴射孔縁
210…燃料噴射弁の中心軸
211、211b…燃料噴射孔の中心軸
301…燃料流れ
302、302b…燃料噴霧領域
303、303b、303c、304、304b、304c、305、305b…壁面への付着燃料
306…燃料液滴
310、310b…はく離領域
311、311b、311c、312…気流
401…噴孔内の燃料

Claims (10)

  1.  弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、前記燃料噴射孔よりも下流側に形成された孔形成部と、を有する燃料噴射弁において、
     前記燃料噴射孔を下流方向から見て、前記孔形成部の内周部のシート側の壁面と前記燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して小さくなるように構成された燃料噴射弁。
  2.  請求項1に記載の燃料噴射弁において、
     前記燃料噴射弁の中心軸に対する前記燃料噴射孔の中心軸の傾斜角θが所定値以上である燃料噴射弁。
  3.  請求項1に記載の燃料噴射弁において、
     前記孔形成部よりもさらに下流側に形成された下流側孔形成部を有し、
     前記燃料噴射孔を下流方向から見て、前記下流側孔形成部の内周部のシート側の壁面と前記燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記下流側孔形成部の壁面とが成す距離に対して小さくなるように構成された燃料噴射弁。
  4.  弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された燃料噴射孔と、前記燃料噴射孔よりも下流側に形成された孔形成部と、を有する燃料噴射弁において、
     前記孔形成部の内周部の壁面において、はく離し易い側の当該孔形成部の壁面と前記燃料噴射孔の中心軸との成す距離が、はく離し難い側の当該孔形成部の壁面と前記燃料噴射孔の中心軸との成す距離に対して小さくなるように構成された燃料噴射弁。
  5.  弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁座面と前記弁体とが当接する位置よりも下流側に形成された複数の燃料噴射孔と、前記複数の燃料噴射孔よりも下流側に形成された孔形成部と、を有する燃料噴射弁において、
     前記複数の燃料噴射孔のうち、当該燃料噴射弁の中心軸に対する前記燃料噴射孔の中心軸の傾斜角θが所定値以上の燃料噴射孔は、当該燃料噴射孔を下流方向から見て、孔形成部の内周部のシート側の壁面と当該燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して小さくなるように構成された燃料噴射弁。
  6.  請求項5に記載の燃料噴射弁において、
     前記複数の燃料噴射孔の全てが、当該燃料噴射孔を下流方向から見て、孔形成部の内周部のシート側の壁面と当該燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して小さくなるように構成された燃料噴射弁。
  7.  請求項5に記載の燃料噴射弁において、
     前記複数の燃料噴射孔のうち、当該燃料噴射弁の中心軸に対する前記燃料噴射孔の中心軸の傾斜角θが所定値未満の燃料噴射孔は、当該燃料噴射孔を下流方向から見て、孔形成部の内周部のシート側の壁面と当該燃料噴射孔の中心軸との成す距離が、前記燃料噴射弁の中心軸の側の前記孔形成部の壁面とが成す距離に対して大きくなるように構成された燃料噴射弁。
  8.  請求項1に記載の燃料噴射弁において、
     前記孔形成部の上流側端面と壁面とが繋がる接続部がR部となるように構成された燃料噴射弁。
  9.  請求項3に記載の燃料噴射弁において、
     前記孔形成部及び前記下流側孔形成部のそれぞれにおいて、上流側端面と壁面とが繋がる接続部がR部となるように構成された燃料噴射弁。
  10.  請求項1に記載の燃料噴射弁において、
     前記燃料噴射孔を下流方向から見て、前記孔形成部の断面形状が異なる曲率を持つ複数の曲線から形成された燃料噴射弁。
PCT/JP2017/017994 2016-06-17 2017-05-12 燃料噴射弁 WO2017217156A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120356A JP6692220B2 (ja) 2016-06-17 2016-06-17 燃料噴射弁
JP2016-120356 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217156A1 true WO2017217156A1 (ja) 2017-12-21

Family

ID=60664407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017994 WO2017217156A1 (ja) 2016-06-17 2017-05-12 燃料噴射弁

Country Status (2)

Country Link
JP (1) JP6692220B2 (ja)
WO (1) WO2017217156A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300360A (ja) * 2000-04-26 2001-10-30 Aisan Ind Co Ltd 流体噴射ノズルとその流体噴射ノズルを備えた流体噴射弁
JP2006257992A (ja) * 2005-03-17 2006-09-28 Toyota Motor Corp 燃料噴射装置
JP2008064094A (ja) * 2006-09-05 2008-03-21 Robert Bosch Gmbh 燃料噴射弁
JP2009236057A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 燃料噴射弁及び内燃機関
JP2010038126A (ja) * 2008-08-08 2010-02-18 Hitachi Ltd 燃料噴射弁
JP2011001864A (ja) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd 燃料噴射弁
JP2016089660A (ja) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 燃料噴射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300360A (ja) * 2000-04-26 2001-10-30 Aisan Ind Co Ltd 流体噴射ノズルとその流体噴射ノズルを備えた流体噴射弁
JP2006257992A (ja) * 2005-03-17 2006-09-28 Toyota Motor Corp 燃料噴射装置
JP2008064094A (ja) * 2006-09-05 2008-03-21 Robert Bosch Gmbh 燃料噴射弁
JP2009236057A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 燃料噴射弁及び内燃機関
JP2010038126A (ja) * 2008-08-08 2010-02-18 Hitachi Ltd 燃料噴射弁
JP2011001864A (ja) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd 燃料噴射弁
JP2016089660A (ja) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 燃料噴射装置

Also Published As

Publication number Publication date
JP2017223186A (ja) 2017-12-21
JP6692220B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2013018135A1 (ja) 燃料噴射弁
US9194351B2 (en) Injection valve
JP5933720B2 (ja) 燃料噴射弁
JP5295337B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP6186130B2 (ja) 燃料噴射弁及び燃料噴射弁の製造方法
JP2008280981A (ja) 燃料噴射装置およびそれを搭載した内燃機関
KR20010102344A (ko) 연료 오리피스용 난류발생기를 구비한 연료 분사기
JP2004211682A (ja) 燃料噴射装置
JP2010038126A (ja) 燃料噴射弁
WO2017217156A1 (ja) 燃料噴射弁
JP2015078603A (ja) 燃料噴射弁
JP5627742B1 (ja) 流体噴射弁及び噴霧生成装置
JP4129688B2 (ja) 流体噴射弁
JP6779143B2 (ja) 燃料噴射弁
JP2011127486A (ja) 燃料噴射弁
JP6899756B2 (ja) 燃料噴射弁
JP2020159253A (ja) 燃料噴射弁
JP6695476B2 (ja) 燃料噴射装置
JP5478671B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP7224451B2 (ja) 燃料噴射弁
JP6655724B2 (ja) 燃料噴射装置
JP2007303442A (ja) 燃料噴射弁
JP6399910B2 (ja) 燃料噴射弁
JP2013160213A (ja) 燃料噴射弁
CN107532557B (zh) 燃料喷射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813060

Country of ref document: EP

Kind code of ref document: A1