WO2017159661A1 - Conveying fixing jig - Google Patents

Conveying fixing jig Download PDF

Info

Publication number
WO2017159661A1
WO2017159661A1 PCT/JP2017/010140 JP2017010140W WO2017159661A1 WO 2017159661 A1 WO2017159661 A1 WO 2017159661A1 JP 2017010140 W JP2017010140 W JP 2017010140W WO 2017159661 A1 WO2017159661 A1 WO 2017159661A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
carbon nanotube
adhesive layer
fixing jig
base material
Prior art date
Application number
PCT/JP2017/010140
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 増田
智昭 市川
前野 洋平
義治 畠山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017046313A external-priority patent/JP2017175126A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780018295.7A priority Critical patent/CN108886011A/en
Priority to KR1020187026540A priority patent/KR20180124870A/en
Priority to US16/084,628 priority patent/US11420832B2/en
Priority to EP17766660.9A priority patent/EP3432350A4/en
Publication of WO2017159661A1 publication Critical patent/WO2017159661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a conveyance fixing jig.
  • the workpieces When transporting materials, intermediate products, products, etc. (hereinafter also referred to as workpieces) in the manufacturing process of semiconductor elements, etc., the workpieces are transported using a transport base such as a movable arm or a movable table. (For example, refer to Patent Documents 1 and 2).
  • a transport base such as a movable arm or a movable table.
  • the member (conveyance fixing jig) on which the workpiece is placed is required to have a strong grip force so that the workpiece does not shift during conveyance.
  • a demand is increasing year by year together with a demand for speeding up the manufacturing process.
  • the conventional conveyance fixing jig has a problem that the workpiece is held by an elastic material such as a resin, and the elastic material is likely to adhere and remain on the workpiece.
  • an elastic material such as a resin has a problem that heat resistance is low, and grip force is reduced under a high temperature environment.
  • the conveyance fixture composed of such a material has a problem that the gripping force is essentially low and the workpiece cannot be sufficiently held even at room temperature.
  • a method of holding the workpiece under a high temperature environment there are a method of suctioning under reduced pressure, a method of fixing the workpiece by the shape of the conveyance fixing jig (for example, chucking, counterboring, etc.) and the like.
  • the method of adsorbing under reduced pressure is effective only under an air atmosphere and cannot be employed under vacuum in a CVD process or the like.
  • the method of fixing the workpiece by the shape of the conveyance fixing jig there is a problem that the workpiece is damaged or particles are generated due to contact between the workpiece and the conveyance fixing jig.
  • An object of the present invention is to provide a conveyance fixing jig which has a high grip force, hardly contaminates a workpiece (conveyed object) and is excellent in heat resistance.
  • the conveyance fixture of the present invention includes a first base material, a carbon nanotube aggregate, and an adhesive layer disposed between the first base material and the carbon nanotube aggregate.
  • 1 substrate and the aggregate of carbon nanotubes are bonded via the adhesive layer, and the ratio of the linear expansion coefficient of the first substrate to the linear expansion coefficient of the adhesive layer (adhesive layer / Base material) is 0.7 to 1.8.
  • the aggregate of carbon nanotubes is formed on a second base material, and the first base material and the second base material are bonded via the adhesive layer.
  • the adhesive constituting the adhesive layer is an inorganic adhesive or a carbon adhesive.
  • the inorganic adhesive is a ceramic adhesive.
  • the elastic modulus change of the adhesive layer is 50% or less when the conveyance fixture is left at 450 ° C. for 1 hour.
  • the adhesive layer has a linear expansion coefficient of 5 ppm / ° C. to 12 ppm / ° C.
  • the material which comprises the said 1st base material is an alumina.
  • the coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50. According to another situation of this invention, the manufacturing method of the said conveyance fixing jig is provided.
  • an adhesive is applied on a first substrate to form an application layer, an aggregate of carbon nanotubes is disposed on the application layer, the application layer is cured, and an adhesive layer is formed. Forming and bonding the first substrate and the aggregate of carbon nanotubes via the adhesive layer, the linear expansion coefficient of the first substrate, and the line of the adhesive layer
  • the ratio of the expansion coefficient is 0.7 to 1.8.
  • the conveyance fixing jig of the present invention includes a carbon nanotube aggregate disposed on the first base material, and the workpiece can be fixed by the carbon nanotube aggregate. High, difficult to contaminate work piece (conveyed object) and excellent in heat resistance.
  • the first base material and the carbon nanotube aggregate are joined via an adhesive layer, and the ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / By setting the base material to a specific range, the aggregate of carbon nanotubes is hardly detached even at high temperatures, and the work piece (conveyed object) can be fixed well.
  • A. Overview Figure 1 of the transport fixture is a schematic cross-sectional view of the transport fixture according to one embodiment of the present invention.
  • the conveyance fixture 100 includes a first base material 10, a carbon nanotube aggregate 31, and an adhesive layer 20 disposed between the first base material 10 and the carbon nanotube aggregate 31.
  • the first base material 10 and the carbon nanotube aggregate 31 are bonded via the adhesive layer 20.
  • the carbon nanotube aggregate 31 may be provided on the entire surface of the first base material 10 or may be provided on a part of the surface of the first base material 10.
  • the carbon nanotube aggregate 31 is composed of a plurality of carbon nanotubes 32.
  • the carbon nanotubes 32 are oriented in the direction of the length L, and the carbon nanotube aggregate 31 is configured as a fibrous columnar structure.
  • the carbon nanotubes 32 are preferably oriented in a substantially vertical direction with respect to the first base material 10.
  • the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 20 is preferably 90 ° ⁇ 20 °, more preferably 90 ° ⁇ 15 °, and further preferably 90 ° ⁇ 10 °. And particularly preferably 90 ° ⁇ 5 °.
  • FIG. 2 is a schematic cross-sectional view of a conveyance fixing jig according to another embodiment of the present invention.
  • the carbon nanotube aggregate 31 is formed on the second base material 33.
  • the adhesive layer 20 is disposed on the side of the second base material 33 where the carbon nanotube aggregate 31 is not formed.
  • the first base material 10 and the second base material 32 are joined via the adhesive layer 20.
  • the conveyance fixing jig of the present invention can be suitably used in, for example, a semiconductor element manufacturing process, an optical member manufacturing process, and the like. More specifically, the conveyance fixing jig of the present invention is a material, an intermediate product, a product, etc. (specifically, a semiconductor material, a wafer) between processes in a semiconductor element manufacturing process or within a predetermined process. , Chips, films, etc.). Moreover, it can be used for transferring a glass substrate or the like between processes in manufacturing an optical member or within a predetermined process.
  • materials, intermediate products, products, and the like that can be transported by the transport apparatus of the present invention may be referred to as workpieces or transported objects.
  • the coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube assembly side surface of the conveyance fixture is preferably 1.0 or more.
  • the upper limit value of the static friction coefficient is preferably 50. If it is such a range, the conveyance fixing jig excellent in grip property can be obtained. In addition, it cannot be overemphasized that the said conveyance fixing jig with a large friction coefficient with respect to the glass surface can express strong grip property also to the mounted object (for example, semiconductor wafer) comprised from materials other than glass.
  • the said 1st base material functions as a conveyance base material at the time of conveying a semiconductor material, an electronic material, etc.
  • Examples of the form of the first base material include a transport arm, a transport table, a transport ring, a transport guide rail, a storage cassette, a hook, and a transport frame.
  • the size and shape of the first substrate can be appropriately selected according to the purpose.
  • the first substrate may be a part of a transfer arm, a transfer table, a transfer ring, a transfer guide rail, a storage cassette, a hook, a transfer frame, and the like.
  • An example of the case where the first substrate is a transfer arm is shown in the schematic perspective view of FIG.
  • a carbon nanotube aggregate 31 is disposed at one end of the first base material 10 as a transport arm.
  • FIG. 1 described above is a cross-sectional view taken along the line II of the conveyance fixing jig 100.
  • any appropriate material can be adopted as the material constituting the first base material.
  • a ceramic material such as alumina or silicon nitride; a heat resistant material such as stainless steel is used as a material constituting the conveyance base material.
  • alumina is used.
  • the linear expansion coefficient of the first base material is preferably 2 ppm / ° C. to 12 ppm / ° C., more preferably 3 ppm / ° C. to 12 ppm / ° C., further preferably 5 ppm / ° C. to 12 ppm / ° C., More preferably, it is 6 ppm / ° C. to 9 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
  • the linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).
  • the volume expansion coefficient of the first base material is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
  • the ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is 0.7 to 1.8.
  • the ratio of the linear expansion coefficients in such a range, the aggregate of carbon nanotubes is hardly detached even at a high temperature (for example, 450 ° C.), and the workpiece (conveyed object) is A conveyance fixing jig that can be fixed satisfactorily can be obtained.
  • the carbon nanotube aggregate By using the carbon nanotube aggregate, it is possible to improve the tackiness and cleanliness at high temperature, and further, as described above, the linear expansion coefficient of the adhesive layer (ratio to the linear expansion coefficient of the first substrate) It is a great achievement of the present invention that the carbon nanotube aggregate, which is an aggregate of fibrous materials, can be satisfactorily bonded to the first base material by appropriately adjusting.
  • the ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is preferably 0.8 to 1.7. If it is such a range, the said effect will become more remarkable.
  • the adhesive layer can be composed of any appropriate adhesive.
  • an inorganic adhesive or a carbon adhesive is preferably used as the adhesive constituting the adhesive layer. These adhesives are preferable in terms of excellent heat resistance. Among these, an inorganic adhesive or a carbon adhesive is preferable.
  • Examples of the inorganic adhesive include ceramic adhesive and silica adhesive.
  • Ceramic adhesive is an adhesive that can exhibit adhesiveness by curing a curing component such as alkali metal silicate, phosphate, and metal alkoxide.
  • a ceramic adhesive containing an alkali metal silicate or phosphate eg, aluminum phosphate is used as the curing component.
  • the silica-based adhesive is an adhesive that can exhibit adhesiveness by curing silica-based curing components such as silicic acid fine particles having silanol groups on the particle surface and organopolysiloxane.
  • silica-based curing component for example, fused silica, ultrafine silica (for example, particle size: 10 nm to 100 nm), silicone-based materials such as organopolysiloxane, silane compound, and organosilicon compound can be used.
  • the ceramic adhesive and the silica-based adhesive may further include a curing agent (curing accelerator) and / or a filler (filler).
  • the ceramic adhesive can also include any suitable dispersion medium.
  • Examples of the curing agent (curing accelerator) used in combination with the alkali metal silicate in the ceramic adhesive include oxides or hydroxides such as zinc, magnesium, and calcium; And phosphates such as aluminum and zinc; borate salts such as calcium, barium and magnesium; and the like.
  • Examples of the curing agent (curing accelerator) used in combination with the above phosphate include oxides or hydroxides such as magnesium, calcium, zinc, and aluminum; silicates such as magnesium and calcium; Group II boric acid Salt; and the like.
  • filler examples include alumina, silica, zirconia, and magnesium oxide.
  • the linear expansion coefficient of the adhesive layer is adjusted by one embodiment, the type and / or addition amount of the filler (filler).
  • any appropriate solvent is used as the dispersion medium.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent is preferable in that it can form a higher heat-resistant adhesive layer.
  • an organic solvent is preferable at the point which is excellent in affinity with a carbon nanotube aggregate.
  • the components in the ceramic adhesive can be appropriately selected according to the material constituting the first substrate, the material constituting the second substrate, the desired heat-resistant temperature, and the like.
  • a metal alkoxide is used as a curing component
  • alumina is used as a filler
  • an alcohol such as methanol is used as a dispersion medium.
  • the carbon-based adhesive includes a binder, a carbon-based filler, and a solvent.
  • the binder include alkali metal silicate, phosphate, metal alkoxide and the like, and alkali metal silicate is preferable.
  • the carbon filler include graphite powder and carbon black, and carbon black is preferable.
  • the solvent include water.
  • the carbon-based adhesive may include a predetermined resin and a carbon-based filler.
  • a resin that becomes non-graphitizable carbon by heating can be used.
  • examples of such a resin include a phenol resin and a polycarbodiimide resin.
  • Examples of the carbon filler include graphite powder and carbon black.
  • the carbon-based adhesive may contain any appropriate solvent. Examples of the solvent contained in the carbon-based adhesive include water, phenol, formaldehyde, ethanol, and the like.
  • the linear expansion coefficient of the adhesive layer is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures.
  • the linear expansion coefficient of an adhesive bond layer is a linear expansion coefficient after hardening an adhesive agent.
  • the volume expansion coefficient of the adhesive layer is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures.
  • the volume expansion coefficient of the adhesive layer is a volume expansion coefficient after the adhesive is cured.
  • the agent layer elastic modulus is preferably 50% or less, more preferably 30% or less.
  • the measurement conditions of the single indentation measurement by a nano indenter are as follows. Apparatus: Hysitron Inc. Made by Triboindenter Working indenter: Berkovich (triangular pyramid type) Measuring method: Single indentation measurement Measuring temperature: 25 ° C (room temperature) Pushing depth setting: 5 ⁇ m
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and further preferably 1.0 ⁇ m to 20 ⁇ m. If it is such a range, a carbon nanotube aggregate or a 2nd base material and a 1st base material can be firmly joined via this adhesive bond layer.
  • Carbon nanotube aggregate The carbon nanotube aggregate is composed of a plurality of carbon nanotubes.
  • the length of the carbon nanotube is preferably 50 ⁇ m to 3000 ⁇ m, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, particularly preferably 400 ⁇ m to 1000 ⁇ m, and most preferably 500 ⁇ m to 1000 ⁇ m. is there. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
  • the aggregate of carbon nanotubes can take, for example, embodiments described later (first embodiment and second embodiment).
  • the first embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the number distribution of the carbon nanotubes The relative frequency of the mode value is 25% or less.
  • the distribution width of the number distribution of carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, and particularly preferably. Is 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown.
  • the number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers.
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and further preferably 5% to 25%. Yes, particularly preferably 10% to 25%, most preferably 15% to 25%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
  • the mode value of the number distribution of carbon nanotubes preferably exists in the number of layers 2 to 10 and more preferably in the number of layers 3 to 10.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
  • the shape of the carbon nanotube it is sufficient that its cross section has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 50 ⁇ m or more, more preferably 100 ⁇ m to 3000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably. Is 500 ⁇ m to 1000 ⁇ m.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • the second embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, and the mode of the number distribution of the carbon nanotubes is present in the number of layers of 10 or less.
  • the relative frequency of the mode value is 30% or more.
  • the distribution width of the number distribution of carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably. Is 3 to 8 layers.
  • the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers.
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferably 30% to 80%, most preferably 30% to 70%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
  • the mode value of the number distribution of carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably in the number of layers.
  • the number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers.
  • the cross section may have any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 50 ⁇ m or more, more preferably 550 ⁇ m to 3000 ⁇ m, still more preferably 600 ⁇ m to 2000 ⁇ m, still more preferably 650 ⁇ m to 1000 ⁇ m, and particularly preferably. Is 700 ⁇ m to 1000 ⁇ m.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • At least a portion including the tip of the carbon nanotube is coated with an inorganic material.
  • the “part including at least the tip” as used herein means a portion including at least the tip of the carbon nanotube, that is, the tip of the carbon nanotube opposite to the first substrate.
  • All of the above carbon nanotubes may be covered with an inorganic material at least at a portion including the tip, or a portion thereof may be covered with an inorganic material at least a portion including the tip.
  • the content ratio of the carbon nanotube in which at least the portion including the tip of the carbon nanotube is coated with an inorganic material is preferably 50 wt% to 100 wt%, more preferably 60 wt% to 100 wt%. % By weight, more preferably 70% by weight to 100% by weight, further preferably 80% by weight to 100% by weight, particularly preferably 90% by weight to 100% by weight, and most preferably substantially 100% by weight. If it is such a range, the conveyance fixing jig
  • the thickness of the coating layer is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, further preferably 7 nm or more, particularly preferably 9 nm or more, and most preferably 10 nm. That's it.
  • the upper limit of the thickness of the coating layer is preferably 50 nm, more preferably 40 nm, still more preferably 30 nm, particularly preferably 20 nm, and most preferably 15 nm. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
  • the length of the coating layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 700 nm, still more preferably 10 nm to 500 nm, particularly preferably 30 nm to 300 nm, and most preferably 50 nm to 100 nm. is there. If it is such a range, the conveyance fixing jig
  • inorganic material arbitrary appropriate inorganic materials can be employ
  • examples of such inorganic materials include SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, Cu, Ag, and Au.
  • Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
  • a method for producing a carbon nanotube aggregate for example, a chemical vapor phase is formed in which a catalyst layer is formed on a flat plate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown.
  • a method of producing an aggregate of carbon nanotubes oriented substantially vertically from a flat plate by a growth method (Chemical Vapor Deposition: CVD method).
  • any appropriate flat plate can be adopted as a flat plate that can be used in the method for producing a carbon nanotube aggregate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate.
  • a thermal CVD apparatus as shown in FIG. 4, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace, and the like can be mentioned.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate.
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the flat plate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a flat plate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is heated up to 450 ° C. and oxidized without forming a hydrophilic film on a flat plate, Al 2 O 3 surfaces having different particle diameters may not be formed easily.
  • Al 2 O 3 surfaces having different particle diameters may not be easily formed.
  • the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles.
  • the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • Any appropriate method can be adopted as a method for forming the catalyst layer.
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a flat plate, and the like can be mentioned.
  • any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • Arbitrary appropriate temperature can be employ
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • the second base material may be a flat plate used when forming the carbon nanotube aggregate. That is, the conveyance fixing jig provided with the second base material is obtained by laminating the flat plate on which the carbon nanotube aggregate is formed as it is on the first base material.
  • the conveyance fixing jig can be manufactured by any appropriate method.
  • the adhesive constituting the adhesive layer is applied on the first substrate, the carbon nanotube aggregate is disposed on the applied layer formed by the application, and then the applied layer is cured. Thereby, an adhesive bond layer can be formed and a conveyance fixing jig can be obtained.
  • the method of arranging the carbon nanotube aggregate on the coating layer include a method of transferring the carbon nanotube aggregate to the coating layer from the flat plate with the carbon nanotube aggregate obtained by the method described in the above section D. It is done.
  • a flat plate in which an adhesive constituting an adhesive layer is applied on a first substrate, and an aggregate of carbon nanotubes is formed on the coating layer formed by the application. ), And then the coating layer is cured to obtain a transport fixture.
  • any appropriate method can be adopted as an adhesive application method.
  • the application method include application using a comma coater or a die coater, application using a dispenser, application using a squeegee, and the like.
  • a method for curing the adhesive application layer may be adopted.
  • a method of curing by heating is preferably used.
  • the curing temperature can be appropriately set according to the type of adhesive.
  • the curing temperature is, for example, 90 ° C. to 400 ° C.
  • when a carbon-based adhesive is used as the adhesive it is baked at a high temperature after curing.
  • the firing temperature is preferably higher than the use temperature of the adhesive, for example, 350 ° C. to 3000 ° C.
  • an Fe thin film was further formed as a catalyst layer (sputtering gas: Ar, gas pressure: 0.75 Pa, growth rate: 0) using a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics). .012 nm / sec, thickness: 1.0 nm). Thereafter, this flat plate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at a moisture content of 700 ppm was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube. Thereafter, the inside of the tube was heated to 765 ° C.
  • Example 1 An adhesive (manufactured by Three Bond, trade name “TB3732”, binder: metal alkoxide, filler: alumina) was applied onto the first base material (manufactured by Ceramics; linear expansion coefficient: 8 ppm / ° C.) using a squeegee. .
  • the carbon nanotube aggregate obtained in Production Example 1 was collected from the flat plate and placed on the adhesive coating layer. At this time, it arrange
  • a weight is placed on the opposite side of the carbon nanotube aggregate from the adhesive coating layer through a clean wafer, and a load of 50 g / cm 2 is applied for 1 minute to bring the carbon nanotube aggregate and the adhesive coating layer into close contact with each other. I let you.
  • the laminate obtained as described above was placed at room temperature for 1 hour and further in an environment of 100 ° C. for 30 minutes to cure the adhesive.
  • a conveyance fixing jig composed of the first base material / adhesive layer (thickness: 10 ⁇ m) / carbon nanotube aggregate was obtained.
  • Example 2 instead of adhesive (trade name “TB3732” manufactured by ThreeBond Co., Ltd., binder: metal alkoxide, filler: alumina), adhesive (trade name “G7716” manufactured by EM Japan Co., Ltd., binder: silicate, filler: carbon) A laminate was obtained in the same manner as in Example 1 except that was used. The laminate is placed at room temperature for 2 hours and further in an environment of 100 ° C. for 2 hours to cure the adhesive, and from the first substrate / adhesive layer (thickness: 10 ⁇ m) / carbon nanotube aggregate A configured transport fixture was obtained.
  • adhesive trade name “TB3732” manufactured by ThreeBond Co., Ltd., binder: metal alkoxide, filler: alumina
  • adhesive trade name “G7716” manufactured by EM Japan Co., Ltd., binder: silicate, filler: carbon
  • Example 3 instead of adhesive (trade name “TB3732”, manufactured by ThreeBond Co., Ltd., binder: metal alkoxide, filler: alumina), adhesive (trade name “RG-57-2-3”, manufactured by Ein Co., Ltd.); binder: organopolysiloxane
  • a laminate was obtained in the same manner as in Example 1 except that filler: silicon dioxide (silica), titanium dioxide (titania), potassium titanate, solvent: ethylene glycol dibutyl ether was used.
  • the laminate is placed in an environment at 80 ° C. for 30 minutes, further in an environment at 150 ° C. for 30 minutes, and further in an environment at 400 ° C. for 2 hours to cure and fire the adhesive.
  • a conveyance fixing jig composed of a material / adhesive layer (thickness: 20 ⁇ m) / carbon nanotube aggregate was obtained.
  • Example 4 The first base material (made of ceramics; linear expansion coefficient: 3 ppm / ° C.) was used instead of the first base material (made of ceramics; linear expansion coefficient: 8 ppm / ° C.), and an adhesive (Three Bond Co., Ltd.) Manufactured, trade name “TB3732”, binder: metal alkoxide, filler: alumina, adhesive (trade name “RG-12-6-2, manufactured by Ein Co., Ltd.); binder: organopolysiloxane, filler: silicon dioxide A laminate was obtained in the same manner as in Example 1 except that (silica), titanium dioxide (titania), solvent: ethylene glycol monobutyl ether) were used.
  • the laminate is placed in an environment at 80 ° C. for 30 minutes, further in an environment at 150 ° C. for 30 minutes, and further in an environment at 400 ° C. for 2 hours to cure and fire the adhesive.
  • a conveyance fixing jig composed of a material / adhesive layer (thickness: 20 ⁇ m) / carbon nanotube aggregate was obtained.
  • thermomechanical analyzer manufactured by Shimadzu Corporation, "TMA-60"

Abstract

Provided is a conveying fixing jig that has excellent grip strength, does not readily contaminate a workpiece (object being conveyed), and has exceptional heat resistance. This conveying fixing jig is provided with a first base member, a carbon nanotube assembly, and an adhesive layer arranged between the first base member and the carbon nanotube assembly. The first base member and the carbon nanotube assembly are bonded with the adhesive layer interposed therebetween, and the ratio of the linear expansion coefficient of the first base member and the linear expansion coefficient of the adhesive layer (adhesive layer/base member) is 0.7-1.8.

Description

搬送固定治具Transport fixture
 本発明は、搬送固定治具に関する。 The present invention relates to a conveyance fixing jig.
 半導体素子等の製造工程において、材料、製造中間品、製品等(以下、被加工物ともいう)を搬送する際、該被加工物を移動アームや移動テーブルなどの搬送基材を用いて搬送することが行われている(例えば、特許文献1、2参照)。このような搬送を行う際には、被加工物が載置される部材(搬送固定治具)には、被加工物が搬送中にずれないような強いグリップ力が要求される。また、このような要求は、製造工程高速化の要求とあいまって、年々、高まっている。 When transporting materials, intermediate products, products, etc. (hereinafter also referred to as workpieces) in the manufacturing process of semiconductor elements, etc., the workpieces are transported using a transport base such as a movable arm or a movable table. (For example, refer to Patent Documents 1 and 2). When performing such conveyance, the member (conveyance fixing jig) on which the workpiece is placed is required to have a strong grip force so that the workpiece does not shift during conveyance. In addition, such a demand is increasing year by year together with a demand for speeding up the manufacturing process.
 しかしながら、従来の搬送固定治具は、樹脂等の弾性材料により被加工物を保持しており、被加工物に該弾性材料が付着残存しやすいという問題がある。また、樹脂等の弾性材料は、耐熱性が低く、高温環境下では、そのグリップ力が低下するという問題がある。 However, the conventional conveyance fixing jig has a problem that the workpiece is held by an elastic material such as a resin, and the elastic material is likely to adhere and remain on the workpiece. In addition, an elastic material such as a resin has a problem that heat resistance is low, and grip force is reduced under a high temperature environment.
 セラミックスなどの材料を搬送固定治具に用いると、被加工物の汚染は防止され、また、グリップ力の温度依存性は低くなる。しかしながら、このような材料から構成される搬送固定治具は、本質的にグリップ力が低く、常温下でも十分に被加工物を保持し得ないという問題がある。 If a material such as ceramics is used for the conveyance fixture, contamination of the workpiece is prevented and the temperature dependence of the grip force is reduced. However, the conveyance fixture composed of such a material has a problem that the gripping force is essentially low and the workpiece cannot be sufficiently held even at room temperature.
 また、高温環境下で被加工物を保持する方法としては、減圧吸着する方法、搬送固定治具の形状により被加工物を固定する方法(例えば、チャッキング、ザグリ固定等)等が挙げられる。しかしながら、減圧吸着する方法は、大気雰囲気下でのみ有効であり、CVD工程等における真空下では採用できない。また、搬送固定治具の形状により被加工物を固定する方法においては、被加工物と搬送固定治具との接触により、被加工物がダメージを受ける、パーティクルが発生する等の問題がある。 Also, as a method of holding the workpiece under a high temperature environment, there are a method of suctioning under reduced pressure, a method of fixing the workpiece by the shape of the conveyance fixing jig (for example, chucking, counterboring, etc.) and the like. However, the method of adsorbing under reduced pressure is effective only under an air atmosphere and cannot be employed under vacuum in a CVD process or the like. Further, in the method of fixing the workpiece by the shape of the conveyance fixing jig, there is a problem that the workpiece is damaged or particles are generated due to contact between the workpiece and the conveyance fixing jig.
特開2001-351961号公報JP 2001-351196 A 特開2013-138152号公報JP 2013-138152 A
 本発明の課題は、グリップ力が高く、被加工物(被搬送物)を汚染しがたく、かつ、耐熱性に優れる搬送固定治具を提供することにある。 An object of the present invention is to provide a conveyance fixing jig which has a high grip force, hardly contaminates a workpiece (conveyed object) and is excellent in heat resistance.
 本発明の搬送固定治具は、第1の基材と、カーボンナノチューブ集合体と、該第1の基材と該カーボンナノチューブ集合体との間に配置された接着剤層とを備え、該第1の基材と該カーボンナノチューブ集合体とが、該接着剤層を介して接合され、該第1の基材の線膨張係数と、該接着剤層の線膨張係数の比(接着剤層/基材)が、0.7~1.8である。
 1つの実施形態においては、上記カーボンナノチューブ集合体が、第2の基材上に形成されており、該第1の基材と該第2の基材とが、該接着剤層を介して接合されている。
 1つの実施形態においては、上記接着剤層を構成する接着剤が、無機系接着剤またはカーボン系接着剤である。
 1つの実施形態においては、上記無機系接着剤が、セラミック接着剤である。
 1つの実施形態においては、上記搬送固定治具を450℃下に1時間放置した際、前記接着剤層の弾性率変化が、50%以下である。
 1つの実施形態においては、上記接着剤層の線膨張係数が、5ppm/℃~12ppm/℃である。
 1つの実施形態においては、上記第1の基材を構成する材料が、アルミナである。
 1つの実施形態においては、上記カーボンナノチューブ集合体表面のガラス表面に対する23℃における静摩擦係数が、1~50である。
 本発明の別の局面によれば、上記搬送固定治具の製造方法が提供される。この製造方法は、第1の基材上に、接着剤を塗布して塗布層を形成し、該塗布層上にカーボンナノチューブ集合体を配置し、該塗布層を硬化させて、接着剤層を形成し、該接着剤層を介して、該第1の基材と該カーボンナノチューブ集合体とを、接合することを含み、該第1の基材の線膨張係数と、該接着剤層の線膨張係数の比(接着剤層/基材)が、0.7~1.8である。
The conveyance fixture of the present invention includes a first base material, a carbon nanotube aggregate, and an adhesive layer disposed between the first base material and the carbon nanotube aggregate. 1 substrate and the aggregate of carbon nanotubes are bonded via the adhesive layer, and the ratio of the linear expansion coefficient of the first substrate to the linear expansion coefficient of the adhesive layer (adhesive layer / Base material) is 0.7 to 1.8.
In one embodiment, the aggregate of carbon nanotubes is formed on a second base material, and the first base material and the second base material are bonded via the adhesive layer. Has been.
In one embodiment, the adhesive constituting the adhesive layer is an inorganic adhesive or a carbon adhesive.
In one embodiment, the inorganic adhesive is a ceramic adhesive.
In one embodiment, the elastic modulus change of the adhesive layer is 50% or less when the conveyance fixture is left at 450 ° C. for 1 hour.
In one embodiment, the adhesive layer has a linear expansion coefficient of 5 ppm / ° C. to 12 ppm / ° C.
In one embodiment, the material which comprises the said 1st base material is an alumina.
In one embodiment, the coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50.
According to another situation of this invention, the manufacturing method of the said conveyance fixing jig is provided. In this manufacturing method, an adhesive is applied on a first substrate to form an application layer, an aggregate of carbon nanotubes is disposed on the application layer, the application layer is cured, and an adhesive layer is formed. Forming and bonding the first substrate and the aggregate of carbon nanotubes via the adhesive layer, the linear expansion coefficient of the first substrate, and the line of the adhesive layer The ratio of the expansion coefficient (adhesive layer / base material) is 0.7 to 1.8.
 本発明によれば、グリップ力が高く、被加工物(被搬送物)を汚染しがたく、かつ、耐熱性に優れる搬送固定治具を提供することができる。より詳細には、本発明の搬送固定治具は、第1の基材上に配置されたカーボンナノチューブ集合体を備え、カーボンナノチューブ集合体により被加工物を固定することができるため、グリップ力が高く、被加工物(被搬送物)を汚染しがたく、かつ、耐熱性に優れる。さらに、第1の基材とカーボンナノチューブ集合体とを接着剤層を介して接合し、該第1の基材の線膨張係数と該接着剤層の線膨張係数との比(接着剤層/基材)を特定範囲とすることにより、高温下においても、カーボンナノチューブ集合体が脱離し難く、被加工物(被搬送物)を良好に固定することができる。 According to the present invention, it is possible to provide a conveyance fixing jig that has a high grip force, hardly contaminates a workpiece (conveyed object), and is excellent in heat resistance. More specifically, the conveyance fixing jig of the present invention includes a carbon nanotube aggregate disposed on the first base material, and the workpiece can be fixed by the carbon nanotube aggregate. High, difficult to contaminate work piece (conveyed object) and excellent in heat resistance. Furthermore, the first base material and the carbon nanotube aggregate are joined via an adhesive layer, and the ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / By setting the base material to a specific range, the aggregate of carbon nanotubes is hardly detached even at high temperatures, and the work piece (conveyed object) can be fixed well.
本発明の1つの実施形態による搬送固定治具の概略断面図である。It is a schematic sectional drawing of the conveyance fixing jig by one Embodiment of this invention. 本発明の別の実施形態による搬送固定治具の概略断面図である。It is a schematic sectional drawing of the conveyance fixing jig by another embodiment of this invention. 本発明の1つの実施形態による搬送固定治具の概略斜視図である。It is a schematic perspective view of the conveyance fixing jig by one Embodiment of this invention. 本発明の1つの実施形態におけるカーボンナノチューブ集合体の製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus of the carbon nanotube aggregate in one embodiment of this invention.
A.搬送固定治具の概要
 図1は、本発明の1つの実施形態による搬送固定治具の概略断面図である。搬送固定治具100は、第1の基材10と、カーボンナノチューブ集合体31と、第1の基材10とカーボンナノチューブ集合体31との間に配置された接着剤層20とを備える。第1の基材10とカーボンナノチューブ集合体31とは、接着剤層20を介して接合されている。カーボンナノチューブ集合体31は、第1の基材10の全面に設けられていてもよく、第1の基材10の一部の面上に設けられていてもよい。
A. Overview Figure 1 of the transport fixture is a schematic cross-sectional view of the transport fixture according to one embodiment of the present invention. The conveyance fixture 100 includes a first base material 10, a carbon nanotube aggregate 31, and an adhesive layer 20 disposed between the first base material 10 and the carbon nanotube aggregate 31. The first base material 10 and the carbon nanotube aggregate 31 are bonded via the adhesive layer 20. The carbon nanotube aggregate 31 may be provided on the entire surface of the first base material 10 or may be provided on a part of the surface of the first base material 10.
 カーボンナノチューブ集合体31は複数のカーボンナノチューブ32から構成される。カーボンナノチューブ32は、長さLの方向に配向しており、カーボンナノチューブ集合体31は、繊維状柱状構造体として構成される。カーボンナノチューブ32は、第1の基材10に対して略垂直方向に配向していることが好ましい。ここで、「略垂直方向」とは、基材20の面に対する角度が、好ましくは90°±20°であり、より好ましくは90°±15°であり、さらに好ましくは90°±10°であり、特に好ましくは90°±5°である。 The carbon nanotube aggregate 31 is composed of a plurality of carbon nanotubes 32. The carbon nanotubes 32 are oriented in the direction of the length L, and the carbon nanotube aggregate 31 is configured as a fibrous columnar structure. The carbon nanotubes 32 are preferably oriented in a substantially vertical direction with respect to the first base material 10. Here, the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 20 is preferably 90 ° ± 20 °, more preferably 90 ° ± 15 °, and further preferably 90 ° ± 10 °. And particularly preferably 90 ° ± 5 °.
 図2は、本発明の別の実施形態による搬送固定治具の概略断面図である。図2の搬送固定治具200においては、カーボンナノチューブ集合体31が第2の基材33上に形成されている。接着剤層20は、第2の基材33のカーボンナノチューブ集合体31が形成されていない側に配置される。第1の基材10と第2の基材32とは、接着剤層20を介して接合されている。 FIG. 2 is a schematic cross-sectional view of a conveyance fixing jig according to another embodiment of the present invention. In the conveyance fixing jig 200 of FIG. 2, the carbon nanotube aggregate 31 is formed on the second base material 33. The adhesive layer 20 is disposed on the side of the second base material 33 where the carbon nanotube aggregate 31 is not formed. The first base material 10 and the second base material 32 are joined via the adhesive layer 20.
 本発明の搬送固定治具は、例えば、半導体素子の製造工程、光学部材の製造工程等に好適に用いられ得る。より詳細には、本発明の搬送固定治具は、半導体素子製造における工程と工程との間、あるいは所定の工程内で、材料、製造中間品、製品等(具体的には、半導体材料、ウエハ、チップ、フィルム等)を移送するために用いられ得る。また、光学部材製造における工程間、あるいは所定の工程内で、ガラス基材等を移送するために用いられ得る。なお、以下、本発明の搬送装置により搬送され得る材料、製造中間品、製品等を、被加工物または被搬送物ということもある。 The conveyance fixing jig of the present invention can be suitably used in, for example, a semiconductor element manufacturing process, an optical member manufacturing process, and the like. More specifically, the conveyance fixing jig of the present invention is a material, an intermediate product, a product, etc. (specifically, a semiconductor material, a wafer) between processes in a semiconductor element manufacturing process or within a predetermined process. , Chips, films, etc.). Moreover, it can be used for transferring a glass substrate or the like between processes in manufacturing an optical member or within a predetermined process. Hereinafter, materials, intermediate products, products, and the like that can be transported by the transport apparatus of the present invention may be referred to as workpieces or transported objects.
 上記搬送固定治具のカーボンナノチューブ集合体側表面の、ガラス表面に対する23℃における静摩擦係数は、好ましくは1.0以上である。上記静摩擦係数の上限値は、好ましくは50である。このような範囲であれば、グリップ性に優れる搬送固定治具を得ることができる。なお、ガラス表面に対する摩擦係数の大きい上記搬送固定治具が、ガラス以外の材料から構成される被載置物(例えば、半導体ウエハ)に対しても、強いグリップ性を発現し得ることは言うまでもない。 The coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube assembly side surface of the conveyance fixture is preferably 1.0 or more. The upper limit value of the static friction coefficient is preferably 50. If it is such a range, the conveyance fixing jig excellent in grip property can be obtained. In addition, it cannot be overemphasized that the said conveyance fixing jig with a large friction coefficient with respect to the glass surface can express strong grip property also to the mounted object (for example, semiconductor wafer) comprised from materials other than glass.
B.第1の基材
 上記第1の基材は、半導体材料、電子材料等を搬送する際の搬送基材として機能する。第1の基材の形態としては、例えば、搬送アーム、搬送テーブル、搬送リング、搬送ガイドレール、収納カセット、フック、搬送フレームなどが挙げられる。第1の基材の大きさや形状は、目的に応じて、適宜選択し得る。第1の基材は、搬送アーム、搬送テーブル、搬送リング、搬送ガイドレール、収納カセット、フック、搬送フレーム等の一部であってもよい。第1の基材が搬送アームである場合の一例を、図3の概略斜視図に示す。図3の搬送固定治具100は、搬送アームとしての第1の基材10の一方端に、カーボンナノチューブ集合体31が配置されている。なお、上述の図1は、搬送固定治具100のI-I線による断面図である。
B. 1st base material The said 1st base material functions as a conveyance base material at the time of conveying a semiconductor material, an electronic material, etc. Examples of the form of the first base material include a transport arm, a transport table, a transport ring, a transport guide rail, a storage cassette, a hook, and a transport frame. The size and shape of the first substrate can be appropriately selected according to the purpose. The first substrate may be a part of a transfer arm, a transfer table, a transfer ring, a transfer guide rail, a storage cassette, a hook, a transfer frame, and the like. An example of the case where the first substrate is a transfer arm is shown in the schematic perspective view of FIG. In the transport fixing jig 100 of FIG. 3, a carbon nanotube aggregate 31 is disposed at one end of the first base material 10 as a transport arm. Note that FIG. 1 described above is a cross-sectional view taken along the line II of the conveyance fixing jig 100.
 上記第1の基材を構成する材料としては、任意の適切な材料が採用され得る。1つの実施形態においては、搬送基材を構成する材料として、アルミナ、窒化珪素等のセラミックス材料;ステンレス鋼等の耐熱性材料が用いられる。好ましくは、アルミナが用いられる。 Any appropriate material can be adopted as the material constituting the first base material. In one embodiment, a ceramic material such as alumina or silicon nitride; a heat resistant material such as stainless steel is used as a material constituting the conveyance base material. Preferably, alumina is used.
 上記第1の基材の線膨張係数は、好ましくは2ppm/℃~12ppm/℃であり、より好ましくは3ppm/℃~12ppm/℃であり、さらに好ましくは5ppm/℃~12ppm/℃であり、さらに好ましくは6ppm/℃~9ppm/℃である。このような範囲であれば、高温下においても、良好に機能し得る搬送固定治具を得ることができる。本明細書において、線膨張係数は、熱機械分析装置(TMA)により測定することができる。 The linear expansion coefficient of the first base material is preferably 2 ppm / ° C. to 12 ppm / ° C., more preferably 3 ppm / ° C. to 12 ppm / ° C., further preferably 5 ppm / ° C. to 12 ppm / ° C., More preferably, it is 6 ppm / ° C. to 9 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained. In this specification, the linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).
 上記第1の基材の体積膨張係数は、好ましくは15ppm/℃~36ppm/℃であり、より好ましくは18ppm/℃~27ppm/℃である。このような範囲であれば、高温下においても、良好に機能し得る搬送固定治具を得ることができる。 The volume expansion coefficient of the first base material is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
 上記第1の基材の線膨張係数と、上記接着剤層の線膨張係数の比(接着剤層/基材)は、0.7~1.8である。本発明においては、当該線膨張係数の比をこのような範囲とすることにより、高温(例えば、450℃)下においても、カーボンナノチューブ集合体が脱離し難く、被加工物(被搬送物)を良好に固定し得る搬送固定治具を得ることができる。カーボンナノチューブ集合体を用いることにより、高温下における粘着性向上およびクリーン性の向上を実現し、さらに、上記のように接着剤層の線膨張係数(第1の基材の線膨張係数に対する比)を適切に調整することにより、繊維状物の集合体であるカーボンナノチューブ集合体を第1の基材に良好に接合し得たことが、本発明の大きな成果である。第1の基材の線膨張係数と、上記接着剤層の線膨張係数の比(接着剤層/基材)は、好ましくは0.8~1.7である。このような範囲であれば、上記効果がより顕著となる。 The ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is 0.7 to 1.8. In the present invention, by setting the ratio of the linear expansion coefficients in such a range, the aggregate of carbon nanotubes is hardly detached even at a high temperature (for example, 450 ° C.), and the workpiece (conveyed object) is A conveyance fixing jig that can be fixed satisfactorily can be obtained. By using the carbon nanotube aggregate, it is possible to improve the tackiness and cleanliness at high temperature, and further, as described above, the linear expansion coefficient of the adhesive layer (ratio to the linear expansion coefficient of the first substrate) It is a great achievement of the present invention that the carbon nanotube aggregate, which is an aggregate of fibrous materials, can be satisfactorily bonded to the first base material by appropriately adjusting. The ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is preferably 0.8 to 1.7. If it is such a range, the said effect will become more remarkable.
C.接着剤層
 上記接着剤層は、任意の適切な接着剤により構成され得る。上記接着剤層を構成する接着剤として、好ましくは、無機系接着剤またはカーボン系接着剤が用いられる。これらの接着剤は、耐熱性に優れる点で好ましい。なかでも好ましくは、無機系接着剤またはカーボン系接着剤である。
C. Adhesive Layer The adhesive layer can be composed of any appropriate adhesive. As the adhesive constituting the adhesive layer, an inorganic adhesive or a carbon adhesive is preferably used. These adhesives are preferable in terms of excellent heat resistance. Among these, an inorganic adhesive or a carbon adhesive is preferable.
 上記無機系接着剤としては、例えば、セラミック接着剤、シリカ系接着剤等が上げられる。 Examples of the inorganic adhesive include ceramic adhesive and silica adhesive.
 セラミック接着剤は、アルカリ金属ケイ酸塩、リン酸塩、金属アルコキシド等の硬化成分を硬化させることにより、接着性を発現し得る接着剤である。好ましくは、硬化成分として、アルカリ金属ケイ酸塩またはリン酸塩(例えば、リン酸アルミニウム)を含むセラミック接着剤が用いられる。 Ceramic adhesive is an adhesive that can exhibit adhesiveness by curing a curing component such as alkali metal silicate, phosphate, and metal alkoxide. Preferably, a ceramic adhesive containing an alkali metal silicate or phosphate (eg, aluminum phosphate) is used as the curing component.
 シリカ系接着剤は、粒子表面にシラノール基を備えた無水ケイ酸の微粒子、オルガノポリシロキサン等のシリカ系硬化成分を硬化させることにより、接着性を発現し得る接着剤である。シリカ系硬化成分としては、例えば、溶融シリカ、超微粒子シリカ(例えば、粒径:10nm~100nm)、オルガノポリシロキサン、シラン化合物、有機珪素化合物などのシリコーン系材料等が用いられ得る。 The silica-based adhesive is an adhesive that can exhibit adhesiveness by curing silica-based curing components such as silicic acid fine particles having silanol groups on the particle surface and organopolysiloxane. As the silica-based curing component, for example, fused silica, ultrafine silica (for example, particle size: 10 nm to 100 nm), silicone-based materials such as organopolysiloxane, silane compound, and organosilicon compound can be used.
 セラミック接着剤およびシリカ系接着剤は、硬化剤(硬化促進剤)および/または充填剤(フィラー)をさらに含み得る。また、セラミック接着剤は、任意の適切な分散媒を含み得る。 The ceramic adhesive and the silica-based adhesive may further include a curing agent (curing accelerator) and / or a filler (filler). The ceramic adhesive can also include any suitable dispersion medium.
 セラミック接着剤において、上記アルカリ金属ケイ酸塩と組み合わせて用いられる硬化剤(硬化促進剤)としては、例えば、亜鉛、マグネシウム、カルシウム等の酸化物または水酸化物;ナトリウム、カリウム、カルシウム等のケイ化物;アルミニウム、亜鉛等のリン酸塩;カルシウム、バリウム、マグネシウム等のホウ酸塩;等が挙げられる。上記リン酸塩と組み合わせて用いられる硬化剤(硬化促進剤)としては、例えば、マグネシウム、カルシウム、亜鉛、アルミニウム等の酸化物または水酸化物;マグネシウム、カルシウム等のケイ酸塩;II族ホウ酸塩;等が挙げられる。 Examples of the curing agent (curing accelerator) used in combination with the alkali metal silicate in the ceramic adhesive include oxides or hydroxides such as zinc, magnesium, and calcium; And phosphates such as aluminum and zinc; borate salts such as calcium, barium and magnesium; and the like. Examples of the curing agent (curing accelerator) used in combination with the above phosphate include oxides or hydroxides such as magnesium, calcium, zinc, and aluminum; silicates such as magnesium and calcium; Group II boric acid Salt; and the like.
 上記充填剤(フィラー)としては、例えば、アルミナ、シリカ、ジルコニア、酸化マグネシウム等が挙げられる。1つの実施形態、充填剤(フィラー)の種類および/または添加量により、接着剤層の線膨張係数が調整される。 Examples of the filler (filler) include alumina, silica, zirconia, and magnesium oxide. The linear expansion coefficient of the adhesive layer is adjusted by one embodiment, the type and / or addition amount of the filler (filler).
 上記分散媒としては、任意の適切な溶媒が用いられる。該溶媒としては、水系溶媒を用いてもよく、有機系溶媒を用いてもよい。水系溶媒は、より高耐熱な接着剤層を形成し得る点で好ましい。また有機系溶媒は、カーボンナノチューブ集合体との親和性に優れる点で好ましい。 Any appropriate solvent is used as the dispersion medium. As the solvent, an aqueous solvent or an organic solvent may be used. The aqueous solvent is preferable in that it can form a higher heat-resistant adhesive layer. Moreover, an organic solvent is preferable at the point which is excellent in affinity with a carbon nanotube aggregate.
 上記セラミック接着剤中の成分は、第1の基材を構成する材料、第2の基材を構成する材料、所望とする耐熱温度等に応じて、適切に選択され得る。1つの実施形態において、第1の基材がアルミナから構成される場合、硬化成分として金属アルコキシドが用いられ、充填剤としてアルミナが用いられ、分散媒としてメタノール等のアルコールが用いられる。 The components in the ceramic adhesive can be appropriately selected according to the material constituting the first substrate, the material constituting the second substrate, the desired heat-resistant temperature, and the like. In one embodiment, when the first substrate is made of alumina, a metal alkoxide is used as a curing component, alumina is used as a filler, and an alcohol such as methanol is used as a dispersion medium.
 1つの実施形態においては、カーボン系接着剤は、バインダと、カーボン系フィラーと、溶媒とを含む。バインダとしては、例えば、アルカリ金属ケイ酸塩、リン酸塩、金属アルコキシド等が挙げられ、好ましくはアルカリ金属ケイ酸塩である。カーボン系フィラーとしては、例えば、グラファイト粉末、カーボンブラック等が挙げられ、好ましくはカーボンブラックである。溶媒としては、例えば、水等が挙げられる。 In one embodiment, the carbon-based adhesive includes a binder, a carbon-based filler, and a solvent. Examples of the binder include alkali metal silicate, phosphate, metal alkoxide and the like, and alkali metal silicate is preferable. Examples of the carbon filler include graphite powder and carbon black, and carbon black is preferable. Examples of the solvent include water.
 別の実施形態においては、カーボン系接着剤は、所定の樹脂と、カーボン系フィラーとを含み得る。当該樹脂としては、加熱により難黒鉛化炭素となる樹脂が用いられ得る。このような樹脂としては、例えば、フェノール樹脂、ポリカルボジイミド樹脂等が挙げられる。カーボン系フィラーとしては、例えば、グラファイト粉末、カーボンブラック等が挙げられる。また、カーボン系接着剤は、任意の適切な溶媒を含み得る。カーボン系接着剤に含まれる溶媒としては、例えば、水、フェノール、ホルムアルデヒド、エタノール等が挙げられる。 In another embodiment, the carbon-based adhesive may include a predetermined resin and a carbon-based filler. As the resin, a resin that becomes non-graphitizable carbon by heating can be used. Examples of such a resin include a phenol resin and a polycarbodiimide resin. Examples of the carbon filler include graphite powder and carbon black. The carbon-based adhesive may contain any appropriate solvent. Examples of the solvent contained in the carbon-based adhesive include water, phenol, formaldehyde, ethanol, and the like.
 上記接着剤層の線膨張係数は、好ましくは5ppm/℃~12ppm/℃であり、より好ましくは6ppm/℃~9ppm/℃である。このような範囲であれば、高温下においても、カーボンナノチューブ集合体が脱離し難い搬送固定治具を得ることができる。なお、接着剤層の線膨張係数とは、接着剤を硬化させた後の線膨張係数である。 The linear expansion coefficient of the adhesive layer is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures. In addition, the linear expansion coefficient of an adhesive bond layer is a linear expansion coefficient after hardening an adhesive agent.
 上記接着剤層の体積膨張係数は、好ましくは15ppm/℃~36ppm/℃であり、より好ましくは18ppm/℃~27ppm/℃である。このような範囲であれば、高温下においても、カーボンナノチューブ集合体が脱離し難い搬送固定治具を得ることができる。なお、接着剤層の体積膨張係数とは、接着剤を硬化させた後の体積膨張係数である。 The volume expansion coefficient of the adhesive layer is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures. The volume expansion coefficient of the adhesive layer is a volume expansion coefficient after the adhesive is cured.
 搬送固定治具を450℃下に1時間放置した際、上記接着剤層の弾性率変化(450℃×1時間後の接着剤層弾性率-接着剤層形成直後(接着剤硬化直後)の接着剤層弾性率)は、好ましくは50%以下であり、より好ましくは30%以下である。このように高温下での特性変化が少ない接着剤層を形成すれば、高温下においても、カーボンナノチューブ集合体が脱離し難い搬送固定治具を得ることができる。なお、弾性率は、ナノインデンターによる単一押し込み測定により、荷重-変位曲線の傾きおよび、押し込み圧子の試料への投影面積から求めることができる。なお、ナノインデンターによる単一押し込み測定の測定条件は、以下のとおりである。
 装置:Hysitron Inc.製 Triboindenter
 使用圧子:Berkovich(三角錐型)
 測定方法:単一押し込み測定
 測定温度:25℃(室温)
 押し込み深さ設定:5μm
Change in elastic modulus of the adhesive layer (adhesive layer elastic modulus after 450 ° C x 1 hour-adhesive layer immediately after formation of adhesive layer (immediately after adhesive curing)) when the conveyance fixture is left at 450 ° C for 1 hour The agent layer elastic modulus) is preferably 50% or less, more preferably 30% or less. By forming an adhesive layer with little change in properties at high temperatures in this way, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures. The elastic modulus can be determined from the slope of the load-displacement curve and the projected area of the indenter on the sample by single indentation measurement using a nanoindenter. In addition, the measurement conditions of the single indentation measurement by a nano indenter are as follows.
Apparatus: Hysitron Inc. Made by Triboindenter
Working indenter: Berkovich (triangular pyramid type)
Measuring method: Single indentation measurement Measuring temperature: 25 ° C (room temperature)
Pushing depth setting: 5μm
 上記接着剤層の厚みは、好ましくは0.1μm~100μmであり、より好ましくは0.5μm~50μmであり、さらに好ましくは1.0μm~20μmである。このような範囲であれば、該接着剤層を介して、カーボンナノチューブ集合体または第2の基材と、第1の基材とを強固に接合することができる。 The thickness of the adhesive layer is preferably 0.1 μm to 100 μm, more preferably 0.5 μm to 50 μm, and further preferably 1.0 μm to 20 μm. If it is such a range, a carbon nanotube aggregate or a 2nd base material and a 1st base material can be firmly joined via this adhesive bond layer.
D.カーボンナノチューブ集合体
 カーボンナノチューブ集合体は、複数のカーボンナノチューブから構成される。
D. Carbon nanotube aggregate The carbon nanotube aggregate is composed of a plurality of carbon nanotubes.
 上記カーボンナノチューブの長さは、好ましくは50μm~3000μmであり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、特に好ましくは400μm~1000μmであり、最も好ましくは500μm~1000μmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The length of the carbon nanotube is preferably 50 μm to 3000 μm, more preferably 200 μm to 2000 μm, still more preferably 300 μm to 1500 μm, particularly preferably 400 μm to 1000 μm, and most preferably 500 μm to 1000 μm. is there. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
 カーボンナノチューブ集合体は、例えば、後述の実施形態(第1の実施形態、第2の実施形態)を取り得る。 The aggregate of carbon nanotubes can take, for example, embodiments described later (first embodiment and second embodiment).
 カーボンナノチューブ集合体の第1の実施形態は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。カーボンナノチューブ集合体がこのような構成を採ることにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The first embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the number distribution of the carbon nanotubes The relative frequency of the mode value is 25% or less. By adopting such a configuration of the carbon nanotube aggregate, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは10層以上であり、より好ましくは10層~30層であり、さらに好ましくは10層~25層であり、特に好ましくは10層~20層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the distribution width of the number distribution of carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, and particularly preferably. Is 10 to 20 layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 The “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown.
 カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。 The number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
 第1の実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers. By adjusting the maximum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers. By adjusting the minimum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, by adjusting the maximum number and the minimum number of the carbon nanotube layers within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. The carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 第1の実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは25%以下であり、より好ましくは1%~25%であり、さらに好ましくは5%~25%であり、特に好ましくは10%~25%であり、最も好ましくは15%~25%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and further preferably 5% to 25%. Yes, particularly preferably 10% to 25%, most preferably 15% to 25%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
 第1の実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the mode value of the number distribution of carbon nanotubes preferably exists in the number of layers 2 to 10 and more preferably in the number of layers 3 to 10. By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
 第1の実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the first embodiment, as the shape of the carbon nanotube, it is sufficient that its cross section has any appropriate shape. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第1の実施形態において、カーボンナノチューブの長さは、好ましくは50μm以上であり、より好ましくは100μm~3000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the length of the carbon nanotube is preferably 50 μm or more, more preferably 100 μm to 3000 μm, still more preferably 300 μm to 1500 μm, still more preferably 400 μm to 1000 μm, and particularly preferably. Is 500 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
 第1の実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
 第1の実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the first embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 カーボンナノチューブ集合体の第2の実施形態は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。カーボンナノチューブ集合体がこのような構成を採ることにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The second embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, and the mode of the number distribution of the carbon nanotubes is present in the number of layers of 10 or less. The relative frequency of the mode value is 30% or more. By adopting such a configuration of the carbon nanotube aggregate, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the distribution width of the number distribution of carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably. Is 3 to 8 layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers. By adjusting the maximum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers. By adjusting the minimum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, by adjusting the maximum number and the minimum number of the carbon nanotube layers within the above ranges, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. The carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 第2の実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは30%以上であり、より好ましくは30%~100%であり、さらに好ましくは30%~90%であり、特に好ましくは30%~80%であり、最も好ましくは30%~70%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferably 30% to 80%, most preferably 30% to 70%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
 第2の実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数10層以下に存在し、より好ましくは層数1層から層数10層に存在し、さらに好ましくは層数2層から層数8層に存在し、特に好ましくは層数2層から層数6層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the mode value of the number distribution of carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably in the number of layers. The number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers. By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
 第2の実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the second embodiment, as the shape of the carbon nanotube, the cross section may have any appropriate shape. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第2の実施形態において、カーボンナノチューブの長さは、好ましくは50μm以上であり、より好ましくは550μm~3000μmであり、さらに好ましくは600μm~2000μmであり、さらに好ましくは650μm~1000μmであり、特に好ましくは700μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the length of the carbon nanotube is preferably 50 μm or more, more preferably 550 μm to 3000 μm, still more preferably 600 μm to 2000 μm, still more preferably 650 μm to 1000 μm, and particularly preferably. Is 700 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
 第2の実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
 第2の実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the second embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 1つの実施形態においては、上記カーボンナノチューブは、その少なくとも先端を含む部分が無機材料によって被覆されている。ここでいう「少なくとも先端を含む部分」とは、カーボンナノチューブの先端、すなわち、カーボンナノチューブの第1の基材とは反対側の先端を少なくとも含む部分を意味する。 In one embodiment, at least a portion including the tip of the carbon nanotube is coated with an inorganic material. The “part including at least the tip” as used herein means a portion including at least the tip of the carbon nanotube, that is, the tip of the carbon nanotube opposite to the first substrate.
 上記カーボンナノチューブは、その全てが、その少なくとも先端を含む部分が無機材料によって被覆されていても良いし、その一部が、その少なくとも先端を含む部分が無機材料によって被覆されていても良い。複数あるカーボンナノチューブの全体の中における、その少なくとも先端を含む部分が無機材料によって被覆されたカーボンナノチューブの含有割合は、好ましくは50重量%~100重量%であり、より好ましくは60重量%~100重量%であり、さらに好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、特に好ましくは90重量%~100重量%であり、最も好ましくは実質的に100重量%である。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具が形成され得る。 All of the above carbon nanotubes may be covered with an inorganic material at least at a portion including the tip, or a portion thereof may be covered with an inorganic material at least a portion including the tip. The content ratio of the carbon nanotube in which at least the portion including the tip of the carbon nanotube is coated with an inorganic material is preferably 50 wt% to 100 wt%, more preferably 60 wt% to 100 wt%. % By weight, more preferably 70% by weight to 100% by weight, further preferably 80% by weight to 100% by weight, particularly preferably 90% by weight to 100% by weight, and most preferably substantially 100% by weight. If it is such a range, the conveyance fixing jig | tool which has high grip force and cannot contaminate a to-be-conveyed object can be formed.
 上記被覆層の厚みは、好ましくは1nm以上であり、より好ましくは3nm以上であり、さらに好ましくは5nm以上であり、さらに好ましくは7nm以上であり、特に好ましくは9nm以上であり、最も好ましくは10nm以上である。上記被覆層の厚みの上限値は、好ましくは50nmであり、より好ましくは40nmであり、さらに好ましくは30nmであり、特に好ましくは20nmであり、最も好ましくは15nmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The thickness of the coating layer is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, further preferably 7 nm or more, particularly preferably 9 nm or more, and most preferably 10 nm. That's it. The upper limit of the thickness of the coating layer is preferably 50 nm, more preferably 40 nm, still more preferably 30 nm, particularly preferably 20 nm, and most preferably 15 nm. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
 上記被覆層の長さは、好ましくは1nm~1000nmであり、より好ましくは5nm~700nmであり、さらに好ましくは10nm~500nmであり、特に好ましくは30nm~300nmであり、最も好ましくは50nm~100nmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具が形成され得る。 The length of the coating layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 700 nm, still more preferably 10 nm to 500 nm, particularly preferably 30 nm to 300 nm, and most preferably 50 nm to 100 nm. is there. If it is such a range, the conveyance fixing jig | tool which has high grip force and cannot contaminate a to-be-conveyed object can be formed.
 上記無機材料としては、本発明の効果を損なわない範囲で任意の適切な無機材料を採用し得る。このような無機材料としては、例えば、SiO、Al、Fe、TiO、MgO、Cu、Ag、Auなどが挙げられる。 As said inorganic material, arbitrary appropriate inorganic materials can be employ | adopted in the range which does not impair the effect of this invention. Examples of such inorganic materials include SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, Cu, Ag, and Au.
 カーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。 Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
 カーボンナノチューブ集合体の製造方法としては、例えば、平板の上に触媒層を形成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、平板から略垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。 As a method for producing a carbon nanotube aggregate, for example, a chemical vapor phase is formed in which a catalyst layer is formed on a flat plate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown. Examples thereof include a method of producing an aggregate of carbon nanotubes oriented substantially vertically from a flat plate by a growth method (Chemical Vapor Deposition: CVD method).
 カーボンナノチューブ集合体の製造方法で用い得る平板としては、任意の適切な平板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。 Any appropriate flat plate can be adopted as a flat plate that can be used in the method for producing a carbon nanotube aggregate. For example, the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned. Examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
 カーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図4に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。 Any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate. For example, as a thermal CVD apparatus, as shown in FIG. 4, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace, and the like can be mentioned. In that case, for example, a heat-resistant quartz tube is preferably used as the reaction vessel.
 カーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。 Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate. For example, metal catalysts, such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
 カーボンナノチューブ集合体を製造する際、必要に応じて、平板と触媒層の中間にアルミナ/親水性膜を設けても良い。 When producing the carbon nanotube aggregate, an alumina / hydrophilic film may be provided between the flat plate and the catalyst layer as necessary.
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、平板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。平板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、平板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。 Any appropriate method can be adopted as a method for producing the alumina / hydrophilic film. For example, it can be obtained by forming a SiO 2 film on a flat plate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C. According to such a manufacturing method, Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed. Even if Al is heated up to 450 ° C. and oxidized without forming a hydrophilic film on a flat plate, Al 2 O 3 surfaces having different particle diameters may not be formed easily. Moreover, even if a hydrophilic film is prepared on a flat plate and Al 2 O 3 is directly deposited, Al 2 O 3 surfaces having different particle diameters may not be easily formed.
 カーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。カーボンナノチューブ集合体の製造に用い得る触媒層の厚みを上記範囲内に調整することにより、形成するカーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 The thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles. By adjusting the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate within the above range, the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を平板上に塗布する方法などが挙げられる。 Any appropriate method can be adopted as a method for forming the catalyst layer. For example, a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a flat plate, and the like can be mentioned.
 カーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。 Any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate. For example, hydrocarbons such as methane, ethylene, acetylene, and benzene; alcohols such as methanol and ethanol;
 カーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。 Arbitrary appropriate temperature can be employ | adopted as manufacturing temperature in manufacture of a carbon nanotube aggregate. For example, in order to form catalyst particles that can sufficiently exhibit the effects of the present invention, the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
E.第2の基材
 上記第2の基材は、カーボンナノチューブ集合体を形成する際に用いた平板であり得る。すなわち、第2の基材を備える搬送固定治具は、カーボンナノチューブ集合体が形成された平板をそのまま、第1の基材に積層して得られる。
E. Second Base Material The second base material may be a flat plate used when forming the carbon nanotube aggregate. That is, the conveyance fixing jig provided with the second base material is obtained by laminating the flat plate on which the carbon nanotube aggregate is formed as it is on the first base material.
F.搬送固定治具の製造方法
 搬送固定治具は、任意の適切な方法により製造され得る。1つの実施形態においては、第1の基板上に接着剤層を構成する接着剤を塗布し、該塗布により形成された塗布層上にカーボンナノチューブ集合体を配置した後、該塗布層を硬化させることにより接着剤層を形成して、搬送固定治具を得ることができる。カーボンナノチューブ集合体を塗布層上に配置する方法としては、例えば、上記D項で説明した方法により得られたカーボンナノチューブ集合体付平板から、カーボンナノチューブ集合体を上記塗布層に転写する方法が挙げられる。
F. Manufacturing method of conveyance fixing jig The conveyance fixing jig can be manufactured by any appropriate method. In one embodiment, the adhesive constituting the adhesive layer is applied on the first substrate, the carbon nanotube aggregate is disposed on the applied layer formed by the application, and then the applied layer is cured. Thereby, an adhesive bond layer can be formed and a conveyance fixing jig can be obtained. Examples of the method of arranging the carbon nanotube aggregate on the coating layer include a method of transferring the carbon nanotube aggregate to the coating layer from the flat plate with the carbon nanotube aggregate obtained by the method described in the above section D. It is done.
 別の実施形態においては、第1の基板上に接着剤層を構成する接着剤を塗布し、該塗布により形成された塗布層上に、カーボンナノチューブ集合体が形成された平板(第2の基板)を積層した後、該塗布層を硬化することにより、搬送固定治具を得ることができる。 In another embodiment, a flat plate (second substrate) in which an adhesive constituting an adhesive layer is applied on a first substrate, and an aggregate of carbon nanotubes is formed on the coating layer formed by the application. ), And then the coating layer is cured to obtain a transport fixture.
 接着剤の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、コンマコーターやダイコーターによる塗布、ディスペンサによる塗布、スキージによる塗布等が挙げられる。 Any appropriate method can be adopted as an adhesive application method. Examples of the application method include application using a comma coater or a die coater, application using a dispenser, application using a squeegee, and the like.
 上記接着剤塗布層の硬化方法としては、任意の適切な方法が採用され得る。加熱により硬化する方法が好ましく用いられる。硬化温度は、接着剤の種類に応じて適切に設定され得る。該硬化温度は、例えば、90℃~400℃である。1つの実施形態において、接着剤としてカーボン系接着剤を用いる場合、硬化後、高温下で焼成する。焼成温度は、該接着剤の使用温度より高いことが好ましく、例えば、350℃~3000℃である。 Any appropriate method may be adopted as a method for curing the adhesive application layer. A method of curing by heating is preferably used. The curing temperature can be appropriately set according to the type of adhesive. The curing temperature is, for example, 90 ° C. to 400 ° C. In one embodiment, when a carbon-based adhesive is used as the adhesive, it is baked at a high temperature after curing. The firing temperature is preferably higher than the use temperature of the adhesive, for example, 350 ° C. to 3000 ° C.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、各種評価や測定は、以下の方法により行った。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. Various evaluations and measurements were performed by the following methods.
[製造例1]カーボンナノチューブ集合体の製造
 シリコン製の平板(バルカー・エフティ社製、厚み700μm)上に、スパッタ装置(芝浦メカトロニクス社製、商品名「CFS-4ES」)により、Al薄膜(到達真空度:8.0×10-4Pa、スパッタガス:Ar、ガス圧:0.50Pa、成長レート:0.12nm/sec、厚み:20nm)を形成した。このAl薄膜上に、さらにスパッタ装置(芝浦メカトロニクス社製、商品名「CFS-4ES」)にてFe薄膜を触媒層(スパッタガス:Ar、ガス圧:0.75Pa、成長レート:0.012nm/sec、厚み:1.0nm)として形成した。
 その後、この平板を30mmφの石英管内に載置し、水分率700ppmに保ったヘリウム/水素(105/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率700ppm)混合ガスを管内に充填させ、60分間放置して、平板上にカーボンナノチューブ集合体を形成させた。
[Production Example 1] Production of aggregate of carbon nanotubes Al 2 O 3 by a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics Co., Ltd.) on a silicon flat plate (manufactured by VALQUA EFT Co., Ltd., thickness 700 μm) A thin film (degree of ultimate vacuum: 8.0 × 10 −4 Pa, sputtering gas: Ar, gas pressure: 0.50 Pa, growth rate: 0.12 nm / sec, thickness: 20 nm) was formed. On this Al 2 O 3 thin film, an Fe thin film was further formed as a catalyst layer (sputtering gas: Ar, gas pressure: 0.75 Pa, growth rate: 0) using a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics). .012 nm / sec, thickness: 1.0 nm).
Thereafter, this flat plate was placed in a 30 mmφ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at a moisture content of 700 ppm was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube. Thereafter, the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 700 ppm) was filled into the tube and left for 60 minutes to form a carbon nanotube aggregate on the flat plate. It was.
[実施例1]
 第1の基材(セラミクス製;線膨張係数:8ppm/℃)上に、スキージを用いて、接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)を塗布した。
 製造例1で得られたカーボンナノチューブ集合体を上記平板から採取し、接着剤塗布層上に配置した。このとき、カーボンナノチューブ集合体の平板に接していた側が、接着剤塗布層に接するように配置した。
 その後、カーボンナノチューブ集合体の接着剤塗布層とは反対側に、清浄なウエハを介して重りをおき、50g/cmの荷重を1分間かけ、カーボンナノチューブ集合体と接着剤塗布層とを密着させた。
 次いで、上記のようにして得られた積層体を、常温下に1時間、さらに、100℃の環境下に30分置いて、接着剤を硬化させた。
 上記のようにして、第1の基材/接着剤層(厚み:10μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Example 1]
An adhesive (manufactured by Three Bond, trade name “TB3732”, binder: metal alkoxide, filler: alumina) was applied onto the first base material (manufactured by Ceramics; linear expansion coefficient: 8 ppm / ° C.) using a squeegee. .
The carbon nanotube aggregate obtained in Production Example 1 was collected from the flat plate and placed on the adhesive coating layer. At this time, it arrange | positioned so that the side which was in contact with the flat plate of the carbon nanotube aggregate may contact the adhesive application layer.
Then, a weight is placed on the opposite side of the carbon nanotube aggregate from the adhesive coating layer through a clean wafer, and a load of 50 g / cm 2 is applied for 1 minute to bring the carbon nanotube aggregate and the adhesive coating layer into close contact with each other. I let you.
Next, the laminate obtained as described above was placed at room temperature for 1 hour and further in an environment of 100 ° C. for 30 minutes to cure the adhesive.
As described above, a conveyance fixing jig composed of the first base material / adhesive layer (thickness: 10 μm) / carbon nanotube aggregate was obtained.
[実施例2]
 接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)に代えて、接着剤(イーエムジャパン社製、商品名「G7716」、バインダ:ケイ酸塩、フィラー:カーボン)を用いたこと以外は、実施例1と同様にして積層体を得た。該積層体を、常温下に2時間、さらに、100℃の環境下に2時間置いて、接着剤を硬化させ、第1の基材/接着剤層(厚み:10μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Example 2]
Instead of adhesive (trade name “TB3732” manufactured by ThreeBond Co., Ltd., binder: metal alkoxide, filler: alumina), adhesive (trade name “G7716” manufactured by EM Japan Co., Ltd., binder: silicate, filler: carbon) A laminate was obtained in the same manner as in Example 1 except that was used. The laminate is placed at room temperature for 2 hours and further in an environment of 100 ° C. for 2 hours to cure the adhesive, and from the first substrate / adhesive layer (thickness: 10 μm) / carbon nanotube aggregate A configured transport fixture was obtained.
[実施例3]
 接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)に代えて、接着剤(アイン社製、商品名「RG-57-2-3」;バインダ:オルガノポリシロキサン、フィラー:二酸化珪素(シリカ)、二酸化チタン(チタニア)、チタン酸カリウム、溶剤:エチレングリコールジブチルエーテル)を用いたこと以外は、実施例1と同様にして積層体を得た。該積層体を、80℃の環境下に30分、さらに、150℃の環境下に30分、さらに、400℃の環境下に2時間置いて、接着剤を硬化・焼成させ、第1の基材/接着剤層(厚み:20μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Example 3]
Instead of adhesive (trade name “TB3732”, manufactured by ThreeBond Co., Ltd., binder: metal alkoxide, filler: alumina), adhesive (trade name “RG-57-2-3”, manufactured by Ein Co., Ltd.); binder: organopolysiloxane A laminate was obtained in the same manner as in Example 1 except that filler: silicon dioxide (silica), titanium dioxide (titania), potassium titanate, solvent: ethylene glycol dibutyl ether was used. The laminate is placed in an environment at 80 ° C. for 30 minutes, further in an environment at 150 ° C. for 30 minutes, and further in an environment at 400 ° C. for 2 hours to cure and fire the adhesive. A conveyance fixing jig composed of a material / adhesive layer (thickness: 20 μm) / carbon nanotube aggregate was obtained.
[実施例4]
 第1の基材(セラミクス製;線膨張係数:8ppm/℃)に代えて、第1の基材(セラミックス製;線膨張係数:3ppm/℃)を用いたこと、および、接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)に代えて、接着剤(アイン社製、商品名「RG-12-6-2」;バインダ:オルガノポリシロキサン、フィラー:二酸化珪素(シリカ)、二酸化チタン(チタニア)、溶剤:エチレングリコールモノブチルエーテル)を用いたこと以外は、実施例1と同様にして積層体を得た。該積層体を、80℃の環境下に30分、さらに、150℃の環境下に30分、さらに、400℃の環境下に2時間置いて、接着剤を硬化・焼成させ、第1の基材/接着剤層(厚み:20μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Example 4]
The first base material (made of ceramics; linear expansion coefficient: 3 ppm / ° C.) was used instead of the first base material (made of ceramics; linear expansion coefficient: 8 ppm / ° C.), and an adhesive (Three Bond Co., Ltd.) Manufactured, trade name “TB3732”, binder: metal alkoxide, filler: alumina, adhesive (trade name “RG-12-6-2, manufactured by Ein Co., Ltd.); binder: organopolysiloxane, filler: silicon dioxide A laminate was obtained in the same manner as in Example 1 except that (silica), titanium dioxide (titania), solvent: ethylene glycol monobutyl ether) were used. The laminate is placed in an environment at 80 ° C. for 30 minutes, further in an environment at 150 ° C. for 30 minutes, and further in an environment at 400 ° C. for 2 hours to cure and fire the adhesive. A conveyance fixing jig composed of a material / adhesive layer (thickness: 20 μm) / carbon nanotube aggregate was obtained.
[比較例1]
 接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)に代えて、接着剤(東亜合成社製、商品名「アロンセラミックC」、バインダ:ケイ酸塩、フィラー:シリカ)を用いたこと以外は、実施例1と同様にして積層体を得た。該積層体を、常温下に24時間、90℃の環境下に2時間、さらに、150℃の環境下に1時間置いて、接着剤を硬化させ、第1の基材/接着剤層(厚み:10μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Comparative Example 1]
Instead of the adhesive (trade name “TB3732” manufactured by Three Bond Co., Ltd., binder: metal alkoxide, filler: alumina), the adhesive (trade name “Aron Ceramic C” manufactured by Toagosei Co., Ltd.), binder: silicate, filler: A laminate was obtained in the same manner as in Example 1 except that (silica) was used. The laminate was placed at room temperature for 24 hours, at 90 ° C. for 2 hours, and further at 150 ° C. for 1 hour to cure the adhesive, and the first substrate / adhesive layer (thickness) : 10 μm) / a conveyance fixing jig composed of an aggregate of carbon nanotubes was obtained.
[比較例2]
 接着剤(スリーボンド社製、商品名「TB3732」、バインダ:金属アルコキシド、フィラー:アルミナ)に代えて、接着剤(東亜合成社製、商品名「アロンセラミックE」、バインダ:ケイ酸塩、フィラー:ジルコニア、シリカ)を用いたこと以外は、実施例1と同様にして積層体を得た。該積層体を、常温下に24時間、90℃の環境下に2時間、さらに、150℃の環境下に1時間置いて、接着剤を硬化させ、第1の基材/接着剤層(厚み:10μm)/カーボンナノチューブ集合体から構成される搬送固定治具を得た。
[Comparative Example 2]
Instead of the adhesive (trade name “TB3732” manufactured by Three Bond Co., Ltd., binder: metal alkoxide, filler: alumina), the adhesive (trade name “Aron Ceramic E” manufactured by Toa Gosei Co., Ltd.), binder: silicate, filler: A laminate was obtained in the same manner as in Example 1 except that zirconia and silica) were used. The laminate was placed at room temperature for 24 hours, at 90 ° C. for 2 hours, and further at 150 ° C. for 1 hour to cure the adhesive, and the first substrate / adhesive layer (thickness) : 10 μm) / a conveyance fixing jig composed of an aggregate of carbon nanotubes was obtained.
[評価]
 実施例および比較例で得られた搬送固定治具を下記の評価に供した。結果を表1に示す。
[Evaluation]
The conveyance fixtures obtained in the examples and comparative examples were subjected to the following evaluation. The results are shown in Table 1.
(1)線膨張係数
 線膨張係数は、熱機械分析装置(TMA)(島津製作所社製、「TMA-60」)により測定した。
(1) Linear expansion coefficient The linear expansion coefficient was measured with a thermomechanical analyzer (TMA) (manufactured by Shimadzu Corporation, "TMA-60").
(2)密着強度
 製造直後の搬送固定治具について、室温(23℃)下で、第1の基材とカーボンナノチューブ集合体との密着強度(引っ張りせん断強度)を測定した。密着強度は、オートグラフ(島津製作所社製、商品名「島津オートグラフAG-120kN」)を用い、引張速度を50mm/分として測定した。
 また、高温処理(450℃で1時間)した後の搬送固定治具について、上記同様の方法により密着強度を測定した。
(2) Adhesion strength About the conveyance fixture immediately after manufacture, the adhesion strength (tensile shear strength) between the first substrate and the carbon nanotube aggregate was measured at room temperature (23 ° C.). The adhesion strength was measured by using an autograph (manufactured by Shimadzu Corporation, trade name “Shimadzu Autograph AG-120 kN”) at a tensile speed of 50 mm / min.
Further, the adhesion strength of the conveyance fixture after the high temperature treatment (450 ° C. for 1 hour) was measured by the same method as described above.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
10   第1の基材
20   接着剤層
31   カーボンナノチューブ集合体
32   カーボンナノチューブ
33   第2の基材
100、200 搬送固定治具
DESCRIPTION OF SYMBOLS 10 First base material 20 Adhesive layer 31 Carbon nanotube aggregate 32 Carbon nanotube 33 Second base material 100, 200 Conveying and fixing jig

Claims (9)

  1.  第1の基材と、カーボンナノチューブ集合体と、該第1の基材と該カーボンナノチューブ集合体との間に配置された接着剤層とを備え、
     該第1の基材と該カーボンナノチューブ集合体とが、該接着剤層を介して接合され、
     該第1の基材の線膨張係数と、該接着剤層の線膨張係数の比(接着剤層/基材)が、0.7~1.8である、
     搬送固定治具。
    A first base, a carbon nanotube aggregate, and an adhesive layer disposed between the first base and the carbon nanotube aggregate,
    The first substrate and the carbon nanotube aggregate are bonded via the adhesive layer,
    The ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is 0.7 to 1.8.
    Transport fixture.
  2.  前記カーボンナノチューブ集合体が、第2の基材上に形成されており、
     該第1の基材と該第2の基材とが、該接着剤層を介して接合されている、
     請求項1に記載の搬送固定治具。
    The aggregate of carbon nanotubes is formed on a second substrate;
    The first substrate and the second substrate are bonded via the adhesive layer,
    The conveyance fixing jig according to claim 1.
  3.  前記接着剤層を構成する接着剤が、無機系接着剤またはカーボン系接着剤である、請求項1または2に記載の搬送固定治具。 The conveyance fixing jig according to claim 1 or 2, wherein the adhesive constituting the adhesive layer is an inorganic adhesive or a carbon adhesive.
  4.  前記無機系接着剤が、セラミック接着剤である、請求項3に記載の搬送固定治具。 The conveyance fixing jig according to claim 3, wherein the inorganic adhesive is a ceramic adhesive.
  5.  前記搬送固定治具を450℃下に1時間放置した際、前記接着剤層の弾性率変化が、50%以下である、請求項1から4のいずれかに記載の搬送固定治具。 The conveyance fixing jig according to any one of claims 1 to 4, wherein the elastic modulus change of the adhesive layer is 50% or less when the conveyance fixing jig is left at 450 ° C for 1 hour.
  6.  前記接着剤層の線膨張係数が、5ppm/℃~12ppm/℃である、請求項1から5のいずれかに記載の搬送固定治具。 The conveyance fixing jig according to any one of claims 1 to 5, wherein the adhesive layer has a linear expansion coefficient of 5 ppm / ° C to 12 ppm / ° C.
  7.  前記第1の基材を構成する材料が、アルミナである、請求項1から6のいずれかに記載の搬送固定治具。 The conveyance fixing jig according to any one of claims 1 to 6, wherein a material constituting the first base material is alumina.
  8.  前記カーボンナノチューブ集合体表面のガラス表面に対する23℃における静摩擦係数が、1~50である、請求項1から7のいずれかに記載の搬送固定治具。 The conveyance fixture according to any one of claims 1 to 7, wherein a coefficient of static friction at 23 ° C with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50.
  9.  第1の基材上に、接着剤を塗布して塗布層を形成し、
     該塗布層上にカーボンナノチューブ集合体を配置し、
     該塗布層を硬化させて、接着剤層を形成し、
     該接着剤層を介して、該第1の基材と該カーボンナノチューブ集合体とを、接合することを含み、
     該第1の基材の線膨張係数と、該接着剤層の線膨張係数の比(接着剤層/基材)が、0.7~1.8である、
     請求項1から8のいずれかに記載の搬送固定治具の製造方法。
    On the first substrate, an adhesive is applied to form a coating layer,
    Disposing a carbon nanotube aggregate on the coating layer,
    The coating layer is cured to form an adhesive layer;
    Bonding the first substrate and the aggregate of carbon nanotubes via the adhesive layer,
    The ratio of the linear expansion coefficient of the first base material to the linear expansion coefficient of the adhesive layer (adhesive layer / base material) is 0.7 to 1.8.
    The manufacturing method of the conveyance fixing jig in any one of Claim 1 to 8.
PCT/JP2017/010140 2016-03-18 2017-03-14 Conveying fixing jig WO2017159661A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018295.7A CN108886011A (en) 2016-03-18 2017-03-14 Convey stationary fixture
KR1020187026540A KR20180124870A (en) 2016-03-18 2017-03-14 Conveyance fixing jig
US16/084,628 US11420832B2 (en) 2016-03-18 2017-03-14 Transport fixing jig
EP17766660.9A EP3432350A4 (en) 2016-03-18 2017-03-14 Conveying fixing jig

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-055245 2016-03-18
JP2016055245 2016-03-18
JP2017-046313 2017-03-10
JP2017046313A JP2017175126A (en) 2016-03-18 2017-03-10 Conveying fixing jig

Publications (1)

Publication Number Publication Date
WO2017159661A1 true WO2017159661A1 (en) 2017-09-21

Family

ID=59850290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010140 WO2017159661A1 (en) 2016-03-18 2017-03-14 Conveying fixing jig

Country Status (1)

Country Link
WO (1) WO2017159661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390525B2 (en) * 2016-10-03 2022-07-19 Nitto Denko Corporation Carbon nanotube aggregate comprising a non-aligned portion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
JP2013208881A (en) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd Graphene layer-containing multilayer film, method of producing the same, and adhesive graphene film/metal foil laminate
JP2014116562A (en) * 2012-12-12 2014-06-26 Hitachi High-Technologies Corp Semiconductor production equipment and method of eliminating static of substrate of the same
WO2016027600A1 (en) * 2014-08-21 2016-02-25 日東電工株式会社 Semiconductor carrying member and semiconductor mounting member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (en) * 2002-10-03 2004-04-22 Hitachi Zosen Corp Carbon nanotube conductive material and its manufacturing method
JP2013208881A (en) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd Graphene layer-containing multilayer film, method of producing the same, and adhesive graphene film/metal foil laminate
JP2014116562A (en) * 2012-12-12 2014-06-26 Hitachi High-Technologies Corp Semiconductor production equipment and method of eliminating static of substrate of the same
WO2016027600A1 (en) * 2014-08-21 2016-02-25 日東電工株式会社 Semiconductor carrying member and semiconductor mounting member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432350A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390525B2 (en) * 2016-10-03 2022-07-19 Nitto Denko Corporation Carbon nanotube aggregate comprising a non-aligned portion

Similar Documents

Publication Publication Date Title
JP2017175126A (en) Conveying fixing jig
WO2017026336A1 (en) Conveying device
KR102449288B1 (en) adhesive structure
WO2016027803A1 (en) Semiconductor transport member and semiconductor carrying member
WO2017086254A1 (en) Component gripping tool
WO2018173456A1 (en) Conveying and fixing jig
KR102477740B1 (en) Carbon nanotube aggregate
WO2017159661A1 (en) Conveying fixing jig
WO2016027600A1 (en) Semiconductor carrying member and semiconductor mounting member
WO2016027804A1 (en) Semiconductor transport member and semiconductor carrying member
JP6616194B2 (en) Placement member
WO2017122622A1 (en) Mounting member
WO2016027601A1 (en) Semiconductor carrying member and semiconductor mounting member
JP6914386B2 (en) Mounting member
WO2017122619A1 (en) Mounting member
WO2017122620A1 (en) Method for producing mounting member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026540

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766660

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766660

Country of ref document: EP

Kind code of ref document: A1