WO2017166851A1 - 一种无钯化学镀铜的方法 - Google Patents

一种无钯化学镀铜的方法 Download PDF

Info

Publication number
WO2017166851A1
WO2017166851A1 PCT/CN2016/108756 CN2016108756W WO2017166851A1 WO 2017166851 A1 WO2017166851 A1 WO 2017166851A1 CN 2016108756 W CN2016108756 W CN 2016108756W WO 2017166851 A1 WO2017166851 A1 WO 2017166851A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper plating
solution
electroless copper
palladium
plated
Prior art date
Application number
PCT/CN2016/108756
Other languages
English (en)
French (fr)
Inventor
吴叔青
胡佳勋
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017166851A1 publication Critical patent/WO2017166851A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Definitions

  • the present invention relates to the field of electroless plating, and in particular to a method of palladium-free electroless copper plating on the surface of an inorganic material or a polymer material.
  • the components of electromechanical products are gradually becoming smaller and thinner.
  • the development trend of thinning is more and more demanding in assembly of micro-components, often involving the position and posture of micro-components. Adjustment and non-destructive operation, which puts high demands on the micromanipulator.
  • the operation and assembly of small components at home and abroad mainly include methods based on micro-gripper tools, vacuum adsorption methods, and surface tension methods.
  • the TAMIO of Nagoya University in Japan has developed a two-finger micromanipulator that mimics the mechanism of chopsticks holding objects, and realizes picking, moving, rotating and releasing operations on objects.
  • micro-clamp tool clamping method is relatively stable, the micro-scale imposes high requirements on the accuracy of the sensor, and the clamping operation inevitably causes the stress concentration of the clamping member to be deformed, causing some adverse effects on the component. At the same time, it is difficult to hold some ultra-thin parts.
  • Vacuum adsorption is the most widely used in micro-assembly. It absorbs tiny parts by negative pressure. However, this method is mainly applied to simple action situations where extraction and release are only required. It is difficult to adjust the posture of small parts. Adsorption surfaces are strictly required.
  • the vacuum adsorption method avoids the direct clamping of the object to the extrusion, but the flexibility of the mechanical operation is reduced, and only the movement operation of the component can be realized, and the adjustment of the posture in the three-dimensional space of the component cannot be realized.
  • Imperial College Richard of London proposed an adaptive micromechanical device based on surface tension, which controls the angle of rotation of the joint by the surface tension of the liquid at the joint of the micro-component; Kaiji of Tokyo Institute of Technology Sato proposed a method for adaptive positioning of tiny components driven by liquid surface tension. The influencing factors and improved methods of adaptive motion methods are discussed.
  • the patent can realize the change of the posture of tiny objects, but There are some problems.
  • the gap between the triangular link plates is too small, and the slight vibration of the motor causes the motion between the bars to interfere with each other.
  • the straightness of the tungsten wire rod is high and the processing is difficult; in terms of the control method,
  • the proposed method is limited to the fact that only attitude control can not achieve precise control of the target pose of the tiny components.
  • Electroless plating is the most commonly used method for plating metals on non-conductor surfaces in the industry, and generally includes steps such as alkaline degreasing, roughening, electrical adjustment, prepreg, sensitization, activation, acceleration, and electroless plating.
  • steps such as alkaline degreasing, roughening, electrical adjustment, prepreg, sensitization, activation, acceleration, and electroless plating.
  • the stannous chloride commonly used by Minhua and the palladium for activation have relatively large environmental pollution and high cost, so palladium-free electroless plating is a future development trend.
  • patent CN101067206 discloses an ABS The palladium-free activation process on the plastic surface utilizes the film-forming property of chitosan and its derivatives and the chelation adsorption of nickel to chemically reduce nickel on the surface as a catalytic activation center for electroless nickel plating.
  • Dopamine can form a polydopamine layer on the surface of different types of substrates (metals, inorganics and polymers) by self-oxidative polymerization.
  • the polydopamine layer contains a large amount of catechol groups and amino groups, which can further form functionalized layers, such as grafting. Other functional molecules, surface electroless plating, etc.
  • the polydopamine layer is not only easy to be second-modified, but also has strong adhesion strength on various types of substrates. It is a multifunctional and reliable modified layer.
  • the polydopamine layer is capable of adsorbing metal ions in the solution and has certain reducing properties, and is capable of reducing metallic silver ions and gold ions.
  • Patent CN 101812678 A deposits polydopamine layer on the surface of glass microspheres, aluminum powder and needle silicate, then disperses in silver ammonia solution in the presence of polyvinylpyrrolidone (PVP) for pretreatment, and finally pretreated powder
  • PVP polyvinylpyrrolidone
  • the body is dispersed in a silver ammonia solution containing glucose to obtain a powder coated with silver on the surface.
  • Polydopamine insufficient reducing copper ions to elemental copper, copper oxide, because the weak ion (Cu 2+ / Cu ratio of silver ion to electrically and Ag 2+ / Ag standard electrode potential of the pair are electrically + 0.342V , +0.798V ).
  • Patent 201510553243.2 discloses a method for electroless copper plating on the surface of inorganic particles, which uses a polydopamine layer to reduce copper on the surface of inorganic particles by the action of an auxiliary reducing agent dimethylaminoborane, but the reaction rate of this method Slow, and while depositing metallic copper on the surface of the particles, copper particles are often precipitated in the solution.
  • the invention firstly places the material to be plated coated with the polydopamine layer in a silver ion solution, reduces the silver ions into nano silver particles by using the reducing property of polydopamine, and acts as a catalytic center, and then deposits a layer on the electroless copper plating solution. Complete metal copper layer.
  • the object of the present invention is to provide a method for catalytically electroless copper plating on the surface of an inorganic material or a polymer material coated with polydopamine, using nano silver silver particles as a catalytic center, thereby preparing a surface metallized inorganic material or polymer. material.
  • the present invention is achieved by the following technical solutions.
  • a method for palladium-free electroless copper plating comprising the steps of:
  • the material to be plated after ultrasonic cleaning with ethanol or alkaline degreaser is immersed or dispersed in a dopamine solution having a pH of 6.0-10.0 and a concentration of 0.5 g/L to 5.0 g/L, and the polymerization reaction is carried out for 0.5-48 h to obtain a surface.
  • a material to be plated coated with a polydopamine layer wherein the solvent in the dopamine solution is a buffer solution prepared from trishydroxymethylaminomethane and hydrochloric acid;
  • the material to be plated coated with polydopamine in the step (1) is immersed or dispersed in a solution containing 3-30 g/L of silver ions, reacted for 0.5-4 h, filtered, washed with deionized water for 2-6 times, placed Drying in a vacuum oven at 40-70 ° C for 3-8 h to obtain a material to be plated with surface-deposited nano-silver particles;
  • the material to be plated according to the step (1) is an inorganic material or a polymer material coated with a polydopamine layer.
  • the silver ion solution described in the step (2) is a solution containing free silver ions or complexed silver ions, such as silver nitrate, silver fluoride, silver chlorate and silver ions, EDTA or cyanide complex solution. .
  • the electroless copper plating solution described in the step (3) contains copper chloride, ethylenediaminetetraacetic acid, boric acid, dimethylamine borane; ethylenediaminetetraacetic acid, boric acid and dimethylamine borane in chemistry
  • the amount of the substance in the copper plating solution was 20 mM to 70 mM, 20 mM to 70 mM, 0.05 to 0.3 M and 0.05 to 0.4 M, respectively. .
  • the topography of the material to be plated according to the step (1) is any one of the following: a solid sphere (bead) shape, a hollow sphere (bead) shape, a sheet shape, a needle shape, a fibrous shape, an irregular shape, Film shape, body shape, etc.
  • the material to be plated according to step (1) has a size of micron and above.
  • the inorganic material described in the step (1) is any one of the following: a metal oxide, a non-metal oxide, a carbide, a nitride, a boride, a natural mineral, a silicate compound, etc., such as alumina. , silica, carbon fiber, silicon carbide, boron nitride, titanium diboride, wollastonite, glass, etc.
  • the polymer material described in the step (1) is any one of chemically synthesized polymers: polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC). , AS or ABS resin, polycarbonate (PC), polyester (PET, PBT Etc.), polyacrylates (PMMA), nylons (PA), polyetherketones (PEK), polyetheretherketones (PEEK), polyimides (PI), polyethersulfones (PSF) , polyphenylene sulfides (PPS), polyphenylene ethers ( PPO), polyoxymethylene (POM), polythiophene, polyacetylene, polyaniline, polybenzimidazole, polydimethylsiloxane (PDMS) and amino resin, phenolic resin, urea-formaldehyde resin, cyanide Acid resin, etc.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PVC polyvinyl
  • the present invention Compared with the prior art techniques of electroless plating inorganic particles, the present invention has the following beneficial effects:
  • the nano silver particles are attached to the surface of the material to be plated as the catalytic center of electroless copper plating, so that the copper deposition speed in the electroless copper plating process is faster and the plating solution is more stable;
  • the invention uses the nano silver particles instead of the palladium to activate the surface of the plating material, which reduces the complicated process of the conventional electroless plating and has little environmental pollution;
  • 1a and 1b are SEM images of alumina magnifications of 15000 times and 30,000 times of ethanol washing in Example 1;
  • FIG. 1c and FIG. 1d are SEM images of the polydopamine-coated alumina in Example 1 at a magnification of 15000 times and 40,000 times, respectively;
  • 1e and 1f are SEM images of the magnifications of 15000 times and 40,000 times after activation of nano-silver in Example 1;
  • 1g to 1I are SEM images of alumina after electroless copper plating in Example 1;
  • 1j to 11l are SEM images of the alumina after electroless copper plating in Example 1 after ultrasonication for 5 min;
  • Fig. 1m and Fig. 1n are SEM images of the control group and the experimental group of the control experiment in Example 1.
  • Figure 2a is an SEM image of the untreated PEEK surface of Example 4.
  • 2b is an SEM image of the surface of the PEEK after roughening in Example 4.
  • Figure 2c is an SEM image of the surface of the PEEK after dopamine treatment in Example 4.
  • 2d is an SEM image of a PEEK surface deposited with silver nanoparticles in Example 4.
  • Example 2e is an EDS spectrum of a PEEK surface on which silver nanoparticles are deposited in Example 4;
  • 2f is an SEM image of the PEEK surface after chemical copper immersion in Example 4.
  • Figure 2g is an EDS spectrum of the PEEK surface after chemical copper sinking in Example 4.
  • Alumina microspheres with an average particle diameter of 10 ⁇ m were sonicated with absolute ethanol for 20 min, filtered, and the filter cake was collected at 110 °C. The blast is dried for 4 hours and then used;
  • an electroless copper plating solution firstly preparing an aqueous solution containing copper chloride as a main salt, and then adding ethylenediaminetetraacetic acid As a complexing agent, boric acid is a stabilizer, and dimethylamine borane is a reducing agent.
  • concentration of the main salt copper chloride, the complexing agent EDTA, the stabilizer boric acid, and the reducing agent DMAB in the electroless copper plating solution are respectively 50 mM.
  • Figure 1a and Figure 1b show the SEM magnification of 15000 times and 40,000 times of alumina after ethanol washing.
  • Fig. 1c and Fig. 1d are SEM images of polydopamine-coated alumina with magnifications of 15000 and 40,000, respectively; comparisons 1b and 1d It can be seen that the surface of the alumina coated with dopamine is rough and granular, and the particles are partially buried in the bottom layer, indicating that the alumina surface is successfully coated with polydopamine; Figure 1e and 1f In the alumina surface, a large number of randomly dispersed nano-sized silver particles appeared, indicating that the polydopamine layer successfully reduced the silver ions in the solution; from Figure 1g ⁇ 1i It can be seen that after electroless copper plating, the activated aluminum oxide surface forms a complete metal copper layer, the copper layer is dense and the grain size is uniform; as can be seen from Fig.
  • Example 2 the oxidation after electroless copper plating Aluminum via ultrasound 5 After a minute, the copper layer did not fall off, indicating that the copper layer and the matrix had strong adhesion.
  • the treatment effect of the chopped carbon fibers of Example 2 and the hollow glass beads of Example 3 was similar to that of Example 1.
  • a control group was set.
  • 1 g of dopamine-coated alumina microspheres were placed in 50 mL of 17 g/L. Soaked in ammonia-silverized silver nitrate solution for 2h, then dispersed in 100mL electroless copper plating solution for 3h, the formula of electroless copper plating solution is the same as above, the temperature of the plating solution is controlled to 30 °C; the control group will be 1g
  • the dopamine-coated alumina microspheres were directly dispersed in 100 mL of electroless copper plating bath for 3 h, and the bath temperature was controlled to 30 °C.
  • the alumina microspheres of the control group and the experimental group were respectively characterized, and the reaction was observed from the SEM image. 3h After that, no copper plating was observed on the surface of the alumina microspheres activated by the silver nitrate solution complexed with ammonia water, and the conductivity was relatively poor, and there was a charging phenomenon; after the activation of the ammonia-silverized silver nitrate solution, the alumina microspheres were activated. Both are covered by a metallic copper layer, indicating that the activation of the aqueous ammonia complexed silver nitrate solution can increase the rate of copper deposition.
  • the control group was No plating was observed within 3 h, but metal plating was obtained by prolonging the time or increasing the bath temperature.
  • the formulation is the same as the step in the embodiment 1 (4)
  • the carbon fiber with nano silver particles deposited on the surface is placed in an electroless copper plating bath for 0.5 h;
  • the sample prepared in the step (4) is washed 4 times with deionized water, washed once with absolute ethanol, filtered, and the filter cake is collected. Dry at 60 °C for 5 h.
  • a control group was set.
  • 1 g of dopamine-coated chopped carbon fiber was placed in 50 mL of 3 g/L. Soaked in silver nitrate solution for 1 h, then dispersed in 100 mL of electroless copper plating solution for 0.5 h.
  • the formulation of electroless copper plating solution is the same as above, the temperature of the plating solution is controlled to 30 °C; the control group will be 1 g.
  • the dopamine-coated chopped carbon fiber is directly dispersed in 100mL of electroless copper plating solution for 0.5h, and the plating solution temperature is controlled to 30. °C. No copper plating was observed on the surface of the chopped carbon fiber in the control group and the experimental group, respectively.
  • the conductivity was poor and there was a charge phenomenon.
  • the chopped carbon fiber was covered by the metal copper layer, indicating that the silver nitrate solution was activated. Can increase the speed of copper deposition.
  • the control group was No plating was observed within 0.5 h, but metal plating was obtained by prolonging the time or increasing the bath temperature.
  • the average particle size is 12 ⁇ m
  • the hollow glass microspheres were sonicated in absolute ethanol, allowed to stand for stratification, the upper hollow glass beads were taken, filtered, and the filter cake was collected and dried at 80 ° C for 6 hours;
  • an electroless copper plating solution firstly preparing an aqueous solution containing copper chloride as a main salt, and then adding ethylenediaminetetraacetic acid As a complexing agent, boric acid is a stabilizer, and dimethylamine borane is a reducing agent.
  • concentration of the main salt copper chloride, the complexing agent EDTA, the stabilizer boric acid, and the reducing agent DMAB in the electroless copper plating solution are respectively 40 mM.
  • the sample prepared in the step (4) is washed 4 times with deionized water, washed once with absolute ethanol, filtered, and the filter cake is collected. Dry at 60 °C for 3 h.
  • a control group was set.
  • 1 g of dopamine-coated hollow glass beads were placed in 50 mL of 3 g/L. Soaked in ammonia-silverized silver nitrate solution for 4 hours, then dispersed in 100mL of electroless copper plating solution for 3h.
  • the formula of electroless copper plating solution is the same as above, the temperature of the plating solution is controlled to 30 °C; the control group will be 1g.
  • Dopamine-coated hollow glass beads were directly dispersed in 100 mL of electroless copper plating solution for 3 h, and the bath temperature was controlled to 30. °C. No copper plating was observed on the surface of the hollow glass microspheres in the control group and the experimental group, respectively.
  • the conductivity was poor and there was a charging phenomenon.
  • the hollow glass beads were covered by the metal copper layer. It indicates that the activation of ammonia-complexed silver nitrate solution can increase the speed of copper deposition.
  • the control group was No plating was observed within 3 h, but metal plating was obtained by prolonging the time or increasing the bath temperature.
  • Preparing an electroless copper plating solution firstly preparing an aqueous solution containing copper chloride as a main salt, and then adding ethylenediaminetetraacetic acid As a complexing agent, boric acid is a stabilizer, and dimethylamine borane is a reducing agent.
  • concentration of the main salt copper chloride, the complexing agent EDTA, the stabilizer boric acid, and the reducing agent DMAB in the electroless copper plating solution are respectively 60 mM. , 60 mM, 0.2 M, 0.08 M, adjust the pH to 7.0 with sodium hydroxide, take 200 mL of the prepared electroless copper plating solution, and immerse the polyetheretherketone plate in step (3) in the electroless copper plating solution. 2h, after taking out, rinse with deionized water for 4 times, finally rinse with absolute ethanol, and dry in a vacuum oven at 50 °C for 1 h.
  • the untreated PEEK surface is smooth and flat (Fig. 2a). After roughening, a large number of network-like pores are formed on the surface (Fig. 2b), which can be used as a physical anchor point of the copper layer; after modification with dopamine It can be seen that the PEEK surface becomes rougher, with some granular protrusions (Fig. 2c); after activation by the silver solution, a large number of fine randomly distributed particles appear on the surface (Fig. 2d), EDS spectrum (Fig. 2) 2e) The peaks of Ag L ⁇ and Ag L ⁇ appear, so these particles are nano-silver particles with a silver content of 28.87 wt%.
  • a metal copper layer is deposited on the surface of PEEK, and the holes are covered.
  • the EDS spectrum shows that the copper content is as high as 92.3 wt%.
  • a control group was set.
  • 1 g of polydopamine-coated polyetheretherketone plate was placed in 50 mL of 16 g/L. Soaked in silver ammonia solution for 1.5h, then dispersed in 100mL electroless copper plating solution for 2h, the formula of electroless copper plating solution is the same as above, the temperature of plating solution is controlled to 30 °C; the control group will be 1g
  • the dopamine-coated polyetheretherketone plate was directly dispersed in 100 mL of electroless copper plating bath for 2 h, and the bath temperature was controlled to 30. °C. The copper plating layer was not observed on the surface of the polyetheretherketone board in the control group and the experimental group, respectively.
  • the conductivity was poor and there was a charging phenomenon.
  • the polyether ether ketone board was covered by the metal copper layer. Activation of silver ammonia solution can increase the rate of copper deposition.
  • the control group was No plating was observed within 2 h, but metal plating was obtained by prolonging the time or increasing the bath temperature.
  • a polyethylene film having an average thickness of 10 ⁇ m and an area of 5 ⁇ 5 cm is immersed in a solution prepared with tris and hydrochloric acid buffer solution.
  • the dopamine solution having a pH of 8.5 and a concentration of 2 g/L was stirred in air for 18 hours and dried at 40 ° C for 5 hours to obtain a polyethylene film coated with polydopamine, and was used.
  • an electroless copper plating solution firstly preparing an aqueous solution containing copper chloride as a main salt, and then adding ethylenediaminetetraacetic acid As a complexing agent, boric acid is a stabilizer, and dimethylamine borane is a reducing agent.
  • concentration of the main salt copper chloride, the complexing agent EDTA, the stabilizer boric acid, and the reducing agent DMAB in the electroless copper plating solution are respectively 50 mM. , 50mM, 0.2M, 0.08M, adjust the pH to 7.0 with sodium hydroxide, take 400mL of the electroless copper plating solution, and immerse the polyethylene film in step (2) in the electroless copper plating solution.
  • a control group was set.
  • 1 g of dopamine-coated polyethylene film was placed in 50 mL of 16 g/L. Soaked in silver ammonia solution for 2h, then dispersed in 100mL electroless copper plating solution for 1.5h, the formula of electroless copper plating solution is the same as above, the temperature of plating solution is controlled to 30 °C; the control group will be 1g
  • the dopamine-coated polyethylene film is directly dispersed in 100mL of electroless copper plating solution for 1.5h, and the bath temperature is controlled to 30. °C.
  • the copper coatings were not observed on the surface of the polyethylene film in the control group and the experimental group, respectively. The conductivity was poor and there was a charge phenomenon.
  • the polyethylene film was covered by the metal copper layer, indicating the activation of the silver ammonia solution. Can increase the speed of copper deposition.
  • the control group was No coating was observed in 1.5, but metal plating was obtained by prolonging the time or increasing the bath temperature.
  • This example compares the advantages of activation with a silver solution relative to direct electroless plating.
  • 1 g of polydopamine coated alumina microspheres were placed. Soak for 50min in 50mL5g/L silver nitrate solution for 30min, then disperse in 100mL electroless copper plating solution for 30min.
  • the formula of electroless copper plating solution is the same as that in Example 1.
  • the temperature of the plating solution is controlled to 30. °C;
  • 1 g of polydopamine-coated alumina microspheres were directly dispersed in 100 mL of electroless copper plating solution for 30 min, and the bath temperature was controlled to 30 °C.
  • the catechol groups on the polydopamine chelate with the silver ions and directly reduce the silver ions into nano-silver particles capable of catalyzing chemistry.
  • the reduction of copper ions in the copper plating solution thus accelerates the deposition rate of the metal.
  • the polydopamine-coated alumina microspheres are directly dispersed in the electroless copper plating solution, the reactivity of the copper ions adsorbed at the solid-liquid interface and the copper ions in the solution is not significantly different, so the metal deposition rate is slow and often Copper ions are present while depositing on the surface of the particles and in the bulk of the solution.
  • the control group was No plating was observed within 30 min, but metal plating was obtained by prolonging the time or increasing the bath temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

一种无钯化学镀铜的方法,首先在溶液中通过多巴胺的自身氧化聚合在基体表面形成聚多巴胺层,然后利用聚多巴胺将银离子还原成纳米银,作为催化中心催化化学镀铜液中铜离子的还原,从而在待镀表面形成完整致密的金属铜层。该方法操作简单,适用待镀材料的范围广,对设备要求低,成本低,镀层牢固,晶粒尺寸小。

Description

一种无钯化学镀铜的方法
技术领域
本发明涉及化学镀领域,具体涉及在无机材料或聚合物材料表面的一种无钯化学镀铜的方法。
背景技术
随着机械电子产品的小型化,机电产品的元器件也逐渐趋向小型化,薄型化的发展趋势,在微型部件的装配中对装配精度要求越来越高,往往涉及到微型部件位置和姿态的调整和无损操作,这对微操作装置提出了很高的要求。目前国内外对于微小部件的操作与装配,主要有基于微夹持器工具的方法,真空吸附法,基于表面张力法等。在微夹持器方面如日本名古屋大学的TAMIO模仿筷子夹持物体的机理开发出一种双指微操作手,实现了对物体的拾取,移动,旋转和释放操作。虽然微夹持器工具夹持方法比较稳定,但是微尺度对于传感器的精度提出了很高的要求,而且夹持操作难免会导致夹持部件的应力集中产生变形,对部件造成一些不良的影响,同时难于夹持一些超薄的零部件。真空吸附法在微装配中应用最为广泛,通过负压的方式来吸持微小部件,但这种方法主要应用于只需提取与释放的简单动作场合,很难实现微小部件的姿态调整,而且对吸附表面有严格要求。真空吸附方法避免了直接夹持对物体带来的挤压,但是机械操作的灵活性降低,只能实现部件的移动操作,而无法实现部件三维空间内姿态的调整。Imperial College London的Richard提出基于表面张力的自适应微型机械装置,装置通过微型部件连接部位处的液体表面张力来控制连接部位的转动角度;东京工业大学的Kaiji Sato提出了一种液体表面张力驱动微小部件自适应定位方法,讨论了自适应运动方法的影响因素和改进方法,这些方法都是将表面张力应用到微小物体的姿态调整中,但只能调整特定的姿态,哈尔滨工业大学荣伟彬团队也利用了液滴的表面张力特性设计了一种运用于微操作的机械手,通过往微管内注入液体,在微管底端吸附微小物体实现了对微小物体的拾取与释放的操作。除了上述的方法之外,微小机器人在微装配中应用也越来越多,但由于***的复杂性和应用环境的限制,目前还没有得到广泛的应用。本研究团队在前人研究的基础之上,在一种液滴微操作机械手及控制方法专利中提出了一种多棒型的液滴微操作机械手,该专利可以实现微小物体的姿态改变,但是存在一些问题,在机构方面,三角形链接板之间间隙过小,电机存在微小振动造成各棒之间的运动相互扰动,对钨丝棒的直线度要求高,加工难度大;在控制方法方面,提出的方法局限于仅能实现姿态控制不能实现对微小部件的目标姿态的精确控制。
化学镀是工业上最常用的在非导体表面镀覆金属的方法,通常包括碱性除油、粗化、电性调整、预浸、敏化、活化、加速、化学镀等步骤。其中,敏华常用的氯化亚锡和活化用的钯对环境污染比较大,而且成本较高,因此无钯化学镀是未来的发展趋势。专利 CN101067206 公开了一种在 ABS 塑料表面无钯活化的处理工艺,利用壳聚糖及其衍生物的成膜性和对镍的螯合吸附作用,使用化学方法在表面还原镍,作为化学镀镍的催化活化中心。
多巴胺能够通过自身氧化聚合在不同类型基体(金属、无机物和高分子)表面形成聚多巴胺层,聚多巴胺层含有大量的邻苯二酚基团和氨基,能够进一步形成功能化层,如接枝其他功能性分子,表面化学镀等。聚多巴胺层不仅易于二次修饰,而且在各种不同类型的基体表面都有很强的黏附强度,是一层多功能,可靠的改性层。在化学镀过程中,聚多巴胺层能够吸附溶液中的金属离子,并具有一定的还原性,能够还原金属银离子和金离子。专利 CN 101812678 A 在玻璃微珠、铝粉和针状硅酸盐表面沉积聚多巴胺层,然后在聚乙烯吡咯烷酮( PVP )存在下分散于银氨溶液中进行预处理,最后将预处理后的粉体分散于含葡萄糖的银氨溶液中,获得表面包覆银的粉体。聚多巴胺的还原性不足以将铜离子还原成单质铜,因为铜离子的氧化性比银离子弱( Cu2+/Cu 电对和 Ag2+/Ag 电对的标准电极电势分别为 +0.342V , +0.798V )。专利 201510553243.2 公开了一种无机颗粒表面化学镀铜的方法,这种方法在外加辅助还原剂二甲胺基甲硼烷的作用下利用聚多巴胺层在无机粒子表面还原铜,但这种方法反应速度慢,而且在颗粒表面沉积金属铜的同时,溶液中往往也有铜粒子析出。本发明首先将包覆聚多巴胺层的待镀材料置于银离子溶液中,利用聚多巴胺的还原性将银离子还原成纳米银颗粒,作为催化中心,然后在化学镀铜液中沉积上一层完整的金属铜层。
发明内容
本发明的目的在于提供一种在包覆有聚多巴胺的无机材料或聚合物材料的表面,以纳米银银颗粒为催化中心催化化学镀铜的方法,从而制备表面金属化的无机材料或聚合物材料。
为解决上述技术问题,本发明是通过以下技术方案实现的。
一种无钯化学镀铜的方法,包括以下步骤:
(1) 将经乙醇或碱性除油剂超声清洗后的待镀材料浸入或分散到pH为6.0-10.0,浓度为0.5g/L-5.0g/L的多巴胺溶液中,聚合反应0.5-48h,得表面包覆了聚多巴胺层的待镀材料;其中多巴胺溶液中的溶剂为三羟甲基氨基甲烷和盐酸配制的缓冲溶液;
(2) 将步骤(1)中表面包覆聚多巴胺的待镀材料浸入或者分散于3-30g/L的含有银离子的溶液中,反应0.5-4h,过滤,用去离子水洗2-6次,置于40-70℃真空干燥箱中干燥3-8h,得到表面沉积纳米银颗粒的待镀材料;
(3) 将步骤(2)得到的表面沉积了纳米银颗粒的待镀材料浸于或者分散于化学镀铜液中,反应0.5-3h,将材料取出,用去离子水洗3-6次,再用无水乙醇洗1-3次,置于40-70℃的真空烘箱中干燥1-8h,得到表面包覆金属铜层的材料。
进一步地,步骤(1)所述的待镀材料为包覆有聚多巴胺层的无机材料或聚合物材料。
进一步地,步骤(2)所述的银离子溶液为含有自由银离子或者络合银离子的溶液,如硝酸银、氟化银、氯酸银和银离子的氨水、EDTA或氰化物络合溶液。
进一步地,步骤(3)所述的化学镀铜液含有氯化铜,乙二胺四乙酸,硼酸,二甲基胺硼烷;乙二胺四乙酸,硼酸和二甲基胺硼烷在化学镀铜液中的物质的量浓度分别为20mM-70mM、20mM-70mM、0.05-0.3M与0.05-0.4M。。
进一步优化地,步骤(1)所述的待镀材料的形貌为以下任意一种:实心球(珠)形,空心球(珠)形,片状,针状,纤维状,不规则状,薄膜状,体状等。
进一步优化地,步骤(1)所述的待镀材料的尺寸为微米级及以上。
进一步优化地,步骤(1)所述的无机材料为以下的任意一种:金属氧化物,非金属氧化物,碳化物,氮化物,硼化物,天然矿物,硅酸盐化合物等,例如氧化铝,二氧化硅,碳纤维,碳化硅,氮化硼,二硼化钛,硅灰石,玻璃等。
进一步优化地,步骤(1)所述的聚合物材料为化学合成聚合物中的任意一种:聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS),聚氯乙烯(PVC),AS或者ABS树脂,聚碳酸酯类(PC),聚酯类(PET, PBT 等),聚丙烯酸酯类(PMMA),尼龙类(PA),聚醚酮类(PEK),聚醚醚酮类(PEEK),聚酰亚胺类(PI),聚醚砜类(PSF),聚苯硫醚类(PPS),聚苯醚类( PPO),聚甲醛类( POM),聚噻吩类,聚乙炔,聚苯胺,聚苯并咪唑,聚二甲基硅氧烷类(PDMS)及氨基树脂类,酚醛树脂类,脲醛树脂类,氰酸树脂等。
与现有的对无机颗粒进行化学镀的技术相比,本发明具有以下有益效果:
(1)利用聚多巴胺对银离子的还原性,在待镀材料表面附着纳米银颗粒作为化学镀铜的催化中心,使化学镀铜过程中的沉铜速度更快,镀液更稳定;
(2)相对于传统化学镀中的钯活化,本发明用纳米银颗粒代替钯对待镀材料表面进行活化减少了常规化学镀繁琐的流程,对环境污染小;
(3)此方法适用于任何尺寸和形貌的无机材料和聚合物材料;
(4)此方法中化学镀铜的成本低于化学镀银。
附图说明
图1a、图1b为实施例1中乙醇洗涤后的氧化铝放大倍数分别为15000倍与30000倍的SEM图;
图1c、图1d为实施例1中聚多巴胺包覆的氧化铝放大倍数分别为15000倍与40000倍的SEM图;
图1e、图1f为实施例1中经纳米银活化后放大倍数分别为15000倍与40000倍的SEM图;
图1g~图1i为实施例1中化学镀铜后的氧化铝的SEM图;
图1j~图1l为实施例1中化学镀铜后的氧化铝经超声5min后的SEM图;
图1m、图1n为实施例1中对照实验的对照组和实验组的SEM图。
图2a为实施例4中未处理的PEEK表面的SEM图;
图2b为实施例4中粗化后的PEEK表面的SEM图;
图2c为实施例4中多巴胺处理后的PEEK表面的SEM图;
图2d为实施例4中沉积银纳米粒子的PEEK表面的SEM图;
图2e为实施例4中沉积银纳米粒子的PEEK表面的EDS谱图;
图2f为实施例4中化学沉铜后的PEEK表面的SEM图;
图2g为实施例4中化学沉铜后的PEEK表面的EDS谱图。
具体实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。
实施例 1
( 1 )将平均粒径 10μm 的氧化铝微球用无水乙醇超声 20min ,过滤,收集滤饼, 110 ℃ 鼓风干燥 4h 后备用;
( 2 )用 tris (三羟甲基氨基甲烷)和盐酸配制 pH 为 8.5 的缓冲溶液,用缓冲溶液配制浓度为 2.7g/L 的多巴胺溶液,取 50mL 多巴胺溶液,加入 2g 预处理后的氧化铝微球,在空气氛围中搅拌 24h ,过滤,收集滤饼, 60 ℃ 真空干燥 4h 后得多巴胺包覆的氧化铝微球,备用;
( 3 )配置 17g/L 用氨水络合的硝酸银溶液,将多巴胺包覆的氧化铝微球分散于用氨水络合的硝酸银溶液中,搅拌 2h ,过滤,用去离子水洗 4 遍,收集滤饼,在 40 ℃ 真空干燥箱中干燥 6h 后得表面沉积了纳米银粒子的氧化铝微球,备用;
( 4 )配制化学镀铜液:首先配制以氯化铜为主盐的水溶液,再加入 乙二胺四乙酸 为络合剂,硼酸为稳定剂,二甲基胺硼烷为还原剂,其中主盐氯化铜、络合剂 EDTA 、稳定剂硼酸、还原剂 DMAB 在化学镀铜液中的浓度分别为 50mM 、 50mM 、 0.2M 、 0.08M ,用氢氧化钠调节 pH 为 7.0 ,取 100mL 配好的化学镀铜液,加入 1g 表面沉积了纳米银粒子的氧化铝微球,搅拌 3h ,过滤,用其离子水洗 3 次,再用无水乙醇洗 2 次,得表面包覆金属铜层的氧化铝微球。
图 1a 、图 1b 为乙醇洗涤后的氧化铝放大倍数分别为 15000 倍与 40000 倍的 SEM 图;图 1c 、图 1d 为聚多巴胺包覆的氧化铝放大倍数分别为 15000 倍与 40000 倍的 SEM 图;对比图 1b 和图 1d ,可以看到,被多巴胺包覆的氧化铝表面粗糙,有颗粒状的物质出现,而且这些颗粒呈现部分埋入底层的状态,说明氧化铝表面成功被聚多巴胺包覆;图 1e 和 1f 中,氧化铝表面有大量随机分散的纳米尺寸的银颗粒出现,说明聚多巴胺层成功将溶液中的银离子还原出来;从图 1g~1i 中可以看出,经化学镀铜后,活化后的氧化铝表面形成完整的金属铜层,铜层致密,晶粒尺寸均匀;从图 1j 和图 1l 中可以看出,化学镀铜后的氧化铝经超声 5 分钟后铜层没有出现脱落,说明金属铜层和基体之间具有很强的黏结性。实施例 2 的短切碳纤维和实施例 3 的中空玻璃微珠的处理效果与实施例 1 类似。
本实施例设置了对照组,实验组中,将 1g 多巴胺包覆的氧化铝微球置于 50mL 17g/L 用氨水络合的硝酸银溶液中浸泡 2h ,然后在 100mL 化学镀铜液中分散 3h ,化学镀铜液的配方同上,镀液温度控制为 30 ℃;对照组则将 1g 多巴胺包覆的氧化铝微球直接分散于 100mL 化学镀铜液中 3h ,镀液温度控制为 30 ℃。分别表征对照组和实验组的氧化铝微球,从 SEM 图可以看到,反应 3h 后,未经用氨水络合的硝酸银溶液活化的氧化铝微球表面没有观察到铜镀层,导电性比较差,有荷电现象;经氨水络合的硝酸银溶液活化后,氧化铝微球都被金属铜层覆盖,说明氨水络合的硝酸银溶液活化能够提高铜沉积的速度。本实验中,对照组在 3h 内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。
实施例 2
( 1 )将平均直径 8μm ,长度为 4mm 的短切碳纤维浸泡于王水溶液中去胶,用去离子水洗 5 遍后 80 ℃ 鼓风干燥;
( 2 )用 tris (三羟甲基氨基甲烷)和盐酸配制 pH 为 8.0 的缓冲溶液,用缓冲溶液配制浓度为 5g/L 的多巴胺溶液,取 50mL 多巴胺溶液,加入 1g 预处理后的短切碳纤维,在空气氛围中搅拌 12h ,过滤,收集滤饼, 70 ℃ 真空干燥 4h 后得多巴胺包覆的短切碳纤维,备用;
( 3 )配置 3g/L 硝酸银溶液,将多巴胺包覆的短切碳纤维置于硝酸银溶液中搅拌 1h ,过滤,用去离子水洗 4 遍,收集滤饼,在 40 ℃ 真空干燥箱中干燥 5h 后备用;
( 4 )配置化学镀铜液,配方同实施例 1 中步骤( 4 ),将表面沉积了纳米银颗粒的碳纤维置于化学镀铜液中搅拌 0.5h ;
( 5 )将步骤( 4 )制得的样品用去离子水清洗 4 次,再用无水乙醇洗 1 次,过滤,收集滤饼, 60 ℃ 真空干燥 5h 。
本实施例设置了对照组,实验组中,将 1g 多巴胺包覆的短切碳纤维置于 50mL 3g/L 硝酸银溶液中浸泡 1h ,然后在 100mL 化学镀铜液中分散 0.5h ,化学镀铜液的配方同上,镀液温度控制为 30 ℃;对照组则将 1g 多巴胺包覆的短切碳纤维直接分散于 100mL 化学镀铜液中 0.5h ,镀液温度控制为 30 ℃。分别表征对照组和实验组的短切碳纤维表面没有观察到铜镀层,导电性比较差,有荷电现象;经硝酸银溶液活化后,短切碳纤维都被金属铜层覆盖,说明硝酸银溶液活化能够提高铜沉积的速度。本实验中,对照组在 0.5h 内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。
实施例 3
( 1 )将平均粒径为 12μm 的空心玻璃微珠置于无水乙醇中超声,静置待其分层,取上层完好的空心玻璃微珠,过滤,收集滤饼, 80 ℃ 鼓风干燥 6h 后备用;
( 2 )用 tris 和盐酸配制 pH 为 8.5 的缓冲溶液,用缓冲溶液配制浓度为 0.5g/L 的多巴胺溶液,取 50mL 多巴胺溶液,加入 1g 预处理后的空心玻璃微珠,在空气氛围中搅拌 24h ,过滤,收集滤饼, 40 ℃ 真空干燥 5h 后得多巴胺包覆的空心玻璃微珠,备用;
( 3 )配置 3g/L 氨水络合的硝酸银溶液,将多巴胺包覆的空心玻璃微珠置于氨水络合的硝酸银溶液中搅拌 4h ,过滤,用去离子水洗 4 遍,收集滤饼,在 50 ℃ 真空干燥箱中干燥 6h 后得表面沉积纳米银颗粒的空心玻璃微珠,备用;
( 4 )配制化学镀铜液:首先配制以氯化铜为主盐的水溶液,再加入 乙二胺四乙酸 为络合剂,硼酸为稳定剂,二甲基胺硼烷为还原剂,其中主盐氯化铜、络合剂 EDTA 、稳定剂硼酸、还原剂 DMAB 在化学镀铜液中的浓度分别为 40mM 、 40mM 、 0.2M 、 0.08M ,用氢氧化钠调节 pH 为 7.0 ,取 100mL 配好的化学镀铜液,加入 1g 表面沉积纳米银颗粒的空心玻璃微珠,搅拌 3h ,得样品;
( 5 )将步骤( 4 )制得的样品用去离子水清洗 4 次,再用无水乙醇洗 1 次,过滤,收集滤饼, 60 ℃ 真空干燥 3h 。
本实施例设置了对照组,实验组中,将 1g 多巴胺包覆的空心玻璃微珠置于 50mL 3g/L 氨水络合的硝酸银溶液中浸泡 4h ,然后在 100mL 化学镀铜液中分散 3h ,化学镀铜液的配方同上,镀液温度控制为 30 ℃;对照组则将 1g 多巴胺包覆的空心玻璃微珠直接分散于 100mL 化学镀铜液中 3h ,镀液温度控制为 30 ℃。分别表征对照组和实验组的空心玻璃微珠表面没有观察到铜镀层,导电性比较差,有荷电现象;经氨水络合的硝酸银溶液活化后,空心玻璃微珠都被金属铜层覆盖,说明氨水络合的硝酸银溶液活化能够提高铜沉积的速度。本实验中,对照组在 3h 内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。
实施例 4
( 1 )将厚度为 1mm ,面积 5x5cm 的聚醚醚酮板( PEEK 板)浸于 60 ℃ 自配碱性除油剂(配方为: NaOH:15g/L, Na2CO3:25g/L, Na3PO4:20g/L, OP-10:4g/L )中 30min ,取出后用去离子水冲洗 5 遍, 70 ℃ 干燥 4h 后备用;
( 2 )将除油清洗后的 PEEK 板浸入 98% 的浓硫酸中 10min ,取出后浸入去离子水中,再更换去离子水清洗 2 次, 80 ℃干燥 4h ,获得表面粗化的 PEEK 板;
( 3 )用 tris 和盐酸配制 pH 为 8.5 的缓冲溶液,用缓冲溶液配制浓度为 2.7g/L 的多巴胺溶液,将 PEEK 板***多巴胺溶液中,在空气中搅拌 48h ,取出后用去离子水冲洗 3 遍, 40 ℃ 真空干燥 5h 后得包覆有聚多巴胺的聚醚醚酮板,备用;
( 4 )将包覆有聚多巴胺的聚醚醚酮板浸入于 16g/L 银氨溶液中 1.5h ,取出后用去离子水漂洗 5 遍,在 40 ℃ 真空干燥箱中干燥 1h 后备用;
( 5 )配制化学镀铜液:首先配制以氯化铜为主盐的水溶液,再加入 乙二胺四乙酸 为络合剂,硼酸为稳定剂,二甲基胺硼烷为还原剂,其中主盐氯化铜、络合剂 EDTA 、稳定剂硼酸、还原剂 DMAB 在化学镀铜液中的浓度分别为 60mM 、 60mM 、 0.2M 、 0.08M ,用氢氧化钠调节 pH 为 7.0 ,取 200mL 配好的化学镀铜液,将步骤( 3 )中的聚醚醚酮板浸入化学镀铜液中 2h ,取出后用去离子水冲洗 4 遍,最后用无水乙醇冲洗一遍,置于 50 ℃ 真空烘箱干燥 1h 。
由 SEM 图可以看到,未处理的 PEEK 表面光滑平整(图 2a ),经粗化处理后,表面生成大量网络状的孔洞(图 2b ),可作为铜层的物理锚合点;用多巴胺修饰后,可以看到 PEEK 表面变得更粗糙,分布着一些颗粒状的凸起物(图 2c );经银溶液活化后,表面出现大量细小的随机分布的颗粒(图 2d ), EDS 谱图(图 2e )出现 Ag L α 和 Ag L β 的峰,因此这些颗粒为纳米银颗粒,银含量为 28.87 wt% ;进一步在化学镀铜液中沉积金属铜后, PEEK 表面沉积金属铜层,孔洞被覆盖(图 2f ), EDS 谱图(图 2g )表明铜含量高达 92.3 wt% 。
本实施例设置了对照组,实验组中,将 1g 聚多巴胺包覆的聚醚醚酮板置于 50mL 16g/L 银氨溶液中浸泡 1.5h ,然后在 100mL 化学镀铜液中分散 2h ,化学镀铜液的配方同上,镀液温度控制为 30 ℃;对照组则将 1g 多巴胺包覆的聚醚醚酮板直接分散于 100mL 化学镀铜液中 2h ,镀液温度控制为 30 ℃。分别表征对照组和实验组的聚醚醚酮板表面没有观察到铜镀层,导电性比较差,有荷电现象;经银氨溶液活化后,聚醚醚酮板都被金属铜层覆盖,说明银氨溶液活化能够提高铜沉积的速度。本实验中,对照组在 2h 内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。
实施例 5
( 1 )将平均厚度为 10μm ,面积 5x5cm 的聚乙烯薄膜浸入用 tris 和盐酸缓冲溶液配制的 pH 为 8.5 ,浓度为 2g/L 的多巴胺溶液中,在空气中搅拌 18h , 40 ℃ 真空干燥 5h 后得包覆有聚多巴胺的聚乙烯薄膜,备用。
( 2 )将包覆有聚多巴胺的聚乙烯薄膜浸入于 16g/L 银氨溶液中,搅拌 2h ,过滤,用去离子水漂洗 5 遍,在 40 ℃ 真空干燥箱中干燥 1h 后备用;
( 3 )配制化学镀铜液:首先配制以氯化铜为主盐的水溶液,再加入 乙二胺四乙酸 为络合剂,硼酸为稳定剂,二甲基胺硼烷为还原剂,其中主盐氯化铜、络合剂 EDTA 、稳定剂硼酸、还原剂 DMAB 在化学镀铜液中的浓度分别为 50mM 、 50mM 、 0.2M 、 0.08M ,用氢氧化钠调节 pH 为 7.0 ,取 400mL 配好的化学镀铜液,将步骤( 2 )中的聚乙烯薄膜浸入化学镀铜液中 1.5h ,取出后用去离子水冲洗 5 次,后用无水乙醇冲洗 1 次,置于 50 ℃ 真空烘箱干燥 1h 。本实施例的聚乙烯薄膜的处理效果与是实施例 4 中 PEEK 板的处理效果相似。
本实施例设置了对照组,实验组中,将 1g 多巴胺包覆的聚乙烯薄膜置于 50mL 16g/L 银氨溶液中浸泡 2h ,然后在 100mL 化学镀铜液中分散 1.5h ,化学镀铜液的配方同上,镀液温度控制为 30 ℃;对照组则将 1g 多巴胺包覆的聚乙烯薄膜直接分散于 100mL 化学镀铜液中 1.5h ,镀液温度控制为 30 ℃。分别表征对照组和实验组的聚乙烯薄膜表面没有观察到铜镀层,导电性比较差,有荷电现象;经银氨溶液活化后,聚乙烯薄膜都被金属铜层覆盖,说明银氨溶液活化能够提高铜沉积的速度。本实验中,对照组在 1.5 内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。
实施例 6
本实施例比较了用银溶液活化相对于直接化学镀的优势,实验组中,将 1g 聚多巴胺包覆的氧化铝微球置于 50mL5g/L 的硝酸银溶液中浸泡 30min ,然后在 100mL 化学镀铜液中分散 30min ,化学镀铜液的配方同实施例 1 ,镀液温度控制为 30 ℃;对照组则将 1g 聚多巴胺包覆的氧化铝微球直接分散于 100mL 化学镀铜液中 30min ,镀液温度控制为 30 ℃。图1m 和 1n 分别为对照组和实验组 SEM 图,可以看到,反应 30min 后,未经硝酸银溶液活化的氧化铝微球表面没有观察到铜镀层,导电性比较差,有荷电现象;经硝酸银活化后,氧化铝微球都被金属铜层覆盖,说明硝酸银活化能够提高铜沉积的速度。当聚多巴胺包覆的氧化铝微球分散于硝酸溶液中时,聚多巴胺上的儿茶酚基团与银离子螯合,并将银离子直接还原成纳米银颗粒,这些纳米银颗粒能够催化化学镀铜液中铜离子的还原,因此使得金属沉积速度加快。而当聚多巴胺包覆的氧化铝微球直接分散在化学镀铜液中时,吸附在固液界面的铜离子和溶液中的铜离子的反应活性差别不显著,因此金属沉积速度慢,而且往往出现铜离子同时在颗粒表面和溶液本体中沉积。本实验中,对照组在 30min内没有观察到镀层,但是延长时间或提高镀液温度可以获得金属镀层。

Claims (7)

  1. 一种无钯化学镀铜的方法,其特征在于,包括以下步骤:
    (1)将经乙醇或碱性除油剂超声清洗后的待镀材料浸入或分散到pH为6.0-10.0,浓度为0.5g/L-5.0g/L的多巴胺溶液中,聚合反应0.5-48h,得表面包覆了聚多巴胺层的待镀材料;其中多巴胺溶液中的溶剂为三羟甲基氨基甲烷和盐酸配制的缓冲溶液;
    (2)将步骤(1)中表面包覆了聚多巴胺层的待镀材料浸入或者分散于3-30g/L的银离子溶液中,反应0.5-4h,过滤,用去离子水洗2-6次,置于40-70℃真空干燥箱中干燥3-8h,得到表面沉积纳米银颗粒的待镀材料;
    (3)将步骤(2)得到的表面沉积纳米银颗粒的待镀材料浸于或者分散于化学镀铜液中,反应0.5-3h,将材料取出,用去离子水洗3-6次,再用无水乙醇洗1-3次,置于40-70℃的真空烘箱中干燥1-8h,得到表面包覆金属铜层的材料。
  2. 根据权利要求1所述的一种无钯化学镀铜的方法,其特征在于,步骤(1)所述待镀材料为无机材料或聚合物材料;待镀材料的形貌为以下的任意一种:实心球形或珠形,空心球形或珠形,片状,针状,纤维状,不规则状,薄膜状或体状;待镀材料的尺寸为微米级及以上。
  3. 根据权利要求2所述的一种无钯化学镀铜的方法,其特征在于,所述的无机材料为以下的任意一种:金属氧化物,非金属氧化物,碳化物,氮化物,硼化物,天然矿物和硅酸盐化合物。
  4. 根据权利要求3所述的一种无钯化学镀铜的方法,其特征在于,所述无机材料为氧化铝,二氧化硅,碳纤维,碳化硅,氮化硼,二硼化钛,硅灰石或玻璃。
  5. 根据权利要求2所述的一种无钯化学镀铜的方法,其特征在于,所述的聚合物材料为化学合成聚合物中的任意一种。
  6. 根据权利要求5所述的一种无钯化学镀铜的方法,其特征在于,所述的聚合物材料为聚乙烯,聚丙烯,聚苯乙烯,聚氯乙烯,AS或者ABS树脂,聚碳酸酯类,聚酯类,聚丙烯酸酯类,尼龙类,聚醚酮类,聚醚醚酮类,聚酰亚胺类,聚醚砜类,聚苯硫醚类,聚苯醚类,聚甲醛类,聚噻吩类,聚乙炔,聚苯胺,聚苯并咪唑,聚二甲基硅氧烷类及氨基树脂类,酚醛树脂类,脲醛树脂类或氰酸树脂。
  7. 根据权利要求1所述的一种无钯化学镀铜的方法,其特征在于,步骤(1)所述碱性除油剂为NaOH、Na2CO3、 Na3PO4和OP-10的混合溶液;其中NaOH、Na2CO3、 Na3PO4和OP-10在碱性除油剂中的浓度分别为15g/L、25g/L、20g/L和4g/L 。
PCT/CN2016/108756 2016-03-27 2016-12-07 一种无钯化学镀铜的方法 WO2017166851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610186281.3A CN105821396A (zh) 2016-03-27 2016-03-27 一种无钯化学镀铜的方法
CN201610186281.3 2016-03-27

Publications (1)

Publication Number Publication Date
WO2017166851A1 true WO2017166851A1 (zh) 2017-10-05

Family

ID=56523783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108756 WO2017166851A1 (zh) 2016-03-27 2016-12-07 一种无钯化学镀铜的方法

Country Status (2)

Country Link
CN (1) CN105821396A (zh)
WO (1) WO2017166851A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155303A (zh) * 2020-01-13 2020-05-15 上海应用技术大学 一种碳纤维镀银的方法
CN111947697A (zh) * 2020-08-24 2020-11-17 重庆理工大学 一种新的光纤布拉格光栅氢气传感器及制作方法
CN112301736A (zh) * 2020-11-18 2021-02-02 沈阳工业大学 一种短碳纤维表面铜-锡复合涂层的制备方法
CN112853409A (zh) * 2020-12-29 2021-05-28 哈尔滨工业大学(深圳) 一种含银镀液及泡沫金属材料的制备方法
CN113322453A (zh) * 2021-05-18 2021-08-31 内蒙古农业大学 一种木质复合材料的制备方法
CN113981679A (zh) * 2021-11-11 2022-01-28 中国科学院兰州化学物理研究所 一种混纺纤维织物复合材料及其制备方法和应用
CN114134489A (zh) * 2021-10-29 2022-03-04 北京卫星制造厂有限公司 一种聚醚醚酮及改性聚醚醚酮表面金属层制备方法
CN114427108A (zh) * 2021-10-12 2022-05-03 江西省纳米技术研究院 一种碳纤维表面连续电镀金属的方法及***
CN114980538A (zh) * 2022-07-13 2022-08-30 中芯(深圳)精密电路科技有限公司 传感器芯片嵌入式立体凹凸形线路板及其制作方法
CN115011954A (zh) * 2022-04-14 2022-09-06 长春工业大学 一种在Mo粉表面化学镀铜的新方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821396A (zh) * 2016-03-27 2016-08-03 华南理工大学 一种无钯化学镀铜的方法
CN107955939A (zh) * 2016-10-14 2018-04-24 中国科学院上海应用物理研究所 一种聚四氟乙烯材料表面无钯化学镀铜方法
CN106903305A (zh) * 2017-04-12 2017-06-30 合肥学院 一种3d打印用金属颗粒/无机纳米颗粒/聚合物复合粉体的制备方法
CN107747214A (zh) * 2017-09-19 2018-03-02 东华大学 一种基于多巴胺前处理的图案化金属纺织品的制备方法
CN108339411B (zh) * 2018-01-15 2020-12-18 浙江师范大学 一种导电Cu/PDA/PVDF复合超滤膜及其制备方法
CN108584903B (zh) * 2018-03-29 2021-05-04 聊城大学 一种碳化聚多巴胺/Ag纳米复合薄膜的制备方法
CN108636130B (zh) * 2018-05-29 2020-12-18 浙江师范大学 聚合物-金属复合分离膜制备方法及应用
CN109265786A (zh) * 2018-06-27 2019-01-25 福建师范大学 一种高导热的uhmwpe复合材料及其制备方法
CN109881484B (zh) * 2019-02-02 2021-07-30 东华大学 一种静电负载的多层涂层纱线或织物材料的制备方法
CN109771669B (zh) * 2019-03-06 2023-01-24 武汉轻工大学 一种多巴胺功能化纳米银粒子的dna释放载体及其制备方法
CN109817987A (zh) * 2019-03-14 2019-05-28 清华大学 一种复合弹性-柔性锂离子电池电极材料及其制备方法
CN110499502A (zh) * 2019-09-24 2019-11-26 青岛科技大学 一种镀铁石墨烯的制备方法
CN110813352B (zh) * 2019-10-31 2022-05-03 润泰化学(泰兴)有限公司 一种Ni2P/NC催化剂的制备方法、Ni2P/NC催化剂及其应用
CN110983763A (zh) * 2019-12-18 2020-04-10 浙江蓝天制衣有限公司 一种适用于服装棉织物的化学镀铜的工艺
CN111020542A (zh) * 2019-12-31 2020-04-17 福州大学 一种利用多巴胺制备铝合金镀银层的方法
CN113088943A (zh) * 2020-01-08 2021-07-09 国家能源投资集团有限责任公司 镀银粉煤灰复合材料及其制备方法和应用
CN111850526A (zh) * 2020-07-27 2020-10-30 中国电子科技集团公司第五十四研究所 一种表面金属涂层原位修复方法
CN112010572A (zh) * 2020-08-17 2020-12-01 泰山玻璃纤维有限公司 一种导电玻璃纤维及其制备方法
CN112264613B (zh) * 2020-10-20 2023-02-03 西安工程大学 一种用于电磁屏蔽的镍包铝粉的制备方法
CN112335680B (zh) * 2020-11-03 2022-01-14 尚蒙科技无锡有限公司 一种无色纳米银铜胶体分散液的制备方法
CN113418917A (zh) * 2021-07-06 2021-09-21 广西博世科环保科技股份有限公司 一种edta滴定测定铝灰中铝含量的分析方法
CN114452954B (zh) * 2022-02-14 2023-01-10 北京大学 一种导热式水蒸气吸附剂及其制备方法和应用
CN115074710A (zh) * 2022-04-26 2022-09-20 珠海鹏辉能源有限公司 一种超疏水结构材料的制备方法
CN114990880B (zh) * 2022-05-26 2024-05-07 惠州学院 一种导电液晶聚芳酯纤维及其制备方法
CN115125525A (zh) * 2022-07-05 2022-09-30 长沙理工大学 一种低成本六方氮化硼表面化学镀镍前无钯活化方法
CN115011008A (zh) * 2022-07-06 2022-09-06 青岛科技大学 一种镀铜微珠-橡胶复合材料及其制备工艺
CN115058751A (zh) * 2022-07-15 2022-09-16 西安稀有金属材料研究院有限公司 一种基于聚多巴胺改性的钛基材料电镀方法
CN115491665B (zh) * 2022-09-16 2023-05-09 西南科技大学 一种超顺排碳纳米管薄膜化学镀铜工艺及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772948A (zh) * 2005-11-17 2006-05-17 上海交通大学 聚酰亚胺薄膜上激光诱导选择性化学镀的方法
US20100021748A1 (en) * 2008-07-25 2010-01-28 Xerox Corporation Metallization process for making fuser members
CN103525154A (zh) * 2013-09-29 2014-01-22 哈尔滨工业大学 一种用于塑料基体化学镀铜前处理的离子金属涂料及工艺
CN105112894A (zh) * 2015-08-31 2015-12-02 华南理工大学 一种通过多巴胺对无机粒子进行表面化学镀铜的方法
CN105821396A (zh) * 2016-03-27 2016-08-03 华南理工大学 一种无钯化学镀铜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022226B2 (ja) * 1994-12-08 2000-03-15 大伸化学株式会社 無電解めっき法における触媒化方法
CN100451166C (zh) * 2005-09-09 2009-01-14 清华大学 化学镀活化工艺和使用该工艺进行金属沉积的化学镀方法
CN1966765B (zh) * 2005-11-17 2012-07-18 中国科学院金属研究所 一种非金属材料化学镀的活化方法及其化学镀
CN103061114B (zh) * 2013-01-15 2014-08-20 深圳市新纶科技股份有限公司 一种电磁屏蔽织物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772948A (zh) * 2005-11-17 2006-05-17 上海交通大学 聚酰亚胺薄膜上激光诱导选择性化学镀的方法
US20100021748A1 (en) * 2008-07-25 2010-01-28 Xerox Corporation Metallization process for making fuser members
CN103525154A (zh) * 2013-09-29 2014-01-22 哈尔滨工业大学 一种用于塑料基体化学镀铜前处理的离子金属涂料及工艺
CN105112894A (zh) * 2015-08-31 2015-12-02 华南理工大学 一种通过多巴胺对无机粒子进行表面化学镀铜的方法
CN105821396A (zh) * 2016-03-27 2016-08-03 华南理工大学 一种无钯化学镀铜的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155303A (zh) * 2020-01-13 2020-05-15 上海应用技术大学 一种碳纤维镀银的方法
CN111947697A (zh) * 2020-08-24 2020-11-17 重庆理工大学 一种新的光纤布拉格光栅氢气传感器及制作方法
CN112301736B (zh) * 2020-11-18 2022-06-07 沈阳工业大学 一种短碳纤维表面铜-锡复合涂层的制备方法
CN112301736A (zh) * 2020-11-18 2021-02-02 沈阳工业大学 一种短碳纤维表面铜-锡复合涂层的制备方法
CN112853409B (zh) * 2020-12-29 2022-07-22 哈尔滨工业大学(深圳) 一种含银镀液及泡沫金属材料的制备方法
CN112853409A (zh) * 2020-12-29 2021-05-28 哈尔滨工业大学(深圳) 一种含银镀液及泡沫金属材料的制备方法
CN113322453A (zh) * 2021-05-18 2021-08-31 内蒙古农业大学 一种木质复合材料的制备方法
CN114427108A (zh) * 2021-10-12 2022-05-03 江西省纳米技术研究院 一种碳纤维表面连续电镀金属的方法及***
CN114427108B (zh) * 2021-10-12 2023-10-27 江西省纳米技术研究院 一种碳纤维表面连续电镀金属的方法及***
CN114134489A (zh) * 2021-10-29 2022-03-04 北京卫星制造厂有限公司 一种聚醚醚酮及改性聚醚醚酮表面金属层制备方法
CN113981679A (zh) * 2021-11-11 2022-01-28 中国科学院兰州化学物理研究所 一种混纺纤维织物复合材料及其制备方法和应用
CN115011954A (zh) * 2022-04-14 2022-09-06 长春工业大学 一种在Mo粉表面化学镀铜的新方法
CN114980538A (zh) * 2022-07-13 2022-08-30 中芯(深圳)精密电路科技有限公司 传感器芯片嵌入式立体凹凸形线路板及其制作方法

Also Published As

Publication number Publication date
CN105821396A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017166851A1 (zh) 一种无钯化学镀铜的方法
CN105112894B (zh) 一种通过多巴胺对无机粒子进行表面化学镀铜的方法
TWI583830B (zh) 用於基材表面金屬化之新穎黏著促進劑
Liao et al. Direct writing patterns for electroless plated copper thin film on plastic substrates
CN1910305B (zh) 化学镀预处理剂、利用它的化学镀方法和化学镀产品
EP1780731B1 (en) Method for fabricating conductive particle
CN109852146A (zh) 一种核壳结构Ag@Cu纳米颗粒导电墨水及其制备方法和用途
EP2644744A1 (en) Method for promoting adhesion between dielectric substrates and metal layers
CN107142730A (zh) 一种碳纤维表面绿色接枝聚醚胺的方法
CN101054663A (zh) 非金属基体化学镀的一种活化工艺
CN101029409A (zh) 印制线路板直接孔金属化的前处理溶液及方法
Zhai et al. Ni–P electroless deposition directly induced by sodium borohydride at interconnected pores of poly (ether ether ketone)/multiwalled carbon nanotubes composites surface
JP4734637B2 (ja) 表面反応性固体,表面反応性固体の製造方法,表面反応性固体を用いた配線基板及び配線基板の製造方法
Cai et al. Fabrication of copper electrode on flexible substrate through Ag+-based inkjet printing and rapid electroless metallization
Sudagar et al. Electroless deposition of nanolayered metallic coatings
Ng et al. Microcontact printing of catalytic nanoparticles for selective electroless deposition of metals on nonplanar polymeric substrates
Chen et al. Tough bonding of metallic layers to hydrocarbon surfaces by depositing Ag films
Jeon et al. Preparation of silver/PMMA beads via the in sito reduction of a silver alkylcarbamate complex
TWI669413B (zh) Metallization method of dielectric substrate surface and dielectric substrate with metal film
JP2005213576A (ja) 無電解めっき前処理剤、それを用いる無電解めっき方法、及び無電解めっき物
Cai et al. Surface metallization of cenospheres and precipitators by electroless plating
Li et al. Water and mildew proof SiO 2 & ZnO/silica sol superhydrophobic composite coating on a circuit board
CN106906469B (zh) 一种微纳嵌套颗粒熔融自结合表面改性设备
JP2004006790A (ja) 金属酸化物パターン形成方法及び金属配線パターン形成方法並びに配線基板
JPH0587593B2 (zh)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896619

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16896619

Country of ref document: EP

Kind code of ref document: A1