WO2017213057A1 - 電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極 - Google Patents

電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極 Download PDF

Info

Publication number
WO2017213057A1
WO2017213057A1 PCT/JP2017/020709 JP2017020709W WO2017213057A1 WO 2017213057 A1 WO2017213057 A1 WO 2017213057A1 JP 2017020709 W JP2017020709 W JP 2017020709W WO 2017213057 A1 WO2017213057 A1 WO 2017213057A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
precursor
producing
raw material
Prior art date
Application number
PCT/JP2017/020709
Other languages
English (en)
French (fr)
Inventor
石川 真二
崇広 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018522460A priority Critical patent/JPWO2017213057A1/ja
Priority to CN201780004482.XA priority patent/CN108369870A/zh
Priority to US16/060,602 priority patent/US10629387B2/en
Publication of WO2017213057A1 publication Critical patent/WO2017213057A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a porous carbon material for an electric double layer capacitor electrode, a method for producing the same, and an electric double layer capacitor electrode.
  • This application is based on the Japan patent application (2016-112788) for which it applied on June 6, 2016, The whole is used by reference. Also, all references cited herein are incorporated as a whole.
  • Patent Document 1 activated carbon (A) having an average particle diameter of 20 to 30 ⁇ m and having pores of 1 nm to 30 nm in the particle and porous carbon (B) having an average particle diameter of 0.1 to 20 ⁇ m And an electrode material having a structure in which the porous carbon (B) is inserted into the interparticle gap formed by the activated carbons (A).
  • Patent Document 2 discloses that the micropore volume is 10 to 60% of the total pore volume, the mesopore volume is 20 to 70% of the total pore volume, and the macropore volume is the total pore volume. with 20 percent or less of the total pore volume is 0.3cm 3 /g ⁇ 2.0cm 3 / g, and is disclosed a carbonaceous material total specific surface area of 1000 ⁇ 2500m 2 / g is Yes.
  • a porous carbon material for an electric double layer capacitor electrode is formed from secondary particles having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less, The secondary particles are formed from primary particles having a particle size of 0.1 ⁇ m or more and 0.5 ⁇ m or less, The internal specific surface area of the porous carbon material is 900 m 2 / g or more.
  • a method for producing a porous carbon material for an electric double layer capacitor electrode Obtaining a porous carbon material precursor in which primary particles having a particle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less are aggregated to form secondary particles having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less from a porous carbon material raw material; Obtaining a porous carbon material by heat-treating the porous carbon material precursor; including.
  • an electric double layer capacitor electrode according to one aspect of the present disclosure includes the porous carbon material according to one aspect of the present disclosure.
  • An object of the present disclosure is to provide a porous carbon material for an electric double layer capacitor electrode, a method for producing the same, and an electric double layer capacitor electrode that can reduce resistance while maintaining a large capacitance.
  • a porous carbon material for an electric double layer capacitor electrode according to an embodiment of the present invention, (1)
  • the porous carbon material is formed from secondary particles having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less,
  • the secondary particles are formed from primary particles having a particle size of 0.1 ⁇ m or more and 0.5 ⁇ m or less,
  • the internal specific surface area of the porous carbon material is 900 m 2 / g or more. According to this configuration, the capacitance of the capacitor can be increased by increasing the specific surface area with primary particles of submicron order size, and the contact resistance between the particles can be increased by forming secondary particles from the primary particles. Can be reduced.
  • the porous carbon material described in (1) above is The primary particles may be bonded to each other by neck growth. According to this configuration, since the primary particles are bonded to each other, the contact resistance between the primary particles can be further reduced.
  • the porous carbon material described in (1) or (2) above is The external specific surface area of the porous carbon material may be 5 m 2 / g or more and 50 m 2 / g or less. According to this configuration, in the capacitor, the contact area between the ions in the electrolytic solution and the porous carbon material is increased, and the electric resistance caused by the movement barrier of the ions in the electrolytic solution can be reduced.
  • the porous carbon material according to any one of (1) to (3) above The pore diameter peak of the micropore calculated by the QSDFT method from the nitrogen adsorption isotherm of the porous carbon material may be in the range of 7.0 to 10 mm. According to this configuration, since the pore diameter of the micropore is larger than the maximum size of the organic ions in the electrolytic solution, it is possible to reduce the electrical resistance caused by the movement barrier of the ions in the electrolytic solution. Moreover, since the pore diameter of the micropore is smaller than the pore diameter of 15 mm or more which does not contribute to the increase in the capacitance of the electrode, the capacitance of the electrode can be improved.
  • the porous carbon material according to any one of (1) to (3) above The pore volume of the micropores calculated by the t method from the nitrogen adsorption isotherm of the porous carbon material is 0.3 cm 3 / g or more, and the microfine volume calculated by the t method from the nitrogen adsorption isotherm.
  • the pore diameter may be 0.63 nm or more. According to this configuration, since the pore diameter of the micropore is larger than the maximum size of the organic ions in the electrolytic solution, it is possible to reduce the electrical resistance caused by the ion migration barrier in the electrolytic solution.
  • the porous carbon material according to any one of (1) to (3) above The porous volume of the mesopore calculated by the BJH method from the nitrogen adsorption isotherm of the porous carbon material may be 0.1 cm 3 / g or more. According to this configuration, the presence of an appropriate amount of mesopores can reduce the electrical resistance caused by the ion migration barrier in the electrolyte.
  • a porous carbon material precursor in which primary particles having a particle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less aggregate to form secondary particles having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less is obtained from the porous carbon material raw material.
  • Process Obtaining a porous carbon material by heat-treating the porous carbon material precursor; including. According to this configuration, the specific surface area can be gained by the primary particles of sub-micron order size, and the contact resistance between the primary particles can be reduced by forming the secondary particles by bonding the primary particles to each other.
  • a porous carbon material that can be obtained can be obtained.
  • the method for producing a porous carbon material according to (7) above The external specific surface area of the porous carbon material precursor may be 5 m 2 / g or more and 50 m 2 / g or less. According to this configuration, in the electric double layer capacitor, the contact area between the ions in the electrolytic solution and the porous carbon material is increased, and the electrical resistance due to the movement barrier of the ions in the electrolytic solution can be reduced. A carbonaceous material can be obtained.
  • the porous carbon material precursor may be a mixture of SiO 2 and a carbon-containing material, and the porous carbon material precursor may be obtained by heating the mixture at 1450 ° C. or higher in an inert gas atmosphere. According to this configuration, an SiC precursor having a ⁇ -type crystal structure and a primary particle size of 0.1 ⁇ m or more and 0.5 ⁇ m or less can be obtained, and the porous carbon material (1) can be obtained efficiently. Can do.
  • the porous carbon material raw material is a rice husk raw material obtained by carbonizing and crushing rice husk,
  • the porous carbon material precursor may be obtained by heating the rice husk raw material at 1450 ° C. or higher in an inert gas atmosphere. According to this configuration, the remaining SiO 2 can be reduced by a simple method, and a SiC precursor having a ⁇ -type crystal structure of 0.1 ⁇ m or more and 0.5 ⁇ m or less can be obtained. A porous carbon material can be obtained efficiently.
  • the heating temperature in the inert gas atmosphere is 1650 ° C. or higher, the crystal type of the generated SiC changes to ⁇ type, the primary particle diameter of the crystal increases, and the processing energy increases. An excessively high temperature is not preferable.
  • the method for producing a porous carbon material according to (11) above The rice husk raw material may be acid-treated before obtaining the porous carbon material precursor. According to this configuration, impurities other than SiO 2 and carbon contained in rice husk charcoal can be eluted and removed, and the amount of impurities in the porous carbon material precursor can be reduced.
  • the porous carbon material precursor may be obtained by performing the heat treatment in a chlorine atmosphere. According to this configuration, the silicon component is selectively removed from the porous carbon material precursor having the ⁇ -type SiC structure, and a carbon material having a structure in which the silicon component is removed from the crystal structure is formed.
  • the method for producing a porous carbon material according to (13) above, The heat treatment under a chlorine atmosphere may be performed at a temperature of 700 ° C. or higher and 1100 ° C. or lower. According to this configuration, the reaction rate becomes a reliable condition, and a porous carbon material can be advantageously obtained in terms of heating energy cost.
  • the temperature is lower than 700 ° C., the reaction rate is low, which is not preferable for efficiently producing a porous carbon material.
  • the temperature is higher than 1100 ° C., the generated porous nanostructure may be deformed by heat, which may not be a desired size structure, which is not preferable.
  • the method for producing a porous carbon material according to (13) or (14) above, The porous carbon material may further comprise the step of activation treatment by heating treatment under steam or CO 2 atmosphere. According to this configuration, the specific surface area can be increased while maintaining the structure of the porous carbon material (1), and a capacitor having a high capacitance can be obtained.
  • the method for producing a porous carbon material according to (7) or (8) above is a hydrocarbon precursor obtained by heating and sintering a hydrocarbon raw material,
  • the heat treatment may be an activation treatment in a steam or CO 2 atmosphere.
  • the activation treatment may be performed at a temperature of 700 ° C. or higher and 1000 ° C. or lower. According to this configuration, the reaction rate becomes a reliable condition, and a porous carbon material can be advantageously obtained in terms of heating energy cost. A temperature higher than 1000 ° C. is not preferable because the reaction rate becomes too fast and micropores tend not to be obtained efficiently.
  • the method for producing a porous carbon material is a mixture of Si and a carbon-containing material,
  • the electric double layer capacitor electrode according to the embodiment of the present invention (19)
  • the porous carbon material according to any one of (1) to (6) above is included. According to this configuration, in the capacitor, the resistance can be reduced while keeping the capacitance large.
  • Porous carbon material for an electric double layer capacitor electrode includes primary particles having a particle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less, as shown in the flowchart of FIG.
  • the porous carbon material for an electric double layer capacitor electrode according to the embodiment can be produced by a production method via ⁇ -type SiC.
  • a mixture of SiO 2 and a carbon-containing material, a mixture of Si and a carbon-containing material, or a rice husk raw material obtained by carbonizing and pulverizing a rice husk is used. it can.
  • SiC porous carbon material precursor
  • SiC porous carbon material precursor
  • inert gas it is preferable to use a rare gas such as He, Ar, or Ne.
  • N 2 is used, Si and N are combined to form a silicon nitride-based compound, which inhibits the reaction with chlorine gas, and is not suitable as a porous carbon material precursor.
  • the firing time is preferably 1 hour or longer from the viewpoint of obtaining a sufficient reaction time, while it is preferably 24 hours or shorter from the viewpoint of producing at low cost.
  • the heating temperature in an inert gas atmosphere is 1650 ° C. or higher, the crystal form of the generated SiC changes to ⁇ -type and the processing energy increases, so it is not preferable to set the temperature excessively high.
  • carbon components may remain, but the residual carbon can be removed by combustion in the atmosphere or an oxygen-containing atmosphere.
  • the mixture of Si and a carbon containing material can be used as a porous carbon material raw material.
  • a carbon-containing material a high carbon-containing material such as carbon black or coke can be used.
  • the first step it is preferable to obtain SiC (porous carbon material precursor) composed of ⁇ crystals by heating the mixture at 1200 ° C. or higher in an inert gas atmosphere.
  • the inert gas it is preferable to use a rare gas such as He, Ar, or Ne.
  • N 2 is used, Si and N are combined to form a silicon nitride-based compound, which inhibits the reaction with chlorine gas, and is not suitable as a porous carbon material precursor.
  • the firing time is preferably 1 hour or longer from the viewpoint of obtaining a sufficient reaction time, while it is preferably 24 hours or shorter from the viewpoint of producing at low cost.
  • carbon components may remain, but the residual carbon can be removed by combustion in the atmosphere or an oxygen-containing atmosphere.
  • rice husk raw material obtained by carbonizing and pulverizing rice husk can be used as the porous carbon material raw material.
  • SiC porous carbon material precursor
  • SiC porous carbon material precursor
  • the inert gas it is preferable to use a rare gas such as He, Ar, or Ne.
  • N 2 When N 2 is used, Si and N are combined to form a silicon nitride-based compound, which inhibits the reaction with chlorine gas, and is not suitable as a porous carbon material precursor.
  • the firing time is preferably 1 hour or longer from the viewpoint of obtaining a sufficient reaction time, while it is preferably 24 hours or shorter from the viewpoint of producing at low cost. If the heating temperature in an inert gas atmosphere is 1650 ° C. or higher, the crystal form of the generated SiC changes to ⁇ -type and the processing energy increases, so it is not preferable to set the temperature excessively high.
  • the rice husk raw material before heat-processing in inert gas atmosphere.
  • impurities other than SiO 2 and carbon contained in the rice husk raw material can be eluted and removed, and the amount of impurities in the porous carbon material precursor can be reduced.
  • the acid sulfuric acid, hydrochloric acid, citric acid, acetic acid, and the like other than hydrofluoric acid that dissolves SiO 2 can be used.
  • Table 1 shows a crushed rice husk charcoal product obtained by titrating crushed rice husk charcoal (raw rice husk raw material) with citric acid, heating to 80 ° C. under a predetermined pH, washing with pure water, and drying. The amount of impurities in it is shown.
  • the analysis method after carbon was oxidized and removed in the atmosphere at 600 ° C., the residual component was dissolved in HF to remove SiO 2 , and the residual component was quantitatively evaluated by ICP emission analysis. In the sample having a pH of 2, impurities are reduced to 0.03% by mass, which contributes to reduction of impurities after the porous carbon material precursor and chlorination and simplification of unnecessary chlorine compound removal steps.
  • the porous carbon material precursor obtained by the first step is SiC having a ⁇ -type crystal structure, and primary particles having a particle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less are aggregated to form a particle having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less. The next particle is formed.
  • the particle diameters of the primary particles and the secondary particles of the porous carbon material precursor can be confirmed by observation with an electron microscope (SEM).
  • the porous carbon material precursor preferably has an external specific surface area of 5 m 2 / g or more and 50 m 2 / g or less.
  • the external specific surface area of the porous carbon material precursor represents a specific surface area obtained by removing the specific surface area of pores having a diameter of 2.0 nm or less calculated from the nitrogen adsorption isotherm by the t method from the total specific surface area.
  • a porous carbon material can be obtained by the second step of heat-treating the porous carbon material precursor.
  • the heat treatment is preferably performed in a chlorine atmosphere, and more preferably in a chlorine / nitrogen mixed atmosphere.
  • the heat treatment is preferably performed at 700 ° C. to 1100 ° C.
  • secondary particles having a particle diameter of 3 ⁇ m or more and 100 ⁇ m or less are formed, and the secondary particles are formed of primary particles having a particle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less, and the internal specific surface area is 900 m 2 / g or more.
  • a porous carbon material can be obtained.
  • internal specific surface area of the porous carbon material represents the specific surface area of pores having a diameter of 2.0 nm or less calculated from the nitrogen adsorption isotherm by the t method.
  • the particle diameters of the primary particles and secondary particles of the porous carbon material can be confirmed by observation with an electron microscope (SEM).
  • the capacitance of the capacitor can be increased by increasing the specific surface area with primary particles of submicron order size, and the contact between the particles can be achieved by forming secondary particles from the primary particles. Resistance can be reduced.
  • the primary particles are bonded to each other by neck growth because the contact resistance between the particles can be further reduced.
  • the porous carbon material may have an external specific surface area of 5 m 2 / g or more and 50 m 2 / g or less.
  • “external specific surface area of the porous carbon material” represents a specific surface area obtained by removing the specific surface area of pores having a diameter of 2.0 nm or less calculated from the nitrogen adsorption isotherm by the t method from the total specific surface area.
  • the porous carbon material may have a pore diameter peak of 7.0 to 10 mm calculated from the nitrogen adsorption isotherm by the QSDFT method.
  • the QSDFT method is an abbreviation for a quenched solid density functional theory.
  • the pore diameter of the micropore is larger than the maximum size of the organic ions in the electrolyte solution, and this is due to the barrier of ion migration in the electrolyte solution.
  • the electrical resistance can be reduced.
  • the pore diameter of the micropore is smaller than the pore diameter of 15 mm or more which does not contribute to the increase in the capacitance of the electrode, the capacitance of the electrode can be improved.
  • the pore volume of the micropores calculated by the t method from the nitrogen adsorption isotherm is 0.3 cm 3 / g or more, and is calculated from the nitrogen adsorption isotherm by the t method.
  • the micropore diameter may be 0.63 nm or more.
  • the t method is a method for obtaining the isotherm by changing the horizontal axis of the adsorption isotherm to the average thickness of the adsorbed gas, and obtaining the specific surface area, pore volume and pore diameter of the micropores.
  • the pore size of the micropore is 0.63 nm or more, the pore size of the micropore is larger than the maximum size of the organic ions in the electrolyte solution, so that the electric resistance due to the barrier of ion migration in the electrolyte solution is reduced. Can be preferable. Further, since the pore volume of the micropores is 0.3 cm 3 / g or more, the amount of pores contributing to the electrostatic capacity can be maintained, so that the porous carbon material having a high electrostatic capacity and I can do it.
  • the porous carbon material may have a mesopore pore volume of 0.1 cm 3 / g or more calculated from the nitrogen adsorption isotherm by the BJH method.
  • the BJH method is a calculation method generally used for analysis of mesopores. Am. Chem. Soc. , 73, (1951), p373, assuming that the pores are cylindrical, and assuming that N 2 is capillary-condensed and filled in the pores, the pore diameter distribution is calculated. is there.
  • the pore volume of the mesopores is 0.1 cm 3 / g or more, the electric resistance caused by the movement barrier caused by the viscosity when ions in the electrolyte move can be reduced.
  • the porous carbon material may be further activated.
  • the activation treatment as the third step may be a publicly known method adopted in a normal activated carbon production method, such as steam treatment or carbon dioxide treatment at a high temperature, and also performed in combination. May be.
  • a normal activated carbon production method such as steam treatment or carbon dioxide treatment at a high temperature
  • the water vapor treatment it is performed in an atmosphere containing 0.6 g / m 3 or more of water vapor (corresponding to 0.1% when the water vapor amount with respect to the saturated water vapor amount at 100 ° C. is used as the water vapor concentration). It is more preferable to carry out in an atmosphere containing water vapor with a saturated water vapor amount at 100 ° C.
  • examples of the gas that may be mixed with water vapor include He, N 2 , Ne, Ar, Kr, Xe, CO 2 , O 2 , and H 2 .
  • the activation treatment is preferably performed at a temperature of 700 ° C. or higher and 1000 ° C. or lower.
  • the treatment time is preferably 0.01 hours or more from the viewpoint of obtaining a sufficient reaction time, and is preferably 24 hours or less from the viewpoint of producing at low cost.
  • the porous carbon material for an electric double layer capacitor electrode according to the embodiment can also be produced by a production method via a hydrocarbon precursor.
  • a hydrocarbon precursor obtained by heating and sintering a hydrocarbon raw material can be used as the porous carbon material precursor used in the second step.
  • a heat treatment in the second step, by the activation treatment under steam or CO 2 atmosphere it is possible to obtain a porous carbon material according to the embodiment.
  • the activation process in this case can be performed by the above-mentioned method.
  • the electric double layer capacitor electrode according to the embodiment includes the porous carbon material of the present embodiment. According to this configuration, in the electric double layer capacitor using this electrode, the resistance can be reduced while keeping the capacitance large.
  • the electrode for the electric double layer capacitor is prepared, for example, by kneading the porous carbon material of the present embodiment, a conductivity imparting agent, a binder, etc., and further adding a solvent to prepare a paste. After applying to the electric plate, it can be obtained by removing the solvent by drying.
  • the porous carbon material of the present embodiment is preferably granular.
  • a porous carbon material having such a desired particle diameter may be obtained by pulverizing the porous carbon material.
  • the pulverization can be performed by a known pulverizer such as a cone crusher, a double roll crusher, a disc crusher, a rotary crusher, a ball mill, a centrifugal roll mill, a ring roll mill, or a centrifugal ball mill.
  • the particle size distribution may be controlled using a classifier.
  • the pulverization is preferably performed in an oxygen-free atmosphere.
  • acetylene black, ketjen black and the like can be used as the conductive property imparting agent.
  • the binder fluorine-based polymer compounds such as polytetrafluoroethylene and polyfucavinylidene, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used.
  • An electric double layer capacitor generally has a structure in which an electrode, an electrolytic solution, a separator, and the like are main components and a separator is disposed between a pair of electrodes.
  • the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, or methyl ethyl carbonate; boron tetrafluoride salt or phosphorus hexafluoride salt of an alkali metal such as quaternary ammonium or lithium. And an electrolytic solution in which a quaternary phosphonium salt is dissolved.
  • the separator include cellulose, glass fiber, nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, and microporous film.
  • a commercially available reagent is obtained by heat-treating commercially available SiC having an ⁇ -type crystal structure at 1100 ° C. for 3 to 4 hours in a chlorine / nitrogen mixed atmosphere using a horizontal rotary furnace.
  • the resulting porous carbon material was produced.
  • a fine structure analysis and electrical conductivity evaluation were performed. Specifically, the fine structure analysis was performed by observing the porous carbon material with an electron microscope and analyzing with a nitrogen adsorption method.
  • FIG. 2 and FIG. 3 are observation photographs of porous carbon derived from rice husk charcoal with an electron microscope.
  • FIG. 3 is an enlarged photograph of FIG. 2, and it can be confirmed that the primary particles of about 0.2 ⁇ m are bonded to each other to form secondary particles of about several tens to hundreds of ⁇ m.
  • Table 2 summarizes the results of fine structure analysis and electrical conductivity evaluation of porous carbon derived from rice husk charcoal and commercially available ⁇ -SiC.
  • the specific surface area calculated from the N 2 adsorption isotherm, the mesopore volume calculated by the BJH method, the micropore volume calculated by the t method, the average micropore diameter, and the micropore peak obtained by the QSDFT method are shown.
  • the porous carbon material derived from rice husk charcoal (Example 1) has a larger mesopore volume and smaller micropore volume than the commercially available porous carbon material derived from ⁇ -SiC (Example 2). Also, the electrical conductivity of Example 1 is larger than that of Example 2. This is considered to originate from the bonding of primary particles as shown in FIG.
  • the pore distribution analyzed by the QSDFT method is shown in FIG. From FIG. 4, the peak of micropores of the porous carbon derived from rice husk charcoal is in the vicinity of 8 cm, and is different from the pore distribution of the porous carbon derived from a commercial reagent (derived from ⁇ -type SiC) having a peak in the region of less than 6 cm. Can be confirmed.
  • porous carbon material (example using silica / carbon mixture)
  • a porous carbon material was produced by heat-treating this SiC at 900 ° C. to 1100 ° C. for 3 to 4 hours in a chlorine / nitrogen mixed atmosphere using a horizontal rotary furnace. After pulverizing the obtained porous carbon material in a mortar, the N 2 adsorption isotherm was measured, and the fine structure analysis was performed. Table 3 shows the analysis results.
  • the pore distribution was analyzed by the QSDFT method (slit-type pore analysis).
  • the peak of the micropores of the porous carbon of ⁇ SiC derived from the silica / carbon mixture is in the vicinity of 8 cm, and it was confirmed that the pore distribution was different from the pore distribution of the porous carbon derived from commercially available ⁇ -type SiC.
  • porous carbon material (example using silicon / carbon mixture)
  • heat treatment is performed in an argon (Ar) atmosphere to 500 to 600 ° C. in the air.
  • ⁇ SiC produced by burning the residual carbon component and manufactured by Nakamura Carbide was used as a raw material.
  • This SiC was heat-treated at 900 ° C. to 1200 ° C. for 2 to 4 hours in a chlorine / nitrogen mixed atmosphere using a horizontal rotary furnace to produce a porous carbon material.
  • the N 2 adsorption isotherm was measured, and the fine structure analysis was performed. Table 4 shows the analysis results.
  • pore distribution analysis was performed by the QSDFT method (slit-type pore analysis).
  • the pore distribution is shown in FIG.
  • the peak of micropores of 10 cm or less in porous silicon of ⁇ -SiC derived from silicon raw material is in the vicinity of 8 cm in the temperature range of 900 to 1200 ° C., and it was confirmed that the pore distribution is different from the pore distribution of porous carbon derived from ⁇ -type SiC.
  • Table 5 shows the evaluation results of electric double layer capacitors using porous carbon materials (Examples 1 to 4) derived from rice husks, derived from commercially available ⁇ -SiC or from ⁇ -SiC formed from a silica / carbon mixture as the porous carbon material.
  • Porous carbon materials derived from rice husk or from a silica / carbon mixture (Example 1, Example 3, Example 4) have a BET specific surface area as compared with commercially available ⁇ SiC-derived porous carbon materials (Example 2).
  • the normalized capacity per unit specific surface area is equivalent to or high as 0.0205 F / m 2 , and it is considered that if the specific surface area is further increased, equivalent characteristics are obtained. Further, although the direct current resistance was about 15 ⁇ in Example 2, it was confirmed that it was reduced to 1/8 or less in Examples 1, 3 and 4.
  • porous carbon material (example using graphitizable carbon)
  • carbon fine particles obtained by thermally decomposing benzene were used. While bubbling with nitrogen gas, benzene was introduced into a carbonization furnace heated to 800 ° C. to form spherical carbon fine particles having a particle size of 0.1 to 0.4 ⁇ m.
  • the carbon fine particles were dispersed and kneaded in a carboxymethylcellulose (CMC) alcohol solution, dried and ground, and then carbonized at 500 ° C. to form graphitizable carbon particles having an average particle diameter of 8 ⁇ m.
  • the graphitizable carbon particles had a BET specific surface area of 12 m 2 / g.
  • the carbon particles were activated and carbonized by activation for 4 hours in a 15% steam atmosphere (residual N 2 ) at 800 ° C.
  • the obtained activated carbon had an average particle diameter of 7.8 ⁇ m, a BET specific surface area of 1500 m 2 / g, and an external specific surface area of 40 m 2 / g.
  • the average pore diameter of the micropores obtained by the QSDFT method was 0.85 nm, the micropore volume was 0.45 cc / g, and the mesopore volume of 2 nm or more was 0.2 cc / g.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

電気二重層キャパシタ電極用の多孔質炭素材料であって、前記多孔質炭素材料が粒子径3μm以上100μm以下の二次粒子から形成され、前記二次粒子が粒子径0.1μm以上0.5μm以下の一次粒子から形成され、前記多孔質炭素材料の内部比表面積が900m/g以上である、多孔質炭素材料を提供する。

Description

電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極
 本発明は、電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極に関する。
 本願は、2016年6月6日付で出願された日本国特許出願(2016-112788)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 特許文献1には、平均粒子径20~30μmの活性炭であって、且つ粒子内に1nm~30nmの空孔を有する活性炭(A)と平均粒子径が0.1~20μmの多孔質炭素(B)からなり、前記多孔質炭素(B)が前記活性炭(A)同士が作る粒子間間隙内に挿入された構造を有する電極材が開示されている。また、特許文献2には、ミクロ細孔容積が全細孔容積の10~60%を、メソ細孔容積が全細孔容積の20~70%を、およびマクロ細孔容積が全細孔容積の20%以下を占めるとともに、全細孔容積が0.3cm/g~2.0cm/gであり、かつ、全比表面積が1000~2500m/gである炭素質材料が開示されている。
日本国特開平8-97101号公報 日本国特開2001-89119号公報
 本開示の一態様に係る電気二重層キャパシタ電極用の多孔質炭素材料は、
 前記多孔質炭素材料が粒子径3μm以上100μm以下の二次粒子から形成され、
 前記二次粒子が粒子径0.1μm以上0.5μm以下の一次粒子から形成され、
 前記多孔質炭素材料の内部比表面積が900m/g以上である。
 また、本開示の一態様に係る電気二重層キャパシタ電極用の多孔質炭素材料の製造方法は、
 多孔質炭素材料原料から、粒子径0.1μm以上0.5μm以下の一次粒子が集合して粒子径3μm以上100μm以下の二次粒子を形成している多孔質炭素材料前駆体を得る工程と、
 前記多孔質炭素材料前駆体を加熱処理することで多孔質炭素材料を得る工程と、
を含む。
 また、上記目的を達成するために、本開示の一態様に係る電気二重層キャパシタ電極は、前記本開示の一態様に係る多孔質炭素材料を含む。
本発明の実施形態に係る多孔質炭素材料の製造工程を示すフローチャートである。 本発明の実施例に係る多孔質炭素材料の構造を表す電子顕微鏡写真である。 本発明の実施例に係る多孔質炭素材料の構造を表す電子顕微鏡写真である。 例1~例2に係る多孔質炭素材料及び比較用の多孔質炭素材料の窒素吸着等温線からQSDFT法により行ったミクロ細孔解析の結果を示すグラフである。 例6~例9に係る多孔質炭素材料の窒素吸着等温線からQSDFT法により行ったミクロ細孔解析の結果を示すグラフである。
[本開示が解決しようとする課題]
 電気二重層キャパシタ(以下、単にキャパシタとも表記する。)の電極材料に用いられる多孔質炭素材料の細孔径が小さすぎる場合、キャパシタ内の電解液中に存在するイオンの移動が阻害されるため、キャパシタの内部抵抗が大きくなり、出力特性が低下する。一方で、多孔質炭素材料におけるメソ細孔の比率が大きいと、キャパシタの内部抵抗は改善できるが、静電容量の増加に寄与しない細孔が多く存在するために、細孔容積あたりの静電容量が低くなる。
 本開示は、静電容量を大きく保ちつつ、抵抗を低減することができる、電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極を提供することを目的とする。
[本開示の効果]
 本開示によれば、静電容量を大きく保ちつつ、抵抗を低減することができる電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極を提供することができる。
[本発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
 本願発明の実施形態に係る電気二重層キャパシタ電極用の多孔質炭素材料は、
(1)前記多孔質炭素材料が粒子径3μm以上100μm以下の二次粒子から形成され、
 前記二次粒子が粒子径0.1μm以上0.5μm以下の一次粒子から形成され、
 前記多孔質炭素材料の内部比表面積が900m/g以上である。
 この構成によれば、サブミクロンオーダーサイズの一次粒子により比表面積を大きくすることで、キャパシタの静電容量を大きくでき、また、一次粒子から二次粒子を形成することで粒子間の接触抵抗を低減することができる。
(2)上記(1)に記載の多孔質炭素材料は、
 前記一次粒子がネック成長することで互いに結合していてもよい。
 この構成によれば、一次粒子が互いに結合しているのでさらに一次粒子間の接触抵抗を低減することができる。
(3)上記(1)又は(2)に記載の多孔質炭素材料は、
 前記多孔質炭素材料の外部比表面積が5m/g以上50m/g以下であってもよい。
 この構成によれば、キャパシタにおいて、電解液中のイオンと多孔質炭素材料との接触面積が大きくなり、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる。
(4)上記(1)~(3)のいずれか一項に記載の多孔質炭素材料は、
 前記多孔質炭素材料の、窒素吸着等温線からQSDFT法により算出されるミクロ細孔の細孔径のピークが7.0Å以上10Å以下の範囲にあってもよい。
 この構成によれば、ミクロ孔の細孔径が電解液中の有機物イオンの最大サイズより大きいため、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる。また、ミクロ孔の細孔径が電極の静電容量の増加に寄与しない15Å以上の細孔径より小さいため、電極の静電容量を向上させることができる。
(5)上記(1)~(3)のいずれか一項に記載の多孔質炭素材料は、
 前記多孔質炭素材料の、窒素吸着等温線からt法により算出されるミクロ細孔の細孔容積が0.3cm/g以上であり、前記窒素吸着等温線からt法により算出されるミクロ細孔の細孔径が0.63nm以上であってもよい。
 この構成によれば、ミクロ細孔の細孔径が電解液中の有機物イオンの最大サイズより大きいため、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる。
(6)上記(1)~(3)のいずれか一項に記載の多孔質炭素材料は、
 前記多孔質炭素材料の、窒素吸着等温線からBJH法により算出されるメソ細孔の細孔容積が0.1cm/g以上であってもよい。
 この構成によれば、メソ細孔が適量存在することにより、電解質中のイオンの移動障壁が要因の電気抵抗を低減することができる。
 また、本願発明の実施形態に係る電気二重層キャパシタ電極用の多孔質炭素材料の製造方法は、
(7)多孔質炭素材料原料から、粒子径0.1μm以上0.5μm以下の一次粒子が集合して粒子径3μm以上100μm以下の二次粒子を形成している多孔質炭素材料前駆体を得る工程と、
 前記多孔質炭素材料前駆体を加熱処理することで多孔質炭素材料を得る工程と、
を含む。
 この構成によれば、サブミクロンオーダーサイズの一次粒子により比表面積を稼ぐことができ、また、一次粒子が互いに結合して二次粒子を形成することで一次粒子間の接触抵抗を低減することができる多孔質炭素材料を得ることができる。
(8)上記(7)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料前駆体の外部比表面積が5m/g以上50m/g以下であってもよい。
 この構成によれば、電気二重層キャパシタにおいて、電解液中のイオンと多孔質炭素材料との接触面積が大きくなり、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる多孔質炭素材料を得ることができる。
(9)上記(7)又は(8)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料原料がSiO及び炭素含有材料の混合物であり、前記混合物を不活性ガス雰囲気下1450℃以上で加熱することで前記多孔質炭素材料前駆体を得てもよい。
 この構成によれば、結晶構造がβ型かつ、一次粒子径が0.1μm以上0.5μm以下であるSiC前駆体を得ることができ、上記(1)の多孔質炭素材料を効率よく得ることができる。
(10)上記(9)に記載の多孔質炭素材料の製造方法は、
 前記混合物におけるSiOとCのモル比がSiO:C=1:3~1:4であってもよい。
 この構成によれば、得られる前駆体に残存するSiOを低減することができる。また、炭素成分が残存する可能性があるが、残留炭素は大気や酸素含有雰囲気中で燃焼除去することが可能である。
(11)上記(7)又は(8)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料原料が籾殻を炭化処理して粉砕した籾殻原料であり、
 前記籾殻原料におけるSiOとCのモル比がSiO:C=1:3~1:4であり、
 前記籾殻原料を不活性ガス雰囲気下1450℃以上で加熱することで前記多孔質炭素材料前駆体を得てもよい。
 この構成によれば、簡便な方法で、残存するSiOを低減し、結晶構造がβ型かつ、0.1μm以上0.5μm以下であるSiC前駆体を得ることができ、上記(1)の多孔質炭素材料を効率よく得ることができる。不活性ガス雰囲気下での加熱温度が1650℃以上であると、生成SiCの結晶型がα型に変化すること、結晶の一次粒子径の増大が生じること、および処理エネルギーが増大することから、過剰に高い温度にすることは好ましくない。
(12)上記(11)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料前駆体を得る前に前記籾殻原料を酸処理してもよい。
 この構成によれば、籾殻炭中に含まれるSiOと炭素以外の不純物を溶出除去することが可能になり、多孔質炭素材料前駆体中の不純物量を低減することが可能になる。
(13)上記(9)~(12)のいずれか一項に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料前駆体を塩素雰囲気下で前記加熱処理を行うことで前記多孔質炭素材料を得てもよい。
 この構成によれば、β型SiC構造を持つ多孔質炭素材料前駆体よりシリコン成分が選択的に除去され、結晶構造からシリコン成分が抜かれた構造の炭素材料が形成される。
(14)上記(13)に記載の多孔質炭素材料の製造方法は、
 塩素雰囲気下での前記加熱処理が700℃以上1100℃以下の温度で行われてもよい。
 この構成によれば、反応速度が確実な条件となり、また加熱エネルギーコストの点で有利に多孔質炭素材料を得ることができる。700℃より低い温度では、反応速度が低く、効率的に多孔質炭素材料を製造する上で好ましくない。1100℃より高い温度では、生成した多孔質ナノ構造が熱により変形することで所望のサイズの構造とならない可能性があり好ましくない。
(15)上記(13)又は(14)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料を水蒸気又はCO雰囲気下で加熱処理することで賦活処理する工程をさらに含んでもよい。
 この構成によれば、上記(1)の多孔質炭素材料の構造を維持しつつ、比表面積を大きくすることができ、高い静電容量を持つキャパシタを得ることができる。
(16)上記(7)又は(8)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料前駆体が炭化水素系原料を加熱焼結した炭化水素系前駆体であり、
 前記加熱処理が、水蒸気又はCO雰囲気下での賦活処理であってもよい。
(17)上記(15)又は(16)に記載の多孔質炭素材料の製造方法では、
 前記賦活処理が700℃以上1000℃以下の温度で行われてもよい。
 この構成によれば、反応速度が確実な条件となり、また加熱エネルギーコストの点で有利に多孔質炭素材料を得ることができる。1000℃より高い温度では、反応速度が速くなりすぎ、ミクロ細孔が効率的に得られなくなる傾向にあり好ましくない。
(18)上記(7)又は(8)に記載の多孔質炭素材料の製造方法は、
 前記多孔質炭素材料原料がSi及び炭素含有材料の混合物であって、
 前記混合物におけるSiとCのモル比がSi:C=1:1.1~1:1.5であって、
 前記多孔質炭素材料原料を不活性ガス雰囲気下1250℃以上で加熱することで前記多孔質炭素材料前駆体を得てもよい。
 この構成によれば、得られる前駆体に残存するSiを低減することができる。また、炭素成分が残存する可能性があるが、残留炭素は大気や酸素含有雰囲気中で燃焼除去することが可能である。
 また、本願発明の実施形態に係る電気二重層キャパシタ電極は、
(19)上記(1)~(6)のいずれか一項に記載の多孔質炭素材料を含む。
 この構成によれば、キャパシタにおいて、静電容量を大きく保ちつつ、抵抗を低減することができる。
[本発明の実施形態の詳細]
 以下、本発明の実施形態について、詳細に説明する。
1.多孔質炭素材料
 実施形態に係る電気二重層キャパシタ電極用の多孔質炭素材料は、図1に示すフローチャートのように、多孔質炭素材料原料から、粒子径0.1μm以上0.5μm以下の一次粒子が集合して粒子径3μm以上100μm以下の二次粒子を形成している多孔質炭素材料前駆体を得る第一工程と、前記多孔質炭素材料前駆体を加熱処理することで多孔質炭素材料を得る第二工程と、により製造することができる。
1-1.β型SiCを経由する製造方法
 実施形態に係る電気二重層キャパシタ電極用の多孔質炭素材料は、β型SiCを経由する製造方法により、製造することができる。
 この場合に、上記の第一工程に用いる多孔質炭素材料原料としては、SiO及び炭素含有材料の混合物、Si及び炭素含有材料の混合物又は籾殻を炭化処理して粉砕した籾殻原料を用いることができる。
 多孔質炭素材料原料としてSiO及び炭素含有材料の混合物を使用する場合、炭素含有材料としては、カーボンブラックやコークスなど高炭素含有材料を用いることができる。第一工程において、上記混合物を、不活性ガス雰囲気下1450℃以上で加熱することで、β結晶からなるSiC(多孔質炭素材料前駆体)を得ることができる。上記不活性ガスとしては、He、Ar、Neなどの希ガスを用いることが好ましい。Nを用いた場合はSiとNが結合し、窒化ケイ素系の化合物が生成するため塩素ガスとの反応が阻害されるようになり、多孔質炭素材料前駆体としてふさわしくない。焼成時間としては、十分な反応時間を得るという観点から、1時間以上が好ましく、一方低コストで製造するという観点から、24時間以下であることが好ましい。不活性ガス雰囲気下での加熱温度が1650℃以上であると、生成SiCの結晶型がα型に変化すること、および処理エネルギーが増大することから、過剰に高い温度にすることは好ましくない。また、上記混合物においてSiOと炭素含有材料はSiO:C=1:3~1:4となるような配合比で混合されていることが好ましい。この混合比であれば、生成した多孔質炭素材料前駆体に残留するSiOが少なくなるため、多孔質炭素の電気伝導性を向上させることができる。また、炭素成分が残存する可能性があるが、残留炭素は大気や酸素含有雰囲気中で燃焼除去することが可能である。
 また、多孔質炭素材料原料としてSi及び炭素含有材料の混合物を使用することができる。この場合、炭素含有材料としては、カーボンブラックやコークスなど高炭素含有材料を用いることができる。第一工程において、上記混合物を、不活性ガス雰囲気下1200℃以上で加熱することで、β結晶からなるSiC(多孔質炭素材料前駆体)を得ることが好ましい。上記不活性ガスとしては、He、Ar、Neなどの希ガスを用いることが好ましい。Nを用いた場合はSiとNが結合し、窒化ケイ素系の化合物が生成するため塩素ガスとの反応が阻害されるようになり、多孔質炭素材料前駆体としてふさわしくない。焼成時間としては、十分な反応時間を得るという観点から、1時間以上が好ましく、一方低コストで製造するという観点から、24時間以下であることが好ましい。また、上記混合物においてSiと炭素含有材料はSi:C=1:1.1~1:1.5となるような配合比で混合されていることが好ましい。この混合比であれば、得られる前駆体に残存するSiを低減することができる。また、炭素成分が残存する可能性があるが、残留炭素は大気や酸素含有雰囲気中で燃焼除去することが可能である。
 また、多孔質炭素材料原料として籾殻を炭化処理して粉砕した籾殻原料を使用することができる。第一工程において、上記籾殻原料を、不活性ガス雰囲気下1450℃以上で加熱することで、β結晶からなるSiC(多孔質炭素材料前駆体)を得ることができる。上記不活性ガスとしては、He、Ar、Neなどの希ガスを用いることが好ましい。Nを用いた場合はSiとNが結合し、窒化ケイ素系の化合物が生成するため塩素ガスとの反応が阻害されるようになり、多孔質炭素材料前駆体としてふさわしくない。焼成時間としては、十分な反応時間を得るという観点から、1時間以上が好ましく、一方低コストで製造するという観点から、24時間以下であることが好ましい。不活性ガス雰囲気下での加熱温度が1650℃以上であると、生成SiCの結晶型がα型に変化すること、および処理エネルギーが増大することから、過剰に高い温度にすることは好ましくない。上記籾殻原料として、SiO:C=1:3~1:4であるものを使用することが好ましい。この成分比であれば、生成した多孔質炭素材料前駆体に残留するSiOが少なくなるため、多孔質炭素の電気伝導性を向上させることができる。また、炭素成分が残存する可能性があるが、残留炭素は大気や酸素含有雰囲気中で燃焼除去することが可能である。
 また、籾殻原料を不活性ガス雰囲気熱処理する前に酸処理すると好ましい。酸処理することで、籾殻原料中に含まれるSiOと炭素以外の不純物を溶出除去することが可能になり、多孔質炭素材料前駆体中の不純物量を低減することが可能になる。酸としては、硫酸、塩酸、クエン酸、酢酸など、SiOを溶解するフッ化水素酸以外を用いることが出来る。
 表1に籾殻炭粉砕物(籾殻原料)をクエン酸で滴定し、所定のpHになる条件で80℃まで加熱処理し、その後純水で洗浄し、乾燥して得た、洗浄籾殻炭粉砕物中の不純物量を示す。分析方法は、600℃大気中で炭素を酸化除去後、残留成分をHFに溶解しSiOを除去し、残留成分をICP発光分析にて定量評価した。pHが2になるサンプルでは、0.03質量%まで不純物が低減されており、多孔質炭素材料前駆体および塩素処理後の不純物低減や不要な塩素化合物除去工程の簡略化に寄与する。
Figure JPOXMLDOC01-appb-T000001
 第一工程により得られる多孔質炭素材料前駆体は、β型の結晶構造をとるSiCであり、粒子径0.1μm以上0.5μm以下の一次粒子が集合して粒子径3μm以上100μm以下の二次粒子を形成している。多孔質炭素材料前駆体の一次粒子及び二次粒子の粒子径は電子顕微鏡(SEM)による観察により確認することができる。また、上記多孔質炭素材料前駆体は外部比表面積が5m/g以上50m/g以下であることが好ましい。ここで、「多孔質炭素材料前駆体の外部比表面積」は窒素吸着等温線からt法により算出される直径2.0nm以下の細孔の比表面積を全体比表面積から除いた比表面積を表す。このような多孔質炭素材料前駆体を経由することで、電解液中のイオンの移動障壁を低減することができる多孔質炭素材料を得ることが可能となる。
 上記多孔質炭素材料前駆体を加熱処理する第二工程により、多孔質炭素材料を得ることができる。当該加熱処理は塩素雰囲気下で行うことが好ましく、塩素/窒素混合雰囲気下で行うことがより好ましい。また、当該加熱処理は700℃以上1100℃以下で行うことが好ましい。第二工程により、粒子径3μm以上100μm以下の二次粒子から形成され、前記二次粒子が粒子径0.1μm以上0.5μm以下の一次粒子から形成され、内部比表面積が900m/g以上である多孔質炭素材料を得ることができる。ここで、「多孔質炭素材料の内部比表面積」は窒素吸着等温線からt法により算出される直径2.0nm以下の細孔の比表面積を表す。多孔質炭素材の一次粒子及び二次粒子の粒子径は電子顕微鏡(SEM)による観察により確認することができる。
 上記多孔質炭素材料によれば、サブミクロンオーダーサイズの一次粒子により比表面積を稼ぐことで、キャパシタの静電容量を大きくでき、また、一次粒子から二次粒子を形成することで粒子間の接触抵抗を低減することができる。
 上記多孔質炭素材料において、一次粒子同士がネック成長することで互いに結合していると、さらに粒子間の接触抵抗を低減することができるため好ましい。
 また、上記多孔質炭素材料は、外部比表面積が5m/g以上50m/g以下であってもよい。ここで、「多孔質炭素材料の外部比表面積」は窒素吸着等温線からt法により算出される直径2.0nm以下の細孔の比表面積を全体比表面積から除いた比表面積を表す。本実施形態に係る多孔質炭素材料を使用したキャパシタにおいて、多孔質炭素材料の外部比表面積が上記範囲にあることにより、電解液中のイオンと多孔質炭素材料との接触面積が大きくなり、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる。
 また、上記多孔質炭素材料は、窒素吸着等温線からQSDFT法により算出されるミクロ細孔の細孔径のピークが7.0Å以上10Å以下の範囲にあってもよい。ここで、QSDFT法は、急冷固体密度汎関数理論の略称であり、不均一な細孔表面を多成分DFTを導入することによって考慮することにより、忠実にミクロ細孔およびメソ細孔までの細孔分布を得ることができる手法である。具体的には、Langmuir  22  (2006),p11171に開示される手法により算出することができる。ミクロ細孔の細孔径のピークが7.0Å以上10Å以下の範囲にあれば、ミクロ孔の細孔径が電解液中の有機物イオンの最大サイズより大きいため、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができる。また、ミクロ孔の細孔径が電極の静電容量の増加に寄与しない15Å以上の細孔径より小さいため、電極の静電容量を向上させることができる。
 また、上記多孔質炭素材料は、窒素吸着等温線からt法により算出されるミクロ細孔の細孔容積が0.3cm/g以上であり、前記窒素吸着等温線からt法により算出されるミクロ細孔の細孔径が0.63nm以上であってもよい。ここで、t法は、吸着等温線の横軸を吸着ガスの平均厚みに変更して等温線を表し、ミクロ細孔の比表面積、細孔容積及び細孔径を求める方法である。ミクロ細孔の細孔径が0.63nm以上であれば、ミクロ孔の細孔径が電解液中の有機物イオンの最大サイズより大きいため、電解液中のイオンの移動障壁が要因の電気抵抗を低減することができ好ましい。また、ミクロ細孔の細孔容積が0.3cm/g以上であることにより、静電容量に寄与する細孔量を維持することが出来るので、高い静電容量を持つ多孔質炭素材料とすることが出来る。
 また、上記多孔質炭素材料は、窒素吸着等温線からBJH法により算出されるメソ細孔の細孔容積が0.1cm/g以上であってもよい。ここで、BJH法は、一般的にメソ細孔の解析に用いられる計算方法で、J.Am.Chem.Soc.,73,(1951),p373に開示されるように、細孔をシリンダ状と仮定して細孔内にNが毛管凝縮して充填されると仮定して、細孔径分布を求める方法である。メソ細孔の細孔容積が0.1cm/g以上であれば、電解質中のイオンが移動する際の粘性に起因する移動障壁が要因の電気抵抗を低減することが出来る。
 上記多孔質炭素材料はさらに、賦活処理されてもよい。第三工程としての賦活処理は、通常の活性炭の製造方法で採用されている公周知の手法を取ればよく、高温下での水蒸気処理や二酸化炭素処理が挙げられ、またこれらを併用して行ってもよい。例えば、水蒸気処理の場合は、0.6g/m以上の水蒸気を含有する(100℃における飽和水蒸気量に対する水蒸気量を水蒸気濃度とした場合、0.1%に相当する。)雰囲気で行うことが好ましく、100℃における飽和水蒸気量の水蒸気を含む雰囲気で行うことがより好ましい。この際、水蒸気と混合されていてもよいガスとしては、He、N、Ne、Ar、Kr、Xe、CO、O、H等が挙げられる。賦活処理としては、700℃以上1000℃以下の温度で行うことが好ましい。また、処理時間としては、十分な反応時間を得るという観点から、0.01時間以上が好ましく、一方低コストで製造するという観点から、24時間以下であることが好ましい。当該賦活処理により、上記の多孔質炭素材料の構造を維持しつつ比表面積を増大させることができ、これを用いた電気二重層キャパシタの静電容量を大きくすることが可能となる。
1-2.炭化水素系前駆体を経由する製造方法
 実施形態に係る電気二重層キャパシタ電極用の多孔質炭素材料は、炭化水素系前駆体を経由する製造方法により、製造することもできる。
 この場合に、上記の第二工程に用いる多孔質炭素材料前駆体としては、炭化水素系原料を加熱焼結した炭化水素系前駆体を用いることができる。そして、第二工程における加熱処理を、水蒸気又はCO雰囲気下で賦活処理とすることにより、実施形態に係る多孔質炭素材料を得ることができる。この場合の賦活処理は、上述の方法で行うことができる。
2.多孔質炭素材料を用いた電気二重層キャパシタ用の電極
 また、実施形態に係る電気二重層キャパシタ電極は、本実施形態の多孔質炭素材料を含む。この構成によれば、この電極を使用した電気二重層キャパシタにおいて、静電容量を大きく保ちつつ、抵抗を低減することができる。
 電気二重層キャパシタ用の電極は、例えば、本実施形態の多孔質炭素材料、導電性付与剤、バインダー等を混練し、さらに溶媒を添加してペーストを調整し、このペーストをアルミ箔等の集電板に塗布した後、溶媒を乾燥除去することで得ることができる。
 この場合、本実施形態の多孔質炭素材料は粒状であることが好ましい。特に、電極形成の際の混練作業性という観点から、多孔質炭素材料を粉砕することで、このような所望の粒子径を有する多孔質炭素材料を得てもよい。粉砕は、コーンクラッシャー、ダブルロールクラッシャー、ディスククラッシャー、ロータリークラッシャー、ボールミル、遠心ロールミル、リングロールミル、遠心ボールミル等の公知の粉砕機で行うことができる。また、さらに分級機を併用して粒度分布をコントロールしてもよい。粉砕中に多孔質炭素材料表面が酸化されるのを防ぐため、粉砕は無酸素雰囲気で行うのが好ましい。
 導体性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用することができる。また、バインダーとしては、ポリテトラフルオロエチレン、ポリフッカビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン-ブタジエンゴム、石油ピッチ、フェノール樹脂等を使用することができる。
 電気二重層キャパシタは、一般的には、電極、電解液、セパレータ等を主要構成とし、一対の電極間にセパレータを配置した構造となっている。電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネート等の有機溶剤にアミジン塩を溶解した電解液;4級アンモニウム、リチウム等のアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、セパレータとしては、例えば、セルロース、ガラス繊維、ポリエチレンやポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムなどが挙げられる。
 以下、本発明に係る実施例を用いた評価試験の結果を示し、本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
1-1.多孔質炭素材料の製造
 関西産業製籾殻炭(モル比;SiO:C=1:3)を希ガス(He)雰囲気下1600℃で3時間熱処理した。生成物は、X線回折により結晶構造を評価した。得られたSiCは結晶構造がβ型であった。この結晶相にはグラファイトが混合していることが確認された。
 得られたSiCを横型回転炉を用いて、塩素/窒素混合雰囲気下1100℃で3時間加熱処理することにより、籾殻炭由来の多孔質炭素材料を製造した。得られた多孔質炭素材料を乳鉢にて粉砕した後、微細構造解析及び電気伝導度評価を行った。
 また、これと比較するために、市販されているα型の結晶構造からなるSiCを横型回転炉を用いて、塩素/窒素混合雰囲気下1100℃で3~4時間加熱処理することにより、市販試薬由来の多孔質炭素材料を製造した。得られた多孔質炭素材料を乳鉢にて粉砕した後、微細構造解析及び電気伝導度評価を行った。
 微細構造解析は、具体的には電子顕微鏡による多孔質炭素材料の観察と、窒素吸着法による解析により行った。
 図2及び図3は、籾殻炭由来の多孔質炭素の電子顕微鏡による観察写真である。図3は図2の拡大写真であり、0.2μm程度の一次粒子が互いに結合して数十から百μm程度の二次粒子を形成する構造であることが確認できる。
 表2は、籾殻炭由来及び市販αSiC由来の多孔質炭素の微細構造解析及び電気伝導度評価の結果をまとめたものである。N吸着等温線から算出した比表面積、BJH法により算出したメソ細孔容積、t法により算出したミクロ細孔容積、平均ミクロ細孔径及びQSDFT法により得られたミクロ孔ピークを示す。
Figure JPOXMLDOC01-appb-T000002
 籾殻炭由来の多孔質炭素材料(例1)は市販αSiC由来の多孔質炭素材料(例2)と比較して、メソ細孔容積が大きく、ミクロ細孔容積が小さい。また、電気伝導度は例1の方が、例2と比較して大きい。これは、図3に示すような一次粒子の結合に由来するものと考えられる。
 また、QSDFT法(スリット型細孔解析)により解析した細孔分布を図4に示す。図4より、籾殻炭由来の多孔質炭素のミクロ孔のピークは8Å付近にあり、6Å未満の領域にピークがある市販試薬由来(α型SiC由来)の多孔質炭素の細孔分布と異なることが確認できる。
1-2.多孔質炭素材料の製造(シリカ/炭素混合物を用いた例)
 フュームドシリカとカーボンブラックの混合物(モル比;SiO:C=1:3)を希ガス(He)雰囲気下1550℃で3時間熱処理することにより、結晶構造がβ型であるSiCを製造した。
 このSiCを横型回転炉を用いて、塩素/窒素混合雰囲気下900℃~1100℃で3~4時間加熱処理することにより、多孔質炭素材料を製造した。得られた多孔質炭素材料を乳鉢にて粉砕した後、N吸着等温線を測定し、微細構造解析を行った。表3にその解析結果を示す。
Figure JPOXMLDOC01-appb-T000003
 また、QSDFT法(スリット型細孔解析)により細孔分布を解析した。シリカ/炭素混合物由来βSiCの多孔質炭素のミクロ孔のピークは8Å付近にあり、市販α型SiC由来の多孔質炭素の細孔分布と異なることが確認された。
1-3.多孔質炭素材料の製造(シリコン/炭素混合物を用いた例)
 日本国特開2015-224142号公報に記載されるように、研削シリコン屑とカーボンブラックを所定比で配合・混合後に、アルゴン(Ar)雰囲気下にて熱処理し、大気中で500~600℃にて残留炭素成分を燃焼処理して製造された、中村超硬製βSiCを原料として使用した。
 このSiCを横型回転炉を用いて、塩素/窒素混合雰囲気下900℃~1200℃で2~4時間加熱処理することにより、多孔質炭素材料を製造した。得られた多孔質炭素材料を乳鉢にて粉砕した後、N吸着等温線を測定し、微細構造解析を行った。表4にその解析結果を示す。
Figure JPOXMLDOC01-appb-T000004
 また、QSDFT法(スリット型細孔解析)により細孔分布解析を行った。細孔分布を図5に示す。シリコン原料由来βSiCの多孔質炭素の10Å以下のミクロ孔のピークは900~1200℃の温度範囲で8Å付近にあり、α型SiC由来の多孔質炭素の細孔分布と異なることが確認された。
2.多孔質炭素材料を用いた電気二重層キャパシタの静電容量及び直流抵抗の評価
 多孔質炭素材料、PTFEバインダ及びケッチェンブラック導電助剤を、86:7:7の重量比で混練し、厚さ70μmのシート電極とした。この電極と、1.4M-TEMABFのプロピレンカーボネート溶液を用いた単層ラミネートセルにて、室温における静電容量(0~2.5V)、休止法抵抗の評価を行なった。
 多孔質炭素材料として籾殻由来、市販αSiC由来又はシリカ/炭素混合物から形成したβSiC由来の多孔質炭素材料(例1~例4)を使用した電気二重層キャパシタの評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 籾殻由来又はシリカ/炭素混合物から形成したβSiC由来の多孔質炭素材料(例1、例3、例4)は、市販αSiC由来の多孔質炭素材料(例2)と比較して、BET比表面積で規格化した単位比表面積当たりの容量は、0.0205F/mと同等ないしは高く、さらなる比表面積の増大があれば同等の特性となると考えられる。また、直流抵抗は例2においては約15Ωであったが、例1、例3及び例4では1/8以下にまで低減していることが確認された。
3.多孔質炭素材料の製造(易黒鉛化炭素を用いた例)
 易黒鉛化炭素の原料として、ベンゼンを熱分解して得られる炭素微粒子を用いた。ベンゼンを窒素ガスでバブリングしつつ、800℃に加熱した炭化炉に導入し、粒子径0.1~0.4μmの球状炭素微粒子を形成した。この炭素微粒子をカルボキシメチルセルロース(CMC)アルコール溶液に分散混練して、乾燥粉砕した後、500℃でCMCを炭化し、平均粒子径8μmの易黒鉛化炭素粒子を形成した。この易黒鉛化炭素粒子のBET比表面積は12m/gであった。この時点では、炭素粒子の002面はX線回折分析では確認出来なかった。この炭素粒子を800℃の水蒸気15%雰囲気(残N)中で4時間賦活処理して活性炭化した。
 得られた、活性炭の平均粒子径は7.8μm、BET比表面積は1500m/g、外部比表面積は40m/gであった。QSDFT法で得られるミクロ孔の平均孔径は0.85nmでミクロ孔容積は0.45cc/gであり、2nm以上のメソ孔容積は0.2cc/gであった。
 この活性炭を用いて、導電助剤、バインダと混練し、電極面積2.8cmでシート型電極を作成後、電気二重層キャパシタの容量および抵抗の評価を0~2.5Vの範囲で電解質として1.4MのTEMA・BF/PC電解液にて行った。単位重量あたりの容量は29F/gで、電極容積あたりの容量は15.9F/ccであった。抵抗値は、電流休止法で測定し、室温放電にて2.05Ω、低温(-30℃)にて19Ωであった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 

Claims (19)

  1.  電気二重層キャパシタ電極用の多孔質炭素材料であって、
     前記多孔質炭素材料が粒子径3μm以上100μm以下の二次粒子から形成され、
     前記二次粒子が粒子径0.1μm以上0.5μm以下の一次粒子から形成され、
     前記多孔質炭素材料の内部比表面積が900m/g以上である、
    多孔質炭素材料。
  2.  前記一次粒子がネック成長することで互いに結合している、請求項1に記載の多孔質炭素材料。
  3.  前記多孔質炭素材料の外部比表面積が5m/g以上50m/g以下である、請求項1又は請求項2に記載の多孔質炭素材料。
  4.  前記多孔質炭素材料の、窒素吸着等温線からQSDFT法により算出されるミクロ細孔の細孔径のピークが7.0Å以上10Å以下の範囲にある、請求項1~請求項3のいずれか一項に記載の多孔質炭素材料。
  5.  前記多孔質炭素材料の、窒素吸着等温線からt法により算出されるミクロ細孔の細孔容積が0.3cm/g以上であり、前記窒素吸着等温線からt法により算出されるミクロ細孔の細孔径が0.63nm以上である、請求項1~請求項3のいずれか一項に記載の多孔質炭素材料。
  6.  前記多孔質炭素材料の、窒素吸着等温線からBJH法により算出されるメソ細孔の細孔容積が0.1cm/g以上である、請求項1~請求項3のいずれか一項に記載の多孔質炭素材料。
  7.  電気二重層キャパシタ電極用の多孔質炭素材料の製造方法であって、
     多孔質炭素材料原料から、粒子径0.1μm以上0.5μm以下の一次粒子が集合して粒子径3μm以上100μm以下の二次粒子を形成している多孔質炭素材料前駆体を得る工程と、
     前記多孔質炭素材料前駆体を加熱処理することで多孔質炭素材料を得る工程と、
    を含む、多孔質炭素材料の製造方法。
  8.  前記多孔質炭素材料前駆体の外部比表面積が5m/g以上50m/g以下である、
    請求項7に記載の多孔質炭素材料の製造方法。
  9.  前記多孔質炭素材料原料がSiO及び炭素含有材料の混合物であり、
     前記混合物を不活性ガス雰囲気下1450℃以上で加熱することで前記多孔質炭素材料前駆体を得る、請求項7又は請求項8に記載の多孔質炭素材料の製造方法。
  10.  前記混合物におけるSiOとCのモル比がSiO:C=1:3~1:4である、請求項9に記載の多孔質炭素材料の製造方法。
  11.  前記多孔質炭素材料原料が籾殻を炭化処理して粉砕した籾殻原料であり、
     前記籾殻原料におけるSiOとCのモル比がSiO:C=1:3~1:4であり、
     前記籾殻原料を不活性ガス雰囲気下1450℃以上で加熱することで前記多孔質炭素材料前駆体を得る、請求項7又は請求項8に記載の多孔質炭素材料の製造方法。
  12.  前記多孔質炭素材料前駆体を得る前に前記籾殻原料を酸処理する、請求項11に記載の多孔質炭素材料の製造方法。
  13.  前記多孔質炭素材料前駆体を塩素雰囲気下で前記加熱処理を行うことで前記多孔質炭素材料を得る、請求項9~請求項12のいずれか一項に記載の多孔質炭素材料の製造方法。
  14.  塩素雰囲気下での前記加熱処理が700℃以上1100℃以下の温度で行われる、請求項13に記載の多孔質炭素材料の製造方法。
  15.  前記多孔質炭素材料を水蒸気又はCO雰囲気下で加熱処理することで賦活処理する工程をさらに含む、請求項13又は請求項14に記載の多孔質炭素材料の製造方法。
  16.  前記多孔質炭素材料前駆体が炭化水素系原料を加熱焼結した炭化水素系前駆体であり、
     前記加熱処理が、水蒸気又はCO雰囲気下での賦活処理である、
    請求項7又は請求項8に記載の多孔質炭素材料の製造方法。
  17.  前記賦活処理が700℃以上1000℃以下の温度で行われる、請求項15又は請求項16に記載の多孔質炭素材料の製造方法。
  18.  前記多孔質炭素材料原料がSi及び炭素含有材料の混合物であり、
     前記混合物におけるSiとCのモル比がSi:C=1:1.1~1:1.5であり、
     前記多孔質炭素材料原料を不活性ガス雰囲気下1250℃以上で加熱することで前記多孔質炭素材料前駆体を得る、請求項7又は請求項8に記載の多孔質炭素材料の製造方法。
  19.  請求項1~請求項6のいずれか一項に記載の多孔質炭素材料を含む電気二重層キャパシタ電極。
     
PCT/JP2017/020709 2016-06-06 2017-06-02 電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極 WO2017213057A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018522460A JPWO2017213057A1 (ja) 2016-06-06 2017-06-02 電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極
CN201780004482.XA CN108369870A (zh) 2016-06-06 2017-06-02 用于双电层电容器电极的多孔碳材料、其制造方法以及双电层电容器电极
US16/060,602 US10629387B2 (en) 2016-06-06 2017-06-02 Porous carbon material for electric double-layer capacitor electrode, method of producing the same, and electric double-layer capacitor electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112788 2016-06-06
JP2016112788 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017213057A1 true WO2017213057A1 (ja) 2017-12-14

Family

ID=60578809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020709 WO2017213057A1 (ja) 2016-06-06 2017-06-02 電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極

Country Status (4)

Country Link
US (1) US10629387B2 (ja)
JP (1) JPWO2017213057A1 (ja)
CN (1) CN108369870A (ja)
WO (1) WO2017213057A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172478A (ja) * 2018-03-27 2019-10-10 トクラス株式会社 活性炭、活性炭の製造方法、濾過カートリッジ、及び、浄水器
WO2019244905A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
WO2019244904A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
WO2019244903A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
WO2023032633A1 (ja) * 2021-09-06 2023-03-09 株式会社アドール 活性炭

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167212A (ja) * 1986-01-21 1987-07-23 Osamu Yamada β型炭化珪素粉末の製造法
JPH02184511A (ja) * 1989-01-10 1990-07-19 Sumitomo Electric Ind Ltd 多孔質グラファイトの製造方法
WO2013190945A1 (ja) * 2012-06-20 2013-12-27 住友電気工業株式会社 金属ケイ素及び多孔質炭素の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897101A (ja) 1994-09-22 1996-04-12 Mitsubishi Chem Corp 電極材
JP2001089119A (ja) 1999-04-30 2001-04-03 Adchemco Corp 炭素質材料およびその製造方法およびこれを用いた電気二重層キャパシタ
US6686090B2 (en) * 2000-03-15 2004-02-03 Kabushiki Kaisha Toshiba Battery with a nonaqueous electrolyte and a negative electrode having a negative electrode active material occluding and releasing an active material
JP2004513529A (ja) 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. スーパーキャパシタおよび当該スーパーキャパシタを製造する方法
FR2817387B1 (fr) * 2000-11-27 2003-03-21 Ceca Sa Cellules de stockage d'energie a double couche electrochimique a haute densite d'energie et forte densite de puissance
AU2003227665A1 (en) 2003-04-23 2004-11-19 Foc Frankenburg Oil Company Est Method to modify pore characteristics of porous carbon and porous carbon materials produced by the method
CN101819884B (zh) * 2009-03-14 2012-11-07 兰州理工大学 用于超级电容器电极的多孔碳薄膜材料的制备方法
US8828533B2 (en) * 2012-01-12 2014-09-09 Ut-Battelle, Llc Mesoporous carbon materials
KR20150093049A (ko) * 2014-02-06 2015-08-17 삼성전자주식회사 리튬 공기 전지용 양극 및 이를 포함하는 리튬 공기 전지
US20170263386A1 (en) 2014-08-29 2017-09-14 Sumitomo Electric Industries, Ltd. Negative electrode material for power storage device, manufacturing method thereof, and lithium ion power storage device
KR101949072B1 (ko) * 2015-03-16 2019-02-15 미쓰이금속광업주식회사 다공질체, 다공질 접합체, 금속 용탕용 여과 필터, 소성용 지그 및 다공질체의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167212A (ja) * 1986-01-21 1987-07-23 Osamu Yamada β型炭化珪素粉末の製造法
JPH02184511A (ja) * 1989-01-10 1990-07-19 Sumitomo Electric Ind Ltd 多孔質グラファイトの製造方法
WO2013190945A1 (ja) * 2012-06-20 2013-12-27 住友電気工業株式会社 金属ケイ素及び多孔質炭素の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172478A (ja) * 2018-03-27 2019-10-10 トクラス株式会社 活性炭、活性炭の製造方法、濾過カートリッジ、及び、浄水器
JPWO2019244905A1 (ja) * 2018-06-19 2020-06-25 株式会社アドール 活性炭
JP2020111505A (ja) * 2018-06-19 2020-07-27 株式会社アドール 活性炭
WO2019244903A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
JP6683968B1 (ja) * 2018-06-19 2020-04-22 株式会社アドール 活性炭
JP6683969B1 (ja) * 2018-06-19 2020-04-22 株式会社アドール 活性炭
WO2019244905A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
JP2020110801A (ja) * 2018-06-19 2020-07-27 株式会社アドール 活性炭
WO2019244904A1 (ja) * 2018-06-19 2019-12-26 株式会社アドール 活性炭
KR20210021451A (ko) * 2018-06-19 2021-02-26 가부시키가이샤애드올 활성탄
JP7491506B2 (ja) 2018-06-19 2024-05-28 株式会社アドール 活性炭
KR102545878B1 (ko) 2018-06-19 2023-06-22 가부시키가이샤애드올 활성탄
US11873235B2 (en) 2018-06-19 2024-01-16 Ad'all Co., Ltd. Activated carbon
JP7428347B2 (ja) 2018-06-19 2024-02-06 株式会社アドール 活性炭
WO2023032633A1 (ja) * 2021-09-06 2023-03-09 株式会社アドール 活性炭

Also Published As

Publication number Publication date
JPWO2017213057A1 (ja) 2019-04-04
US10629387B2 (en) 2020-04-21
US20180374657A1 (en) 2018-12-27
CN108369870A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017213057A1 (ja) 電気二重層キャパシタ電極用の多孔質炭素材料、その製造方法および電気二重層キャパシタ電極
Gupta et al. Biochar activated by oxygen plasma for supercapacitors
JP4616052B2 (ja) 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ
JP4294246B2 (ja) 電気二重層キャパシタ電極用炭素材料及びその製造方法並びに電気二重層キャパシタ及びその製造方法
JP5027849B2 (ja) 活性炭の製造方法、および該製造方法により得られた活性炭を用いた電気二重層キャパシタ
JP6467921B2 (ja) 二次電池用の電極材料及びその製造方法、並びに、二次電池
JP5202460B2 (ja) 活性炭および該活性炭を用いた電気二重層キャパシタ
JP5271851B2 (ja) 活性炭の製造方法および該製造方法により得られた活性炭を用いた電気二重層キャパシタ
JP2005136397A (ja) 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
KR20150132394A (ko) 그라핀/탄소 조성물
JP2015151324A (ja) 活性炭及び活性炭の製造方法
JP5058155B2 (ja) 電気化学デバイス電極用炭素材料の製造方法
KR101381710B1 (ko) 코크스를 이용한 전극용 활성탄의 제조방법 및 전극용 활성탄 조성물의 제조방법
JP6988886B2 (ja) 多孔質炭素材料の製造方法
KR20190046968A (ko) 조성물 및 그의 용도
WANG et al. Templated mesoporous carbons and their performance for electric double layer capacitors
JP2004014762A (ja) 電気二重層コンデンサー用炭素材料およびその製造方法
JP5563239B2 (ja) 多孔質炭素材料の製造方法
KR102040379B1 (ko) 전극소재용 활성탄의 제조방법
Liu et al. A novel route to fabricate high-density graphene assemblies for high-volumetric-performance supercapacitors: effect of cation pre-intercalation
JP6597754B2 (ja) 活性炭の製造方法
TWI687371B (zh) 用於電極材料的活性碳製造方法
JP5809200B2 (ja) シリコン系負極活物質
JP5367974B2 (ja) 電気二重層キャパシタ用電極材料、および該電極材料用添加材
JP2004146459A (ja) 電気二重層キャパシタの電極用活性炭の製造に用いられる炭素化物の製造方法および炭素化物用有機物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522460

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810235

Country of ref document: EP

Kind code of ref document: A1