WO2018173456A1 - Conveying and fixing jig - Google Patents

Conveying and fixing jig Download PDF

Info

Publication number
WO2018173456A1
WO2018173456A1 PCT/JP2018/001915 JP2018001915W WO2018173456A1 WO 2018173456 A1 WO2018173456 A1 WO 2018173456A1 JP 2018001915 W JP2018001915 W JP 2018001915W WO 2018173456 A1 WO2018173456 A1 WO 2018173456A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
fixing jig
aggregate
carbon nanotubes
carbon
Prior art date
Application number
PCT/JP2018/001915
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 増田
義治 畠山
前野 洋平
智昭 市川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2018173456A1 publication Critical patent/WO2018173456A1/en

Links

Images

Definitions

  • the present invention relates to a conveyance fixing jig.
  • a transport base such as a movable arm or a movable table.
  • a member (conveying jig) on which the workpiece is placed is required to have a strong grip force so that the workpiece does not shift during conveyance.
  • a demand is increasing year by year together with a demand for speeding up the manufacturing process.
  • the conventional conveying jig has a problem that the workpiece is held by an elastic material such as resin, and the elastic material is likely to adhere and remain on the workpiece.
  • an elastic material such as a resin has a problem that heat resistance is low, and grip force is reduced under a high temperature environment.
  • the conveying jig When materials such as ceramics are used for the conveying jig, contamination of the workpiece is prevented and the temperature dependence of the grip force is reduced.
  • the conveying jig made of such a material has a problem that the gripping force is essentially low and the workpiece cannot be sufficiently held even at room temperature.
  • a method of holding the workpiece under a high temperature environment there are a method of suctioning under reduced pressure, a method of fixing the workpiece by the shape of the conveying jig (for example, chucking, counterboring, etc.) and the like.
  • the method of adsorbing under reduced pressure is effective only in an air atmosphere and cannot be employed under a vacuum in a CVD process or the like, and a desired grip force cannot be obtained.
  • the method of fixing the workpiece by the shape of the conveying jig there is a problem that the workpiece is damaged or particles are generated due to the contact between the workpiece and the conveying jig.
  • the conventional transport jig has low cleanliness and grip strength, and in particular, it does not reach the performance required for high-speed transport in the manufacturing process of semiconductor elements and the like.
  • An object of the present invention is to provide a conveyance fixing jig which has a high grip force and can be used for high-speed conveyance, is difficult to contaminate an object to be conveyed, and has excellent heat resistance.
  • the transport fixing jig of the present invention is a transport fixing jig for transporting an object to be transported having an area of 40 cm 2 or more and a weight of 5 g or more, on the first base material and the first base material
  • the carbon nanotube aggregate is provided, and when the object to be transported is placed, a load applied to the carbon nanotube aggregate is 0.05 kg / cm 2 or more.
  • three or more carbon nanotube aggregates are provided on the first base material.
  • the total area of the carbon nanotube aggregate is 30 mm 2 to 240 mm 2 .
  • the area per carbon nanotube aggregate is 8 mm 2 to 60 mm 2 .
  • a true contact area between the object to be conveyed and the carbon nanotube when a 128 g object to be conveyed is placed on the conveyance fixing jig is 0.08 cm 2 or more.
  • the coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50.
  • the aggregate of carbon nanotubes includes a carbon nanotube and a second substrate.
  • the present invention it is possible to provide a conveyance fixing jig that has a high grip force, hardly pollutes the object to be conveyed, and is excellent in heat resistance.
  • the conveyance fixture of the present invention is particularly useful in that the grip force is high even at high temperatures.
  • A. Overview Figure 1 of the transport fixture is a schematic cross-sectional view of the transport fixture according to one embodiment of the present invention.
  • the conveyance fixing jig 100 includes a first base material 10 and a carbon nanotube aggregate 20 provided on the first base material 10.
  • an adhesive layer 30 is disposed between the first substrate 10 and the carbon nanotube aggregate 20 as shown in the illustrated example.
  • the first substrate 10 and the carbon nanotube aggregate 20 are bonded via the adhesive layer 30.
  • the carbon nanotube aggregate 20 is composed of a plurality of carbon nanotubes 21.
  • the carbon nanotubes 21 are oriented in the direction of the length L, and the carbon nanotube aggregate 20 is configured as a fibrous columnar structure.
  • the carbon nanotubes 21 are preferably oriented in a substantially vertical direction with respect to the first base material 10.
  • the “substantially vertical direction” means that the angle with respect to the surface of the first base material 10 is preferably 90 ° ⁇ 20 °, more preferably 90 ° ⁇ 15 °, and further preferably 90 ° ⁇ . 10 °, particularly preferably 90 ° ⁇ 5 °.
  • the conveyance fixture of the present invention can be used when holding and conveying an object having an area of 40 cm 2 or more and a weight of 5 g or more.
  • the “area” is an area in plan view when viewed from the upper surface of the first base material on which the carbon nanotube aggregate is disposed (when viewed from the upper side of the drawing in FIG. 1). is there. Therefore, the area of the object to be conveyed means the area of the surface facing the first base material and the carbon nanotube aggregate during conveyance.
  • the area of the conveyed object is preferably 40 cm 2 to 3000 cm 2 , more preferably 75 cm 2 to 2000 cm 2 , and further preferably 300 cm 2 to 1600 cm 2 .
  • the weight of the conveyed product is preferably 5 g to 600 g, more preferably 10 g to 500 g, still more preferably 40 g to 400 g, and particularly preferably 50 g to 300 g.
  • the conveyance fixing jig of the present invention can hold an object to be conveyed due to the adhesiveness of the carbon nanotube aggregate. If the carbon nanotube aggregate is used, it is possible to obtain a conveyance fixing jig that hardly contaminates the object to be conveyed.
  • the conveyance fixing jig of the present invention can be suitably used in, for example, a semiconductor element manufacturing process, an optical member manufacturing process, and the like. More specifically, the conveyance fixing jig of the present invention is a material, an intermediate product, a product, etc. (specifically, a semiconductor material, a wafer) between processes in a semiconductor element manufacturing process or within a predetermined process.
  • Chips, electronic components, films, etc. can be used to transport a conveyed object. Further, it can be used for transferring a transported object such as a glass substrate between processes in manufacturing an optical member or within a predetermined process. Moreover, the form which can hold
  • the carbon nanotube aggregate 20 is provided on a part of the surface of the first base material 10.
  • a plurality of carbon nanotube aggregates 20 are provided on a part of the surface of the first base material 10.
  • the aggregates of carbon nanotubes are preferably arranged so that the object to be conveyed can be held substantially parallel to the surface of the first substrate.
  • three or more preferably Is preferably provided with aggregates of carbon nanotubes of 3 to 8, more preferably 3 to 5, particularly preferably 4.
  • the carbon nanotube aggregates are arranged so that the object to be conveyed can contact all the carbon nanotube aggregates.
  • the area per carbon nanotube aggregate is preferably 8 mm 2 to 60 mm 2 , more preferably 9 mm 2 to 50 mm 2 , still more preferably 9 mm 2 to 40 mm 2 , and particularly preferably 9 mm. 2 to 30 mm 2 , most preferably 9 mm 2 to 20 mm 2 .
  • the area here is a planar view area when viewed from the first base material surface on which the carbon nanotube aggregate is disposed (when viewed from the upper side in FIG. 1) as described above. .
  • the total area (apparent area) of the carbon nanotube aggregate is preferably 30 mm 2 to 240 mm 2 , more preferably 35 mm 2 to 200 mm 2 , still more preferably 35 mm 2 to 160 mm 2 , and particularly preferably 35 mm 2. ⁇ 120 mm 2 , most preferably 35 mm 2 ⁇ 80 mm 2 .
  • the carbon nanotube aggregate is preferably configured so that the load applied to the carbon nanotube aggregate when the object to be transported is placed is 0.05 kg / cm 2 or more, and 0.06 kg / cm 2 to More preferably, it is configured to be 1 kg / cm 2 , more preferably 0.07 kg / cm 2 to 0.7 kg / cm 2, and 0.08 kg / cm 2 to 0.08 kg / cm 2 . more preferably configured such that 0.6 kg / cm 2, particularly preferred to be configured to be 0.09kg / cm 2 ⁇ 0.5kg / cm 2, 0.15kg / cm Most preferably, it is configured to be 2 to 0.4 kg / cm 2 .
  • the said load is calculated
  • the load applied to the carbon nanotube aggregate is configured to be 0.05 kg / cm 2 or more, so that the object to be conveyed is held with a very high grip force.
  • the aggregate of carbon nanotubes is an aggregate of fibrous carbon nanotubes, a part that comes into contact with the carbon nanotubes and a part that does not come into contact with the carbon nanotubes are generated in the transported object placed on the transport fixing jig.
  • the carbon nanotube aggregate by configuring the carbon nanotube aggregate so that a load of a specific value or more is applied, the contact rate between the transported object and the carbon nanotube when the transported object is placed increases, and the above effect is achieved. Can be obtained.
  • Such a conveyance fixing jig can be obtained, for example, by disposing a carbon nanotube aggregate having an area sufficiently smaller than the area of the object to be conveyed on the first substrate.
  • the carbon nanotube aggregate that constitutes the conveyance fixture of the present invention is easily deformed in the length direction, and the contact rate increase when placing the object to be conveyed becomes remarkable, and the area of the carbon nanotube aggregate itself is reduced. In some cases, the effect of increased load becomes dominant. On the other hand, if the load exceeds a predetermined value, the effect of improving the grip force is not seen even if the load is increased further (the grip force is saturated).
  • the area of the aggregate of carbon nanotubes is preferably a predetermined area or more (for example, as described above, the total area is 30 mm 2 or more).
  • the conveyance fixing jig of the present invention having excellent grip strength not only exhibits excellent grip strength at room temperature, but also at high temperatures (for example, 400 ° C. or more, preferably 500 ° C. to 1000 ° C., more An excellent grip force can be exhibited even at 500 ° C. to 700 ° C.). Since the carbon nanotube itself has heat resistance and can exhibit a high grip force even at high temperatures due to the above configuration, the conveyance fixture of the present invention is used at high temperatures, particularly at high temperatures. It is useful for high-speed transport in
  • the true contact area between the object to be conveyed and the carbon nanotube when a 128 g object to be conveyed is placed on the conveyance fixing jig of the present invention is preferably 0.08 cm 2 or more, more preferably 0.09 cm 2 or more. Yes, more preferably 0.1 cm 2 or more, more preferably 0.11 cm 2 or more. If it is such a range, the conveyance fixing jig especially excellent in grip force can be obtained.
  • the upper limit of the true contact area is preferably 70% or less, more preferably 50% or less, with respect to the total area (apparent area) of the carbon nanotube aggregate.
  • the true contact area refers to a load placed by one object to be placed on the aggregate of all the carbon nanotubes constituting the carrier fixing jig in an environment of 23 ° C. Means the area of the part where the object to be transported and the carbon nanotube come into contact with each other.
  • the true contact area is determined by measuring the contact ratio between the transported object and the carbon nanotubes by cross-sectional observation using an SEM (the length of the contact portion / the measured length of the carbon nanotube aggregate surface), and the contact ratio and the total area of the carbon nanotube aggregate. And the product of
  • the static friction coefficient at 23 ° C. with respect to the silicon wafer on the carbon nanotube assembly side surface of the conveyance fixture is preferably 1.0 or more.
  • the upper limit value of the static friction coefficient is preferably 50. If it is such a range, the conveyance fixing jig excellent in grip property can be obtained. In addition, it cannot be overemphasized that the said conveyance fixing jig with a large friction coefficient with respect to the glass surface can express strong grip property also to the mounted object (for example, semiconductor wafer) comprised from materials other than glass.
  • the static friction coefficient at 300 ° C. with respect to the glass surface of the carbon nanotube assembly side surface of the conveyance fixing jig is preferably 1.0 or more.
  • the upper limit value of the static friction coefficient is preferably 50.
  • Vertical peel force at 23 ° C. for silicon wafers of the carbon nanotube aggregate side surface of the transfer fixture is preferably not 0.01 N / cm 2 or less, more preferably 0.001 N / cm 2 or less, further Preferably it is 0 N / cm 2 .
  • the vertical peeling force is measured by bonding a carbon nanotube aggregate side surface and a silicon wafer to prepare a measurement sample, and pulling the evaluation sample from both sides in a direction perpendicular to the carbon nanotube aggregate side surface. be able to.
  • the vertical peeling force corresponds to the force with which the silicon wafer peels from the carbon nanotube aggregate surface in the tensile test.
  • a tensile tester (TG-1kN: manufactured by Minebea) and a load cell (TT3D-50N: manufactured by Minebea) are used.
  • T3D-50N manufactured by Minebea
  • the sample for evaluation is pulled through, for example, pin stubs (made of aluminum, plane portion ⁇ 12.5 mm) fixed to both surfaces of the sample for evaluation.
  • FIG. 2 is a schematic cross-sectional view of a conveyance fixing jig according to another embodiment of the present invention.
  • the carbon nanotube aggregate 20 is composed of a carbon nanotube 21 and a second base material 22, and the carbon nanotube 21 is formed on the second base material 22.
  • the adhesive layer 30 is disposed on the side of the second base material 22 where the carbon nanotubes 21 are not formed.
  • the first base material 10 and the second base material 22 are joined via an adhesive layer 30.
  • the arrangement and area of the carbon nanotube aggregate 20, the load applied when the transported object is placed, the real contact area, and the static friction coefficient are as described above.
  • the said 1st base material functions as a conveyance base material at the time of conveying a semiconductor material, an electronic material, etc.
  • Examples of the form of the first base material include a transport arm, a transport table, a transport ring, a transport guide rail, a storage cassette, a hook, and a transport frame.
  • the size and shape of the first substrate can be appropriately selected according to the purpose.
  • the first substrate may be a part of a transfer arm, a transfer table, a transfer ring, a transfer guide rail, a storage cassette, a hook, a transfer frame, and the like.
  • An example of the case where the first substrate is a transfer arm is shown in the schematic perspective view of FIG.
  • the transport fixing jig 100 of FIG. 3 four carbon nanotube aggregates 20 are arranged on a first base material 10 as a transport arm.
  • FIG. 1 described above is a cross-sectional view taken along the line II of the conveyance fixing jig 100.
  • any appropriate material can be adopted as the material constituting the first base material.
  • a ceramic material such as alumina or silicon nitride; a heat resistant material such as stainless steel is used as a material constituting the conveyance base material.
  • alumina is used.
  • the linear expansion coefficient of the first base material is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
  • the linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).
  • the volume expansion coefficient of the first base material is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
  • the adhesive layer can be composed of any appropriate adhesive.
  • an inorganic adhesive, a carbon adhesive, or a silica sol adhesive is preferably used as the adhesive constituting the adhesive layer. These adhesives are preferable in terms of excellent heat resistance. Among these, an inorganic adhesive or a carbon adhesive is preferable.
  • Examples of the inorganic adhesive include a ceramic adhesive.
  • Ceramic adhesive is an adhesive that can exhibit adhesiveness by curing a curing component such as alkali metal silicate, phosphate, and metal alkoxide.
  • a ceramic adhesive containing an alkali metal silicate or phosphate eg, aluminum phosphate is used as the curing component.
  • the ceramic adhesive may further include a curing agent (curing accelerator) and / or a filler (filler).
  • the ceramic adhesive can also include any suitable dispersion medium.
  • Examples of the curing agent (curing accelerator) used in combination with the alkali metal silicate include oxides or hydroxides such as zinc, magnesium and calcium; silicides such as sodium, potassium and calcium; aluminum and zinc And the like; borate salts such as calcium, barium and magnesium; and the like.
  • Examples of the curing agent (curing accelerator) used in combination with the above phosphate include oxides or hydroxides such as magnesium, calcium, zinc, and aluminum; silicates such as magnesium and calcium; Group II boric acid Salt; and the like.
  • filler examples include alumina, silica, zirconia, and magnesium oxide.
  • the linear expansion coefficient of the adhesive layer is adjusted by the type and / or addition amount of the filler (filler).
  • any appropriate solvent is used as the dispersion medium.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent is preferable in that it can form a higher heat-resistant adhesive layer.
  • an organic solvent is preferable at the point which is excellent in affinity with a carbon nanotube aggregate.
  • the components in the ceramic adhesive can be appropriately selected according to the material constituting the first substrate, the material constituting the second substrate, the desired heat-resistant temperature, and the like.
  • a metal alkoxide is used as a curing component
  • alumina is used as a filler
  • an alcohol such as methanol is used as a dispersion medium.
  • the carbon-based adhesive includes a binder, a carbon-based filler, and a solvent.
  • the binder include alkali metal silicate, phosphate, metal alkoxide and the like, and alkali metal silicate is preferable.
  • the carbon filler include graphite powder and carbon black, and carbon black is preferable.
  • the solvent include water.
  • the carbon-based adhesive may include a predetermined resin and a carbon-based filler.
  • a resin that becomes non-graphitizable carbon by heating can be used.
  • examples of such a resin include a phenol resin and a polycarbodiimide resin.
  • Examples of the carbon filler include graphite powder and carbon black.
  • the carbon-based adhesive may contain any appropriate solvent. Examples of the solvent contained in the carbon-based adhesive include water, phenol, formaldehyde, ethanol, and the like.
  • the linear expansion coefficient of the adhesive layer is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures.
  • the linear expansion coefficient of an adhesive bond layer is a linear expansion coefficient after hardening an adhesive agent.
  • the volume expansion coefficient of the adhesive layer is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures.
  • the volume expansion coefficient of the adhesive layer is a volume expansion coefficient after the adhesive is cured.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and further preferably 1.0 ⁇ m to 20 ⁇ m. If it is such a range, a carbon nanotube aggregate or a 2nd base material and a 1st base material can be firmly joined via this adhesive bond layer.
  • Carbon nanotube aggregate The carbon nanotube aggregate is composed of a plurality of carbon nanotubes.
  • the length of the carbon nanotube is preferably 50 ⁇ m to 3000 ⁇ m, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, particularly preferably 400 ⁇ m to 1000 ⁇ m, and most preferably 500 ⁇ m to 1000 ⁇ m. is there. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
  • the aggregate of carbon nanotubes can take, for example, embodiments described later (first embodiment and second embodiment).
  • the first embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the number distribution of the carbon nanotubes The relative frequency of the mode value is 25% or less.
  • the distribution width of the number distribution of carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, and particularly preferably. Is 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown.
  • the number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers.
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and further preferably 5% to 25%. Yes, particularly preferably 10% to 25%, most preferably 15% to 25%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
  • the mode value of the number distribution of carbon nanotubes preferably exists in the number of layers 2 to 10 and more preferably in the number of layers 3 to 10.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
  • the shape of the carbon nanotube it is sufficient that its cross section has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 50 ⁇ m or more, more preferably 100 ⁇ m to 3000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably. Is 500 ⁇ m to 1000 ⁇ m.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • the second embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, and the mode of the number distribution of the carbon nanotubes is present in the number of layers of 10 or less.
  • the relative frequency of the mode value is 30% or more.
  • the distribution width of the number distribution of carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably. Is 3 to 8 layers.
  • the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers.
  • the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferably 30% to 80%, most preferably 30% to 70%.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
  • the mode value of the number distribution of carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably in the number of layers.
  • the number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers.
  • the cross section may have any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 50 ⁇ m or more, more preferably 550 ⁇ m to 3000 ⁇ m, still more preferably 600 ⁇ m to 2000 ⁇ m, still more preferably 650 ⁇ m to 1000 ⁇ m, and particularly preferably. Is 700 ⁇ m to 1000 ⁇ m.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area.
  • the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
  • the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
  • At least a portion including the tip of the carbon nanotube is coated with an inorganic material.
  • the “part including at least the tip” as used herein means a portion including at least the tip of the carbon nanotube, that is, the tip of the carbon nanotube opposite to the first substrate.
  • All of the above carbon nanotubes may be covered with an inorganic material at least at a portion including the tip, or a portion thereof may be covered with an inorganic material at least a portion including the tip.
  • the content ratio of the carbon nanotube in which at least the portion including the tip of the carbon nanotube is coated with an inorganic material is preferably 50 wt% to 100 wt%, more preferably 60 wt% to 100 wt%. % By weight, more preferably 70% by weight to 100% by weight, further preferably 80% by weight to 100% by weight, particularly preferably 90% by weight to 100% by weight, and most preferably substantially 100% by weight. If it is such a range, the conveyance fixing jig
  • the thickness of the coating layer is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, further preferably 7 nm or more, particularly preferably 9 nm or more, and most preferably 10 nm. That's it.
  • the upper limit of the thickness of the coating layer is preferably 50 nm, more preferably 40 nm, still more preferably 30 nm, particularly preferably 20 nm, and most preferably 15 nm. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
  • the length of the coating layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 700 nm, still more preferably 10 nm to 500 nm, particularly preferably 30 nm to 300 nm, and most preferably 50 nm to 100 nm. is there. If it is such a range, the conveyance fixing jig
  • inorganic material arbitrary appropriate inorganic materials can be employ
  • examples of such inorganic materials include SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, Cu, Ag, and Au.
  • Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
  • a method for producing an aggregate of carbon nanotubes for example, a chemical vapor phase is formed in which a catalyst layer is formed on a flat plate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown.
  • Examples thereof include a method of producing an aggregate of carbon nanotubes oriented substantially vertically from a flat plate by a growth method (Chemical Vapor Deposition: CVD method).
  • any appropriate flat plate can be adopted as a flat plate that can be used in the method for producing a carbon nanotube aggregate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate.
  • a thermal CVD apparatus as shown in FIG. 4, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace, and the like can be mentioned.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate.
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the flat plate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a flat plate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is heated up to 450 ° C. and oxidized without forming a hydrophilic film on a flat plate, Al 2 O 3 surfaces having different particle diameters may not be formed easily.
  • Al 2 O 3 surfaces having different particle diameters may not be easily formed.
  • the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles.
  • the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
  • Any appropriate method can be adopted as a method for forming the catalyst layer.
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a flat plate, and the like can be mentioned.
  • any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • Arbitrary appropriate temperature can be employ
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • the second substrate may be a flat plate used when forming the carbon nanotube aggregate. That is, the conveyance fixing jig provided with the second base material is obtained by laminating the flat plate on which the carbon nanotube aggregate is formed as it is on the second base material.
  • the conveyance fixing jig can be manufactured by any appropriate method.
  • the adhesive constituting the adhesive layer is applied on the first substrate, the carbon nanotube aggregate is disposed on the applied layer formed by the application, and then the applied layer is cured. Thereby, an adhesive bond layer can be formed and a conveyance fixing jig can be obtained.
  • the method of arranging the carbon nanotube aggregate on the coating layer include a method of transferring the carbon nanotube aggregate to the coating layer from the flat plate with the carbon nanotube aggregate obtained by the method described in the above section D. It is done.
  • a flat plate in which an adhesive constituting an adhesive layer is applied on a first substrate, and an aggregate of carbon nanotubes is formed on the coating layer formed by the application. ), And then the coating layer is cured to obtain a transport fixture.
  • any appropriate method can be adopted as an adhesive application method.
  • the application method include application using a comma coater or a die coater, application using a dispenser, application using a squeegee, and the like.
  • a method for curing the adhesive application layer may be adopted.
  • a method of curing by heating is preferably used.
  • the curing temperature can be appropriately set according to the type of adhesive.
  • the curing temperature is, for example, 90 ° C. to 400 ° C.
  • when a carbon-based adhesive is used as the adhesive it is baked at a high temperature after curing.
  • the firing temperature is preferably higher than the use temperature of the adhesive, for example, 350 ° C. to 3000 ° C.
  • an Fe thin film was further formed as a catalyst layer (sputtering gas: Ar, gas pressure: 0.75 Pa, growth rate: 0) using a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics) .012 nm / sec, thickness: 1.0 nm). Thereafter, this flat plate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at a moisture content of 700 ppm was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube. Thereafter, the inside of the tube was heated to 765 ° C.
  • Example 1 An adhesive was applied on the first substrate (made by Ceramics). On the adhesive, the carbon nanotube aggregate obtained in Production Example 1 was collected from the flat plate and placed on the adhesive coating layer to prepare an evaluation sample. The aggregate of carbon nanotubes was 9 mm 2 per area, and four aggregates of carbon nanotubes were disposed on the first substrate (total area: 0.36 cm 2 ).
  • Example 2 An evaluation sample was produced in the same manner as in Example 1 except that the area per aggregate of carbon nanotubes was 16 mm 2 (total area: 0.64 cm 2 ).
  • Example 3 An evaluation sample was produced in the same manner as in Example 1 except that the area per aggregate of carbon nanotubes was 36 mm 2 (total area: 1.44 cm 2 ).
  • the conveyance fixing jig of the present application configured so that the load applied to the aggregate of carbon nanotubes is 0.05 kg / cm 2 or more has excellent gripping force and high-speed conveyance at high temperatures. Excellent.
  • first base material 20 carbon nanotube aggregate 21 carbon nanotube 22 second base material 30 adhesive layer 100, 200 transport fixing jig

Abstract

The present invention provides a conveying and fixing jig that has high gripping strength, that can be used for high-speed conveyance, that is less likely to contaminate an object to be conveyed, and that has excellent heat resistance. This conveying and fixing jig is for carrying an object to be conveyed having has an area size of at least 40 cm2 and a weight of at least 5 g, and is provided with a first base material and a carbon nanotube aggregate disposed on the first base material, wherein when the object to be conveyed is placed on the jig, the jig is configured such that the load on said carbon nanotube aggregate is at least 0.05 kg/cm2.

Description

搬送固定治具Transport fixture
 本発明は、搬送固定治具に関する。 The present invention relates to a conveyance fixing jig.
 半導体素子等の製造工程において、材料、製造中間品、製品等(以下、被加工物ともいう)を搬送する際、該被加工物を移動アームや移動テーブルなどの搬送基材を用いて搬送することが行われている(例えば、特許文献1、2参照)。このような搬送を行う際には、被加工物が載置される部材(搬送治具)には、被加工物が搬送中にずれないような強いグリップ力が要求される。また、このような要求は、製造工程高速化の要求とあいまって、年々、高まっている。 When transporting materials, intermediate products, products, etc. (hereinafter also referred to as workpieces) in the manufacturing process of semiconductor elements, etc., the workpieces are transported using a transport base such as a movable arm or a movable table. (For example, refer to Patent Documents 1 and 2). When performing such conveyance, a member (conveying jig) on which the workpiece is placed is required to have a strong grip force so that the workpiece does not shift during conveyance. In addition, such a demand is increasing year by year together with a demand for speeding up the manufacturing process.
 しかしながら、従来の搬送治具は、樹脂等の弾性材料により被加工物を保持しており、被加工物に該弾性材料が付着残存しやすいという問題がある。また、樹脂等の弾性材料は、耐熱性が低く、高温環境下では、そのグリップ力が低下するという問題がある。 However, the conventional conveying jig has a problem that the workpiece is held by an elastic material such as resin, and the elastic material is likely to adhere and remain on the workpiece. In addition, an elastic material such as a resin has a problem that heat resistance is low, and grip force is reduced under a high temperature environment.
 セラミックスなどの材料を搬送治具に用いると、被加工物の汚染は防止され、また、グリップ力の温度依存性は低くなる。しかしながら、このような材料から構成される搬送治具は、本質的にグリップ力が低く、常温下でも十分に被加工物を保持し得ないという問題がある。 When materials such as ceramics are used for the conveying jig, contamination of the workpiece is prevented and the temperature dependence of the grip force is reduced. However, the conveying jig made of such a material has a problem that the gripping force is essentially low and the workpiece cannot be sufficiently held even at room temperature.
 また、高温環境下で被加工物を保持する方法としては、減圧吸着する方法、搬送治具の形状により被加工物を固定する方法(例えば、チャッキング、ザグリ固定等)等が挙げられる。しかしながら、減圧吸着する方法は、大気雰囲気下でのみ有効であり、CVD工程等における真空下では採用できず、所望のグリップ力を得ることができない。また、搬送治具の形状により被加工物を固定する方法においては、被加工物と搬送治具との接触により、被加工物がダメージを受ける、パーティクルが発生する等の問題がある。 Also, as a method of holding the workpiece under a high temperature environment, there are a method of suctioning under reduced pressure, a method of fixing the workpiece by the shape of the conveying jig (for example, chucking, counterboring, etc.) and the like. However, the method of adsorbing under reduced pressure is effective only in an air atmosphere and cannot be employed under a vacuum in a CVD process or the like, and a desired grip force cannot be obtained. Further, in the method of fixing the workpiece by the shape of the conveying jig, there is a problem that the workpiece is damaged or particles are generated due to the contact between the workpiece and the conveying jig.
 上記のとおり、従来の搬送治具は、クリーン性およびグリップ力が低く、特に、半導体素子等の製造工程において、高速搬送する際に要求される性能には達していない。 As described above, the conventional transport jig has low cleanliness and grip strength, and in particular, it does not reach the performance required for high-speed transport in the manufacturing process of semiconductor elements and the like.
特開2001-351961号公報JP 2001-351196 A 特開2013-138152号公報JP 2013-138152 A
 本発明の課題は、グリップ力が高く高速搬送に使用可能であり、被搬送物を汚染しがたく、かつ、耐熱性に優れる搬送固定治具を提供することにある。 An object of the present invention is to provide a conveyance fixing jig which has a high grip force and can be used for high-speed conveyance, is difficult to contaminate an object to be conveyed, and has excellent heat resistance.
 本発明の搬送固定治具は、面積が40cm以上であり、重量が5g以上の被搬送物を搬送する搬送固定治具であって、第1の基材と、第1の基材上に設けられたカーボンナノチューブ集合体とを備え、該被搬送物を載置した際に、該カーボンナノチューブ集合体にかかる荷重が0.05kg/cm以上となるように構成されている。
 1つの実施形態においては、上記カーボンナノチューブ集合体が、上記第1の基材上に3つ以上設けられている。
 1つの実施形態においては、上記カーボンナノチューブ集合体の総面積が、30mm~240mmである。
 1つの実施形態においては、上記カーボンナノチューブ集合体ひとつあたりの面積が、8mm~60mmである。
 1つの実施形態においては、上記搬送固定治具に128gの被搬送物を載置した場合の該被搬送物とカーボンナノチューブとの真実接触面積が、0.08cm以上である。
 1つの実施形態においては、上記カーボンナノチューブ集合体表面のガラス表面に対する23℃における静摩擦係数が、1~50である。
 1つの実施形態においては、上記カーボンナノチューブ集合体が、カーボンナノチューブと第2の基材とを含む。
The transport fixing jig of the present invention is a transport fixing jig for transporting an object to be transported having an area of 40 cm 2 or more and a weight of 5 g or more, on the first base material and the first base material The carbon nanotube aggregate is provided, and when the object to be transported is placed, a load applied to the carbon nanotube aggregate is 0.05 kg / cm 2 or more.
In one embodiment, three or more carbon nanotube aggregates are provided on the first base material.
In one embodiment, the total area of the carbon nanotube aggregate is 30 mm 2 to 240 mm 2 .
In one embodiment, the area per carbon nanotube aggregate is 8 mm 2 to 60 mm 2 .
In one embodiment, a true contact area between the object to be conveyed and the carbon nanotube when a 128 g object to be conveyed is placed on the conveyance fixing jig is 0.08 cm 2 or more.
In one embodiment, the coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50.
In one embodiment, the aggregate of carbon nanotubes includes a carbon nanotube and a second substrate.
 本発明によれば、グリップ力が高く、被搬送物を汚染しがたく、かつ、耐熱性に優れる搬送固定治具を提供することができる。本発明の搬送固定治具は、高温下においてもグリップ力が高い点で、特に有用である。 According to the present invention, it is possible to provide a conveyance fixing jig that has a high grip force, hardly pollutes the object to be conveyed, and is excellent in heat resistance. The conveyance fixture of the present invention is particularly useful in that the grip force is high even at high temperatures.
本発明の1つの実施形態による搬送固定治具の概略断面図である。It is a schematic sectional drawing of the conveyance fixing jig by one Embodiment of this invention. 本発明の別の実施形態による搬送固定治具の概略断面図である。It is a schematic sectional drawing of the conveyance fixing jig by another embodiment of this invention. 本発明の1つの実施形態による搬送固定治具の概略斜視図である。It is a schematic perspective view of the conveyance fixing jig by one Embodiment of this invention. 本発明の1つの実施形態におけるカーボンナノチューブ集合体の製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus of the carbon nanotube aggregate in one embodiment of this invention.
A.搬送固定治具の概要
 図1は、本発明の1つの実施形態による搬送固定治具の概略断面図である。搬送固定治具100は、第1の基材10と、第1の基材10上に設けられたカーボンナノチューブ集合体20とを備える。1つの実施形態においては、図示例のように、第1の基材10とカーボンナノチューブ集合体20との間には、接着剤層30が配置される。この実施形態においては、第1の基材10とカーボンナノチューブ集合体20とは、接着剤層30を介して接合されている。カーボンナノチューブ集合体20は複数のカーボンナノチューブ21から構成される。カーボンナノチューブ21は、長さLの方向に配向しており、カーボンナノチューブ集合体20は、繊維状柱状構造体として構成される。カーボンナノチューブ21は、第1の基材10に対して略垂直方向に配向していることが好ましい。ここで、「略垂直方向」とは、第1の基材10の面に対する角度が、好ましくは90°±20°であり、より好ましくは90°±15°であり、さらに好ましくは90°±10°であり、特に好ましくは90°±5°である。
A. Overview Figure 1 of the transport fixture is a schematic cross-sectional view of the transport fixture according to one embodiment of the present invention. The conveyance fixing jig 100 includes a first base material 10 and a carbon nanotube aggregate 20 provided on the first base material 10. In one embodiment, an adhesive layer 30 is disposed between the first substrate 10 and the carbon nanotube aggregate 20 as shown in the illustrated example. In this embodiment, the first substrate 10 and the carbon nanotube aggregate 20 are bonded via the adhesive layer 30. The carbon nanotube aggregate 20 is composed of a plurality of carbon nanotubes 21. The carbon nanotubes 21 are oriented in the direction of the length L, and the carbon nanotube aggregate 20 is configured as a fibrous columnar structure. The carbon nanotubes 21 are preferably oriented in a substantially vertical direction with respect to the first base material 10. Here, the “substantially vertical direction” means that the angle with respect to the surface of the first base material 10 is preferably 90 ° ± 20 °, more preferably 90 ° ± 15 °, and further preferably 90 ° ±. 10 °, particularly preferably 90 ° ± 5 °.
 本発明の搬送固定治具は、面積が40cm以上であり、重量が5g以上の被搬送物を保持して搬送する際に用いられ得る。なお、本明細書において「面積」とは、カーボンナノチューブ集合体が配置される第1の基材面に対向して見たときの(図1の紙面上側から見たとき)の平面視面積である。したがって、被搬送物の面積とは、搬送時に、第1の基材およびカーボンナノチューブ集合体に対向する面の面積を意味する。被搬送物の面積は、好ましくは40cm~3000cmであり、より好ましくは75cm~2000cmであり、さらに好ましくは300cm~1600cmである。また、被搬送物の重量は、好ましくは5g~600gであり、より好ましくは10g~500gであり、さらに好ましくは40g~400gであり、特に好ましくは50g~300gである。 The conveyance fixture of the present invention can be used when holding and conveying an object having an area of 40 cm 2 or more and a weight of 5 g or more. In the present specification, the “area” is an area in plan view when viewed from the upper surface of the first base material on which the carbon nanotube aggregate is disposed (when viewed from the upper side of the drawing in FIG. 1). is there. Therefore, the area of the object to be conveyed means the area of the surface facing the first base material and the carbon nanotube aggregate during conveyance. The area of the conveyed object is preferably 40 cm 2 to 3000 cm 2 , more preferably 75 cm 2 to 2000 cm 2 , and further preferably 300 cm 2 to 1600 cm 2 . The weight of the conveyed product is preferably 5 g to 600 g, more preferably 10 g to 500 g, still more preferably 40 g to 400 g, and particularly preferably 50 g to 300 g.
 本発明の搬送固定治具は、カーボンナノチューブ集合体の粘着性により、被搬送物を保持することができる。カーボンナノチューブ集合体を用いれば、被搬送物を汚染し難い搬送固定治具を得ることができる。本発明の搬送固定治具は、例えば、半導体素子の製造工程、光学部材の製造工程等に好適に用いられ得る。より詳細には、本発明の搬送固定治具は、半導体素子製造における工程と工程との間、あるいは所定の工程内で、材料、製造中間品、製品等(具体的には、半導体材料、ウエハ、チップ、電子部品、フィルム等)の被搬送物を移送するために用いられ得る。また、光学部材製造における工程間、あるいは所定の工程内で、ガラス基板等の被搬送物を移送するために用いられ得る。また、本発明の搬送固定治具は被搬送物を把持し得る形態であってもよい。 The conveyance fixing jig of the present invention can hold an object to be conveyed due to the adhesiveness of the carbon nanotube aggregate. If the carbon nanotube aggregate is used, it is possible to obtain a conveyance fixing jig that hardly contaminates the object to be conveyed. The conveyance fixing jig of the present invention can be suitably used in, for example, a semiconductor element manufacturing process, an optical member manufacturing process, and the like. More specifically, the conveyance fixing jig of the present invention is a material, an intermediate product, a product, etc. (specifically, a semiconductor material, a wafer) between processes in a semiconductor element manufacturing process or within a predetermined process. , Chips, electronic components, films, etc.) can be used to transport a conveyed object. Further, it can be used for transferring a transported object such as a glass substrate between processes in manufacturing an optical member or within a predetermined process. Moreover, the form which can hold | grip a to-be-conveyed object may be sufficient as the conveyance fixing jig of this invention.
 好ましくは、カーボンナノチューブ集合体20は、第1の基材10の一部の面上に設けられている。また、好ましくは、カーボンナノチューブ集合体20は、第1の基材10の一部の面上において、複数設けられる。カーボンナノチューブ集合体は、被搬送物が第1の基材表面に対して略平行に保持され得るように、配置されていることが好ましく、例えば、第1の基材上に3つ以上(好ましくは3~8、より好ましくは3~5、特に好ましくは4)のカーボンナノチューブ集合体が設けられていることが好ましい。また、本発明の搬送固定治具においては、被搬送物がすべてのカーボンナノチューブ集合体に接触し得るようにして、カーボンナノチューブ集合体が配置される。 Preferably, the carbon nanotube aggregate 20 is provided on a part of the surface of the first base material 10. Preferably, a plurality of carbon nanotube aggregates 20 are provided on a part of the surface of the first base material 10. The aggregates of carbon nanotubes are preferably arranged so that the object to be conveyed can be held substantially parallel to the surface of the first substrate. For example, three or more (preferably Is preferably provided with aggregates of carbon nanotubes of 3 to 8, more preferably 3 to 5, particularly preferably 4). Moreover, in the conveyance fixing jig of the present invention, the carbon nanotube aggregates are arranged so that the object to be conveyed can contact all the carbon nanotube aggregates.
 カーボンナノチューブ集合体ひとつあたりの面積(みかけ面積)は、好ましくは8mm~60mmであり、より好ましくは9mm~50mmであり、さらに好ましくは9mm~40mmであり、特に好ましくは9mm~30mmであり、最も好ましくは9mm~20mmである。なお、ここでの面積は、上記のとおり、カーボンナノチューブ集合体が配置された第1の基材面に対向して見たとき(図1の紙面上側から見たとき)の平面視面積である。 The area per carbon nanotube aggregate (apparent area) is preferably 8 mm 2 to 60 mm 2 , more preferably 9 mm 2 to 50 mm 2 , still more preferably 9 mm 2 to 40 mm 2 , and particularly preferably 9 mm. 2 to 30 mm 2 , most preferably 9 mm 2 to 20 mm 2 . In addition, the area here is a planar view area when viewed from the first base material surface on which the carbon nanotube aggregate is disposed (when viewed from the upper side in FIG. 1) as described above. .
 カーボンナノチューブ集合体の総面積(みかけ面積)は、好ましくは30mm~240mmであり、より好ましくは35mm~200mmであり、さらに好ましくは35mm~160mmであり、特に好ましくは35mm~120mmであり、最も好ましくは35mm~80mmである。 The total area (apparent area) of the carbon nanotube aggregate is preferably 30 mm 2 to 240 mm 2 , more preferably 35 mm 2 to 200 mm 2 , still more preferably 35 mm 2 to 160 mm 2 , and particularly preferably 35 mm 2. ˜120 mm 2 , most preferably 35 mm 2 ˜80 mm 2 .
 カーボンナノチューブ集合体は、被搬送物を載置した際にカーボンナノチューブ集合体にかかる荷重が、0.05kg/cm以上となるように構成されていることが好ましく、0.06kg/cm~1kg/cmとなるように構成されていることがより好ましく、0.07kg/cm~0.7kg/cmとなるように構成されていることがさらに好ましく、0.08kg/cm~0.6kg/cmとなるように構成されていることがさらに好ましく、0.09kg/cm~0.5kg/cmとなるように構成されていることが特に好ましく、0.15kg/cm~0.4kg/cmとなるように構成されていることが最も好ましい。なお、上記荷重は、被搬送物の重量/カーボンナノチューブ集合体の総面積(みかけ面積)により求められる。 The carbon nanotube aggregate is preferably configured so that the load applied to the carbon nanotube aggregate when the object to be transported is placed is 0.05 kg / cm 2 or more, and 0.06 kg / cm 2 to More preferably, it is configured to be 1 kg / cm 2 , more preferably 0.07 kg / cm 2 to 0.7 kg / cm 2, and 0.08 kg / cm 2 to 0.08 kg / cm 2 . more preferably configured such that 0.6 kg / cm 2, particularly preferred to be configured to be 0.09kg / cm 2 ~ 0.5kg / cm 2, 0.15kg / cm Most preferably, it is configured to be 2 to 0.4 kg / cm 2 . In addition, the said load is calculated | required by the weight of a to-be-conveyed object / the total area (apparent area) of a carbon nanotube aggregate.
 本発明の搬送固定治具においては、カーボンナノチューブ集合体にかかる荷重が、0.05kg/cm以上となるように構成されていることにより、非常に高いグリップ力で被搬送物を保持することができる。カーボンナノチューブ集合体は、繊維状のカーボンナノチューブの集合体であるため、搬送固定治具に載置した被搬送物においては、カーボンナノチューブに接触する部分と、カーボンナノチューブに接触しない部分とが生じる。本発明においては、特定値以上の荷重がかかるようにカーボンナノチューブ集合体を構成することにより、被搬送物を載置した際の被搬送物とカーボンナノチューブとの接触率が増大して、上記効果が得られると考えられる。このような搬送固定治具は、例えば、被搬送物の面積に対して十分に小さい面積を有するカーボンナノチューブ集合体を第1の基材上に配置することにより得ることができる。本発明の搬送固定治具を構成するカーボンナノチューブ集合体は、長さ方向に変形しやすく、被搬送物を載置した際の接触率増大が顕著となり、カーボンナノチューブ集合体自体の面積を小さくした場合に、荷重増大による効果が支配的となる。一方、荷重が所定の値を超えると、それ以上荷重を大きくしてもグリップ力向上効果が見られなくなる(グリップ力が飽和する)。そのため、カーボンナノチューブ集合体の面積は所定以上(例えば、上記のとおり、総面積が30mm以上)であることが好ましい。 In the conveyance fixing jig of the present invention, the load applied to the carbon nanotube aggregate is configured to be 0.05 kg / cm 2 or more, so that the object to be conveyed is held with a very high grip force. Can do. Since the aggregate of carbon nanotubes is an aggregate of fibrous carbon nanotubes, a part that comes into contact with the carbon nanotubes and a part that does not come into contact with the carbon nanotubes are generated in the transported object placed on the transport fixing jig. In the present invention, by configuring the carbon nanotube aggregate so that a load of a specific value or more is applied, the contact rate between the transported object and the carbon nanotube when the transported object is placed increases, and the above effect is achieved. Can be obtained. Such a conveyance fixing jig can be obtained, for example, by disposing a carbon nanotube aggregate having an area sufficiently smaller than the area of the object to be conveyed on the first substrate. The carbon nanotube aggregate that constitutes the conveyance fixture of the present invention is easily deformed in the length direction, and the contact rate increase when placing the object to be conveyed becomes remarkable, and the area of the carbon nanotube aggregate itself is reduced. In some cases, the effect of increased load becomes dominant. On the other hand, if the load exceeds a predetermined value, the effect of improving the grip force is not seen even if the load is increased further (the grip force is saturated). For this reason, the area of the aggregate of carbon nanotubes is preferably a predetermined area or more (for example, as described above, the total area is 30 mm 2 or more).
 上記のように、グリップ力に優れる本発明の搬送固定治具は、常温下において優れたグリップ力を発現することはもとより、高温下(例えば、400℃以上、好ましくは500℃~1000℃、より好ましくは500℃~700℃)においても、優れたグリップ力を発現し得る。カーボンナノチューブ自体が耐熱性を有し、かつ、上記構成により高温下においても高いグリップ力を発現させることが可能であるため、本発明の搬送固定治具は、高温下での使用、特に高温下での高速搬送に有用である。 As described above, the conveyance fixing jig of the present invention having excellent grip strength not only exhibits excellent grip strength at room temperature, but also at high temperatures (for example, 400 ° C. or more, preferably 500 ° C. to 1000 ° C., more An excellent grip force can be exhibited even at 500 ° C. to 700 ° C.). Since the carbon nanotube itself has heat resistance and can exhibit a high grip force even at high temperatures due to the above configuration, the conveyance fixture of the present invention is used at high temperatures, particularly at high temperatures. It is useful for high-speed transport in
 本発明の搬送固定治具に128gの被搬送物を載置した場合の被搬送物とカーボンナノチューブとの真実接触面積は好ましくは0.08cm以上であり、より好ましくは0.09cm以上であり、さらに好ましくは0.1cm以上であり、より好ましくは0.11cm以上である。このような範囲であれば、グリップ力に特に優れる搬送固定治具を得ることができる。真実接触面積の上限は、カーボンナノチューブ集合体総面積(みかけ面積)に対して、好ましくは70%以下であり、より好ましくは50%以下である。なお、真実接触面積とは、23℃の環境下において、搬送固定治具を構成する全てのカーボンナノチューブの集合体上に載置されるように1つの被搬送物を載せ、被搬送物による荷重がすべてカーボンナノチューブ集合体にかかるようにした場合に、被搬送物とカーボンナノチューブとが接触する部分の面積を意味する。真実接触面積は、SEMによる断面観察により被搬送物とカーボンナノチューブとの接触率(接触部分の長さ/カーボンナノチューブ集合体表面測定長)を測定し、該接触率とカーボンナノチューブ集合体の総面積との積から求めることができる。 The true contact area between the object to be conveyed and the carbon nanotube when a 128 g object to be conveyed is placed on the conveyance fixing jig of the present invention is preferably 0.08 cm 2 or more, more preferably 0.09 cm 2 or more. Yes, more preferably 0.1 cm 2 or more, more preferably 0.11 cm 2 or more. If it is such a range, the conveyance fixing jig especially excellent in grip force can be obtained. The upper limit of the true contact area is preferably 70% or less, more preferably 50% or less, with respect to the total area (apparent area) of the carbon nanotube aggregate. The true contact area refers to a load placed by one object to be placed on the aggregate of all the carbon nanotubes constituting the carrier fixing jig in an environment of 23 ° C. Means the area of the part where the object to be transported and the carbon nanotube come into contact with each other. The true contact area is determined by measuring the contact ratio between the transported object and the carbon nanotubes by cross-sectional observation using an SEM (the length of the contact portion / the measured length of the carbon nanotube aggregate surface), and the contact ratio and the total area of the carbon nanotube aggregate. And the product of
 上記搬送固定治具のカーボンナノチューブ集合体側表面の、シリコン製ウエハに対する23℃における静摩擦係数は、好ましくは1.0以上である。上記静摩擦係数の上限値は、好ましくは50である。このような範囲であれば、グリップ性に優れる搬送固定治具を得ることができる。なお、ガラス表面に対する摩擦係数の大きい上記搬送固定治具が、ガラス以外の材料から構成される被載置物(例えば、半導体ウエハ)に対しても、強いグリップ性を発現し得ることは言うまでもない。 The static friction coefficient at 23 ° C. with respect to the silicon wafer on the carbon nanotube assembly side surface of the conveyance fixture is preferably 1.0 or more. The upper limit value of the static friction coefficient is preferably 50. If it is such a range, the conveyance fixing jig excellent in grip property can be obtained. In addition, it cannot be overemphasized that the said conveyance fixing jig with a large friction coefficient with respect to the glass surface can express strong grip property also to the mounted object (for example, semiconductor wafer) comprised from materials other than glass.
 上記搬送固定治具のカーボンナノチューブ集合体側表面の、ガラス表面に対する300℃における静摩擦係数は、好ましくは1.0以上である。上記静摩擦係数の上限値は、好ましくは50である。 The static friction coefficient at 300 ° C. with respect to the glass surface of the carbon nanotube assembly side surface of the conveyance fixing jig is preferably 1.0 or more. The upper limit value of the static friction coefficient is preferably 50.
 上記搬送固定治具のカーボンナノチューブ集合体側表面のシリコン製ウエハに対する23℃における垂直剥離力は、好ましくは0.01N/cm以下であり、より好ましくは0.001N/cm以下であり、さらに好ましくは0N/cmである。垂直剥離力は、カーボンナノチューブ集合体側表面とシリコン製ウエハとを貼り合わせて測定用サンプルを作製し、該評価用サンプルを、両面からカーボンナノチューブ集合体側表面に対して垂直方向に引っ張ることにより測定することができる。垂直剥離力は、当該引張試験において、シリコン製ウエハがカーボンナノチューブ集合体表面から剥離する力に相当する。なお、垂直剥離力の測定は、例えば、引張試験機(TG―1kN:ミネベア社製)、およびロードセル(TT3D-50N:ミネベア社製)が用いられる。引張試験において、評価用サンプルは、例えば、評価用サンプル両面に固定されたピンスタブ(アルミ製、平面部φ12.5mm)を介して引っ張られる。 Vertical peel force at 23 ° C. for silicon wafers of the carbon nanotube aggregate side surface of the transfer fixture is preferably not 0.01 N / cm 2 or less, more preferably 0.001 N / cm 2 or less, further Preferably it is 0 N / cm 2 . The vertical peeling force is measured by bonding a carbon nanotube aggregate side surface and a silicon wafer to prepare a measurement sample, and pulling the evaluation sample from both sides in a direction perpendicular to the carbon nanotube aggregate side surface. be able to. The vertical peeling force corresponds to the force with which the silicon wafer peels from the carbon nanotube aggregate surface in the tensile test. For the measurement of the vertical peeling force, for example, a tensile tester (TG-1kN: manufactured by Minebea) and a load cell (TT3D-50N: manufactured by Minebea) are used. In the tensile test, the sample for evaluation is pulled through, for example, pin stubs (made of aluminum, plane portion φ12.5 mm) fixed to both surfaces of the sample for evaluation.
 図2は、本発明の別の実施形態による搬送固定治具の概略断面図である。図2の搬送固定治具200においては、カーボンナノチューブ集合体20がカーボンナノチューブ21と第2の基材22とから構成され、カーボンナノチューブ21が第2の基材22上に形成されている。接着剤層30は、第2の基材22のカーボンナノチューブ21が形成されていない側に配置される。第1の基材10と第2の基材22とは、接着剤層30を介して接合されている。本実施形態においても、カーボンナノチューブ集合体20の配置、面積、被搬送物を載置した際にかかる荷重および真実接触面積、ならびに静摩擦係数は、上記のとおりである。 FIG. 2 is a schematic cross-sectional view of a conveyance fixing jig according to another embodiment of the present invention. In the transport fixture 200 of FIG. 2, the carbon nanotube aggregate 20 is composed of a carbon nanotube 21 and a second base material 22, and the carbon nanotube 21 is formed on the second base material 22. The adhesive layer 30 is disposed on the side of the second base material 22 where the carbon nanotubes 21 are not formed. The first base material 10 and the second base material 22 are joined via an adhesive layer 30. Also in the present embodiment, the arrangement and area of the carbon nanotube aggregate 20, the load applied when the transported object is placed, the real contact area, and the static friction coefficient are as described above.
B.第1の基材
 上記第1の基材は、半導体材料、電子材料等を搬送する際の搬送基材として機能する。第1の基材の形態としては、例えば、搬送アーム、搬送テーブル、搬送リング、搬送ガイドレール、収納カセット、フック、搬送フレームなどが挙げられる。第1の基材の大きさや形状は、目的に応じて、適宜選択し得る。第1の基材は、搬送アーム、搬送テーブル、搬送リング、搬送ガイドレール、収納カセット、フック、搬送フレーム等の一部であってもよい。第1の基材が搬送アームである場合の一例を、図3の概略斜視図に示す。図3の搬送固定治具100は、搬送アームとしての第1の基材10に、4つのカーボンナノチューブ集合体20が配置されている。なお、上述の図1は、搬送固定治具100のI-I線による断面図である。
B. 1st base material The said 1st base material functions as a conveyance base material at the time of conveying a semiconductor material, an electronic material, etc. Examples of the form of the first base material include a transport arm, a transport table, a transport ring, a transport guide rail, a storage cassette, a hook, and a transport frame. The size and shape of the first substrate can be appropriately selected according to the purpose. The first substrate may be a part of a transfer arm, a transfer table, a transfer ring, a transfer guide rail, a storage cassette, a hook, a transfer frame, and the like. An example of the case where the first substrate is a transfer arm is shown in the schematic perspective view of FIG. In the transport fixing jig 100 of FIG. 3, four carbon nanotube aggregates 20 are arranged on a first base material 10 as a transport arm. Note that FIG. 1 described above is a cross-sectional view taken along the line II of the conveyance fixing jig 100.
 上記第1の基材を構成する材料としては、任意の適切な材料が採用され得る。1つの実施形態においては、搬送基材を構成する材料として、アルミナ、窒化珪素等のセラミックス材料;ステンレス鋼等の耐熱性材料が用いられる。好ましくは、アルミナが用いられる。 Any appropriate material can be adopted as the material constituting the first base material. In one embodiment, a ceramic material such as alumina or silicon nitride; a heat resistant material such as stainless steel is used as a material constituting the conveyance base material. Preferably, alumina is used.
 上記第1の基材の線膨張係数は、好ましくは5ppm/℃~12ppm/℃であり、より好ましくは6ppm/℃~9ppm/℃である。このような範囲であれば、高温下においても、良好に機能し得る搬送固定治具を得ることができる。本明細書において、線膨張係数は、熱機械分析装置(TMA)により測定することができる。 The linear expansion coefficient of the first base material is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained. In this specification, the linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).
 上記第1の基材の体積膨張係数は、好ましくは15ppm/℃~36ppm/℃であり、より好ましくは18ppm/℃~27ppm/℃である。このような範囲であれば、高温下においても、良好に機能し得る搬送固定治具を得ることができる。 The volume expansion coefficient of the first base material is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. If it is such a range, the conveyance fixing jig which can function satisfactorily also under high temperature can be obtained.
C.接着剤層
 上記接着剤層は、任意の適切な接着剤により構成され得る。上記接着剤層を構成する接着剤として、好ましくは、無機系接着剤、カーボン系接着剤またはシリカゾル系接着剤が用いられる。これらの接着剤は、耐熱性に優れる点で好ましい。なかでも好ましくは、無機系接着剤またはカーボン系接着剤である。
C. Adhesive Layer The adhesive layer can be composed of any appropriate adhesive. As the adhesive constituting the adhesive layer, an inorganic adhesive, a carbon adhesive, or a silica sol adhesive is preferably used. These adhesives are preferable in terms of excellent heat resistance. Among these, an inorganic adhesive or a carbon adhesive is preferable.
 上記無機系接着剤としては、例えば、セラミック接着剤が挙げられる。 Examples of the inorganic adhesive include a ceramic adhesive.
 セラミック接着剤は、アルカリ金属ケイ酸塩、リン酸塩、金属アルコキシド等の硬化成分を硬化させることにより、接着性を発現し得る接着剤である。好ましくは、硬化成分として、アルカリ金属ケイ酸塩またはリン酸塩(例えば、リン酸アルミニウム)を含むセラミック接着剤が用いられる。 Ceramic adhesive is an adhesive that can exhibit adhesiveness by curing a curing component such as alkali metal silicate, phosphate, and metal alkoxide. Preferably, a ceramic adhesive containing an alkali metal silicate or phosphate (eg, aluminum phosphate) is used as the curing component.
 セラミック接着剤は、硬化剤(硬化促進剤)および/または充填剤(フィラー)をさらに含み得る。また、セラミック接着剤は、任意の適切な分散媒を含み得る。 The ceramic adhesive may further include a curing agent (curing accelerator) and / or a filler (filler). The ceramic adhesive can also include any suitable dispersion medium.
 上記アルカリ金属ケイ酸塩と組み合わせて用いられる硬化剤(硬化促進剤)としては、例えば、亜鉛、マグネシウム、カルシウム等の酸化物または水酸化物;ナトリウム、カリウム、カルシウム等のケイ化物;アルミニウム、亜鉛等のリン酸塩;カルシウム、バリウム、マグネシウム等のホウ酸塩;等が挙げられる。上記リン酸塩と組み合わせて用いられる硬化剤(硬化促進剤)としては、例えば、マグネシウム、カルシウム、亜鉛、アルミニウム等の酸化物または水酸化物;マグネシウム、カルシウム等のケイ酸塩;II族ホウ酸塩;等が挙げられる。 Examples of the curing agent (curing accelerator) used in combination with the alkali metal silicate include oxides or hydroxides such as zinc, magnesium and calcium; silicides such as sodium, potassium and calcium; aluminum and zinc And the like; borate salts such as calcium, barium and magnesium; and the like. Examples of the curing agent (curing accelerator) used in combination with the above phosphate include oxides or hydroxides such as magnesium, calcium, zinc, and aluminum; silicates such as magnesium and calcium; Group II boric acid Salt; and the like.
 上記充填剤(フィラー)としては、例えば、アルミナ、シリカ、ジルコニア、酸化マグネシウム等が挙げられる。1つの実施形態においては、充填剤(フィラー)の種類および/または添加量により、接着剤層の線膨張係数が調整される。 Examples of the filler (filler) include alumina, silica, zirconia, and magnesium oxide. In one embodiment, the linear expansion coefficient of the adhesive layer is adjusted by the type and / or addition amount of the filler (filler).
 上記分散媒としては、任意の適切な溶媒が用いられる。該溶媒としては、水系溶媒を用いてもよく、有機系溶媒を用いてもよい。水系溶媒は、より高耐熱な接着剤層を形成し得る点で好ましい。また有機系溶媒は、カーボンナノチューブ集合体との親和性に優れる点で好ましい。 Any appropriate solvent is used as the dispersion medium. As the solvent, an aqueous solvent or an organic solvent may be used. The aqueous solvent is preferable in that it can form a higher heat-resistant adhesive layer. Moreover, an organic solvent is preferable at the point which is excellent in affinity with a carbon nanotube aggregate.
 上記セラミック接着剤中の成分は、第1の基材を構成する材料、第2の基材を構成する材料、所望とする耐熱温度等に応じて、適切に選択され得る。1つの実施形態において、第1の基材がアルミナから構成される場合、硬化成分として金属アルコキシドが用いられ、充填剤としてアルミナが用いられ、分散媒としてメタノール等のアルコールが用いられる。 The components in the ceramic adhesive can be appropriately selected according to the material constituting the first substrate, the material constituting the second substrate, the desired heat-resistant temperature, and the like. In one embodiment, when the first substrate is made of alumina, a metal alkoxide is used as a curing component, alumina is used as a filler, and an alcohol such as methanol is used as a dispersion medium.
 1つの実施形態においては、カーボン系接着剤は、バインダと、カーボン系フィラーと、溶媒とを含む。バインダとしては、例えば、アルカリ金属ケイ酸塩、リン酸塩、金属アルコキシド等が挙げられ、好ましくはアルカリ金属ケイ酸塩である。カーボン系フィラーとしては、例えば、グラファイト粉末、カーボンブラック等が挙げられ、好ましくはカーボンブラックである。溶媒としては、例えば、水等が挙げられる。 In one embodiment, the carbon-based adhesive includes a binder, a carbon-based filler, and a solvent. Examples of the binder include alkali metal silicate, phosphate, metal alkoxide and the like, and alkali metal silicate is preferable. Examples of the carbon filler include graphite powder and carbon black, and carbon black is preferable. Examples of the solvent include water.
 別の実施形態においては、カーボン系接着剤は、所定の樹脂と、カーボン系フィラーとを含み得る。当該樹脂としては、加熱により難黒鉛化炭素となる樹脂が用いられ得る。このような樹脂としては、例えば、フェノール樹脂、ポリカルボジイミド樹脂等が挙げられる。カーボン系フィラーとしては、例えば、グラファイト粉末、カーボンブラック等が挙げられる。また、カーボン系接着剤は、任意の適切な溶媒を含み得る。カーボン系接着剤に含まれる溶媒としては、例えば、水、フェノール、ホルムアルデヒド、エタノール等が挙げられる。 In another embodiment, the carbon-based adhesive may include a predetermined resin and a carbon-based filler. As the resin, a resin that becomes non-graphitizable carbon by heating can be used. Examples of such a resin include a phenol resin and a polycarbodiimide resin. Examples of the carbon filler include graphite powder and carbon black. The carbon-based adhesive may contain any appropriate solvent. Examples of the solvent contained in the carbon-based adhesive include water, phenol, formaldehyde, ethanol, and the like.
 上記接着剤層の線膨張係数は、好ましくは5ppm/℃~12ppm/℃であり、より好ましくは6ppm/℃~9ppm/℃である。このような範囲であれば、高温下においても、カーボンナノチューブ集合体が脱離し難い搬送固定治具を得ることができる。なお、接着剤層の線膨張係数とは、接着剤を硬化させた後の線膨張係数である。 The linear expansion coefficient of the adhesive layer is preferably 5 ppm / ° C. to 12 ppm / ° C., more preferably 6 ppm / ° C. to 9 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures. In addition, the linear expansion coefficient of an adhesive bond layer is a linear expansion coefficient after hardening an adhesive agent.
 上記接着剤層の体積膨張係数は、好ましくは15ppm/℃~36ppm/℃であり、より好ましくは18ppm/℃~27ppm/℃である。このような範囲であれば、高温下においても、カーボンナノチューブ集合体が脱離し難い搬送固定治具を得ることができる。なお、接着剤層の体積膨張係数とは、接着剤を硬化させた後の体積膨張係数である。 The volume expansion coefficient of the adhesive layer is preferably 15 ppm / ° C. to 36 ppm / ° C., more preferably 18 ppm / ° C. to 27 ppm / ° C. Within such a range, it is possible to obtain a conveyance fixing jig in which the aggregate of carbon nanotubes is not easily detached even at high temperatures. The volume expansion coefficient of the adhesive layer is a volume expansion coefficient after the adhesive is cured.
 上記接着剤層の厚みは、好ましくは0.1μm~100μmであり、より好ましくは0.5μm~50μmであり、さらに好ましくは1.0μm~20μmである。このような範囲であれば、該接着剤層を介して、カーボンナノチューブ集合体または第2の基材と、第1の基材とを強固に接合することができる。 The thickness of the adhesive layer is preferably 0.1 μm to 100 μm, more preferably 0.5 μm to 50 μm, and further preferably 1.0 μm to 20 μm. If it is such a range, a carbon nanotube aggregate or a 2nd base material and a 1st base material can be firmly joined via this adhesive bond layer.
D.カーボンナノチューブ集合体
 カーボンナノチューブ集合体は、複数のカーボンナノチューブから構成される。
D. Carbon nanotube aggregate The carbon nanotube aggregate is composed of a plurality of carbon nanotubes.
 上記カーボンナノチューブの長さは、好ましくは50μm~3000μmであり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、特に好ましくは400μm~1000μmであり、最も好ましくは500μm~1000μmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The length of the carbon nanotube is preferably 50 μm to 3000 μm, more preferably 200 μm to 2000 μm, still more preferably 300 μm to 1500 μm, particularly preferably 400 μm to 1000 μm, and most preferably 500 μm to 1000 μm. is there. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
 カーボンナノチューブ集合体は、例えば、後述の実施形態(第1の実施形態、第2の実施形態)を取り得る。 The aggregate of carbon nanotubes can take, for example, embodiments described later (first embodiment and second embodiment).
 カーボンナノチューブ集合体の第1の実施形態は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。カーボンナノチューブ集合体がこのような構成を採ることにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The first embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the number distribution of the carbon nanotubes The relative frequency of the mode value is 25% or less. By adopting such a configuration of the carbon nanotube aggregate, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは10層以上であり、より好ましくは10層~30層であり、さらに好ましくは10層~25層であり、特に好ましくは10層~20層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the distribution width of the number distribution of carbon nanotubes is preferably 10 or more, more preferably 10 to 30 layers, still more preferably 10 to 25 layers, and particularly preferably. Is 10 to 20 layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 The “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotubes have excellent adhesive properties. It can be the carbon nanotube aggregate shown.
 カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。 The number of carbon nanotube layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
 第1の実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the maximum number of carbon nanotube layers is preferably 5 to 30 layers, more preferably 10 to 30 layers, and even more preferably 15 to 30 layers. Particularly preferred are 15 to 25 layers. By adjusting the maximum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the first embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers. By adjusting the minimum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第1の実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, by adjusting the maximum number and the minimum number of the carbon nanotube layers within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. The carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 第1の実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは25%以下であり、より好ましくは1%~25%であり、さらに好ましくは5%~25%であり、特に好ましくは10%~25%であり、最も好ましくは15%~25%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 25% or less, more preferably 1% to 25%, and further preferably 5% to 25%. Yes, particularly preferably 10% to 25%, most preferably 15% to 25%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
 第1の実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the mode value of the number distribution of carbon nanotubes preferably exists in the number of layers 2 to 10 and more preferably in the number of layers 3 to 10. By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
 第1の実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the first embodiment, as the shape of the carbon nanotube, it is sufficient that its cross section has any appropriate shape. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第1の実施形態において、カーボンナノチューブの長さは、好ましくは50μm以上であり、より好ましくは100μm~3000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the length of the carbon nanotube is preferably 50 μm or more, more preferably 100 μm to 3000 μm, still more preferably 300 μm to 1500 μm, still more preferably 400 μm to 1000 μm, and particularly preferably. Is 500 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
 第1の実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the first embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
 第1の実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the first embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 カーボンナノチューブ集合体の第2の実施形態は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。カーボンナノチューブ集合体がこのような構成を採ることにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The second embodiment of the aggregate of carbon nanotubes includes a plurality of carbon nanotubes, the carbon nanotubes have a plurality of layers, and the mode of the number distribution of the carbon nanotubes is present in the number of layers of 10 or less. The relative frequency of the mode value is 30% or more. By adopting such a configuration of the carbon nanotube aggregate, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。カーボンナノチューブの層数分布の分布幅をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the distribution width of the number distribution of carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably. Is 3 to 8 layers. By adjusting the distribution width of the number distribution of the carbon nanotubes within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。カーボンナノチューブの層数の最大層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the maximum number of carbon nanotube layers is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers. By adjusting the maximum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and is difficult to contaminate the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。カーボンナノチューブの層数の最小層数をこのような範囲内に調整することにより、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 In the second embodiment, the minimum number of carbon nanotube layers is preferably 1 to 10 layers, and more preferably 1 to 5 layers. By adjusting the minimum number of the carbon nanotube layers within such a range, it is possible to form a conveyance fixing jig that has a high grip force and hardly contaminates the object to be conveyed.
 第2の実施形態において、カーボンナノチューブの層数の最大層数と最小層数を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, by adjusting the maximum number and the minimum number of the carbon nanotube layers within the above ranges, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. The carbon nanotubes can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 第2の実施形態において、カーボンナノチューブの層数分布の最頻値の相対頻度は、好ましくは30%以上であり、より好ましくは30%~100%であり、さらに好ましくは30%~90%であり、特に好ましくは30%~80%であり、最も好ましくは30%~70%である。カーボンナノチューブの層数分布の最頻値の相対頻度を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the relative frequency of the mode value of the number distribution of the carbon nanotubes is preferably 30% or more, more preferably 30% to 100%, and further preferably 30% to 90%. Particularly preferably 30% to 80%, most preferably 30% to 70%. By adjusting the relative frequency of the mode value of the wall number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes exhibiting excellent adhesive properties.
 第2の実施形態において、カーボンナノチューブの層数分布の最頻値は、好ましくは層数10層以下に存在し、より好ましくは層数1層から層数10層に存在し、さらに好ましくは層数2層から層数8層に存在し、特に好ましくは層数2層から層数6層に存在する。カーボンナノチューブの層数分布の最頻値を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the mode value of the number distribution of carbon nanotubes is preferably present in the number of layers of 10 or less, more preferably in the number of layers from 1 to 10, and more preferably in the number of layers. The number of layers is from 2 to 8 and particularly preferably from 2 to 6 layers. By adjusting the mode of the number distribution of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes have excellent adhesive properties. It can become the carbon nanotube aggregate which shows.
 第2の実施形態において、カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。 In the second embodiment, as the shape of the carbon nanotube, the cross section may have any appropriate shape. For example, the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
 第2の実施形態において、カーボンナノチューブの長さは、好ましくは50μm以上であり、より好ましくは550μm~3000μmであり、さらに好ましくは600μm~2000μmであり、さらに好ましくは650μm~1000μmであり、特に好ましくは700μm~1000μmである。カーボンナノチューブの長さを上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the length of the carbon nanotube is preferably 50 μm or more, more preferably 550 μm to 3000 μm, still more preferably 600 μm to 2000 μm, still more preferably 650 μm to 1000 μm, and particularly preferably. Is 700 μm to 1000 μm. By adjusting the length of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a body.
 第2の実施形態において、カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。カーボンナノチューブの直径を上記範囲内に調整することにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 In the second embodiment, the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm. By adjusting the diameter of the carbon nanotubes within the above range, the carbon nanotubes can have excellent mechanical properties and a high specific surface area. Furthermore, the carbon nanotube aggregates exhibit excellent adhesive properties. Can be.
 第2の実施形態において、カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。 In the second embodiment, the specific surface area and density of the carbon nanotubes can be set to any appropriate values.
 1つの実施形態においては、上記カーボンナノチューブは、その少なくとも先端を含む部分が無機材料によって被覆されている。ここでいう「少なくとも先端を含む部分」とは、カーボンナノチューブの先端、すなわち、カーボンナノチューブの第1の基材とは反対側の先端を少なくとも含む部分を意味する。 In one embodiment, at least a portion including the tip of the carbon nanotube is coated with an inorganic material. The “part including at least the tip” as used herein means a portion including at least the tip of the carbon nanotube, that is, the tip of the carbon nanotube opposite to the first substrate.
 上記カーボンナノチューブは、その全てが、その少なくとも先端を含む部分が無機材料によって被覆されていても良いし、その一部が、その少なくとも先端を含む部分が無機材料によって被覆されていても良い。複数あるカーボンナノチューブの全体の中における、その少なくとも先端を含む部分が無機材料によって被覆されたカーボンナノチューブの含有割合は、好ましくは50重量%~100重量%であり、より好ましくは60重量%~100重量%であり、さらに好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、特に好ましくは90重量%~100重量%であり、最も好ましくは実質的に100重量%である。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具が形成され得る。 All of the above carbon nanotubes may be covered with an inorganic material at least at a portion including the tip, or a portion thereof may be covered with an inorganic material at least a portion including the tip. The content ratio of the carbon nanotube in which at least the portion including the tip of the carbon nanotube is coated with an inorganic material is preferably 50 wt% to 100 wt%, more preferably 60 wt% to 100 wt%. % By weight, more preferably 70% by weight to 100% by weight, further preferably 80% by weight to 100% by weight, particularly preferably 90% by weight to 100% by weight, and most preferably substantially 100% by weight. If it is such a range, the conveyance fixing jig | tool which has high grip force and cannot contaminate a to-be-conveyed object can be formed.
 上記被覆層の厚みは、好ましくは1nm以上であり、より好ましくは3nm以上であり、さらに好ましくは5nm以上であり、さらに好ましくは7nm以上であり、特に好ましくは9nm以上であり、最も好ましくは10nm以上である。上記被覆層の厚みの上限値は、好ましくは50nmであり、より好ましくは40nmであり、さらに好ましくは30nmであり、特に好ましくは20nmであり、最も好ましくは15nmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具を形成することができる。 The thickness of the coating layer is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, further preferably 7 nm or more, particularly preferably 9 nm or more, and most preferably 10 nm. That's it. The upper limit of the thickness of the coating layer is preferably 50 nm, more preferably 40 nm, still more preferably 30 nm, particularly preferably 20 nm, and most preferably 15 nm. Within such a range, it is possible to form a conveyance fixing jig that has a high grip force and that hardly contaminates the object to be conveyed.
 上記被覆層の長さは、好ましくは1nm~1000nmであり、より好ましくは5nm~700nmであり、さらに好ましくは10nm~500nmであり、特に好ましくは30nm~300nmであり、最も好ましくは50nm~100nmである。このような範囲であれば、グリップ力が高く、かつ、被搬送物を汚染しがたい搬送固定治具が形成され得る。 The length of the coating layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 700 nm, still more preferably 10 nm to 500 nm, particularly preferably 30 nm to 300 nm, and most preferably 50 nm to 100 nm. is there. If it is such a range, the conveyance fixing jig | tool which has high grip force and cannot contaminate a to-be-conveyed object can be formed.
 上記無機材料としては、本発明の効果を損なわない範囲で任意の適切な無機材料を採用し得る。このような無機材料としては、例えば、SiO、Al、Fe、TiO、MgO、Cu、Ag、Auなどが挙げられる。 As said inorganic material, arbitrary appropriate inorganic materials can be employ | adopted in the range which does not impair the effect of this invention. Examples of such inorganic materials include SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MgO, Cu, Ag, and Au.
 カーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。 Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate.
 カーボンナノチューブ集合体の製造方法としては、例えば、平板の上に触媒層を形成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、平板から略垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。 As a method for producing an aggregate of carbon nanotubes, for example, a chemical vapor phase is formed in which a catalyst layer is formed on a flat plate, a carbon source is filled in a state where the catalyst is activated by heat, plasma, etc., and carbon nanotubes are grown. Examples thereof include a method of producing an aggregate of carbon nanotubes oriented substantially vertically from a flat plate by a growth method (Chemical Vapor Deposition: CVD method).
 カーボンナノチューブ集合体の製造方法で用い得る平板としては、任意の適切な平板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。 Any appropriate flat plate can be adopted as a flat plate that can be used in the method for producing a carbon nanotube aggregate. For example, the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned. Examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
 カーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図4に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。 Any appropriate apparatus can be adopted as an apparatus for producing the carbon nanotube aggregate. For example, as a thermal CVD apparatus, as shown in FIG. 4, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace, and the like can be mentioned. In that case, for example, a heat-resistant quartz tube is preferably used as the reaction vessel.
 カーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。 Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate. For example, metal catalysts, such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
 カーボンナノチューブ集合体を製造する際、必要に応じて、平板と触媒層の中間にアルミナ/親水性膜を設けても良い。 When producing the carbon nanotube aggregate, an alumina / hydrophilic film may be provided between the flat plate and the catalyst layer as necessary.
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、平板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。平板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、平板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。 Any appropriate method can be adopted as a method for producing the alumina / hydrophilic film. For example, it can be obtained by forming a SiO 2 film on a flat plate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C. According to such a manufacturing method, Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed. Even if Al is heated up to 450 ° C. and oxidized without forming a hydrophilic film on a flat plate, Al 2 O 3 surfaces having different particle diameters may not be formed easily. Moreover, even if a hydrophilic film is prepared on a flat plate and Al 2 O 3 is directly deposited, Al 2 O 3 surfaces having different particle diameters may not be easily formed.
 カーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。カーボンナノチューブ集合体の製造に用い得る触媒層の厚みを上記範囲内に調整することにより、形成するカーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。 The thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate is preferably 0.01 nm to 20 nm, more preferably 0.1 nm to 10 nm in order to form fine particles. By adjusting the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate within the above range, the formed carbon nanotubes can have both excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting excellent adhesive properties.
 触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を平板上に塗布する方法などが挙げられる。 Any appropriate method can be adopted as a method for forming the catalyst layer. For example, a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a flat plate, and the like can be mentioned.
 カーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。 Any appropriate carbon source can be used as the carbon source that can be used for the production of the carbon nanotube aggregate. For example, hydrocarbons such as methane, ethylene, acetylene, and benzene; alcohols such as methanol and ethanol;
 カーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。 Arbitrary appropriate temperature can be employ | adopted as manufacturing temperature in manufacture of a carbon nanotube aggregate. For example, in order to form catalyst particles that can sufficiently exhibit the effects of the present invention, the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
(第2の基材)
 上記第2の基材は、カーボンナノチューブ集合体を形成する際に用いた平板であり得る。すなわち、第2の基材を備える搬送固定治具は、カーボンナノチューブ集合体が形成された平板をそのまま、第2の基材に積層して得られる。
(Second base material)
The second substrate may be a flat plate used when forming the carbon nanotube aggregate. That is, the conveyance fixing jig provided with the second base material is obtained by laminating the flat plate on which the carbon nanotube aggregate is formed as it is on the second base material.
E.搬送固定治具の製造方法
 搬送固定治具は、任意の適切な方法により製造され得る。1つの実施形態においては、第1の基板上に接着剤層を構成する接着剤を塗布し、該塗布により形成された塗布層上にカーボンナノチューブ集合体を配置した後、該塗布層を硬化させることにより接着剤層を形成して、搬送固定治具を得ることができる。カーボンナノチューブ集合体を塗布層上に配置する方法としては、例えば、上記D項で説明した方法により得られたカーボンナノチューブ集合体付平板から、カーボンナノチューブ集合体を上記塗布層に転写する方法が挙げられる。
E. Manufacturing method of conveyance fixing jig The conveyance fixing jig can be manufactured by any appropriate method. In one embodiment, the adhesive constituting the adhesive layer is applied on the first substrate, the carbon nanotube aggregate is disposed on the applied layer formed by the application, and then the applied layer is cured. Thereby, an adhesive bond layer can be formed and a conveyance fixing jig can be obtained. Examples of the method of arranging the carbon nanotube aggregate on the coating layer include a method of transferring the carbon nanotube aggregate to the coating layer from the flat plate with the carbon nanotube aggregate obtained by the method described in the above section D. It is done.
 別の実施形態においては、第1の基板上に接着剤層を構成する接着剤を塗布し、該塗布により形成された塗布層上に、カーボンナノチューブ集合体が形成された平板(第2の基板)を積層した後、該塗布層を硬化することにより、搬送固定治具を得ることができる。 In another embodiment, a flat plate (second substrate) in which an adhesive constituting an adhesive layer is applied on a first substrate, and an aggregate of carbon nanotubes is formed on the coating layer formed by the application. ), And then the coating layer is cured to obtain a transport fixture.
 接着剤の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、コンマコーターやダイコーターによる塗布、ディスペンサによる塗布、スキージによる塗布等が挙げられる。 Any appropriate method can be adopted as an adhesive application method. Examples of the application method include application using a comma coater or a die coater, application using a dispenser, application using a squeegee, and the like.
 上記接着剤塗布層の硬化方法としては、任意の適切な方法が採用され得る。加熱により硬化する方法が好ましく用いられる。硬化温度は、接着剤の種類に応じて適切に設定され得る。該硬化温度は、例えば、90℃~400℃である。1つの実施形態において、接着剤としてカーボン系接着剤を用いる場合、硬化後、高温下で焼成する。焼成温度は、該接着剤の使用温度より高いことが好ましく、例えば、350℃~3000℃である。 Any appropriate method may be adopted as a method for curing the adhesive application layer. A method of curing by heating is preferably used. The curing temperature can be appropriately set according to the type of adhesive. The curing temperature is, for example, 90 ° C. to 400 ° C. In one embodiment, when a carbon-based adhesive is used as the adhesive, it is baked at a high temperature after curing. The firing temperature is preferably higher than the use temperature of the adhesive, for example, 350 ° C. to 3000 ° C.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.
[製造例1]カーボンナノチューブ集合体の製造
 シリコン製の平板(バルカー・エフティ社製、厚み700μm)上に、スパッタ装置(芝浦メカトロニクス社製、商品名「CFS-4ES」)により、Al薄膜(到達真空度:8.0×10-4Pa、スパッタガス:Ar、ガス圧:0.50Pa、成長レート:0.12nm/sec、厚み:20nm)を形成した。このAl薄膜上に、さらにスパッタ装置(芝浦メカトロニクス社製、商品名「CFS-4ES」)にてFe薄膜を触媒層(スパッタガス:Ar、ガス圧:0.75Pa、成長レート:0.012nm/sec、厚み:1.0nm)として形成した。
 その後、この平板を30mmφの石英管内に載置し、水分率700ppmに保ったヘリウム/水素(105/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率700ppm)混合ガスを管内に充填させ、60分間放置して、平板上にカーボンナノチューブ集合体を形成させた。
[Production Example 1] Production of aggregate of carbon nanotubes Al 2 O 3 by a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics Co., Ltd.) on a silicon flat plate (manufactured by VALQUA EFT Co., Ltd., thickness 700 μm) A thin film (degree of ultimate vacuum: 8.0 × 10 −4 Pa, sputtering gas: Ar, gas pressure: 0.50 Pa, growth rate: 0.12 nm / sec, thickness: 20 nm) was formed. On this Al 2 O 3 thin film, an Fe thin film was further formed as a catalyst layer (sputtering gas: Ar, gas pressure: 0.75 Pa, growth rate: 0) using a sputtering apparatus (trade name “CFS-4ES” manufactured by Shibaura Mechatronics) .012 nm / sec, thickness: 1.0 nm).
Thereafter, this flat plate was placed in a 30 mmφ quartz tube, and a mixed gas of helium / hydrogen (105/80 sccm) maintained at a moisture content of 700 ppm was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube. Thereafter, the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 700 ppm) was filled into the tube and left for 60 minutes to form a carbon nanotube aggregate on the flat plate. It was.
[実施例1]
 第1の基材(セラミクス製)上に、接着剤を塗布した。該接着剤上に、製造例1で得られたカーボンナノチューブ集合体を上記平板から採取し、接着剤塗布層上に配置して評価サンプルを作製した。カーボンナノチューブ集合体は、ひとつ当たりの面積を9mmとし、第1の基材上に4つのカーボンナノチューブ集合体を配置した(総面積:0.36cm)。
[Example 1]
An adhesive was applied on the first substrate (made by Ceramics). On the adhesive, the carbon nanotube aggregate obtained in Production Example 1 was collected from the flat plate and placed on the adhesive coating layer to prepare an evaluation sample. The aggregate of carbon nanotubes was 9 mm 2 per area, and four aggregates of carbon nanotubes were disposed on the first substrate (total area: 0.36 cm 2 ).
[実施例2]
 カーボンナノチューブ集合体ひとつ当たりの面積を16mm(総面積:0.64cm)としたこと以外は、実施例1と同様にして、評価サンプルを作製した。
[Example 2]
An evaluation sample was produced in the same manner as in Example 1 except that the area per aggregate of carbon nanotubes was 16 mm 2 (total area: 0.64 cm 2 ).
[実施例3]
 カーボンナノチューブ集合体ひとつ当たりの面積を36mm(総面積:1.44cm)としたこと以外は、実施例1と同様にして、評価サンプルを作製した。
[Example 3]
An evaluation sample was produced in the same manner as in Example 1 except that the area per aggregate of carbon nanotubes was 36 mm 2 (total area: 1.44 cm 2 ).
[比較例1]
 カーボンナノチューブ集合体ひとつ当たりの面積を81mm(総面積:3.24cm)としたこと以外は、実施例1と同様にして、評価サンプルを作製した。
[Comparative Example 1]
An evaluation sample was produced in the same manner as in Example 1 except that the area per aggregate of carbon nanotubes was 81 mm 2 (total area: 3.24 cm 2 ).
<評価>
 実施例および比較例で得られた評価サンプルを下記の評価に供した。カーボンナノチューブ集合体にかかる荷重とともに、評価結果を表1に示す。
<Evaluation>
The evaluation samples obtained in the examples and comparative examples were subjected to the following evaluation. The evaluation results are shown in Table 1 together with the load applied to the carbon nanotube aggregate.
(1)接触率、真実接触面積
 実施例および比較例で得られた評価サンプル上に重量128g、面積707cmの被搬送物を載せた。このとき、4つすべてのカーボンナノチューブ集合体上に被搬送物が載っている状態となるようにし、該被搬送物による荷重はすべてカーボンナノチューブ集合体にかかるようにした。
 このように被搬送物を載せた状態で、カーボンナノチューブ集合体表面部分の断面をSEM(倍率:2万倍)により観察し、被搬送物とカーボンナノチューブとの接触率(カーボンナノチューブと被搬送物が接触している部分の長さ/カーボンナノチューブ集合体表面測定長)を測定した。
 また、カーボンナノチューブ集合体の面積および当該接触率から、(カーボンナノチューブ集合体の面積)×(接触率)の式により、真実接触面積を求めた。
(1) Contact rate, true contact area A transported object having a weight of 128 g and an area of 707 cm 2 was placed on the evaluation samples obtained in the examples and comparative examples. At this time, the object to be transported was placed on all four carbon nanotube aggregates, and all the loads by the objects to be transported were applied to the carbon nanotube aggregates.
In this state, the cross section of the surface of the carbon nanotube aggregate is observed by SEM (magnification: 20,000 times), and the contact ratio between the transferred object and the carbon nanotube (the carbon nanotube and the transferred object). The length of the contacted portion / the measured length of the carbon nanotube aggregate surface) was measured.
The true contact area was determined from the area of the carbon nanotube aggregate and the contact rate according to the formula of (area of the carbon nanotube aggregate) × (contact ratio).
(2)限界すべり角
 上記(1)と同様にして、評価サンプル上に被搬送物を載せた。その後、常温(23℃)下で、被搬送物を載せた評価サンプルを傾け、徐々に傾斜角度を増し、被搬送物が評価サンプルに保持される(滑り落ちない)傾斜角度の最大値を測定し、これを限界すべり角とした。
 また、300℃の環境下において、同様の方法により限界すべり角を測定した。
(2) Limit slip angle In the same manner as in (1) above, an object to be transported was placed on the evaluation sample. Then, at normal temperature (23 ° C), tilt the evaluation sample with the object to be transported, gradually increase the tilt angle, and measure the maximum value of the tilt angle at which the transported object is held by the evaluation sample (does not slide down) This was the critical slip angle.
Further, the critical slip angle was measured by the same method under an environment of 300 ° C.
(3)静摩擦係数
 JIS K7125に準じて測定した。
 評価サンプルのカーボンナノチューブ集合体側をシリコン製ウエハにおき、その上からすべり片(底面:フェルト、63mm×63mm)と、さらにそのすべり片の上におもり(すべり片の全質量が200gとなる重さのおもり)を載せた状態で、試験片を試験速度100mm/minで引張り、試験片が動き始めるときの最大荷重から静摩擦係数を算出した。
 また、静摩擦係数をもとにして、高温高速搬送性を評価した。静摩擦係数が1.6より大きい場合、実用上許容可能な高温高速搬送性を有し(表1中、△)、静摩擦係数が1.8以上である場合、優れた高温高速搬送性を有すると判断される(表1中、〇)。
(3) Coefficient of static friction Measured according to JIS K7125.
The carbon nanotube aggregate side of the evaluation sample is placed on a silicon wafer, a slip piece (bottom: felt, 63 mm × 63 mm) from above, and a weight on the slip piece (the total weight of the slide piece is 200 g). The test piece was pulled at a test speed of 100 mm / min in a state where the weight was placed, and the coefficient of static friction was calculated from the maximum load when the test piece started to move.
Moreover, high-temperature high-speed transportability was evaluated based on the static friction coefficient. When the coefficient of static friction is larger than 1.6, it has practically acceptable high-temperature and high-speed transportability (in Table 1, Δ). When the coefficient of static friction is 1.8 or more, Judgment is made (in Table 1, ○).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、カーボンナノチューブ集合体にかかる荷重が0.05kg/cm以上となるように構成された本願の搬送固定治具は、グリップ力に優れ、高温下での高速搬送性に優れる。 As is apparent from Table 1, the conveyance fixing jig of the present application configured so that the load applied to the aggregate of carbon nanotubes is 0.05 kg / cm 2 or more has excellent gripping force and high-speed conveyance at high temperatures. Excellent.
10   第1の基材
20   カーボンナノチューブ集合体
21   カーボンナノチューブ
22   第2の基材
30   接着剤層
100、200 搬送固定治具
10 first base material 20 carbon nanotube aggregate 21 carbon nanotube 22 second base material 30 adhesive layer 100, 200 transport fixing jig

Claims (7)

  1.  面積が40cm以上であり、重量が5g以上の被搬送物を搬送する搬送固定治具であって、
     第1の基材と、第1の基材上に設けられたカーボンナノチューブ集合体とを備え、
     該被搬送物を載置した際に、該カーボンナノチューブ集合体にかかる荷重が0.05kg/cm以上となるように構成されている、
     搬送固定治具。
    A conveyance fixture for conveying an object having an area of 40 cm 2 or more and a weight of 5 g or more,
    A first base material and a carbon nanotube aggregate provided on the first base material,
    When the transported object is placed, the load applied to the carbon nanotube aggregate is configured to be 0.05 kg / cm 2 or more.
    Transport fixture.
  2.  前記カーボンナノチューブ集合体が、前記第1の基材上に3つ以上設けられている、請求項1に記載の搬送固定治具。 The conveyance fixing jig according to claim 1, wherein three or more carbon nanotube aggregates are provided on the first base material.
  3.  前記カーボンナノチューブ集合体の総面積が、30mm~240mmである、請求項1または2に記載の搬送固定治具。 The conveyance fixing jig according to claim 1 or 2, wherein a total area of the aggregate of carbon nanotubes is 30 mm 2 to 240 mm 2 .
  4.  前記カーボンナノチューブ集合体ひとつあたりの面積が、8mm~60mmである、請求項2または3に記載の搬送固定治具。 The conveyance fixing jig according to claim 2 or 3, wherein an area per one carbon nanotube aggregate is 8 mm 2 to 60 mm 2 .
  5.  前記搬送固定治具に128gの被搬送物を載置した場合の該被搬送物とカーボンナノチューブとの真実接触面積が、0.08cm以上である、請求項1から4のいずれかに記載の搬送固定治具。 5. The true contact area between the object to be conveyed and the carbon nanotube when a 128 g object to be conveyed is placed on the conveyance fixing jig is 0.08 cm 2 or more. Transport fixture.
  6.  前記カーボンナノチューブ集合体表面のガラス表面に対する23℃における静摩擦係数が、1~50である、請求項1から5のいずれかに記載の搬送固定治具。 6. The conveyance fixing jig according to claim 1, wherein a coefficient of static friction at 23 ° C. with respect to the glass surface of the carbon nanotube aggregate surface is 1 to 50.
  7.  前記カーボンナノチューブ集合体が、カーボンナノチューブと第2の基材とを含む、請求項1から6のいずれかに記載の搬送固定治具。
     
     
    The conveyance fixing jig according to claim 1, wherein the aggregate of carbon nanotubes includes a carbon nanotube and a second base material.

PCT/JP2018/001915 2017-03-23 2018-01-23 Conveying and fixing jig WO2018173456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057602 2017-03-23
JP2017057602A JP6855298B2 (en) 2017-03-23 2017-03-23 Transport fixing jig

Publications (1)

Publication Number Publication Date
WO2018173456A1 true WO2018173456A1 (en) 2018-09-27

Family

ID=63584281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001915 WO2018173456A1 (en) 2017-03-23 2018-01-23 Conveying and fixing jig

Country Status (3)

Country Link
JP (1) JP6855298B2 (en)
TW (1) TW201840459A (en)
WO (1) WO2018173456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139912A (en) * 2019-03-01 2020-09-03 東芝テック株式会社 Adsorption device and analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144149B2 (en) * 2018-02-06 2022-09-29 日東電工株式会社 carbon nanotube assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152940A1 (en) * 2007-06-13 2008-12-18 Ulvac, Inc. Substrate supporting mechanism
JP2009120771A (en) * 2007-11-16 2009-06-04 Toyota Central R&D Labs Inc Sliding member and method for manufacturing the same
JP2015135963A (en) * 2013-12-23 2015-07-27 ラム リサーチ コーポレーションLam Research Corporation Microstructures for improved wafer handling
JP2015201638A (en) * 2014-04-03 2015-11-12 エーエスエム アイピー ホールディング ビー.ブイ. Anti-slip end effector for transporting workpiece using van der waals force
JP2017035743A (en) * 2015-08-07 2017-02-16 日東電工株式会社 Transport device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152940A1 (en) * 2007-06-13 2008-12-18 Ulvac, Inc. Substrate supporting mechanism
JP2009120771A (en) * 2007-11-16 2009-06-04 Toyota Central R&D Labs Inc Sliding member and method for manufacturing the same
JP2015135963A (en) * 2013-12-23 2015-07-27 ラム リサーチ コーポレーションLam Research Corporation Microstructures for improved wafer handling
JP2015201638A (en) * 2014-04-03 2015-11-12 エーエスエム アイピー ホールディング ビー.ブイ. Anti-slip end effector for transporting workpiece using van der waals force
JP2017035743A (en) * 2015-08-07 2017-02-16 日東電工株式会社 Transport device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139912A (en) * 2019-03-01 2020-09-03 東芝テック株式会社 Adsorption device and analysis device
JP7315913B2 (en) 2019-03-01 2023-07-27 東芝テック株式会社 Adsorption device and analysis device

Also Published As

Publication number Publication date
TW201840459A (en) 2018-11-16
JP2018160587A (en) 2018-10-11
JP6855298B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2017026336A1 (en) Conveying device
KR102449288B1 (en) adhesive structure
US11420832B2 (en) Transport fixing jig
WO2018173456A1 (en) Conveying and fixing jig
KR102477740B1 (en) Carbon nanotube aggregate
WO2017159661A1 (en) Conveying fixing jig
WO2016027804A1 (en) Semiconductor transport member and semiconductor carrying member
KR102424471B1 (en) carbon nanotube aggregate
JP6616194B2 (en) Placement member
JP6549995B2 (en) Mounting member
WO2016027601A1 (en) Semiconductor carrying member and semiconductor mounting member
TWI743077B (en) Mounting components
JP7144149B2 (en) carbon nanotube assembly
KR20220124055A (en) Multiple carbon aggregates capable of maintaining the sheet shape
WO2017122620A1 (en) Method for producing mounting member
WO2018066233A1 (en) Carbon nanotube aggregate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770814

Country of ref document: EP

Kind code of ref document: A1