WO2015102459A1 - 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치 - Google Patents

진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치 Download PDF

Info

Publication number
WO2015102459A1
WO2015102459A1 PCT/KR2015/000085 KR2015000085W WO2015102459A1 WO 2015102459 A1 WO2015102459 A1 WO 2015102459A1 KR 2015000085 W KR2015000085 W KR 2015000085W WO 2015102459 A1 WO2015102459 A1 WO 2015102459A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
transfer
supply unit
target substrate
transfer target
Prior art date
Application number
PCT/KR2015/000085
Other languages
English (en)
French (fr)
Inventor
이병훈
이상경
이상철
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020167018619A priority Critical patent/KR101899224B1/ko
Publication of WO2015102459A1 publication Critical patent/WO2015102459A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0076Methods for manipulating nanostructures not provided for in groups B82B3/0066 - B82B3/0071
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/10Duplicating or marking methods; Sheet materials for use therein by using carbon paper or the like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a graphene transfer method and a graphene transfer device, and more particularly, to a graphene transfer method and a graphene transfer device therefor by vacuum heat treatment.
  • Graphene refers to a layer of atoms in which the carbon atoms have a honeycomb arrangement in two dimensions. The thickness is 0.2 nm, and the physical and chemical stability is high. Specifically, the graphene has a high charge transfer, excellent transmittance, excellent flexibility and strength, which is a very promising material for next-generation electronic devices and optoelectronic devices. In addition, the good bending characteristics of graphene and high sensitivity to light can improve the efficiency of devices such as solar cells and LEDs, and can be applied to devices such as touch screens and photodetectors. The range is expanding.
  • the graphene may be manufactured by chemical vapor deposition (CVD) on a metal layer. This is because the graphene produced by the chemical vapor deposition method is the most excellent and can be mass-produced.
  • CVD chemical vapor deposition
  • the transfer process of graphene, the graphene formed on the metal layer is an adhesive support layer such as thermal release tape (Thermal Releasing Tape), polydimethylsiloxane (PDMS), or polymethyl methacrylate (PMMA)
  • thermal release tape Thermal Releasing Tape
  • PDMS polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • the problem to be solved by the present invention is to minimize the factors that affect the degradation of the graphene when performing the transfer process of graphene.
  • the step of preparing a graphene laminate bonded to the support substrate and graphene, and the graphene laminate of the graphene laminate by vacuum heat treatment the substrate and the transfer target substrate It provides a graphene transfer method comprising the step of transferring the pin to the transfer target substrate.
  • a graphene supply unit for providing a support substrate on which graphene is disposed on one side, a transfer object which is positioned apart from the graphene supply unit and provides a transfer target substrate to which the graphene is transferred It provides a graphene transfer device comprising a substrate supply unit, and a heat supply unit which is located below the transfer target substrate supply unit to provide heat to the transfer target substrate.
  • FIG. 1 is a flow chart showing a graphene transfer method according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a graphene transfer device according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • Figure 4 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • Figure 5 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • Figure 6 (a) is a graphene transferred in accordance with Example 1 of the present invention
  • Figure 6 (b) is a comparison of Raman mapping for the graphene transferred to the graphene of Example 1 without vacuum heat treatment (Raman mapping) Image.
  • FIG. 7 is an image comparing graphene transferred through vacuum heat treatment and graphene transferred to DI water without performing vacuum heat treatment according to Example 1 of the present invention.
  • 8 (a) and 8 (b) are images showing a process of transferring graphene according to Example 1 of the present invention.
  • Example 10 is an image comparing graphene subjected to ultrasonic grinding according to Example 4 of the present invention and graphene before ultrasonic grinding.
  • FIG. 11 is a graph comparing the results of Raman spectroscopy of each graphene of Example 4 not subjected to ultrasonic grinding and Example 4 subjected to ultrasonic decomposition.
  • Example 12 is a chart showing the results of analyzing the electrical characteristics of the FET device manufactured according to Example 6.
  • FIG. 13 is a diagram illustrating a flow of current with respect to time of a photo detector manufactured according to Embodiment 7 of the present invention.
  • FIG. 14 is an image comparing graphene transferred according to Example 8 of the present invention with graphene transferred to a hexamethyldisilazane (HMDS) substrate without vacuum heat treatment.
  • HMDS hexamethyldisilazane
  • FIG. 1 is a flow chart showing a graphene transfer method according to an embodiment of the present invention.
  • a graphene laminate in which a support substrate and graphene are combined is prepared (S10).
  • the graphene laminate may include a catalyst metal disposed on one surface of graphene, and the graphene may be formed on the catalyst metal.
  • the graphene may be formed in a single layer or multiple layers having a predetermined thickness on the catalyst metal, but is not particularly limited thereto.
  • the catalyst metal is used for graphene synthesis, and may be a catalyst metal that is a single metal substrate made of only metal, or a catalyst metal combined with another member.
  • the catalytic metal combined with the other member may be, for example, copper (Cu) formed as a metal layer on a silicon wafer (SiO 2 / Si) substrate having silicon oxide, which may be an electron beam or sputter ( It can be configured by forming a metal layer in a sputter) method.
  • the catalyst metal may be composed of a plate having a predetermined size, the catalyst metal is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), aluminum At least one selected from (Al), magnesium (Mg), chromium (Cr), and silicon (Si) may be included.
  • Graphene synthesized on the catalytic metal may be deposited by a chemical vapor deposition (CVD) process.
  • the chemical vapor deposition method is, for example, rapid thermal chemical vapor deposition (RTCVD), inductively coupled plasma-chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (low) pressur chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD) or plasma-enhanced chemical vapor deposition (PECVD) ) May be included.
  • RTCVD rapid thermal chemical vapor deposition
  • ICP-CVD inductively coupled plasma-chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • APCVD atmospheric pressure chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • Graphene may be formed by supplying a reaction gas including a carbon source on the catalyst metal
  • the carbon source may include, for example, carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, benzene, or toluene.
  • Forming graphene on the catalyst metal may be performed by heat treatment at a temperature of 300 ° C. to 2000 ° C., or heat treatment at a temperature lower than the melting point of the catalyst metal, and may be performed at 10 ⁇ 7 Torr to atmospheric pressure. .
  • Graphene formed on the catalytic metal by the above process may be subjected to a predetermined cooling process. This is to allow the formed graphene to grow uniformly and be uniformly arranged. For example, the graphene may be cooled at a rate of 1 ° C. to 50 ° C. per second, and a natural cooling method may be used. The crystallization of graphene may be improved by repeatedly performing the heat treatment and the cooling process.
  • the support substrate may have one or more separation spaces, and the graphene may be disposed in the separation space of the support substrate.
  • the form of the separation space may be composed of a circle or a polygon.
  • the support substrate may be a substrate having an acid resistance of pH 3 or less or a basic resistance of pH 10 or more and heat resistance at 100 ° C to 300 ° C. That is, the support substrate may be acid resistant or acid resistant to an acidic material having a pH of 3 or less or a basic material having a pH of 10 or more, so that the support substrate may not be damaged by the processes during the etching process of the catalytic metal and the graphene cleaning process. It may be a substrate having basicity.
  • the support substrate may be a substrate having heat resistance that can maintain the characteristics of the support substrate even at a temperature of 100 °C to 300 °C when performing graphene transfer using the vacuum heat treatment of the present invention.
  • the support substrate may be, for example, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyethylene sulfone (PES), polydimethylsiloncene (PDMS), polycarbonate (PC), polyimide (PI), It may include, but is not limited to, polypropylene terephthalate (PPT), polyetherimide (PEI), or polyarylate (PAR).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PES polyethylene sulfone
  • PDMS polydimethylsiloncene
  • PC polycarbonate
  • PI polyimide
  • PPT polypropylene terephthalate
  • PEI polyetherimide
  • PAR polyarylate
  • It may include an adhesive member for coupling the support substrate and the graphene.
  • Forming an adhesive member for bonding between the graphene formed on the catalyst metal and the separation space of the support substrate, after applying the adhesive member on one surface of the graphene or one surface of the support substrate, the adhesive member is cured Can be done.
  • the adhesive member may be applied to an upper portion of the graphene or a support substrate region around the space of the support substrate to form an adhesive member between the graphene and the space of the support substrate.
  • the adhesive member may be formed of one material, but may be formed of two or more materials, if necessary. Curing the adhesive member may be, for example, a convection oven or a UV curing machine, but is not particularly limited.
  • the adhesive member may be an adhesive member having acid resistance of pH 3 or less or basic resistance of pH 10 or higher and heat resistance at 100 ° C to 300 ° C. That is, the adhesive member may have acid resistance or basic resistance, respectively, to an acidic material having a pH of 3 or less or a basic material having a pH of 10 or more, which may be contacted during graphene transfer using the vacuum heat treatment of the present invention.
  • the adhesive member may have a heat resistance that can maintain the properties of the adhesive member even at a temperature of 100 °C to 300 °C when performing graphene transfer using the vacuum heat treatment of the present invention.
  • the adhesive member may be formed so that the graphene may be supported by the support substrate so that the graphene is not damaged during the process.
  • the adhesive member may be, for example, polyimide, polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), or UV It may include a curable polymer, but is not limited thereto.
  • PMMA polymethylmethacrylate
  • PDMS polydimethylsiloxane
  • PVDF polyvinylidene fluoride
  • UV It may include a curable polymer, but is not limited thereto.
  • the step of applying the adhesive member on the graphene may include, but is not limited to.
  • the process of applying the adhesive member on the graphene may use a spin coating method, and by using a spin coating method on the graphene to adjust the rotational speed and the application time while appropriately thicknessing the adhesive member. Can be applied.
  • the thickness of the adhesive member is too thick, the surface of the adhesive member may not be sufficiently flexible, so that the graphene may be difficult to be accurately transferred along the surface curvature of the substrate to be transferred.
  • the thickness of the adhesive member is too thin, it may be torn by being subjected to the adhesive force or gravity with the aqueous solution during the wet process, such as catalyst metal removal process and graphene cleaning process.
  • a graphene laminate including a support substrate / adhesive member / graphene / catalyst metal may be manufactured. It is possible to prevent the graphene from being directly supported by the support substrate by attaching the graphene stack around the separation space of the support substrate by using a support substrate having a separation space, thereby reducing the surface curvature of the support substrate. The impact can be minimized.
  • the catalyst metal disposed on one surface of graphene of the graphene laminate may be removed.
  • the catalyst metal is used for the formation of graphene, and may be removed for the transfer process of graphene described later.
  • Removing the catalyst metal disposed on the graphene surface of the graphene laminate is performed by an etching process using an etching solution containing CuCl 2 , KOH, FeCl 3 , HCl, HF, or a combination of two or more thereof. can do.
  • etching solution containing CuCl 2 , KOH, FeCl 3 , HCl, HF, or a combination of two or more thereof. can do.
  • DI water distilled water
  • the graphene laminate and the transfer target substrate are vacuum heat-treated to transfer the graphene of the graphene laminate to the transfer target substrate (S20).
  • the graphene laminate and the transfer target substrate may be performed by applying heat treatment at a temperature of 150 ° C. to 250 ° C. under a vacuum atmosphere.
  • a temperature of 150 ° C. to 250 ° C. When the temperature of the heat treatment is less than 150 ° C, sufficient energy for transferring the graphene is not formed between the graphene of the graphene laminate and the transfer target substrate, so that the graphene is well transferred to the transfer target substrate. It may not be done.
  • the temperature of the heat treatment is more than 250 °C may be a defect that the adhesive member formed between the support substrate and the graphene of the graphene laminate is not removed well or the support substrate is melted at a temperature of more than 250 °C
  • gas generation may cause contamination of the vacuum chamber or the graphene and the substrate to be transferred.
  • the adhesion between the graphene and the transfer target substrate may be enhanced by the vacuum heat treatment. This may be to remove the molecules that existed between the graphene and the transfer target substrate during heat transfer in a vacuum atmosphere, thereby improving the bonding force with the transfer target substrate.
  • the vacuum atmosphere may be, for example, 10 ⁇ 7 Torr to 10 ⁇ 2 Torr.
  • the substrate to be transferred may be applied to any substrate for which graphene is to be transferred.
  • the transfer object substrate may include, for example, polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), silicon wafer, glass, ion exchange film, or membrane. It may be, but is not limited thereto.
  • the adhesive member residue on the surface of the graphene on the transfer target substrate may be cleaned. have.
  • the cleaning of the adhesive member residue on the surface of the graphene on the transfer target substrate may be performed using an etching solution including at least one of acetone, isopropyl alcohol, nitrate etching solution, hydrogen peroxide etching solution, and deionized water. .
  • the quality of the graphene may be maintained while the residue of the adhesive member of the graphene, for example, PMMA, is removed by acetone by the etching solution.
  • the transfer target substrate to which the graphene is transferred may be applied to various electrical devices.
  • organic light emitting diodes OLEDs
  • inorganic light emitting diodes Inorganic Light Emitting Diodes
  • inorganic thin film transistors Inorganic Thin Film Transistors
  • field-effect transistors inorganic solar cells (Inorganic) Solar Cells
  • Organic Photovoltaic Diodes OLEDs
  • Memory Electrochemical / Bio Sensors, RF Devices, Photodetectors, Optical Waveguides, CMOS Devices, Lithium Batteries or Fuel Cells It can be used as an electrode.
  • a graphene transferred onto a substrate to be transferred may be used as a channel, and a photo detector may be further manufactured by further including a source electrode, a drain electrode, and a gate electrode.
  • the photo detector is a device that detects an optical signal and converts it into an electrical signal.
  • the photo detector is manufactured based on Si, but has a limitation in that the life of the device is shortened due to the small energy band gap of Si.
  • graphene is based on graphene-based light because one layer absorbs about 2.3% of incident light, reflects less than 0.1% of the incident light (visible light band), and absorbs from the UV band to the THz band.
  • the detector can have the effect of operating in a wider wavelength band.
  • a field-effect transistor to which graphene is transferred on a transfer target substrate may be manufactured.
  • the graphene may be included in the channel layer, and source and drain electrodes may be formed on both substrates, and the graphene may be electrically connected to the channel layer of the graphene. Therefore, it is possible to apply the excellent charge mobility characteristics inherent to the graphene to improve the electrical characteristics of the field effect transistor employing it.
  • a graphene supply unit for providing a support substrate on which graphene is disposed on one side, a transfer object which is positioned apart from the graphene supply unit and provides a transfer target substrate to which the graphene is to be transferred It provides a graphene transfer device comprising a substrate supply unit, and a heat supply unit which is located below the transfer target substrate supply unit to provide heat to the transfer target substrate.
  • the vacuum chamber is configured to form a vacuum atmosphere during graphene transfer using the graphene transfer apparatus of the present invention, and may be configured to have a size that may include the graphene supply unit, a transfer target substrate supply unit, and a heat supply unit.
  • the transfer target substrate supply portion and the graphene supply portion by creating a vacuum atmosphere in the process of the contact and the transfer is performed, acting as a dopant (dopant) during the graphene transfer process, the quality of the graphene Other gaseous components such as water and oxygen can be removed at the source.
  • the graphene supply unit, the graphene is attached to the support substrate by an adhesive member may be composed of a graphene / adhesive member / support substrate.
  • the graphene supply unit is configured to provide graphene for graphene transfer, and may be configured in a form in which the graphene is in good contact with the transfer target substrate supply unit.
  • the graphene supply unit may be configured to continuously supply the vacuum chamber, and may be configured to supply a predetermined size unit.
  • the graphene supply unit may further include a pressurizer, a roller, and the like, which may perform pressurization so that contact between the graphene supply unit and the transfer target substrate supply unit may be improved.
  • the position control device When arranging the graphene supply unit before performing the graphene transfer, the position control device may be further spaced apart from the transfer target substrate supply unit.
  • the position control device may be, for example, a robot arm that can change the position of the object up and down, left and right, but is not limited thereto.
  • the transfer target substrate supply unit is configured to provide a transfer target substrate for graphene transfer, and the transfer target substrate may be configured to be in good contact with the graphene supply unit.
  • a heat supply unit for supplying heat to the transfer target substrate is disposed at the lower end of the transfer target substrate supply unit, it may be made of a material capable of withstanding the heat of the heat supply unit.
  • the transfer target substrate supply unit may be configured to be continuously supplied into the vacuum chamber, or may be configured to be supplied in a predetermined size unit.
  • the transfer target substrate supply unit may further include a separate device capable of controlling a separation distance between the graphene supply unit and the transfer target substrate.
  • the heat supply unit is configured to provide heat to the transfer target substrate of the transfer target substrate supply unit, and may include, for example, a heater such as a hotplate.
  • the heat supply unit may be disposed at a lower end of the vacuum chamber, and supplies heat to the graphene in contact with the transfer target substrate or the transfer target substrate and the transfer target substrate during a graphene transfer process.
  • the adhesive force of the transfer target substrate may be increased.
  • the graphene transfer device of the present invention may further include a position control device disposed on the side of the heat supply unit and the transfer target substrate supply unit, the graphene supply unit and the transfer target substrate supply unit by the position control device The separation distance may be adjusted.
  • Figure 2 is a schematic diagram of a graphene transfer device according to an embodiment of the present invention.
  • the graphene transfer device of the present invention may configure a vacuum chamber 100 and a robot arm 500 that is a position control device in the vacuum chamber 100.
  • a graphene supply unit 200 including a support substrate 210 on which graphene 220 is disposed in an arm region of the robot arm 500 may be configured.
  • the position of the graphene supply unit 200 may be controlled.
  • a heater 410 that is a heat supply unit 400 may be configured on the side of the robot arm 500, and a Z axis mover 420 may be additionally configured in a predetermined region of the heater 410.
  • the Z axis mover 420 may help to control the separation distance of the graphene supply unit 200 whose position is controlled by the robot arm 500.
  • the transfer target substrate 310 which is the transfer target substrate supply unit 300, may be configured on the heater 410.
  • a vacuum atmosphere for performing graphene transfer may be formed. Accordingly, elements that may affect the transfer of graphene, such as water or oxygen, on the surface of the graphene 220 and the transfer target substrate 310 may be removed.
  • the transfer target substrate supply unit 300 may contact the graphene supply unit 200 by controlling the position of the graphene supply unit through the robot arm 500.
  • the graphene transfer method using the vacuum heat treatment of the present invention may be performed by supplying heat through the heater 410 while the graphene supply unit 200 and the transfer target substrate supply unit 300 are in contact with each other.
  • the graphene transfer apparatus of the present invention may further include a first roller pressurizing one surface of the graphene supply unit to bond the graphene supply unit and the transfer target substrate supply unit.
  • Figure 3 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • the graphene transfer device of the present invention may configure a vacuum chamber 100 and a robot arm 500 that is a position control device in the vacuum chamber 100.
  • the graphene supply unit 200 may include a support substrate 210 on which the graphene 220 is disposed in an arm region of the robot arm 500. The position of the graphene supply unit 200 may be controlled.
  • a heater 410 that is a heat supply unit 400 may be configured on the side of the robot arm 500.
  • the transfer target substrate 310 which is the transfer target substrate supply unit 300, may be configured on the heater 410.
  • the graphene supply unit 200 is pressed on one surface of the graphene supply unit 200 by pressing the graphene supply unit 200 in an opposite direction to approach the transfer target substrate supply unit 300.
  • the first roller 600 may be further configured to bond the transfer target substrate supply part 300 to each other.
  • the graphene supply part by pressing the graphene supply part 200 in one direction from the one side to the other side of the first roller 600 to bond the graphene supply part 200 and the transfer target substrate supply part 300 in a straight line. 200 may be sequentially contacted with the transfer target substrate supply unit 300.
  • This may further include materials that may cause micro bubbles or doping that may occur when the entire area of each of the graphene supply unit 200 and the transfer target substrate supply unit 300 is simultaneously bonded.
  • the graphene transfer apparatus of the present invention may further include a conveyor belt for continuously supplying the graphene supply unit and the transfer target substrate supply unit.
  • the graphene supply unit and the transfer target substrate supply unit may be transferred and moved in one direction in the vacuum chamber by the conveyor belt.
  • a first roller 610 for pressing the one surface of the graphene supply unit to bond the graphene supply unit and the transfer target substrate supply unit
  • a second roller 620 for pressing one surface of the transfer target substrate supply unit.
  • Figure 4 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • the graphene transfer device of the present invention includes a vacuum chamber 100 and a graphene supply unit 200 including a support substrate 210 on which graphene 220 is disposed in the vacuum chamber 100.
  • the graphene supply unit 200 the graphene supply unit 200 is moved in one direction in the vacuum chamber 100, the first conveyor capable of continuously supplying the graphene supply unit 200 Belt 700 may be further configured.
  • the transfer target substrate supply unit 300 including the transfer target substrate 310 may be configured to be spaced apart from the graphene supply unit 200.
  • the second conveyor that can be transferred to the transfer target substrate supply unit 300 in one direction in the vacuum chamber 100 to the lower portion of the transfer target substrate supply unit 300 to continuously supply the transfer target substrate supply unit 300.
  • the belt 710 and the third conveyor belt 720 may be further configured. As the transfer target substrate 310 of the transfer target substrate supply unit 300 is continuously supplied by the second conveyor belt 710 and the third conveyor belt 720, the graphene transfer having a large area as described above is performed. It may be possible.
  • a first roller 610 to be bonded may be configured on the graphene supply unit 200.
  • a second roller 620 for pressing the transfer target substrate supply 300 in a direction in which the graphene supply unit 200 approaches the transfer target substrate supply 300 is an upper portion of the transfer target substrate supply 300.
  • the graphene supply unit 200 and the transfer target substrate supply unit 300 are bonded to each other in a straight line by the first roller 610 and the second roller 620, and the graphene 220 and the graphene are transferred when the graphene transfer is performed.
  • the bonding force of the transfer target substrate 310 can be further improved.
  • graphene transfer has been performed by applying a low temperature or applying mechanical pressure to use a thermal release tape.
  • a graphene transfer device for vacuum heat treatment, it is possible to remove impurities between the graphene and the substrate to be transferred in a vacuum atmosphere composition at the time of graphene transfer, and to configure a heater
  • the graphene may be transferred to the transfer target substrate by spontaneous bonding between the graphene and the transfer target substrate.
  • Figure 5 is a schematic diagram of a graphene transfer device according to another embodiment of the present invention.
  • the graphene transfer device of the present invention includes a vacuum chamber 100 and a graphene 220 on an upper portion of a transfer target substrate supply unit 300 including a transfer target substrate 310 in the vacuum chamber 100.
  • the graphene supply unit 200 including the support substrate 210 is disposed, and the graphene supply unit 200 and the transfer target substrate supply unit 300 may be adhered to each other by the first roller 600. have.
  • a heat supply unit including a heater 410 that provides heat to the transfer target substrate 310 is positioned below the transfer target substrate supply unit 300.
  • a stage moving device 440 is disposed below the heater 410, and the stage moving device 440 may perform three-dimensional movement of the transfer target substrate supply unit 300 in the XYZ axis direction.
  • the large area graphene transfer process may be optimized by adjusting a distance and a position between the transfer target substrate and the graphene supply unit through vertical movement of the first roller 600 and three-dimensional movement of the stage shifting device 440. .
  • the transfer of the graphene according to the graphene transfer device of the present invention may have the effect of increasing the adhesion between the graphene and the substrate to be transferred, may have the advantage of ensuring the inherent characteristics of the graphene as it is. .
  • the adhesion between the graphene and the substrate to be transferred is not sufficient, and the graphene may be damaged by impurities during the graphene transfer process performed at normal pressure. This may mean that the graphene transcription state is improved by minimizing possible factors.
  • PMMA which is an adhesive layer
  • the adhesive layer PMMA was cured in an oven or the like and bonded to a PEN substrate having a space (FRAME).
  • the graphene laminate composed of the PEN substrate / PMMA / graphene / catalyst metal was heat-treated at a temperature of 120 ° C. for 20 minutes. Thereafter, in order to remove copper, which is a catalyst metal of the graphene laminate, the copper was removed by contacting an etchant containing FeCl 3 , HCl, and DI water (distilled water) at a temperature of 50 ° C. for 5 minutes.
  • Figure 6 (a) is an image showing the Raman spectrum of the graphene transferred in accordance with Example 1 of the present invention
  • Figure 6 (b) is a Raman mapping of the graphene transferred to the graphene of Example 1 without vacuum heat treatment ( Raman mapping) is a comparison image.
  • the degree of defects of graphene may be known through the intensity ratio (I D / G ) of the D peak and the G peak, and a lower value may mean a good quality graphene.
  • the intensity of the D peak is very weak, and it can be seen that the graphene transferred by vacuum heat treatment according to Example 1 of the present invention has less defects in graphene crystals and better quality. This shows that the transfer state of graphene is improved by removing impurities that may affect the surface of graphene by preventing heat or oxygen from contacting with the vacuum composition while performing heat treatment under vacuum atmosphere during the transfer of graphene. have.
  • the left image is a Raman mapping result of graphene transferred without vacuum heat treatment, and the position of the G peak is changed to 1590 cm ⁇ 1 to 1602 cm ⁇ 1 .
  • the dopants such as water may remain during the wet process based on distilled water for etching the catalyst metal during the transfer of graphene, and thus, the graphene is doped with G-peak This may mean that the position of is changed.
  • the image on the right is a Raman mapping result of the graphene of Example 1 of the present invention, which maintains the G peak area of general graphene 1580 cm ⁇ 1 to 1590 cm ⁇ 1 , and transfers the graphene through vacuum heat treatment. It can be seen that the characteristics of the pin were maintained as it is.
  • FIG. 7 is an image comparing the state in which graphene transferred through vacuum heat treatment and graphene transferred without contacting distilled water (DI Water) according to Example 1 of the present invention are not subjected to vacuum heat treatment.
  • DI Water distilled water
  • the right region of the image is contacted with distilled water (DI Water) with transferred graphene without performing a vacuum heat treatment, and then the transferred graphene is almost separated.
  • DI Water distilled water
  • the left region of the image is graphene transferred through vacuum heat treatment according to Example 1 of the present invention, and it can be seen that there is no change in the state of the transferred graphene even after contact with distilled water (DI Water).
  • DI Water distilled water
  • the graphene transferred through the vacuum heat treatment of the present invention has high adhesive strength with the substrate, so that the characteristics and quality of the graphene can be maintained intact. It may also be advantageous to fabricate the used device.
  • 8 (a) and 8 (b) are images showing a process of transferring graphene according to Example 1 of the present invention.
  • Figure 8 (a) is in accordance with the first embodiment of the present invention 10 in the process is in a graphene transferred under 2torr vacuum atmosphere, transfer is carried out in the vacuum heat treatment
  • the graph shows an attached area of graphene on a substrate to be transferred at a temperature of 175 ° C. It can be seen that the contact area of the graphene is formed only on a portion of the substrate to be transferred.
  • FIG. 8 (b) shows that the attached area of the graphene on the transfer target substrate is further enlarged in the process of increasing the temperature to 200 ° C. according to Example 1 under a 10 ⁇ 2 torr vacuum atmosphere.
  • the graphene transferred according to Example 1 was contacted with acetone and subjected to ultrasonic sonication for 1 minute.
  • the ultrasonic pulverization may be used by a method of washing or destroying a cell or an intracellular structure using a sound wave of 10 kHz to 20 kHz.
  • Example 10 is an image comparing graphene subjected to ultrasonic grinding according to Example 4 of the present invention and graphene before ultrasonic grinding.
  • acetone is dispersed and the surface of the transferred graphene is clearer while ultrasonic grinding is performed together with acetone.
  • This may mean that the quality of graphene is improved as the residue of PMMA, which is an adhesive member remaining on graphene, is removed by dispersed acetone.
  • PMMA which is an adhesive member remaining on graphene
  • only the residue of the adhesive member is removed during the ultrasonic pulverization and that the crystal of the graphene is not changed, thereby increasing the adhesion between the graphene and the substrate to be transferred by the vacuum heat treatment of the present invention.
  • the present invention does not apply a process using ultrasonic waves.
  • FIG. 11 is a graph comparing the results of Raman spectroscopy of each graphene of Example 4 without ultrasonic grinding and Example 4 with ultrasonic decomposition.
  • the graphene transferred according to Example 1 was applied as a channel layer, and a field effect transistor (FET) electrically connected to the source electrode and the drain electrode was manufactured.
  • FET field effect transistor
  • Example 12 is a chart showing the results of analyzing the electrical characteristics of the FET device manufactured according to Example 6.
  • a dirac point is measured near 0 V and shows symmetrical data based on the dirac point. have.
  • the data of the dirac point is changed due to the hole doping. That is, when performing the transfer process of the graphene transferred without vacuum heat treatment, the transfer condition is changed by dopants such as water or oxygen between the graphene and the substrate to be transferred, thereby maintaining the graphene characteristics. It can be seen that this also affects the electrical characteristics of the FET device to which it is applied.
  • the graphene transferred according to Example 1 was included as a channel layer, and a photo detector including a drain electrode, a source electrode, and a gate electrode was manufactured.
  • a photo detector to which graphene was transferred without vacuum heat treatment was applied.
  • FIG. 13 is a diagram illustrating a flow of current with respect to time of a photo detector manufactured according to Embodiment 7 of the present invention.
  • the transfer target substrate was subjected to the same experiment as in Example 1 except that a hydrophobic substrate, hexamethyldisilazane (HMDS), was used to obtain a transferred graphene.
  • HMDS hexamethyldisilazane
  • transferred graphene was prepared on the same HMDS substrate as the transfer target substrate without using vacuum heat treatment.
  • Example 14 is an image comparing the graphene transferred to the HMDS substrate without vacuum heat treatment according to Example 8 of the present invention.
  • the left image is graphene transferred onto the HMDS substrate without vacuum heat treatment, and it may be confirmed that the graphene is torn or wrinkled.
  • the graphene is damaged during the drying process because the graphene is not uniformly adhered to the substrate due to the DI water (distilled water) present between the substrate and the graphene during transfer. .
  • the right image is a graphene transferred onto the HMDS substrate, which is a hydrophobic substrate using vacuum heat treatment, and it can be seen that the graphene is cleanly transferred without wrinkles or cracks.
  • the adhesion proceeds by spontaneous bonding of the graphene and the substrate by vacuum heat treatment on the hydrophobic substrate of the present invention, it can be seen that the graphene is uniformly transferred without being affected by the substrate's substrate properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

그래핀의 전사 방법 및 그래핀 전사 장치가 제공된다. 상세하게는, 지지기판과 그래핀이 결합된 그래핀 적층체를 제조하는 단계, 및 상기 그래핀 적층체와 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사하는 단계를 포함하는 것을 특징으로 하는 그래핀의 전사방법 및 이를 수행할 수 있는 그래핀 전사장치를 제공한다. 이에, 진공 분위기하에 그래핀의 전사 공정을 수행함으로써 그래핀과 전사 대상 기판 사이의 도핑(doping)을 일으키는 요소들을 제거함으로써 그래핀의 특성을 유지하며 전사될 수 있다. 또한, 그래핀 전사 시 열처리를 수행하여 그래핀과 전사 대상 기판과의 접합력을 증가시켜 그래핀 전사 상태를 향상시킬 수 있다.

Description

진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치
본 발명은 그래핀의 전사방법 및 그래핀 전사 장치에 관한 것으로, 보다 상세하게는 진공 열처리를 통해 그래핀을 전사하는 방법 및 이를 위한 그래핀 전사 장치에 관한 것이다.
그래핀(Graphene)은 탄소 원자들이 2차원 상에서 벌집모양의 배열을 가진 원자 한 층을 말하는 것으로, 두께는 0.2nm로 매우 얇으면서 물리적·화학적으로 안정성이 높은 특징을 가진다. 구체적으로, 상기 그래핀은 높은 전하의 이동, 뛰어난 투과도, 훌륭한 유연성 및 강도를 지니고 있어 차세대 전자소자 및 광전자소자에 매우 유망한 물질이다. 또한, 그래핀의 좋은 휨 특성, 빛에 대한 고 민감도의 특성은 태양전지, LED와 같은 소자들의 효율을 향상시킬 수 있고, 터치스크린이나 광 검출기(photodetectors)와 같은 소자에도 적용될 수 있어 점차 그 활용범위가 확대되고 있다.
이러한 그래핀의 제조는 일반적으로 금속층 상에 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 이용하여 합성하는 방법으로 제작될 수 있다. 이는, 화학 기상 증착법으로 제작된 그래핀의 특성이 가장 우수하고 대량 생산이 가능할 수 있어서이다. 하지만, 화학 기상 증착법으로 그래핀 제조시, 먼저, 금속 촉매층을 형성한 실리콘 웨이퍼 기판이나 금속 기판 상에 합성하므로, 상기 그래핀을 소자에 적용하기 위해 금속층 상에 합성된 그래핀을 원하는 기판으로 옮기는 전사(transfer) 공정이 요구된다.
일반적으로 그래핀의 전사 공정은, 금속층 상에 형성된 그래핀을 열 방출 테이프(Thermal Releasing Tape), 폴리디메틸실록산(polydimethylsiloxane, PDMS), 또는 폴리메틸 메타아크릴레이트(polymethyl methacrylate, PMMA)등의 접착지지층을 이용하여 원하는 기판(substrate)으로 전사시키는 방법이 알려져 있다.
그러나, 이러한 전사방법을 통해 그래핀을 전사시 습식 에칭 공정 중에 생기는 수분 또는 그래핀 전사시의 공기중의 산소 및 불순물에 의해 그래핀과 기판 사이에 이물질이 존재하게 되어 그래핀 전사상태가 좋지 않은 단점이 있다. 또한, 그래핀과 상기 기판과의 접착력이 약해 전사된 그래핀을 적용한 소자 제조시 그래핀의 품질이 쉽게 손상되는 문제점이 있다.
본 발명이 해결하고자 하는 과제는, 그래핀의 전사 공정 수행시 그래핀의 품질 저하에 영향을 주는 요인들을 최소화하는 데에 있다.
또한, 그래핀과 기판의 접착력을 향상시켜 그래핀의 전사상태를 개선하는 데에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은, 지지기판과 그래핀이 결합된 그래핀 적층체를 준비하는 단계, 및 상기 그래핀 적층체와 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사하는 단계를 포함하는 것을 특징으로 하는 그래핀의 전사방법을 제공한다.
본 발명의 다른 측면은, 진공 챔버 내에, 그래핀이 일측에 배치된 지지기판을 제공하는 그래핀 공급부, 상기 그래핀 공급부와 이격하여 위치하며 상기 그래핀이 전사될 전사 대상 기판을 제공하는 전사 대상 기판 공급부, 및 상기 전사 대상 기판 공급부의 하부에 위치하며 상기 전사 대상 기판에 열을 제공하는 열 공급부를 포함하는 것을 특징으로 하는 그래핀 전사장치를 제공한다.
본 발명에 따르면, 진공 분위기하에 그래핀의 전사 공정을 수행함으로써 그래핀과 전사 대상 기판 사이의 도핑(doping)을 일으키는 요소들을 제거할 수 있어 그래핀 고유의 특성을 확보할 수 있다.
또한, 열처리를 통해 그래핀을 전사함으로써 그래핀과 전사 대상 기판과의 접합력을 증가시켜 그래핀 전사상태를 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 그래핀의 전사방법을 나타낸 플로우 챠트이다.
도 2는 본 발명의 일 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 3은 본 발명의 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 4는 본 발명의 또 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 5는 본 발명의 또 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 6(a)는 본 발명의 실시예1에 따라 전사된 그래핀, 도 6(b)는 실시예1의 그래핀과 진공 열처리 없이 전사된 그래핀에 대한 라만 맵핑(Raman mapping)을 비교한 이미지이다.
도 7은 본 발명의 실시예1에 따라 진공열처리를 통해 전사된 그래핀 및 진공열처리를 수행하지 않고 전사된 그래핀을 각각 증류수(DI Water)에 접촉시킨 상태를 비교한 이미지이다.
도 8(a) 및 도 8(b)는 본 발명의 실시예1에 따라 그래핀이 전사되는 과정을 보여 주고 있는 이미지들이다.
도 9는 본 발명의 실시예1 내지 실시예5에 따라 전사된 그래핀들의 이미지이다.
도 10은 본 발명의 실시예4에 따라 초음파 분쇄(sonication)를 진행한 그래핀과 초음파 분쇄 전 그래핀을 비교한 이미지이다.
도 11은 초음파 분쇄를 진행하지 않은 실시예4와 초음파 분해를 진행한 실시예4의 각각의 그래핀의 라만 분광법의 결과를 비교한 그래프이다.
도 12는 상기 실시예6에 따라 제조된 FET장치의 전기적 특성을 분석결과를 나타낸 도표이다.
도 13은 본 발명의 실시예7에 따라 제작된 광 검출기(photo detector)의 시간에 따른 전류의 흐름을 나타낸 도표이다.
도 14는 본 발명의 실시예8에 따라 전사된 그래핀과 진공 열처리 없이 헥사메틸디실라잔(hexamethyldisilazane; HMDS) 기판에 전사된 그래핀을 비교한 이미지이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시 예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시 예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
도 1은 본 발명의 일 실시 예에 따른 그래핀의 전사방법을 나타낸 플로우 챠트이다.
지지기판과 그래핀이 결합된 그래핀 적층체를 준비한다(S10).
상기 그래핀의 형성과정은 다음과 같다. 상기 그래핀 적층체의 그래핀의 일면에 촉매금속이 배치되는 것을 포함하고, 상기 촉매금속 상에서 상기 그래핀이 형성된 것일 수 있다. 상기 그래핀은 촉매금속 상에 일정 두께를 가진 단층 또는 다층으로 형성된 것일 수 있으나, 이를 특별히 한정하지는 않는다.
상기 촉매금속은 그래핀 합성에 쓰이는 것으로, 금속으로만 이루어진 단일 금속기판인 촉매금속이거나, 다른 부재와 결합된 촉매금속일 수 있다. 상기 다른 부재와 결합된 촉매금속은, 예를 들어, 산화 실리콘을 갖는 실리콘 웨이퍼(SiO2/Si) 기판에 금속층으로 구리(Cu)가 형성된 것일 수 있으며, 이는 상기 다른 부재 상에 전자빔이나 스퍼터(Sputter) 방식으로 금속층을 형성하여 구성될 수 있다. 상기 촉매 금속은 일정 크기를 갖는 판상으로 구성될 수 있으며, 상기 촉매금속은 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 및 규소(Si) 중 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 촉매금속 상에 합성된 그래핀은 화학기상증착(chemical vapor deposition, CVD) 공정으로 증착시킬 수 있다. 상기 화학기상 증착법은, 예를 들어, 고온 화학기상증착(rapid thermal chemical vapor deposition, RTCVD), 유도결합플라즈마 화학기상증착(inductively coupled plasma-chemical vapor deposition, ICP-CVD), 저압 화학기상증착(low pressur chemical vapor deposition, LPCVD), 상압 화학 기상증착(atmospheric pressure chemical vapor deposition, APCVD), 금속 유기화학기상증착(metal organic chemical vapor deposition, MOCVD) 또는 플라즈마 화학기상증착(plasma-enhanced chemical vapor deposition, PECVD) 을 포함할 수 있다. 상기 화학기상 증착법으로 상기 촉매금속 상에 탄소 공급원을 포함하는 반응가스를 공급하여 그래핀을 형성할 수 있다. 상기 탄소 공급원은, 예를 들어, 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 벤젠, 또는 톨루엔을 포함할 수 있다.
상기 촉매금속 상에 그래핀을 형성하는 것은, 300℃ 내지 2000℃의 온도로 열처리하거나, 또는 촉매금속의 융점보다 낮은 온도에서 열처리하여 수행할 수 있고, 10-7Torr 내지 상압에서 수행할 수 있다. 상기와 같은 공정으로 촉매금속 상에 형성된 그래핀은 소정의 냉각 공정을 거칠 수 있다. 이는, 형성된 그래핀이 균일하게 성장하여 일정하게 배열될 수 있도록 하기 위한 것으로서, 예를 들어, 초당 1℃ 내지 50℃의 속도로 냉각시킬 수 있고, 자연 냉각의 방법을 사용할 수도 있다. 상기 열처리 및 상기 냉각과정을 반복해서 수행하여 그래핀의 결정성을 향상시킬 수 있다.
상기 지지기판은 하나 이상의 이격 공간을 가지고 있으며, 상기 그래핀은 상기 지지기판의 이격 공간에 배치되는 것일 수 있다. 상기 이격 공간의 형태는 원 또는 다각형으로 구성되는 것일 수 있다. 상기 지지기판은 pH 3 이하의 내산성 또는 pH 10 이상의 내염기성 및 100℃ 내지 300℃에서의 내열성을 갖는 기판일 수 있다. 즉, 상기 지지기판이 촉매금속의 식각 공정 및 그래핀 세정 공정 수행시 상기 공정들에 의해 손상되지 않을 수 있도록, 상기 지지기판은 pH 3 이하의 산성 또는 pH 10 이상의 염기성 물질에 대해 각각 내산성 또는 내염기성을 가지는 기판일 수 있다. 또한, 상기 지지기판은 본 발명의 진공 열처리를 이용한 그래핀 전사 수행시 100℃ 내지 300℃의 온도에서도 지지기판의 특성을 유지할 수 있는 내열성을 가지는 기판일 수 있다.
상기 지지기판은, 예를 들어, 폴리에틸렌나프탈레이트(PEN), 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌설폰(PES), 폴리다이메틸실론세인(PDMS), 폴리카보네이트(PC), 폴리이미드 (PI), 폴리프로필렌테레프탈레이트(PPT), 폴리에테르이미드(PEI), 또는 폴리아릴레이트(PAR)를 포함할 수 있으나, 이에 한정되지는 않는다.
상기 지지기판과 상기 그래핀을 결합시키는 접착부재를 포함할 수 있다. 상기 촉매금속 상에 형성된 그래핀과 지지기판의 이격 공간의 사이를 결합시키는 접착부재를 형성하는 것은, 상기 접착부재를 상기 그래핀 일면 또는 상기 지지기판의 일면에 도포한 후, 상기 접착부재를 경화시켜 수행할 수 있다. 상기 접착부재를 상기 그래핀 상부 또는 상기 지지기판의 이격 공간 주위의 지지기판 영역에 도포하여 상기 그래핀과 상기 지지기판의 이격 공간의 사이에 접착부재를 형성할 수 있다. 상기 접착부재는 1종의 물질로 형성할 수 있으나, 필요에 따라 2종 이상의 물질로 다층을 형성할 수 도 있다. 상기 접착부재를 경화시키는 것은, 예를 들어, 대류 오븐 또는 UV경화기를 이용할 수 있으나, 특별히 한정하지는 않는다.
상기 접착부재는 pH 3 이하의 내산성 또는 pH 10 이상의 내염기성 및 100℃ 내지 300℃에서의 내열성을 갖는 접착부재일 수 있다. 즉, 상기 접착부재는 본 발명의 진공열처리를 이용한 그래핀 전사 수행 중에 접촉될 수 있는 pH 3 이하의 산성 또는 pH 10 이상의 염기성 물질에 대해 각각 내산성 또는 내염기성을 가질 수 있다. 또한, 상기 접착 부재는 본 발명의 진공 열처리를 이용한 그래핀 전사 수행시 100℃ 내지 300℃의 온도에서도 접착부재의 특성을 유지할 수 있는 내열성을 가지는 것일 수 있다. 상기 접착부재는 그래핀이 공정 중에 손상되지 않기 위해 상기 그래핀이 지지기판에 의해 지지할 수 있도록 형성하는 것일 수 있다.
상기 접착부재는, 예를 들어, 폴리이미드(Polyimide), 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA), 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 폴리비닐이딘 플루오라이드(Polyvinylidene fluoride, PVDF), 또는 UV 경화성 폴리머를 포함할 수 있으나, 이에 한정되지는 않는다.
상기 접착부재를 상기 그래핀 상에 도포하는 공정은, 예를 들면, 스핀 코팅법, 딥 코팅법, 테이프 캐스팅법, 스크린 프린팅법, 잉크젯 프린팅법, 노즐 프린팅법, 전기영동증착법, 또는 닥터 블레이드 코팅법을 포함할 수 있으나, 이에 한정하지는 않는다. 예를 들어, 상기 접착부재를 상기 그래핀 상에 도포하는 공정은 스핀 코팅법을 이용할 수 있으며, 상기 그래핀 상부에 스핀 코팅법을 이용하여 회전 속도와 도포시간을 조절하면서 상기 접착부재를 적절한 두께로 도포할 수 있다. 상기 접착부재의 두께가 너무 두꺼울 경우, 접착부재의 표면이 충분히 유연하지 못하여, 전사 대상 기판의 표면 굴곡을 따라 상기 그래핀이 정확하게 전사되기 어려울 수 있다. 또한, 상기 접착부재의 두께가 너무 얇을 경우, 촉매금속 제거 공정 및 그래핀 세정(cleaning) 공정과 같은 습식 공정 수행시 수용액과의 접착력 또는 중력 등에 의해 힘을 받게 되어 찢어질 수 있다.
상기 경화된 접착부재를 지지기판의 이격 공간의 주위에 부착시키면 지지기판/접착부재/그래핀/촉매금속으로 이루어진 그래핀 적층체를 제조할 수 있다. 이는, 이격 공간을 가진 지지기판을 이용하여 상기 그래핀 적층체를 상기 지지기판의 이격 공간의 주위에 부착시킴으로써, 상기 그래핀이 지지기판에 직접적으로 지지되지 않게 할 수 있어 지지기판의 표면 굴곡의 영향을 최소화할 수 있다.
상기 지지기판과 상기 그래핀을 접착시켜 그래핀 적층체를 제조하는 단계 이후에, 상기 그래핀 적층체의 그래핀 일면에 배치된 촉매금속을 제거할 수 있다. 상기 촉매금속은 그래핀의 형성을 위해 사용된 것으로, 후술하는 상기 그래핀의 전사 공정을 위해 제거할 수 있다. 상기 그래핀 적층체의 그래핀 일면에 배치된 촉매금속을 제거하는 단계는 CuCl2, KOH, FeCl3, HCl, HF, 또는 이들의 2종 이상의 조합을 포함하는 에칭 용액을 이용한 에칭 공정에 의해 수행할 수 있다. 상기 촉매금속을 제거한 이후에 증류수(DI water) 등을 이용하여 세정시킬 수 있다.
상기 그래핀 적층체와 상기 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사한다(S20).
상기 그래핀 적층체 및 전사 대상 기판을 진공 분위기하에 150℃ 내지 250℃의 온도에서 열처리를 가하여 수행할 수 있다. 상기 열처리의 온도가 150℃ 미만인 경우, 상기 그래핀 적층체의 그래핀과 상기 전사 대상 기판 사이에 상기 그래핀이 전사되기 위한 충분한 에너지가 형성되지 않아, 전사 대상 기판으로 상기 그래핀이 전사가 잘 이루어지지 않을 수 있다. 또한, 상기 열처리의 온도가 250℃ 초과인 경우 상기 그래핀 적층체의 지지기판과 그래핀 사이에 형성되어 있는 접착부재가 잘 제거되지 않거나 250℃이상의 온도에서 상기 지지기판이 녹는 결함이 발생할 수 있으며, 이로 인한 가스(gas) 생성으로 진공 챔버(vacuum chamber) 또는 그래핀 및 전사 대상 기판의 오염을 야기시킬 수 있다. 상기 진공 열처리에 의해 상기 그래핀과 상기 전사 대상 기판의 접착력이 강화될 수 있다. 이는, 진공 분위기 하에서 열처리 하여 전사시 그래핀과 전사 대상 기판 사이에 존재했던 분자들이 제거되고, 전사 대상 기판과의 접합력이 향상되는 것일 수 있다. 상기 진공 분위기는, 예를 들어, 10-7Torr 내지 10-2Torr일 수 있다.
상기 전사 대상 기판은 그래핀 전사를 원하는 모든 기판에 적용될 수 있다. 상기 전사 대상 기판은, 예를 들어, 폴리이미드 (PI), 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌 테레프탈레이트 (PET), 폴리카보네이트(PC), 실리콘 웨이퍼, 유리, 이온 교환 필름, 또는 멤브레인을 포함할 수 있으나, 이에 한정되지는 않는다.
상기 그래핀 적층체와 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사하는 단계 이후에, 상기 전사 대상 기판 상의 그래핀 표면의 접착부재 잔류물을 세정할 수 있다. 상기 전사 대상 기판 상의 그래핀 표면의 접착부재 잔류물을 세정하는 단계는, 아세톤, 이소프로필알코올, 질산 식각액, 과산화수소 식각액, 및 탈이온수 중 적어도 어느 하나를 포함하는 에칭용액을 이용하여 수행할 수 있다. 상기 에칭용액에 의해 상기 그래핀의 접착부재 잔류물, 예를 들어, 아세톤에 의해 접착부재인 PMMA가 제거되면서 그래핀의 품질을 유지할 수 있다.
상기 그래핀이 전사된 전사 대상 기판은 각종 전기 소자에 적용될 수 있다. 예를 들면, 유기 발광 소자(Organic Light Emitting Diode: OLED), 무기 발광 소자 (InorganicLight Emitting Diodes), 무기 박막 트랜지스터(Inorganic Thin Film Transistors), 전계 효과 트랜지스터(Field-effect transistor), 무기 태양 전지 (Inorganic Solar Cells), 유기 태양 전지 소자(Organic Photovoltaic diode: OPV), 메모리, 전기화학/바이오 센서, RF 소자, 광 검출기(photodetector), 광 도파로(Optical waveguide), CMOS 소자, 또는 리튬 배터리나 연료전지 등의 전극으로 활용할 수 있다.
예를 들어, 본 발명에 따라 전사 대상 기판 상에 전사된 그래핀을 채널로 사용하고, 소스 전극 및 드레인 전극과 게이트 전극을 더 포함하여 광 검출기(photodector)를 제작할 수 있다. 상기 광 검출기는 광 신호를 검출하여 전기적인 신호로 바꾸어주는 역할을 하는 소자로서, 일반적으로 Si를 기반으로 제조되고 있으나, Si의 에너지 밴드 갭의 크기가 작아 소자 수명이 단축되는 한계가 있다. 이러한 광 검출기에 본 발명에 따라 전사된 품질이 향상된 그래핀을 적용함으로써 그래핀의 우수한 전기 전도도의 특성을 활용할 수 있다. 또한, 그래핀은 한 개 층이 약 2.3 %의 입사 빛을 흡수하고, 입사 빛의 0.1% 이하(가시광선 대역)를 반사하며, UV 대역에서부터 THz 대역까지 흡수할 수 있으므로, 그래핀 기반의 광 검출기는 보다 넓은 파장대역에서 작동될 수 있는 효과를 가질 수 있다.
또한, 예를 들어, 본 발명에 따라 전사 대상 기판 상에 전사된 그래핀을 적용한 전계 효과 트랜지스터(Field-effect transistor)를 제작할 수 있다. 상기 그래핀을 채널층에 포함하고, 양측 기재에 소스 전극 및 드레인 전극을 형성시켜, 상기 그래핀의 채널층과 전기적으로 연결되는 형태로 구성할 수 있다. 이에, 그래핀 고유의 우수한 전하 이동도 특성을 적용시킬 수 있어 이를 채용한 전계 효과 트랜지스터의 전기적 특성을 향상시킬 수 있다.
본 발명의 다른 측면은, 진공 챔버 내에, 그래핀이 일측에 배치된 지지기판을 제공하는 그래핀 공급부, 상기 그래핀 공급부와 이격하여 위치하며 상기 그래핀이 전사될 전사 대상 기판을 제공하는 전사 대상 기판 공급부, 및 상기 전사 대상 기판 공급부의 하부에 위치하며 상기 전사 대상 기판에 열을 제공하는 열 공급부를 포함하는 것을 특징으로 하는 그래핀 전사장치를 제공한다.
상기 진공 챔버는 본 발명의 그래핀 전사장치를 이용한 그래핀 전사시 진공 분위기 조성을 위한 구성으로써, 상기 그래핀 공급부, 전사 대상 기판 공급부, 및 열 공급부를 포함할 수 크기로 구성될 수 있다. 상기 진공 챔버의 구성을 통해 상기 전사 대상 기판 공급부와 상기 그래핀 공급부가 접촉 및 전사가 수행되는 과정 상에 진공 분위기를 조성함으로써, 그래핀 전사 과정시 도펀트(dophant)로 작용되며, 그래핀의 품질을 영향을 줄 수 있는 물이나 산소 등의 다른 기체 성분들을 원천적으로 제거할 수 있다.
상기 그래핀 공급부는, 상기 그래핀이 접착부재에 의해 상기 지지기판에 부착되어 그래핀/접착부재/지지기판으로 구성될 수 있다. 상기 그래핀 공급부는 그래핀 전사를 위한 그래핀을 제공하는 구성으로써, 상기 그래핀이 상기 전사 대상 기판 공급부와 잘 접촉될 수 있는 형태로 구성될 수 있다. 상기 그래핀 공급부는 상기 진공 챔버 내에 지속적으로 공급하는 형태로 구성될 수 있으며, 일정 크기 단위로 공급하는 형태로도 구성될 수 있다. 상기 그래핀 공급부와 상기 전사 대상 기판 공급부의 접촉이 향상될 수 있도록 가압을 진행할 수 있는 가압기나 롤러 등을 더 포함할 수 있다. 상기 그래핀 전사 수행 이전에 그래핀 공급부를 배치함에 있어서, 상기 전사 대상 기판 공급부와 이격하여 배치될 수 있는 위치제어장치를 더 포함할 수 있다. 상기 위치제어장치는 예를 들어, 물질대상을 상하, 좌우로 위치를 변경시킬 수 있는 로봇 암(arm)일 수 있으나, 이에 한정하지는 않는다.
상기 전사 대상 기판 공급부는 그래핀 전사를 위한 전사 대상 기판을 제공하는 구성으로써, 상기 전사 대상 기판이 상기 그래핀 공급부와 잘 접촉될 수 있는 형태로 구성될 수 있다. 상기 전사 대상 기판 공급부의 하단에 상기 전사 대상 기판에 열을 공급하는 열 공급부가 배치되는 경우, 상기 열 공급부의 열을 견딜 수 있는 소재로 구성될 수 있다. 상기 전사 대상 기판 공급부는 상기 진공 챔버 내에 지속적으로 공급하는 형태로 구성될 수 있으며, 일정 크기 단위로 공급하는 형태로도 구성될 수 있다. 상기 전사 대상 기판 공급부는 상기 그래핀 공급부와 상기 전사 대상 기판의 이격 거리를 제어할 수 있는 별도의 장치를 더 포함할 수 있다.
상기 열 공급부는 상기 전사 대상 기판 공급부의 전사 대상 기판에 열을 제공하는 구성으로써, 예를 들어, 핫플레이트(hotplate) 등의 가열기(heater)를 포함할 수 있다. 상기 열 공급부는 상기 진공 챔버 내의 하단에 배치될 수 있으며, 그래핀 전사 과정에 상기 전사 대상 기판 또는 상기 전사 대상 기판 및 상기 전사 대상 기판과 접촉하고 있는 상기 그래핀에 열을 공급하여 상기 그래핀과 상기 전사 대상 기판의 접착력이 증가될 수 있는 효과를 제공할 수 있다.
본 발명의 그래핀 전사 장치는 상기 열 공급부 및 상기 전사 대상 기판 공급부의 측면에 위치 제어 장치가 배치되는 것을 더 포함할 수 있고, 상기 위치 제어 장치에 의해 상기 그래핀 공급부와 상기 전사 대상 기판 공급부의 이격 거리가 조절되는 것일 수 있다.
도 2는 본 발명의 일 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 2를 참조하면, 본 발명의 그래핀 전사장치는 진공 챔버(100)와, 상기 진공 챔버(100) 내에 위치 제어 장치인 로봇 암(robot arm)(500)을 구성할 수 있다. 상기 로봇 암(500)에 팔(arm) 영역에 그래핀(220)이 배치된 지지기판(210)을 포함하는 그래핀 공급부(200)가 구성될 수 있으며, 상기 로봇 암(500)에 의해 상기 그래핀 공급부(200)의 위치가 제어될 수 있다. 상기 로봇 암(500)의 측면에 열 공급부(400)인 가열기(410)를 구성할 수 있으며, 상기 가열기(410)의 일정영역에 Z axis mover(420)를 추가적으로 구성할 수 있다. 상기 Z axis mover(420)는 상기 로봇 암(500)에 의해 위치가 제어되는 상기 그래핀 공급부(200)의 이격 거리 제어가 정밀하게 이뤄질 수 있는 역할을 도울 수 있다. 상기 가열기(410) 위에 전사 대상 기판 공급부(300)인 전사 대상 기판(310)을 구성할 수 있다.
상기 진공 챔버(100) 내에 상기 그래핀 공급부(200) 및 상기 전사 대상 기판 공급부(300)가 배치되면서, 그래핀 전사를 수행하기 위한 진공 분위기가 조성될 수 있다. 이에, 상기 그래핀(220)과 상기 전사 대상 기판(310) 표면 상의 물 또는 산소 등의 그래핀 전사에 영향을 미칠 수 있는 요소들을 제거할 수 있다. 상기 로봇 암(500)을 통해 상기 그래핀 공급부의 위치를 제어하여 상기 그래핀 공급부(200)를 상기 전사 대상 기판 공급부(300)가 접촉될 수 있다. 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)가 접촉된 상태에서 상기 가열기(410)를 통해 열을 공급하여 본 발명의 진공 열처리를 이용한 그래핀 전사 방법을 수행할 수 있다.
본 발명의 그래핀 전사 장치는 상기 그래핀 공급부의 일면을 가압하여 상기 그래핀 공급부와 상기 전사 대상 기판 공급부를 접착시키는 제1 롤러를 더 포함할 수 있다.
도 3은 본 발명의 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 3을 참조하면, 본 발명의 그래핀 전사장치는 진공 챔버(100)와, 상기 진공 챔버(100) 내에 위치제어장치인 로봇 암(500)을 구성할 수 있다. 상기 로봇 암(500)에 팔(arm)영역에 그래핀(220)이 배치된 지지기판(210)을 포함하는 그래핀 공급부(200)가 구성될 수 있으며, 상기 로봇 암(500)에 의해 상기 그래핀 공급부(200)의 위치가 제어될 수 있다. 상기 로봇 암(500)의 측면에 열 공급부(400)인 가열기(410)를 구성할 수 있다. 상기 가열기(410) 위에 전사 대상 기판 공급부(300)인 전사 대상 기판(310)을 구성할 수 있다.
상기 그래핀 공급부(200)의 일면에 상기 그래핀 공급부(200)가 상기 전사 대상 기판 공급부(300)에 접근하는 반대 방향으로 상기 그래핀 공급부(200)를 가압하여 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)를 접합시키는 제1 롤러(600)를 더 구성할 수 있다. 상기 제1 롤러(600)가 일측에서 다른측 방향으로 상기 그래핀 공급부(200)를 가압하여 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)를 일직선으로 접합시킴으로써 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)의 순차적인 접촉이 진행될 수 있다.
이는, 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)의 각각의 전체 면적이 동시에 접합될 때 발생될 수 있는 마이크로 버블(micro bubble)이나 도핑(doping)을 일으킬 수 있는 물질들을 더 효과적으로 제거할 수 있게 함으로써, 본 발명의 진공 열처리를 이용한 그래핀 전사 방법의 효과와 더불어, 그래핀 전사 수행시 그래핀과 전사 대상 기판 사이의 접합력을 더욱 향상시키며, 그래핀 고유의 특성을 확보할 수 있다.
본 발명의 그래핀 전사 장치는 상기 그래핀 공급부 및 상기 전사 대상 기판 공급부를 연속적으로 공급하는 컨베이어 벨트를 더 포함할 수 있다. 상기 컨베이어 벨트에 의해 상기 그래핀 공급부 및 상기 전사 대상 기판 공급부가 상기 진공 챔버 내에서 일측 방향으로 이동하며 전사되는 것일 수 있다.
상기 그래핀 공급부의 일면을 가압하여 상기 그래핀 공급부와 상기 전사 대상 기판 공급부를 접합시키는 제1 롤러(610) 및 상기 전사 대상 기판 공급부의 일면을 가압하는 제2 롤러(620)를 더 포함하는 것일 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 4를 참조하면, 본 발명의 그래핀 전사장치는 진공 챔버(100)와, 상기 진공 챔버(100) 내에 그래핀(220)이 배치된 지지기판(210)을 포함하는 그래핀 공급부(200)가 구성되고, 상기 그래핀 공급부(200) 상부에 상기 그래핀 공급부(200)가 상기 진공 챔버(100) 내에서 일측 방향으로 이동되며 상기 그래핀 공급부(200)를 연속적으로 공급할 수 있는 제1 컨베이어 벨트(700)가 더 구성될 수 있다. 상기 제1 컨베이어 벨트(700)에 의해 상기 그래핀 공급부(200)의 그래핀(220)이 지속적으로 공급되면서 대면적의 그래핀 전사가 가능할 수 있다. 상기 그래핀 공급부(200)와 이격하여 전사 대상 기판(310)을 포함하는 전사 대상 기판 공급부(300)가 구성될 수 있다. 상기 전사 대상 기판 공급부(300)의 하부에 상기 전사 대상 기판 공급부(300)가 상기 진공 챔버(100) 내에서 일측 방향으로 이동되며 상기 전사 대상 기판 공급부(300)를 연속적으로 공급할 수 있는 제2 컨베이어 벨트(710) 및 제3 컨베이어 벨트(720)를 더 구성될 수 있다. 상기 제2 컨베이어 벨트(710) 및 제3 컨베이어 벨트(720)에 의해 상기 전사 대상 기판 공급부(300)의 전사 대상 기판(310)이 지속적으로 공급되면서 앞서 상술한 바와 같이 대면적의 그래핀 전사가 가능할 수 있다.
상기 그래핀 공급부(200)가 상기 전사 대상 기판 공급부(300)에 접근하는 방향으로 상기 그래핀 공급부(200)의 일면을 가압하여 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)를 접합시키는 제1 롤러(610)가 상기 그래핀 공급부(200) 상부에 구성될 수 있다. 또한, 상기 그래핀 공급부(200)가 상기 전사 대상 기판 공급부(300)에 접근하는 방향으로 상기 전사 대상 기판 공급부(300)를 가압하는 제2 롤러(620)가 상기 전사 대상 기판 공급부(300) 상부에 구성될 수 있다. 상기 제1 롤러(610) 및 제2 롤러(620)에 의해 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)가 일직선으로 접합되면서 그래핀 전사 수행시 상기 그래핀(220)과 상기 전사 대상 기판(310)의 접합력을 더욱 향상시킬 수 있다.
일반적인 롤투롤(roll-to-roll)방식의 그래핀 전사 장치에 있어서 열 방출 테이프(thermal release tape)의 사용을 위해 낮은 온도를 인가하거나, 기계적인 압력을 가하여 그래핀 전사를 수행하는 바가 있었다. 하지만, 이와 달리 본 발명에서는 진공 열처리를 위한 그래핀 전사 장치를 구성하여, 그래핀 전사시 진공분위기 조성으로 그래핀과 전사 대상 기판 사이의 불순물을 원천적으로 제거할 수 있게 하고, 가열기를 구성하여 그래핀 전사 과정시 열을 공급함으로써 그래핀과 전사 대상 기판 사이의 자발적인 본딩(bonding)에 의해 그래핀이 전사 대상 기판에 전사될 수 있게 할 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 그래핀 전사장치의 개략적인 모식도이다.
도 5를 참조하면, 본 발명의 그래핀 전사장치는 진공 챔버(100)와, 상기 진공 챔버(100) 내에 전사 대상 기판(310)으로 이루어진 전사 대상 기판 공급부(300) 상부에 그래핀(220)이 배치된 지지기판(210)을 포함하는 그래핀 공급부(200)가 구성되어 있으며, 제1 롤러(600)에 의해 상기 그래핀 공급부(200)와 상기 전사 대상 기판 공급부(300)를 접착시킬 수 있다. 또한, 상기 전사 대상 기판 공급부(300) 하부에 상기 전사 대상 기판(310)에 열을 제공하는 가열기(410)을 포함하는 열공급부가 위치한다. 상기 가열기(410)의 하부에는 스테이지 이동 장치(440)가 배치되어, 상기 스테이지 이동 장치(440)에 의해 상기 전사 대상 기판 공급부(300)의 XYZ축 방향의 3차원 이동이 이루어질 수 있다. 상기 제1 롤러(600)의 상하 이동 및 상기 스테이지 이동 장치(440)의 3차원 이동을 통하여 상기 전사 대상 기판과 그래핀 공급부 간의 간격 및 위치를 조절하여 대면적 그래핀 전사 공정을 최적화할 수 있다.
이에, 본 발명의 그래핀 전사 장치에 따른 그래핀의 전사는, 그래핀과 전사 대상 기판의 접착력을 증가시키는 효과를 가질 수 있으며, 그래핀의 고유 특성을 그대로 확보할 수 있는 장점을 가질 수 있다. 이는, 종래의 롤투롤 방식의 그래핀 전사 장치에 있어, 낮은 온도로 인해 그래핀과 전사 대상 기판 사이의 접착력이 충분하지 않고, 상압에서 진행되는 그래핀 전사 과정 중에 불순물에 의해 그래핀이 손상될 수 있는 요인들을 최소화하여 그래핀 전사 상태를 개선한 것을 의미할 수 있다.
[실시예]
<실시예1>
촉매금속인 구리박(Cu foil) 상에 합성된 그래핀 상부에 스핀코팅(spin coating) 방법을 이용하여 접착층인 PMMA를 코팅하였다. 상기 접착층인 PMMA를 오븐 등에서 경화시킨 뒤 이격 공간(프레임(FRAME))을 가진 PEN기판에 접착시켰다. 상기 PEN기판/PMMA/그래핀/촉매금속으로 이루어진 그래핀 적층체에 120℃의 온도에서 20분간 열처리했다. 이 후, 상기 그래핀 적층체의 촉매금속인 구리를 제거하기 위해 50℃의 온도에서 FeCl3, HCl 및 DI water(증류수)가 혼합된 에천트(etchant)에 5분간 접촉시켜 상기 구리를 제거한 뒤, 그래핀에 남아있는 잔류물을 세정하기 위해 HCl용액에서 20분간 담군 후, 다시 DI water용액에 1시간 정도 담갔다. 전사 대상 기판으로 준비한 Hydrophilic한 SiO2 기판에 상기 촉매금속이 제거된 그래핀 적층체를 접촉시켜 10-2torr의 진공 분위기에서 200℃의 온도로 진공 열처리를 수행하여 그래핀을 전사시켰다. 이 후, 상기 PEN기판을 제거했고, 아세톤(Acetone)으로 상기 PMMA를 제거하여 전사 대상 기판 상에 전사된 그래핀을 얻었다.
또한, 비교를 위해 진공 열처리 없이 그래핀을 전사대상 기판 상에 전사시켜 비교예를 만들었다.
도 6(a)는 본 발명의 실시예1에 따라 전사된 그래핀의 라만 스펙트럼을 나타낸 이미지이며, 도 6(b)는 실시예1의 그래핀과 진공열처리 없이 전사된 그래핀의 라만 맵핑(Raman mapping)을 비교한 이미지이다.
도 6(a)를 참조하면, 본 발명의 실시예1에 따라 전사된 그래핀의 표면은 주름이나 크랙(crack)없이 깨끗하게 전사된 것을 확인할 수 있다. 상기 그래핀의 point1 내지 point5로 구분하여 각 영역에 대한 라만 분광법을 통한 라만 스펙트럼을 보면, point의 구분 없이 전반적으로, 1350cm-1 부근에서 D피크(peak), 1580cm-1부근에서 G피크, 2680cm-1부근에서 2D 피크가 관찰되는 것을 확인할 수 있다. 이는, 일반적인 그래핀의 라만 스펙트럼에서 발견되는 것과 유사하며, 이를 통해 본 발명의 실시예1에 따라 낮은 진공 분위기하에 열처리하여 전사를 진행한 그래핀이 그래핀의 원래 가지고 있던 결정성을 유지하며 전사가 잘 진행되었음을 알 수 있다.
상기 D 피크와 G피크의 세기 비(ID/G)를 통해 그래핀의 결함 정도를 알 수 있으며, 이 값이 낮을수록 좋은 품질의 그래핀을 의미할 수 있다. 도 6(a)에서 D피크의 강도는 매우 약하게 나타나고 있어, 본 발명의 실시예1에 따라 진공 열처리를 이용하여 전사된 그래핀은 그래핀 결정 내의 결함이 적고 품질이 좋다는 것을 알 수 있다. 이는 그래핀의 전사과정에서 진공 분위기하에 열처리를 수행하면서 진공조성으로 인해 수분 또는 산소와의 접촉을 막아, 그래핀 표면에 영향을 줄 수 있는 불순물들을 제거함으로써 그래핀의 전사상태가 향상된 것을 알 수 있다.
도 6(b)를 참조하면, 좌측 이미지는 진공열처리 없이 전사된 그래핀의 라만 맵핑 결과로, G피크의 위치가 1590 cm-1 ~ 1602 cm-1으로 변화된 것을 확인할 수 있다. 이는, 상기 그래핀의 전사 과정 중 촉매금속의 에칭을 위해 증류수를 기반으로 한 습식공정을 거치면서 물과 같은 도펀트(dopant)들이 잔류할 수 있고, 이에, 그래핀이 도핑(doping)되면서 G피크의 위치가 변화된 것을 의미할 수 있다. 오른쪽 이미지는 본 발명의 실시예1의 그래핀의 라만 맵핑 결과로, 일반적인 그래핀의 G피크 영역인 1580 cm-1 ~ 1590 cm-1을 유지하고 있어, 진공 열처리를 통해 그래핀을 전사함으로써 그래핀의 특성을 그대로 유지시킨 것을 알 수 있다.
도 7은 본 발명의 실시예1에 따라 진공 열처리를 통해 전사된 그래핀 및 진공 열처리를 수행하지 않고 전사된 그래핀을 증류수(DI Water)에 접촉시킨 상태를 비교한 이미지이다.
도 7을 참조하면, 이미지의 오른쪽 영역은 진공 열처리를 수행하지 않고 전사된 그래핀으로 증류수(DI Water)에 접촉시키고 난 후, 전사된 그래핀이 거의 떨어져 나간 것을 확인할 수 있다. 이에, 진공 열처리 없이 전사된 그래핀은 기판과의 접착력이 높지 않아 쉽게 손상될 수 있다는 것을 알 수 있다. 이와 달리, 이미지의 좌측 영역은 본 발명의 실시 예1에 따라 진공열처리를 통해 전사된 그래핀으로, 증류수(DI Water)에 접촉시킨 이후에도 전사된 그래핀의 상태의 변화가 없는 것을 확인할 수 있다. 이를 통해, 본 발명의 진공열처리를 통해 전사된 그래핀은 기판과의 접착력이 높아 그래핀의 특성 및 품질이 그대로 유지될 수 있는 것을 알 수 있고, 전사된 그래핀의 높은 접착력은 상기 그래핀을 이용한 소자 제작에도 유리할 수 있다.
<실시예2>
진공열처리 수행시 열처리를 175℃의 온도에서 수행한 점을 제외하고는 실시 예1과 동일하게 실험을 진행하여 전사된 그래핀을 얻었다.
<실시예3>
진공열처리 수행시 열처리를 190℃의 온도에서 수행한 점을 제외하고는 실시 예1과 동일하게 실험을 진행하여 전사된 그래핀을 얻었다.
<실시예4>
진공열처리 수행시 열처리를 195℃의 온도에서 수행한 점을 제외하고는 실시 예1과 동일하게 실험을 진행하여 전사된 그래핀을 얻었다.
도 8(a) 및 도 8(b)는 본 발명의 실시예1에 따라 그래핀이 전사되는 과정을 보여 주고 있는 이미지들이다.
도 8(a) 및 도 8(b)를 참조하면, 도 8(a)은 본 발명의 실시예1에 따라 10-2torr 진공분위기하에 전사된 그래핀으로, 진공 열처리하에 전사가 수행되는 과정 중 175℃ 온도에서의 전사 대상 기판 상의 그래핀의 접촉면적(attached area)을 나타낸 이미지이다. 상기 그래핀의 접촉 면적이 전사 대상 기판 상의 일부분에만 형성되어 있는 것을 확인할 수 있다. 도 8(b)는 10-2torr 진공분위기하에 실시 예1에 따라 온도가 200℃까지 올라가는 과정에서, 전사대상 기판 상의 그래핀의 접촉면적(attached area)이 더 확대된 것을 확인할 수 있다. 이는, 진공 열처리를 이용하여 그래핀 전사를 수행함으로써, 열처리에 의해 그래핀과 전사 대상 기판 사이에 그래핀과 전사대상 기판간의 자발적인 결합(bonding)이 유도되어, 그래핀과 전사 대상 기판과의 접착력을 높여 그래핀의 전사상태를 향상시킨 것을 알 수 있다. 또한, 진공 분위기에 의해 그래핀이 전사 대상 기판에 전사되기 직전 그래핀과 전사 대상 기판 사이에 있는 물이나 산소 등의 수분이나 그래핀에 도핑(doping)을 일으킬 수 있는 불순물들을 원천적으로 제거될 수 있어, 그래핀 전사 시 그래핀의 품질의 영향을 주는 요인을 최소화할 수 있다.
도 9는 본 발명의 실시예1 내지 실시예5에 따라 전사된 그래핀들의 이미지이다.
도 9를 참조하면, 전사 시 진공열처리의 열처리 온도가 높아질수록 그래핀과 전사대상 기판 사이의 이물감이 없이 그래핀이 기판 상에 고르게 전사되어 있는 것을 확인할 수 있다. 이는, 앞서 상술한 바와 같이 그래핀 전사 시 진공열처리에 의해 그래핀과 전사대상 기판간의 자발적인 결합이 유도되어, 그래핀의 전사 대상 기판으로의 접합력을 증가된 것을 알 수 있다.
<실시예5>
상기 실시예1에 따라 전사된 그래핀을 아세톤(acetone)에 접촉시키며 1분간 초음파 분쇄(sonication)를 진행했다. 상기 초음파 분쇄는 10kHz 내지 20kHz의 음파를 사용하여 세정이나 세포 또는 세포 내 구조체 등을 파괴하는 방법으로 사용하는 것으로 초음파 분쇄 장치를 이용할 수 있다.
도 10은 본 발명의 실시예4에 따라 초음파 분쇄(sonication)를 진행한 그래핀과 초음파 분쇄 전 그래핀을 비교한 이미지이다.
도 10을 참조하면, 아세톤과 함께 초음파 분쇄를 진행하면서 아세톤이 분산되며 전사된 그래핀의 표면이 더 깨끗해진 것을 확인할 수 있다. 이는 분산된 아세톤에 의해 그래핀에 잔류되어 있던 접착부재인 PMMA의 잔류물이 제거되면서 그래핀의 품질이 향상된 것을 의미할 수 있다. 또한, 초음파 분쇄시 접착부재의 잔류물만 제거되고 그래핀의 결정에는 변화가 없는 것을 통해, 본 발명의 진공 열처리에 의해 그래핀과 전사 대상 기판의 접착력이 높아진 것을 알 수 있다.
즉, 기존의 습식공정을 이용한 그래핀 전사방법의 경우 그래핀과 전사 대상 기판 간의 접착이 좋지 않아, 초음파를 이용하는 공정을 적용할 수 없었던 것과 달리 본 발명은 진공열처리를 통해 그래핀과의 접착력을 높일 뿐만 아니라, 그래핀의 품질을 향상될 수 있는 초음파공정이 가능해짐으로써 그래핀 전사 과정에서의 그래핀의 특성을 유지시킬 수 있는 효과를 가질 수 있다.
도 11은 초음파 분쇄를 진행하지 않은 실시예4과 초음파 분해를 진행한 실시 예4의 각각의 그래핀의 라만 분광법의 결과를 비교한 그래프이다.
도 11을 참조하면, 초음파 분쇄 전후의 point1 내지 point2에서의 그래핀의 이미지에는 큰 변화가 없고, 실시예4의 초음파 분쇄에 따른 라만 스펙트럼 또한 큰 변화는 없다는 것을 확인할 수 있다. 도 4에서 상술한 바와 같이, 초음파 분쇄 이후에도 상기 그래핀의 결정성이 잘 유지되고 있으므로, 이를 통해 그래핀과 전사 대상 기판과의 접합력이 높다는 것을 알 수 있다.
<실시예6>
상기 실시예1에 따라 전사된 그래핀을 채널층으로 적용시키고, 소스 전극 및 드레인 전극과 전기적으로 연결된 field effect transistor(FET)를 제작했다. 실시 예1에서 비교예로 진공 열처리 없이 전사된 그래핀을 적용한 FET도 제작했다.
도 12는 상기 실시예6에 따라 제조된 FET장치의 전기적 특성을 분석결과를 나타낸 도표이다.
도 12를 참조하면, 본 발명의 진공 열처리를 이용하여 전사된 그래핀이 적용된 FET 장치의 경우, Dirac point가 거의 0V의 근처에서 측정되며, Dirac point를 기준으로 좌우 대칭인 데이터를 보여주는 것을 확인할 수 있다. 이와 달리, 비교예로 제조된 진공 열처리 없이 전사된 그래핀이 적용된 FET 장치의 경우 홀 도핑(hole doping)으로 인하여 Dirac point의 데이터가 변화된 것을 알 수 있다. 즉, 진공 열처리 없이 전사된 그래핀의 전사 공정 수행시 그래핀과 전사 대상 기판 사이의 물이나 산소와 같은 도펀트(dophant)들에 의해 전사 상태(condition)의 변화를 주게 되어 그래핀의 특성이 유지되지 않게 됨으로써, 이를 적용한 FET 장치의 전기적 특성에도 영향을 미치는 것을 알 수 있다.
<실시예7>
상기 실시예1에 따라 전사된 그래핀을 채널층으로 포함시키고 드레인 전극, 소스 전극, 및 게이트 전극을 포함하는 광 검출기(photo detector)를 제작했다. 실시 예1에서 비교예로 진공열처리 없이 전사된 그래핀을 적용한 광 검출기도 제작했다.
도 13은 본 발명의 실시예7에 따라 제작된 광 검출기(photo detector)의 시간에 따른 전류의 흐름을 나타낸 도표이다.
도 13을 참조하면, 본 발명의 실시예1에 따라 진공 열처리를 이용하여 전사된 그래핀이 적용된 광검출기의 경우, 동일한 전계(electric field) 조건에서 1395.9nA로 진공열처리 없이 전사된 비교예 그래핀이 적용된 광 검출기의 385.9nA보다 4배 이상의 광 전류(photo current)가 발생되는 것으로 측정되었다. 이는, 도 9에서 상술한 바와 같이 진공 열처리 없이 전사된 그래핀의 전사시 홀 도핑(hole doping)에 의해 그래핀의 전자 이동도(mobility)가 감소된 것으로 추정할 수 있고, 이로 인해 광 전류 발생 역시 감소하게 된 것을 알 수 있다. 이를 통해, 본 발명의 진공 열처리를 이용하여 전사된 그래핀의 경우 진공에 의해 도핑(doping)의 영향을 미치는 요소를 제거하여 그래핀의 고유(intrinsic)의 특성을 확보하여 이를 적용한 장치의 성능 역시 향상된 것을 알 수 있다.
<실시예8>
전사 대상 기판을 소수성(hydrophobic) 기판인 헥사메틸디실라잔(hexamethyldisilazane; HMDS) 기판을 사용한 점을 제외하고는 실시예1과 동일하게 실험을 진행하여 전사된 그래핀을 얻었다. 비교예를 위해 상기 전사 대상 기판과 동일한 HMDS 기판에 진공 열처리를 이용하지 않고 전사된 그래핀을 준비했다.
도 14는 본 발명의 실시예8에 따라 전사된 그래핀과 진공 열처리 없이 HMDS기판에 전사된 그래핀을 비교한 이미지이다.
도 14를 참조하면, 좌측 이미지는 진공 열처리 없이 HMDS기판 상에 전사된 그래핀으로, 그래핀이 찢어지거나 주름이 생긴 것을 확인할 수 있다. 이는, 소수성 기판의 특성으로 인해, 전사시 기판과 그래핀 사이에 존재하는 DI water (증류수)로 인하여 그래핀이 균일하게 기판과 접착하지 않게 되어 건조 과정을 거치면서 그래핀이 손상된 것임을 알 수 있다.
이와 달리, 우측 이미지는 진공 열처리를 이용하여 소수성 기판인 HMDS 기판상에 전사된 그래핀으로, 주름이나 크랙(crack)없이 그래핀이 깨끗하게 전사되어 있는 것을 확인할 수 있다. 이를 통해, 본 발명의 소수성 기판 상에서도 진공 열처리에 의해 그래핀과 기판의 자발적인 본딩에 의해 접착이 진행되므로, 기판의 기질적인 특성에 영향을 받지 않고 균일하게 그래핀이 전사된 것을 알 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (14)

  1. 지지기판과 그래핀이 결합된 그래핀 적층체를 준비하는 단계; 및
    상기 그래핀 적층체와 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사하는 단계를 포함하는 것을 특징으로 하는 그래핀의 전사방법.
  2. 제1항에 있어서,
    상기 지지기판은 하나 이상의 이격 공간을 가지고 있으며, 상기 그래핀은 상기 지지기판의 이격 공간에 배치되는 것을 특징으로 하는 그래핀의 전사방법.
  3. 제1항 및 제2항 중 어느 한 항에 있어서,
    상기 지지기판은 pH 3 이하의 내산성 또는 pH 10 이상의 내염기성; 및
    100℃ 내지 300℃에서의 내열성을 갖는 기판인 것을 특징으로 하는 그래핀의 전사방법.
  4. 제1항에 있어서,
    상기 지지기판과 상기 그래핀을 결합시키는 접착부재를 포함하는 것을 특징으로 하는 그래핀의 전사방법.
  5. 제4항에 있어서,
    상기 접착부재를 상기 그래핀 일면 또는 상기 지지기판의 일면에 도포한 후, 상기 도포된 접착부재를 경화하여 상기 지지기판과 상기 그래핀을 접착시키는 것을 특징으로 하는 그래핀의 전사방법.
  6. 제 5항에 있어서,
    상기 접착부재는 pH 3 이하의 내산성 또는 pH 10 이상의 내염기성; 및
    100℃ 내지 300℃에서의 내열성을 갖는 접착부재인 것을 특징으로 하는 그래핀의 전사방법.
  7. 제1항에 있어서,
    상기 그래핀 적층체와 전사 대상 기판을 진공 열처리하여 상기 그래핀 적층체의 그래핀을 상기 전사 대상 기판으로 전사하는 단계는,
    상기 그래핀 적층체 및 전사 대상 기판을 10-7torr 내지 10-2torr의 진공 분위기하에 150℃ 내지 250℃의 온도에서 열처리를 가하여 수행하는 것을 특징으로 하는 그래핀의 전사방법.
  8. 진공 챔버 내에,
    지지기판의 일측에 배치된 그래핀을 제공하는 그래핀 공급부;
    상기 그래핀 공급부와 이격하여 위치하며 상기 그래핀이 전사될 전사 대상 기판을 제공하는 전사 대상 기판 공급부; 및
    상기 전사 대상 기판 공급부의 하부에 위치하며 상기 전사 대상 기판에 열을 제공하는 열 공급부를 포함하는 것을 특징으로 하는 그래핀 전사장치.
  9. 제8항에 있어서,
    상기 그래핀 공급부는,
    상기 그래핀이 접착부재에 의해 상기 지지기판에 부착되어 그래핀/접착부재/지지기판으로 구성되는 것을 특징으로 하는 그래핀 전사장치.
  10. 제8항에 있어서,
    상기 그래핀 전사장치는,
    상기 열 공급부 및 상기 전사 대상 기판 공급부의 측면에 위치 제어 장치가 배치되는 것을 더 포함하고,
    상기 위치 제어 장치에 의해 상기 그래핀 공급부와 상기 전사 대상 기판 공급부의 이격 거리가 조절되는 것을 특징으로 하는 그래핀 전사 장치.
  11. 제8항에 있어서,
    상기 그래핀 전사장치는,
    상기 열 공급부의 하부에 스테이지 이동 장치가 배치되는 것을 더 포함하고,
    상기 스테이지 이동 장치에 의해 상기 전사 대상 기판 공급부의 3차원 이동이 이루어지는 것을 특징으로 하는 그래핀 전사 장치.
  12. 제10항에 있어서,
    상기 그래핀 전사장치는,
    상기 그래핀 공급부의 일면을 가압하여 상기 그래핀 공급부와 상기 전사 대상 기판 공급부를 접합시키는 제1 롤러를 더 포함하는 것을 특징으로 하는 그래핀 전사 장치.
  13. 제8항에 있어서,
    상기 그래핀 전사장치는,
    상기 그래핀 공급부 및 상기 전사 대상 기판 공급부를 연속적으로 공급하는 컨베이어 벨트를 더 포함하는 것을 특징으로 하는 그래핀 전사장치.
  14. 제13항에 있어서,
    상기 그래핀 전사장치는,
    상기 그래핀 공급부의 일면을 가압하여 상기 그래핀 공급부와 상기 전사 대상 기판 공급부를 접합시키는 제1 롤러 및 상기 전사 대상 기판 공급부의 일면을 가압하는 제2 롤러를 더 포함하는 것을 특징으로 하는 그래핀 전사장치.
PCT/KR2015/000085 2014-01-06 2015-01-06 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치 WO2015102459A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167018619A KR101899224B1 (ko) 2014-01-06 2015-01-06 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0001059 2014-01-06
KR20140001059 2014-01-06

Publications (1)

Publication Number Publication Date
WO2015102459A1 true WO2015102459A1 (ko) 2015-07-09

Family

ID=53493721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000085 WO2015102459A1 (ko) 2014-01-06 2015-01-06 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치

Country Status (2)

Country Link
KR (1) KR101899224B1 (ko)
WO (1) WO2015102459A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微***与信息技术研究所 一种转移石墨烯的方法
WO2017131302A1 (ko) * 2016-01-28 2017-08-03 주식회사 참트론 그래핀의 전사방법
CN108328603A (zh) * 2017-01-20 2018-07-27 清华大学 基于糖的纳米材料的转移方法
CN108821273A (zh) * 2018-09-21 2018-11-16 北京石墨烯研究院 真空石墨烯转移装置及真空石墨烯转移方法
CN109179396A (zh) * 2018-11-16 2019-01-11 福建闽烯科技有限公司 石墨烯薄膜直接转移装置及方法
CN111370584A (zh) * 2018-12-25 2020-07-03 东泰高科装备科技有限公司 透明导电电极的制作方法及透明导电电极、太阳能电池
CN111704128A (zh) * 2020-05-27 2020-09-25 东南大学 一种基于有台阶衬底的二维材料转移方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916818B1 (ko) * 2017-04-03 2018-11-08 이화여자대학교 산학협력단 대면적 전사방법을 이용한 전자장치 제조방법
KR102309500B1 (ko) * 2019-11-26 2021-10-06 (주)에버켐텍 탈착층, 이의 제조방법, 정보 표시 소자 및 이의 제조방법
KR102391237B1 (ko) * 2021-10-14 2022-04-27 알파그래핀 주식회사 열처리 모듈을 이용한 그래핀 전사 시스템 및 이를 이용한 그래핀 전사 방법
KR102391236B1 (ko) * 2021-10-14 2022-04-27 알파그래핀 주식회사 그래핀 전사 시스템 및 이를 이용한 그래핀 전사 방법
KR102391232B1 (ko) * 2021-10-14 2022-04-27 알파그래핀 주식회사 그래핀 전사 장치 및 그래핀 전사 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062247A (ja) * 2007-09-10 2009-03-26 Univ Of Fukui グラフェンシートの製造方法
JP2011051801A (ja) * 2009-08-31 2011-03-17 National Institute For Materials Science グラフェンフィルム製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099385A2 (ko) * 2011-01-18 2012-07-26 성균관대학교산학협력단 핫프레스를 이용한 그래핀의 전사 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062247A (ja) * 2007-09-10 2009-03-26 Univ Of Fukui グラフェンシートの製造方法
JP2011051801A (ja) * 2009-08-31 2011-03-17 National Institute For Materials Science グラフェンフィルム製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. PIRKLE ET AL.: "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to Si02", APPLIED PHYSICS LETTERS, vol. 99, 2011, pages 122108 *
Z. CHENG ET AL.: "Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of Si02-Supported Graphene Devices", NANO LETTERS, vol. 11, no. 2, 2011, pages 767 - 771 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088179B (zh) * 2015-08-26 2017-08-15 中国科学院上海微***与信息技术研究所 一种转移石墨烯的方法
CN105088179A (zh) * 2015-08-26 2015-11-25 中国科学院上海微***与信息技术研究所 一种转移石墨烯的方法
US10661542B2 (en) 2016-01-28 2020-05-26 Charmgraphene Co., Ltd. Method for transferring graphene
KR101870643B1 (ko) 2016-01-28 2018-06-25 주식회사 참트론 그래핀의 전사방법
CN108602637A (zh) * 2016-01-28 2018-09-28 株式会社参特伦 石墨烯的转印方法
US20190061328A1 (en) * 2016-01-28 2019-02-28 Charmtron Co., Ltd. Method for transferring graphene
WO2017131302A1 (ko) * 2016-01-28 2017-08-03 주식회사 참트론 그래핀의 전사방법
CN108328603A (zh) * 2017-01-20 2018-07-27 清华大学 基于糖的纳米材料的转移方法
CN108821273A (zh) * 2018-09-21 2018-11-16 北京石墨烯研究院 真空石墨烯转移装置及真空石墨烯转移方法
CN109179396A (zh) * 2018-11-16 2019-01-11 福建闽烯科技有限公司 石墨烯薄膜直接转移装置及方法
CN111370584A (zh) * 2018-12-25 2020-07-03 东泰高科装备科技有限公司 透明导电电极的制作方法及透明导电电极、太阳能电池
CN111704128A (zh) * 2020-05-27 2020-09-25 东南大学 一种基于有台阶衬底的二维材料转移方法
CN111704128B (zh) * 2020-05-27 2022-06-28 东南大学 一种基于有台阶衬底的二维材料转移方法

Also Published As

Publication number Publication date
KR20160089529A (ko) 2016-07-27
KR101899224B1 (ko) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2015102459A1 (ko) 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치
US8992712B2 (en) Method for manufacturing electronic devices and electronic devices thereof
WO2012099385A2 (ko) 핫프레스를 이용한 그래핀의 전사 방법
US8419880B2 (en) Method of transferring graphene
KR101529012B1 (ko) 저렴한 비용으로 손상없이 그래핀을 전사하는 방법
WO2012091498A1 (ko) 그래핀 전극을 포함하는 플렉시블/스트레처블 반도체 소자, 반도체층과 그래핀 전극 사이의 접촉저항 감소 방법, 및 그래핀 인터커넥터
EP2584074B1 (en) Large area deposition and doping of graphene, and products including the same
WO2018212604A1 (ko) 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
EP2462263B1 (en) Debonding and transfer techniques for hetero-epitaxially grown graphene
WO2010038963A2 (ko) 계층화 구조물 제조 장치
WO2016027934A1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
WO2014109619A1 (ko) 자가점착 필름을 이용한 그래핀의 전사 방법
WO2012021197A2 (en) Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
KR101284535B1 (ko) 그래핀의 전사방법 및 이에 의해 제조되는 그래핀이 전사된 유연기판
WO2017065530A1 (ko) 그래핀 저온 전사방법
US20140124737A1 (en) Carbon nanotube network thin-film transistors on flexible/stretchable substrates
Kostogrud et al. The main sources of graphene damage at transfer from copper to PET/EVA polymer
WO2013094840A1 (ko) 전기분무 공정을 이용한 대면적 그래핀 3차원 투명 전극 제조방법 및 이로부터 제조된 대면적 그래핀 3차원 투명 전극
KR20110064164A (ko) 화학 기상 증착법을 이용한 그래핀 제조방법
CN105848886A (zh) 玻璃层叠体、和电子器件的制造方法
CN108793145B (zh) 一种原子级厚度石墨烯/氮化硼复合异质薄膜及制备
KR101320407B1 (ko) 그래핀 시트의 직접 전사 방법
WO2014137180A1 (ko) 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법
KR20110064154A (ko) 비정질 탄소 박막을 이용한 그래핀 제조방법
TW201504489A (zh) 製造部分獨立式二維晶體薄膜之方法及包括該薄膜之裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15733301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018619

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15733301

Country of ref document: EP

Kind code of ref document: A1