WO2017204408A1 - 전선 구조체 및 이의 제조 방법 - Google Patents

전선 구조체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017204408A1
WO2017204408A1 PCT/KR2016/008495 KR2016008495W WO2017204408A1 WO 2017204408 A1 WO2017204408 A1 WO 2017204408A1 KR 2016008495 W KR2016008495 W KR 2016008495W WO 2017204408 A1 WO2017204408 A1 WO 2017204408A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
wire
metal
chamber
graphene
Prior art date
Application number
PCT/KR2016/008495
Other languages
English (en)
French (fr)
Inventor
원동관
임현태
류재철
Original Assignee
해성디에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 해성디에스 주식회사 filed Critical 해성디에스 주식회사
Priority to US15/545,962 priority Critical patent/US20180190406A1/en
Priority to CN201680084950.4A priority patent/CN109074892A/zh
Publication of WO2017204408A1 publication Critical patent/WO2017204408A1/ko
Priority to US16/731,681 priority patent/US20200135357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/006Constructional features relating to the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • Embodiments of the present invention relate to a wire structure and a method of manufacturing the same.
  • Graphene is a material in which carbon is connected to each other in a hexagonal shape to form a honeycomb two-dimensional planar structure, and its thickness is very thin, transparent, and has a very high electrical conductivity. Many attempts have been made to apply graphene to touch panels, transparent displays, or flexible displays by using these characteristics of graphene.
  • Graphene is synthesized on the surface of the catalytic metal by chemical vapor deposition (CVD) by introducing a gas containing carbon.
  • CVD chemical vapor deposition
  • a graphene synthesis apparatus that maintains a high temperature environment is required, and a gas containing carbon may dissociate under high temperature conditions to form graphene on the surface of the catalytic metal.
  • An object of the present invention is to provide a wire structure and a method of manufacturing the same.
  • An embodiment of the present invention includes a copper (Cu) wire extending and extending in one direction and a graphene coating film formed to surround the copper (Cu) wire on the outside of the copper (Cu) wire, Copper (Cu) wires disclose wire structures formed from copper (Cu) metal with a purity of at least 99.9%.
  • FIG. 1 is a perspective view schematically showing the graphene referred to herein.
  • FIG. 2 is a perspective view showing a wire structure according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an embodiment of a wire structure manufacturing apparatus for forming a wire structure.
  • FIG. 4 is a perspective view showing a wire structure according to another embodiment of the present invention.
  • An embodiment of the present invention includes a copper (Cu) wire extending and extending in one direction and a graphene coating film formed to surround the copper (Cu) wire on the outside of the copper (Cu) wire, Copper (Cu) wires disclose wire structures formed from copper (Cu) metal with a purity of at least 99.9%.
  • the graphene coating film is plated on the surface of the copper (Cu) wire to surround the copper (Cu) wire It can be formed on the surface of the.
  • the metal plated on the surface of the copper (Cu) wire may be one of gold (Au), silver (Ag), nickel (Ni), and rhodium (Rh).
  • the graphene coating film may be formed to surround the copper (Cu) wire by rapid thermal chemical vapor deposition (Rapid-Thermal CVD).
  • a gas containing carbon is injected during the rapid thermal chemical vapor deposition (Rapid-Thermal CVD) process to form the graphene coating film on the outer side of the copper (Cu) wire.
  • the gas containing carbon may be a methane (CH4) gas.
  • the crystal size of the copper (Cu) metal forming the copper (Cu) wire may be larger than the crystal size of the pure copper (Cu) metal.
  • the crystal forming direction of the copper (Cu) metal forming the copper (Cu) wire may be made in a specific direction.
  • a copper (Cu) wire extending in one direction in the chamber, supplying a gas containing carbon in the chamber, the copper (Cu) wire Rapidly heating the interior of the chamber to a temperature of 600 ° C. or more in a few seconds to several minutes for heating and injecting a gas containing carbon into the chamber, wherein the copper (Cu) wire is 99.9;
  • the graphene coating film may be formed to dissociate the gas containing carbon to surround the copper (Cu) wire.
  • the graphene coating film surrounding the copper (Cu) wire may further comprise the step of cooling at a constant rate.
  • the gas containing carbon may be a methane (CH4) gas.
  • the crystal size of the copper (Cu) metal forming the copper (Cu) wire may be larger than the crystal size of the pure copper (Cu) metal.
  • the crystal forming direction of the copper (Cu) metal forming the copper (Cu) wire may be made in one specific direction.
  • the copper (Cu) wire may be plated with a metal or alloy other than copper (Cu) on the surface.
  • the metal plated on the surface of the copper (Cu) wire may be one of gold (Au), silver (Ag), nickel (Ni), rhodium (Rh).
  • FIG. 1 is a perspective view schematically showing the graphene referred to herein.
  • graphene refers to a graphene in which a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule, which is formed in a film form.
  • a 6-membered ring is formed as a repeating unit, it is also possible to further include 5-membered ring and / or 7-membered ring.
  • the graphene film thus forms a single layer of covalently bonded carbon atoms (C) (usually sp2 bonds).
  • C covalently bonded carbon atoms
  • the graphene film may have various structures, and such a structure may vary depending on the content of 5-membered and / or 7-membered rings that may be included in graphene.
  • the graphene film may be formed of a single layer of graphene as shown, but they may be stacked with each other to form a plurality of layers, and the side end portion of the graphene may be saturated with a hydrogen atom (H). .
  • Graphene (grapheme) is a two-dimensional planar nanomaterials can have a variety of physical, chemical, electrical, and optical properties. In particular, it may have a charge mobility of about 100 times that of silicon (Si), about 150 times that of copper (Cu), and may have an allowable current density of about 100 times that of copper (Cu).
  • graphene is a nano-structure of a two-dimensional planar structure structurally can be used in various forms.
  • FIG. 2 is a perspective view showing the wire structure 1000 according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view schematically showing an embodiment of the wire structure manufacturing apparatus 100 for forming a wire structure.
  • the wire structure 1000 according to the present embodiment is a graphene coating film coated on the surface of the copper (Cu) wire 200 to surround the copper (Cu) wire 200b and the copper (Cu) wire 200b ( 300).
  • the copper (Cu) wire 200b may be formed of a copper (Cu) metal having a purity of 99.9% or more.
  • the copper (Cu) metal forming the copper (Cu) wire 200b is low in purity and contains many other elements, other elements other than the copper (Cu) metal may be formed in the process of forming the wire structure 1000. As a result, graphene is not uniformly coated on the surface of the copper wire 200a.
  • the wire structure 1000 according to the present embodiment is formed of a copper (Cu) wire 200a made of copper (Cu) metal having a purity of 99.9% or more, thereby forming graphene on the surface when the graphene coating layer 300 is formed.
  • Cu copper
  • Graphene has a charge mobility of about 100 times that of silicon (Si) and about 150 times that of copper (Cu), as described above. In addition, it has an allowable current density of about 100 times that of copper (Cu) and has a high thermal conductivity.
  • the wire structure 1000 according to the present embodiment in which the graphene coating layer 300 is formed to surround the copper (Cu) wire 200b has more excellent electrical characteristics such as charge mobility, current density, and thermal conductivity. There is a beneficial effect of degradation.
  • a graphene coating layer 300 having a high charge mobility is formed on the surface of the copper (Cu) wire 200b to surround the copper (Cu) wire 200b.
  • a copper (Cu) wire 200a extending in one direction should be provided in the wire structure manufacturing apparatus 100 as shown in FIG. 3. .
  • the wire structure manufacturing apparatus 100 may include a copper (Cu) wire 200a having a wire shape extending in one direction. have.
  • the present invention is not limited thereto, and only one copper (Cu) wire 200a is provided or three or more wires are provided.
  • a copper (Cu) wire 200a may be provided in the wire structure manufacturing apparatus 100.
  • the wire structure manufacturing apparatus 100 may include a chamber 101, a lamp unit 130, and a conductive plate 110.
  • the gas supply unit 140, the discharge unit 150, a pressure reducing unit (not shown) and a gate (not shown) may be further provided.
  • FIG 3 is a cross-sectional view of the wire structure manufacturing apparatus 100.
  • the cross section of the chamber 101 is shown in a quadrangle when the chamber 101 is a hexahedron.
  • the shape of the chamber 101 is not limited thereto.
  • the chamber 101 may be provided in addition to a hexahedron, other polyhedrons, polygonal pillars, polygonal pyramids, or spheres.
  • the lamp unit 130 may be formed on the surface facing the copper (Cu) wire 200a in order to maximize the area of radiant heat applied to the copper (Cu) wire 200a, but is not limited thereto.
  • the lamp unit 130 may be disposed on the surfaces of the three or more chambers 101, respectively, or may be disposed on only one surface.
  • the lamp unit 130 may include a halogen lamp, and a plurality of halogen lamps may be disposed at predetermined intervals.
  • Halogen lamps emit near infrared, mid-infrared and / or visible light.
  • the lamp unit 130 may further include a window (not shown), and the window may be disposed to surround the outer circumference of the halogen lamp, or may be disposed on one side of the halogen lamps arranged in parallel in one direction.
  • the window may comprise a transparent material, for example quartz. The window protects the halogen lamp and can enhance the light efficiency.
  • the copper (Cu) wire 200a since the copper (Cu) wire 200a according to the present embodiment has a high reflectance, most of the radiant heat supplied from the lamp unit 130 may be reflected. In this case, since the copper (Cu) wire 200a is not easily heated, it may take a long time until the temperature required for forming the graphene coating layer 300 is reached.
  • the wire structure manufacturing apparatus 100 may further include a conductive plate 110.
  • the conductive plate 110 converts the radiant heat of the lamp unit 130 into convective heat and releases it into the chamber 101 to heat the copper (Cu) wire 200a and the gas.
  • the conductive plate 110 may be raised in temperature by radiant heat emitted from the lamp unit 130.
  • the conductive plate 110 may be formed without being limited as long as the material can be raised in temperature by radiant heat.
  • the conductive plate 110 may include a metal coated with graphite or an oxide film. This is because by coating the oxide film on the metal, the reflectance can be lowered and the absorption rate of the radiant heat can be increased.
  • the conductive plate 110 may be disposed to face the copper (Cu) wire 200a together with the lamp unit 130.
  • the conductive plate 110 may be formed in parallel with the lamp unit 130 as shown in FIG. 3 and is disposed between the lamp unit 130 and the copper (Cu) wire 200a and thus the lamp unit 130.
  • the radiant heat of) may be converted to convective heat to heat the copper (Cu) wire 200a.
  • the conductive plate 110 may be disposed on both sides of the chamber 101 with the copper (Cu) wires 200a interposed therebetween like the lamp unit 130.
  • the present invention is not limited thereto, and as another embodiment, only one conductive plate 110 may be formed inside the chamber 101.
  • the conductive plate 110 may emit convective heat to heat both the copper (Cu) wire 200a and the gas, thereby converting the inside of the chamber 101 into a high temperature optimized for graphene synthesis in a short time.
  • the heat generated inside the chamber 101 may be confined to maintain a high temperature.
  • the apparatus 100 for manufacturing a wire structure may convert the inside of the chamber 101 into a high temperature of 600 ° C. or more within a few seconds to several minutes by the conductive plate 110 and the lamp unit 130.
  • the temperature inside the chamber 101 may be rapidly raised to a high temperature of 900 to 1050 ° C.
  • the wire structure 1000 according to the present exemplary embodiment may be formed by depositing a graphene coating layer 300 on the surface of a copper (Cu) wire 200b heated by rapid thermal chemical vapor deposition (Rapid-Thermal CVD). Can be.
  • Cu copper
  • Rapid-Thermal CVD rapid thermal chemical vapor deposition
  • the apparatus 100 for manufacturing a wire structure according to the present exemplary embodiment may be made to a high temperature condition in which the graphene coating layer 300 may be formed by rapidly raising the inside of the chamber 101 within a short time.
  • Copper (Cu) wire provided in the chamber 101 as the inside of the chamber 101 is rapidly converted to a high temperature in a short time by the radiant heat emitted from the lamp unit 130 and the convective heat transmitted by the conductive plate 110. 200a will cause recrystallization.
  • the grain size of the copper (Cu) metal forming the copper (Cu) wire (200a) can be very large at a rapid temperature increase rate of several seconds to several minutes.
  • grains of copper (Cu) metal forming the copper (Cu) wire 200a may be grown in a specific direction.
  • the size of the grains of the silver recrystallized copper (Cu) metal forming the copper (Cu) wire 200b (see FIG. 2) after being rapidly heated is the size of the grains of pure copper (Cu) metal before recrystallization. Larger and larger crystal directions are grown in one particular direction, which has a beneficial effect on the transfer of current.
  • the copper (Cu) wire 200b (refer to FIG. 2) made of recrystallized copper (Cu) metal has better electrical conductivity than the copper (Cu) wire 200a made of pure copper (Cu) metal before recrystallization. And the resistance and noise are reduced.
  • the graphene is more uniformly synthesized when the graphene coating layer 300 is formed, thereby lowering sheet resistance.
  • the copper (Cu) wire 200a made of pure copper (Cu) metal before heating is shown in FIG. 3, and the copper (Cu) wire made of copper (Cu) metal reheated after being heated ( 200b) will be described with reference to FIG.
  • the gas supply unit 140 may include a plurality of nozzles and may supply a gas containing carbon into the chamber 101.
  • Gas containing carbon is a reaction gas for graphene formation, and methane (CH4) may be used as an optional embodiment.
  • the gas containing carbon is not limited thereto, and carbon monoxide (CO), ethane (C2H6), ethylene (CH2), ethanol (C2H5), acetylene (C2H2), propane (CH3CH2CH3), propylene (C3H6) and butane (C4H10).
  • CO carbon monoxide
  • ethane C2H6
  • ethylene CH2
  • ethanol C2H5
  • acetylene C2H2
  • propane CH3CH2CH3
  • propylene C3H6 and butane (C4H10)
  • Pentane CH3 (CH2) 3CH3
  • C7H8 carbon monoxide
  • Pentane CH3 (CH2) 3CH
  • the gas containing carbon is separated into carbon atoms and hydrogen atoms at high temperatures.
  • Carbon atoms contained in the gas containing carbon are deposited by heated thermal-chemical vapor deposition (Rapid-Thermal CVD) on the heated copper (Cu) wire 200b to surround the copper (Cu) wire 200b.
  • the coating film 300 may be formed.
  • the rapidly heated copper (Cu) wire 200b has an advantageous effect of improving electrical conductivity and reducing noise when moving current as before recrystallization occurs and heating.
  • the electrical conductivity is not only improved, so as to surround the copper (Cu) wire 200b.
  • the pin coating film 300 is formed, when used as an electric wire, there is an advantageous effect that electrical conductivity and noise removing effect can be maximized.
  • the copper (Cu) wire 200a made of copper (Cu) metal having a purity of 99.9% or more is used, even though the inside of the chamber 101 is rapidly heated, there are few elements other than copper (Cu). There is an advantageous effect that can be uniformly synthesized on the surface of the copper (Cu) wire (200b).
  • the gas supply unit 140 may supply not only a gas containing carbon but also an atmosphere gas into the chamber 101.
  • the atmosphere gas may include an inert gas such as helium or argon, and an unreacted gas such as hydrogen to keep the surface of the copper (Cu) wire 200a clean.
  • one gas supply unit 140 supplies both a gas containing carbon and an atmosphere gas
  • a gas supply unit supplying a gas containing carbon and a gas supply unit supplying an atmosphere gas may be provided, respectively, and a gas containing carbon and an atmosphere gas may be supplied into the chamber 101, respectively.
  • the discharge part 150 exhausts the remaining residual gases after the graphene coating film 300 is formed in the chamber 101 to the outside.
  • the discharge unit 150 may be disposed on the surface facing the gas supply unit 140 to maximize the discharge effect. However, this is merely an example, and the arrangement structure and the number of the discharge parts 150 may be variously implemented without being limited to those illustrated.
  • the graphene is synthesized on the surface of the heated copper (Cu) wire 200b to describe the process of forming the graphene coating film 300 to surround the copper (Cu) wire 200b in detail.
  • one or two or more copper (Cu) wires 200a are disposed in the chamber 101, and then a gas contained in the chamber 101 is decompressed using a vacuum pump (not shown). To the outside through.
  • the chamber 101 may have a pressure lower than atmospheric pressure, for example, several hundred torr to 10-6 torr.
  • the copper (Cu) wire 200a may be disposed to face the conductive plate 110.
  • an atmosphere gas for example, an inert gas such as helium or argon and / or a non-reactive gas such as hydrogen for maintaining the surface of the metal thin plate may be injected through the gas supply unit 140.
  • an atmosphere gas for example, an inert gas such as helium or argon and / or a non-reactive gas such as hydrogen for maintaining the surface of the metal thin plate may be injected through the gas supply unit 140.
  • the copper (Cu) wire 200a and the conductive plate 110 may be heated using the lamp unit 130.
  • the inside of the chamber 101 may have a high temperature of 600 ° C. or higher. In another alternative embodiment, the inside of the chamber 101 may maintain a high temperature of 900 ⁇ 1050 ° C.
  • the copper (Cu) wire heated by heating the inside of the chamber 101 to a temperature sufficient to rapidly synthesize graphene within a few seconds to several minutes by the lamp unit 130 and the conductive plate 110 ( 200b) may cause recrystallization in which the crystal size and crystal direction of the copper (Cu) metal are changed.
  • a gas including carbon that is, a reaction gas is supplied through the gas supply unit 140.
  • the gas containing carbon may be supplied with methane (CH4) gas.
  • the discharge part 150 provided on the side opposite to the gas supply part 140 is also disposed, one side of the gas supply part exhausts the gas using the discharge part 150 while supplying the reaction gas to the gas supply part 140. As a result, the reactant gas can effectively flow inside the chamber 101.
  • Reaction gas containing carbon is decomposed into a state required for graphene synthesis by receiving energy in the chamber 101.
  • the reaction gas passes inside the chamber 101 where a high temperature environment is established, the reaction gas comes into contact with the surface of the copper (Cu) wire 200b, that is, the surface of the activated copper (Cu) wire 200b. Graphene crystals grow as the reaction gas is absorbed by the surface-activated copper (Cu) wire 200b.
  • the graphene coating layer 300 having a predetermined thickness may be formed to surround the surface of the copper (Cu) wire 200b.
  • the temperature inside the chamber 101 is raised to a temperature sufficient to rapidly synthesize graphene within a few seconds to several minutes by rapid thermal chemical vapor deposition (Rapid-Thermal CVD).
  • the graphene coating layer 300 may be deposited on the surface of the copper (Cu) wire 200b.
  • the lamp unit 130 may supply a gas containing carbon before radiating radiant heat, or at the same time as radiating radiant heat, or after radiating radiant heat. That is, when the lamp unit 130 is operated before supplying the gas containing carbon or when the lamp unit 130 is operated while supplying the gas containing carbon, or after the gas is supplied, the lamp unit 130 is operated. Can be operated.
  • the present invention is not limited thereto.
  • the lamp unit 130 may emit light including not only the near infrared wavelength band but also the mid-infrared and / or visible wavelength band.
  • the light of the near infrared wavelength band emitted from the lamp unit 130 supplies energy to the copper (Cu) wire 200a and the conductive plate 110 as described above, and the heated copper (Cu) wire 200b. And the inside of the chamber 101 by the conductive plate 110.
  • the light of the mid-infrared and / or visible light wavelength band emitted from the lamp unit 130 may heat the gas containing carbon supplied into the chamber 101.
  • the gas containing carbon is decomposed by receiving energy from heat in the chamber 101 rapidly heated by the lamp unit 130 and the conductive plate 110 and light in the mid-infrared and / or visible light wavelength band. Can be. Therefore, the graphene synthesis reaction in the chamber 101 may be more actively performed in a short time.
  • Graphene coating film 300 as the graphene coating film 300 is cooled after graphene is synthesized on the surface of the copper (Cu) wire 200b inside the high-temperature chamber 101. Can be stabilized.
  • FIG. 4 is a perspective view schematically showing a wire structure 2000 according to another embodiment of the present invention.
  • the same reference numerals as used in FIG. 2 denote the same members, and redundant description of the same parts will be omitted for simplicity of description.
  • the wire structure 2000 is a copper (Cu) wire (200b), a metal (250) is plated on the surface of the copper (Cu) wire (200b) is provided extending in one direction and the copper (Cu).
  • the graphene coating layer 300 may be formed to surround the wire 200b and the metal 250.
  • the copper (Cu) wire 200b may be provided to extend in one direction to have a wire shape.
  • the copper (Cu) wire 200b may be formed of a copper (Cu) metal having a purity of 99.9% or more.
  • the copper (Cu) metal forming the copper (Cu) wire 200a is low in purity and contains many other elements, other elements other than the copper (Cu) metal may be formed in the process of forming the wire structure 1000. As a result, graphene is not uniformly coated on the surface of the copper wire 200a.
  • the wire structure 1000 according to the present embodiment is formed of a copper (Cu) wire 200b made of copper (Cu) metal having a purity of 99.9% or more, so that graphene may be uniformly coated on the surface thereof. It has a beneficial effect.
  • the surface of the copper (Cu) wire 200b may be plated with a metal or an alloy.
  • the metal 250 is nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), silver (Ag), aluminum (Al), chromium (Cr), magnesium (Mg) , Manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W), uranium (U), vanadium (V), palladium (Pd ), At least one metal or alloy of yttrium (Y), zirconium (Zr), germanium (Ge), brass, bronze, white brass and stainless steel.
  • the present invention is not limited thereto, and any metal or alloy having high electrical conductivity may be plated.
  • the graphene coating layer 300 may be formed to surround the surface of the metal 250 plated on the copper (Cu) wire 200b.
  • the graphene coating layer 300 may be formed on the surface of the metal 250 plated on the copper (Cu) wire 200b so as to surround the outside of the copper (Cu) wire 200b. .
  • a copper (Cu) wire 200a having a metal 250 coated on a surface thereof may be disposed in the wire structure manufacturing apparatus 100.
  • the chamber 101 may have a pressure lower than atmospheric pressure, for example, several hundred torr to 10-6 torr.
  • an atmosphere gas for example, an inert gas such as helium or argon and / or a non-reactive gas such as hydrogen for maintaining the surface of the metal thin plate may be injected through the gas supply unit 140.
  • an atmosphere gas for example, an inert gas such as helium or argon and / or a non-reactive gas such as hydrogen for maintaining the surface of the metal thin plate may be injected through the gas supply unit 140.
  • the copper (Cu) wire 200a and the conductive plate 110 coated with the metal 250 may be heated using the lamp unit 130.
  • the inside of the chamber 101 may have a high temperature of 600 ° C. or higher. In another alternative embodiment, the inside of the chamber 101 may maintain a high temperature of 900 ° C. to 1050 ° C.
  • the inside of the chamber 101 is heated up to a temperature sufficient to synthesize graphene rapidly within a few seconds to several minutes by the lamp unit 130 and the conductive plate 110, and the copper (Cu) wire 200a As it is heated, the crystal size and crystal orientation of the copper (Cu) metal may change, causing recrystallization.
  • a gas including carbon that is, a reaction gas is supplied through the gas supply unit 140.
  • the gas containing carbon may be supplied with methane (CH4) gas.
  • Reaction gas containing carbon is decomposed into a state required for graphene synthesis by receiving energy in the chamber 101.
  • the graphene coating layer 300 having a predetermined thickness to surround the copper (Cu) wire 200b and the metal 250. ) May be formed.
  • the wire structure 2000 according to the present embodiment is a graphene coating film 300 on the surface of the metal 250 plated on the copper (Cu) wire (200b) to surround the copper (Cu) wire (200b) This can be formed.
  • the temperature inside the chamber 101 is raised to a temperature sufficient to rapidly synthesize graphene within a few seconds to several minutes by rapid thermal chemical vapor deposition (Rapid-Thermal CVD).
  • the graphene coating layer 300 may be deposited on the surface of the plated metal 250.
  • the wire structure 2000 having the graphene coating layer 300 is cooled. As the graphene coating layer 300 may be stabilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명의 일 실시예는 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선 및 상기 구리(Cu) 전선의 외측에 상기 구리(Cu) 전선을 에워싸도록 형성되는 그래핀 코팅막을 포함하고, 상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체를 개시한다.

Description

전선 구조체 및 이의 제조 방법
본 발명의 실시예는 전선 구조체 및 이의 제조 방법에 관한 것이다.
그래핀(Graphene)은 탄소가 육각형의 형태로 서로 연결되어 벌집 모양의 2차원 평면 구조를 이루는 물질로서, 그 두께가 매우 얇고 투명하며 전기 전도성이 매우 큰 특성을 가진다. 그래핀의 이러한 특성을 이용하여 그래핀을 터치 패널, 투명 디스플레이 또는 플렉서블(flexible) 디스플레이 등에 적용하려는 시도가 많이 이루어지고 있다.
그래핀은 탄소를 포함하는 가스를 투입하여 화학 기상 증착법(chemical vapor deposition-CVD)에 의해 촉매 금속의 표면에 합성된다.
그래핀을 합성하기 위해서는 고온의 환경이 유지되는 그래핀 합성 장치가 요구되며, 고온의 조건에서 탄소를 포함하는 가스가 해리되어 촉매 금속의 표면에 그래핀이 형성될 수 있다.
본 발명의 목적은, 전선 구조체 및 이의 제조 방법을 제공하는데 있다.
본 발명의 일 실시예는 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선 및 상기 구리(Cu) 전선의 외측에 상기 구리(Cu) 전선을 에워싸도록 형성되는 그래핀 코팅막을 포함하고, 상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체를 개시한다.
본 발명의 일 실시예에 따르면, 전선 구조체의 전기 전도도가 향상되고 노이즈가 제거되는 유리한 효과가 있다.
본 발명의 효과는 상술한 내용 이외에도, 도면을 참조하여 이하에서 설명할 내용으로부터도 도출될 수 있음은 물론이다.
도 1은 본 명세서에서 언급되는 그래핀을 개략적으로 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 따른 전선 구조체를 도시한 사시도이다.
도 3은 전선 구조체를 형성하기 위한 전선 구조체 제조 장치의 일 실시예를 개략적으로 도시한 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 전선 구조체를 도시한 사시도이다.
본 발명의 일 실시예는 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선 및 상기 구리(Cu) 전선의 외측에 상기 구리(Cu) 전선을 에워싸도록 형성되는 그래핀 코팅막을 포함하고, 상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체를 개시한다.
본 실시예에 있어서, 상기 구리(Cu) 전선의 표면에 도금되는 금속을 더 포함하고, 상기 그래핀 코팅막은 상기 구리(Cu) 전선을 에워싸도록 상기 구리(Cu) 전선의 표면에 도금되는 금속의 표면에 형성될 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선의 표면에 도금되는 금속은 금(Au), 은(Ag), 니켈(Ni), 로듐(Rh) 가운데 하나일 수 있다.
본 실시예에 있어서, 상기 그래핀 코팅막은 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 상기 구리(Cu) 전선을 에워싸도록 형성될 수 있다.
본 실시예에 있어서, 상기 급속 열 화학 기상 증착법(Rapid-Thermal CVD) 공정 중에 탄소를 포함하는 가스가 주입되어 상기 구리(Cu) 전선의 외측에 상기 그래핀 코팅막이 형성될 수 있다.
본 실시예에 있어서, 상기 탄소를 포함하는 가스는 메탄(CH4)가스 일 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 크기는 순수한 구리(Cu) 금속의 결정 크기보다 클 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 형성 방향은 특정한 방향으로 이루어질 수 있다.
또한, 본 발명의 다른 실시예는, 챔버 내에 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선을 제공하는 단계, 상기 챔버 내에 탄소를 포함하는 가스를 공급하는 단계, 상기 구리(Cu) 전선을 가열하기 위해 상기 챔버 내부를 수 초~ 수 분내에 급속으로 600도씨 이상의 온도로 승온시키는 단계 및 상기 챔버 내부에 탄소를 포함하는 가스를 주입하는 단계를 포함하며, 상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체의 제조 방법을 개시한다.
본 실시예에 있어서, 상기 탄소를 포함하는 가스가 해리되어 상기 구리(Cu) 전선을 에워싸도록 그래핀 코팅막이 형성될 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선을 에워싸는 상기 그래핀 코팅막이 형성된 후, 일정한 속도로 냉각시키는 단계를 더 포함할 수 있다.
본 실시예에 있어서, 상기 탄소를 포함하는 가스는 메탄(CH4)가스 일 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 크기는 순수한 구리(Cu) 금속의 결정 크기보다 클 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 형성 방향은 특정한 하나의 방향으로 이루어질 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선은 표면에 구리(Cu) 이외의 금속 또는 합금이 도금될 수 있다.
본 실시예에 있어서, 상기 구리(Cu) 전선의 표면에 도금된 금속은 금(Au), 은(Ag), 니켈(Ni), 로듐(Rh) 가운데 하나일 수 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 "위"에 또는 "상"에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 수행될 수도 있다.
도 1은 본 명세서에서 언급되는 그래핀을 개략적으로 나타낸 사시도이다.
본 명세서에서 사용되는 "그래핀(graphene)" 이라는 용어는 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 막 형태로 형성된 것으로서, 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 5원환 및/또는 7원환을 더 포함하는 것도 가능하다. 따라서 그래핀 막은 서로 공유 결합된 탄소원자(C)들(통상 sp2 결합)의 단일층을 이룬다. 그래핀 막은 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5원환 및/또는 7원환의 함량에 따라 달라질 수 있다.
그래핀 막은 도시된 바와 같이 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러 개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 상기 그래핀의 측면 말단부는 수소원자(H)로 포화될 수 있다.
그래핀(grapheme)은 2차원 평면 구조의 나노 물질로서 다양한 물리, 화학, 전기, 광학적 특성을 가질 수 있다. 특히, 실리콘(Si)의 약 100배, 구리(Cu)의 약 150배의 전하 이동도를 가질 수 있으며, 구리(Cu)에 비해 약 100배의 허용 전류밀도를 가질 수 있다.
또한 그래핀(grapheme)은 구조적으로 2차원 평면 구조의 나노 물질이므로 형태가 다양하게 변화되어 사용될 수 있다.
도 2는 본 발명의 일 실시예에 따른 전선 구조체(1000)를 도시한 사시도이고, 도 3은 전선 구조체를 형성하기 위한 전선 구조체 제조 장치(100)의 일 실시예를 개략적으로 도시한 단면도이다.
본 실시예에 따른 전선 구조체(1000)는 구리(Cu) 전선(200b) 및 구리(Cu) 전선(200b)을 에워싸도록 구리(Cu) 전선(200)의 표면에 코팅되어 있는 그래핀 코팅막(300)을 포함할 수 있다.
선택적 실시예로서, 구리(Cu) 전선(200b)은 순도 99.9% 이상의 구리(Cu) 금속으로 형성될 수 있다.
구리(Cu) 전선(200b)을 형성하는 구리(Cu) 금속의 순도가 낮고 다른 원소들이 많이 포함되어 있는 경우에는 전선 구조체(1000)를 형성하는 과정에서 구리(Cu) 금속 이외의 다른 원소들에 의해 구리(Cu) 전선(200a)의 표면에 그래핀(graphene)이 균일하게 코팅되기 어려운 문제가 있다.
이에 따라 본 실시예에 따른 전선 구조체(1000)는 순도 99.9% 이상의 구리(Cu)금속으로 이루어진 구리(Cu) 전선(200a)으로 형성함에 따라 그래핀 코팅막(300)의 형성시에 표면에 그래핀(graphene)을 균일하게 코팅할 수 있는 유리한 효과가 있다.
그래핀(graphene)은 상술한 바와 같이 실리콘(Si)의 약 100배, 구리(Cu)의 약 150배의 전하 이동도를 가진다. 뿐만 아니라, 구리(Cu)의 약 100배의 허용 전류밀도를 가지며, 높은 열전도도를 가지는 특성이 있다.
따라서, 구리(Cu) 전선(200b)을 둘러싸도록 그래핀 코팅막(300)이 형성되어 있는 본 실시예에 따른 전선 구조체(1000)는 전하 이동도, 전류밀도, 열전도도 등의 전기적 특성이 더욱 우수해지는 유리한 효과가 있다.
또한, 전선에 고주파(고음)의 전류가 흐를 때에는 전선 단면에 전체적으로 전류가 흐르는 것이 아니라 표면 가까이에 전류가 모이는 현상(skin effect)이 발생할 수 있다.
반면, 본 실시예에 따른 전선 구조체(1000)의 경우 구리(Cu) 전선(200b)을 둘러싸도록 높은 전하 이동도를 갖는 그래핀 코팅막(300)이 구리(Cu) 전선(200b)의 표면에 형성됨에 따라 표면 가까이에 모이는 전류를 빠르게 이동시켜 전기 전도도를 향상 시킬 뿐만 아니라 노이즈를 제거할 수 있는 유리한 효과가 있다.
이하에서는 본 실시예에 따른 전선 구조체(1000)를 전선 구조체 제조 장치(100)에 의해 제조하는 방법에 관하여 상세히 설명하도록 한다.
본 실시예에 따른 전선 구조체(1000)를 형성하기 위하여는 먼저 도 3에 도시된 바와 같이 일 방향으로 연장되어 구비되는 구리(Cu) 전선(200a)이 전선 구조체 제조 장치(100) 내에 구비되어야 한다.
본 발명 전선 구조체는 전기 전도도가 높고 노이즈가 제거된 전선을 형성하는데 목적이 있으므로 일 방향으로 길게 연장된 와이어 형태를 가지는 구리(Cu) 전선(200a)을 전선 구조체 제조 장치(100) 내에 구비할 수 있다.
도면상으로는 2개의 구리(Cu) 전선(200a)을 전선 구조체 제조 장치(100) 내에 구비하는 것을 도시하였으나, 본 발명은 이에 한정되지 않고 1개의 구리(Cu) 전선(200a) 만이 구비되거나 3개 이상의 구리(Cu) 전선(200a)이 전선 구조체 제조 장치(100) 내에 구비될 수 있음은 물론이다.
도 3을 참조하면, 전선 구조체 제조 장치(100)는 챔버(101), 램프부(130) 및 전도판(110)을 포함할 수 있다. 또한, 가스 공급부(140), 배출부(150), 감압부(미도시) 및 게이트(미도시)를 더 구비할 수 있다.
도 3은 전선 구조체 제조 장치(100)의 단면을 도시한 것으로써, 본 실시예는 챔버(101)가 육면체인 경우로서 챔버(101)의 단면을 사각형으로 도시하였다. 그러나 챔버(101)의 형태는 이에 한정되지 않으며 예를 들어 챔버(101)는 육면체 외에도 다른 다면체, 다각기둥, 다각뿔, 또는 구형으로 구비될 수도 있다.
램프부(130)는 구리(Cu) 전선(200a)으로 가하는 복사열의 면적을 최대화하기 위하여 구리(Cu) 전선(200a)과 마주보는 면에 각각 형성될 수 있으나 이에 한정되지 않음은 물론이다. 예를 들어 램프부(130)는 3개 이상의 챔버(101)의 면에 각각 배치될 수도 있고, 하나의 면에만 배치될 수도 있다.
램프부(130)는 할로겐 램프를 포함할 수 있으며, 할로겐 램프는 복수개로 소정의 간격 이격되어 배치될 수 있다. 할로겐 램프는 근적외선과, 중적외선 또는/및 가시광선의 빛을 방출한다.
램프부(130)는 도시되지 않은 윈도우를 더 포함할 수 있으며, 윈도우는 할로겐 램프의 외주를 둘러싸도록 배치되거나, 일방향을 따라 평행하게 배치된 할로겐 램프들의 일측에 배치될 수 있다. 윈도우는 투명한 소재로서, 예컨대 석영을 포함할 수 있다. 윈도우는 할로겐 램프를 보호하며, 광 효율을 증진시킬 수 있다.
다만, 본 실시예에 따른 구리(Cu) 전선(200a)은 반사율이 높기 때문에 램프부(130)에서 공급된 복사열을 대부분 반사할 수 있다. 이 경우에는 구리(Cu) 전선(200a)이 쉽게 가열되지 않아 그래핀 코팅막(300)이 형성되는데 필요한 온도에 도달하기 까지 많은 시간이 소요될 수 있다.
따라서, 선택적 실시예로서 전선 구조체 제조 장치(100)는 전도판(110)을 더 포함할 수 있다.
전도판(110)은 램프부(130)의 복사열을 대류열로 전환하여 챔버(101) 내부로 방출함으로써 구리(Cu) 전선(200a) 및 가스를 가열한다. 전도판(110)은 램프부(130)에서 방출되는 복사열에 의해 온도가 상승될 수 있다. 전도판(110)은 복사열에 의해 온도가 상승될 수 있는 소재라면 한정되지 않고 형성될 수 있다.
일 실시예로서, 전도판(110)은 그라파이트(graphite) 또는 산화막을 코팅한 금속을 포함할 수 있다. 금속에 산화막을 코팅함으로써 반사율을 낮추고, 복사열의 흡수율을 높일 수 있기 때문이다.
전도판(110)은 램프부(130)와 함께 구리(Cu) 전선(200a)과 대향하도록 배치될 수 있다.
즉, 전도판(110)은 도 3에 도시된 바와 같이 램프부(130)와 평행하게 형성될 수 있으며 램프부(130)와 구리(Cu) 전선(200a)의 사이에 배치되어 램프부(130)의 복사열을 대류열로 전환하여 구리(Cu) 전선(200a)을 가열할 수 있다.
도 3에 도시된 바와 같이 전도판(110)은 램프부(130)와 마찬가지로 구리(Cu) 전선(200a)을 사이에 두고 챔버(101)의 양면에 배치될 수 있다. 그러나, 이에 한정되지 않음은 물론이며 다른 실시예로서 1개의 전도판(110)만이 챔버(101) 내부에 형성될 수도 있다.
이와 같이 전도판(110)은 대류열을 방출하여 구리(Cu) 전선(200a) 및 가스를 모두 가열하여 단시간에 챔버(101) 내부를 그래핀 합성에 최적화된 고온으로 전환할 수 있다.
또한, 전도판(110)이 구비됨으로써, 챔버(101) 내부에서 발생하는 열을 가두는 역할을 하여 고온을 유지시킬 수 있다.
본 실시예에 따른 전선 구조체 제조 장치(100)는 전도판(110) 및 램프부(130)에 의해 챔버(101) 내부를 수초~ 수분 이내에 600℃ 이상의 고온으로 전환할 수 있다.
선택적 실시예로서 챔버(101) 내부의 온도는 900~1050℃의 고온으로 급속 승온될 수 있다.
즉, 본 실시예에 따른 전선 구조체(1000)는 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 가열된 구리(Cu) 전선(200b)의 표면에 그래핀 코팅막(300)이 증착되어 형성될 수 있다.
다시 말해서, 본 실시예에 따른 전선 구조체 제조 장치(100)는 빠른 시간 내에 급속으로 챔버(101) 내부를 승온시켜 그래핀 코팅막(300)이 형성될 수 있는 고온의 조건으로 만들 수 있다.
챔버(101) 내부가 램프부(130)에서 방출된 복사열 및 전도판(110)에 의해 전달된 대류열에 의해 빠른 시간 내에 급속으로 고온으로 전환됨에 따라 챔버(101) 내에 구비된 구리(Cu) 전선(200a)은 재결정화가 일어나게 된다.
즉, 수초~수분의 빠른 승온 속도에서 구리(Cu) 전선(200a)을 형성하는 구리(Cu) 금속의 결정립의 크기가 매우 커질 수 있다. 뿐만 아니라, 구리(Cu) 전선(200a)을 형성하는 구리(Cu) 금속의 결정립이 특정한 방향으로 성장될 수 있다.
이에 따라, 급속으로 가열된 후 구리(Cu) 전선(200b, 도2 참고)을 이루는 은 재결정화된 구리(Cu) 금속의 결정립의 크기는 재결정화 되기 전 순수한 구리(Cu) 금속의 결정립의 크기보다 크고 결정 방향은 특정한 한 방향으로 성장되어 전류의 전달에 유리한 효과가 있다.
즉, 재결정화된 구리(Cu) 금속으로 이루어지는 구리(Cu) 전선(200b, 도2 참고)은 재결정화되기 전 순수한 구리(Cu) 금속으로 이루어지는 구리(Cu) 전선(200a) 보다 전기 전도도가 향상되고 저항 및 노이즈가 줄어드는 유리한 효과가 있다.
뿐만 아니라 재결정화된 구리(Cu) 금속의 결정립의 크기가 커짐에 따라 그래핀 코팅막(300)의 형성시 그래핀이 보다 균일하게 합성되어 면저항 값이 낮아지는 유리한 효과가 있다.
이하에서는 설명의 편의를 위하여 가열되기 전 순수한 구리(Cu) 금속으로 이루어지는 구리(Cu) 전선(200a)은 도 3을, 가열된 후 재결정화된 구리(Cu) 금속으로 이루어지는 구리(Cu) 전선(200b)은 도 2를 참고하여 설명하도록 한다.
가스 공급부(140)는 복수개의 노즐을 포함하며, 챔버(101) 내부로 탄소를 포함하는 가스를 공급할 수 있다.
탄소를 포함하는 가스는 그래핀 형성을 위한 반응 가스로서, 선택적 실시예로서 메탄(CH4)이 사용될 수 있다.
물론, 탄소를 포함하는 가스는 이에 한정되지 않으며 일산화탄소(CO), 에탄(C2H6), 에틸렌(CH2), 에탄올(C2H5), 아세틸렌(C2H2), 프로판(CH3CH2CH3), 프로필렌(C3H6), 부탄(C4H10), 펜탄(CH3(CH2)3CH3), 펜텐(C5H10), 사이클로펜타디엔(C5H6), 헥산(C6H14), 시클로헥산(C6H12), 벤젠(C6H6), 톨루엔(C7H8) 등 탄소 원자가 포함된 군에서 선택된 하나 이상이 사용될 수 있다.
이와 같이 탄소를 포함하는 가스는 고온에서 탄소 원자와 수소 원자로 분리된다. 탄소를 포함하는 가스에 포함된 탄소 원자는 가열된 구리(Cu) 전선(200b)에 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 증착되어 구리(Cu) 전선(200b)을 둘러싸도록 그래핀 코팅막(300)이 형성될 수 있다.
급속으로 가열된 구리(Cu) 전선(200b)은 상술한 바와 같이 재결정화가 일어나 가열되기 전보다 전기 전도도가 향상되고 전류 이동시 노이즈가 줄어드는 유리한 효과가 있다.
이러한 구리(Cu) 전선(200b)의 표면에 구리(Cu) 전선(200b)을 둘러싸도록 전기 전도도가 높은 그래핀 코팅막(300)이 형성되는 경우 상술한 효과가 극대화될 수 있다.
즉, 단순히 순수한 구리(Cu) 전선의 표면에 전선을 둘러싸도록 그래핀을 형성하는 경우에도 그래핀 자체의 전기전도도가 높기 때문에 전기전도도 향상 및 노이즈를 제거할 수 있는 유리한 효과가 있다.
한편, 본 실시예에 따른 전선 구조체(1000)의 경우에는 구리(Cu) 전선(200b) 자체도 급속으로 가열됨에 따라 전기 전도도가 향상될 뿐만 아니라 이러한 구리(Cu) 전선(200b)을 둘러싸도록 그래핀 코팅막(300)을 형성함에 따라 전선으로서 사용되는 경우 전기 전도도 및 노이즈 제거 효과가 극대화될 수 있는 유리한 효과가 있다.
또한, 재결정화된 구리(Cu) 금속의 결정립의 크기가 커짐에 따라 저항값이 매우 낮은 그래핀이 균일하게 구리(Cu) 전선(200b)을 둘러싸도록 형성될 수 있는 유리한 효과가 있다.
선택적 실시예로서 순도 99.9% 이상의 구리(Cu) 금속으로 이루어진 구리(Cu) 전선(200a)이 사용됨에 따라 챔버(101) 내부가 급속으로 승온되더라도 구리(Cu) 이외의 원소들이 거의 없기 때문에 그래핀이 구리(Cu) 전선(200b)의 표면에 균일하게 합성될 수 있는 유리한 효과가 있다.
한편, 가스 공급부(140)는 탄소를 포함하는 가스뿐만 아니라 분위기 가스도 챔버(101) 내부로 공급할 수 있다. 분위기 가스는 헬륨, 아르곤과 같은 불활성 가스와, 구리(Cu) 전선(200a)의 표면을 깨끗하게 유지하기 위한 수소와 같은 비반응 가스를 포함할 수 있다.
본 실시예에서는 하나의 가스 공급부(140)가 탄소를 포함하는 가스 및 분위기 가스를 모두 공급하는 경우를 설명하였으나, 본 발명은 이에 한정하지 않는다. 예컨대, 탄소를 포함하는 가스를 공급하는 가스 공급부와 분위기 가스를 공급하는 가스 공급부가 각각 구비되어, 탄소를 포함하는 가스와 분위기 가스가 각각 챔버(101) 내부로 공급될 수 있다.
배출부(150)는 챔버(101) 내부에서 그래핀 코팅막(300)이 형성되는 데 이용된 후 나머지 잔류 가스들을 외부로 배기한다.
배출부(150)는 배출 효과를 극대화 하기 위하여 가스 공급부(140)와 마주보는 면에 배치될 수 있다. 그러나 이는 예시적인 것이며 배출부(150)의 배치 구조 및 개수는 도시된 바에 한정되지 않고 다양하게 구현될 수 있다.
이하에서는 가열된 구리(Cu) 전선(200b)의 표면에서 그래핀이 합성되어 구리(Cu) 전선(200b)을 둘러싸도록 그래핀 코팅막(300)이 형성되는 과정을 상세히 설명하도록 한다.
먼저, 챔버(101) 내부에 1개 혹은 2개 이상의 구리(Cu) 전선(200a)을 배치시킨 후, 진공펌프(미도시)를 이용하여 챔버(101) 내부에 포함된 가스를 감압부(미도시)를 통해 외부로 빼낸다. 챔버(101) 내부는 대기압 보다 낮은 압력상태, 예컨대 수백 torr ~ 10-6 torr 정도의 압력을 가질 수 있다.
선택적 실시예로서, 구리(Cu) 전선(200a)을 전도판(110)에 대향하도록 배치할 수 있다.
이 후, 가스 공급부(140)를 통해서 분위기 가스, 예컨대 헬륨, 아르곤과 같은 불활성 가스 및/ 또는 금속박판의 표면을 깨끗하게 유지하기 위한 수소와 같은 비반응 가스를 주입할 수 있다.
분위기 가스를 주입한 후, 램프부(130)를 이용하여 구리(Cu) 전선(200a) 및 전도판(110)을 가열할 수 있다.
램프부(130)에서 방출되는 복사열에 의해 전도판(110) 및 구리(Cu) 전선(200b)의 온도가 충분히 높아지면 구리(Cu) 전선(200a) 및 전도판(110)에서 방출되는 열에 의하여 챔버(101) 내부에는 그래핀을 합성하기에 충분한 온도가 형성된다.
선택적 실시예로서 챔버(101) 내부는 600 ℃ 이상의 고온 환경이 조성될 수 있으며, 다른 선택적 실시예로 챔버(101) 내부는 900~1050 ℃ 의 고온을 유지할 수 있다.
이에 따라, 램프부(130) 및 전도판(110)에 의해 수초~수분의 빠른 시간 내에 급속으로 그래핀을 합성하기에 충분한 온도로 챔버(101) 내부가 승온되어 가열된 구리(Cu) 전선(200b)은 구리(Cu) 금속의 결정 크기와 결정 방향이 변화되는 재결정화가 일어날 수 있다.
이후, 가스 공급부(140)를 통해서 탄소를 포함하는 가스, 즉 반응 가스를 공급한다.
선택적 실시예로서 상기 탄소를 포함하는 가스로는 메탄(CH4) 가스가 공급될 수 있다.
이 때, 가스 공급부(140)와 대향하는 측에 구비된 배출부(150)도 배치되어 있으므로 일측에서는 가스 공급부(140)로 반응 가스를 공급하면서 타측에서는 배출부(150)를 이용하여 가스를 배기함으로써 반응 가스가 효과적으로 챔버(101) 내부를 흘러 지나갈 수 있도록 한다.
탄소를 포함하는 반응 가스는 챔버(101) 내부에서 에너지를 공급받아 그래핀 합성에 필요한 상태로 분해된다.
선택적 실시예로서 반응 가스로 메탄(CH4) 가스가 사용되는 경우에는 챔버(101) 내부에서 탄소(C)와 수소(H)로 해리가 일어난다.
반응가스가 고온의 환경이 조성된 챔버(101) 내부를 지나갈 때 구리(Cu) 전선(200b), 즉 표면이 활성화된 구리(Cu) 전선(200b)의 표면과 접촉하게 되는데 이 과정에서 분해된 반응 가스가 표면 활성화된 구리(Cu) 전선(200b)에 흡수되면서 그래핀 결정이 성장된다.
즉, 그래핀 결정이 성장됨에 따라 구리(Cu) 전선(200b)의 표면을 에워싸도록 일정한 두께를 갖는 그래핀 코팅막(300)이 형성될 수 있다.
선택적 실시예로서, 상술한 바와 같이 수초~수분의 빠른 시간 내에 급속으로 그래핀을 합성하기에 충분한 온도로 챔버(101) 내부의 온도가 승온되어 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 구리(Cu) 전선(200b)의 표면에 그래핀 코팅막(300)이 증착 형성될 수 있다.
본 실시예에서는 램프부(130)에 의해 구리(Cu) 전선(200a)을 가열한 후, 탄소를 포함하는 가스를 공급하는 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다.
즉, 램프부(130)가 복사열을 방출하기 전에, 또는 복사열을 방출함과 동시에, 또는 복사열을 방출한 후에 탄소를 포함하는 가스를 공급할 수 있다. 즉, 탄소를 포함하는 가스를 공급하기 전에 램프부(130)를 동작하는 경우나 탄소를 포함하는 가스를 공급하면서 램프부(130)를 동작하는 경우, 혹은 가스를 공급한 후에 램프부(130)를 동작할 수 있다.
램프부(130)에서 조사되는 복사열인 근적외선 파장대역의 광인 경우 이로 인해 구리(Cu) 전선(200a)과 전도판(110)이 가열되고, 가열된 구리(Cu) 전선(200b)및 전도판(110)에서 방출되는 열에 의해 챔버(101) 내부가 데워지고 탄소를 포함하는 가스가 분해되는 경우를 설명하였으나 본 발명은 이에 한정되지 않는다.
본 발명의 또 다른 실시예로서, 램프부(130)에서는 근적외선 파장대역뿐만 아니라 중적외선 또는/및 가시광선 파장대역을 포함하는 광이 방출될 수 있다. 이 경우, 램프부(130)에서 방출되는 근적외선 파장대역의 광은 상술한 바와 같이 구리(Cu) 전선(200a)과 전도판(110)에 에너지를 공급하고, 가열된 구리(Cu) 전선(200b)및 전도판(110)에 의해 챔버(101) 내부가 데워질 수 있다.
동시에, 램프부(130)에서 방출되는 중적외선 또는/및 가시광선 파장대역의 빛이 챔버(101) 내부로 공급되는 탄소를 포함하는 가스를 데울 수 있다.
바꾸어 말하면, 탄소를 포함하는 가스는 램프부(130) 및 전도판(110)에 의해 급속으로 데워진 챔버(101) 내부의 열 및 중적외선 또는/및 가시광선 파장대역의 광으로부터 에너지를 공급받아 분해될 수 있다. 따라서, 챔버(101) 내부에서의 그래핀 합성 반응은 단시간에 더욱 활발하게 수행될 수 있다.
고온의 챔버(101) 내부에서 구리(Cu) 전선(200b)의 표면에 그래핀이 합성되고 난 후 그래핀 코팅막(300)이 형성된 전선 구조체(1000)를 냉각시킴에 따라 그래핀 코팅막(300)을 안정화시킬 수 있다.
도 4는 본 발명의 다른 실시예에 따른 전선 구조체(2000)를 개략적으로 도시한 사시도이다. 도 4에서 도 2와 동일한 참조 부호는 동일 부재를 나타내며, 여기서는 설명의 간략화를 위하여 동일한 부분의 중복 설명은 생략한다.
본 실시예에 따른 전선 구조체(2000)는 일 방향으로 연장되어 구비되는 구리(Cu) 전선(200b), 구리(Cu) 전선(200b)의 표면에 도금되어 있는 금속(250) 및 상기 구리(Cu) 전선(200b)과 금속(250)을 에워싸고 있는 그래핀 코팅막(300)을 포함하여 형성할 수 있다.
구리(Cu) 전선(200b)은 일 방향으로 길게 연장되어 와이어 형태를 갖도록 구비될 수 있다.
선택적 실시예로서, 구리(Cu) 전선(200b)은 순도 99.9% 이상의 구리(Cu) 금속으로 형성될 수 있다.
구리(Cu) 전선(200a)을 형성하는 구리(Cu) 금속의 순도가 낮고 다른 원소들이 많이 포함되어 있는 경우에는 전선 구조체(1000)를 형성하는 과정에서 구리(Cu) 금속 이외의 다른 원소들에 의해 구리(Cu) 전선(200a)의 표면에 그래핀(graphene)이 균일하게 코팅되기 어려운 문제가 있다.
이에 따라 본 실시예에 따른 전선 구조체(1000)는 순도 99.9% 이상의 구리(Cu)금속으로 이루어진 구리(Cu) 전선(200b)으로 형성됨에 따라 표면에 그래핀(graphene)을 균일하게 코팅할 수 있는 유리한 효과가 있다.
구리(Cu) 전선(200b)의 표면에는 금속 또는 합금이 도금될 수 있다.
상기 금속(250)은 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈럼(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 팔라듐(Pd), 이트리움(Y), 지르코늄(Zr), 게르마늄(Ge), 황동(brass), 청동(bronze), 백동(white brass) 및 스테인레스 스틸(stainless steel) 중 적어도 하나의 금속 또는 합금을 포함할 수 있으나, 이에 제한되는 것은 아니며, 전기전도도가 높은 금속 또는 합금이면 어떤 것이라도 도금될 수 있다.
도 4에 도시된 바와 같이 본 실시예에 따른 전선 구조체(2000)는 구리(Cu) 전선(200b)에 도금된 금속(250)의 표면을 둘러싸도록 그래핀 코팅막(300)이 형성될 수 있다.
즉, 구리(Cu) 전선(200b)의 외측을 에워싸도록 구리(Cu) 전선(200b)에 도금된 금속(250)의 표면상에 그래핀 코팅막(300)이 일정한 두께를 갖도록 형성될 수 있다.
본 실시예에 따른 전선 구조체(2000)는 상기 전선 구조체 제조 장치(100) 내에 표면에 금속(250)이 코팅된 상태의 구리(Cu) 전선(200a)을 배치할 수 있다.
다음으로, 진공펌프(미도시)를 이용하여 챔버(101) 내부에 포함된 가스를 감압부(미도시)를 통해 외부로 빼낸다. 챔버(101) 내부는 대기압 보다 낮은 압력상태, 예컨대 수백 torr ~ 10-6 torr 정도의 압력을 가질 수 있다.
이 후, 가스 공급부(140)를 통해서 분위기 가스, 예컨대 헬륨, 아르곤과 같은 불활성 가스 및/ 또는 금속박판의 표면을 깨끗하게 유지하기 위한 수소와 같은 비반응 가스를 주입할 수 있다.
분위기 가스를 주입한 후, 램프부(130)를 이용하여 표면에 금속(250)이 코팅된 구리(Cu) 전선(200a) 및 전도판(110)을 가열할 수 있다.
램프부(130)에서 방출되는 복사열에 의해 전도판(110) 및 구리(Cu) 전선(200b)의 온도가 충분히 높아지면, 구리(Cu) 전선(200b) 및 전도판(110)에서 방출되는 열에 의하여 챔버(101) 내부에는 그래핀을 합성하기에 충분한 온도가 형성된다.
선택적 실시예로서 챔버(101) 내부는 600 ℃ 이상의 고온 환경이 조성될 수 있으며, 다른 선택적 실시예로 챔버(101) 내부는 900~1050 ℃의 고온을 유지할 수 있다.
이에 따라, 램프부(130) 및 전도판(110)에 의해 챔버(101) 내부가 수초~수분의 빠른 시간 내에 급속으로 그래핀을 합성하기에 충분한 온도로 승온되고, 구리(Cu) 전선(200a)은 가열됨에 따라 구리(Cu) 금속의 결정 크기와 결정 방향이 변화되어 재결정화가 일어날 수 있다.
이후, 가스 공급부(140)를 통해서 탄소를 포함하는 가스, 즉 반응 가스를 공급한다.
선택적 실시예로서 상기 탄소를 포함하는 가스로는 메탄(CH4) 가스가 공급될 수 있다.
탄소를 포함하는 반응 가스는 챔버(101) 내부에서 에너지를 공급받아 그래핀 합성에 필요한 상태로 분해된다.
선택적 실시예로서 반응 가스로 메탄(CH4) 가스가 사용되는 경우에는 챔버(101) 내부에서 탄소(C)와 수소(H)로 해리가 일어난다.
반응가스가 고온의 환경이 조성된 챔버(101) 내부를 지나갈 때 금속(250)으로 도금된 구리(Cu) 전선(200b), 즉 구리(Cu) 전선(200b)의 표면에 코팅되어 있는 금속(250)의 표면과 접촉하게 되는데 이 과정에서 분해된 반응 가스가 표면 활성화된 금속(250)에 흡수되면서 그래핀 결정이 성장된다.
즉, 구리(Cu) 전선에 코팅된 금속(250)의 표면에서 그래핀 결정이 성장됨에 따라 구리(Cu) 전선(200b) 및 금속(250)을 에워싸도록 일정한 두께를 갖는 그래핀 코팅막(300)이 형성될 수 있다.
다시 말해서, 본 실시예에 따른 전선 구조체(2000)는 구리(Cu) 전선(200b)을 둘러싸도록, 구리(Cu) 전선(200b)에 도금된 금속(250)의 표면에 그래핀 코팅막(300)이 형성될 수 있다.
선택적 실시예로서, 상술한 바와 같이 수초~수분의 빠른 시간 내에 급속으로 그래핀을 합성하기에 충분한 온도로 챔버(101) 내부의 온도가 승온되어 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 도금된 금속(250)의 표면에 그래핀 코팅막(300)이 증착되어 형성될 수 있다.
본 실시예에서는 램프부(130)에 의해 구리(Cu) 전선(200a)을 가열한 후, 탄소를 포함하는 가스를 공급하는 방법을 설명하였으나, 본 발명은 이에 한정되지 않는다.
고온의 챔버(101) 내부에서 구리(Cu) 전선(200b)을 둘러싸도록 도금된 금속(250)의 표면에 그래핀이 합성되고 난 후 그래핀 코팅막(300)이 형성된 전선 구조체(2000)를 냉각시킴에 따라 그래핀 코팅막(300)을 안정화시킬 수 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (16)

  1. 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선; 및
    상기 구리(Cu) 전선의 외측에 상기 구리(Cu) 전선을 에워싸도록 형성되는 그래핀 코팅막;을 포함하고,
    상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체.
  2. 제1항에 있어서,
    상기 구리(Cu) 전선의 표면에 도금되는 금속;을 더 포함하고,
    상기 그래핀 코팅막은 상기 구리(Cu) 전선을 에워싸도록 상기 구리(Cu) 전선의 표면에 도금되는 금속의 표면에 형성되는 전선 구조체.
  3. 제2항에 있어서,
    상기 구리(Cu) 전선의 표면에 도금되는 금속은 금(Au), 은(Ag), 니켈(Ni), 로듐(Rh) 가운데 하나인 전선 구조체.
  4. 제1항에 있어서,
    상기 그래핀 코팅막은 급속 열 화학 기상 증착법(Rapid-Thermal CVD)에 의해 상기 구리(Cu) 전선을 에워싸도록 형성되는 전선 구조체.
  5. 제4항에 있어서,
    상기 급속 열 화학 기상 증착법(Rapid-Thermal CVD) 공정 중에 탄소를 포함하는 가스가 주입되어 상기 구리(Cu) 전선의 외측에 상기 그래핀 코팅막이 형성되는 전선 구조체.
  6. 제5항에 있어서,
    상기 탄소를 포함하는 가스는 메탄(CH4)가스인 전선 구조체.
  7. 제1항에 있어서,
    상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 크기는 순수한 구리(Cu) 금속의 결정 크기보다 큰 전선 구조체.
  8. 제1항에 있어서,
    상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 형성 방향은 특정한 방향으로 이루어진 전선 구조체.
  9. 챔버 내에 일 방향으로 길게 연장되어 구비되는 구리(Cu) 전선을 제공하는 단계;
    상기 챔버 내에 탄소를 포함하는 가스를 공급하는 단계;
    상기 구리(Cu) 전선을 가열하기 위해 상기 챔버 내부를 수 초~ 수 분내에 급속으로 600도씨 이상의 온도로 승온시키는 단계; 및
    상기 챔버 내부에 탄소를 포함하는 가스를 주입하는 단계;를 포함하며,
    상기 구리(Cu) 전선은 99.9% 이상의 순도를 갖는 구리(Cu) 금속으로 형성되는 전선 구조체의 제조 방법.
  10. 제9항에 있어서,
    상기 탄소를 포함하는 가스가 해리되어 상기 구리(Cu) 전선을 에워싸도록 그래핀 코팅막이 형성되는 전선 구조체의 제조 방법.
  11. 제10항에 있어서,
    상기 구리(Cu) 전선을 에워싸는 상기 그래핀 코팅막이 형성된 후, 일정한 속도로 냉각시키는 단계;를 더 포함하는 전선 구조체의 제조 방법.
  12. 제9항에 있어서,
    상기 탄소를 포함하는 가스는 메탄(CH4)가스인 전선 구조체의 제조 방법.
  13. 제9항에 있어서,
    상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 크기는 순수한 구리(Cu) 금속의 결정 크기보다 큰 전선 구조체의 제조 방법.
  14. 제9항에 있어서,
    상기 구리(Cu) 전선을 형성하는 구리(Cu) 금속의 결정 형성 방향은 특정한 하나의 방향으로 이루어진 전선 구조체의 제조 방법.
  15. 제9항에 있어서,
    상기 구리(Cu) 전선은 표면에 구리(Cu) 이외의 금속 또는 합금이 도금된 전선 구조체의 제조 방법.
  16. 제15항에 있어서,
    상기 구리(Cu) 전선의 표면에 도금된 금속은 금(Au), 은(Ag), 니켈(Ni), 로듐(Rh) 가운데 하나인 전선 구조체의 제조 방법.
PCT/KR2016/008495 2016-05-24 2016-08-02 전선 구조체 및 이의 제조 방법 WO2017204408A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/545,962 US20180190406A1 (en) 2016-05-24 2016-08-02 Electric wire structure and method of manufacturing thereof
CN201680084950.4A CN109074892A (zh) 2016-05-24 2016-08-02 电线结构及其制造方法
US16/731,681 US20200135357A1 (en) 2016-05-24 2019-12-31 Electric wire structure and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0063295 2016-05-24
KR1020160063295A KR20170132450A (ko) 2016-05-24 2016-05-24 전선 구조체 및 이의 제조 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/545,962 A-371-Of-International US20180190406A1 (en) 2016-05-24 2016-08-02 Electric wire structure and method of manufacturing thereof
US16/731,681 Division US20200135357A1 (en) 2016-05-24 2019-12-31 Electric wire structure and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2017204408A1 true WO2017204408A1 (ko) 2017-11-30

Family

ID=60412423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008495 WO2017204408A1 (ko) 2016-05-24 2016-08-02 전선 구조체 및 이의 제조 방법

Country Status (4)

Country Link
US (2) US20180190406A1 (ko)
KR (1) KR20170132450A (ko)
CN (1) CN109074892A (ko)
WO (1) WO2017204408A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206786A1 (de) * 2018-04-25 2019-10-31 Aixtron Se Mit mehreren zweidimensionalen schichten beschichtetes bauteil sowie beschichtungsverfahren
CN111058017A (zh) * 2019-11-22 2020-04-24 上海交通大学 石墨烯金属复合丝材及其低温连续化制备方法
CN111254312A (zh) * 2018-11-30 2020-06-09 上海电机学院 一种耐腐蚀复合铜基微细线及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110745815B (zh) * 2018-07-24 2022-08-16 南开大学 制备石墨烯-金属复合线材的方法
CN111083609B (zh) * 2019-12-06 2021-11-26 歌尔股份有限公司 一种用于发声装置的音圈线、音圈及发声装置
CN111276295A (zh) * 2020-02-20 2020-06-12 上海超碳石墨烯产业技术有限公司 一种石墨烯原生包覆铜线的制备方法
EP4181157A1 (en) * 2021-11-12 2023-05-17 Vlatchain Wire and stranded wire for high-power electric vehicle charging cable, and high-power electric vehicle charging cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120137844A (ko) * 2011-06-13 2012-12-24 엘에스전선 주식회사 그라핀 코팅층을 포함하는 절연 전선
US20130140058A1 (en) * 2011-12-05 2013-06-06 Ki II Kim Graphene electrical wire and a method for manufacturing thereof
KR20130060005A (ko) * 2011-11-29 2013-06-07 삼성테크윈 주식회사 그래핀 합성용 금속 박막 및 이를 이용한 그래핀 제조 방법
KR20160050183A (ko) * 2014-10-28 2016-05-11 엘에스전선 주식회사 그라핀 코팅층을 포함하는 복합 도체 및 이를 포함하는 전선

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120137844A (ko) * 2011-06-13 2012-12-24 엘에스전선 주식회사 그라핀 코팅층을 포함하는 절연 전선
KR20130060005A (ko) * 2011-11-29 2013-06-07 삼성테크윈 주식회사 그래핀 합성용 금속 박막 및 이를 이용한 그래핀 제조 방법
US20130140058A1 (en) * 2011-12-05 2013-06-06 Ki II Kim Graphene electrical wire and a method for manufacturing thereof
KR20160050183A (ko) * 2014-10-28 2016-05-11 엘에스전선 주식회사 그라핀 코팅층을 포함하는 복합 도체 및 이를 포함하는 전선

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, YONG-YOU ET AL.: "Synthesis of Graphene and its Application to Thermal and Surface Modification", JOURNAL OF THE KOREA INSTITUTE OF ELECTRONIC COMMUNICATION SCIENCES, vol. 8, no. 4, 2013, pages 549 - 554 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206786A1 (de) * 2018-04-25 2019-10-31 Aixtron Se Mit mehreren zweidimensionalen schichten beschichtetes bauteil sowie beschichtungsverfahren
CN112272715A (zh) * 2018-04-25 2021-01-26 艾克斯特朗欧洲公司 被涂覆多个二维涂层的构件以及涂层方法
CN111254312A (zh) * 2018-11-30 2020-06-09 上海电机学院 一种耐腐蚀复合铜基微细线及其制备方法
CN111058017A (zh) * 2019-11-22 2020-04-24 上海交通大学 石墨烯金属复合丝材及其低温连续化制备方法
CN111058017B (zh) * 2019-11-22 2021-03-30 上海交通大学 石墨烯金属复合丝材及其低温连续化制备方法

Also Published As

Publication number Publication date
US20200135357A1 (en) 2020-04-30
CN109074892A (zh) 2018-12-21
US20180190406A1 (en) 2018-07-05
KR20170132450A (ko) 2017-12-04

Similar Documents

Publication Publication Date Title
WO2017204408A1 (ko) 전선 구조체 및 이의 제조 방법
WO2012150761A1 (ko) 그래핀의 제조 방법 및 그래핀의 제조 장치
KR101828528B1 (ko) 그래핀의 제조 장치 및 제조 방법
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
JP4412411B2 (ja) 炭化珪素半導体装置の製造方法
WO2016122081A1 (ko) 금속 칼코게나이드 박막의 제조 방법
WO2015102459A1 (ko) 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치
WO2010143778A1 (ko) 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법
KR101828530B1 (ko) 그래핀 합성 장치
JP4523733B2 (ja) 炭化珪素単結晶インゴットの製造方法並びに炭化珪素単結晶育成用種結晶の装着方法
KR101294362B1 (ko) 육방정계 질화붕소층을 포함하는 그래핀 복합필름 제조방법
WO2014189271A1 (ko) 대면적의 단결정 단일막 그래핀 및 그 제조방법
WO2011078628A2 (en) Heat treatment container for vacuum heat treatment apparatus
WO2012002666A2 (en) Graphene manufacturing apparatus and method
US11639291B2 (en) Method for carbon nanotube purification
WO2014137180A1 (ko) 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법
WO2016076664A1 (ko) 잉곳 제조 장치
JP6320831B2 (ja) サセプタ処理方法及びサセプタ処理用プレート
WO2017159929A1 (ko) 그래핀 합성 장치 및 이를 이용한 그래핀 합성 방법
WO2014038803A1 (en) Catalyst metal film-supporting device and method and apparatus for synthesizing multiple graphene films
WO2013191347A1 (ko) 연속 그래핀 제조장치
WO2020130608A2 (ko) 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
WO2012015132A1 (en) Heat treatment container for vacuum heat treatment apparatus
WO2015163619A1 (ko) 그래핀의 제조방법 및 그래핀 원자층이 식각되는 그래핀 제조방법 및 웨이퍼결합방법을 구비하는 그래핀 굽힘 트랜지스터, 및 그래핀 굽힘 트랜지스터
WO2021080276A1 (ko) 종자정 고상결정 성장에 의한 단결정 금속필름, 이를 이용한 방위각이 조절된 대면적의 단층 또는 다층 그래핀 및 이의 제조방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903256

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903256

Country of ref document: EP

Kind code of ref document: A1