WO2017208321A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2017208321A1
WO2017208321A1 PCT/JP2016/065966 JP2016065966W WO2017208321A1 WO 2017208321 A1 WO2017208321 A1 WO 2017208321A1 JP 2016065966 W JP2016065966 W JP 2016065966W WO 2017208321 A1 WO2017208321 A1 WO 2017208321A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting element
electrode
emitting device
Prior art date
Application number
PCT/JP2016/065966
Other languages
English (en)
French (fr)
Inventor
哲二 松尾
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to JP2017529105A priority Critical patent/JP6269901B1/ja
Priority to PCT/JP2016/065966 priority patent/WO2017208321A1/ja
Publication of WO2017208321A1 publication Critical patent/WO2017208321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a light emitting device to which a chip size package technology is applied.
  • a chip size package is applied to a light emitting device in order to improve the light emission efficiency and miniaturization of the light emitting device using a light emitting element such as a light emitting diode (LED) as a light source (for example, Patent Document 1). reference.). Furthermore, in order to realize a semiconductor light emitting device of extremely small size, the development of a structure in which the semiconductor substrate used for forming the semiconductor layer constituting the light emitting element is separated from the semiconductor layer and the semiconductor layer is enclosed in a package such as a resin is proceeding. It has been.
  • an electrode connected to the light emitting element is disposed on a surface opposite to the light extraction surface. For this reason, there is no thing which shields the emitted light of a light emitting element in the direction of a light extraction surface, and the luminous efficiency of a light-emitting device improves.
  • the light emitting element is arranged above the surface where the support substrate and the electrode made of different materials coexist, the light emitting element is distorted due to the difference in linear expansion coefficient of these materials. As a result, problems such as breakage of the light emitting device and deterioration of the performance and product life of the light emitting device occur.
  • an object of the present invention is to provide a light emitting device that can apply CSP and suppress distortion generated in a light emitting element.
  • a light-emitting element having a stacked structure in which a support substrate, a second semiconductor layer is disposed above the first semiconductor layer, and the support substrate is disposed; A first electrode disposed continuously from the first side surface over the first side surface of the light emitting element and electrically connected to the first semiconductor layer; and the light emitting element from the second side surface of the support substrate.
  • a light emitting device that includes a second electrode that is continuously disposed over the second side surface of the first electrode and that is electrically connected to the second semiconductor layer.
  • the light emitting device As shown in FIG. 1, the light emitting device according to the embodiment of the present invention has a laminated structure in which a support substrate 10 and a second semiconductor layer 23 are disposed above the first semiconductor layer 21. A light emitting element 20 disposed on the first semiconductor layer 21, a first electrode 41 electrically connected to the first semiconductor layer 21, and a second electrode 42 electrically connected to the second semiconductor layer 23. .
  • the first electrode 41 is continuously arranged from the first side surface 101 of the support substrate 10 to the first side surface 201 of the light emitting element 20.
  • the second electrode 42 is spaced apart from the first electrode 41 and is continuously disposed from the second side surface 102 of the support substrate 10 to the second side surface 202 of the light emitting element 20.
  • the first electrode 41 and the second electrode 42 are collectively referred to as an “electrode region”.
  • an electrode region for supplying current to the light emitting element 20 is arranged on the side surface of the light emitting element 20.
  • the support substrate 10 is disposed between the first electrode 41 and the second electrode 42 below the light emitting element 20.
  • the support substrate 10 and the electrode region are disposed below the light emitting element 20. There are no boundaries.
  • the light emitting element 20 has a laminated structure including a first conductive type first semiconductor layer 21 and a second conductive type second semiconductor layer 23.
  • the first conductivity type and the second conductivity type are opposite to each other. That is, if the first conductivity type is P type, the second conductivity type is N type, and if the first conductivity type is N type, the second conductivity type is P type.
  • the first conductivity type is the P type and the second conductivity type is the N type will be described as an example.
  • the light emitting element 20 is an LED element in which the first semiconductor layer 21 is a P-type cladding layer and the second semiconductor layer 23 is an N-type cladding layer.
  • a double hetero structure in which a first semiconductor layer 21, a light emitting layer 22, and a second semiconductor layer 23 are stacked is employed for the light emitting element 20.
  • Holes are supplied from the first electrode 41 to the first semiconductor layer 21, and electrons are supplied from the second electrode 42 to the second semiconductor layer 23. Then, holes are injected from the first semiconductor layer 21 and electrons are injected from the second semiconductor layer 23 into the light emitting layer 22. The injected holes and electrons recombine in the light emitting layer 22 to generate light in the light emitting layer 22.
  • the light emitting element 20 uses the main surface of the second semiconductor layer 23 as a light extraction surface. Light emitted from the light emitting element 20 passes through the light transmissive substrate 70 disposed above the second semiconductor layer 23 and is output as output light L from the light emitting device.
  • the electrode region is disposed so as to be exposed on the side surface of the light emitting element 20, and the side surface of the light transmissive substrate 70 is also exposed. That is, the outer side surfaces of the first electrode 41 and the second electrode 42 and the side surface of the light transmissive substrate 70 are at the same plane level.
  • the first extraction electrode 51 that connects the first semiconductor layer 21 of the light emitting element 20 and the first electrode 41 is electrically connected to the lower surface of the first semiconductor layer 21.
  • the reflective metal layer 30 is disposed on the lower surface of the first semiconductor layer 21, and the first extraction electrode 51 is electrically connected to the first semiconductor layer 21 through the reflective metal layer 30. is doing.
  • the first lead electrode 51 extends in a direction perpendicular to the film thickness direction and is connected to the first electrode 41.
  • the outgoing light traveling from the light emitting element 20 toward the first semiconductor layer 21 is reflected on the surface of the reflective metal layer 30. That is, the reflective metal layer 30 can reflect the emitted light of the light emitting element 20 traveling in the direction opposite to the light extraction surface toward the light extraction surface. For this reason, the brightness of the output light L can be improved.
  • the reflective metal layer 30 is made of a conductive material that has a high reflectivity with respect to the emitted light of the light emitting element 20 and can make ohmic contact with the first semiconductor layer 21.
  • a white metal film such as a silver-based alloy such as a silver-palladium alloy is preferably used as the material of the reflective metal layer 30.
  • the second extraction electrode 52 that connects the second semiconductor layer 23 of the light emitting element 20 and the second electrode 42 is electrically connected to the lower surface of the second semiconductor layer 23.
  • the second semiconductor layer 23 is a region extending in the horizontal direction to the region where the first semiconductor layer 21 and the light emitting layer 22 are not arranged in plan view (hereinafter referred to as “stretch region”).
  • the second extraction electrode 52 is connected to the lower surface of the extended region of the second semiconductor layer 23.
  • the second lead electrode 52 extends in a direction perpendicular to the film thickness direction and is connected to the second electrode 42.
  • the light emitting element 20, the electrode region, the first extraction electrode 51, and the second extraction electrode 52 are insulated and separated by the protective film 60 disposed so as to cover the side surface and the lower surface of the light emitting element 20.
  • the protective film 60 for example, a silicon oxide film or a silicon nitride film can be employed.
  • the protective film 60 contributes to suppression of moisture permeation into the light emitting element 20 from the outside and improvement in mechanical strength of the light emitting device.
  • FIG. 2 shows a plan view of a cross section along the direction II-II in FIG.
  • the light emitting element 20 has a rectangular shape, and the first side surface 201 and the second side surface 202 face each other.
  • the light emitting element 20 and the electrode region are insulated and separated by the protective film 60.
  • a support substrate 10 is formed on the other pair of opposing side surfaces of the light emitting element 20. That is, the light emitting element 20 is disposed in a concave portion constituted by the upper part of the support substrate 10 and the upper part of the electrode region.
  • FIG. 3 shows a plan view along the III-III direction of FIG.
  • the first extraction electrode 51 and the second extraction electrode 52 are separated by the support substrate 10 and the protective film 60.
  • FIG. 4 is a plan view taken along the IV-IV direction of FIG.
  • the lower part of the light emitting device has a structure in which the first side surface 101 and the second side surface 102 of the rectangular support substrate 10 facing each other are covered with an electrode region.
  • the support substrate 10 may be made of an epoxy resin or a silicone resin containing a filler. Moreover, the white support substrate 10 is realizable by adding a white pigment to these resin. According to the white support substrate 10, the reflectance at the support substrate 10 can be improved. As a result, the luminance of the light emitting device is improved.
  • a material having higher mechanical strength than the resin may be used for the support substrate 10.
  • a ceramic substrate is used for the support substrate 10. By using a ceramic substrate having a high mechanical strength for the support substrate 10, the mechanical strength as a package of the light emitting device can be improved.
  • the light transmissive substrate 70 functions as a sealing material for the light emitting element 20 and a lens of the light emitting device.
  • a thermoplastic resin or a thermosetting resin can be used for the light transmissive substrate 70 as a resin substrate through which light emitted from the light emitting element 20 is transmitted.
  • a transparent resin for the light transmissive substrate 70 By using a transparent resin for the light transmissive substrate 70, the output light L having the same color as the light emitted from the light emitting element 20 can be output from the light emitting device.
  • a phosphor resin containing a phosphor that is excited by the light emitted from the light emitting element 20 and emits the excitation light may be used for the light transmissive substrate 70.
  • the output light L of a desired color can be output from the light emitting device.
  • YAG yttrium aluminum garnet
  • an epoxy resin, a modified epoxy resin, a silicone resin, a modified silicone resin, or the like can be used as the transparent resin used for the light transmissive substrate 70.
  • a silicone resin having high heat resistance is used in a high-power light-emitting device such as a lighting application.
  • a fluorescent resin having high heat resistance is used in a high-power light-emitting device such as a lighting application.
  • what mixed the fluorescent material in the said transparent resin etc. can be used as fluorescent substance resin.
  • the CSP has a structure in which light is extracted from a direction where the electrode region connected to the light emitting element 20 is not arranged. For this reason, since there is no thing which shields the light from a light emitting element in the direction of a light extraction surface, the light emission efficiency of a light-emitting device improves. Moreover, since wire bonding is not used for the electrical wiring of the electrodes, it is possible to suppress problems such as wire breakage and short circuit via the wire. Therefore, the reliability of the light emitting device is improved.
  • FIG. 5 shows a light emitting device of a comparative example to which CSP is applied.
  • the support substrate 10 ⁇ / b> A provided with a recess at the top
  • the light transmissive substrate 70 disposed above the light emitting element 20 With. That is, the lower surface and the side surface of the light emitting element 20 are surrounded by the support substrate 10.
  • the first electrode 41A penetrates the lower portion of the support substrate 10A and is connected to the first semiconductor layer 21 via the reflective metal layer 30 in the recess of the support substrate 10A.
  • the second electrode 42A penetrates the lower part of the support substrate 10A at a position away from the position where the first electrode 41A penetrates the support substrate 10A, and the second semiconductor layer 23 extends in the recess of the support substrate 10A. Connected to the area.
  • a protective film 60 is disposed in the remaining area inside the recess of the support substrate 10A.
  • the light emitting element 20 is supported from below by the support substrate 10A, the first electrode 41A, and the second electrode 42A. For this reason, distortion occurs in the light emitting element 20 due to a difference in linear expansion coefficient between the support substrate 10A, the first electrode 41A, and the second electrode 42A.
  • the electrode region is disposed on the side surface of the light emitting element 20, and the light emitting element 20 is supported from below by the support substrate 10. Since the light emitting element 20 is supported from below by a uniform material, it is possible to suppress stress due to strain on the light emitting element 20. For this reason, breakage of the light emitting device is prevented, and a decrease in performance of the light emitting device and a decrease in product life are suppressed. As a result, according to the light emitting device according to the embodiment, it is possible to provide a light emitting device that can apply CSP and suppress distortion generated in the light emitting element 20. In order to achieve the above effect, it is preferable that the entire lower surface of the light emitting element 20 is covered with the support substrate 10 in plan view.
  • each layer constituting the light emitting element 20 is formed on the semiconductor substrate 100 having a thickness of about 700 ⁇ m by an epitaxial growth method or the like.
  • an N-type semiconductor film 230, a light emitting region film 220, and a P-type semiconductor film 210 are sequentially stacked on the semiconductor substrate 100.
  • a nitride compound semiconductor layer such as gallium nitride is used.
  • the N-type semiconductor film 230, the light-emitting region film 220, and the P-type semiconductor film 210 are patterned by dry etching to form the second semiconductor layer 23, the light-emitting layer 22, and the first semiconductor layer 21.
  • a part of the first semiconductor layer 21 and the light emitting layer 22 is removed by a dry etching method or the like, and a part of the second semiconductor layer 23 is exposed. This exposed portion is an extended region to which the second extraction electrode 52 is connected.
  • a protective film 60 is formed so as to cover the exposed first semiconductor layer 21, the extended region of the second semiconductor layer 23, and the light emitting element 20.
  • an opening of the protective film 60 is formed on the first semiconductor layer 21, and the reflective metal layer 30 is formed so as to be connected to the first semiconductor layer 21 through this opening. .
  • the first extraction electrode 51 is formed so as to be connected to the reflective metal layer 30.
  • an opening of the protective film 60 is formed on the extended region of the second semiconductor layer 23, and the second extraction electrode 52 is formed so as to be connected to the second semiconductor layer 23 through this opening.
  • a gold (Au) film or the like is used for the first extraction electrode 51 and the second extraction electrode 52, but a material that reflects light emitted from the light emitting element 20 is preferably used.
  • an aluminum (Al) film or a silver (Ag) film is also used.
  • the first electrode 41 is formed on the first side surface 201 side of the light emitting element 20 so as to be electrically connected to the first extraction electrode 51.
  • the second electrode 42 is formed on the second side surface 202 side of the light emitting element 20 so as to be electrically connected to the second extraction electrode 52.
  • the first electrode 41 and the second electrode 42 are formed by, for example, copper (Cu) plating.
  • Cu copper
  • the material of the electrode region is selected in consideration of the overall strength of the light emitting device.
  • an Al material or the like may be used for the electrode region.
  • a support substrate 10 is formed.
  • a transfer mold (TRM) method can be used to form the support substrate 10.
  • the surface of the support substrate 10 is etched in the film thickness direction by a back grinding process until the thickness of the support substrate 10 reaches a predetermined value.
  • the lower surfaces of the first electrode 41 and the second electrode 42 are exposed below the lower surface of the support substrate 10.
  • connection electrode 81 is formed so as to cover the lower surface of the first electrode 41
  • second connection electrode 82 is formed so as to cover the lower surface of the second electrode 42.
  • the first connection electrode 81 and the second connection electrode 82 (hereinafter collectively referred to as “connection electrode”) are arranged on the mounting substrate when the light emitting device is attached to the mounting substrate such as a printed circuit board.
  • the wiring pattern is used to connect the electrode region of the light emitting device.
  • a solder electrode or the like is preferably used as the connection electrode.
  • a support substrate 110 is formed so as to cover the lower surface of the support substrate 10 and the connection electrodes.
  • the support substrate 110 is formed to reinforce the strength of the base body after the semiconductor substrate 100 is removed because the thickness of the base body on which the light emitting element 20 and the support substrate 10 are stacked is only several tens of ⁇ m.
  • a silicon substrate or a ceramic substrate having a thickness of about 1 mm is bonded to the base body as the support substrate 110.
  • the semiconductor substrate 100 is removed from the base.
  • the semiconductor substrate 100 is a silicon substrate
  • the semiconductor substrate 100 is deleted by wet etching using hydrofluoric acid.
  • a laser lift-off method or the like is used.
  • FIG. 12 you may form an uneven structure in the main surface of the 2nd semiconductor layer 23 exposed by deletion of the semiconductor substrate 100.
  • FIG. By roughening the surface of the light extraction surface of the light emitting element 20 in this way, the emitted light of the light emitting element 20 is scattered and the luminance of the output light L can be improved.
  • the uneven structure is formed by, for example, dry etching using a pattern formed by a photomask or nanoimprint.
  • a light transmissive substrate 70 is formed on the second semiconductor layer 23. Then, after the singulation process for individually separating the light emitting devices by dicing, the support substrate 110 is removed. Thus, the light emitting device shown in FIG. 1 is completed.
  • the electrode region is formed on the side surface of the light emitting element 20 and the entire light emitting element 20 is supported by the support substrate 10 from below. realizable. For this reason, it is suppressed that the stress by distortion is added to the light emitting element 20.
  • a semiconductor layer is stacked on a semiconductor substrate to form the light emitting element 20, and the semiconductor substrate is used as a support substrate.
  • the support substrate 10 is formed by applying resin or the like to the wafer on which the light emitting element 20 is formed.
  • WLP wafer level package
  • a structural feature of WLP is that the support substrate 10 is formed so as to be in direct contact with the light emitting element 20 or in direct contact with the protective film 60 and the electrode region formed in the light emitting element 20. Since the package is in contact with the light emitting element 20, the mechanical strength of the light emitting element 20 can be reinforced and a highly reliable light emitting device can be realized. Further, since the semiconductor substrate is removed, the height of the light emitting device can be reduced. Furthermore, the light extraction efficiency from the light emitting element 20 is improved by removing the semiconductor substrate.
  • the support substrate 10 is a resin
  • a ceramic substrate for the support substrate 10 is effective in increasing the mechanical strength of the light emitting device.
  • a liquid ceramic material is formed into a predetermined shape and then baked at a high temperature.
  • the mechanical strength of the light emitting device is improved. Furthermore, since the ceramic substrate is disposed so as to support substantially the entire lower surface of the light emitting element 20, it is possible to prevent the light emitting element 20 from being damaged due to distortion during manufacturing in a process of removing the semiconductor substrate 100 or the like. Further, it is possible to prevent the light emitting element 20 from being damaged by an impact applied to the light emitting device during product assembly or handling. As described above, by using the support substrate 10 as the ceramic substrate, it is possible to suppress damage to the light emitting device and deterioration of reliability. In addition, it is possible to suppress damage due to thermal distortion caused by solder heat treatment during product assembly.
  • the support substrate 10 is formed so that the lower surface of the first electrode 41 and the lower surface of the second electrode 42 are positioned below the lower surface of the support substrate 10.
  • the step between the lower surface of the support substrate 10 and the lower surface of the electrode region is set to about 10 ⁇ m.
  • the electrode region is formed on the side surface of the light emitting element 20, in dicing for singulation processing, as shown in FIGS. 14 and 15, the region cut by the dicing blade 200.
  • the electrode region is mainly cut from the support substrate 10. For this reason, when the support substrate 10 is a material harder than an electrode area
  • the stress applied to the light emitting element 20 greatly affects the characteristics of the light emitting device.
  • the light emitting device to which the CSP is applied has a structure in which the light emitting element 20 is in close contact with the package material, stress is easily applied to the light emitting element 20 due to a difference in linear expansion coefficient from the package material or deformation during processing.
  • the first ceramic layer 11 and the second ceramic layer 12 having a higher density and a larger linear expansion coefficient than the first ceramic layer 11 are laminated on the support substrate 10.
  • a ceramic substrate having a structure may be used.
  • the light emitting element 20 is disposed on the first ceramic layer 11 having a small linear expansion coefficient. As described above, by bringing the semiconductor layer constituting the light emitting element 20 and the first ceramic layer 11 having a linear expansion coefficient close to each other, distortion when curing the ceramic is alleviated and stress applied to the light emitting element 20 is reduced. be able to.
  • the second ceramic layer 12 having a large linear expansion coefficient is provided on the side of the support substrate 10 that is far from the light emitting element 20, so that the warp of the support substrate 10 is suppressed and the strength of the entire package is prevented from being lowered. it can. Therefore, by using the support substrate 10 having the structure shown in FIG. 16, a highly reliable and highly efficient light-emitting device can be realized. In order to reduce the linear expansion coefficient and elastic modulus of the first ceramic layer 11, for example, there is a method of increasing the porosity.
  • the glass substrate when a glass substrate is used as the light-transmitting substrate 70, the glass substrate has a high elastic coefficient and a large linear expansion coefficient, so that a large stress is generated in the light emitting element 20.
  • the linear expansion coefficient of the first ceramic layer 11 by making the linear expansion coefficient of the first ceramic layer 11 smaller than the linear expansion coefficient of the second ceramic layer 12, the linear expansion coefficient of the first ceramic layer 11 can be made closer to glass, The stress applied to the light emitting element 20 can be reduced.
  • the outer edge portion of the lower surface of the light emitting element 20 may overlap the electrode region.
  • the outer edge portion of the light emitting element 20 may overlap the electrode region in a plan view as long as the stress that destroys the light emitting element 20 or deteriorates the performance is not applied to the light emitting element 20.
  • the semiconductor device of the present invention can be used for a light emitting device to which CSP is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

支持基板10と、第1の半導体層21の上方に第2の半導体層23を配置した積層構造を有し、支持基板10の上に配置された発光素子20と、支持基板10の第1の側面101上から発光素子20の第1の側面201上に亘り連続的に配置され、第1の半導体層21と電気的に接続する第1の電極41と、支持基板10の第2の側面102上から発光素子20の第2の側面202上に亘り連続的に配置され、第2の半導体層23と電気的に接続する第2の電極42とを備える。

Description

発光装置
 本発明は、チップサイズパッケージの技術を適用した発光装置に関する。
 発光ダイオード(LED)などの発光素子を光源に用いる発光装置の発光効率向上や小型化のために、チップサイズパッケージ(Chip Size Package:CSP)が、発光装置に適用されている(例えば特許文献1参照。)。さらに極小サイズの半導体発光装置を実現するために、発光素子を構成する半導体層の形成に使用された半導体基板を半導体層から分離し、半導体層を樹脂などのパッケージに封入した構造の開発が進められている。
 CSPを適用した発光装置では、発光素子に接続する電極が、光取り出し面とは反対の面に配置される。このため、光取り出し面の方向に発光素子の出射光を遮蔽する物がなく、発光装置の発光効率が向上する。
特開2014-150196号公報
 しかしながら、材料が異なる支持基板と電極とが混在する面の上方に発光素子が配置されるため、これらの材料の線膨張係数などの差異によって、発光素子に歪みが発生する。その結果、発光装置が破損したり、発光装置の性能や製品寿命が低下したりするなどの問題が生じる。
 上記問題点に鑑み、本発明は、CSPを適用し、且つ発光素子に生じる歪みを抑制できる発光装置を提供することを目的とする。
 本発明の一態様によれば、支持基板と、第1の半導体層の上方に第2の半導体層を配置した積層構造を有し、支持基板の上に配置された発光素子と、支持基板の第1の側面上から発光素子の第1の側面上に亘り連続的に配置され、第1の半導体層と電気的に接続する第1の電極と、支持基板の第2の側面上から発光素子の第2の側面上に亘り連続的に配置され、第2の半導体層と電気的に接続する第2の電極とを備える発光装置が提供される。
 本発明によれば、CSPを適用し、且つ発光素子に生じる歪みを抑制できる発光装置を提供できる。
本発明の実施形態に係る発光装置の構造を示す模式的な断面図である。 本発明の実施形態に係る発光装置の構造を示す模式的な平面図である。 本発明の実施形態に係る発光装置の構造を示す他の模式的な平面図である。 本発明の実施形態に係る発光装置の構造を示す他の模式的な平面図である。 比較例の発光装置の構造を示す模式的な断面図である。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その1)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その2)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その3)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その4)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その5)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その6)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その7)。 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その8)。 本発明の実施形態に係る発光装置の製造方法におけるダイシング方法を説明するための模式的な断面図である。 本発明の実施形態に係る発光装置の製造方法におけるダイシング方法を説明するための模式的な平面図である。 本発明の実施形態の変形例に係る発光装置の構造を示す模式的な断面図である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。
 (実施形態)
 本発明の実施形態に係る発光装置は、図1に示すように、支持基板10と、第1の半導体層21の上方に第2の半導体層23を配置した積層構造を有し、支持基板10の上に配置された発光素子20と、第1の半導体層21と電気的に接続する第1の電極41と、第2の半導体層23と電気的に接続する第2の電極42とを備える。
 第1の電極41は、支持基板10の第1の側面101上から発光素子20の第1の側面201上に亘り連続的に配置されている。第2の電極42は、第1の電極41と離間して、支持基板10の第2の側面102上から発光素子20の第2の側面202上に亘り連続的に配置されている。以下において、第1の電極41と第2の電極42を総称して、「電極領域」という。
 図1に示した発光装置では、発光素子20に電流を供給する電極領域が、発光素子20の側面上に配置されている。そして、発光素子20の下方には、第1の電極41と第2の電極42とに挟まれて支持基板10が配置されており、発光素子20の下方において、支持基板10と電極領域との境界がない。
 発光素子20は、第1導電型の第1の半導体層21と第2導電型の第2の半導体層23を有する積層構造である。第1導電型と第2導電型とは互いに反対導電型である。即ち、第1導電型がP型であれば、第2導電型はN型であり、第1導電型がN型であれば、第2導電型はP型である。以下では、第1導電型がP型であり、第2導電型がN型である場合を例示的に説明する。例えば、発光素子20は、第1の半導体層21をP型クラッド層、第2の半導体層23をN型クラッド層とするLED素子である。図1に示した例では、第1の半導体層21、発光層22、第2の半導体層23が積層されたダブルヘテロ構造を発光素子20に採用している。
 第1の電極41から第1の半導体層21に正孔が供給され、第2の電極42から第2の半導体層23に電子が供給される。そして、発光層22に、第1の半導体層21から正孔が注入され、第2の半導体層23から電子が注入される。注入された正孔と電子が発光層22で再結合することにより、発光層22で光が発生する。
 発光素子20は、第2の半導体層23の主面を光取り出し面としている。発光素子20の出射光は、第2の半導体層23の上方に配置された光透過性基板70を透過して、発光装置から出力光Lとして出力される。なお、発光素子20の側面に露出して電極領域が配置され、光透過性基板70の側面も露出している。即ち、第1の電極41及び第2の電極42の外側の側面と、光透過性基板70の側面とは、同一平面レベルである。
 発光素子20の第1の半導体層21と第1の電極41とを接続する第1の引き出し電極51が、第1の半導体層21の下面と電気的に接続されている。なお、第1の半導体層21の下面には、反射金属層30が配置されており、第1の引き出し電極51は、反射金属層30を介して、第1の半導体層21と電気的に接続している。第1の引き出し電極51は、膜厚方向に垂直な方向に延伸して、第1の電極41に接続している。
 発光素子20から第1の半導体層21の方向に進行した出射光は、反射金属層30の表面において反射する。即ち、反射金属層30によって、光取り出し面とは逆方向に進行する発光素子20の出射光を、光取り出し面に向けて反射させることができる。このため、出力光Lの輝度を向上することができる。反射金属層30には、発光素子20の出射光に対する反射率が高く、且つ、第1の半導体層21とオーミック接触の可能な導電性材料が使用される。例えば、銀パラジウム合金などの銀系合金などの白色系の金属膜が、反射金属層30の材料に好適に使用される。
 発光素子20の第2の半導体層23と第2の電極42とを接続する第2の引き出し電極52が、第2の半導体層23の下面と電気的に接続されている。図1に示すように、第2の半導体層23は、平面視で第1の半導体層21及び発光層22の配置されていない領域まで水平方向に延伸する領域(以下において、「延伸領域」という。)を有する。第2の引き出し電極52は、第2の半導体層23の延伸領域の下面に接続している。第2の引き出し電極52は、膜厚方向に垂直な方向に延伸して、第2の電極42に接続している。
 なお、発光素子20の側面及び下面を覆って配置された保護膜60によって、発光素子20、電極領域、第1の引き出し電極51及び第2の引き出し電極52が絶縁分離されている。保護膜60には、例えば酸化シリコン膜や窒化シリコン膜などを採用可能である。保護膜60は、外部から発光素子20への水分の浸入の抑制や、発光装置の機械的強度の向上に寄与する。
 図2に、図1のII-II方向に沿った断面の平面図を示す。発光素子20は矩形状であり、第1の側面201と第2の側面202とは対向する。発光素子20と電極領域とは、保護膜60によって絶縁分離されている。発光素子20の他の対向する一対の側面上には、支持基板10が形成されている。即ち、発光素子20は、支持基板10の上部と電極領域の上部によって構成される凹部に配置されている。
 図3に、図1のIII-III方向に沿った平面図を示す。第1の引き出し電極51と第2の引き出し電極52は、支持基板10及び保護膜60によって分離されている。
 図4は、図1のIV-IV方向に沿った平面図である。発光装置の下部は、矩形状の支持基板10の互いに対向する第1の側面101と第2の側面102とが、電極領域によって覆われた構造である。
 支持基板10には、フィラー入りのエポキシ系樹脂やシリコーン系樹脂などを採用可能である。また、これらの樹脂に白色顔料を加えることによって、白色の支持基板10を実現できる。白色の支持基板10によれば、支持基板10での反射率を向上させることができる。その結果、発光装置の輝度が向上する。
 また、詳細は後述するが、樹脂よりも機械的強度の高い材料を支持基板10に使用してもよい。例えば、セラミック基板を支持基板10に使用する。支持基板10に機械的強度の高いセラミック基板を使用することによって、発光装置のパッケージとしての機械的強度を向上できる。
 光透過性基板70は、発光素子20の封止材及び発光装置のレンズとして機能する。例えば、発光素子20の出射光が透過する樹脂基板として、光透過性基板70に熱可塑性樹脂や熱硬化性樹脂を使用できる。光透過性基板70に透明樹脂を使用することによって、発光素子20の出射光と同色の出力光Lを発光装置から出力できる。
 或いは、発光素子20の出射光によって励起されて励起光を放射する蛍光体を含有する蛍光体樹脂を光透過性基板70に採用してもよい。光透過性基板70に蛍光体樹脂を採用することにより、所望の色の出力光Lを発光装置から出力できる。また、発光装置から、発光素子20の出射光と励起光とが混色された出力光Lを出力させることも可能である。例えば、出射光が青色光の発光素子20を使用した場合に、青色光に励起されて黄色光を放射するイットリウム・アルミニウム・ガーネット(YAG)などを光透過性基板70に含まれる蛍光体として用いる。このとき、発光素子20から出射された青色光の一部が蛍光体を励起することにより、黄色光に波長変換される。蛍光体から放射された黄色光と発光素子20から出射された青色光とが混合されることにより、白色の出力光Lが発光装置から出力される。なお、発光装置の出力光Lが白色光以外の場合にも、発光素子20の出射光と蛍光体との種々の組み合わせを採用可能である。
 光透過性基板70に使用する透明樹脂として、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂などを採用可能である。例えば、照明用途などの大電力の発光装置では、耐熱性が高いシリコーン系の樹脂が使用される。また、蛍光体樹脂として前記の透明樹脂に蛍光材料を混合したものなどを使用できる。
 ところで、CSPは、発光素子20に接続された電極領域の配置されていない方向から光を取り出す構造である。このため、光取り出し面の方向に発光素子からの光を遮蔽する物がないため、発光装置の発光効率が向上する。また、電極の電気配線にワイヤボンディングを使用しないため、ワイヤの断線やワイヤを介しての短絡などの不具合を抑制することができる。したがって、発光装置の信頼性が向上する。
 図5は、CSPを適用した比較例の発光装置である。図5に示した発光装置では、上部に凹部が設けられた支持基板10Aと、支持基板10Aの凹部内に配置された発光素子20と、発光素子20の上方に配置された光透過性基板70とを備える。即ち、発光素子20の下面及び側面は、支持基板10によって囲まれている。
 図5に示すように、第1の電極41Aは、支持基板10Aの下部を貫通して、支持基板10Aの凹部内で反射金属層30を介して第1の半導体層21に接続する。第2の電極42Aは、第1の電極41Aの支持基板10Aを貫通する位置と離間した位置で支持基板10Aの下部を貫通して、支持基板10Aの凹部内で第2の半導体層23の延伸領域と接続している。支持基板10Aの凹部の内部の残余の領域には、保護膜60が配置されている。
 図5に示した発光装置では、支持基板10Aと第1の電極41A及び第2の電極42Aによって、発光素子20が下方から支持されている。このため、支持基板10Aと第1の電極41A及び第2の電極42Aとの線膨張係数の差などによって、発光素子20に歪みが発生する。
 これに対し、図1に示した発光装置では、発光素子20の下方に、支持基板10と電極領域との境界がない。したがって、図1に示した発光装置によれば、支持基板10と電極領域との線膨張係数の違いに起因して発光素子20に歪みが発生することが抑制される。
 以上に説明したように、本発明の実施形態に係る発光装置では、電極領域が発光素子20の側面上に配置され、発光素子20は支持基板10によって下方から支持されている。発光素子20が均一な材料によって下方から支持されるため、発光素子20に歪みによる応力が加わることが抑制される。このため、発光装置の破損が防止され、発光装置の性能の低下や製品寿命の低下が抑制される。その結果、実施形態に係る発光装置によれば、CSPを適用し、且つ発光素子20に生じる歪みを抑制できる発光装置を提供することができる。なお、上記の効果を奏するためには、平面視で、発光素子20の下面の全体が支持基板10に覆われていることが好ましい。
 以下に、図6~図13を参照して、本発明の実施形態に係る発光装置の製造方法を説明する。なお、以下に述べる発光装置の製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることはもちろんである。
 先ず、図6に示すように、厚さ700μm程度の半導体基板100上に発光素子20を構成する各層をエピタキシャル成長法などによって形成する。具体的には、N型半導体膜230、発光領域膜220及びP型半導体膜210を半導体基板100上に順次積層する。N型半導体膜230、発光領域膜220及びP型半導体膜210には、窒化ガリウムなどの窒化物系化合物半導体層などが使用される。その後、ドライエッチングによってN型半導体膜230、発光領域膜220及びP型半導体膜210をパターニングして、第2の半導体層23、発光層22及び第1の半導体層21を形成する。
 次に、ドライエッチング法などによって、第1の半導体層21及び発光層22の一部を除去して、第2の半導体層23の一部を露出させる。この露出された部分が、第2の引き出し電極52が接続される延伸領域である。次いで、露出している第1の半導体層21、第2の半導体層23の延伸領域及び発光素子20を覆うように保護膜60を形成する。
 その後、図7に示すように、第1の半導体層21の上で保護膜60の開口部を形成し、この開口部で第1の半導体層21と接続するように反射金属層30を形成する。そして、反射金属層30と接続するように、第1の引き出し電極51を形成する。また、第2の半導体層23の延伸領域の上で保護膜60の開口部を形成し、この開口部で第2の半導体層23と接続するように第2の引き出し電極52を形成する。なお、第1の引き出し電極51と第2の引き出し電極52には、金(Au)膜などを使用するが、発光素子20からの出射光を反射する材料を使用することが好ましい。例えば、アルミニウム(Al)膜や銀(Ag)膜も使用される。
 次いで、図8に示すように、発光素子20の第1の側面201側に、第1の引き出し電極51と電気的に接続するように、第1の電極41を形成する。同時に、発光素子20の第2の側面202側に、第2の引き出し電極52と電気的に接続するように、第2の電極42を形成する。第1の電極41及び第2の電極42は、例えば、銅(Cu)メッキによって形成する。なお、電極領域の材料は、発光装置の全体の強度などを考慮して選択される。Cuメッキ以外にも、Al材などを電極領域に使用してもよい。
 その後、図9に示すように、第1の電極41と第2の電極42との間を埋め込むようにして、保護膜60や第1の引き出し電極51及び第2の引き出し電極52を覆って、支持基板10を形成する。支持基板10の形成には、例えばトランスファーモールド(TRM)法などを採用可能である。なお、支持基板10の厚みが所定値になるまで、支持基板10の表面を膜厚方向にバックグラインド工程によってエッチングする。これにより、図9に示すように、第1の電極41及び第2の電極42の下面が、支持基板10の下面よりも下方に露出する。
 次いで、第1の電極41の下面を覆うように第1の接続用電極81を形成し、第2の電極42の下面を覆うように第2の接続用電極82を形成する。第1の接続用電極81及び第2の接続用電極82(以下、総称して「接続用電極」という。)は、例えばプリント基板などの実装基板に発光装置を取り付ける場合に、実装基板に配置された配線パターンと発光装置の電極領域とを接続するために使用される。接続用電極には、半田電極などが好適に使用される。
 その後、図10に示すように、支持基板10及び接続用電極の下面を覆うようにサポート基板110を形成する。サポート基板110は、発光素子20と支持基板10を重ねた基体の厚みが数十μmしかないため、半導体基板100を削除した後の基体の強度を補強するために形成される。例えば、厚みが1mm程度のシリコン基板やセラミック基板を、サポート基板110として基体に接着する。
 その後、図11に示すように、基体から半導体基板100を削除する。例えば、半導体基板100がシリコン基板である場合には、フッ硝酸を用いたウェットエッチングによって半導体基板100を削除する。半導体基板100がサファイア基板である場合には、レーザリフトオフ法などを使用する。
 なお、図12に示すように、半導体基板100の削除により露出した第2の半導体層23の主面に凹凸構造を形成してもよい。このように発光素子20の光取り出し面の表面を粗面化することにより、発光素子20の出射光が散乱され、出力光Lの輝度を向上させることができる。凹凸構造は、例えば、フォトマスクやナノインプリントにより形成したパターンを用いたドライエッチング加工によって形成される。
 その後、図13に示すように、第2の半導体層23上に光透過性基板70を形成する。そして、ダイシングによって発光装置を個々に分離する個片化処理の後、サポート基板110を除去する。以上により、図1に示す発光装置が完成する。
 上記のような本発明の実施形態に係る発光装置の製造方法によれば、電極領域が発光素子20の側面上に形成され、下方から支持基板10によって発光素子20の全体が支持される構造を実現できる。このため、発光素子20に歪みによる応力が加わることが抑制される。
 CSPではない従来のパッケージを使用する発光装置では、半導体基板に半導体層を積層して発光素子20を形成し、半導体基板が支持基板として使用される。これに対し、CSPを適用した発光装置では、発光素子20を形成したウェハに樹脂などを塗布して支持基板10を形成する。このようにウェハ状態でパッケージを形成することによって、低コストで発光装置を製造できる。このため、一般的にウェハレベルパッケージ(WLP)とも呼ばれる。
 発光素子20に直接に接するように、若しくは、発光素子20に形成された保護膜60や電極領域と直接に接するように、支持基板10が形成されることが、WLPの構造的特徴である。パッケージが発光素子20と接しているため、発光素子20の機械的強度を補強して、信頼性の高い発光装置を実現できる。また、半導体基板が除去されるため、発光装置の高さを低くできる。更に、半導体基板の除去によって、発光素子20からの光取り出し効率が向上する。
 <変形例>
 上記では、支持基板10が樹脂である例を記載したが、支持基板10に樹脂よりも機械的強度の高い材料を使用することが好ましい。なぜなら、CSPを適用した発光装置では、半導体基板が削除され、且つ、光取り出し面にエポキシ樹脂やシリコーン樹脂などの機械的強度の低い透明樹脂を使用するため、パッケージ全体の機械的強度が低い。このため、支持基板10に機械的強度の高い材料を使用することによって、パッケージ全体の機械的強度を高くすることが好ましい。これに対し、パッケージの機械的強度が低いと、発光装置を製品基板に組み込む際や、組み込んだ後に破損する危険がある。また、発光装置が破損しないように、組み込み装置の構成を工夫したり、組み込み速度を遅くしたりするなどの対応が必要である。
 このため、例えば支持基板10にセラミック基板を使用することが、発光装置の機械的強度を高める上で有効である。支持基板10をセラミック基板とするためには、図9を参照して説明した支持基板10を形成する工程において、液状にしたセラミック材料を所定の形状に形成した後に、高温で焼き固める。
 支持基板10にセラミック基板を使用することによって、発光装置の機械的強度が向上する。更に、セラミック基板は発光素子20の下面の略全面を支持するように配置されるため、半導体基板100を削除する工程などにおける製造時の歪みにより発光素子20が破損することを抑制できる。また、製品組み立て時や取り扱い時に発光装置に加わる衝撃によって発光素子20がダメージを受けることを防止できる。このように、支持基板10をセラミック基板にすることによって、発光装置の破損や信頼性の低下を抑制することができる。また、製品組み立て時での半田熱処理などにより発生する熱歪みによるダメージを抑制できる。
 ただし、セラミック基板の場合、セラミック基板を形成した後の研磨処理(バックグラインド)が、樹脂基板に比べて困難である。このため、支持基板10を形成する工程において、第1の電極41の下面及び第2の電極42の下面が、支持基板10の下面よりも下方に位置するように、支持基板10を形成する。例えば、支持基板10の下面と電極領域の下面との段差を、10μm程度に設定する。これにより、支持基板10としてセラミック基板を形成した後の、セラミック基板の研磨処理が不要になる。このため、研磨処理が支持基板10や発光素子20に与えるダメージを小さくすることができる。その結果、発光装置の歩留まりの低下や信頼性の低下を抑制できる。
 図1に示した発光装置では電極領域が発光素子20の側面上に形成されているため、個片化処理するダイシングでは、図14や図15に示すように、ダイシングブレード200によって切断される領域は、支持基板10よりも電極領域が主に切断される。このため、セラミック基板を使用した場合などの、支持基板10が電極領域よりも硬い材料である場合に、ダイシングの処理時間が減少する。また、ダイシングブレードの寿命が延びるため、製造コストを低減することができる。
 なお、発光素子20に加わる応力が、発光装置の特性に大きく影響する。特に、CSPを適用した発光装置は、発光素子20がパッケージ材料と密着する構造であるため、パッケージ材料との線膨張係数との違いや加工時の変形によって、発光素子20に応力が加わりやすい。
 このため、図16に示すように、支持基板10に、第1のセラミック層11と、第1のセラミック層11よりも密度が高く、線膨張係数の大きい第2のセラミック層12とを積層した構造を有するセラミック基板を使用してもよい。図16に示すように、線膨張係数の小さい第1のセラミック層11の上に、発光素子20が配置される。このように、発光素子20を構成する半導体層と線膨張係数の近い第1のセラミック層11を密着させることによって、セラミックを硬化させるときの歪みが緩和され、発光素子20に加わる応力を低下させることができる。また、支持基板10の発光素子20から遠い側を、線膨張係数の大きい第2のセラミック層12にすることによって、支持基板10の反りが抑制され、パッケージ全体としての強度が低下することを防止できる。したがって、図16に示した構造の支持基板10を使用することによって、信頼性の高い、高効率の発光装置を実現できる。第1のセラミック層11の線膨張係数や弾性係数を低くするには、例えば空孔率を高くする方法などがある。
 また、光透過性基板70にガラス基板を使用した場合、ガラス基板は弾性係数が高く、線膨張係数が大きく異なるため、発光素子20に大きな応力が発生する。この場合は、第1のセラミック層11の線膨張係数を第2のセラミック層12の線膨張係数よりも小さくすることで、第1のセラミック層11の線膨張係数をガラスに近づけることができ、発光素子20に加わる応力を低下させることができる。
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、発光素子20の下面の外縁部が電極領域と重なっている部分が多少あってもよい。つまり、発光素子20を破壊したり性能を低下させたりするほどの応力が発光素子20に加わらない範囲で、平面視で発光素子20の外縁部が電極領域と重なってもよい。
 このように、本発明はここでは記載していない様々な実施形態等を含むことはもちろんである。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明の半導体装置は、CSPを適用した発光装置の用途に利用可能である。

Claims (8)

  1.  支持基板と、
     第1の半導体層の上方に第2の半導体層を配置した積層構造を有し、前記支持基板の上に配置された発光素子と、
     前記支持基板の第1の側面上から前記発光素子の第1の側面上に亘り連続的に配置され、前記第1の半導体層と電気的に接続する第1の電極と、
     前記支持基板の第2の側面上から前記発光素子の第2の側面上に亘り連続的に配置され、前記第2の半導体層と電気的に接続する第2の電極と
     を備えることを特徴とする発光装置。
  2.  前記発光素子の少なくとも一部を覆う保護膜を更に備え、
     前記支持基板が、前記発光素子と前記保護膜の少なくともいずれかと接触していることを特徴とする請求項1に記載の発光装置。
  3.  前記支持基板が、前記第1の電極及び前記第2の電極よりも硬い材料であることを特徴とする請求項1に記載の発光装置。
  4.  平面視で、前記発光素子の下面の全体が前記支持基板に覆われていることを特徴とする請求項1に記載の発光装置。
  5.  前記支持基板がセラミック基板であることを特徴とする請求項1に記載の発光装置。
  6.  前記第1の電極の下面及び前記第2の電極の下面が、前記支持基板の下面よりも下方に位置することを特徴とする請求項5に記載の発光装置。
  7.  前記セラミック基板が、
     第1のセラミック層と、
     前記第1のセラミック層よりも線膨張係数の大きい第2のセラミック層と
     を積層した構造を有し、前記第1のセラミック層の上に前記発光素子が配置されていることを特徴とする請求項5に記載の発光装置。
  8.  前記発光素子の上方に配置された光透過性基板を更に備え、
     前記第1の電極及び前記第2の電極の外側の側面と、前記光透過性基板の側面とが同一平面レベルであることを特徴とする請求項1に記載の発光装置。
PCT/JP2016/065966 2016-05-31 2016-05-31 発光装置 WO2017208321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017529105A JP6269901B1 (ja) 2016-05-31 2016-05-31 発光装置
PCT/JP2016/065966 WO2017208321A1 (ja) 2016-05-31 2016-05-31 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065966 WO2017208321A1 (ja) 2016-05-31 2016-05-31 発光装置

Publications (1)

Publication Number Publication Date
WO2017208321A1 true WO2017208321A1 (ja) 2017-12-07

Family

ID=60479358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065966 WO2017208321A1 (ja) 2016-05-31 2016-05-31 発光装置

Country Status (2)

Country Link
JP (1) JP6269901B1 (ja)
WO (1) WO2017208321A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173197A (ja) * 2004-12-13 2006-06-29 Citizen Electronics Co Ltd 光半導体素子及び光半導体装置並びに光半導体素子の製造方法
JP2008181932A (ja) * 2007-01-23 2008-08-07 Sanyo Electric Co Ltd 発光装置及びその製造方法
WO2008093880A1 (ja) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法
WO2008123020A1 (ja) * 2007-03-09 2008-10-16 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法
JP2011223000A (ja) * 2010-04-12 2011-11-04 Lg Innotek Co Ltd 発光素子、発光素子パッケージ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106638A (ja) * 1993-09-30 1995-04-21 Rohm Co Ltd チップ型発光ダイオードの製造方法
JP4366810B2 (ja) * 2000-02-08 2009-11-18 日亜化学工業株式会社 発光ダイオードの形成方法
JP4724222B2 (ja) * 2008-12-12 2011-07-13 株式会社東芝 発光装置の製造方法
US9269873B2 (en) * 2012-03-13 2016-02-23 Citizen Holdings Co., Ltd. Semiconductor light emitting device and method for manufacturing same
KR102171024B1 (ko) * 2014-06-16 2020-10-29 삼성전자주식회사 반도체 발광소자 패키지의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173197A (ja) * 2004-12-13 2006-06-29 Citizen Electronics Co Ltd 光半導体素子及び光半導体装置並びに光半導体素子の製造方法
JP2008181932A (ja) * 2007-01-23 2008-08-07 Sanyo Electric Co Ltd 発光装置及びその製造方法
WO2008093880A1 (ja) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法
WO2008123020A1 (ja) * 2007-03-09 2008-10-16 Sanyo Electric Co., Ltd. 半導体装置及びその製造方法
JP2011223000A (ja) * 2010-04-12 2011-11-04 Lg Innotek Co Ltd 発光素子、発光素子パッケージ

Also Published As

Publication number Publication date
JPWO2017208321A1 (ja) 2018-06-14
JP6269901B1 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
KR101158242B1 (ko) 반도체 발광 장치 및 그 제조 방법
TWI595686B (zh) Semiconductor light-emitting device
US8026527B2 (en) LED structure
JP5377985B2 (ja) 半導体発光素子
TWI543399B (zh) 半導體發光裝置
JP5657591B2 (ja) 半導体発光装置およびその製造方法
TWI513065B (zh) Semiconductor light emitting device and light emitting device
US9484498B2 (en) Light emitting structure having electrodes forming a concave surface and manufacturing method thereof
JP2015195332A (ja) 半導体発光装置及びその製造方法
JP2006253298A (ja) 半導体発光素子及び半導体発光装置
JP2007287713A (ja) 発光装置及びその製造方法
JP2007103901A (ja) 発光装置
JP6185415B2 (ja) 半導体発光装置
JP2014150196A (ja) 半導体発光装置およびその製造方法
JP6536859B2 (ja) 発光装置
JP2002222992A (ja) Led発光素子、およびled発光装置
KR101764129B1 (ko) 반도체 발광소자 및 이를 제조하는 방법
WO2018163326A1 (ja) 発光装置及びその製造方法
JP6269901B1 (ja) 発光装置
JP2011066453A (ja) 半導体発光素子及び半導体発光装置
JP6265306B1 (ja) 発光装置
JP6414334B1 (ja) 発光装置
KR20160047306A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR102338179B1 (ko) 반도체 발광소자 및 이의 제조방법
KR20170052546A (ko) 반도체 발광소자 및 이를 제조하는 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017529105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903949

Country of ref document: EP

Kind code of ref document: A1