WO2017208439A1 - 赤外分光光度計 - Google Patents

赤外分光光度計 Download PDF

Info

Publication number
WO2017208439A1
WO2017208439A1 PCT/JP2016/066619 JP2016066619W WO2017208439A1 WO 2017208439 A1 WO2017208439 A1 WO 2017208439A1 JP 2016066619 W JP2016066619 W JP 2016066619W WO 2017208439 A1 WO2017208439 A1 WO 2017208439A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heater
pwm control
state
duty
detection unit
Prior art date
Application number
PCT/JP2016/066619
Other languages
English (en)
French (fr)
Inventor
真也 和久田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/066619 priority Critical patent/WO2017208439A1/ja
Priority to CN201680084794.1A priority patent/CN109313076A/zh
Priority to EP16904064.9A priority patent/EP3467458B1/en
Priority to US16/088,660 priority patent/US10890483B2/en
Priority to JP2018520318A priority patent/JPWO2017208439A1/ja
Publication of WO2017208439A1 publication Critical patent/WO2017208439A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range

Definitions

  • the present invention relates to an infrared spectrophotometer provided with an electric heater as a light source for irradiating infrared light.
  • an electric heater such as a ceramic heater is used as a light source (see, for example, Patent Document 1 below).
  • the infrared light emitted from the electric heater is reflected by the fixed mirror and the moving mirror, so that the light reflected by the fixed mirror interferes with the light reflected by the moving mirror.
  • the sample is irradiated with interference light.
  • the ceramic heater is formed by covering the outside of a heating element made of a resistor with a ceramic such as silicon carbide (SiC) or silicon nitride (SiN).
  • a ceramic such as silicon carbide (SiC) or silicon nitride (SiN).
  • SiC silicon carbide
  • SiN silicon nitride
  • the internal heating element is also gradually oxidized and becomes thin, and eventually it is disconnected.
  • the ceramic heater itself must be replaced, and there is a problem that analysis using an infrared spectrophotometer cannot be performed until the replacement.
  • the service life of the ceramic heater is estimated by monitoring the usage time of the ceramic heater or detecting the light emitted from the ceramic heater with a photodetector. By predicting the life of the ceramic heater in this way, it becomes possible to replace the ceramic heater before the heating element is disconnected.
  • the ceramic heater is replaced when the amount of light falls below a certain threshold value.
  • the lifetime of each ceramic heater can be considered, there is a problem that the manufacturing cost increases because it is necessary to provide a photodetector to detect light emitted from the ceramic heater.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an infrared spectrophotometer that can notify an appropriate replacement timing of an electric heater using an inexpensive configuration.
  • An infrared spectrophotometer includes an electric heater, an energization control unit, a state detection unit, and a notification processing unit.
  • the electric heater is a light source that emits infrared light.
  • the energization control unit performs PWM control so that a supply current to the electric heater is constant.
  • the state detection unit detects the state of the electric heater based on a change in on-duty during the PWM control.
  • the notification processing unit notifies a detection result by the state detection unit.
  • control is performed by PWM control so that the supply current to the electric heater is constant.
  • the on-duty during PWM control increases. Therefore, it is possible to detect the state (deterioration state) of the electric heater based on the change in on-duty and notify the detection result. Therefore, it is possible to notify the appropriate replacement time of the electric heater using an inexpensive configuration as compared with a configuration in which a photodetector is provided.
  • the state detection unit may detect the state of the electric heater by comparing an on-duty during the PWM control with a threshold value.
  • the state of the electric heater can be detected by comparing the on-duty during PWM control with a threshold value, and the detection result can be notified.
  • the on-duty exceeds the threshold value, it can be determined that the electric heater has deteriorated due to oxidation or the like and the resistance value has increased, so the appropriate replacement timing of the electric heater is notified based on the detection result. can do.
  • the state detection unit may detect the state of the electric heater by comparing the amount of change in on-duty during the PWM control with a threshold value.
  • the state of the electric heater can be detected by comparing the amount of change in on-duty during PWM control with a threshold value, and the detection result can be notified. That is, when the amount of change from the initial value of the on-duty is greater than or equal to the threshold value, it can be determined that the electric heater has deteriorated due to oxidation or the like and the resistance value has increased. The appropriate replacement time can be notified.
  • the state detection unit may detect the state of the electric heater after a predetermined time has elapsed since the PWM control was started.
  • the on-duty is stabilized, and then the state of the electric heater can be detected based on the change of the on-duty. Thereby, since the state of the electric heater can be detected with high accuracy, the replacement timing of the electric heater can be notified more appropriately.
  • the present invention it is possible to detect the state (deterioration state) of the electric heater based on the change in on-duty and to notify the detection result, so that it is compared with a configuration in which a photodetector is provided. An appropriate replacement time for the electric heater can be notified by using an inexpensive configuration.
  • FIG. 1 is a schematic diagram showing a configuration example of an infrared spectrophotometer according to an embodiment of the present invention.
  • the infrared spectrophotometer is, for example, a Fourier transform infrared spectrophotometer (FT-IR), and includes an electric heater 1, an interferometer 2, a sample chamber 3, a detector 4, a PWM control circuit 5, a control unit 6, and A display unit 7 and the like are provided.
  • FT-IR Fourier transform infrared spectrophotometer
  • the electric heater 1 is composed of, for example, a ceramic heater. Specifically, the electric heater 1 is formed by covering the outside of the heating element made of a resistor with a ceramic such as silicon carbide (SiC) or silicon nitride (SiN). Examples of the heating element include metal heating elements such as nickel-chromium, iron-chromium-aluminum, molybdenum, tungsten, platinum, and molybdenum disilicide, but are not limited to this. There may be. The electric heater 1 is formed by mixing metal powder such as chromium with ceramic and sintering it with the ceramic covering the outside of the heating element.
  • the electric heater 1 is energized so that infrared light is irradiated from the electric heater 1. That is, the electric heater 1 functions as a light source that irradiates infrared light.
  • the infrared light irradiated from the electric heater 1 becomes interference light in the interferometer 2 and is irradiated to the sample in the sample chamber 3 as measurement light.
  • the interferometer 2 includes a half mirror 21, a fixed mirror 22, a movable mirror 23, and the like.
  • a part of the infrared light is transmitted through the half mirror 21 and is incident on the fixed mirror 22, and the remaining infrared light is reflected by the half mirror 21 and is moved by the moving mirror 23. Is incident on.
  • the fixed mirror 22 is fixed to the half mirror 21 at a certain distance.
  • the movable mirror 23 can change the distance to the half mirror 21 by driving of the driving unit 24.
  • the infrared light incident on the fixed mirror 22 and the movable mirror 23 is reflected on the respective reflecting surfaces, and is incident on the half mirror 21 again.
  • the reflected light from the fixed mirror 22 is reflected by the half mirror 21, and the reflected light from the moving mirror 23 passes through the half mirror 21 and is guided to the sample chamber 3 through the same optical path.
  • infrared light from the fixed mirror 22 and the movable mirror 23 interfere with each other, and the sample in the sample chamber 3 is irradiated as interference light.
  • Interfering light from the interferometer 2 is reflected or transmitted by the sample in the sample chamber 3 and then enters the detector 4.
  • the detector 4 is configured by, for example, an MCT (HgCdTe) detector.
  • the detector 4 outputs an interferogram corresponding to the incident light to the control unit 6 as a detection signal.
  • the control unit 6 acquires spectrum data by performing Fourier transform on the interferogram input from the detector 4.
  • the PWM control circuit 5 performs PWM control (Pulse Width Modulation) for energization of the electric heater 1.
  • the control unit 6 includes a CPU (Central Processing) Unit), and functions as a state detection unit 61 and a notification processing unit 62 when the CPU executes a program.
  • the state detection unit 61 detects the state of the electric heater 1 based on the input signal from the PWM control circuit 5.
  • the notification processing unit 62 notifies the user by displaying the detection result of the state detection unit 61 on the display unit 7.
  • the display unit 7 is configured by, for example, a liquid crystal display.
  • FIG. 2 is a circuit diagram showing a configuration example of the PWM control circuit 5.
  • the PWM control circuit 5 includes a PWM driver 51, a light source current detection unit 52, low-pass filters 53 and 54, an A / D converter 55, and the like.
  • the PWM driver 51 outputs the drive voltage of the electric heater 1 as a light source at a constant cycle as a pulse signal.
  • the PWM driver 51 can control the energization amount to the electric heater 1 by changing the time width (pulse width) of the pulse signal periodically output.
  • the light source current detector 52 detects the current flowing through the electric heater 1.
  • the low-pass filter 53 includes a resistor 531 and a capacitor 532, smoothes a signal from the light source current detection unit 52 by the capacitor 532, and feeds back a DC component (DC component) to the PWM driver 51.
  • the PWM driver 51 functions as an energization control unit that performs PWM control based on a signal fed back from the light source current detection unit 52 so that the supply current to the electric heater 1 is constant.
  • the low pass filter 54 is connected between the PWM driver 51 and the electric heater 1 through a resistor 56.
  • the low-pass filter 54 includes a resistor 541 and a capacitor 542, and an input signal to the low-pass filter 54 is divided by the resistor 56 and the resistor 541. Via this low-pass filter 54, the on-duty during PWM control by the PWM driver 51 is input from the A / D converter 55 to the control unit 6.
  • FIGS. 3A and 3B are diagrams for explaining a mode of PWM control by the PWM driver 51.
  • the PWM control is performed by changing an on-duty which is a ratio (T2 / T1) of the on-time T2 in a fixed period T1. That is, since the period T1 is constant, control is performed to adjust the on-time T2 so that the supply current to the electric heater 1 is constant.
  • the on-duty (T2 / T1) during PWM control increases as shown in FIG. 3B. Therefore, in the present embodiment, based on the change in on-duty, the state detection unit 61 of the control unit 6 detects the state (deterioration state) of the electric heater 1, and the notification processing unit 62 notifies the detection result. It has become. Thereby, the appropriate replacement time of the electric heater 1 can be notified using an inexpensive configuration using the low-pass filter 54.
  • FIG. 4 is a flowchart showing an example of processing by the control unit 6 when notifying the replacement time of the electric heater 1.
  • the PWM control of energization to the electric heater 1 is started when, for example, the power of the infrared spectrophotometer is turned on (steps S101 and S102).
  • the state detection unit 61 causes the electric heater 1 to The state is to be detected.
  • step S104 the on-duty value input from the PWM control circuit 5 is referred to (step S104), and the value is compared with a threshold value (step S105). If the on-duty value is equal to or greater than the threshold value (Yes in step S105), the detection result is displayed on the display unit 7, thereby notifying the user that the electric heater 1 is in the replacement period (step). S106).
  • Such detection by the state detection unit 61 may be repeatedly performed during PWM control of energization of the electric heater 1.
  • the state of the electric heater 1 can be detected by comparing the on-duty during PWM control with a threshold value, and the detection result can be notified. That is, when the on-duty is equal to or greater than the threshold (Yes in step S105), it can be determined that the electric heater 1 is deteriorated due to oxidation or the like and the resistance value is high. 1 can be notified of an appropriate replacement time.
  • step S103 After the PWM control is started and the on-duty is stabilized by elapse of a predetermined time (Yes in step S103), the state of the electric heater 1 can be detected based on the change of the on-duty. . Thereby, since the state of the electric heater 1 can be detected with high accuracy, the replacement time of the electric heater 1 can be notified more appropriately.
  • FIG. 5 is a flowchart showing a modification of the process performed by the control unit 6 when notifying the replacement timing of the electric heater 1.
  • the PWM control of energization to the electric heater 1 is started, for example, when the power of the infrared spectrophotometer is turned on (steps S201 and S202). Then, after a predetermined time has elapsed since the PWM control was started (Yes in step S203), the state detection unit 61 detects the state of the electric heater 1.
  • the on-duty value input from the PWM control circuit 5 is referred to (step S204), and the amount of change from the on-duty initial value stored in advance in the storage unit (not shown) is calculated.
  • the initial value is an on-duty value before the electric heater 1 deteriorates, and corresponds to, for example, an on-duty value when a new electric heater 1 is used. Since the on-duty value gradually increases as the electric heater 1 is used, the amount of change is calculated by subtracting the initial value from the on-duty value input from the PWM control circuit 5. be able to.
  • step S206 the calculated on-duty change amount is compared with a threshold value (step S206). If the change amount of the on-duty is equal to or greater than the threshold (Yes in step S206), the detection result is displayed on the display unit 7, thereby notifying the user that the electric heater 1 is in the replacement period ( Step S207).
  • Such detection by the state detection unit 61 may be repeatedly performed during PWM control of energization of the electric heater 1.
  • the state of the electric heater 1 can be detected by comparing the amount of change in on-duty during PWM control with a threshold value, and the detection result can be notified. That is, when the amount of change from the initial value of the on-duty is equal to or greater than the threshold value (Yes in step S206), it can be determined that the electric heater 1 has deteriorated due to oxidation or the like and the resistance value has increased. An appropriate replacement time of the electric heater 1 can be notified based on the detection result.
  • step S203 After the PWM control is started and the on-duty is stabilized after a predetermined time has elapsed (Yes in step S203), the state of the electric heater 1 can be detected based on the change in the on-duty. . Thereby, since the state of the electric heater 1 can be detected with high accuracy, the replacement time of the electric heater 1 can be notified more appropriately.
  • the configuration in which the notification processing unit 62 notifies the user by displaying the detection result of the state detection unit 61 on the display unit 7 has been described.
  • the configuration is not limited to such a configuration, and the notification processing unit 62 may be configured to perform notification by a method other than the display of, for example, voice.
  • the electric heater 1 was comprised by the ceramic heater
  • the electric heater 1 is a heater which can be used as a light source which irradiates infrared light
  • heaters other than a ceramic heater It may be constituted by.
  • the outside of the heating element made of a resistor is not covered with ceramic, and an electric heater made only of the heating element may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

安価な構成を用いて、電熱ヒータの適切な交換時期を報知することができる赤外分光光度計を提供する。赤外分光光度計が、電熱ヒータ1と、PWM制御回路5と、状態検知部61と、報知処理部62とを備える。電熱ヒータ1は、赤外光を照射する光源である。PWM制御回路5は、電熱ヒータ1への供給電流が一定となるようにPWM制御を行う。状態検知部61は、PWM制御時におけるオンデューティーの変化に基づいて、電熱ヒータ1の状態を検知する。報知処理部62は、状態検知部61による検知結果を報知する。

Description

赤外分光光度計
 本発明は、赤外光を照射する光源としての電熱ヒータを備える赤外分光光度計に関するものである。
 赤外分光光度計においては、セラミックヒータなどの電熱ヒータが光源として用いられている(例えば下記特許文献1参照)。この種の赤外分光光度計では、電熱ヒータから照射される赤外光を固定鏡及び移動鏡で反射させることにより、固定鏡で反射した光と移動鏡で反射した光とが干渉し、その干渉光が試料に照射される。
 セラミックヒータは、抵抗体からなる発熱体の外側が、炭化ケイ素(SiC)又は窒化ケイ素(SiN)などのセラミックで覆われることにより形成されている。発熱体だけで使用した場合には、発熱体がすぐに酸化して劣化することとなるが、発熱体の外側をセラミックで覆うことにより、発熱体の酸化を抑制し、耐久性を向上することができる。
特開平10-160568号公報
 上記のようなセラミックヒータであっても、長期間にわたって使用されることによりセラミックが徐々に酸化するため、内部の発熱体も徐々に酸化して細くなり、最終的には断線してしまう。発熱体が断線した場合には、セラミックヒータ自体を交換しなければならず、交換までの間は赤外分光光度計を用いた分析を行うことができないという問題がある。
 そこで、セラミックヒータの使用時間を監視したり、セラミックヒータから照射される光を光検出器で検出して監視したりすることにより、セラミックヒータの寿命の目安とすることが行われている。このようにしてセラミックヒータの寿命を予測することにより、発熱体が断線する前に、セラミックヒータを交換することが可能になる。
 しかしながら、セラミックヒータの使用時間を監視するような構成では、セラミックヒータごとの寿命を考慮できないという問題がある。すなわち、セラミックヒータごとに寿命にはばらつきがあるため、想定される最短の寿命よりも短い一定の交換時期で、セラミックヒータを一律に交換する必要がある。そのため、まだ寿命が十分に残っているセラミックヒータを交換してしまう可能性がある。
 一方、セラミックヒータから照射される光を監視するような構成では、光量が一定の閾値を下回ったときにセラミックヒータを交換することになる。この場合、セラミックヒータごとの寿命を考慮することはできるが、セラミックヒータから照射される光を検出するために光検出器を設ける必要があるため、製造コストが高くなるという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、安価な構成を用いて、電熱ヒータの適切な交換時期を報知することができる赤外分光光度計を提供することを目的とする。
(1)本発明に係る赤外分光光度計は、電熱ヒータと、通電制御部と、状態検知部と、報知処理部とを備える。前記電熱ヒータは、赤外光を照射する光源である。前記通電制御部は、前記電熱ヒータへの供給電流が一定となるようにPWM制御を行う。前記状態検知部は、前記PWM制御時におけるオンデューティーの変化に基づいて、前記電熱ヒータの状態を検知する。前記報知処理部は、前記状態検知部による検知結果を報知する。
 このような構成によれば、PWM制御により、電熱ヒータへの供給電流が一定となるように制御が行われる。この場合、電熱ヒータが酸化などにより劣化し、抵抗値が高くなったときには、PWM制御時におけるオンデューティーが大きくなる。したがって、オンデューティーの変化に基づいて、電熱ヒータの状態(劣化状態)を検知し、その検知結果を報知することが可能である。そのため、光検出器を設けるような構成と比較して安価な構成を用いて、電熱ヒータの適切な交換時期を報知することができる。
(2)前記状態検知部は、前記PWM制御時におけるオンデューティーを閾値と比較することにより、前記電熱ヒータの状態を検知してもよい。
 このような構成によれば、PWM制御時におけるオンデューティーを閾値と比較することにより、電熱ヒータの状態を検知し、その検知結果を報知することができる。すなわち、オンデューティーが閾値以上となった場合には、電熱ヒータが酸化などにより劣化し、抵抗値が高くなっていると判断できるため、その検知結果に基づいて電熱ヒータの適切な交換時期を報知することができる。
(3)前記状態検知部は、前記PWM制御時におけるオンデューティーの変化量を閾値と比較することにより、前記電熱ヒータの状態を検知してもよい。
 このような構成によれば、PWM制御時におけるオンデューティーの変化量を閾値と比較することにより、電熱ヒータの状態を検知し、その検知結果を報知することができる。すなわち、オンデューティーの初期値からの変化量が閾値以上となった場合には、電熱ヒータが酸化などにより劣化し、抵抗値が高くなっていると判断できるため、その検知結果に基づいて電熱ヒータの適切な交換時期を報知することができる。
(4)前記状態検知部は、前記PWM制御が開始されてから所定時間が経過した後、前記電熱ヒータの状態を検知してもよい。
 このような構成によれば、PWM制御が開始された後、所定時間が経過することによりオンデューティーが安定してから、そのオンデューティーの変化に基づいて電熱ヒータの状態を検知することができる。これにより、電熱ヒータの状態を精度よく検知することができるため、電熱ヒータの交換時期をより適切に報知することができる。
 本発明によれば、オンデューティーの変化に基づいて、電熱ヒータの状態(劣化状態)を検知し、その検知結果を報知することが可能であるため、光検出器を設けるような構成と比較して安価な構成を用いて、電熱ヒータの適切な交換時期を報知することができる。
本発明の一実施形態に係る赤外分光光度計の構成例を示した概略図である。 PWM制御回路の構成例を示した回路図である。 PWMドライバによるPWM制御の態様について説明するための図である。 PWMドライバによるPWM制御の態様について説明するための図である。 電熱ヒータの交換時期を報知する際の制御部による処理の一例を示したフローチャートである。 電熱ヒータの交換時期を報知する際の制御部による処理の変形例を示したフローチャートである。
1.赤外分光光度計の構成
 図1は、本発明の一実施形態に係る赤外分光光度計の構成例を示した概略図である。この赤外分光光度計は、例えばフーリエ変換赤外分光光度計(FT-IR)であって、電熱ヒータ1、干渉計2、試料室3、検出器4、PWM制御回路5、制御部6及び表示部7などを備えている。
 電熱ヒータ1は、例えばセラミックヒータにより構成されている。具体的には、抵抗体からなる発熱体の外側が、炭化ケイ素(SiC)又は窒化ケイ素(SiN)などのセラミックで覆われることにより、電熱ヒータ1が形成されている。発熱体としては、例えばニッケル-クロム系、鉄-クロム-アルミ系、モリブデン、タングステン、白金、二珪化モリブデンなどの金属発熱体を例示することができるが、これに限らず、非金属発熱体であってもよい。電熱ヒータ1は、セラミックにクロムなどの金属粉を混ぜて、当該セラミックで発熱体の外側を覆った状態で焼結することにより形成されている。
 分析時には、電熱ヒータ1に対して通電が行われることにより、電熱ヒータ1から赤外光が照射される。すなわち、電熱ヒータ1は、赤外光を照射する光源として機能する。この電熱ヒータ1から照射される赤外光が、干渉計2において干渉光となり、試料室3内の試料に測定光として照射される。
 干渉計2は、ハーフミラー21、固定鏡22及び移動鏡23などを備えている。電熱ヒータ1から照射される赤外光のうち、一部の赤外光はハーフミラー21を透過して固定鏡22に入射し、残りの赤外光はハーフミラー21で反射して移動鏡23に入射する。固定鏡22は、ハーフミラー21に対して一定の距離で固定されている。一方、移動鏡23は、駆動部24の駆動により、ハーフミラー21に対する距離を変化させることができるようになっている。
 固定鏡22及び移動鏡23に入射した赤外光は、それぞれの反射面において反射し、再びハーフミラー21に入射する。このとき、固定鏡22からの反射光はハーフミラー21で反射し、移動鏡23からの反射光はハーフミラー21を透過することにより、それぞれ同一の光路を通って試料室3に導かれる。その結果、固定鏡22及び移動鏡23からの赤外光が互いに干渉し、干渉光として試料室3内の試料に照射されることとなる。
 干渉計2からの干渉光は、試料室3内の試料において反射又は透過した後、検出器4に入射する。検出器4は、例えば、MCT(HgCdTe)検出器などにより構成されている。検出器4は、入射する光に応じたインターフェログラムを検出信号として制御部6に出力する。制御部6は、検出器4から入力されるインターフェログラムをフーリエ変換することにより、スペクトルデータを取得する。
 PWM制御回路5は、電熱ヒータ1に対する通電をPWM制御(Pulse Width Modulation)する。制御部6は、CPU(Central Processing Unit)を含む構成であり、CPUがプログラムを実行することにより、状態検知部61及び報知処理部62などとして機能する。状態検知部61は、PWM制御回路5からの入力信号に基づいて、電熱ヒータ1の状態を検知する。報知処理部62は、状態検知部61による検知結果を表示部7に表示させることによりユーザに報知する。表示部7は、例えば液晶表示器などにより構成されている。
2.PWM制御回路の構成
 図2は、PWM制御回路5の構成例を示した回路図である。PWM制御回路5には、PWMドライバ51、光源電流検出部52、ローパスフィルタ53,54及びA/D変換器55などが備えられている。
 PWMドライバ51は、光源としての電熱ヒータ1の駆動電圧をパルス信号として一定周期で出力する。PWMドライバ51は、周期的に出力するパルス信号の時間幅(パルス幅)を変化させることにより、電熱ヒータ1への通電量を制御することができる。
 光源電流検出部52は、電熱ヒータ1を流れる電流を検出する。ローパスフィルタ53は、抵抗器531及びコンデンサ532を備えており、光源電流検出部52からの信号をコンデンサ532により平滑化して、DC成分(直流成分)をPWMドライバ51にフィードバックする。PWMドライバ51は、光源電流検出部52からフィードバックされる信号に基づいて、電熱ヒータ1への供給電流が一定となるようにPWM制御を行う通電制御部として機能する。
 ローパスフィルタ54は、抵抗器56を介して、PWMドライバ51と電熱ヒータ1との間に接続されている。ローパスフィルタ54には、抵抗器541及びコンデンサ542が備えられており、ローパスフィルタ54への入力信号は、抵抗器56及び抵抗器541によって分圧される。このローパスフィルタ54を介して、PWMドライバ51によるPWM制御時におけるオンデューティーが、A/D変換器55から制御部6に入力される。
3.PWM制御とオンデューティー
 図3A及び図3Bは、PWMドライバ51によるPWM制御の態様について説明するための図である。図3A及び図3Bに示すように、PWM制御は、一定の周期T1におけるオン時間T2の割合(T2/T1)であるオンデューティーを変化させることにより行われる。すなわち、周期T1は一定であるため、電熱ヒータ1への供給電流が一定となるようにオン時間T2を調整する制御が行われる。
 電熱ヒータ1が酸化などにより劣化し、SiOが増加して抵抗値が高くなったときには、図3Bに示すように、PWM制御時におけるオンデューティー(T2/T1)が大きくなる。そこで、本実施形態では、オンデューティーの変化に基づいて、制御部6の状態検知部61により電熱ヒータ1の状態(劣化状態)を検知し、その検知結果を報知処理部62により報知するようになっている。これにより、ローパスフィルタ54を用いた安価な構成を用いて、電熱ヒータ1の適切な交換時期を報知することができる。
4.電熱ヒータの交換時期の報知
 図4は、電熱ヒータ1の交換時期を報知する際の制御部6による処理の一例を示したフローチャートである。電熱ヒータ1に対する通電のPWM制御は、例えば赤外分光光度計の電源がオン状態となったときに開始される(ステップS101,S102)。
 PWM制御が開始された直後は、電熱ヒータ1の温度が上昇中であるため、オンデューティーが安定しない。そこで、PWM制御が開始されてから所定時間が経過するまでは、状態検知部61による検知は行わず、上記所定時間が経過した後(ステップS103でYes)、状態検知部61により電熱ヒータ1の状態が検知されるようになっている。
 具体的には、PWM制御回路5から入力されるオンデューティーの値が参照され(ステップS104)、その値が閾値と比較される(ステップS105)。そして、オンデューティーの値が閾値以上であれば(ステップS105でYes)、その検知結果が表示部7に表示されることにより、電熱ヒータ1が交換時期である旨がユーザに報知される(ステップS106)。このような状態検知部61による検知は、電熱ヒータ1に対する通電のPWM制御中に繰り返し行われてもよい。
 上記のように、本実施形態では、PWM制御時におけるオンデューティーを閾値と比較することにより、電熱ヒータ1の状態を検知し、その検知結果を報知することができる。すなわち、オンデューティーが閾値以上となった場合には(ステップS105でYes)、電熱ヒータ1が酸化などにより劣化し、抵抗値が高くなっていると判断できるため、その検知結果に基づいて電熱ヒータ1の適切な交換時期を報知することができる。
 また、PWM制御が開始された後、所定時間が経過することによりオンデューティーが安定してから(ステップS103でYes)、そのオンデューティーの変化に基づいて電熱ヒータ1の状態を検知することができる。これにより、電熱ヒータ1の状態を精度よく検知することができるため、電熱ヒータ1の交換時期をより適切に報知することができる。
5.電熱ヒータの状態検知の変形例
 図5は、電熱ヒータ1の交換時期を報知する際の制御部6による処理の変形例を示したフローチャートである。上記実施形態と同様に、電熱ヒータ1に対する通電のPWM制御は、例えば赤外分光光度計の電源がオン状態となったときに開始される(ステップS201,S202)。そして、PWM制御が開始されてから所定時間が経過した後(ステップS203でYes)、状態検知部61により電熱ヒータ1の状態が検知される。
 具体的には、PWM制御回路5から入力されるオンデューティーの値が参照され(ステップS204)、予め記憶部(図示せず)に記憶されているオンデューティーの初期値からの変化量が算出される(ステップS205)。上記初期値は、電熱ヒータ1が劣化する前のオンデューティーの値であり、例えば新品の電熱ヒータ1を使用したときのオンデューティーの値に相当している。オンデューティーの値は、電熱ヒータ1の使用に伴って徐々に大きくなるため、PWM制御回路5から入力されるオンデューティーの値から初期値を減算する演算を行うことにより、上記変化量を算出することができる。
 その後、算出されたオンデューティーの変化量が閾値と比較される(ステップS206)。そして、オンデューティーの変化量が閾値以上であれば(ステップS206でYes)、その検知結果が表示部7に表示されることにより、電熱ヒータ1が交換時期である旨がユーザに報知される(ステップS207)。このような状態検知部61による検知は、電熱ヒータ1に対する通電のPWM制御中に繰り返し行われてもよい。
 上記のように、本変形例では、PWM制御時におけるオンデューティーの変化量を閾値と比較することにより、電熱ヒータ1の状態を検知し、その検知結果を報知することができる。すなわち、オンデューティーの初期値からの変化量が閾値以上となった場合には(ステップS206でYes)、電熱ヒータ1が酸化などにより劣化し、抵抗値が高くなっていると判断できるため、その検知結果に基づいて電熱ヒータ1の適切な交換時期を報知することができる。
 また、PWM制御が開始された後、所定時間が経過することによりオンデューティーが安定してから(ステップS203でYes)、そのオンデューティーの変化に基づいて電熱ヒータ1の状態を検知することができる。これにより、電熱ヒータ1の状態を精度よく検知することができるため、電熱ヒータ1の交換時期をより適切に報知することができる。
6.その他の変形例
 以上の実施形態では、報知処理部62が、状態検知部61による検知結果を表示部7に表示させることによりユーザに報知するような構成について説明した。しかし、このような構成に限らず、報知処理部62は、例えば音声などの表示以外の方法で報知を行うような構成であってもよい。
 また、以上の実施形態では、電熱ヒータ1がセラミックヒータにより構成されている場合について説明したが、電熱ヒータ1は、赤外光を照射する光源として使用できるヒータであれば、セラミックヒータ以外のヒータにより構成されていてもよい。この場合、例えば抵抗体からなる発熱体の外側がセラミックで覆われておらず、発熱体のみからなる電熱ヒータなどであってもよい。
1   電熱ヒータ
2   干渉計
3   試料室
4   検出器
5   PWM制御回路
6   制御部
7   表示部
51  PWMドライバ
52  光源電流検出部
53  ローパスフィルタ
54  ローパスフィルタ
55  A/D変換器
56  抵抗器
61  状態検知部
62  報知処理部
531 抵抗器
532 コンデンサ
541 抵抗器
542 コンデンサ

Claims (4)

  1.  赤外光を照射する光源としての電熱ヒータと、
     前記電熱ヒータへの供給電流が一定となるようにPWM制御を行う通電制御部と、
     前記PWM制御時におけるオンデューティーの変化に基づいて、前記電熱ヒータの状態を検知する状態検知部と、
     前記状態検知部による検知結果を報知する報知処理部とを備えることを特徴とする赤外分光光度計。
  2.  前記状態検知部は、前記PWM制御時におけるオンデューティーを閾値と比較することにより、前記電熱ヒータの状態を検知することを特徴とする請求項1に記載の赤外分光光度計。
  3.  前記状態検知部は、前記PWM制御時におけるオンデューティーの変化量を閾値と比較することにより、前記電熱ヒータの状態を検知することを特徴とする請求項1に記載の赤外分光光度計。
  4.  前記状態検知部は、前記PWM制御が開始されてから所定時間が経過した後、前記電熱ヒータの状態を検知することを特徴とする請求項1に記載の赤外分光光度計。
PCT/JP2016/066619 2016-06-03 2016-06-03 赤外分光光度計 WO2017208439A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/066619 WO2017208439A1 (ja) 2016-06-03 2016-06-03 赤外分光光度計
CN201680084794.1A CN109313076A (zh) 2016-06-03 2016-06-03 红外分光光度计
EP16904064.9A EP3467458B1 (en) 2016-06-03 2016-06-03 Infrared spectrophotometer
US16/088,660 US10890483B2 (en) 2016-06-03 2016-06-03 Infrared spectrophotometer
JP2018520318A JPWO2017208439A1 (ja) 2016-06-03 2016-06-03 赤外分光光度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066619 WO2017208439A1 (ja) 2016-06-03 2016-06-03 赤外分光光度計

Publications (1)

Publication Number Publication Date
WO2017208439A1 true WO2017208439A1 (ja) 2017-12-07

Family

ID=60479255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066619 WO2017208439A1 (ja) 2016-06-03 2016-06-03 赤外分光光度計

Country Status (5)

Country Link
US (1) US10890483B2 (ja)
EP (1) EP3467458B1 (ja)
JP (1) JPWO2017208439A1 (ja)
CN (1) CN109313076A (ja)
WO (1) WO2017208439A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992612A1 (en) * 2020-10-29 2022-05-04 Infineon Technologies AG Sensor, emitter and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160568A (ja) 1996-11-27 1998-06-19 Shimadzu Corp 赤外分光光度計
JPH1184957A (ja) * 1997-09-02 1999-03-30 Canon Inc 画像読取り装置
JP2006258521A (ja) * 2005-03-16 2006-09-28 Yokogawa Electric Corp 赤外線分析計の光源
JP2011253783A (ja) * 2010-06-04 2011-12-15 Rohm Co Ltd 発光ダイオードの駆動回路、それを用いた発光装置、電子機器および照明機器
JP2012003864A (ja) * 2010-06-14 2012-01-05 Toshiba Lighting & Technology Corp Led灯器及びled点灯監視制御システム
US8593078B1 (en) * 2011-01-11 2013-11-26 Universal Lighting Technologies, Inc. Universal dimming ballast platform

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184759A (ja) 1995-12-28 1997-07-15 Shimadzu Corp 赤外分光光度計
US7180588B2 (en) * 1999-04-09 2007-02-20 Plain Sight Systems, Inc. Devices and method for spectral measurements
JP2001109123A (ja) 1999-10-01 2001-04-20 Konica Corp 熱現像装置
US6921910B2 (en) * 2002-07-25 2005-07-26 Varian Australia Pty Ltd Infrared source for spectrometers
US20050062481A1 (en) * 2003-09-19 2005-03-24 Thomas Vaughn Wayside LED signal for railroad and transit applications
WO2005059510A2 (en) * 2003-12-11 2005-06-30 The Regents Of The University Of California Catheter-based mid-infrared reflectance and reflectance generated absorption spectroscopy
US7291851B2 (en) * 2004-06-29 2007-11-06 Ric Investments, Llc Infrared source modulation and system using same
WO2008124542A1 (en) * 2007-04-03 2008-10-16 Mutoh Industries Ltd. Spectrophotometer and method
US7791328B2 (en) * 2008-07-03 2010-09-07 Emerson Electric Co. Method and system for calibrating a motor control circuit to improve temperature measurement in an electrical motor
GB201201640D0 (en) * 2012-01-31 2012-03-14 Infinitesima Ltd Photothermal probe actuation
US9410982B2 (en) * 2012-08-31 2016-08-09 Infinitesima Limited Photothermal actuation of a probe for scanning probe microscopy
AU2012397799A1 (en) * 2012-12-28 2015-05-21 Halliburton Energy Services, Inc. Pulse width modulation of continuum sources for determination of chemical composition
WO2016087939A1 (en) * 2014-12-01 2016-06-09 Cooledge Lighting, Inc. Automated test systems and methods for light-emitting arrays
JP6710954B2 (ja) * 2015-12-16 2020-06-17 コニカミノルタ株式会社 画像形成装置および画像形成装置の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160568A (ja) 1996-11-27 1998-06-19 Shimadzu Corp 赤外分光光度計
JPH1184957A (ja) * 1997-09-02 1999-03-30 Canon Inc 画像読取り装置
JP2006258521A (ja) * 2005-03-16 2006-09-28 Yokogawa Electric Corp 赤外線分析計の光源
JP2011253783A (ja) * 2010-06-04 2011-12-15 Rohm Co Ltd 発光ダイオードの駆動回路、それを用いた発光装置、電子機器および照明機器
JP2012003864A (ja) * 2010-06-14 2012-01-05 Toshiba Lighting & Technology Corp Led灯器及びled点灯監視制御システム
US8593078B1 (en) * 2011-01-11 2013-11-26 Universal Lighting Technologies, Inc. Universal dimming ballast platform

Also Published As

Publication number Publication date
EP3467458A4 (en) 2020-01-22
EP3467458A1 (en) 2019-04-10
CN109313076A (zh) 2019-02-05
US10890483B2 (en) 2021-01-12
EP3467458B1 (en) 2021-03-31
JPWO2017208439A1 (ja) 2018-11-29
US20200300698A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US10508988B2 (en) Method and system for gas detection
JP5577141B2 (ja) 温度検出のための回路及び方法
US9304049B2 (en) Temperature measuring device, electric appliance having such a temperature measuring device and method for temperature measuring
US20160305898A1 (en) Arrangement and method for measuring and controlling the heating temperature in a semiconductor gas sensor
WO2017208439A1 (ja) 赤外分光光度計
US20160161542A1 (en) Load drive apparatus
JP6045099B2 (ja) 間欠駆動型可燃性ガス検出装置
JP2010139299A (ja) ガスセンサ
JP2012052808A (ja) 熱式流量測定装置
JP2010107328A (ja) 熱式流量測定装置
JP6454978B2 (ja) 電池式ガス警報器、その制御装置
JP6300203B2 (ja) ガス検知器
JP5847563B2 (ja) ガス漏れ警報器
CN112213241B (zh) 尘埃堆积探测装置
CN108604897B (zh) 绝缘栅型半导体元件的驱动电路
JP2018205210A (ja) ガスセンサ、ガス警報器、制御装置、及び制御方法
JP4151596B2 (ja) ガス検出装置
JP5903353B2 (ja) ガス検出装置
JP4467270B2 (ja) 出力安定度の判定機構
JP5601294B2 (ja) 光源装置
JP2019113479A (ja) 分析装置及び暖機判定方法
JP6727753B2 (ja) ガス検出装置
CN110296957B (zh) 用于操作用于测量所测量气体中的气体组分浓度的光学测量***的方法
JP4711332B2 (ja) 水素検出装置
JP3715205B2 (ja) ガス燃焼器監視装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018520318

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904064

Country of ref document: EP

Effective date: 20190103