WO2013191347A1 - 연속 그래핀 제조장치 - Google Patents

연속 그래핀 제조장치 Download PDF

Info

Publication number
WO2013191347A1
WO2013191347A1 PCT/KR2012/011617 KR2012011617W WO2013191347A1 WO 2013191347 A1 WO2013191347 A1 WO 2013191347A1 KR 2012011617 W KR2012011617 W KR 2012011617W WO 2013191347 A1 WO2013191347 A1 WO 2013191347A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst substrate
deposition chamber
manufacturing apparatus
gas
graphene
Prior art date
Application number
PCT/KR2012/011617
Other languages
English (en)
French (fr)
Inventor
김강형
Original Assignee
에스 알 씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120065653A external-priority patent/KR101238451B1/ko
Priority claimed from KR1020120073068A external-priority patent/KR101238450B1/ko
Priority claimed from KR1020120073071A external-priority patent/KR101238449B1/ko
Priority claimed from KR1020120133912A external-priority patent/KR101409275B1/ko
Application filed by 에스 알 씨 주식회사 filed Critical 에스 알 씨 주식회사
Publication of WO2013191347A1 publication Critical patent/WO2013191347A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]

Definitions

  • the present invention relates to a graphene manufacturing apparatus, and more particularly, to a graphene manufacturing apparatus capable of continuously producing a large amount of graphene by a roll-to-roll method.
  • Graphene consists of two triangular sublattices, each of which has different electrical properties, forming a hexagonal grating lattice. More Looking at yes Three of the four outermost electrons out of carbon constituting the pin is sp 2 hybrid orbital (sp 2 hybrid orbitals) the formed forms a strong covalent bond of sigma ( ⁇ ) bond the remaining one electron is near It forms a graphene net by forming a pi ( ⁇ ) bond with another carbon. At this time, the electrons between the carbon atoms jump and move through atoms of the same property, and the moving speed is 20,000-50,000 cm 2 / Vs, which is 100 times faster than Si semiconductor, and has a low electric resistance, resulting in low heat generation.
  • sp 2 hybrid orbitals the formed forms a strong covalent bond of sigma ( ⁇ ) bond the remaining one electron is near It forms a graphene net by forming a pi ( ⁇ ) bond with another carbon.
  • Korean Patent Laid-Open No. 10-2012-0001591 discloses "graphene manufacturing apparatus and manufacturing method", specifically, a gas supply unit for supplying a gas containing carbon, and a gas for heating the gas supplied from the gas supply unit And a deposition chamber in which a heating unit, a substrate having a catalyst layer is disposed, and an introduction tube for introducing a gas of the gas heating unit into the deposition chamber, whereby the temperature of the deposition chamber is lower than the temperature of the gas heating unit. Since it can be set, the selection range of the catalyst metal which can be used for a catalyst layer becomes wider, and the damage of a board
  • the graphene manufacturing apparatus according to Korean Patent Laid-Open No. 10-2012-0001591 merely provides an idea of passing the metal foil through roll-to-roll, and thus does not provide a concept or method of a specific apparatus necessary for industrialization. There is. For example, due to the catalyst foil passing through the deposition chamber, there is no choice but to provide openings on both sides. However, the present invention does not provide a specific airtight method of blocking the external atmosphere and maintaining vacuum or pressure.
  • the inventors of the present invention have found that the orientation and surface energy state of the catalyst substrate, in particular the step structure, have a great influence on the adsorption of carbon atoms and graphene growth.
  • Step structures have already been observed by graphene researchers, but their production mechanisms and processes are not yet known.
  • the inventors have determined that these step structures are determined by a number of factors, including stacking fault energy, annealing temperature, atomic filling rate depending on orientation, dislocation density and twin depending on processing conditions. It was confirmed that the present invention was a continuous synthesis apparatus capable of uniform graphene synthesis using step formation.
  • An object of the present invention is to provide a graphene manufacturing apparatus to reduce the exhaust capacity burden and improve the thermal efficiency, as well as to promote the catalytic action in the deposition chamber and to achieve uniform nucleation and shortening of the deposition time.
  • the above object is, in the graphene manufacturing apparatus for synthesizing the graphene continuously in the deposition chamber for supplying the carbon precursor to the catalyst substrate, an uncoiler for continuously supplying the catalyst substrate; A coiler that receives the catalyst substrate continuously from the deposition chamber; And a shell containing the deposition chamber, the uncoiler and the coiler.
  • the catalyst substrate is subjected to a graphene deposition process in the order of the uncoiler, the deposition chamber, and the coiler, and the uncoiler, the deposition chamber, and the coiler are arranged clockwise or counterclockwise.
  • the carbon precursors are decomposed to provide carbon radicals, such as carbon monoxide, methane, ethane, ethylene, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, nucleic acid, cyclohexane, ethane hole, methane hole, It provides a gaseous state any one selected from the group consisting of benzene, toluene, camphor, coal dry gas, shale gas, and combinations thereof.
  • the continuous graphene manufacturing apparatus includes a first heating line for maintaining annealing temperature above the recrystallization temperature of the catalyst substrate and a first gas supply line for forming a gas atmosphere having a molecular weight of at least carbon atoms. It may further comprise a step forming chamber to form a step structure on the surface of the catalyst substrate.
  • a second heating wire for maintaining a temperature of 600 ⁇ 1100 °C, a second shielding material to surround the heat or magnetic field of the second heating wire and a second gas supply line for supplying a carbon precursor to the catalyst substrate Is provided.
  • the first heating wire and the second heating wire are installed parallel to the moving direction of the catalyst substrate, and induction heating coils, metal filaments, radiant tubes, joule heating elements such as graphite heating elements, and infrared rays Both lamps can be used.
  • a shielding material may be formed to reflect the heat or to block the magnetic field of the induction heating coil that is formed for insulation or the outside.
  • the shielding material for blocking the magnetic field of the induction heating coil uses a silicon steel sheet, an amorphous film laminate or a soft magnetic powder sintered material such as Ferrotron, Fluxtrol or SMC, and is installed in the opposite direction of the desired magnetic field.
  • the second heating wire is an induction heating coil
  • the second shielding material may be made of any one or more of silicon steel sheet, amorphous film laminated material, iron-based soft powder powder sintered material.
  • the second heating wire is an electrical resistance heating wire
  • the second shielding material is made of any one of stainless steel sheet, titanium plate, heat-resistant tempered glass, quartz, pyrolytic boron nitride, pyrolytic graphite, gold mica, silicon carbide, alumina, magnesia, zirconia Or a mixture thereof.
  • the continuous graphene manufacturing apparatus includes an accommodating chamber accommodating the uncoiler and the coiler and formed adjacent to the deposition chamber, and the rochelle surrounds the accommodating chamber and the deposition chamber to form a closed space.
  • the shell is formed of a double wall structure, and is filled with a vacuum or heat insulating material between the double walls.
  • the receiving chamber is provided with an inner wall to protect the catalyst substrate from indirect heating by a heating unit.
  • a cylindrical deposition drum in which the catalyst substrate is in close contact is formed.
  • a deposition roll is formed to guide the catalyst substrate to closely contact the deposition drum at a predetermined interval.
  • a speed sensor for sensing the moving speed of the catalyst substrate is formed, and the rotation speed of the coiler and the uncoiler is controlled by the speed sensor.
  • the restructured gas tank to store the restructured gas supplied into the deposition chamber;
  • a carbon precursor tank in which a carbon precursor supplied into the deposition chamber is stored;
  • a hydrogen tank in which hydrogen supplied into the deposition chamber is stored, and the reorganization gas and hydrogen are selectively supplied.
  • a recovery device is formed so that the gas exhausted from the deposition chamber is recovered to the restructured gas tank, carbon precursor tank, and hydrogen tank, respectively.
  • a break detection sensor is formed inside the deposition chamber to detect break of the catalyst substrate.
  • At least one of the inlet and the outlet of the deposition chamber is provided with a buffer unit for releasing the tensile force applied to the catalyst substrate in the deposition chamber.
  • the catalyst substrate is one or more of the transition element or group 13-15 elements having hydrogen solubility or forming carbides in the range of 600 to 1060, or an alloy thereof, among which aluminum, nickel, iron, stainless steel, silver , Gold or copper.
  • An alloying element is added to the catalyst substrate to lower stacking defect energy or to promote decomposition of hydrogen or carbon, and the alloying element also has a hydrogen solubility or a transition element or a group 13 to 15 element that forms carbide. It consists of one or more.
  • the reorganization gas is made of any one or more of nitrogen, neon, argon, krypton, xenon, carbon monoxide, carbon dioxide, nitrogen oxides, ammonia and water vapor.
  • the catalyst substrate is overlapped in two layers, the gas having a molecular weight of at least the first heating wire and carbon atoms to maintain the annealing temperature or more of the recrystallization temperature of the two or more overlapped catalyst substrate
  • a first gas supply line is provided on both sides of the catalyst substrate to form an atmosphere, and includes a step forming chamber for forming a step structure on the catalyst substrate.
  • a second heating line for maintaining a temperature of 1100 ° C and a second gas supply line for supplying hydrocarbon gas to both sides of the catalyst substrate through the step forming chamber are provided.
  • the first gas supply line and the second gas supply line are disposed on both sides of the catalyst substrate overlapped in two layers.
  • the catalyst substrate is transferred in the longitudinal direction in the step forming chamber and the deposition chamber.
  • the buffer part includes a press roll formed at the outlet of the deposition chamber, and the press roll is formed to rotate at no load while pressing in order not to damage the catalyst substrate.
  • the buffer unit includes a press roll formed at an inlet or an outlet of the deposition chamber, and the press roll has a step formed at both ends to serve as a guide for contacting only part of both ends of the catalyst substrate or supporting only both sides.
  • the buffer unit includes driving rolls respectively formed at the inlet and the outlet of the deposition chamber, and the driving roll rotates while contacting the catalyst substrate and the speed is synchronized with each other. Accordingly, the tensile force applied to the catalyst substrate being heated is minimized.
  • the second heating wire is an induction heating coil
  • a distance between the catalyst substrate and the induction heating coil is within 10 mm, more preferably 2 to 3 mm.
  • the induction heating frequency is made of a high frequency of 10kHz or more, thereby forming a shallow magnetic field and high efficiency is advantageous for sheet heating.
  • the outer surface of the catalyst substrate discharged from the deposition chamber is not in contact with another object or coated with a protective film before being wound on the coiler.
  • the outlet of the deposition chamber is formed such that the catalyst substrate is discharged along the tangent of the deposition drum.
  • the uncoiler, the deposition chamber, and the coilers are formed in a continuous type that interlocks with each other, thereby achieving a compact structure, easily designing for vacuum and exhaust, and increasing thermal efficiency.
  • a nano unit step is formed on the entire surface of the catalyst substrate prior to the formation of graphene, thereby using a catalyst substrate that facilitates physical adsorption of precursor gas (carbon compound).
  • precursor gas carbon compound
  • FIG. 1 is a view showing a state in which a step is formed on the catalyst substrate of the metal which has been subjected to the step forming process according to the present invention
  • FIG. 2 is a schematic view showing an atomic arrangement of copper and a substituted element alloy state
  • FIG. 3 is a graph showing the results of graphene synthesis by CVD using methane as a carbon precursor for 30 minutes at 600 °C in a copper and copper alloy catalyst,
  • FIG. 4 is a graph showing the results of graphene synthesis by CVD using methane as a carbon precursor at 800 ° C. for 30 minutes at a copper and copper alloy catalyst.
  • FIG. 5 is a view showing the results of graphene growth by forming a step on the surface of the copper and copper alloy catalyst
  • FIG. 6 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing a catalyst substrate, a second heating wire, and a second shielding material in the continuous graphene manufacturing apparatus shown in FIG. 6;
  • FIG. 8 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 9 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 10 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 11 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 12 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 13 is a view schematically showing a part of the configuration of the continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 14 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 15 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 16 is a view showing a process of forming graphene using a continuous graphene manufacturing apparatus according to the present invention
  • FIG. 17 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 18 is a view schematically showing some components of a continuous graphene manufacturing apparatus according to another embodiment of the present invention.
  • first heating line 12 first gas supply line
  • step roll 14 first shielding material
  • step gas tank 120 reorganized gas tank
  • buffer portion 161 pressure roll
  • V Valve M: Flow Meter
  • FIG. 1 is a view showing a state in which a step is formed in a catalyst substrate 200 of a metal that has passed through a step forming chamber 10 according to the present invention
  • FIG. 2 schematically shows an atomic arrangement of copper and a state of a substituted element alloy
  • 3 is a graph showing the results of graphene synthesis by CVD using methane as a carbon precursor at 600 ° C. for 30 minutes in a copper and copper alloy catalyst
  • FIG. 4 shows methane of copper and a copper alloy at 800 ° C. for 30 minutes. Is a graph showing the results of synthesizing graphene by CVD using carbon as a precursor
  • FIG. 1 is a view showing a state in which a step is formed in a catalyst substrate 200 of a metal that has passed through a step forming chamber 10 according to the present invention
  • FIG. 2 schematically shows an atomic arrangement of copper and a state of a substituted element alloy
  • 3 is a graph showing the results of graphene synthesis by CV
  • FIG. 5 is a diagram showing the results of graphene growth by forming a step on the surface of copper and a copper alloy catalyst
  • FIG. 6 is an embodiment of the present invention.
  • 2 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus 1 according to the example.
  • the step of the nano unit on the entire surface of the catalyst substrate 200 in the step forming process It is a main technical feature that the step is formed, and accordingly, the formation of the step and the relationship between the step and graphene in the present invention will be described first.
  • the catalyst substrate 200 in order to obtain a uniform and epitaxial graphene in the catalyst substrate 200, it is preferable to have a single orientation of a lattice structure with high filling rate.
  • the catalyst substrate is made of any one or more of transition elements or groups 13 to 15 elements having a hydrogen solubility or forming carbides in the range of 600 ⁇ 1060 °C, especially aluminum, nickel, iron, stainless steel, silver, gold Or copper. Macroscopically, it is important to have a step structure in the microscopic surface state of nano units, and it is preferable that the surface index of the catalyst substrate 200 is a single orientation of (111) or (100).
  • the step structure of the present invention is a stepped structure developed from the atomic unit smaller than the micron unit as shown in Figs. 3 (b) and 5.
  • FIG. 1 There are mainly four types of steps found by the inventors (FIG. 1). It is a multi-cube in which a stepped paddy step Paddy step and a ledge that makes a planar bend alternately on a plane, a ratchet of a serrated shape, and a cube cube are stacked.
  • FIG. 2 is a view simulating the state of the copper alloy to which the atomic arrangement and substituted alloy element is added when only copper is present in the present invention.
  • (a) shows the atomic arrangement of copper
  • (b) and (c) show the atomic arrangement states of the solid solution alloy to which a substituted element with a larger atomic diameter than copper is added and the solid solution alloy to which a small element is added.
  • (b) and (c) when there is a difference in atomic radius, lattice distortion and lattice strain exist around the substituted atoms, which leads to an energy imbalance.
  • the interatomic connection around the substitutional element is a line representing this lattice deformation state.
  • step structures act as nucleation sites, they produce carbon radicals that form graphene nuclei by adsorption and thermal decomposition of carbon precursors at high temperatures. Once the carbon radicals are produced, they bond with the surrounding carbon radicals and grow into graphene nuclei with carbon-carbon bonds.
  • the alloy is performed to easily form a step structure after annealing because the internal energy is high, since the dislocation defect energy of the catalyst substrate 200 is lowered or the lattice strain is increased to easily cause dislocations or twins within the material. .
  • the alloying element is added to the catalyst substrate, annealing twinning is easily generated at high temperature, and the twinned portion has a high surface energy, thereby obtaining larger graphene crystals under the same conditions.
  • Such a catalyst substrate promotes the gas phase decomposition reaction of hydrogen or carbon precursor at the front of the substrate, thereby inducing uniform nucleation.
  • the alloying element is a transition element that has hydrogen solubility or forms a carbide in the range of 600 to 1060 ° C., which is a temperature at which graphene can be synthesized, that is, two cycles among Group 3 to Group 12 transition metals and Group 13, 14 and 15 elements. Elements belong to 6 cycles.
  • the approximate hydrogen solubility of each element is 70.5ppm copper, 4.5ppm gold, 22.4ppm silver, chromium 2.6ppm, molybdenum 1.2ppm, manganese 32.8ppm, cobalt 186.2ppm, iron 251ppm, nickel 562.3ppm, rhodium 7079ppm, 4.7 ppm of platinum, 11879 ppm of titanium, and 85.1 ppm of aluminum.
  • transition metals have high solubility in hydrogen.
  • elements other than transition metals that is, aluminum in Group 13 have a high hydrogen utility, and indium has a strong bonding strength to bond with hydrogen at high temperature to form a compound.
  • silicon makes carbides and germanium, tin, antimony and bismuth form hydrogen compounds like indium. Therefore, most of the alloying elements of the present invention can be added.
  • the higher the reduction ratio and the thinner the thickness of the copper foil the more the potential increases and may facilitate the rotation of the recrystallized particles during the high temperature annealing process.
  • After annealing in the cold rolled copper foil with a reduction ratio of 85% or more it was confirmed that the sheet was rotated to (100) single azimuth plane. Therefore, in order to obtain a single orientation texture, it can be processed to 85% or more in reduction ratio and 50 ⁇ m or less in thickness.
  • Copper has low lamination defect energy and cold processing increases the internal dislocation density, which causes atomic movement and diffusion during annealing. As it is heated to a high temperature, it moves to an image force acting between dislocations, and finally disappears, leaving a stepped structure as a Burgers vector on the surface.
  • the step structure of the atomic layer unit formed to the size of Burgers vector by the dislocation transfer is too small and formed smoothly even at a high temperature of 1000 ° C, which is insufficient to adsorb and decompose gas molecules.
  • the step gas having a molecular weight of more than carbon atoms, such as argon or nitrogen, and having a low chemical reactivity with copper is supplied with hydrogen in the atmosphere during annealing, the gas molecules are brown at high temperature even at a temperature of about 600 ° C. This impinges on the surface of copper and facilitates atomic movement, facilitating the formation of step structures.
  • the steps are uniformly distributed throughout the catalyst surface, thus creating an environment in which graphene is epitaxially grown.
  • the amount of hydrogen is sufficient to maintain a reducing atmosphere, so that after the vacuum is maintained, it is added at about 10-40% of the gas flow rate.
  • the higher the proportion of hydrogen the slower the decomposition rate of the carbon precursors, thereby controlling the graphene growth rate.
  • the gas flow rate may be increased as the thickness of the copper foil increases in the range of 0.1 to 10 sccm / ⁇ m, and is decreased as the temperature is high or the atomic weight is large.
  • step structures act as nucleation sites, they adsorb carbon precursors to produce carbon radicals that become graphene nuclei. Once the graphene nucleus is formed, the carbon radicals in the nucleus bind to the surrounding carbon radicals or directly act as a catalyst for adsorbing and decomposing carbon precursors, thereby rapidly growing graphene with carbon-carbon bonds.
  • Graphene was formed by heating 140 ppm of silver-added copper alloy (see (b) of FIG. 3) at 600 ° C. and methane 70 sccm and hydrogen 10 sccm for 30 minutes, and as a control, copper (FIG. ) Was confirmed whether or not graphene is formed under the same conditions (see FIG. 3).
  • Graphene islands and carbides are formed when graphene is grown on copper, but graphene is epitaxially grown on copper alloys containing silver. However, graphene was epitaxially grown when copper formed a step structure while annealing at 800 ° C. in advance.
  • the copper alloy and copper have a single orientation of hexagonal lattice structure (111) or (100) after annealing, and the catalyst substrate 200 has the same orientation in the following embodiments.
  • FIG. 4 (a) shows the diamond particles covered with the multi-layered graphene on the copper alloy, and FIG. It can be seen that carbon radicals are rapidly produced from copper alloy foil, although 800 °C is lower than the conventional CVD graphene synthesis temperature of 1000 ⁇ 1060 °C. If step structure is formed on copper foil, graphene grows even at low temperature. It was.
  • graphene may be synthesized by reducing the concentration of the carbon precursor gas or shortening the time.
  • the amount of alloys can be reduced to 1 atomic% or less, or the carbon precursor gas concentration and synthesis time can be reduced to obtain single-layer graphene, as shown in FIG. 4 (b).
  • the concentration of the gas is too high, the production of carbon radicals is faster than graphene growth, so it can be seen that in addition to graphene growth at the nucleation sites, triangular, square plate-shaped diamonds, rod-shaped, and granular diamonds grow.
  • the graphene was synthesized by lowering the concentration of carbon precursors or increasing the concentration of hydrogen gas to obtain single layer graphene.
  • step structure formation greatly contributes to the formation of monolayer graphene by promoting graphene growth rate as well as carbon radical production.
  • Graphene is synthesized. Both of them have well developed step structures and graphene have grown epitaxially. At this time, the graphene has a transparent characteristic because it is easy to be formed in a single layer and excellent in light transmittance. The darker shades are not attached to the catalyst and are excited, or because the step structure under the graphene changes due to grain boundaries or twins, the electrons are absorbed or diffusely reflected, making them appear blacker.
  • FIG. 6 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus 1 according to an embodiment of the present invention
  • Figure 7 is a catalytic substrate in the continuous graphene manufacturing apparatus 1 shown in FIG. 200 is a perspective view schematically illustrating the second heating wire 21 and the second shielding material 24, and
  • FIG. 8 schematically illustrates a configuration of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention.
  • 9 is a view schematically showing the configuration of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention
  • Figure 10 is a continuous graph according to another embodiment of the present invention
  • FIG. 11 is a view schematically showing some components of the pin manufacturing apparatus 1
  • FIG. 11 is a view schematically showing some components of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention.
  • the continuous graphene manufacturing apparatus 1 is for mass production of graphene by a roll-to-roll method, and includes an uncoiler 30, a coiler 40, a deposition chamber 20, a rochelle 50, and the like. And a reorganization gas tank 120, a carbon precursor tank 130, and a hydrogen tank 140 to accommodate each gas used to form graphene.
  • the catalyst substrate 200 is preheated to the preheated portion 25 and the catalyst passed through the deposition chamber 20 before flowing into the deposition chamber 20
  • substrate 200 is provided.
  • the preheater 25 may be formed separately from the deposition chamber 20. Alternatively, the preheater 25 may be formed by dividing the deposition chamber 20 into stages.
  • the uncoiler 30 is a part at which manufacturing starts in the circulating graphene manufacturing apparatus 1 according to the present invention, is formed in a drum shape, and the catalyst substrate 200 is wound around the outer circumferential surface thereof. 40 is a catalyst substrate 200 on which graphene is wound.
  • a portion having an extended diameter in the form of a flange may be formed to stably support the catalyst substrate 200, and may be made of ceramic and / or metal.
  • the uncoiler 30 and the coiler 40 are provided with a motor (not shown) for rotation and the like for controlling the rotation speed in order to continuously supply and wind the catalyst substrate 200.
  • a control unit (not shown) and a reduction gear (not shown) are provided.
  • the uncoiler 30 and the coiler 40 are accommodated together in the accommodating chamber 150, thereby accommodating the chamber 150.
  • the deposition chamber 20 may be formed in a form having two compartments, the catalyst substrate 200 is formed in the form of circulating the receiving chamber 150, the deposition chamber 20 in order. That is, the catalyst substrate 200 passes through the uncoiler 30, the deposition chamber 20, and the coiler 40 in order, and the uncoiler 30, the deposition chamber 20, and the coiler 40 rotate clockwise. Or counterclockwise.
  • the deposition chamber 20 is adjacent to the receiving chamber 150 and shares a wall with the receiving chamber 150.
  • a slit-shaped gap for moving the catalyst substrate 200 may be formed on a wall shared by the deposition chamber 20 and the accommodation chamber 150.
  • the deposition chamber 20 is to allow the deposition of carbon in the interior, the second heating wire 21 for heating to maintain a temperature of 600 ⁇ 1100 °C that the graphene can be deposited is formed therein, A second gas supply line 22 is formed through which the carbon precursor gas supplied from the carbon precursor tank 130 is injected.
  • the deposition chamber 20 is provided with a cylindrical deposition drum 27 in which the catalyst substrate 200 is in close contact.
  • the catalyst substrate 200 introduced into the deposition chamber 20 is in close contact with the deposition drum 27 and passes through the deposition chamber 20 in a form of circulating the deposition drum 27.
  • the catalyst substrate 200 rotates while the deposition drum 27 is fixed, the catalyst substrate 200 is in close contact with the outer circumferential surface of the deposition drum 27, and the catalyst substrate 200 and the deposition drum 27 are together. It is preferable to be conveyed in a rotating form.
  • a deposition roll 28 is formed to guide the catalyst substrate 200 to closely contact the deposition drum 27 at a predetermined interval. That is, the deposition roll 28 supports the catalyst substrate 200 to rotate together with the deposition drum 27 without being spaced in close contact with the deposition drum 27.
  • the precursor gas carbon compound
  • the back surface of the catalyst substrate 200 the surface in contact with the deposition drum 27. You can prevent it.
  • a process of treating with expensive plasma etching equipment to remove the graphene grown on the rear surface of the catalyst substrate 200 can be omitted, thereby improving productivity and reducing costs.
  • the overall material of the deposition chamber 20 and the deposition drum 27 is heat resistant tempered glass, quartz, pyrolytic boron nitride, It may be made of inorganic materials such as pyrolytic graphite, phlogopite mica, silicon carbide (SiC), alumina, magnesia, zirconia, or metals such as stainless steel, nichrome steel, and invar.
  • inorganic materials such as pyrolytic graphite, phlogopite mica, silicon carbide (SiC), alumina, magnesia, zirconia, or metals such as stainless steel, nichrome steel, and invar.
  • FIG 8 is a view schematically showing some components of the vertical and double-sided continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention
  • Figure 9 is a continuous graph according to another embodiment of the present invention 4 is a view schematically illustrating the buffer unit 160 and the cooling unit 26, which are part of the fin manufacturing apparatus 1.
  • the preheating part 15 of the step forming chamber, the preheating part 25 and the cooling part 26 of the deposition chamber are in contact with the catalyst substrate 200 or transmit radiant heat to the catalyst substrate 200 or to the catalyst substrate 200. It may be made in various ways by injecting a heated or cooled fluid, it may be formed in a roll form, a box form, a slot form and the like.
  • the catalyst substrate 200 when formed in a roll shape, is formed to pass between the rolls provided in pairs and disposed in close proximity to each other, and intervening elastic means for allowing the rolls to be elastically supported toward the catalyst substrate 200.
  • the roll can serve as a guide.
  • the preheating unit 15 and the preheating unit 25 formed as described above may be formed separately from the step forming chamber 10 and the deposition chamber 20, or may be formed inside the step forming chamber 10 and the deposition chamber 20. It may be made in the form of forming the step roll 13 or the deposition roll 28.
  • the cooling unit 26 is formed to circulate the refrigerant therein so as to rapidly cool by conduction when it comes into contact with the catalyst substrate 200, or install a gas supply line for injecting cooling gas to the catalyst substrate 200. It can be formed in the form of spraying.
  • the cooling gas may be supplied by a separate supply means, and may be supplied branched from the restructure gas tank 120 or the hydrogen tank 140. The cooling gas suppresses abnormal reaction of the formed graphene, increases the strength of the catalyst substrate 200, and allows the catalyst substrate 200 to be stably wound on the coiler 40.
  • FIG. 12 is a view schematically showing a part of the configuration of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention
  • Figure 13 is a continuous graphene manufacturing apparatus (1) according to another embodiment of the present invention
  • FIG. 14 is a diagram schematically illustrating some components of FIG. 14, and
  • FIG. 14 is a diagram schematically illustrating a configuration relationship of a continuous graphene manufacturing apparatus 1 according to another exemplary embodiment of the present invention.
  • the second heating line 21 is formed adjacent to the inner surface of the deposition chamber 20 and the deposition drum. (27) It may be formed in a shape surrounding the periphery.
  • the second heating wire 21 is installed to be heated close to the catalyst substrate as shown in FIG. As shown in Figure 11 (a), the second heating wire 21 can be formed continuously, as shown in Figure 11 (b), divided into a plurality of temperature to manage the temperature for each section by section temperature It can be managed uniformly so that does not change.
  • the second heating wire 21 is repeatedly installed along the moving direction of the catalyst substrate, and includes induction heating coils, metal filaments, radiant tubes, joule heating elements such as graphite heating elements, and infrared lamps. And the like can all be used.
  • a second shielding material 24 is formed on the outside of the catalyst substrate and the second heating wire 21 in contact with the outer circumferential surface of the deposition drum 27, and the heat generated by the second heating wire 21 is transferred to the deposition chamber 20. Be focused.
  • a second heating wire 21 facing outward may be installed on the inner surface of the deposition drum.
  • a shielding material may be installed behind the second heating wire 21 to prevent heat from being lost to the center of the drum, thereby improving efficiency.
  • the induction heating coil is heated outside the deposition drum using the induction heating coil, the induction magnetic field is directed toward the drum, so that the shielding material may be omitted from the second heating wire 21 installed outside the deposition drum 27.
  • the second gas supply line 22 should be such that the carbon precursor, the reorganization gas and the hydrogen gas are uniformly sprayed on the catalyst substrate 200 so as not to generate a position where carbon radicals are depleted. Accordingly, the catalyst in the deposition chamber 20
  • the center of the second gas supply line 22 is disposed at the center of the deposition surface of the substrate 200.
  • the second heating line 21 and the second gas supply line 22 may be provided in plural along the moving direction (circumferential direction) of the catalyst substrate 200, and the plurality of second gas supply lines 22 By adjusting the installation position, the size of the gas flow path and the injection angle of the gas supply line, it is possible to smooth the gas flow by causing a difference in the gas supply amount and flow rate injected from each second gas supply line 22.
  • the reorganization gas is supplied into the deposition chamber 20 through the reorganization gas tank 120, and in the present invention, the reorganization gas includes reorganization of a defect such as an unstable five-angle, seven-angle graphene or a cavity of the catalyst substrate 200. Healing) or assists the doping gas to react well, and may be composed of argon, helium, neon, krypton, xenon, nitrogen, carbon monoxide, carbon dioxide, nitrogen oxides, ammonia, hydrogen compounds, water vapor and the like.
  • Hydrogen supplied into the deposition chamber 20 through the hydrogen tank 140 controls the generation rate of carbon radicals.
  • the shell 50 surrounds the deposition chamber 20 to form a closed space, the carbon precursor, reorganization gas, and hydrogen supplied into the deposition chamber 20.
  • the pressure of the deposition chamber 20 formed by partial pressure such as higher than the pressure of the shell 50, it is possible to prevent other gas from flowing into the deposition chamber 20, so that the flow of the precursor gas (carbon compound) It is done smoothly.
  • atmospheric pressure chemical vapor deposition may be performed to maintain graphene growth by maintaining the pressure inside the deposition chamber 20 at atmospheric pressure, and further, the pressure inside the deposition chamber 20 may be reduced.
  • Low pressure chemical vapor deposition LP-CVD may be performed.
  • an exhaust port 23 through which each gas supplied into the deposition chamber 20 is discharged is formed in the deposition chamber 20.
  • the exhaust port 23 may be formed in the deposition chamber 20 itself, or alternatively, may be formed in the accommodation chamber 150 connected to the deposition chamber 20. In the latter case, the gas inside the deposition chamber 20 is moved to the receiving chamber 150 and then exhausted through the exhaust port 151.
  • an exhaust port 17 through which each gas supplied into the step forming chamber 10 is discharged is formed.
  • the exhaust port 17 may be formed in the step forming chamber 10 itself, or may be exhausted through the exhaust port 151 formed in the accommodation chamber 150.
  • the step forming chamber 10 may be installed between the uncoiler 30 and the deposition chamber 20 for growing the graphene, so that the step gas is introduced into the step forming chamber 10. By doing so serves to help the graphene is uniformly and quickly formed on the catalyst substrate 200.
  • the deposition chamber 20 and the accommodation chamber 150 are adjacent to each other, and the deposition chamber 20 and the accommodation chamber 150 and the wall are formed. Share.
  • a slit-shaped gap for moving the catalyst substrate 200 may be formed on the wall shared by the step forming chamber 10 and the receiving chamber 150.
  • the step forming chamber 10 may be formed.
  • the slit-shaped gap for the movement of the catalyst substrate 200 is also formed on the wall shared by the step forming chamber 10 and the deposition chamber 20. Can be formed.
  • a first heating line 11 is formed to be maintained at an annealing temperature of the catalyst substrate 200 or higher, and the step gas supplied from the step gas tank 110 is formed.
  • the first gas supply line 12 injected after inflow is formed.
  • the step forming chamber 10 is provided with a cylindrical step drum 16 to which the catalyst substrate 200 is in close contact.
  • the catalyst substrate 200 introduced into the step forming chamber 10 is in close contact with the step drum 16 and passes through the step forming chamber 10 in a form of circulating the step drum 16. Operation of the step drum 16 is performed in the same manner as the deposition drum 27 described above.
  • a step roll 13 is formed to guide the catalyst substrate 200 to be in close contact with the step drum 16 at a predetermined interval. That is, the step roll 13 supports the catalyst substrate 200 to rotate together with the step drum 16 without being spaced in close contact with the step drum 16.
  • the material of the step forming chamber 10 and the step drum 16 may be made of heat-resistant tempered glass, quartz, pyrolytic boron nitride, pyrolytic graphite, and gold, as in the deposition chamber 20 described above. It may be made of inorganic materials such as mica (Phlogopite mica), silicon carbide (SiC), alumina, magnesia, zirconia, or metals such as stainless steel, nichrome steel, and Invar.
  • the step forming chamber first heating line 11 has the same structure and functions the same as the deposition chamber second heating line 21.
  • a first shielding material 14 is formed outside the step-forming first heating wire 11, that is, between the inner surface of the step-forming chamber 10 and the first heating wire 11, and the first heating wire ( Heat by 11) is concentrated in the direction of the center of the step forming chamber 10.
  • the first gas supply line 12 for forming a step may include a first gas supply line in the center of the outer circumferential surface of the catalyst substrate 200 in the step forming chamber 10 such that the step forming gas is uniformly injected onto the catalyst substrate 200. 12) to be centered.
  • the first gas supply line 12 may be provided in plural along the moving direction (circumferential direction) of the catalyst substrate 200, and the installation positions of the plurality of first gas supply lines 12 and holes in the gas supply line. By adjusting the size and the injection angle, it is possible to smooth the gas flow by causing a difference in the gas supply amount and the flow rate injected from each first gas supply line 12.
  • NAA Nano Ripples Array
  • the catalyst substrate 200 having a low lamination defect energy such as copper accumulates in the crystal when cold worked. The stress is relieved while forming twins in the crystal and recrystallization during annealing. However, there is not enough energy to act as a driving force of the annealing twin, so that the twin is formed only in a part of the crystal, so that the step structure as in the present invention is not formed on the entire surface of the catalyst substrate.
  • the carbon solubility of copper is low and defects such as inclusions, grain boundaries, or scratches present on the surface of the catalyst substrate are nucleated by physical adsorption. Graphene nucleation is likely to be uneven because it acts as a site first.
  • a step gas for example, a catalyst substrate 200 made of copper
  • a gas having a mass of carbon atom or more, and neon, nitrogen, carbon monoxide, carbon dioxide, argon, krypton, xenon, ammonia, water vapor, etc. collides with the metal atoms of the catalyst substrate 200 in a Brownian motion to assist the movement of atoms Steps in nano units are formed on the entire surface of the substrate 200.
  • the steps of tens to hundreds of nanometers are uniformly formed to act as nucleation sites, thereby facilitating physisorption of the precursor gas (carbon compound) on the catalyst surface. It promotes catalysis, and as a result, graphene uniform nucleation and precursor gas decomposition rate increase effect can be obtained.
  • the deposition time may be shortened due to the step formation, and the deposition temperature may be lowered.
  • the deposition temperature is lowered, the strength of the catalyst substrate 200 increases, thus preventing the cutting of a separate carrier film (catalyst substrate 200). And a film for supporting) is unnecessary.
  • the step forming chamber 10 is supplied with a gas for reducing oxide film from the hydrogen tank 140 in addition to the step gas.
  • Oxide film reduction gas is a reducing gas having a low oxidation water, that is, gases such as hydrogen or carbon monoxide, ammonia, hydrogen sulfide, hydrogen compounds that can replace it.
  • the shell (50) is formed surrounding the uncoiler (30), the step forming chamber (10), the deposition chamber (20), and the coiler (40) to form a closed space. That is, the accommodation chamber 150, the step forming chamber 10, and the deposition chamber 20 may be formed by dividing the inside of the shell 50 into three zones.
  • the shell 50 may be formed of a single wall structure, but the shell 50 according to a preferred embodiment of the present invention is formed of a double wall structure, and is filled with a vacuum or heat insulating material between the double walls. Alternatively, the refrigerant may be circulated between the double walls.
  • the deposition chambers proposed for graphene production assume a quartz tube low pressure and vacuum chamber for CVD and should have a vacuum sealing accordingly, and the vacuum of the chamber is allowed while allowing the continuous supply of the catalyst substrate 200. Not only is it difficult to maintain the sealing, but even if the sealing has the problem that the structure and equipment will be complicated. In addition, in order to maintain a vacuum at the exit side of the deposition chamber, it is difficult to maintain airtightness by a roller type or any sealing means, and the graphene composite layer of the catalyst substrate 200 is damaged.
  • the shell 50 is formed around the uncoiler 30, the step forming chamber 10, the deposition chamber 20 and the coiler 40 to form a closed space.
  • low-pressure deposition can be effectively performed in the deposition chamber 20 and the vacuum substrate can be maintained in the catalyst substrate 200 to prevent the graphene composite layer from being damaged.
  • the chambers form a compact structure in which the chambers are in close contact with each other.
  • the maintenance can be made more easily and the waste space can be reduced, thereby reducing the amount of gas supplied and reducing the burden of exhaust.
  • the carbon precursor tank 130, the reorganization gas tank 120, and the hydrogen tank 140 are connected through pipes (toward the second gas supply line 22). Mass flow controller (M) and valve (V) are formed.
  • step gas chamber 110 and the hydrogen tank 140 is connected to the step forming chamber (10) through the pipe (connected toward the first gas supply line 12), each pipe also has a flow meter for flow control ( M) and the valve V are formed.
  • a recovery device 90 is formed so that the gas exhausted from the rochelle 50 is recovered into the restructured gas tank 120, the carbon precursor tank 130, and the hydrogen tank 140, respectively.
  • the recovery device 90 may be configured in the same form as a known gas recovery device 90, and may be used to decompose and classify carbon precursors through a gas filter and a catalyst. Through the recovery device 90, the waste gas discharged through the exhaust pump 53 of the Rochelle 50 is collected, filtered, and classified, thereby classifying the gas into step gas, restructure gas, and carbon precursor according to purity and composition. It may be formed to circulate toward the tank 110, the reorganization gas tank 120 and the carbon precursor tank 130.
  • the accommodating chamber 150, the step forming chamber 10, and the deposition chamber 20 are formed in a cyclical form in close contact with each other to achieve a compact structure and to easily design for vacuum and exhaust. It is possible to increase the thermal efficiency.
  • a step sensor 80 is formed on the catalyst substrate 200 to detect whether a step is formed.
  • the step sensor 80 measures the pulse wave generated due to lattice relaxation while the step is formed on the catalyst substrate 200 or the phase transformation due to the difference in the electromagnetic resistance at both sides of the entrance and exit of the step forming chamber 10. It can be made by measuring the optical difference (for example, reflectance) according to the electromagnetic or step formation to detect the.
  • the inlet and outlet of the deposition chamber 20 is formed with a speed sensor 60 for detecting the moving speed of the catalyst substrate 200.
  • the speed sensor 60 is connected to a control unit for controlling the rotation of the coiler 40, so that the rotational speed of the coiler 40 is controlled. While the graphene is manufactured, the catalyst substrate 200 passes through the first preheating unit 15, the step forming chamber 10, the second preheating unit 25, the deposition chamber 20, and the cooling unit 26. Since thermal expansion and contraction are caused, and the diameter (diameter in the wound state) of the catalyst substrate 200 wound around the coiler 40 increases, when the coiler 40 rotates at a constant speed, the deposition chamber ( The moving speed of the catalyst substrate 200 passing through 20 is changed or gradually increased.
  • the speed sensor 60 is installed to detect the moving speed of the catalyst substrate 200 at the inlet and the outlet of the deposition chamber 20 and thereby the rotational speed of the coiler 40. By controlling, the moving speed of the catalyst substrate 200 can be synchronized.
  • the speed sensor 60 is made of a non-contact sensor using an electric or magnetic such as a tachometer, a Hall Effect sensor, an Eddy current sensor, or an RF speed sensor. Can be.
  • a film supply for allowing the transfer film 300 to be applied after the catalyst substrate 200 having passed through the deposition chamber 20 is cooled through the cooling unit 26.
  • Device 100 may be formed.
  • the film supply device 100 is provided with the uncoiler 30 and the coiler 40 in the receiving chamber 150, installed in parallel with the coiler 40, and coated with the transfer film 300.
  • the substrate 200 is wound around the coiler 40.
  • Transfer film 300 may be made of PMMA, PET, PVDF, PEN, MS, PS, PC, COP, PES, PI, FRP, and the like, the graphene deposited catalyst substrate 200 is deposited chamber 20 It is applied in the process of winding through the cooling unit 26 while leaving the transfer film 300 is bonded.
  • the first dummy part of the substrate wound on the coiler 40 is applied without the graphene being deposited, but the graphene is coated with the part that comes out while the deposition process is performed.
  • a pressure roll is installed to bring the transfer film 300 into close contact with the catalyst substrate 200.
  • a break detection sensor 70 for detecting break of the catalyst substrate 200 is formed.
  • the break detection sensor 70 may be formed in the form of a laser sensor or an infrared sensor in the step forming chamber 10 and the deposition chamber 20, and the light emitting unit 71 and the light receiving unit 72. ) Can be separated.
  • the light emitting unit 71 is positioned on one side of the catalyst substrate 200, the light receiving unit 72 is positioned on the other side, and when the breakage of the catalyst substrate 200 occurs, the light emitted by the light emitting unit 71 receives the light receiving unit ( In 72) it can be made in the form of detecting the break.
  • the break detection sensor 70 may be formed in the form of the above-described speed sensor 60, not in the form of the optical sensor described above.
  • a speed sensor 60 for detecting the moving speed of the catalyst substrate 200 is formed, the inside of the deposition chamber 20 of the catalyst substrate 200 When the break is made, the speed is reduced or the speed becomes '0' at the inlet side as compared with the outlet side of the deposition chamber 20, through which the breakage of the catalyst substrate 200 can be detected.
  • the break detection may be made in the form of detecting the load applied to the coiler 40.
  • the break detection may be performed by detecting this.
  • 15 (a) and 15 (b) are diagrams schematically showing some components of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention.
  • the buffer unit 160 is formed at the inlet and / or outlet of the deposition chamber 20 to form a pair of the pressure roll 161 and the driving roll 162 to control the transfer speed of the catalyst substrate 200.
  • the pressing roll 161 in contact with the graphene forming surface of the catalyst substrate 200 has a structure synchronized with the driving roll 162 to rotate without load while lightly pressing the catalyst substrate 200, or both ends of the pressing roll 161 By giving a step to the middle can be formed to serve as a guide for supporting only a portion of both ends or only both sides without contacting the graphene composite layer.
  • the driving roll 162 generates friction and transfers the frictional force while contacting the lower surface of the catalyst substrate 200 so that the pressure roll 161 does not apply sliding stress or excessive tensile force to the graphene layer, thereby causing breakage of the catalyst substrate or damage to the graphene layer. Can be prevented.
  • pressure rollers 161 and driving rolls 162 which rotate while contacting the catalytic substrate 200 are respectively installed at the inlet and the outlet of the deposition chamber 20 to increase the speed of these rolls.
  • the catalytic substrate 200 in the chamber can minimize the tension between these drive rolls 162 by thermal expansion, and the other drive rolls 162 or guide rods that rotate in series with the drive rolls 162. It is possible to minimize the tension applied to the catalyst substrate 200 by forming a buffer portion between the rolls.
  • the tension acts to the uncoiler 30 through the inlet of the step forming chamber 10, thereby stepping.
  • Tension may be applied to the catalyst substrate 200 heated in the forming chamber 10 to cause a cutting accident.
  • the catalyst substrate 200 is provided between the step forming chamber 10 inlet and the uncoiler 30 by installing the buffer unit 160 combined with the pressure roll 161 and the driving roll 162.
  • tension is applied to the catalyst substrate 200 in the first heating line 11 to a minimum.
  • the same effect can be obtained by providing a buffer section between the step forming chamber 10 and the deposition chamber 20 and between the deposition chamber 20 and the coiler 40.
  • a light weight dancer roll 164 by inserting a light weight dancer roll 164, the substrate flows smoothly in the buffer section, and a moderate tension is applied to the substrate, thereby maintaining the flatness of the substrate in the chamber.
  • a device such as a pendulum guide (163, pendulum guide) is additionally installed in the buffer section between the deposition chamber 20 and the coiler 40, the catalyst section 200 is stacked, and thus the buffer section can serve as a cooling unit. After the strength of the catalyst substrate 200 is sufficiently restored, there is an advantage that can be wound around the coiler 40.
  • FIG. 16 is a view illustrating a process of forming graphene using the continuous graphene manufacturing apparatus 1 according to the present invention
  • FIG. 17 is a continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention.
  • Figure is a schematic diagram showing a part of the configuration.
  • the double-sided graphene manufacturing method according to the present invention comprises a bonding step (S10), forming step (S20), cooling step (S30) and separation step (S40).
  • the coupling step (S10) is to overlap the two catalyst substrates 200 so that both ends are coupled, and to prevent the carbon precursor gas from penetrating into the catalyst substrate 200 to be coupled.
  • the two overlapped catalyst substrates 200 are to be separated after graphene is formed, the inner surfaces of the overlapped catalyst substrates 200 do not need to be bonded or bonded to each other.
  • Forming step (S20) is a process for forming graphene, graphene is formed by supplying carbon precursor gas to both sides (outer side) of the catalyst substrate 200 in an atmosphere of 600 ⁇ 1100 °C temperature is maintained Be sure to After the graphene is formed, a cooling step S30 is performed to cool the catalyst substrate 200.
  • a catalyst substrate in which both surfaces are coated with the film 300 is obtained.
  • Separation of the two catalyst substrates 200 may also be achieved by removing only the portion (edge portion) joined by a conventional cutter. As described above, according to the present invention, it is possible to form two sheets (graphed or continuous) of the catalyst substrate 200 on which graphene is formed in one process.
  • the graphene manufacturing apparatus 1 is such that the graphene is formed on the outer surface of the two-layered catalyst substrate 200 while the two-layered catalyst substrate 200 is introduced into the apparatus.
  • the term "catalyst substrate” refers to a catalyst substrate stacked in two layers.
  • the deposition chamber 20 illustrated in FIGS. 6, 14, and 15 is formed long in the horizontal direction (moving direction of the catalyst substrate 200 in the horizontal direction), but is not limited thereto. As shown in FIG. 17, it may be formed in a longitudinal direction or an inclined direction. In particular, when the deposition chamber 20 is formed in the longitudinal direction, even if the length of the catalyst substrate 200 is increased by thermal expansion inside the deposition chamber 20, the movement path may be kept constant. (In the horizontal direction, when the catalyst substrate 200 is increased by thermal expansion, there is a problem that it is difficult to maintain the horizontal.)
  • the deposition chamber 20 when the second gas supply line 22 is formed on both sides of the overlapped catalyst substrate 200, when the deposition chamber 20 is placed in the horizontal direction, the catalyst substrate 200 is struck by gravity in a heated state and is lowered. Since the graphene forming surface may be damaged while the second gas supply line 22 and the catalyst substrate 200 are in contact with each other, the deposition chamber 20 may be placed in a longitudinal direction, preferably in a longitudinal direction or an inclined direction. In this case, such damage can be prevented.
  • FIG. 18 is a view schematically showing some components of the continuous graphene manufacturing apparatus 1 according to another embodiment of the present invention.
  • the outer surface (the outer surface on which graphene is formed) of the catalyst substrate 200 discharged from the deposition chamber 20 is not in contact with another object or the protective film (before being wound around the coiler 40). 300 is preferably applied.
  • the outlet of the deposition chamber 20 is formed such that the catalyst substrate 200 is discharged along the tangent of the deposition drum 27. Accordingly, the graphene forming surface of the catalyst substrate 200 may be minimized from being damaged due to contact with a roll or other object.
  • each configuration is made of a continuous type interlocking with each other to achieve a compact structure and easy design for vacuum and exhaust, forming a graphene by going through a step forming process before the deposition process Prior to this, nano-steps are formed on the entire surface of the catalyst substrate, so that physical adsorption of the precursor gas can be easily performed, thereby obtaining uniform nucleation and shortening deposition time.

Abstract

연속 그래핀 제조장치가 개시된다. 본 발명에 따른 연속 그래핀 제조장치는, 촉매기판에 탄소전구체를 공급하는 증착챔버에서 연속으로 그래핀을 합성하는 그래핀 제조장치에 있어서, 촉매기판을 연속으로 공급하는 언코일러; 증착챔버로부터 촉매기판을 연속하여 공급받는 코일러; 및 증착챔버, 언코일러 및 코일러를 수용하는 로셸을 포함하는 것을 특징으로 한다. 본 발명에 의하면, 증착챔버 내에서 촉매기판에 균일하게 그래핀이 합성되고, 진공 및 배기를 위한 설계가 용이하며, 열효율을 높일 수 있다.

Description

연속 그래핀 제조장치
본 발명은 그래핀 제조장치에 관한 것으로, 보다 상세하게는, 롤투롤(Roll-to-Roll)방식에 의하여 다량의 그래핀을 연속 생산할 수 있는 그래핀 제조장치에 관한 것이다.
그래핀은 이미 1962년에 Hanns-Peter Boehm에 의해 그 존재가 예언되었지만 2004년에 이르러서야 맨체스터 대학의 가임(Geim)과 노보셀로프(Novoselov) 교수팀에서 스카치 테이프로 흑연에서 원자단위의 층을 분리하는데 성공하게 되었다. 그 후 2005년에 그래핀으로 가임 교수팀이 페르미 디락 통계를 따르는 입자에 대해, 김필립 교수팀이 양자 홀 효과(Quantum Hall Effect)에 대해 실험한 결과가 각각 발표되면서 물리학계의 난제들이 해결되었다. 이전에는 단원자층인 그래핀에 대해 자연상에서 형태를 유지할 수 없고 열역학적으로 불안정하여 낮은 융점을 가질 것으로 예상되기도 했지만 실제로는 매우 안정적이고 결정성이 뛰어난 결과를 보였다.
그래핀은 전기적 성질이 서로 다른 탄소원자들이 각각 삼각형 아격자(Sublattice) 두 개를 구성하고 이들이 겹쳐 육각형 창살 격자를 만든 것이다. 상세히 살펴 보면 그래핀을 구성하는 탄소의 최외각 전자 4개 중 3개는 sp2혼성 오비탈(sp2 hybrid orbitals)을 형성하여 강한 공유결합인 시그마(σ)결합을 이루며 남은 1개의 전자는 주변의 다른 탄소와 파이(π)결합을 형성하면서 그래핀 네트를 구성한다. 이 때 탄소원자들 사이의 전자는 같은 성질의 원자들을 통해 점프하며 이동하는데 그 이동속도는 20,000~50,000㎠/Vs로 Si 반도체보다 100배 빠르고 전기저항이 적어 발열량이 작다. 이뿐 아니라 리본 상으로 제조하면 가장자리 제어효과를 이용하거나 나노패터닝, 도핑 등을 통해 반도체 특성을 가지는 기능성 그래핀의 제조가 가능하다. 기계적 성질도 뛰어나 파괴강도가 125GPa로 철강의 100배, 다이아몬드의 2배에 이른다. 또한 10cm 크기인 그래핀 필름을 10% 잡아당겨도 전기적 특성을 잃지 않을 정도로 신축성이 풍부하여 쉽게 깨지지 않기 때문에 산화인듐주석(ITO)을 대체하여 디스플레이 소재와 전자종이로 활용될 투명전극 소재로 각광받고 있다. 2010년에는 세계 최대의 30인치 대면적 그래핀을 제조하는 롤투롤 (Roll to Roll) 방식 기술이 등장하는 등 산업계에서 활용할 수 있는 기술들이 지속적으로 개발되고 있다.
산업적으로 활용하기 위해서는 그래핀 박막을 단층으로 균일하게 구현하는 것이 중요한데 종래 기술들은 석영관을 이용한 롤투롤 연속합성법을 제공함으로써 광폭의 대면적 제품을 양산하기에 적합하지 않은 문제가 있다.
그리고 한국공개특허 제10-2012-0001591호는 "그래핀의 제조 장치 및 제조 방법"을 개시하면서, 구체적으로, 탄소를 포함한 가스를 공급하는 가스 공급부와, 가스 공급부에서 공급된 가스를 가열하는 가스 가열부와, 촉매층을 구비한 기판이 배치되는 증착 챔버와, 가스 가열부의 가스를 증착 챔버로 도입하는 도입관을 구비하도록 하고 있으며, 이에 따르면, 증착 챔버의 온도를 가스 가열부의 온도보다 낮은 범위에서 설정할 수 있으므로, 촉매층에 사용할 수 있는 촉매 금속의 선택 범위가 넓어지고 고온의 열로 인한 기판의 손상을 최소화할 수 있음을 기재하고 있다.
그러나, 한국공개특허 제10-2012-0001591호에 따른 그래핀 제조장치는, 단순히 금속박을 롤투롤로 통과시키는 아이디어를 제시하는 정도에서 그치고 있어 산업화를 위해 필요한 구체적인 장치의 개념이나 방법은 제공하지 못하는 문제가 있다. 예컨대, 증착 챔버를 통과하는 촉매박으로 인해 양측에 개방구를 설치할 수 밖에 없는데 외부 분위기와 차단하고 진공이나 압력을 유지할 수 있는 구체적 기밀방법을 제시하지 않고 있다.
소니마테리알연구소는 2012년 9월 11일~14일간 에히메대학에서 개최된 일본응용물리학회(JSAP)의 제73회 학술강연회에서 주울열을 이용한 롤투롤 CVD 합성기술이 발표하였다. 이 방식은 불과 수초 만에 촉매 동박이 전기저항에 의해 직접 가열되고 장치의 다른 곳은 열전달이 적은 장점이 있다. 그러나 주울열 가열방식의 특성상 가열롤 간격을 크게 하는 것은 어렵다. 이로 인해 가열 시간이 짧아 부위별 온도편차나 합성조건의 불균일성을 개선하기 곤란한 것이 단점이다. 따라서 발명자들은 이를 극복하기 위해 그래핀에 염화금을 도핑하여 전기전도도를 개선하였다. 그러나 금속도핑은 전도도는 개선하지만 불순물로 작용한다는 양면성이 있어 시간이 지나면서 산화나 시효성 불량의 원인으로 작용한다는 단점이 있다.
본 발명의 발명자는 이 발명 이전에 촉매기판(Catalyst Substrate)의 방위와 표면에너지 상태, 특히 스텝구조가 탄소원자의 흡착과 그래핀 성장에 큰 영향을 끼친다는 사실을 발견하였다. 스텝구조는 이미 그래핀 연구자들에 의해 관찰되었지만 그 생성기구나 과정은 아직 밝혀지지 않았다. 본 발명자들은 연구를 통해 이들 스텝구조가 적층결함에너지(Stacking Fault Energy), 어닐링 온도, 방위에 따른 원자 충진율, 가공상태에 따른 전위집적도(Dislocation Density)와 쌍정(Twin) 등 여러 요인들에 의해 결정된다는 것을 확인하여 스텝형성을 활용한 균일 그래핀 합성이 가능한 연속 합성장치인 본 발명에 이르렀다.
본 발명의 목적은, 배기 용량 부담을 줄이고 열효율을 향상시킴은 물론, 증착챔버에서 촉매작용을 촉진하며 균일 핵생성과 증착시간 단축이 이루어지도록 하는 그래핀 제조장치를 제공하는 것이다.
상기 목적은, 촉매기판에 탄소전구체를 공급하는 증착챔버에서 연속으로 그래핀을 합성하는 그래핀 제조장치에 있어서, 상기 촉매기판을 연속으로 공급하는 언코일러; 상기 증착챔버로부터 상기 촉매기판을 연속하여 공급받는 코일러; 및 상기 증착챔버, 언코일러 및 코일러를 수용하는 로셸을 포함하는 것을 특징으로 하는 연속 그래핀 제조장치에 의해 달성된다.
이에 따라 상기 촉매기판은, 상기 언코일러, 증착챔버 및 코일러 순서로 그래핀 증착공정을 거치며, 상기 언코일러, 증착챔버 및 코일러는 시계방향 또는 반시계방향으로 배열된다.
상기 탄소전구체는, 분해하여 탄소라디칼을 제공하는 것으로서 일산화탄소, 메탄, 에탄, 에틸렌, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 핵산, 사이클로헥산, 에탄홀, 메탄홀, 벤젠, 톨루엔, 장뇌(Camphor), 석탄 건류가스, 셰일(Shale)가스 및 이들의 조합으로 구성된 그룹으로부터 선택된 어느 하나를 기상상태로 제공하는 것이다.
본 발명에 따른 연속 그래핀 제조장치는, 상기 촉매기판의 재결정 온도 이상의 어닐링 온도가 유지되도록 하는 제1가열선 및 탄소 원자량 이상의 분자량을 가지는 기체 분위기가 형성되도록 하는 제1가스공급라인을 구비하여, 상기 촉매기판의 표면에 스텝구조가 형성되도록 하는 스텝형성챔버를 더 포함하여 이루어질 수 있다.
상기 증착챔버에는, 600 ~ 1100℃ 온도가 유지되도록 하는 제2가열선, 상기 제2가열선의 열이나 자장을 차단하도록 둘러싸는 제2차폐재 및 상기 촉매기판에 탄소전구체를 공급하는 제2가스공급라인이 구비된다.
상기 제1가열선 및 제2가열선은 상기 촉매기판의 이동방향에 평행하게 설치되며, 유도가열코일과 금속 필라멘트, 복사열 튜브(Radiant Tube), 흑연가열 엘리먼트과 같은 주울열(Joule heating) 엘리먼트, 적외선 램프 등을 모두 이용할 수 있다.
상기 스텝형성챔버 및 증착챔버 내부에는, 열을 반사하거나 단열을 위해 또는 외부에 형성되는 유도가열코일의 자장을 차단하기 위한 차폐재가 각각 형성될 수 있다. 이때 상기 유도가열코일의 자장을 차단하는 차폐재는 규소강판, 비정질필름 적층재나 Ferrotron, Fluxtrol 또는 SMC와 같은 연자성분말 소결재 등을 사용하며, 원하는 자장의 반대방향에 설치한다.
상기 제2가열선은 유도가열코일이며, 상기 제2차폐재는 규소강판, 비정질필름적층재, 철계 연자성분말 소결재 중 어느 하나 이상으로 이루어질 수 있다.
상기 제2가열선은 전기저항 발열선이며, 상기 제2차폐재는 스테인리스강판, 티타늄판, 내열강화유리, 석영, 열분해 질화붕소, 열분해 흑연, 금운모, 탄화규소, 알루미나, 마그네시아, 지르코니아 중 어느 하나로 이루어지거나 그 혼합물로 이루어질 수 있다.
본 발명에 따른 연속 그래핀 제조장치는, 상기 언코일러 및 코일러를 수용하고 상기 증착챔버에 인접하여 형성되는 수용챔버를 포함하고, 상기 로셸은 상기 수용챔버 및 증착챔버를 둘러싸며 밀폐된 공간을 형성하며, 상기 로셸은 이중벽 구조로 이루어지며, 상기 이중벽 사이에는 진공 또는 단열재로 충진된다.
상기 수용챔버는, 상기 촉매기판을 가열부에 의한 간접가열로부터 보호하기 위하여 내벽을 설치하여 이루어진다.
상기 증착챔버 내부에는, 상기 촉매기판이 밀착되는 원통 형상의 증착드럼이 형성된다.
상기 증착챔버 내부에는, 상기 촉매기판이 일정 구간에서 상기 증착드럼에 밀착하도록 가이드하는 증착롤이 형성된다.
상기 증착챔버의 입구 및 출구에는 상기 촉매기판의 이동속도를 감지하는 속도감지센서가 형성되고, 상기 속도감지센서에 의해 상기 코일러와 언코일러의 회전속도가 제어된다.
본 발명에 따른 연속 그래핀 제조장치는, 상기 증착챔버 내부로 공급되는 재조직가스가 저장되는 재조직가스탱크; 상기 증착챔버 내부로 공급되는 탄소전구체가 저장되는 탄소전구체탱크; 및 상기 증착챔버 내부로 공급되는 수소가 저장되는 수소탱크를 더 포함하고, 상기 재조직가스 및 수소의 공급은 선택적으로 이루어진다.
또한 본 발명에 따른 연속 그래핀 제조장치는, 상기 증착챔버에서 배기되는 가스가 상기 재조직가스탱크, 탄소전구체탱크, 및 수소탱크로 각각 회수되도록 하는 회수장치가 형성된다.
상기 증착챔버 내부에는 상기 촉매기판의 파단을 감지하는 파단감지센서가 형성된다.
상기 증착챔버의 입구와 출구 중 어느 하나 이상에는, 상기 증착챔버 내에서 상기 촉매기판에 가해지는 인장력을 해소하는 버퍼부가 형성된다.
상기 촉매기판은 600 ~ 1060 범위에서 수소 고용도를 가지거나 탄화물을 형성하는 전이원소 또는 13~15족 원소 중 어느 하나 이상이거나 그 합금으로 이루어지고, 그중 특히 알루미늄, 니켈, 철, 스테인리스강, 은, 금 또는 구리로 이루어진다. 상기 촉매기판에는 적층결함에너지를 낮추거나 수소 또는 탄소의 분해반응을 촉진하기 위해 합금원소가 첨가되며 상기 합금원소도 또한 수소 고용도를 가지거나 탄화물을 형성하는 전이원소 또는 13~15족 원소 중 어느 하나 이상으로 이루어진다.
상기 재조직가스는, 질소, 네온, 아르곤, 크립톤, 제논, 일산화탄소, 이산화탄소, 산화질소, 암모니아, 수증기 중 어느 하나 이상으로 이루어진다.
본 발명에 따른 연속 그래핀 제조장치에서, 상기 촉매기판은 2겹으로 겹쳐지고, 2겹으로 겹쳐진 상기 촉매기판의 재결정 온도 이상의 어닐링 온도가 유지되도록 하는 제1가열선 및 탄소 원자량 이상의 분자량을 가지는 기체 분위기가 형성되도록 상기 촉매기판의 양쪽 면에 스텝용가스를 공급하는 제1가스공급라인이 구비되어, 상기 촉매기판에 스텝구조가 형성되도록 하는 스텝형성챔버를 포함하고, 상기 증착챔버에는, 600 ~ 1100 ℃ 온도가 유지되도록 하는 제2가열선 및 상기 스텝형성챔버를 거친 상기 촉매기판의 양쪽 면에 탄화수소 기체를 공급하는 제2가스공급라인이 구비된다.
상기 제1가스공급라인 및 제2가스공급라인은 2겹으로 겹쳐진 상기 촉매기판의 양쪽에 배치된다.
상기 스텝형성챔버 및 증착챔버 내부에서 상기 촉매기판은 세로방향으로 이송된다.
상기 버퍼부는 상기 증착챔버 출구에 형성되는 가압롤을 포함하고, 상기 가압롤은 상기 촉매기판을 손상시키지 않기 위해 누르면서 무부하로 회전하도록 형성된다.
상기 버퍼부는 상기 증착챔버의 입구 또는 출구에 형성되는 가압롤을 포함하고, 상기 가압롤은 양단에 단차가 형성되어 상기 촉매기판 양단의 일부만 접촉하거나 양측면만을 지지하는 가이드 역할을 수행하도록 이루어진다.
상기 버퍼부는 상기 증착챔버의 입구 및 출구에 각각 형성되는 구동롤을 포함하고, 상기 구동롤은 상기촉매기판과 접촉하면서 회전하고 서로 속도가 동기화된다. 이에 따라 가열중인 촉매기판에 가해지는 인장력을 최소화시킨다.
상기 제2가열선이 유도가열코일인 경우, 상기 촉매기판과 상기 유도가열코일의 간격이 10mm 이내이며, 더욱 바람직하게는 2~3mm로 이루어진다. 또한, 유도가열 주파수가 10kHz 이상 고주파로 이루어지며, 이에 따라 자장이 얕게 형성되고 효율이 높아 박판가열에 유리하게 된다.
상기 증착챔버에서 배출되는 상기 촉매기판의 외측면은 상기 코일러에 권취되기 이전에, 다른 물체에 접촉되지 않거나 보호필름이 도포된다.
상기 증착챔버의 출구는, 상기 촉매기판이 상기 증착드럼의 접선을 따라 배출되도록 형성된다.
본 발명에 의하면, 언코일러, 증착챔버와 코일러들이 서로 연동하는 연속형으로 이루어짐으로써 콤팩트한 구조를 이루고 진공 및 배기를 위한 설계가 용이하며 열효율을 높일 수 있다.
또한, 증착공정 이전에 스텝형성공정을 거침으로써 그래핀 형성에 앞서 촉매기판 전체면에 나노 단위의 스텝(step)이 형성되도록 함으로써, 전구체 가스(탄소화합물)의 물리흡착이 용이한 촉매기판을 사용함으로써 촉매작용을 촉진하며 균일 핵생성과 증착시간 단축효과를 얻을 수 있다.
도 1은 본 발명에 따른 스텝형성공정을 거친 금속의 촉매기판에 스텝이 형성된 상태를 나타낸 도면,
도 2는 구리의 원자 배열과 치환형 원소 합금 상태를 개략적으로 도시한 도면,
도 3은 구리와 구리합금 촉매에서 600℃에서 30분 동안 메탄을 탄소전구체로 하여 CVD로 그래핀 합성한 결과를 나타낸 도면,
도 4는 구리와 구리합금 촉매에서 800℃에서 30분간 메탄을 탄소전구체로하여 CVD로 그래핀을 합성한 결과를 나타낸 도면,
도 5는 구리 및 구리합금 촉매 표면에 스텝이 형성되어 그래핀이 성장한 결과를 나타낸 도면,
도 6은 본 발명의 일 실시예에 따른 연속 그래핀 제조장치의 구성관계를 개략적으로 도시한 도면,
도 7은 도 6에 도시된 연속 그래핀 제조장치에서 촉매기판, 제2가열선 및 제2차폐재를 개략적으로 도시한 사시도,
도 8은 본 발명의 다른 실시예에 따른 연속 그래핀 제조장치의 구성관계를 개략적으로 도시한 도면,
도 9는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 구성관계를 개략적으로 도시한 도면,
도 10은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 11은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 12는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 13은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 14는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 구성관계를 개략적으로 도시한 도면,
도 15는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 16은 본 발명에 따른 연속 그래핀 제조장치를 사용하여 그래핀을 형성하는 공정을 도시한 도면,
도 17은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면,
도 18은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치의 일부 구성을 개략적으로 도시한 도면이다.
* 도면의 주요부분에 관한 부호의 설명 *
1 : 연속 그래핀 제조장치 10 : 스텝형성챔버
11 : 제1가열선 12 : 제1가스공급라인
13 : 스텝롤 14 : 제1차폐재
15 : 예열부 16 : 스텝드럼
17 : 배기구 20 : 증착챔버
21 : 제2가열선 22 : 제2가스공급라인
23 : 배기구 24 : 제2차폐재
25 : 예열부 26 : 냉각부
27 : 증착드럼 28 : 증착롤
30 : 언코일러 40 : 코일러
50 : 로셸 53 : 배기펌프
60 : 속도감지센서
70 : 파단감지센서 71 : 발광부
72 : 수광부 80 : 스텝센서
90 : 회수장치 100 : 필름공급장치
110 : 스텝용가스탱크 120 : 재조직가스탱크
130 : 탄소전구체탱크 140 : 수소탱크
150 : 수용챔버 151 : 배기구
160 : 버퍼부 161 : 가압롤
162 : 구동롤 163 : 진자식 가이드
164 : 댄서롤
200 : 촉매기판 300 : 전사용필름
V : 밸브 M : 유량계
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
도 1은 본 발명에 따른 스텝형성챔버(10)를 거친 금속의 촉매기판(200)에 스텝이 형성된 상태를 나타낸 도면이고, 도 2는 구리의 원자 배열과 치환형 원소 합금 상태를 개략적으로 도시한 도면이고, 도 3은 구리와 구리합금 촉매에서 600℃에서 30분 동안 메탄을 탄소전구체로 하여 CVD로 그래핀 합성한 결과를 나타낸 도면이고, 도 4는 구리와 구리합금을 800℃에서 30분간 메탄을 탄소전구체로 하여 CVD로 그래핀을 합성한 결과를 나타낸 도면이고, 도 5는 구리 및 구리합금 촉매 표면에 스텝이 형성되어 그래핀이 성장한 결과를 나타낸 도면이며, 도 6은 본 발명의 일 실시예에 따른 연속 그래핀 제조장치(1)의 구성관계를 개략적으로 도시한 도면이다.
본 발명에 따른 순환형 그래핀 제조장치(1)는, 증착챔버(20)에서 촉매기판(200) 위에 그래핀을 합성하기 전에, 스텝형성공정에서 촉매기판(200) 전체면에 나노 단위의 스텝(step)이 형성되도록 하는 것을 주요한 기술적 특징으로 하고 있으며, 이에 따라 본 발명에서의 '스텝의 형성' 및 '스텝과 그래핀과의 관계'에 대하여 우선 설명하도록 한다.
본 발명에서 촉매기판(200)에서 균일하고 애피택셜한 그래핀을 얻기 위해서는 충진율이 높은 격자구조의 단일 방위를 가지는 것이 바람직하다. 상기 촉매기판은 600 ~ 1060℃ 범위에서 수소 고용도를 가지거나 탄화물을 형성하는 전이원소 또는 13~15족 원소 중 어느 하나 이상으로 이루어지고, 그중 특히 알루미늄, 니켈, 철, 스테인리스강, 은, 금 또는 구리로 이루어진다. 거시적으로는 평활하면서도 나노단위의 미시적 표면상태에서는 스텝 구조인 것이 중요하고, 상기 촉매기판(200)의 면지수가 (111) 또는 (100)인 단일방위인 것이 바람직하다. 본 발명의 스텝구조는 도 3(b)와 도 5에 나타낸 바와 같이 원자단위에서부터 미크론 단위보다 작게 계단형으로 발달한 구조이다. 본 발명자가 발견한 스텝의 형태는 주로 네 가지로 나타난다(도 1). 계단형 논모양의 패디 스텝(Paddy Step)과 평면상에 교번으로 평면굴곡을 만드는 렛지(Ledge), 톱니 모양의 라쳇(Ratchet), 육면체 조각이 쌓인 형태의 멀티큐브(Multi-cube)이다. 높은 압하율로 냉간압연된 박판을 600℃ 이상에서 어닐링하면서 탄소원자량(12g/mol) 이상의 질량을 가지는 가스를 공급해 줄 때 발달하였다.
도 2는 본 발명에서 구리만 존재할 경우의 원자배열과 치환형 합금원소가 첨가된 구리합금의 상태를 모사한 그림이다. (a)는 구리의 원자배열, (b)와 (c)는 각각 구리보다 원자직경이 큰 치환형 원소가 첨가된 고용합금과 작은 원소가 첨가된 고용합금의 원자배열 상태를 나타낸다. (b) 및 (c)처럼 원자반경에서 차이가 있으면 치환형 원자 주변에 격자변형(Lattice distortion, lattice strain)이 존재하고 이는 에너지의 불균형 상태를 초래하게 된다. 치환형 원소 주변의 원자간 연결선은 이런 격자변형 상태를 나타내는 선이다. 구리합금에서 이들 격자변형 상태는 압연과 같이 물리적으로 외부 응력을 받는 과정에서 전위와 적층결함을 유발한다. 이런 전위나 적층 결함, 쌍정들은 어닐링 과정에서 스텝으로 발달하기 쉬워지는데 스텝구조들은 핵생성 사이트로 작용하기 때문에 고온에서 탄소전구체를 흡착하여 열분해함으로써 그래핀 핵을 형성하는 탄소 라디칼을 생산한다. 일단 탄소 라디칼이 생성되면 주변의 탄소 라디칼과 결합하여 탄소-탄소 결합으로 그래핀핵으로 성장하게 된다.
본 발명의 일 구체예에서, 촉매기판(200)의 적층결함에너지를 낮추거나 격자변형 증가에 의해 재료 내부에 전위나 쌍정이 생기기 쉬워 내부 에너지가 높아 어닐링 후에 스텝구조를 쉽게 형성하도록 합금을 수행하였다. 이와 달리 적층결함에너지가 높은 금속에서는 냉간가공하더라도 전위가 서로 당기고 교차슬립이 쉽게 일어나 전위밀도가 낮아지므로 재료의 내부 에너지도 낮아지고 스텝이 형성되기 어렵다. 상기 촉매기판에 합금원소를 첨가하면 고온에서 어닐링 쌍정이 발생하기 쉬워지며, 쌍정 부위는 표면에너지가 높아 같은 조건에서 더 큰 그래핀 결정을 얻을 수 있다. 이런 촉매기판은 기판의 전면에서 수소 또는 탄소전구체의 기상 분해반응을 촉진하므로 균일핵생성을 유도할 수 있다. 합금원소는 그래핀 합성이 가능한 온도인 600~1060℃ 범위에서 수소 고용도를 가지거나 탄화물을 형성하는 전이원소 즉, 3족~12족 전이금속과 13, 14, 15족 원소들 중에 2주기~6주기에 속하는 원소들이다. 원소별로 대략적인 수소가스 고용도는 1000℃에서 구리 70.5ppm, 금 4.5ppm, 은 22.4ppm, 크롬 2.6ppm, 몰리브덴 1.2ppm, 망간 32.8ppm, 코발트 186.2ppm, 철 251ppm, 니켈 562.3ppm, 로듐 7079ppm, 백금 4.7ppm, 티타늄 11879ppm, 알루미늄 85.1ppm이다. 이를 보면 전이금속은 대부분 수소에 대해 고용도를 가진다. 그리고 전이금속이 아닌 원소들 즉, 13족의 알루미늄은 수소고용도가 크고, 인듐은 고온에서 수소와 결합하여 화합물을 형성할 정도로 결합력이 강하다. 14족과 15족 원소 중 규소는 탄화물을 만들고 게르마늄, 주석, 안티몬, 비스무스는 인듐처럼 수소화합물을 형성한다. 따라서 본 발명의 합금원소들은 대부분 첨가 가능하다.
본 발명의 일 구체예에서, 압하율이 높고 구리박의 두께가 얇을수록 전위가 많이 증가하고 고온 어닐링 과정에서 재결정입자들의 회전을 용이하게 할 수 있다. 85% 이상 압하율로 냉간압연한 구리박에서 어닐링 후에는 95% 이상 (100) 단일 방위면으로 회전하는 것을 확인하였다. 따라서, 단일 방위 집합조직을 얻기 위해 압하율 85% 이상, 두께는 50㎛ 이하로 가공할 수 있다.
구리는 적층결함에너지가 낮아 냉간가공하면 내부에 전위밀도가 높아져 어닐링 중에 원자이동과 확산을 유발한다. 고온으로 가열되면서 전위들 간에 작용하는 영상힘(image force)으로 이동하게 되는데 최종적으로 표면에 버거스 벡터(Burgers vector)만큼 스텝구조를 남기며 소멸된다. 촉매 구리합금의 적층결함에너지와 변형응력(Flow stress)이 낮고 냉간압하율이 높을수록 재료 내부의 전위 이동이 활발하여 스텝구조(Step)를 쉽게 형성한다. 하지만 이렇게 전위 이동에 의한 버거스 벡터 크기로 형성되는 원자층 단위의 스텝구조는 1000℃의 고온에서도 너무 작고 완만하게 형성되어 가스 분자들을 흡착하여 분해하기에는 부족하다. 따라서, 본 발명에서는 어닐링 과정에서 분위기 중에 아르곤이나 질소와 같이 탄소원자량 이상의 분자량을 가지면서 구리와 화학반응성이 적은 스텝용 가스를 수소와 함께 공급하면 600℃ 정도의 온도에서도 가스 분자들이 고온에서 브라운 운동으로 구리의 표면에 충돌하며 원자이동을 도와 스텝구조 형성을 촉진한다. 불순물 원소나 합금원소들이 화합물로 존재하는 부분과 달리 스텝은 촉매표면 전체에 균일하게 분포하게 되므로 그래핀이 애피택셜하게 성장하는 환경을 조성한다.
일 구체예에서, 수소량은 환원성 분위기를 유지할 정도면 되므로 진공을 유지한 뒤에는 가스 유량의 약 10~40%로 첨가한다. 어닐링 뒤에 그래핀 합성 공정에서는 수소의 비율이 높아질수록 탄소전구체의 분해 속도가 늦어지므로 그래핀 성장속도를 조절하는 역할도 하게 된다. 가스 유량은 0.1~10sccm/㎛의 범위로 구리박의 두께가 늘어남에 따라 증량할 수 있고, 온도가 높거나 원자량이 클수록 감량한다.
이 스텝구조들은 핵생성 사이트로 작용하기 때문에 탄소전구체를 흡착하여 그래핀 핵이 되는 탄소 라디칼을 생산한다. 일단 그래핀 핵이 생성되면 이 핵의 탄소 라디칼은 주변의 탄소 라디칼과 결합하거나 직접 탄소전구체를 흡착하여 분해하는 촉매로 작용하여 탄소-탄소 결합으로 그래핀이 급속 성장하게 된다.
실시예 1. 구리합금 촉매기판에서 그래핀의 형성
140ppm의 은을 첨가한 구리합금(도 3의 (b) 참조)에서 600℃, 30분 동안 메탄 70sccm, 수소 10sccm 분위기로 가열하여 그래핀형성 여부를 확인하였고, 대조군으로 구리(도 3의 (a) 참조)를 동일한 조건에서 그래핀 형성 여부를 확인하였다(도 3 참조).
구리에서 그래핀을 성장시킨 경우에는 그래핀 섬과 탄화물이 형성되지만 은을 첨가한 구리합금에서는 그래핀이 애피택셜하게 성장한 것을 볼 수 있다. 다만, 구리는 800℃에서 사전에 어닐링하면서 스텝구조를 형성해 준 경우에 그래핀이 애피택셜하게 성장되었다.
상기 구리합금 및 구리는 어닐링 후 (111) 또는 (100)의 육각격자구조 단일 방위를 가지게 되며 이하의 실시예에서도 촉매기판(200)은 동일한 방위를 가진다.
따라서 구리에 치환형 합금을 첨가하는 것이 그래핀 핵생성 사이트 작용과 동시에 스텝구조의 발달을 촉진하여 탄화물형성을 억제하고 에피택셜 그래핀 성장이 가능하게 한다는 것을 알 수 있었다.
실시예 2. 스텝구조형성의 효과 확인
니켈 3.2%, 규소 1.5%, 마그네슘 0.4% 함유된 18㎛ 두께의 구리합금박을 1000℃에서 30분간 아르곤 50sccm, 수소 10sccm 혼합가스 분위기에서 어닐링하여 충분히 스텝구조를 만들고, 800℃에서 30분간 메탄 70sccm과 수소 10sccm 혼합 분위기에서 CVD로 그래핀을 합성하였다(도 4(a) 참조).
대조군으로 합금원소를 첨가하지 않은 25㎛ 두께 구리를 1000℃에서 30분간 아르곤 50sccm, 수소 10sccm 혼합가스 분위기에서 어닐링하여 충분히 스텝구조를 만들고, 800℃에서 30분간 메탄 70sccm과 수소 10sccm 혼합 분위기에서 CVD로 그래핀을 합성하였다(도 4(b) 참조).
도 4(a)는 구리합금에서 다층 그래핀 위에 다이아몬드 입자가 덮여 성장하였고, 도 4(b)는 구리에서 다층 그래핀 및 다이아몬드 입자가 함께 성장하였다. 기존 CVD 그래핀 합성온도인 1000~1060℃ 보다 낮은 800℃ 온도이지만 구리합금박에서 탄소 라디칼이 빠르게 생산되는 것을 알 수 있고, 구리박에 스텝구조가 형성되면 낮은 온도에서도 그래핀이 성장한다는 것을 확인하였다.
따라서, 이렇게 스텝구조가 충분히 발달한 경우에는 탄소전구체 가스의 농도를 줄이거나 시간을 단축하여 그래핀을 합성할 수 있다. 또한 도 4(a)처럼 탄소 라디칼 생성이 과다한 경우에는 합금량을 1 원자% 이하로 줄이거나, 탄소전구체 가스 농도와 합성시간을 줄여 단층 그래핀을 얻을 수 있으며, 도 4(b)처럼 탄소전구체 가스의 농도가 지나치게 높은 경우에는 그래핀 성장에 비해 탄소 라디칼의 생산이 빠르므로 핵 생성 위치에서 그래핀 성장과 더불어 삼각, 사각판상 다이아몬드나 막대상, 입상 다이아몬드가 성장하는 것을 알 수 있었다. 이런 경우에도 탄소전구체의 농도를 낮추거나 수소 가스의 농도를 높여 그래핀을 합성하면 단층 그래핀을 얻을 수 있었다. 이런 연구를 통해 본 발명자는 스텝구조형성이 탄소 라디칼 생산뿐 아니라 그래핀 성장 속도를 촉진하여 단층 그래핀을 형성하는데 크게 기여하는 것을 알 수 있었다.
실시예 3. 다양한 합금 원소를 첨가한 촉매기판에서 그래핀 성장 확인
대조군으로 도 5의 (a)에서는 구리를 1000℃에서 30분간 아르곤 50sccm, 수소 10sccm 혼합가스 분위기에서 어닐링하고, 1000℃에서 30분간 메탄 15sccm, 수소 10sccm 공급하면서 CVD로 그래핀을 합성하였다.
한편, 도 5의 (b)에서는 은이 80ppm 합금된 구리합금을 800℃에서 30분간 아르곤 20sccm, 수소 10sccm 혼합가스 분위기에서 어닐링한 후, 1000℃에서 5분간 메탄 20sccm, 수소 10sccm 공급하면서 CVD로 그래핀을 합성한 것이고, 도 5의 (C)는 크롬 40ppm, 도 5의 (d)는 철 200ppm, 도 5의 (e)는 코발트 130ppm, 도 5의 (f)는 니켈 100ppm, 도 5의 (g)는 은 140ppm, 도 5의 (h)는 규소 70ppm을 첨가한 합금으로 1000℃에서 30분간 아르곤 50sccm, 수소 10sccm 혼합가스 분위기에서 어닐링하고, 800℃에서 3분간 메탄 20sccm, 수소 10sccm 공급하면서 CVD로 그래핀을 합성한 것이다. 이들 모두 스텝구조가 잘 발달하고 그래핀이 애피택셜하게 성장한 것을 볼 수 있다. 이때, 그래핀은 단층으로 형성되기 쉬워 광투과도가 우수하므로 투명한 특성을 지닌다. 음영이 짙은 부분은 촉매와 부착하지 않고 들떠 있거나, 결정입계 혹은 쌍정으로 그래핀 하부의 스텝구조가 바뀌기 때문에 전자를 흡수하거나 난반사하여 더 검게 보인다.
이하 본 발명에 따른 그래핀 제조장치에 대하여 구체적으로 설명한다.
도 6은 본 발명의 일 실시예에 따른 연속 그래핀 제조장치(1)의 구성관계를 개략적으로 도시한 도면이고, 도 7은 도 6에 도시된 연속 그래핀 제조장치(1)에서 촉매기판(200), 제2가열선(21) 및 제2차폐재(24)를 개략적으로 도시한 사시도이고, 도 8은 본 발명의 다른 실시예에 따른 연속 그래핀 제조장치(1)의 구성관계를 개략적으로 도시한 도면이고, 도 9는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 구성관계를 개략적으로 도시한 도면이고, 도 10은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이며, 도 11은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이다.
본 발명에 따른 연속 그래핀 제조장치(1)는 롤투롤 방식에 의하여 그래핀을 대량생산하기 위한 것으로서 언코일러(30) 및 코일러(40), 증착챔버(20) 및 로셸(50) 등을 포함하고, 그래핀 형성에 사용되는 각 가스를 수용하는 재조직가스탱크(120), 탄소전구체탱크(130) 및 수소탱크(140)를 포함한다.
또한, 본 발명에 따른 연속 그래핀 제조장치(1)에서는, 촉매기판(200)이 증착챔버(20)로 유입되기 이전에 예열되도록 하는 예열부(25)와, 증착챔버(20)를 거친 촉매기판(200)을 냉각시키는 냉각부(26)를 구비한다. 예열부(25)는 증착챔버(20)와 별도로 형성될 수 있으며, 이와 달리 증착챔버(20) 내부에 단계로 나누어 형성될 수도 있다.
언코일러(30)는, 본 발명에 따른 순환형 그래핀 제조장치(1)에서 제조가 시작되는 부분이며, 드럼 형태로 형성되어 외주면에 상술한 촉매기판(200)이 감겨져 있는 것이며, 코일러(40)는 그래핀이 형성된 촉매기판(200)이 감기는 것이다.
언코일러(30)와 코일러(40)의 가장자리에는 촉매기판(200)의 안정된 지지를 위하여 플랜지 형태의 직경이 확장된 부분이 형성될 수 있고, 세라믹 및/또는 금속 등으로 이루어질 수 있다.
그리고 언코일러(30)와 코일러(40)에는, 촉매기판(200)의 공급 및 권취가 연속적으로 이루어지도록 하기 위하여, 회전을 위한 모터(미도시) 등이 구비되며, 회전속도의 제어를 위한 제어부(미도시) 및 감속기어(미도시) 등이 구비된다.
본 발명의 바람직한 실시예에 따른 연속 그래핀 제조장치(1)는, 도 10에 나타낸 것처럼 언코일러(30)와 코일러(40)가 수용챔버(150) 내부에 함께 수용되어, 수용챔버(150) 및 증착챔버(20)로 2개의 격실을 갖는 형태로 이루어질 수 있으며, 촉매기판(200)이 수용챔버(150), 증착챔버(20)를 순서대로 순환하는 형태로 이루어지게 된다. 즉, 촉매기판(200)은 언코일러(30), 증착챔버(20) 및 코일러(40)를 순서대로 거치며, 언코일러(30), 증착챔버(20) 및 코일러(40)가 시계방향 또는 반시계방향으로 배열된다.
증착챔버(20)는 수용챔버(150)와 인접하며 수용챔버(150)와 벽을 공유한다. 증착챔버(20)와 수용챔버(150)가 공유하는 벽에는 촉매기판(200)의 이동을 위한 슬릿형태의 틈이 형성될 수 있다.
증착챔버(20)는 내부에서 탄소의 증착이 이루어지도록 하는 것으로서, 그래핀이 증착할 수 있는 온도인 600 ~ 1100℃의 온도가 유지되도록 가열하는 제2가열선(21)이 내부에 형성되고, 탄소전구체탱크(130)로부터 공급된 탄소전구체 기체가 유입 후 분사되는 제2가스공급라인(22)이 형성된다.
그리고 증착챔버(20)에는 촉매기판(200)이 밀착되는 원통 형상의 증착드럼(27)이 구비된다. 증착챔버(20) 내부로 유입된 촉매기판(200)은 증착드럼(27)에 밀착되어 증착드럼(27)을 한바퀴 순환하는 형태로 증착챔버(20)를 거치게 된다. 다만, 증착드럼(27)은 고정된 채 촉매기판(200)만이 회전하는 것은 아니고, 촉매기판(200)이 증착드럼(27) 외주면에 밀착되고 촉매기판(200)과 증착드럼(27)이 함께 회전하는 형태로 이송되는 것이 바람직하다.
증착챔버(20) 내부에는, 촉매기판(200)이 일정 구간에서 증착드럼(27)에 밀착하도록 가이드하는 증착롤(28)이 형성된다. 즉, 증착롤(28)은 촉매기판(200)이 증착드럼(27)에 밀착되어 이격됨이 없이 증착드럼(27)과 함께 회전하도록 지지한다.
본 발명에서는, 증착챔버(20) 내부에 회전형의 증착드럼(27)을 형성함으로써, 직선형의 이송수단과 비교할 때 상대적으로 협소한 공간임에도 그래핀 형성을 위한 충분한 시간과 공간을 확보할 수 있게 된다.
또한, 촉매기판이 증착드럼(27)의 외주면에 밀착되어 이송되면서 증착이 이루어지므로 촉매기판(200)의 배면(증착드럼(27)에 접촉하는 면)에 전구체 가스(탄소화합물)가 도입되는 것을 방지할 수 있다. 이와 같이 가스 유동을 제어하는 경우, 촉매기판(200)의 배면에 성장한 그래핀을 제거하기 위하여 고가의 플라즈마 에칭장비로 처리하는 공정을 생략할 수 있으므로, 생산성 향상 및 원가 절감효과를 얻을 수 있다.
증착챔버(20) 및 증착드럼(27)의 전체적인 재질은, 그래핀을 증착할 수 있는 온도구간에서 용융되지 않고 탄소 전구체를 오염하지 않는 내열강화유리, 석영, 열분해 질화붕소(Pyrolytic Boron Nitride), 열분해 흑연(Pyrolytic Graphite), 금운모(Phlogopite mica), 탄화규소(SiC), 알루미나, 마그네시아, 지르코니아 등 무기재료나 스테인리스강, 니크롬강, 인바(Invar)와 같은 금속으로 이루어질 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 수직형과 양면형 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이고, 도 9는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성인 버퍼부(160)와 냉각부(26)를 개략적으로 도시한 도면이다.
스텝형성챔버의 예열부(15), 증착챔버의 예열부(25) 및 냉각부(26)는, 촉매기판(200)과 접촉하거나 촉매기판(200)에 복사열을 전달하거나 촉매기판(200)에 가열 또는 냉각된 유체를 분사하는 방식으로 다양하게 이루어질 수 있으며, 롤형태, 박스형태, 슬롯형태 등으로 형성될 수 있다.
예컨대, 롤형태로 형성되는 경우에는, 한 쌍으로 구비되고 서로 근접하게 배치되는 롤 사이에 촉매기판(200)이 지나가도록 형성하고, 롤이 촉매기판(200) 쪽으로 탄력지지되도록 하는 탄성수단을 개재하여 롤(예열부(15) 등)이 가이드 역할을 겸할 수 있도록 할 수 있다. 이와 같이 형성되는 예열부(15) 및 예열부(25)는, 상기 스텝형성챔버(10) 및 증착챔버(20)와 별개로 이루어지거나, 스텝형성챔버(10) 및 증착챔버(20) 내부에서 스텝롤(13) 또는 증착롤(28)을 형성하는 형태로 이루어질 수 있다.
그리고 냉각부(26)는, 내부에서 냉매가 순환하도록 형성하여 촉매기판(200)과 접촉할 때 전도에 의해 급속냉각하도록 하거나, 냉각 가스를 분사하는 가스공급라인을 설치하여 촉매기판(200)에 분사하는 형태로 형성할 수 있다. 이때, 냉각 가스는, 별도의 공급수단에 의하여 공급될 수 있고, 재조직가스탱크(120) 또는 수소탱크(140)에서 분기되어 공급될 수 있다. 이러한 냉각 가스는 형성된 그래핀의 이상 반응을 억제하고 촉매기판(200)의 강도를 증가시키며, 촉매기판(200)이 코일러(40)에 안정되게 권취되도록 한다.
도 12는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이고, 도 13은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이며, 도 14는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 구성관계를 개략적으로 도시한 도면이다.
도 12, 도 13 및 도 14와 같이 스텝형성챔버(10)를 로셸(50)에 함께 포함한 경우는 제2가열선(21)은 증착챔버(20)의 내측면에 인접하여 형성되고, 증착드럼(27) 주변을 둘러싸는 형태로 형성될 수 있다. 제2가열선(21)은 도 7과 같이 촉매기판에서 가깝게 가열할 수 있도록 설치한다. 도 11(a)에 도시된 바와 같이, 제2가열선(21)은 연속적으로 형성될 수 있고, 도 11(b)에 도시된 바와 같이, 다수개로 분할하여 구간별로 온도를 관리하여 부위별로 온도가 달라지지 않도록 균일하게 관리할 수 있다. 제2가열선(21)은 상기 촉매기판의 이동방향을 따라 반복하여 설치되며, 유도가열코일과 금속 필라멘트, 복사열 튜브(Radiant Tube), 흑연가열 엘리먼트와 같은 주울열(Joule heating) 엘리먼트, 적외선 램프 등을 모두 이용할 수 있다.
증착드럼(27)의 외주면에 접하는 촉매기판과 제2가열선(21)의 바깥쪽에는 제2차폐재(24)가 형성되며, 제2가열선(21)에 의한 열이 증착챔버(20)로 집중되도록 한다. 또한 증착 드럼 내면에도 외부로 향하는 제2가열선(21)을 설치할 수 있는데 이럴 경우에도 제2가열선(21) 뒤에 차폐재를 설치하여 드럼 중심부로 열이 유실되지 않도록 하여 효율을 높인다. 그러나 유도가열코일을 이용하여 증착드럼 외부에서 가열하는 경우에는 유도자장이 드럼방향으로 향하게 되므로 증착드럼(27) 외부에 설치한 제2가열선(21)에 차폐재를 설치하는 것을 생략할 수 있다.
제2가스공급라인(22)은 탄소전구체, 재조직가스 및 수소가스가 촉매기판(200)에 균일하게 분사되어 탄소 라디칼이 고갈되는 위치가 생기지 않도록 하여야 하므로, 이에 따라 증착챔버(20) 내부에서 촉매기판(200)의 증착면 중앙부에 제2가스공급라인(22)의 중심이 오도록 배치한다. 또한 제2가열선(21)과 제2가스공급라인(22)은 촉매기판(200)의 이동방향(원주방향)을 따라 다수개로 구비될 수 있으며, 다수의 제2가스공급라인(22)의 설치위치, 가스공급라인의 가스유로 크기 및 분사각도 등을 조절하여, 각 제2가스공급라인(22)에서 분사되는 가스 공급량과 유속에 차이가 발생되도록 하여 가스 유동을 원활하게 할 수 있다.
재조직가스탱크(120)를 통하여 재조직가스가 증착챔버(20) 내부로 공급되며, 본 발명에서 재조직가스는, 촉매기판(200)의 불안정한 5각, 7각 그래핀 또는 공공과 같은 결함부를 재조직(Healing)하거나 도핑 가스가 잘 반응하도록 보조하는 역할을 수행하며, 아르곤, 헬륨, 네온, 크립톤, 제논, 질소, 일산화탄소, 이산화탄소, 산화질소, 암모니아, 수소화합물, 수증기 등으로 이루어질 수 있다.
그리고 수소탱크(140)를 통하여 증착챔버(20) 내부로 공급되는 수소는 탄소 라디칼의 생성속도를 조절한다.
본 발명에 따른 연속 그래핀 제조장치(1)는, 로셸(50)이 증착챔버(20)를 둘러싸며 밀폐된 공간을 형성하는데, 증착챔버(20) 내부로 공급되는 탄소전구체, 재조직가스, 수소 등의 분압으로 이루어지는 증착챔버(20) 압력을 로셸(50)의 압력보다 높게 유지함으로써 증착챔버(20) 내부로 다른 가스가 유입되지 않도록 할 수 있으며, 이에 따라 전구체 가스(탄소화합물)의 유동이 원활하게 이루어진다.
그리고 본 발명에서는, 상기 증착챔버(20) 내부 압력을 상압으로 유지하여 그래핀 성장을 수행하는 상압 화학기상증착법(AP-CVD)이 수행될 수 있고, 또한 증착챔버(20) 내부의 압력을 저압으로 유지하여 저압 화학기상증착법(LP-CVD)이 수행될 수도 있다.
아울러 증착챔버(20)에는, 증착챔버(20) 내부로 공급된 각 가스가 배출되는 배기구(23)가 형성된다. 이러한 배기구(23)는 증착챔버(20) 자체에 형성될 수 있고, 이와 달리 증착챔버(20)와 연결된 수용챔버(150)에 형성될 수 있다. 후자의 경우, 증착챔버(20) 내부에 가스는 수용챔버(150)로 이동한 후 배기구(151)를 통하여 배기된다. 후술할 스텝형성챔버(10)에도, 스텝형성챔버(10) 내부로 공급된 각 가스가 배출되는 배기구(17)가 형성된다. 이러한 배기구(17)는 스텝형성챔버(10) 자체에 형성될 수 있고, 또는 수용챔버(150)에 형성된 배기구(151)를 통하여 배기되도록 이루어질 수 있다.
본 발명에서는, 언코일러(30)와 그래핀이 성장하도록 하는 증착챔버(20) 사이에 스텝형성챔버(10)가 설치될 수 있으며, 이러한 스텝형성챔버(10) 내부로 스텝용가스가 도입되도록 하여 촉매기판(200)에 그래핀이 균일하면서도 신속하게 형성되도록 돕는 역할을 한다.
도 12, 도 13 및 도 14와 같이 스텝형성챔버(10)가 형성될 경우에는 증착챔버(20) 및 수용챔버(150)와 인접하며, 증착챔버(20) 및 수용챔버(150)와 벽을 공유한다. 스텝형성챔버(10)와 수용챔버(150)가 공유하는 벽에는 촉매기판(200)의 이동을 위한 슬릿형태의 틈이 형성될 수 있고, 도 13에 도시된 바와 같이, 스텝형성챔버(10)를 거친 촉매기판(200)이 증착챔버(20)로 바로 유입되는 경우에는 스텝형성챔버(10)와 증착챔버(20)가 공유하는 벽에도 촉매기판(200)의 이동을 위한 슬릿형태의 틈이 형성될 수 있다.
스텝형성챔버(10) 내부에는, 촉매기판(200)의 재결정 온도 이상의 어닐링 온도로 유지되도록 가열하는 제1가열선(11)이 형성되고, 스텝용가스탱크(110)로부터 공급된 스텝용가스가 유입 후 분사되는 제1가스공급라인(12)이 형성된다.
그리고 스텝형성챔버(10)에는 촉매기판(200)이 밀착되는 원통 형상의 스텝드럼(16)이 구비된다. 스텝형성챔버(10) 내부로 유입된 촉매기판(200)은 스텝드럼(16)에 밀착되어 스텝드럼(16)을 한바퀴 순환하는 형태로 스텝형성챔버(10)를 거치게 된다. 스텝드럼(16)의 작동은 상술한 증착드럼(27)과 동일하게 이루어진다. 스텝형성챔버(10) 내부에는, 촉매기판(200)이 일정 구간에서 스텝드럼(16)에 밀착하도록 가이드하는 스텝롤(13)이 형성된다. 즉, 스텝롤(13)은 촉매기판(200)이 스텝드럼(16)에 밀착되어 이격됨이 없이 스텝드럼(16)과 함께 회전하도록 지지한다. 스텝형성챔버(10) 내부에도 회전형의 스텝드럼(16)을 형성함으로써, 직선형의 이송수단과 비교할 때 상대적으로 협소한 공간임에도 스텝 형성을 위한 충분한 시간과 공간을 확보할 수 있게 된다.
스텝형성챔버(10) 및 스텝드럼(16)의 재질은, 상술한 증착챔버(20)에서와 같이, 내열강화유리, 석영, 열분해 질화붕소(Pyrolytic Boron Nitride), 열분해 흑연(Pyrolytic Graphite), 금운모(Phlogopite mica), 탄화규소(SiC), 알루미나, 마그네시아, 지르코니아 등 무기재료나 스테인리스강, 니크롬강, 인바(Invar)와 같은 금속으로 이루어질 수 있다.
스텝형성챔버 제1가열선(11)은 증착챔버 제2가열선(21)과 동일한 기능 및 작용을 하도록, 동일한 구조로 이루어진다. 또한, 스텝형성 제1가열선(11)의 바깥쪽, 즉 스텝형성챔버(10)의 내측면과 제1가열선(11) 사이에는 제1차폐재(14)가 형성되며, 제1가열선(11)에 의한 열이 스텝형성챔버(10) 중심방향으로 집중되도록 한다.
스텝형성용 제1가스공급라인(12)은 스텝형성가스가 촉매기판(200)에 균일하게 분사되도록, 스텝형성챔버(10) 내부에서 촉매기판(200)의 외주면 중앙에 제1가스공급라인(12)의 중심이 오도록 배치한다. 또한 제1가스공급라인(12)은 촉매기판(200)의 이동방향(원주방향)을 따라 다수개로 구비될 수 있으며, 다수의 제1가스공급라인(12)의 설치위치, 가스공급라인의 구멍 크기 및 분사각도 등을 조절하여, 각 제1가스공급라인(12)에서 분사되는 가스 공급량과 유속의 차이가 발생되도록 하여 가스 유동을 원활하게 할 수 있다.
일반적으로 고배율의 전자현미경으로 관찰하면 어닐링 쌍정(Twin) 내부에는 나노 단위의 굴곡(NRA=Nano Ripples Array)이 존재하는 것을 확인할 수 있다. 구리와 같이 낮은 적층결함에너지를 가지는 촉매기판(200)은, 냉간 가공되면 결정 내부에 응력이 누적되는데, 어닐링 중에 재결정과 결정립 내 쌍정을 형성하면서 응력이 해소된다. 그러나 어닐링 쌍정(Annealing Twin)의 구동력으로 작용할 에너지가 충분하지 않아 결정의 일부분에만 쌍정이 형성되므로 촉매 기판 표면 전체에, 본 발명에서와 같은 스텝구조가 형성되는 것은 아니다. 그리고, 구리 촉매기판(200)을 이용한 그래핀 성장에서는 구리의 탄소 고용도가 낮아 촉매 기판 표면에 존재하는 개재물(inclusion)이나 결정입계(Grain boundary)나 스크래치와 같은 결함부가 물리흡착에 의한 핵생성 사이트로 우선 작용하기 때문에 그래핀 핵생성이 불균일하기 쉽다.
본 발명에서는, 이러한 점을 해소하기 위하여, 어닐링 중에 촉매기판(200)을 이루는 주 원소(main element)의 원자량에 대해 약 20% 이상 질량을 가지는 스텝용가스(예컨대, 구리로 이루어지는 촉매기판(200)에서, 탄소원자량 이상의 질량인 가스로 네온, 질소, 일산화탄소, 이산화탄소, 아르곤, 크립톤, 제논, 암모니아, 수증기 등)가 브라운 운동으로 촉매기판(200)의 금속원자에 충돌하면 원자의 이동을 도와 촉매기판(200) 전체 면에 나노 단위의 스텝(Step)이 형성되도록 한다.
촉매기판(200)에 스텝형성 처리를 하면 수십에서 수백 나노미터 단위의 스텝들이 균일하게 형성되어 핵생성 사이트들로 작용하므로 촉매면에서 전구체 가스(탄소화합물)의 물리흡착(Physisorption)이 용이하게 되어 촉매작용을 촉진하며, 결과적으로 그래핀 균일 핵생성과 전구체 가스 분해속도 증가효과를 얻을 수 있다.
그리고 스텝형성으로 인해 증착시간을 단축할 수 있고, 증착온도를 낮출 수 있는데, 증착 온도를 낮출 경우 촉매기판(200)의 강도가 증가하므로, 별도의 캐리어 필름(촉매기판(200)의 절단을 방지하고 지지하기 위한 필름)과 같은 구성이 불필요한 이점이 있다.
스텝형성챔버(10)에는, 스텝용가스 이외에, 수소탱크(140)로부터 산화막 환원용 가스가 공급된다. 산화막 환원용 가스는 낮은 산화수를 가지는 환원성 가스 즉, 수소나 이를 대체할 수 있는 일산화탄소, 암모니아, 황화수소, 수소화합물과 같은 가스들이다.
본 발명에서는, 상술한 언코일러(30), 스텝형성챔버(10), 증착챔버(20) 및 코일러(40)를 둘러싸며 밀폐된 공간을 형성하는 로셸(50)이 형성된다. 즉, 로셸(50) 내부를 3개의 구역으로 구분하여 수용챔버(150), 스텝형성챔버(10) 및 증착챔버(20)를 형성할 수 있다. 상기 로셸(50)은 단일벽 구조로 이루어질 수 있음은 물론이나, 본 발명의 바람직한 실시예에 따른 로셸(50)은 이중벽 구조로 이루어지고, 이중벽 사이에는 진공 또는 단열재로 충진된다. 또는 이중벽 사이에 냉매가 순환하도록 이루어질 수 있다. 이와 같이 형성되는 로셸(50)의 구조(이중벽 구조)에 따라 로셸(50) 외부로 열이 방사되는 것이 방지되며, 내부 온도를 낮게 유지하여 그래핀이 합성된 촉매기판(200)의 냉각이 촉진되도록 할 수 있다.
현재, 그래핀 제조를 위한 것으로서 제안되고 있는 증착용 챔버들은 CVD용 석영관 저압·진공 챔버를 가정하고 있으며 이에 따라 진공 실링이 있어야 하는데, 촉매기판(200)의 연속적인 공급을 허용하면서 챔버의 진공을 유지하는 실링을 하는 것은 어려울 뿐 아니라 실링을 한다고 하더라도 그 구조 및 설비가 복잡하게 될 수밖에 없는 문제점이 있다. 또한, 증착용 챔버의 출구 쪽에서 진공을 유지하기 위해서는 로울러 타입이나 어떤 실링 수단으로도 기밀을 유지하는 것이 난해하며 촉매기판(200)의 그래핀 합성층이 손상되는 문제점이 발생된다.
본 발명에서는 이러한 점을 해소하기 위하여, 로셸(50)이 언코일러(30), 스텝형성챔버(10), 증착챔버(20) 및 코일러(40)를 둘러싸며 밀폐된 공간을 형성하도록 하고 있으므로, 실링의 문제점을 해소하면서 증착챔버(20)에서 저압 증착이 효과적으로 이루어지도록 할 수 있으며 촉매기판(200)에서 진공상태가 유지되도록 하여 그래핀 합성층이 손상되는 것을 방지할 수 있다.
또한, 언코일러(30), 스텝형성챔버(10), 증착챔버(20) 및 코일러(40)가 순환형으로 이루어지면, 각 챔버가 밀착된 콤팩트(compact)한 구조를 이루게 되므로, 진공상태 유지가 보다 용이하게 이루어질 수 있고 낭비되는 공간을 줄일 수 있으므로 공급되는 가스의 양도 줄일 수 있고 배기의 부담을 줄일 수 있게 된다.
증착챔버(20)에는 탄소전구체탱크(130), 재조직가스탱크(120) 및 수소탱크(140)가 배관을 통해 연결(제2가스공급라인(22) 쪽으로 연결)되며, 각 배관에는 유량 조절을 위한 유량계(M, Mass Flow Controller)와 밸브(V)가 형성된다.
그리고 스텝형성챔버(10)에는 스텝용가스탱크(110) 및 수소탱크(140)가 배관을 통해 연결(제1가스공급라인(12) 쪽으로 연결)되며, 각 배관에는 역시 유량 조절을 위한 유량계(M)와 밸브(V)가 형성된다.
로셸(50)의 외부에는 로셸(50)에서 배기되는 가스가 재조직가스탱크(120), 탄소전구체탱크(130) 및 수소탱크(140)로 각각 회수되도록 하는 회수장치(90)가 형성된다.
회수장치(90)는 공지의 가스 회수장치(90)와 같은 형태로 이루어질 수 있으며, 가스필터 및 촉매 등을 통하여 탄소전구체 등의 분해와 분류가 이루어지도록 한다. 회수장치(90)를 통하여, 로셸(50)의 배기펌프(53)를 통하여 배출되는 폐가스를 회수하여 필터링하고 분류함으로써 순도와 조성에 따라 스텝용가스, 재조직가스 및 탄소전구체로 분류하며 스텝용가스탱크(110), 재조직가스탱크(120) 및 탄소전구체탱크(130) 쪽으로 순환하도록 형성할 수 있다.
상술한 바와 같이 본 발명에 의하면, 수용챔버(150), 스텝형성챔버(10) 및 증착챔버(20)가 서로 밀착된 순환형으로 이루어짐으로써 콤팩트한 구조를 이루고 진공 및 배기를 위한 설계가 용이하며 열효율을 높일 수 있게 된다.
스텝형성챔버(10)의 출구에는 촉매기판(200) 상에 스텝 형성 여부를 감지하는 스텝센서(80)가 형성된다. 스텝센서(80)는, 촉매기판(200) 상에 스텝이 형성되면서 격자 완화(Lattice relaxation)로 인해 발생되는 펄스파를 측정하거나 스텝형성챔버(10) 출입구 양측에서 전기자기적 저항의 차이에 의해 상변태를 감지하는 전자기식 또는 스텝형성에 따른 광학적 차이(예를 들면 반사도)를 측정하는 방식으로 이루어질 수 있다.
증착챔버(20)의 입구 및 출구에는 촉매기판(200)의 이동속도를 감지하는 속도감지센서(60)가 형성된다. 이러한 속도감지센서(60)는 코일러(40)의 회전을 제어하는 제어부에 연결되며, 코일러(40)의 회전속도가 제어되도록 한다. 그래핀이 제조되는 과정에서 촉매기판(200)이 제1예열부(15), 스텝형성챔버(10), 제2예열부(25), 증착챔버(20) 및 냉각부(26)를 거치면서 열팽창 및 수축을 일으키고, 또한 코일러(40)에 권취되는 촉매기판(200)의 직경(감긴 상태에서의 직경)이 증가하게 되므로, 코일러(40)가 일정한 속도로 회전하는 경우, 증착챔버(20)를 거치는 촉매기판(200)의 이동 속도가 변경되거나 점차 증가하게 된다. 이러한 점을 고려하여, 본 발명에서는 상기 속도감지센서(60)를 설치하여 증착챔버(20) 입구 및 출구에서의 촉매기판(200) 이동속도를 감지하고 이를 통하여 코일러(40)의 회전속도를 제어함으로써 촉매기판(200)의 이동속도를 동조(synchronizing)할 수 있도록 하고 있다.
상기 속도감지센서(60)는, 타코미터(Tachometer), 홀 효과(Hall Effect)센서, 와류탐상(Eddy current)센서 또는 라디오파(RF Speed Sensor)센서와 같은 전기?자기를 이용한 비접촉 센서 등으로 이루어질 수 있다.
본 발명에 따른 순환형 그래핀 제조장치(1)에서는, 증착챔버(20)를 거친 촉매기판(200)이 냉각부(26)를 통하여 냉각된 후 전사용필름(300)이 도포되도록 하는 필름공급장치(100)가 형성될 수 있다. 필름공급장치(100)는 수용챔버(150) 내부에서 언코일러(30) 및 코일러(40)와 함께 구비되고, 코일러(40)와 평행하게 설치되며 전사용필름(300)이 도포된 촉매기판(200)이 코일러(40)에 권취되도록 한다. 전사용필름(300)은 PMMA, PET, PVDF, PEN, MS, PS, PC, COP, PES, PI, FRP 등으로 이루어질 수 있고, 그래핀이 증착된 촉매기판(200)이 증착챔버(20)를 나오면서 냉각부(26)를 거쳐 권취되는 과정에서 도포되어 전사용필름(300)이 접착된다. 코일러(40)에 권취되는 기판의 최초 더미(Dummy)부분은 그래핀이 증착되지 않은 상태로 도포되지만 증착 공정이 수행되면서 나오는 부분은 그래핀이 도포되어 나오게 된다. 필름과 기판이 합쳐지는 곳에는, 도 13, 도 14에 도시된 바와 같이, 가압롤을 설치하여 전사용필름(300)이 촉매기판(200)에 밀착되게 한다.
스텝형성챔버(10) 및/또는 증착챔버(20) 내부에는, 촉매기판(200)의 파단을 감지하는 파단감지센서(70)가 형성된다.
파단감지센서(70)는, 도 9에 도시된 바와 같이, 스텝형성챔버(10) 및 증착챔버(20) 내부에 레이저센서 또는 적외선 센서 형태로 이루어질 수 있으며, 발광부(71)와 수광부(72)로 구분될 수 있다. 촉매기판(200)의 어느 한쪽에 발광부(71)를 위치시키고, 다른 한쪽에 수광부(72)를 위치시키며, 촉매기판(200)의 파단이 이루어진 경우 발광부(71)에 의한 빛을 수광부(72)에서 감지하여 파단을 감지하는 형태로 이루어질 수 있다.
또한, 파단감지센서(70)는 상술한 광센서 형태가 아닌, 상술한 속도감지센서(60) 형태로 이루어질 수 있다. 앞서 언급한 바와 같이, 증착챔버(20)의 입구 및 출구에는 촉매기판(200)의 이동속도를 감지하는 속도감지센서(60)가 형성되는데, 증착챔버(20) 내부에서 촉매기판(200)의 파단이 이루어지는 경우, 증착챔버(20)의 출구쪽에 비하여 입구쪽에서 속도가 감소하거나 속도가 '0'이 되게 되는데, 이를 통하여 촉매기판(200)의 파단을 감지할 수 있다.
또한, 파단감지는, 코일러(40)에서 걸리는 하중을 감지하는 형태로 이루어질 수 있다. 촉매기판(200)의 파단이 발생하는 경우, 코일러(40)에 걸리는 하중은 급격히 감소하게 되며, 이를 감지함으로써 파단감지가 이루어질 수 있다.
도 15(a)와 도 15(b)는 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이다.
본 발명에서는 증착챔버(20)의 입구 및/또는 출구에 가압롤(161)과 구동롤(162)이 한 조를 이루는 버퍼부(160)가 설치되어 촉매기판(200)의 이송속도를 조절한다. 이때 촉매기판(200)의 그래핀 형성면과 접하는 가압롤(161)은 촉매기판(200)을 가볍게 누르면서 무부하로 회전하도록 구동롤(162)과 동기화되는 구조를 가지거나, 가압롤(161) 양단에 단차를 주어 중간에서는 그래핀 합성층과 접촉하지 않으면서도 양단의 일부만 접촉하거나 양측면만을 지지하는 가이드 역할을 수행할 수 있도록 형성될 수 있다. 구동롤(162)은 촉매기판(200)의 하부면과 접촉하면서 마찰력을 발생하여 이송시킴으로써 그래핀층에 가압롤(161)이 미끄럼응력이나 과도한 인장력을 가하지 않게 되어 촉매기판의 파단이나 그래핀층의 손상을 방지할 수 있다.
또한 이와는 별도로 도 15(b)와 같이 증착챔버(20)의 입구와 출구에 촉매기판(200)과 접촉하면서 회전하는 가압롤(161)과 구동롤(162)을 각각 설치하여 이들 롤의 속도를 동기화하면, 챔버에서의 촉매기판(200)은 열팽창에 의해 이들 구동롤(162)들 사이에서의 장력을 최소화할 수 있고, 구동롤(162)과 연이어 회전하는 다른 구동롤(162)이나 유도용 롤들과의 사이에 버퍼부를 형성함으로써 촉매기판(200)에 장력이 가해지는 것을 최소화할 수 있다.
본 발명에서는 각 가열선(11, 21) 입구 및/또는 출구에 버퍼부(160)에 따른 버퍼구간을 설치함으로써 다음 단계의 구동롤(162)과 연동되지 않게 함으로써 가열선(11, 21) 내에 있는 촉매기판(200)에 최소한의 장력만 작용하게 할 수 있다. 이렇게 할 경우에는 버퍼구간 없이 다음 단계와 연동될 경우에 발생할 수 있는 과도한 국부장력을 방지할 수 있는데, 이를 좀더 구체적으로 설명하면 다음과 같다.
버퍼부(160)가 없는 경우, 스텝형성챔버(10)의 출구에서 구동력에 의해 촉매기판(200)을 당겨주면 장력이 스텝형성챔버(10) 입구를 거쳐 언코일러(30)까지 작용하게 되어 스텝형성챔버(10) 내에서 가열되는 촉매기판(200)에 장력이 작용하여 절단사고가 일어날 수 있다.
이때 본 발명에서와 같이, 스텝형성챔버(10) 입구와 언코일러(30) 사이에 가압롤(161) 및 구동롤(162)로 조합되는 버퍼부(160)를 설치하여 촉매기판(200)이 적층될 수 있는 버퍼구간을 형성하면 제1가열선(11) 내에 있는 촉매기판(200)에는 장력이 최소한으로 작용하게 된다.
스텝형성챔버(10)와 증착챔버(20) 사이, 증착챔버(20)와 코일러(40) 사이에도 버퍼구간을 두면 같은 효과를 얻을 수 있다. 또한 무게가 가벼운 댄서롤(164)을 삽입함으로써 버퍼구간에서 기판의 흐름이 원활하며 기판에 적당한 장력이 가해짐으로써 챔버 내에서 기판의 평탄도를 유지할 수 있게 된다. 특히 증착챔버(20)와 코일러(40) 사이의 버퍼구간에 진자식 가이드(163, pendulum guide)와 같은 장치를 추가로 설치하면 촉매기판(200)이 적층되면서 버퍼구간은 냉각부를 겸할 수 있으므로 충분히 촉매기판(200)의 강도가 회복된 후 코일러(40)에 감을 수 있는 장점이 있다.
도 16은 본 발명에 따른 연속 그래핀 제조장치(1)를 사용하여 그래핀을 형성하는 공정을 도시한 도면이고, 도 17은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이다.
본 발명에 따른 양면형 그래핀 제조방법은, 도 16, 도 17에 나타낸 것처럼 결합단계(S10), 형성단계(S20), 냉각단계(S30) 및 분리단계(S40)를 포함하여 이루어진다.
결합단계(S10)는 2 장의 촉매기판(200)을 겹쳐 양측단이 결합되도록 하는 것이며, 결합되는 촉매기판(200) 내부로 탄소전구체 가스가 침투하지 못하게 하기 위함이다. 다만 겹쳐진 2 장의 촉매기판(200)은 그래핀이 형성된 후 분리되어야 하는 것이므로, 겹쳐지는 촉매기판(200) 내측면은 서로 접착되거나 결합될 필요가 없다.
형성단계(S20)는 그래핀이 형성되도록 하는 과정이며, 600 ~ 1100 ℃ 온도가 유지되는 분위기에서 상기 촉매기판(200)의 양쪽 면(바깥쪽 면)에 탄소전구체 기체를 공급하여 그래핀이 형성되도록 한다. 그래핀이 형성된 후 촉매기판(200)을 냉각하는 냉각단계(S30)가 이루어진다.
그래핀이 형성된 촉매기판(200)의 냉각 후, 양면을 필름(300)으로 도포한 상태의 촉매기판을 얻게 된다. 이후에 슬릿팅(미도시) 등을 통해 양측 단부가 결합된 2개의 촉매기판(200)을 분리하면, 한쪽 면에 그래핀이 형성된 2개의 촉매기판(200)을 동시에 얻을 수 있게 된다. 2개의 촉매기판(200)의 분리는, 통상의 커터에 의하여 결합된 부분(모서리 부분)만을 떼어내는 방법으로도 이루어질 수 있다. 이처럼 본 발명에 의할 경우, 한번의 공정으로 그래핀이 형성된 2장(단속 또는 연속된)의 촉매기판(200)을 형성할 수 있게 된다.
또한, 일반적으로 단일의 층으로 이루어진 촉매기판에 그래핀이 형성되도록 하는 경우, 촉매기판의 배면(그래핀 형성면의 반대쪽)에 성장한 그래핀을 제거하기 위하여 고가의 플라즈마 에칭장비로 처리하여야 하는데, 본 발명에서는 이러한 공정을 생략할 수 있으므로, 생산성 향상 및 원가 절감효과를 얻을 수 있게 된다.
본 발명에 따른 그래핀 제조장치(1)는, 2겹으로 겹쳐진 촉매기판(200)이 장치 내부로 유입되면서 2겹의 촉매기판(200) 외측면에 그래핀이 형성되도록 하는 것이며, 이하, 본 발명에서 특별히 한정하는 경우를 제외하고, '촉매기판'은 '2겹으로 겹쳐진 촉매기판'을 말한다.
도 6, 도 14, 도 15에서 도시된 증착챔버(20)는 가로방향(촉매기판(200)의 이동방향이 가로방향)으로 길게 형성되어 있으나, 이에 한정되는 것은 아니고, 도 8, 도 9, 도 17에 도시된 바와 같이 세로방향 또는 경사방향으로 형성될 수 있다. 특히, 증착챔버(20)가 세로방향으로 형성되는 경우에는, 증착챔버(20) 내부에서 촉매기판(200)이 열팽창에 의해 길이가 늘어난 경우에도 이동경로가 일정하게 유지할 수 있는 이점이 있게 된다.(가로방향인 경우, 열팽창에 의해 촉매기판(200)이 늘어난 경우 수평 유지가 어렵게 되는 문제점이 있게 된다.)
아울러, 겹쳐진 촉매기판(200) 양쪽에 제2가스공급라인(22)이 형성될 때, 증착챔버(20)가 수평방향으로 놓이는 경우에는, 가열상태에서 중력에 의해 촉매기판(200)이 쳐져 아래쪽에 위치하는 제2가스공급라인(22)과 촉매기판(200)이 접촉하면서 그래핀 형성면의 손상이 있을 수 있으므로, 증착챔버(20)가 세로방향, 바람직하게는 세로방향이나 경사방향으로 놓이는 경우에는 이와 같은 손상을 방지할 수 있게 된다.
도 18은 본 발명의 또 다른 실시예에 따른 연속 그래핀 제조장치(1)의 일부 구성을 개략적으로 도시한 도면이다.
상기 증착챔버(20)에서 배출되는 상기 촉매기판(200)의 외측면(그래핀이 형성되는 바깥쪽 면)은 상기 코일러(40)에 권취되기 이전에, 다른 물체에 접촉되지 않거나 보호필름(300)이 도포되도록 이루어지는 것이 바람직하다.
이를 위하여 상기 증착챔버(20)의 출구는, 상기 촉매기판(200)이 상기 증착드럼(27)의 접선을 따라 배출되도록 형성된다. 이에 따라 촉매기판(200)에서 그래핀 형성면이 롤이나 다른 물체와의 접촉으로 인해 손상되는 것을 최소화할 수 있다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 예를 들어 본 발명에 제시된 촉매기판의 형태는 선재, 봉재, 관으로 대체되더라도 본 발명의 사상에서 벗어나지 않는다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
본 발명에 따른 연속 그래핀 제조장치는, 각 구성이 서로 연동하는 연속형으로 이루어짐으로써 콤팩트한 구조를 이루고 진공 및 배기를 위한 설계가 용이하며, 증착공정 이전에 스텝형성공정을 거침으로써 그래핀 형성에 앞서 촉매기판 전체면에 나노 단위의 스텝(step)이 형성되어, 전구체 가스의 물리흡착이 용이하여 균일 핵생성과 증착시간 단축효과를 얻을 수 있다.

Claims (24)

  1. 촉매기판에 탄소전구체를 공급하는 증착챔버에서 연속으로 그래핀을 합성하는 그래핀 제조장치에 있어서,
    상기 촉매기판을 연속으로 공급하는 언코일러;
    상기 증착챔버로부터 상기 촉매기판을 연속하여 공급받는 코일러; 및
    상기 증착챔버, 언코일러 및 코일러를 수용하는 로셸을 포함하는 것을 특징으로 하는 연속 그래핀 제조장치.
  2. 제1항에 있어서,
    상기 촉매기판의 재결정 온도 이상의 어닐링 온도가 유지되도록 하는 제1가열선 및 탄소 원자량 이상의 분자량을 가지는 기체 분위기가 형성되도록 하는 제1가스공급라인을 구비하여, 상기 촉매기판의 표면에 스텝구조가 형성되도록 하는 스텝형성챔버를 더 포함하는 것을 특징으로 하는 연속 그래핀 제조장치.
  3. 제1항에 있어서,
    상기 증착챔버에는, 600 ~ 1100℃ 온도가 유지되도록 하는 제2가열선, 상기 제2가열선의 열이나 자장을 차단하도록 둘러싸는 제2차폐재 및 상기 촉매기판에 탄소전구체를 공급하는 제2가스공급라인이 구비되는 것을 특징으로 하는 연속 그래핀 제조장치.
  4. 제3항에 있어서,
    상기 제2가열선은 유도가열코일이며, 상기 제2차폐재는 규소강판, 비정질필름적층재, 철계 연자성분말 소결재 중 어느 하나 이상으로 이루어지는 것을 특징으로 하는 연속 그래핀 제조장치.
  5. 제3항에 있어서,
    상기 제2가열선은 전기저항 발열선이며, 상기 제2차폐재는 스테인리스강판, 티타늄판, 내열강화유리, 석영, 열분해 질화붕소, 열분해 흑연, 금운모, 탄화규소, 알루미나, 마그네시아, 지르코니아 중 어느 하나로 이루어지거나 그 혼합물인 것을 특징으로 하는 연속 그래핀 제조장치.
  6. 제1항에 있어서,
    상기 언코일러 및 코일러를 수용하고, 상기 증착챔버에 인접하여 형성되는 수용챔버를 포함하고,
    상기 로셸은 상기 수용챔버 및 증착챔버를 둘러싸며 밀폐된 공간을 형성하며,
    상기 로셸은 이중벽 구조로 이루어지며, 상기 이중벽 사이에는 진공 또는 단열재로 충진되는 것을 특징으로 하는 연속 그래핀 제조장치.
  7. 제3항에 있어서,
    상기 증착챔버 내부에는, 상기 촉매기판이 밀착되는 원통 형상의 증착드럼이 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
  8. 제7항에 있어서,
    상기 증착챔버 내부에는, 상기 촉매기판이 일정 구간에서 상기 증착드럼에 밀착하도록 가이드하는 증착롤이 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
  9. 제1항에 있어서,
    상기 증착챔버의 입구 및 출구에는 상기 촉매기판의 이동속도를 감지하는 속도감지센서가 형성되고,
    상기 속도감지센서에 의해 상기 코일러와 언코일러의 회전속도가 제어되는 것을 특징으로 하는 연속 그래핀 제조장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 증착챔버 내부로 공급되는 재조직가스가 저장되는 재조직가스탱크;
    상기 증착챔버 내부로 공급되는 탄소전구체가 저장되는 탄소전구체탱크; 및
    상기 증착챔버 내부로 공급되는 수소가 저장되는 수소탱크를 더 포함하고,
    상기 재조직가스 및 수소의 공급은 선택적으로 이루어지는 것을 특징으로 하는 연속 그래핀 제조장치.
  11. 제10항에 있어서,
    상기 증착챔버에서 배기되는 가스가 상기 재조직가스탱크, 탄소전구체탱크, 및 수소탱크로 각각 회수되도록 하는 회수장치가 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
  12. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 증착챔버 내부에는 상기 촉매기판의 파단을 감지하는 파단감지센서가 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
  13. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 증착챔버의 입구와 출구 중 어느 하나 이상에는, 상기 증착챔버 내에서 상기 촉매기판에 가해지는 인장력을 해소하는 버퍼부가 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
  14. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 촉매기판은 600 ~ 1060 범위에서 수소 고용도를 가지거나 탄화물을 형성하는 전이원소 또는 13~15족 원소 중 어느 하나 이상이거나 그 합금인 것을 특징으로 하는 연속 그래핀 제조장치.
  15. 제10항에 있어서,
    상기 재조직가스는, 질소, 네온, 아르곤, 크립톤, 제논, 일산화탄소, 이산화탄소, 산화질소, 암모니아, 수증기 중 어느 하나 이상인 것을 특징으로 하는 연속 그래핀 제조장치.
  16. 제1항에 있어서,
    상기 촉매기판은 2겹으로 겹쳐지고,
    2겹으로 겹쳐진 상기 촉매기판의 재결정 온도 이상의 어닐링 온도가 유지되도록 하는 제1가열선 및 탄소 원자량 이상의 분자량을 가지는 기체 분위기가 형성되도록 상기 촉매기판의 양쪽 면에 스텝용가스를 공급하는 제1가스공급라인이 구비되어, 상기 촉매기판에 스텝구조가 형성되도록 하는 스텝형성챔버를 포함하고,
    상기 증착챔버에는, 600 ~ 1100 ℃ 온도가 유지되도록 하는 제2가열선 및 상기 스텝형성챔버를 거친 상기 촉매기판의 양쪽 면에 탄화수소 기체를 공급하는 제2가스공급라인이 구비되는 것을 특징으로 하는 연속 그래핀 제조장치.
  17. 제16항에 있어서,
    상기 제1가스공급라인 및 제2가스공급라인은 2겹으로 겹쳐진 상기 촉매기판의 양쪽에 배치되는 것을 특징으로 하는 연속 그래핀 제조장치.
  18. 제16항에 있어서,
    상기 스텝형성챔버 및 증착챔버 내부에서 상기 촉매기판은 세로방향으로 이송되는 것을 특징으로 하는 연속 그래핀 제조장치.
  19. 제13항에 있어서,
    상기 버퍼부는 상기 증착챔버 출구에 형성되는 가압롤을 포함하고,
    상기 가압롤은 상기 촉매기판을 누르면서 무부하로 회전하도록 형성된 것을 특징으로 하는 연속 그래핀 제조장치.
  20. 제13항에 있어서,
    상기 버퍼부는 상기 증착챔버의 입구 또는 출구에 형성되는 가압롤을 포함하고,
    상기 가압롤은 양단에 단차가 형성되어 상기 촉매기판 양단의 일부만 접촉하거나 양측면만을 지지하는 가이드 역할을 수행하는 것을 특징으로 하는 연속 그래핀 제조장치.
  21. 제13항에 있어서,
    상기 버퍼부는 상기 증착챔버의 입구 및 출구에 각각 형성되는 구동롤을 포함하고,
    상기 구동롤은 상기촉매기판과 접촉하면서 회전하고 서로 속도가 동기화되는 것을 특징으로 하는 연속 그래핀 제조장치.
  22. 제4항에 있어서,
    상기 촉매기판과 상기 유도가열코일의 간격이 10mm 이내이며, 유도가열 주파수가 10kHz 이상 고주파인 것을 특징으로 하는 연속 그래핀 제조장치.
  23. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 증착챔버에서 배출되는 상기 촉매기판의 외측면은 상기 코일러에 권취되기 이전에, 다른 물체에 접촉되지 않거나 보호필름이 도포되는 것을 특징으로 하는 연속 그래핀 제조장치.
  24. 제7항에 있어서,
    상기 증착챔버의 출구는, 상기 촉매기판이 상기 증착드럼의 접선을 따라 배출되도록 형성되는 것을 특징으로 하는 연속 그래핀 제조장치.
PCT/KR2012/011617 2012-06-19 2012-12-27 연속 그래핀 제조장치 WO2013191347A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020120065653A KR101238451B1 (ko) 2012-06-19 2012-06-19 그래핀 제조장치
KR10-2012-0065653 2012-06-19
KR10-2012-0073068 2012-07-04
KR1020120073068A KR101238450B1 (ko) 2012-07-04 2012-07-04 양면형 그래핀 제조장치 및 제조방법
KR1020120073071A KR101238449B1 (ko) 2012-07-04 2012-07-04 순환형 그래핀 제조장치
KR10-2012-0073071 2012-07-04
KR1020120133912A KR101409275B1 (ko) 2012-11-23 2012-11-23 연속 그래핀 제조장치
KR10-2012-0133912 2012-11-23

Publications (1)

Publication Number Publication Date
WO2013191347A1 true WO2013191347A1 (ko) 2013-12-27

Family

ID=49768921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011617 WO2013191347A1 (ko) 2012-06-19 2012-12-27 연속 그래핀 제조장치

Country Status (1)

Country Link
WO (1) WO2013191347A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055001A1 (en) * 2018-12-21 2022-02-24 Center For Advanced Meta-Materials Graphene manufacturing device and graphene manufacturing method using same
WO2022162120A1 (en) * 2021-01-28 2022-08-04 Tata Steel Nederland Technology B.V. Method for manufacturing a steel strip or sheet for a battery case and battery case made therefrom
CN115465858A (zh) * 2022-10-12 2022-12-13 重庆石墨烯研究院有限公司 一种卷对卷石墨烯薄膜生产设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155168A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd 層状炭素構造体の製造方法および半導体装置の製造方法
KR20110092207A (ko) * 2010-02-08 2011-08-17 성균관대학교산학협력단 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
KR20120000556A (ko) * 2011-12-02 2012-01-02 에스 알 씨 주식회사 금속 촉매를 이용한 그래핀의 제조 방법
KR20120001591A (ko) * 2010-06-28 2012-01-04 삼성테크윈 주식회사 그래핀의 제조 장치 및 제조 방법
JP2012041219A (ja) * 2010-08-17 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> グラフェン膜の製造方法およびグラフェン膜の層数を均一化する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155168A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd 層状炭素構造体の製造方法および半導体装置の製造方法
KR20110092207A (ko) * 2010-02-08 2011-08-17 성균관대학교산학협력단 그래핀 롤투롤 코팅 장치 및 이를 이용한 그래핀 롤투롤 코팅 방법
KR20120001591A (ko) * 2010-06-28 2012-01-04 삼성테크윈 주식회사 그래핀의 제조 장치 및 제조 방법
JP2012041219A (ja) * 2010-08-17 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> グラフェン膜の製造方法およびグラフェン膜の層数を均一化する方法
KR20120000556A (ko) * 2011-12-02 2012-01-02 에스 알 씨 주식회사 금속 촉매를 이용한 그래핀의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055001A1 (en) * 2018-12-21 2022-02-24 Center For Advanced Meta-Materials Graphene manufacturing device and graphene manufacturing method using same
US11712674B2 (en) * 2018-12-21 2023-08-01 Center For Advanced Meta-Materials Graphene manufacturing device and graphene manufacturing method using same
WO2022162120A1 (en) * 2021-01-28 2022-08-04 Tata Steel Nederland Technology B.V. Method for manufacturing a steel strip or sheet for a battery case and battery case made therefrom
CN115465858A (zh) * 2022-10-12 2022-12-13 重庆石墨烯研究院有限公司 一种卷对卷石墨烯薄膜生产设备及方法
CN115465858B (zh) * 2022-10-12 2023-12-12 重庆石墨烯研究院有限公司 一种卷对卷石墨烯薄膜生产设备及方法

Similar Documents

Publication Publication Date Title
KR101409275B1 (ko) 연속 그래핀 제조장치
WO2012150761A1 (ko) 그래핀의 제조 방법 및 그래핀의 제조 장치
KR101828528B1 (ko) 그래핀의 제조 장치 및 제조 방법
Chen et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates
EP2055673B1 (en) Method of preparing a graphene sheet
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
KR102109380B1 (ko) 절연기판상에 그래핀 단일층을 제조하는 방법
EP2850032B1 (en) Methods of growing uniform, large-scale, multilayer graphene films
KR102026736B1 (ko) 이종 적층 구조의 절연시트, 그의 제조방법 및 이를 구비하는 전기소자
KR101513136B1 (ko) 그래핀 필름의 제조방법, 그래핀 필름, 및 이를 포함하는 전자 소자
TW201609341A (zh) 連續式合成碳薄膜或無機材料薄膜之設備與方法
KR20130020351A (ko) 그래핀 박막의 형성방법 및 그 방법에 의해 제조된 그래핀
WO2013191347A1 (ko) 연속 그래핀 제조장치
WO2017204408A1 (ko) 전선 구조체 및 이의 제조 방법
KR101238450B1 (ko) 양면형 그래핀 제조장치 및 제조방법
WO2016167583A1 (ko) 그래핀의 도핑 방법, 그래핀 복합 전극의 제조 방법 및 이를 포함하는 그래핀 구조체
TW200902775A (en) Method for protecting carbonaceous crucible and single crystal pulling apparatus
JP2556397B2 (ja) 多結晶ケイ素の製造における始動フィラメント用黒鉛チャック及びその保護方法
KR101828530B1 (ko) 그래핀 합성 장치
WO2014189271A1 (ko) 대면적의 단결정 단일막 그래핀 및 그 제조방법
JPH0456765B2 (ko)
Kumar et al. Nickel mediated few-layer graphene growth on glass substrates by pulsed laser deposition
EP3551778A1 (en) A system and a method for producing continuous and monolithic graphene
KR101238451B1 (ko) 그래핀 제조장치
WO2021215578A1 (ko) 롤투롤 대면적 그래핀 합성 장치, 대면적 그래핀의 제조방법 및 산화그래핀 직물의 환원방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879288

Country of ref document: EP

Kind code of ref document: A1