WO2017145952A1 - Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure - Google Patents

Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure Download PDF

Info

Publication number
WO2017145952A1
WO2017145952A1 PCT/JP2017/005992 JP2017005992W WO2017145952A1 WO 2017145952 A1 WO2017145952 A1 WO 2017145952A1 JP 2017005992 W JP2017005992 W JP 2017005992W WO 2017145952 A1 WO2017145952 A1 WO 2017145952A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
carrier
preparation
particles
Prior art date
Application number
PCT/JP2017/005992
Other languages
French (fr)
Japanese (ja)
Inventor
野田 優
孝祐 川端
利男 大沢
宗一郎 蜂谷
孝剛 本郷
Original Assignee
学校法人早稲田大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 日本ゼオン株式会社 filed Critical 学校法人早稲田大学
Priority to CN201780013014.9A priority Critical patent/CN108778493B/en
Priority to JP2018501646A priority patent/JP6875705B2/en
Publication of WO2017145952A1 publication Critical patent/WO2017145952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a particle processing apparatus and a method for producing a catalyst carrier and / or fibrous carbon nanostructure.
  • the present invention relates to a particle processing apparatus for processing particles accommodated in a preparation device, and a method for producing a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus.
  • CNT carbon nanotubes
  • fibrous carbon nanostructures such as CNTs were generally more expensive than other materials due to high manufacturing costs. For this reason, in spite of having the above-mentioned excellent characteristics, its application has been limited. Further, in recent years, a CVD (Chemical Vapor Deposition) method using a catalyst (hereinafter sometimes referred to as “catalytic CVD method”) has been used as a production method capable of producing CNTs and the like with relatively high efficiency. It was. However, even with the catalytic CVD method, the manufacturing cost could not be reduced sufficiently.
  • Patent Documents 1 to 3 a method has been proposed in which a fluidized bed is formed by a particulate support, and a catalyst layer is formed on the surface of the support by supplying a gas containing a catalyst raw material to the fluidized bed (for example, Patent Documents). 1 to 3).
  • a catalyst precursor vapor containing a catalytic metal as a constituent element from the lower part is provided with a heating atmosphere in a reactor having a porous plate at the lower part and filled with a particulate support.
  • An apparatus is disclosed that supplies catalyst particles (hereinafter also referred to as catalyst material) to form catalyst particles on a particulate support by decomposition of the catalyst precursor vapor.
  • the support is securely held in the fluidized bed by appropriately selecting the pore size of the porous plate, and the fluidized bed
  • the catalyst was supported on the particulate support by supplying the catalyst raw material gas and flowing the support.
  • the metal contained in the catalyst precursor vapor is deposited also in the pores of the porous plate, and the porous plate is clogged. If the porous plate is clogged, the efficiency of the step of supporting the catalyst on the support may be significantly reduced.
  • the present invention provides a particle processing apparatus capable of efficiently processing particles accommodated in a preparation device, and a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus.
  • An object is to provide a manufacturing method.
  • the present inventors have intensively studied for the purpose of solving the above problems.
  • the inventors of the present invention avoid the clogging problem as described above by providing a tapered portion at the bottom of the particle processing apparatus and not providing a member for blocking the movement of particles in a specific section. As a result, the present invention has been completed.
  • the present invention aims to advantageously solve the above-mentioned problems, and the particle processing apparatus of the present invention has a tapered portion whose inner diameter becomes smaller downward, and an object contained in the tapered portion.
  • a preparation device configured to be capable of accommodating at least one of carrier particles and a particulate catalyst carrier, and capable of discharging the stored material from a discharge port disposed at the bottom of the tapered portion,
  • the first pipe connected to the discharge port and at least one preparator gas supply pipe connected to the first pipe are accommodated in the taper portion from the discharge port of the taper portion.
  • a preparator gas supply mechanism for supplying a preparator gas toward the container, and the carrier particles and the catalyst support above the connecting portion between the preparator gas supply pipe and the first pipe.
  • the particle processing apparatus of the present invention does not include a member for blocking the movement of the particulate matter above the connecting portion between the preparator gas supply pipe and the first pipe, the preparator gas is efficiently used for the preparator.
  • the particles that are contained in the preparation device can be efficiently processed.
  • the preparation gas supply mechanism holds at least a part of the storage in the preparation and causes at least a part of the storage to flow in the preparation. It is preferable to provide a preparator gas supply control mechanism capable of supplying the preparator gas at a possible gas flow rate. It is because it can process more efficiently by hold
  • the preparation device further includes a heating mechanism for heating the contents. This is because particles can be processed more efficiently by heating the inside of the preparation device efficiently.
  • the preparation gas supply control mechanism may be capable of supplying at least one of a reducing gas, an oxygen element-containing gas, a catalyst material gas, and a carbon raw material-containing gas.
  • the manufacturing method of the catalyst carrier of this invention and / or fibrous carbon nanostructure uses the particle processing apparatus mentioned above.
  • a method for producing a catalyst carrier and / or a fibrous carbon nanostructure the supply step (1) supplying at least one of carrier particles and particulate catalyst carrier into the preparation device in a heated state; In the preparation device, at least one of the support particles and the particulate catalyst support and the preparation gas are brought into contact with each other, and at least one of the catalyst support and the catalyst support having the fibrous carbon nanostructure is brought into contact with the preparation gas.
  • the catalyst carrier obtained in the contact step (2) and the catalyst carrier having the fibrous carbon nanostructure in the preparation device is allowed to flow down outside the preparation device Comprising the recovery step (3) to be discharged, characterized in that.
  • the catalyst carrier and / or fibrous carbon nanostructure can be produced with high efficiency by efficiently treating the particles in the preparation vessel.
  • the preparation gas includes a catalyst material gas, a reducing gas, an oxygen element-containing gas, and / or a carbon raw material-containing gas
  • the contact step (2) includes a catalyst supporting step.
  • the catalyst loading step (i) Supplying the catalyst material gas as the preparation gas, thereby supporting the catalyst on the carrier particles, and the reduction treatment step (ii) supplies the reducing gas as the preparation gas.
  • the oxidation treatment step (iii) supplies the oxygen element-containing gas as the preparation gas.
  • the carrier particles are oxidized, and the fibrous carbon nanostructure synthesis step (iv) is performed on the catalyst support by supplying the carbon raw material-containing gas as the preparation gas.
  • the step of synthesizing the fibrous carbon nanostructure is preferable.
  • the preparation gas is supplied at a constant flow rate and / or composition, and a plurality of steps (1) to (3) and / or steps (i) to (iv) are provided. Are preferably performed simultaneously. This is because the production efficiency can be further increased.
  • the production method of the present invention further includes a gas switching step of switching the flow rate and / or type of the preparator gas, and includes the steps (1) to (3) and / or the steps (i) to (iv). It is preferable to carry out any two or more of them separately in time. It is because the uniformity of the obtained product can be improved.
  • the oxidation treatment step is performed before the reduction treatment step and / or the catalyst supporting step, and the reduction treatment step is performed by the oxidation treatment step and / or the It is preferable to carry out after the catalyst loading step. This is because the particles can be processed satisfactorily.
  • the carrier particles may be carrier particles to which no catalyst component is attached, carrier particles to which a catalyst precursor has been attached, and / or carrier particles to which a deactivated catalyst is attached.
  • the catalyst material gas includes Fe and / or Al
  • the reducing gas includes hydrogen, ammonia, and / or hydrocarbon
  • the oxygen element-containing gas includes air. , Oxygen, water vapor, and / or carbon dioxide.
  • the particles in the preparation device can be processed efficiently.
  • the particle processing apparatus of the present invention can attach a catalyst to carrier particles that are contained in a preparation device. Moreover, the particle processing apparatus of the present invention can oxidize carrier particles, which are contained in a preparation device, or activate a catalyst attached to the carrier particles. Furthermore, the particle processing apparatus of the present invention can synthesize a fibrous carbon nanostructure on a catalyst carrier that is a container accommodated in a preparation device. According to the particle processing apparatus of the present invention, it is possible to perform the above-described various treatments without causing the carrier particles as the contained material to flow. Various treatments can also be performed by forming a fluidized bed in the vessel.
  • carrier particles are carrier particles to which a catalyst component is not attached, carrier particles to which catalyst precursors have been attached, and / or targets to be treated by the particle treatment apparatus of the present invention. It is a term used to refer to carrier particles with a deactivated catalyst attached.
  • carrier particles can be, for example, carrier particles to which catalyst material has already adhered, and carrier particles to which catalyst material has not yet adhered.
  • the carrier particles to which the catalyst precursor has been attached are particles before the catalyst material is attached by a general wet loading method and subjected to a firing treatment.
  • the particle processing apparatus of the present invention can be used to attach the catalyst material to the carrier particles that have not yet been attached to the catalyst material, or to the carrier particles to which the catalyst material has already adhered. In addition, it can be used for further attaching a catalyst material.
  • the particle processing apparatus of the present invention can be used for the first catalyst loading when the catalyst carrier is repeatedly used when forming the fibrous carbon nanostructure using the catalyst carrier. It means that it can be used for subsequent catalyst loading.
  • the particle processing apparatus of the present invention can be used to activate a catalyst by supplying a catalyst carrier to which a catalyst material is adhered.
  • the “catalyst carrier” is a term used to indicate a catalyst carrier before the reduction treatment and / or a catalyst carrier after the reduction treatment.
  • the catalyst carrier before the reduction treatment is a catalyst carrier obtained by firing carrier particles to which a catalyst material is adhered, and for example, carrying a metal oxide as a catalyst component.
  • “particulate” means that the aspect ratio is less than 5.
  • the aspect ratio of the carrier particles is, for example, calculating the value of (maximum major axis / width perpendicular to the maximum major axis) for 100 arbitrarily selected carrier particles on a microscope image, and calculating the average value thereof. You can confirm it.
  • the manufacturing method of the catalyst carrier of this invention and / or fibrous carbon nanostructure can be implemented using the particle processing apparatus of this invention.
  • the catalyst carrier formed using the particle processing apparatus and the production method of the present invention can be suitably used for producing fibrous carbon nanostructures such as carbon nanotubes and carbon nanofibers.
  • FIG. 1A is a schematic view showing an example of the configuration of the particle processing apparatus of the present invention.
  • the particle processing apparatus 100 of the present invention includes a preparation device 10, a first pipe 20, and a preparation device gas supply pipe 30.
  • the first pipe 20 and the preparator gas supply pipe 30 are connected to each other by a connecting portion 40, and the particle processing apparatus 100 has carrier particles and a catalyst carrier (that is, particles) above the lower end of the connecting portion 40. 50) is not provided with a member for blocking the movement.
  • the particle processing apparatus 100 does not include a physical mechanism for blocking the movement of the carrier particles and the catalyst carrier that can flow down from the preparation device 10.
  • tube 30 are not specifically limited, For example, it is comprised with the glass tube and stainless steel tube whose cross-sectional shape is circular.
  • upper and “lower” of the particle processing apparatus 100 refer to the direction of the preparation device 10 as viewed from the connection portion 40 with reference to the longitudinal direction of the preparation device 10 that forms the fluidized bed.
  • the direction of the particle container 70 will be described as the “down” direction.
  • the particle processing apparatus 100 first accommodates carrier particles in the preparation device 10, and supplies the preparation gas supplied from the lower side to the carrier particles via the preparation gas supply pipe 30 and the first pipe 20. Then, the catalyst is adhered to the carrier particles by flowing in the preparation device.
  • each component of the particle processing apparatus 100 will be described in more detail.
  • the preparation device 10 has a main body and a tapered portion 11 whose outer diameter decreases toward the lower side, and can accommodate particles 50 in the main body and the tapered portion or the tapered portion.
  • the taper portion 11 can accommodate the particles 50 and is configured to be able to discharge the catalyst carrier obtained from the discharge port 12 disposed at the bottom of the taper portion 11.
  • the particles 50 are contained in a preparation device, and include at least one of carrier particles and a particulate catalyst support.
  • the particles 50 form a fluidized bed inside the preparation device 10 including the tapered portion 11. Specifically, at least a part of the particles 50 is blown from below through the discharge port 12 and supported at the position 13, staying inside the preparation device 10 and flowing. This flow causes the preparer gas to contact the surface of the particles 50.
  • the particle 50 may be any particle without particular limitation.
  • ceramic particles such as alumina beads and mullite beads are used as the particles 50. obtain.
  • the particle diameter of the particles 50 is not particularly limited, and is, for example, 2 mm or less, preferably 1 mm or less, and usually 10 ⁇ m or more.
  • the preparation gas may include a catalyst material gas, a reducing gas, an oxygen element-containing gas, and / or a carbon raw material-containing gas.
  • the catalyst material gas is supplied as the preparation gas, the catalyst material can be attached to the surface of the carrier particles.
  • a reducing gas is supplied as the preparation gas, the catalyst on the carrier particles can be brought into a reduced state.
  • the oxygen element-containing gas is supplied as the preparation gas, the surface of the carrier particles can be oxidized.
  • a carbon raw material-containing gas is supplied as the preparation gas, a fibrous carbon nanostructure can be synthesized on the catalyst carrier.
  • the catalyst material gas that can be supplied as the preparator gas is not particularly limited, and is a vapor of a compound containing at least one element selected from the group including Si, Al, Mg, Fe, Co, and Ni. Can be mentioned.
  • the preparator gas may contain a plurality of such compound vapors.
  • the catalyst component in supporting the catalyst, is favorably supported on the carrier particles prior to the catalyst component that functions as a catalyst that contributes to the synthesis of the fibrous carbon nanostructure during the production of the fibrous carbon nanostructure. It is preferable to deposit the metal oxide component for the carrier particles on the support particles.
  • Si, Al, and Mg are effective as components that can constitute such a metal oxide component.
  • Fe, Co, and Ni are components that can form a catalyst on the carrier particles.
  • the compound containing such a component include tris (2,4-pentanedionato) iron (III), bis (cyclopentadienyl) iron (II) (hereinafter also referred to as “ferrocene”), iron chloride.
  • Fe-containing catalyst materials such as (III) and iron carbonyl, Co such as tris (2,4-pentanedionato) cobalt (III), bis (cyclopentadienyl) cobalt (II), and cobalt chloride (II)
  • Co such as tris (2,4-pentanedionato) cobalt (III), bis (cyclopentadienyl) cobalt (II), and cobalt chloride (II)
  • Ni-containing catalyst materials such as bis (2,4-pentanedionato) nickel (II) and bis (cyclopentadienyl) nickel (II).
  • Al and Fe are particularly preferable as components used for supplying the catalyst as a preparation gas and supporting the catalyst on the carrier particles. More specifically, if a layer made of aluminum oxide, which is a metal oxide, is formed by vapor of a compound containing Al, and the Fe catalyst is supported by such layer, the catalytic activity of the obtained catalyst support is good. Because it becomes.
  • the reducing gas as the preparation gas can be hydrogen, ammonia, and / or a hydrocarbon such as methane.
  • a reducing gas is supplied as a preparator gas to the carrier particles to which the catalyst material is adhered and heated, the catalyst raw material can be reduced to form catalyst particles, and an activated catalyst carrier can be obtained. Can do.
  • the oxygen element-containing gas as the preparation gas can be air, oxygen, water vapor, and / or carbon dioxide.
  • an oxygen element-containing gas as the preparation gas By supplying an oxygen element-containing gas as the preparation gas and oxidizing the surfaces of the particles 50, impurities and residual carbon components on the surface of the carrier particles can be removed.
  • the metal oxide or catalyst for supporting the catalyst is supported well on the surface of the carrier particles. Will be able to.
  • the carbon-containing gas as the preparation gas is selected from alkyne and alkene (olefin hydrocarbon), alkane (paraffin hydrocarbon), alcohol, ether, aldehyde, ketone, aromatic, and carbon monoxide.
  • a gas containing one or more carbon raw materials to be used can be used.
  • the carbon raw material-containing gas may include a rare gas such as argon, an inert gas such as nitrogen, a reducing gas such as hydrogen, and / or an oxygen element-containing gas such as carbon dioxide.
  • the preparator gas is at a speed that is equal to or higher than the speed at which all of the particles 50 fall by its own weight and less than the speed at which the particles 50 can be blown out of the preparator 10.
  • the preparation device 10 Preferably flows into the preparation device 10.
  • the falling speed can be determined based on the size and density of the particles 50.
  • the volume of the preparation device 10 can be determined by the amount of particles 50 required, the desired processing time, and the like.
  • the shape of the taper portion 11 and the tube diameter and volume of the preparation device 10 can be appropriately determined according to the required processing amount of the particles 50, the particle diameter of the particles, the particle density, and the like.
  • the ratio of the inner diameter of the preparation device 10 to the inner diameter of the discharge port 12 is 3: 1 or more. It is preferable that it is usually 30: 1 or less.
  • the gas flow rate varies depending on the cross-sectional area of the tube through which the gas passes. Therefore, when the ratio of the diameters above and below the taper portion 11 is 3: 1, the gas flow rate at the discharge port 12 corresponding to the lower portion of the taper portion is about 10 times the gas flow rate above the taper portion 11. .
  • the gas flow rate in the preparation device 10 can be adjusted in a stepwise manner, and the gas flow rate is sufficient to maintain the fluidized bed in a fluid state. Easy to set.
  • the pipe diameter of the upper part of the taper part 11 is less than 3 times the pipe diameter of the lower part, it may be difficult to adjust the flow rate of the preparation gas.
  • the inner diameter of the upper portion of the tapered portion 11 is more than 30 times the inner diameter of the lower portion, it may be difficult to uniformly flow the particles 50 and collect the particles 50.
  • the preparation device 10 preferably further includes a heating mechanism 14 for heating the inside of the preparation device 10.
  • the heating mechanism 14 is not particularly limited, and can be configured by various heaters, for example. Furthermore, the heating mechanism 14 can heat the inside of the preparation device 10 to the reaction temperature. In addition, reaction temperature is 400 degreeC or more and 1200 degrees C or less normally.
  • the first pipe 20 is connected to the discharge port 12 of the tapered portion 11. Further, the first pipe 20 may be integrated with the preparation device 10, or may be formed as a separate part and connected to the preparation device 10.
  • the preparation gas supply mechanism capable of supplying the preparation gas from the discharge port 12 of the taper part 11 toward the particles 50 accommodated in the taper part 11 includes a preparation gas supply pipe 30.
  • the preparator gas supply pipe 30 is connected to the first pipe 20 at the connection portion 40.
  • the preparator gas supply pipe 30 preferably includes a preparator gas supply control mechanism 31 and a preparator gas source (not shown).
  • the preparator gas supply control mechanism 31 is not particularly limited as long as the gas flow rate can be adjusted, and can be configured by, for example, a valve, a pump with an inverter, a shutter, and the like.
  • the preparation gas source is not particularly limited, and may be a cylinder or a tank filled with various gases. In FIG.
  • the preparator gas supply pipe is shown as a single pipe, but the preparator gas supply pipe may be mounted as a plurality of gas supply pipes respectively connected to various preparator gas sources.
  • the preparation gas supply mechanism may have a branching unit capable of switching various gases.
  • 1A shows a mode in which the preparation gas supply pipe 30 and the first pipe 20 are orthogonal to each other at the connection part 40.
  • these pipes are not necessarily orthogonal to each other.
  • the preparator gas supply pipe 30 and the first pipe 20 are arranged in any manner as long as the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 is introduced into the preparator 10. It can be set as an aspect. For example, if the preparator gas supply pipe 30 is connected to the first pipe 20 by being inclined slightly downward at the connecting portion 40, the catalyst carrier enters the preparator gas supply pipe 30 when the particles 50 are transferred. This can be prevented and is more preferable.
  • the upper side of the connection portion 40 in the first pipe 20 in order to direct the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 in the direction of the preparator 10, that is, in the upward direction, the upper side of the connection portion 40 in the first pipe 20. It is necessary to create a pressure gradient between the lower side and the lower side. More specifically, the pipe pressure in the first pipe 20 needs to be relatively low on the upper side of the connection part 40 and relatively high on the lower side of the connection part 40. As shown in FIG. 1 (a), when the particle processing apparatus 100 is viewed around the first pipe 20, the upper end of the preparation device 10 is open on the upper side of the apparatus, and conversely, the lower side of the apparatus. Then, it closes with the particle
  • the tube pressure in the first pipe becomes relatively high below the connection portion 40. Therefore, the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 is directed upward.
  • a first pipe closing mechanism such as a valve (not shown) for the first pipe 20 below the connection portion 40, such a pressure gradient can be formed more easily.
  • the particle container 70 accommodates the catalyst carrier produced in the preparation device 10 and carrying the catalyst. If the flow rate of the preparator gas supplied from the preparator gas supply pipe is reduced or the supply of the regulator gas is stopped, the particles 50 in the preparator 10 fall as shown in FIG. It moves into the particle container 70. When the first pipe 20 has a valve below the connection portion 40, the valve is opened prior to reducing the flow rate of the regulator gas or stopping the supply of the regulator gas. To do. This is to avoid the clogging of the first pipe 20 caused by the particles 50.
  • the particle container 70 is not particularly limited, and can be made of a material such as glass or steel having an arbitrary shape.
  • the particle container 70 preferably has a lid 71.
  • the lid 71 is not particularly limited as long as the first supply pipe 20 and the particle container 70 can be connected in an airtight manner, and can be formed of any material and shape.
  • the method for producing a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus of the present invention includes a step of heating the inside of the preparation device 10 to a reaction temperature (heating step), and the preparation device 10 in a heated state.
  • a supply step for supplying at least one of the carrier particles and the particulate catalyst carrier, and at least one of the carrier particles and the particulate catalyst carrier is brought into contact with the regulator gas in the preparation device 10
  • Contact step preparer gas contact step for obtaining at least one of a catalyst carrier and a catalyst carrier having a fibrous carbon nanostructure, and adjusting the flow rate of the regulator gas to adjust the flow rate of the regulator gas.
  • each process is explained in full detail.
  • particles are supplied into the heated preparation device 10. At this time, the particles can be supplied while supplying the preparation gas into the preparation device 10. As particles, at least one of carrier particles and catalyst support can be supplied.
  • ⁇ Preparator gas contact process> by selecting or changing the type of gas to be supplied, 1) the surface of the carrier particles is oxidized, 2) the carrier particles carry a metal oxide or catalyst, and 3) the carrier particles are reduced. 4) Fibrous carbon nanostructures can be synthesized on the catalyst support.
  • concentration of the oxygen element-containing gas in the preparation gas containing the oxygen element-containing gas supplied for the purpose of oxidizing the surface of the carrier particles is usually 1% by volume or more, preferably 5% by volume or more. This is because the oxidation treatment can be carried out efficiently.
  • the preparation gas supplied to support the metal oxide on the surface of the carrier particles is usually 0.01% by volume of a gas containing one or more elements selected from Si, Al, and Mg.
  • the oxygen element-containing gas may be contained in an amount of 0.01 vol% or more and 21 vol% or less.
  • the preparer gas may typically contain 69% by volume or more of an inert gas such as nitrogen.
  • a gas containing one or more elements selected from Si, Al, and Mg for example, aluminum isopropoxide (chemical formula: Al (Oi-Pr) 3 [i-Pr is isopropyl Group --CH (CH 3 ) 2 ]).
  • the preparator gas supplied when the catalyst is supported on the carrier particles is usually 0.001% by volume or more of a vapor of a compound containing at least one element selected from the group containing Fe, Co, and Ni. 10% by volume or less and oxygen element-containing gas may be included in an amount of 0.01% by volume to 21% by volume.
  • the preparer gas may typically contain 69% by volume or more of an inert gas such as nitrogen.
  • a gas obtained by gasifying ferrocene which is a compound containing Fe
  • the Fe catalyst can be supported on the surface of the carrier particles. In this way, the catalyst can be attached to the support particles in the preparator gas contact step.
  • a gas containing a reducing gas such as hydrogen, ammonia or methane is supplied as a preparation gas to the carrier particles carrying the catalyst, a reduced catalyst carrier is produced by the preparation device 10.
  • a gas containing a reducing gas such as hydrogen, ammonia or methane
  • a reduced catalyst carrier is produced by the preparation device 10.
  • 1% or more of the preparation gas may be a reducing gas, and 100% may be a reducing gas.
  • the fibrous carbon nanostructure can be synthesized in the preparation device 10.
  • concentration of the carbon raw material in carbon raw material containing gas is not specifically limited, Usually, it is 0.5 volume% or more.
  • the supply pressure of the raw material gas containing the carbon source is not particularly limited, and can be, for example, 0.001 MPa or more and 1.500 MPa or less.
  • the time required for the synthesis step, the carbon raw material concentration in the second gas, and the like can be appropriately set according to the desired properties of the fibrous carbon nanostructure and the production efficiency. For example, the length of the fibrous carbon nanostructure can be increased by increasing the time of the synthesis process. Further, the production efficiency can be improved by increasing the carbon source concentration in the carbon source gas.
  • the treated particles obtained in the preparation device 10 are accommodated through the first pipe 20 by reducing the flow rate of the preparation gas introduced into the preparation device 10 or by stopping the supply of the adjustment gas. Can be transferred to the container 70.
  • the particle supply step, the preparator gas contact step, and the recovery step may be performed simultaneously, or during the preparator gas contact step, the flow rate of the preparator gas
  • the recovery step may be carried out by reducing the value, or the recovery step may be carried out after the preparation gas contact step is completed.
  • the flow rate of the preparation gas is set to such a flow rate that the catalyst carrier flows down from the preparation device 10 at a constant speed.
  • the particles can be recovered with Further, at this time, the particles can be charged into the preparation device 10 at a constant speed. In this way, the particles to be processed can be processed “continuously” at a constant speed.
  • the amount of particles staying in the preparation device 10 is made substantially constant by adjusting the amount of charged particles and the amount of flowing down to be substantially the same.
  • the particles are once introduced into the preparator 10 and then are not additionally introduced until the preparator gas contact step is completed.
  • the various gases according to the purpose are switched and supplied as a preparator gas, and after reacting for a predetermined time, the flow rate of the preparator gas is reduced or the supply of the regulator gas is stopped, and the particles in the preparator 10 By flowing down substantially the entire amount of the treated particles, the treated particles that have undergone the target treatment can be recovered. According to such treatment, treated particles can be obtained that have undergone the intended treatment “semi-continuously” once the heating step is performed.
  • the semi-continuous manufacturing method it is possible to make the processing times substantially the same for the particles charged at the same charging timing. And, when such a semi-continuous production method is repeated, if the processing time of each round is the same, the properties of the obtained catalyst carrier and / or fibrous carbon nanostructure can be made substantially uniform. it can. For this reason, for example, when the obtained catalyst carrier is used for the synthesis of a fibrous carbon nanostructure, or when the fibrous carbon nanostructure is synthesized in the preparation device 10, it is obtained. Attributes such as the diameter and length of the fibrous carbon nanostructure can be made uniform.
  • the synthesizer is not particularly limited as long as it is a container capable of synthesizing a fibrous carbon nanostructure using a particulate catalyst support, for example, an airflow bed synthesizer, a fixed bed synthesizer, a transfer It can be a bed synthesizer, a fluidized bed synthesizer, or the like. Hereinafter, it demonstrates as what uses a fluidized bed synthesizer.
  • a raw material gas containing a carbon source is fed into a fluidized bed synthesizer and brought into contact with the catalyst carrier to grow fibrous carbon nanostructures on the catalyst carrier.
  • a carbon raw material-containing gas that can be supplied as the preparation gas can be used.
  • the gas fed into the fluidized bed synthesizer is also referred to as “synthesizer gas”.
  • the air supply pressure of the raw material gas containing the carbon source as the synthesizer gas can be the same as that of the carbon raw material-containing gas as the preparation gas.
  • the obtained catalyst carrier having the fibrous carbon nanostructure is, for example, temporarily supplied with a rare gas such as argon or an inert gas such as nitrogen at a high flow rate, transferred to a separator, and recovered. can do.
  • a catalyst carrier having a fibrous carbon nanostructure separated from an inert gas flow by a separator by gravity sedimentation, centrifugation, filtration, or the like is not particularly limited, and is shaken, for example, put into a liquid. Then, the fibrous carbon nanostructure and the catalyst carrier can be separated by a relatively simple method such as stirring.
  • Example 1 In Example 1, the particle treatment efficiency, the uniformity of the catalyst support, the converted thickness of the metal oxide layer, and the yield of CNTs were evaluated by the following methods.
  • the characteristic X-ray intensity measurement value was compared with a calibration curve obtained using a previously obtained Fe standard film, and the catalyst metal equivalent thickness of the catalyst layer was measured. Similarly, the metal oxide equivalent thickness of the metal oxide layer was also measured.
  • the catalyst metal equivalent thickness of the catalyst layer is based on the calibration curve obtained using the Fe standard film, and the metal oxide equivalent thickness of the metal oxide layer is the standard curve obtained using the Al standard film. As a reference, each converted thickness was measured.
  • the mass change of the catalyst carrier before and after the synthesis of CNT was measured with an electronic balance (manufactured by Shimadzu Corporation, model number AUW120D) to obtain the mass of CNT (C CNT, powder ), and (C CNT, powder / C s ) ⁇ 100 And the yield of CNT was calculated.
  • a particle processing apparatus having a configuration as shown in FIG.
  • carrier particles 70 g of mullite powder having a nominal particle diameter of 150 ⁇ m (manufactured by ITOCHU CERATECH Co., Ltd., “Nagai Cera Beads 60”, # 750) was prepared. Then, 70 g of mullite powder is charged into a particle processing apparatus having a preparation device made of a glass tube having a tube inner diameter of 5.1 cm at the upper part of the taper and a tube inner diameter of 0.6 cm at the lower end, and is 4% oxygen by volume and 96% by volume nitrogen. The temperature was raised to 800 ° C.
  • ferrocene manufactured by Wako Pure Chemical Industries, Ltd., “060-05981”
  • oxygen of 3.9% by volume oxygen of 3.9% by volume
  • nitrogen containing 96.1% by volume of gas is 10.
  • a catalyst layer containing fine particles formed of Fe was formed by supplying at 2 slm for 5 minutes.
  • no catalyst carrier was additionally introduced into the preparation device. This preparator gas contact step was repeated four more times.
  • the obtained catalyst carrier was evaluated according to the method described above. The results are shown in Table 1.
  • the catalyst carrier was filled in a fluidized bed apparatus for carbon nanotube synthesis composed of a glass tube having an inner diameter of 2.2 cm so as to have a layer height of 3 cm.
  • the inside of the fluidized bed device for CNT synthesis was heated to 800 ° C. in an atmosphere containing 10% by volume of hydrogen and 90% by volume of nitrogen to reduce the catalyst carrier.
  • acetylene (C 2 H 2 ) as a carbon source is 0.7 volume%
  • hydrogen is 10 volume%
  • carbon dioxide is 3 volume%
  • nitrogen is 86.3 volume%.
  • the particle processing apparatus was cooled to recover the catalyst carrier with CNTs.
  • various measurements and evaluation were performed according to the method mentioned above. The results are shown in Table 1.
  • the SEM image of the catalyst support body which has CNT on the surface obtained according to Example 1 is shown in FIG. According to FIG. 2, it can be seen that CNT grows on the entire surface of the catalyst carrier particles.
  • Example 2 A catalyst carrier obtained by using a drum sputtering apparatus was used instead of the particle processing apparatus of the present invention. And this catalyst carrier was introduce
  • the drum sputtering apparatus was filled with 100 g of Al 2 O 3 beads having a diameter of 0.3 mm as carrier particles. Four layers of Al 2 O 3 layers as metal oxide layers and Fe layers as catalyst layers were alternately formed on the surface of Al 2 O 3 beads by a drum sputtering apparatus. The drum sputtering apparatus was operated so that the layer structure was as follows.
  • First layer (layer adjacent to the carrier particle surface): Al 2 O 3 layer (average film thickness: 15 nm)
  • a particle processing apparatus for performing CNT synthesis a particle processing apparatus having a configuration as shown in FIG. The inner diameter of the top of the taper of the preparation device was 4 cm.
  • the temperature of the preparation device was raised by the programmed temperature regulator of the electric furnace, and when the temperature of the programmed temperature regulator reached 300 ° C, the nitrogen gas started to flow at 5 slm, and the catalyst obtained as described above 30 g of the support was put into the preparation device. After purging for 1 minute, the composition of the inflowing gas was adjusted to 10% by volume of hydrogen, 1% by volume of carbon dioxide, and 89% by volume of nitrogen. Then, 10 minutes after the start of temperature increase, it was confirmed that the temperature of the program temperature regulator reached 725 ° C., and the flow rate of the inflowing gas was changed to 3 slm and annealing was performed for 5 minutes.
  • the inflow gas was adjusted to be flow rate: 2.5 slm, composition: acetylene 1% by volume, hydrogen 10% by volume, carbon dioxide 1% by volume, nitrogen 88%, and held for 20 minutes to synthesize CNT. . Thereafter, the particle processing apparatus was cooled, and the catalyst carrier with CNTs was collected. When the particle processing efficiency was evaluated in the same manner as in Example 1, no clogging occurred in the particle processing apparatus, and the particle processing efficiency was excellent.
  • FIG. 3 shows an SEM image of the catalyst carrier having CNTs on the surface obtained according to Example 2. FIG. 3 shows that CNTs can be synthesized using the particle processing apparatus according to the present invention.
  • the particles in the preparation device can be processed efficiently.

Abstract

A particle processing device 100 that comprises: a preparation vessel 10 that has a tapered part 11, that can house particles 50 inside the tapered part 11, and that is configured to be able to discharge particles 50 from a discharge port 12 in the tapered part 11; first piping 20 that is connected to the discharge port 12; and a preparation vessel gas supply mechanism that has a preparation vessel gas supply pipe 30 that is connected to the first piping 20, and that supplies a preparation vessel gas from the discharge port 12 of the tapered part 11 toward particles 50 housed inside the tapered part 11. Above a connection part 40 for the first gas supply pipe 30 and the first piping 20, there is no member for obstructing the movement of particles 50.

Description

粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法PARTICLE TREATMENT DEVICE AND METHOD FOR PRODUCING CATALYST CARRIER AND / OR FIBER CARBON NANOSTRUCTURE
 本発明は、粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法に関するものである。特に、本発明は、調製器内に収容された粒子を処理する粒子処理装置、並びにかかる粒子処理装置を用いた触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法に関するものである。 The present invention relates to a particle processing apparatus and a method for producing a catalyst carrier and / or fibrous carbon nanostructure. In particular, the present invention relates to a particle processing apparatus for processing particles accommodated in a preparation device, and a method for producing a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus.
 近年、導電性、熱伝導性および機械的特性に優れる材料として、繊維状炭素材料、特にはカーボンナノチューブ(以下、「CNT」と称することがある。)等の繊維状炭素ナノ構造体が注目されている。CNTは、炭素原子により構成される筒状グラフェンシートからなり、その直径はナノメートルオーダーである。 In recent years, fibrous carbon nanostructures such as fibrous carbon materials, particularly carbon nanotubes (hereinafter sometimes referred to as “CNT”), have attracted attention as materials having excellent conductivity, thermal conductivity, and mechanical properties. ing. CNT consists of a cylindrical graphene sheet composed of carbon atoms, and its diameter is on the order of nanometers.
 ここで、CNT等の繊維状炭素ナノ構造体は、概して、製造コストが高いため他の材料よりも高価であった。このため、上述したような優れた特性を有するにもかかわらず、その用途は限られていた。さらに、近年、比較的高効率でCNT等を製造することができる製造方法として、触媒を用いたCVD(Chemical Vapor Deposition)法(以下、「触媒CVD法」と称することがある)が用いられてきた。しかし、触媒CVD法でも、製造コストを十分に低減することができなかった。 Here, fibrous carbon nanostructures such as CNTs were generally more expensive than other materials due to high manufacturing costs. For this reason, in spite of having the above-mentioned excellent characteristics, its application has been limited. Further, in recent years, a CVD (Chemical Vapor Deposition) method using a catalyst (hereinafter sometimes referred to as “catalytic CVD method”) has been used as a production method capable of producing CNTs and the like with relatively high efficiency. It was. However, even with the catalytic CVD method, the manufacturing cost could not be reduced sufficiently.
 そこで、粒子状の支持体により流動層を形成し、かかる流動層に対して触媒原料を含むガスを供給して支持体表面にて触媒層を形成する方法が提案されてきた(例えば、特許文献1~3参照)。具体的には、特許文献1~3では、下部に多孔質板を備える、粒子状の支持体が充填された反応器内を加熱雰囲気として、下部から触媒金属を構成元素に含む触媒前駆体蒸気(以下、触媒材料とも称する)を供給して、触媒前駆体蒸気の分解により粒子状の支持体上に触媒粒子を形成する装置が開示されている。 Thus, a method has been proposed in which a fluidized bed is formed by a particulate support, and a catalyst layer is formed on the surface of the support by supplying a gas containing a catalyst raw material to the fluidized bed (for example, Patent Documents). 1 to 3). Specifically, in Patent Documents 1 to 3, a catalyst precursor vapor containing a catalytic metal as a constituent element from the lower part is provided with a heating atmosphere in a reactor having a porous plate at the lower part and filled with a particulate support. An apparatus is disclosed that supplies catalyst particles (hereinafter also referred to as catalyst material) to form catalyst particles on a particulate support by decomposition of the catalyst precursor vapor.
国際公開第2009/110591号International Publication No. 2009/110591 国際公開第2013/191247号International Publication No. 2013/191247 国際公開第2013/191253号International Publication No. 2013/191253
 ここで、多孔質板のような部材を設けて流動層を支持すれば、多孔質板の孔径を適切に選択することによって、流動層内に支持体を確実に保持するとともに、流動層内に触媒原料ガスを供給して、支持体を流動させることで粒子状の支持体に対して触媒を担持させることができた。しかしながら、その一方で、触媒前駆体蒸気に含まれる金属が多孔質板の孔にも堆積し、多孔質板に目詰まりが生じる虞があった。そして、多孔質板に目詰まりが生じれば、支持体に対して触媒を担持させる工程の効率が著しく低下する虞があった。 Here, if a member such as a porous plate is provided to support the fluidized bed, the support is securely held in the fluidized bed by appropriately selecting the pore size of the porous plate, and the fluidized bed The catalyst was supported on the particulate support by supplying the catalyst raw material gas and flowing the support. However, on the other hand, there is a possibility that the metal contained in the catalyst precursor vapor is deposited also in the pores of the porous plate, and the porous plate is clogged. If the porous plate is clogged, the efficiency of the step of supporting the catalyst on the support may be significantly reduced.
 そこで、本願発明は、調製器内に収容された粒子を効率的に処理することができる、粒子処理装置、並びに、かかる粒子処理装置を用いた触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法を提供することを目的とする。 Therefore, the present invention provides a particle processing apparatus capable of efficiently processing particles accommodated in a preparation device, and a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus. An object is to provide a manufacturing method.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、粒子処理装置の下部にテーパ部を設け、かつ特定の区間において粒子の移動を遮断するための部材を設けないことで、上述したような目詰まりの問題を回避することができることに想到し、本願発明を完成させた。 The present inventors have intensively studied for the purpose of solving the above problems. The inventors of the present invention avoid the clogging problem as described above by providing a tapered portion at the bottom of the particle processing apparatus and not providing a member for blocking the movement of particles in a specific section. As a result, the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の粒子処理装置は、下方に向かって内径が小さくなるテーパ部を有し、前記テーパ部内に収容物として担体粒子及び粒子状の触媒担持体の少なくとも一方を収容可能であるともに、前記テーパ部の底部に配置された排出口から前記収容物を排出可能に構成された調製器と、前記テーパ部の前記排出口に連結された第1配管と、前記第1配管に接続された、少なくとも1つの調製器ガス供給管を有し、前記テーパ部の前記排出口から、前記テーパ部内に収容されている前記収容物に向けて調製器ガスを供給する、調製器ガス供給機構と、を備え、前記調製器ガス供給管と前記第1配管との接続部よりも上側に、前記担体粒子及び前記触媒担持体の移動を遮断するための部材を備えない、ことを特徴とする。本発明の粒子処理装置は、調製器ガス供給管と第1配管との接続部よりも上側に粒状物の移動を遮断するための部材を備えないので、調製器に対して調製器ガスを効率的に供給することができ、調製器内の収容物である粒子を効率的に処理することができる。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the particle processing apparatus of the present invention has a tapered portion whose inner diameter becomes smaller downward, and an object contained in the tapered portion. And a preparation device configured to be capable of accommodating at least one of carrier particles and a particulate catalyst carrier, and capable of discharging the stored material from a discharge port disposed at the bottom of the tapered portion, The first pipe connected to the discharge port and at least one preparator gas supply pipe connected to the first pipe are accommodated in the taper portion from the discharge port of the taper portion. A preparator gas supply mechanism for supplying a preparator gas toward the container, and the carrier particles and the catalyst support above the connecting portion between the preparator gas supply pipe and the first pipe. Block body movement Without the order of the member, characterized in that. Since the particle processing apparatus of the present invention does not include a member for blocking the movement of the particulate matter above the connecting portion between the preparator gas supply pipe and the first pipe, the preparator gas is efficiently used for the preparator. The particles that are contained in the preparation device can be efficiently processed.
 また、本発明の粒子処理装置は、前記調製器ガス供給機構が、前記収容物の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記収容物の少なくとも一部を流動させうるガス流量にて、前記調製器ガスを供給可能な、調製器ガス供給制御機構を備えることが好ましい。粒子を調製器内に確実に保持することで、一層効率的に処理することができるからである。 In the particle processing apparatus of the present invention, the preparation gas supply mechanism holds at least a part of the storage in the preparation and causes at least a part of the storage to flow in the preparation. It is preferable to provide a preparator gas supply control mechanism capable of supplying the preparator gas at a possible gas flow rate. It is because it can process more efficiently by hold | maintaining particle | grains reliably in a preparation device.
 また、本発明の粒子処理装置は、前記調製器が、前記収容物を加熱する加熱機構を更に備えることが好ましい。調製器内を効率的に加熱することで、一層効率的に粒子を処理することができるからである。 In the particle processing apparatus of the present invention, it is preferable that the preparation device further includes a heating mechanism for heating the contents. This is because particles can be processed more efficiently by heating the inside of the preparation device efficiently.
 また、本発明の粒子処理装置は、前記調製器ガス供給制御機構が、還元性ガス、酸素元素含有ガス、触媒材料ガス、及び炭素原料含有ガスのうち少なくとも1種を供給可能でありうる。 Further, in the particle processing apparatus of the present invention, the preparation gas supply control mechanism may be capable of supplying at least one of a reducing gas, an oxygen element-containing gas, a catalyst material gas, and a carbon raw material-containing gas.
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法は、上述した粒子処理装置を用いて触媒担持体及び/又は繊維状炭素ナノ構造体を製造する方法であって、加熱状態の前記調製器内に、担体粒子及び粒子状の触媒担持体の少なくとも一方を供給する供給工程(1)と、前記調製器内にて、前記担体粒子及び前記粒子状の触媒担持体の少なくとも一方と前記調製器ガスとを接触させて触媒担持体及び繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を得る接触工程(2)と、前記調製器内の、前記接触工程(2)で得られた前記触媒担持体及び前記繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を流下させて前記調製器外へと排出させる回収工程(3)を含む、ことを特徴とする。かかる製造方法によれば、調製器内の粒子を効率的に処理して高効率で触媒担持体及び/又は繊維状炭素ナノ構造体を製造することができる。 Furthermore, this invention aims at solving the said subject advantageously, The manufacturing method of the catalyst carrier of this invention and / or fibrous carbon nanostructure uses the particle processing apparatus mentioned above. A method for producing a catalyst carrier and / or a fibrous carbon nanostructure, the supply step (1) supplying at least one of carrier particles and particulate catalyst carrier into the preparation device in a heated state; In the preparation device, at least one of the support particles and the particulate catalyst support and the preparation gas are brought into contact with each other, and at least one of the catalyst support and the catalyst support having the fibrous carbon nanostructure is brought into contact with the preparation gas. And at least one of the catalyst carrier obtained in the contact step (2) and the catalyst carrier having the fibrous carbon nanostructure in the preparation device is allowed to flow down Outside the preparation device Comprising the recovery step (3) to be discharged, characterized in that. According to this production method, the catalyst carrier and / or fibrous carbon nanostructure can be produced with high efficiency by efficiently treating the particles in the preparation vessel.
 また、本発明の製造方法において、前記調製器ガスが、触媒材料ガス、還元性ガス、酸素元素含有ガス、及び/又は、炭素原料含有ガスを含み、前記接触工程(2)は、触媒担持ステップ(i)、還元処理ステップ(ii)、酸化処理ステップ(iii)、および、繊維状炭素ナノ構造体合成ステップ(iv)の少なくともいずれか1つのステップを有し、前記触媒担持ステップ(i)は、前記調製器ガスとして前記触媒材料ガスを供給することにより、前記担体粒子に触媒を担持するステップであり、前記還元処理ステップ(ii)は、前記調製器ガスとして前記還元性ガスを供給することにより、前記担体粒子を還元処理するステップであり、前記酸化処理ステップ(iii)は、前記調製器ガスとして前記酸素元素含有ガスを供給することにより、前記担体粒子を酸化処理するステップであり、前記繊維状炭素ナノ構造体合成ステップ(iv)は、前記調製器ガスとして前記炭素原料含有ガスを供給することにより、前記触媒担持体上にて繊維状炭素ナノ構造体を合成するステップであることが好ましい。 In the production method of the present invention, the preparation gas includes a catalyst material gas, a reducing gas, an oxygen element-containing gas, and / or a carbon raw material-containing gas, and the contact step (2) includes a catalyst supporting step. (I), at least one of a reduction treatment step (ii), an oxidation treatment step (iii), and a fibrous carbon nanostructure synthesis step (iv), wherein the catalyst loading step (i) Supplying the catalyst material gas as the preparation gas, thereby supporting the catalyst on the carrier particles, and the reduction treatment step (ii) supplies the reducing gas as the preparation gas. And the oxidation treatment step (iii) supplies the oxygen element-containing gas as the preparation gas. In this step, the carrier particles are oxidized, and the fibrous carbon nanostructure synthesis step (iv) is performed on the catalyst support by supplying the carbon raw material-containing gas as the preparation gas. The step of synthesizing the fibrous carbon nanostructure is preferable.
 また、本発明の製造方法において、前記調製器ガスを一定の流量及び/又は組成で供給し、前記工程(1)~(3)及び/又は前記ステップ(i)~(iv)の内の複数を同時に行うことが好ましい。製造効率を一層高めることができるからである。 In the production method of the present invention, the preparation gas is supplied at a constant flow rate and / or composition, and a plurality of steps (1) to (3) and / or steps (i) to (iv) are provided. Are preferably performed simultaneously. This is because the production efficiency can be further increased.
 また、本発明の製造方法において、前記調製器ガスの流量及び/又は種類を切り替えるガス切替工程をさらに含み、前記工程(1)~(3)及び/又は前記ステップ(i)~(iv)の内の何れか2つ以上を時間的に分けて行うことが好ましい。得られる製造物の均一性を高めることができるからである。 The production method of the present invention further includes a gas switching step of switching the flow rate and / or type of the preparator gas, and includes the steps (1) to (3) and / or the steps (i) to (iv). It is preferable to carry out any two or more of them separately in time. It is because the uniformity of the obtained product can be improved.
 また、本発明の製造方法において、前記酸化処理ステップは、前記還元処理ステップ、および/または、前記触媒担持ステップの前に実施し、前記還元処理ステップは、前記酸化処理ステップ、および/または、前記触媒担持ステップの後に実施する、ことが好ましい。良好に粒子を処理することができるからである。 In the production method of the present invention, the oxidation treatment step is performed before the reduction treatment step and / or the catalyst supporting step, and the reduction treatment step is performed by the oxidation treatment step and / or the It is preferable to carry out after the catalyst loading step. This is because the particles can be processed satisfactorily.
 また、本発明の製造方法において、前記担体粒子が、触媒成分の付着していない担体粒子、触媒前駆体付着済みの担体粒子、及び/又は失活した触媒の付着した担体粒子でありうる。 In the production method of the present invention, the carrier particles may be carrier particles to which no catalyst component is attached, carrier particles to which a catalyst precursor has been attached, and / or carrier particles to which a deactivated catalyst is attached.
 また、本発明の製造方法において、前記触媒材料ガスは、Fe、および/またはAlを含み、前記還元性ガスは、水素、アンモニア、および/または炭化水素を含み、前記酸素元素含有ガスは、空気、酸素、水蒸気、および/または二酸化炭素を含みうる。 In the production method of the present invention, the catalyst material gas includes Fe and / or Al, the reducing gas includes hydrogen, ammonia, and / or hydrocarbon, and the oxygen element-containing gas includes air. , Oxygen, water vapor, and / or carbon dioxide.
 本発明によれば、調製器内の粒子を効率的に処理することができる。 According to the present invention, the particles in the preparation device can be processed efficiently.
本発明の粒子処理装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the particle processing apparatus of this invention. 本発明の粒子処理装置を用いて調製した触媒担持体をCNT合成用流動層装置に導入してCNTを合成した結果を示すSEM(走査型電子顕微鏡)画像である。It is a SEM (scanning electron microscope) image which shows the result of having synthesize | combined CNT by introduce | transducing the catalyst support body prepared using the particle processing apparatus of this invention into the fluidized bed apparatus for CNT synthesis | combination. スパッタリングを経て調製した触媒担持体を本発明の粒子処理装置に導入してCNTを合成した結果を示すSEM画像である。It is a SEM image which shows the result of having introduce | transduced the catalyst carrier prepared through sputtering into the particle processing apparatus of this invention, and synthesize | combining CNT.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の粒子処理装置は、調製器内に収容された収容物である担体粒子に対して触媒を付着させることができる。また、本発明の粒子処理装置は、調製器内に収容された収容物である担体粒子を酸化し、或いは担体粒子に付着した触媒を活性化させることができる。さらに、本発明の粒子処理装置は調製器内に収容された収容物である触媒担持体上にて繊維状炭素ナノ構造体を合成することができる。本発明の粒子処理装置によれば、収容物である担体粒子を流動させることなく、上述したような各種処理を行うことも可能であるし、収容物である担体粒子を流動状態として、即ち調製器内にて流動層を形成することで、各種処理を行うことも可能である。
 ここで、本明細書において、「担体粒子」とは、本発明の粒子処理装置による被処理対象である、触媒成分の付着していない担体粒子、触媒前駆体付着済みの担体粒子、及び/又は失活した触媒の付着した担体粒子を指すために用いる用語である。かかる担体粒子は、例えば、既に触媒材料が付着している担体粒子、及び未だ触媒材料を付着させていない担体粒子でありうる。特に、触媒前駆体付着済みの担体粒子は、一般的な湿式担持法にて触媒材料を付着させ、焼成処理を施す前の粒子である。すなわち、本発明の粒子処理装置は、未だ触媒材料を付着させていない状態の担体粒子に対して触媒材料を付着させるために用いることもできるし、既に触媒材料が付着している担体粒子に対して、更に触媒材料を付着させるために用いることもできる。
 換言すると、本発明の粒子処理装置は、触媒担持体を用いて繊維状炭素ナノ構造体を形成する際の触媒担持体の繰り返し使用に際して、1回目の触媒担持に用いることもできるし、2回目以降の触媒担持に用いることができることを意味する。
 さらに、本発明の粒子処理装置は、触媒材料を付着した触媒担持体を供給して、触媒を活性化するためにも用いることもできる。
 本明細書において、「触媒担持体」とは、還元処理前の触媒担持体、及び/又は、還元処理後の触媒担持体を指すために用いる用語である。特に、還元処理前の触媒担持体とは、触媒材料の付着した担体粒子を焼成したものであり、また、例えば、金属酸化物を触媒成分として担持してなる、触媒担持体である。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the particle processing apparatus of the present invention can attach a catalyst to carrier particles that are contained in a preparation device. Moreover, the particle processing apparatus of the present invention can oxidize carrier particles, which are contained in a preparation device, or activate a catalyst attached to the carrier particles. Furthermore, the particle processing apparatus of the present invention can synthesize a fibrous carbon nanostructure on a catalyst carrier that is a container accommodated in a preparation device. According to the particle processing apparatus of the present invention, it is possible to perform the above-described various treatments without causing the carrier particles as the contained material to flow. Various treatments can also be performed by forming a fluidized bed in the vessel.
Here, in this specification, “carrier particles” are carrier particles to which a catalyst component is not attached, carrier particles to which catalyst precursors have been attached, and / or targets to be treated by the particle treatment apparatus of the present invention. It is a term used to refer to carrier particles with a deactivated catalyst attached. Such carrier particles can be, for example, carrier particles to which catalyst material has already adhered, and carrier particles to which catalyst material has not yet adhered. In particular, the carrier particles to which the catalyst precursor has been attached are particles before the catalyst material is attached by a general wet loading method and subjected to a firing treatment. That is, the particle processing apparatus of the present invention can be used to attach the catalyst material to the carrier particles that have not yet been attached to the catalyst material, or to the carrier particles to which the catalyst material has already adhered. In addition, it can be used for further attaching a catalyst material.
In other words, the particle processing apparatus of the present invention can be used for the first catalyst loading when the catalyst carrier is repeatedly used when forming the fibrous carbon nanostructure using the catalyst carrier. It means that it can be used for subsequent catalyst loading.
Furthermore, the particle processing apparatus of the present invention can be used to activate a catalyst by supplying a catalyst carrier to which a catalyst material is adhered.
In this specification, the “catalyst carrier” is a term used to indicate a catalyst carrier before the reduction treatment and / or a catalyst carrier after the reduction treatment. In particular, the catalyst carrier before the reduction treatment is a catalyst carrier obtained by firing carrier particles to which a catalyst material is adhered, and for example, carrying a metal oxide as a catalyst component.
 なお、本発明において、「粒子状」とは、アスペクト比が5未満であることをいう。なお、担体粒子のアスペクト比は、例えば、顕微鏡画像上で、任意に選択した100個の担体粒子について(最大長径/最大長径に直交する幅)の値を算出し、その平均値を算出することで、確認することができる。また、本発明の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法は、本発明の粒子処理装置を用いて実施することができる。
 また、本発明の粒子処理装置及び製造方法を用いて形成した触媒担持体は、例えば、カーボンナノチューブ、及びカーボンナノファイバー等の繊維状炭素ナノ構造体の製造に好適に使用することができる。
In the present invention, “particulate” means that the aspect ratio is less than 5. The aspect ratio of the carrier particles is, for example, calculating the value of (maximum major axis / width perpendicular to the maximum major axis) for 100 arbitrarily selected carrier particles on a microscope image, and calculating the average value thereof. You can confirm it. Moreover, the manufacturing method of the catalyst carrier of this invention and / or fibrous carbon nanostructure can be implemented using the particle processing apparatus of this invention.
Moreover, the catalyst carrier formed using the particle processing apparatus and the production method of the present invention can be suitably used for producing fibrous carbon nanostructures such as carbon nanotubes and carbon nanofibers.
(粒子処理装置)
 図1(a)は、本発明の粒子処理装置の構成の一例を示す概略図である。本発明の粒子処理装置100は、調製器10、第1配管20、及び調製器ガス供給管30を備える。第1配管20と調製器ガス供給管30とは接続部40にて接続されており、粒子処理装置100は、かかる接続部40の下端よりも上側に、担体粒子及び触媒担持体(即ち、粒子50)の移動を遮断するための部材を備えない。換言すれば、粒子処理装置100は、調製器10内から流下しうる担体粒子及び触媒担持体の移動を遮断するための物理的な機構を備えない。なお、調製器10、第1供給管20、及び調製器ガス供給管30は、特に限定されることなく、例えば、断面形状が円形であるガラス管やステンレス管により構成される。
(Particle processing equipment)
FIG. 1A is a schematic view showing an example of the configuration of the particle processing apparatus of the present invention. The particle processing apparatus 100 of the present invention includes a preparation device 10, a first pipe 20, and a preparation device gas supply pipe 30. The first pipe 20 and the preparator gas supply pipe 30 are connected to each other by a connecting portion 40, and the particle processing apparatus 100 has carrier particles and a catalyst carrier (that is, particles) above the lower end of the connecting portion 40. 50) is not provided with a member for blocking the movement. In other words, the particle processing apparatus 100 does not include a physical mechanism for blocking the movement of the carrier particles and the catalyst carrier that can flow down from the preparation device 10. In addition, the preparation device 10, the 1st supply pipe | tube 20, and the preparation device gas supply pipe | tube 30 are not specifically limited, For example, it is comprised with the glass tube and stainless steel tube whose cross-sectional shape is circular.
 ここで、本明細書において、粒子処理装置100の「上」及び「下」は、流動層を形成する調製器10の長手方向を基準として、接続部40からみて調製器10の方向を「上」方向とし、粒子収容器70の方向を「下」方向として説明する。粒子処理装置100は、まず、調製器10内に担体粒子を収容し、かかる担体粒子に対して調製器ガス供給管30及び第1配管20を経て供給された調製器ガスを下側から供給して、調製器内で流動させることで、担体粒子に対して触媒を付着させる。以下、粒子処理装置100の各構成部についてより詳細に説明する。 Here, in this specification, “upper” and “lower” of the particle processing apparatus 100 refer to the direction of the preparation device 10 as viewed from the connection portion 40 with reference to the longitudinal direction of the preparation device 10 that forms the fluidized bed. The direction of the particle container 70 will be described as the “down” direction. The particle processing apparatus 100 first accommodates carrier particles in the preparation device 10, and supplies the preparation gas supplied from the lower side to the carrier particles via the preparation gas supply pipe 30 and the first pipe 20. Then, the catalyst is adhered to the carrier particles by flowing in the preparation device. Hereinafter, each component of the particle processing apparatus 100 will be described in more detail.
<調製器>
 調製器10は、本体と下方に向かって外径が小さくなるテーパ部11とを有し、本体とテーパ部またはテーパ部にて粒子50を収容可能である。テーパ部11は、粒子50を収容可能であるともに、テーパ部11の底部に配置された排出口12から得られた触媒担持体を排出可能に構成されている。粒子50は、調製器内に収容された収容物であり、担体粒子及び粒子状の触媒担持体の少なくとも一方を含む。
<Preparer>
The preparation device 10 has a main body and a tapered portion 11 whose outer diameter decreases toward the lower side, and can accommodate particles 50 in the main body and the tapered portion or the tapered portion. The taper portion 11 can accommodate the particles 50 and is configured to be able to discharge the catalyst carrier obtained from the discharge port 12 disposed at the bottom of the taper portion 11. The particles 50 are contained in a preparation device, and include at least one of carrier particles and a particulate catalyst support.
 粒子50は、テーパ部11を含む調製器10の内部において流動層を形成している。具体的には、粒子50は、少なくとも一部が排出口12を介して下方向から吹きあげられて位置13にて支持され、調製器10の内部に留まり流動する。この流動により、粒子50の表面上に、調製器ガスが接触する。ここで、粒子50は、特に限定されることなくあらゆる粒子でありうる。例えば、粒子処理装置を用いてCNT等の繊維状炭素ナノ構造体の合成に使用するための粒子を処理する場合には、粒子50としては、アルミナビーズやムライトビーズのようなセラミック粒子を使用し得る。また、粒子50の粒子径は、特に限定されることなく、例えば、2mm以下であり、好ましくは1mm以下であり、通常、10μm以上でありうる。また、調製器ガスは、触媒材料ガス、還元性ガス、酸素元素含有ガス、及び/又は炭素原料含有ガスを含みうる。調製器ガスとして触媒材料ガスを供給すれば、担体粒子表面に触媒材料を付着させることができる。また、調製器ガスとして還元性ガスを供給すれば、担体粒子上の触媒を還元状態とすることができる。さらに、調製器ガスとして酸素元素含有ガスを供給すれば、担体粒子表面を酸化させることができる。さらにまた、調製器ガスとして炭素原料含有ガスを供給すれば、触媒担持体上にて繊維状炭素ナノ構造体を合成することができる。以下、各種調製器ガスについて詳述する。 The particles 50 form a fluidized bed inside the preparation device 10 including the tapered portion 11. Specifically, at least a part of the particles 50 is blown from below through the discharge port 12 and supported at the position 13, staying inside the preparation device 10 and flowing. This flow causes the preparer gas to contact the surface of the particles 50. Here, the particle 50 may be any particle without particular limitation. For example, when particles for use in the synthesis of fibrous carbon nanostructures such as CNTs are processed using a particle processing apparatus, ceramic particles such as alumina beads and mullite beads are used as the particles 50. obtain. The particle diameter of the particles 50 is not particularly limited, and is, for example, 2 mm or less, preferably 1 mm or less, and usually 10 μm or more. Further, the preparation gas may include a catalyst material gas, a reducing gas, an oxygen element-containing gas, and / or a carbon raw material-containing gas. If the catalyst material gas is supplied as the preparation gas, the catalyst material can be attached to the surface of the carrier particles. Further, if a reducing gas is supplied as the preparation gas, the catalyst on the carrier particles can be brought into a reduced state. Furthermore, if the oxygen element-containing gas is supplied as the preparation gas, the surface of the carrier particles can be oxidized. Furthermore, if a carbon raw material-containing gas is supplied as the preparation gas, a fibrous carbon nanostructure can be synthesized on the catalyst carrier. Hereinafter, various preparation gas is explained in full detail.
 調製器ガスとして供給しうる触媒材料ガスとしては、特に限定されることなく、Si、Al、Mg、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気が挙げられる。調製器ガスには、かかる化合物の蒸気を複数種含有させることもできる。ここで、触媒を担持させるにあたり、繊維状炭素ナノ構造体の製造時に繊維状炭素ナノ構造体の合成に寄与する触媒として機能する触媒成分に先立って、かかる触媒成分を担体粒子上に良好に担持させるための金属酸化物成分を担体粒子上に付着させることが好適である。そして、触媒材料として列挙した上記成分の中でも、Si、Al、及びMgが、このような金属酸化物成分を構成しうる成分として有効である。 The catalyst material gas that can be supplied as the preparator gas is not particularly limited, and is a vapor of a compound containing at least one element selected from the group including Si, Al, Mg, Fe, Co, and Ni. Can be mentioned. The preparator gas may contain a plurality of such compound vapors. Here, in supporting the catalyst, the catalyst component is favorably supported on the carrier particles prior to the catalyst component that functions as a catalyst that contributes to the synthesis of the fibrous carbon nanostructure during the production of the fibrous carbon nanostructure. It is preferable to deposit the metal oxide component for the carrier particles on the support particles. Of the components listed as catalyst materials, Si, Al, and Mg are effective as components that can constitute such a metal oxide component.
 他方、上記成分の中でも、Fe、Co、及びNiは、担体粒子上にて触媒を形成しうる成分である。そのような成分を含む化合物としては、例えば、トリス(2,4-ペンタンジオナト)鉄(III)、ビス(シクロペンタジエニル)鉄(II)(以下、「フェロセン」とも称する)、塩化鉄(III)、及び鉄カルボニル等のFe含有触媒材料、トリス(2,4-ペンタンジオナト)コバルト(III)、ビス(シクロペンタジエニル)コバルト(II)、及び塩化コバルト(II)等のCo含有触媒材料、及び、ビス(2,4-ペンタンジオナト)ニッケル(II)、及びビス(シクロペンタジエニル)ニッケル(II)等のNi含有触媒材料などが挙げられる。 On the other hand, among the above components, Fe, Co, and Ni are components that can form a catalyst on the carrier particles. Examples of the compound containing such a component include tris (2,4-pentanedionato) iron (III), bis (cyclopentadienyl) iron (II) (hereinafter also referred to as “ferrocene”), iron chloride. Fe-containing catalyst materials such as (III) and iron carbonyl, Co such as tris (2,4-pentanedionato) cobalt (III), bis (cyclopentadienyl) cobalt (II), and cobalt chloride (II) Examples thereof include Ni-containing catalyst materials such as bis (2,4-pentanedionato) nickel (II) and bis (cyclopentadienyl) nickel (II).
 さらに、調製器ガスとして供給して担体粒子上に触媒を担持させるために用いる成分としては、Al及びFeが特に好ましい。より具体的には、Alを含む化合物の蒸気により、金属酸化物である酸化アルミニウムからなる層を形成し、かかる層によりFe触媒を担持させれば、得られた触媒担持体の触媒活性が良好となるからである。 Furthermore, Al and Fe are particularly preferable as components used for supplying the catalyst as a preparation gas and supporting the catalyst on the carrier particles. More specifically, if a layer made of aluminum oxide, which is a metal oxide, is formed by vapor of a compound containing Al, and the Fe catalyst is supported by such layer, the catalytic activity of the obtained catalyst support is good. Because it becomes.
 また、調製器ガスとしての還元性ガスは水素、アンモニア、及び/又はメタン等の炭化水素でありうる。触媒材料を付着させた担体粒子に対し、調製器ガスとして還元性ガスを供給して加熱すると、触媒原料を還元して触媒粒子を形成することができ、活性化された触媒担持体を得ることができる。 Also, the reducing gas as the preparation gas can be hydrogen, ammonia, and / or a hydrocarbon such as methane. When a reducing gas is supplied as a preparator gas to the carrier particles to which the catalyst material is adhered and heated, the catalyst raw material can be reduced to form catalyst particles, and an activated catalyst carrier can be obtained. Can do.
 さらに、調製器ガスとしての酸素元素含有ガスは、空気、酸素、水蒸気、及び/又は、二酸化炭素でありうる。調製器ガスとして酸素元素含有ガスを供給して粒子50表面を酸化することで、担体粒子表面の不純物や残留炭素成分を除去することができる。或いは、未使用かつ触媒を担持していない状態の担体粒子、即ち、無垢の担体粒子の表面を酸化すれば、触媒を担持するための金属酸化物や触媒を担体粒子表面上において良好に担持することができるようになる。 Further, the oxygen element-containing gas as the preparation gas can be air, oxygen, water vapor, and / or carbon dioxide. By supplying an oxygen element-containing gas as the preparation gas and oxidizing the surfaces of the particles 50, impurities and residual carbon components on the surface of the carrier particles can be removed. Alternatively, if the surface of the unused carrier particles that do not support the catalyst, that is, the solid carrier particles are oxidized, the metal oxide or catalyst for supporting the catalyst is supported well on the surface of the carrier particles. Will be able to.
 さらにまた、調製器ガスとしての炭素原料含有ガスとしては、アルキン及びアルケン(オレフィン炭化水素)、アルカン(パラフィン炭化水素)、アルコール、エーテル、アルデヒド、ケトン、芳香族、及び一酸化炭素の中から選択される1種以上の炭素原料を含むガスを用いることができる。炭素原料含有ガスは、これらの炭素原料に加えて、アルゴン等の希ガス及び窒素等の不活性ガス、水素等の還元性ガス及び/又は二酸化炭素等の酸素元素含有ガスを含んでも良い。 Furthermore, the carbon-containing gas as the preparation gas is selected from alkyne and alkene (olefin hydrocarbon), alkane (paraffin hydrocarbon), alcohol, ether, aldehyde, ketone, aromatic, and carbon monoxide. A gas containing one or more carbon raw materials to be used can be used. In addition to these carbon raw materials, the carbon raw material-containing gas may include a rare gas such as argon, an inert gas such as nitrogen, a reducing gas such as hydrogen, and / or an oxygen element-containing gas such as carbon dioxide.
 調製器10内で粒子50により流動層を形成するにあたり、粒子50の全てが自重で落下する速度以上であって、粒子50が調製器10外に飛ばされうる速度未満の速度で、調製器ガスを調製器10内に流入させることが好ましい。これにより、流動層を形成する粒子50の少なくとも一部を調製器10内にて流動状態を保つことが可能となる。なお、落下の速度は粒子50の大きさや密度に基づいて決定することができる。さらに、必要とする粒子50の量や、所望の処理時間等により、調製器10の容積も定めることができる。このように、テーパ部11の形状及び調製器10の管径及び容積は、必要とする粒子50の処理量、粒子の粒子径、及び粒子密度等に応じて適宜決定することができる。 In forming the fluidized bed with the particles 50 in the preparator 10, the preparator gas is at a speed that is equal to or higher than the speed at which all of the particles 50 fall by its own weight and less than the speed at which the particles 50 can be blown out of the preparator 10. Preferably flows into the preparation device 10. As a result, at least a part of the particles 50 forming the fluidized bed can be kept in a fluidized state in the preparation device 10. Note that the falling speed can be determined based on the size and density of the particles 50. Furthermore, the volume of the preparation device 10 can be determined by the amount of particles 50 required, the desired processing time, and the like. Thus, the shape of the taper portion 11 and the tube diameter and volume of the preparation device 10 can be appropriately determined according to the required processing amount of the particles 50, the particle diameter of the particles, the particle density, and the like.
 さらに、調製器ガスの流速の調節を容易にする観点から、例えば、調製器10の内径及び排出口12における内径の比率(調製器10の内径:排出口12の内径)は、3:1以上であることが好ましく、通常30:1以下である。ガス流速はガスが通過する管の断面積に応じて異なる。したがって、テーパ部11の上下において径の比率が3:1である場合には、テーパ部の下部に相当する排出口12におけるガス流速はテーパ部11よりも上側におけるガス流速の約10倍となる。よって、排出口12におけるガス流速を微調整することで、調製器10内におけるガス流速を適度に段階的に調節することができ、流動層を流動状態に保つために必要十分であるガス流速に設定することが容易になる。なお、テーパ部11の上部の管径が下部の管径の3倍未満であれば、調製器ガスの流量の調節が難しくなる虞がある。また、テーパ部11の上部の内径が下部の内径の30倍超であれば、粒子50の均一な流動や、粒子50の回収が難しくなることがある。 Further, from the viewpoint of facilitating adjustment of the flow rate of the preparation gas, for example, the ratio of the inner diameter of the preparation device 10 to the inner diameter of the discharge port 12 (the inner diameter of the preparation device 10: the inner diameter of the discharge port 12) is 3: 1 or more. It is preferable that it is usually 30: 1 or less. The gas flow rate varies depending on the cross-sectional area of the tube through which the gas passes. Therefore, when the ratio of the diameters above and below the taper portion 11 is 3: 1, the gas flow rate at the discharge port 12 corresponding to the lower portion of the taper portion is about 10 times the gas flow rate above the taper portion 11. . Therefore, by finely adjusting the gas flow rate at the discharge port 12, the gas flow rate in the preparation device 10 can be adjusted in a stepwise manner, and the gas flow rate is sufficient to maintain the fluidized bed in a fluid state. Easy to set. In addition, if the pipe diameter of the upper part of the taper part 11 is less than 3 times the pipe diameter of the lower part, it may be difficult to adjust the flow rate of the preparation gas. In addition, if the inner diameter of the upper portion of the tapered portion 11 is more than 30 times the inner diameter of the lower portion, it may be difficult to uniformly flow the particles 50 and collect the particles 50.
 さらに、調製器10は、調製器10内部を加熱する加熱機構14をさらに備えることが好ましい。加熱機構14は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、加熱機構14は調製器10の内部を反応温度まで加熱することができる。なお、反応温度は、通常、400℃以上1200℃以下である。 Furthermore, the preparation device 10 preferably further includes a heating mechanism 14 for heating the inside of the preparation device 10. The heating mechanism 14 is not particularly limited, and can be configured by various heaters, for example. Furthermore, the heating mechanism 14 can heat the inside of the preparation device 10 to the reaction temperature. In addition, reaction temperature is 400 degreeC or more and 1200 degrees C or less normally.
<第1配管>
 第1配管20は、テーパ部11の排出口12に連結されている。さらに、第1配管20は、調製器10と一体であっても良いし、別個の部品として形成されたものが調製器10と接続されたものであっても良い。
<First piping>
The first pipe 20 is connected to the discharge port 12 of the tapered portion 11. Further, the first pipe 20 may be integrated with the preparation device 10, or may be formed as a separate part and connected to the preparation device 10.
<調製器ガス供給機構>
 テーパ部11の排出口12からテーパ部11内に収容されている粒子50に向けて調製器ガスを供給可能な調製器ガス供給機構は、調製器ガス供給管30を含んでなる。調製器ガス供給管30は、接続部40にて第1配管20に対して接続されている。さらに、調製器ガス供給管30は、調製器ガス供給制御機構31、及び調製器ガス源(図示しない)を備えることが好ましい。調製器ガス供給制御機構31は、ガス流量を調節できる限りにおいて特に限定されることなく、例えば、バルブ、インバーターつきのポンプ、及びシャッター等により構成されうる。さらに、調製器ガス源は、特に限定されることなく、各種ガスを充てんしたボンベやタンクでありうる。図1(a)では、調製器ガス供給管を単一の管として示したが、調製器ガス供給管は、各種調製器ガス源とそれぞれ接続された複数のガス供給管として実装されても良い。この場合、調製器ガス供給機構は、各種ガスを切り替え可能な分岐手段を有しうる。
<Preparator gas supply mechanism>
The preparation gas supply mechanism capable of supplying the preparation gas from the discharge port 12 of the taper part 11 toward the particles 50 accommodated in the taper part 11 includes a preparation gas supply pipe 30. The preparator gas supply pipe 30 is connected to the first pipe 20 at the connection portion 40. Furthermore, the preparator gas supply pipe 30 preferably includes a preparator gas supply control mechanism 31 and a preparator gas source (not shown). The preparator gas supply control mechanism 31 is not particularly limited as long as the gas flow rate can be adjusted, and can be configured by, for example, a valve, a pump with an inverter, a shutter, and the like. Further, the preparation gas source is not particularly limited, and may be a cylinder or a tank filled with various gases. In FIG. 1 (a), the preparator gas supply pipe is shown as a single pipe, but the preparator gas supply pipe may be mounted as a plurality of gas supply pipes respectively connected to various preparator gas sources. . In this case, the preparation gas supply mechanism may have a branching unit capable of switching various gases.
 また、図1(a)では、接続部40にて調製器ガス供給管30と第1配管20とが直交する態様を示すが、かかる接続部40では、これらの管は必ずしも直交していなくても良い。すなわち、調製器ガス供給管30と第1配管20とは、調製器ガス供給管30を経て第1配管20に導入された調製器ガスが、調製器10内へと導かれる限りにおいて、あらゆる配置態様とすることができる。例えば、調製器ガス供給管30は、接続部40にてやや下方に傾いて第1配管20に接続されていると、粒子50の移送時に調製器ガス供給管30に触媒担持体が入ることを防止できて、一層好適である。ここで、調製器ガス供給管30を経て第1配管20に導入された調製器ガスを、調製器10方向、即ち上方向に方向づけるためには、第1配管20内において、接続部40の上側と下側との間に圧力勾配を形成する必要がある。より具体的には、第1配管20内の管圧が、接続部40の上側で比較的低く、接続部40の下側で比較的高くなっている必要がある。図1(a)に示すように、第1配管20を中心として粒子処理装置100を見た場合に、装置の上側では、調製器10の上端が開放しており、反対に、装置の下側では、後述する粒子収容器70により閉塞している。このため、調製器ガス供給管30を介して、調製器ガスを粒子処理装置100内に導入すれば、第1配管内の管圧は、接続部40の下側で比較的高くなる。よって、調製器ガス供給管30を経て第1配管20に導入された調製器ガスは、上方向に方向づけられる。なお、接続部40より下側で、第1配管20に対してバルブ(図示しない)等の第1配管閉塞機構を設けることで、このような圧力勾配を一層容易に形成することができる。 1A shows a mode in which the preparation gas supply pipe 30 and the first pipe 20 are orthogonal to each other at the connection part 40. In the connection part 40, these pipes are not necessarily orthogonal to each other. Also good. That is, the preparator gas supply pipe 30 and the first pipe 20 are arranged in any manner as long as the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 is introduced into the preparator 10. It can be set as an aspect. For example, if the preparator gas supply pipe 30 is connected to the first pipe 20 by being inclined slightly downward at the connecting portion 40, the catalyst carrier enters the preparator gas supply pipe 30 when the particles 50 are transferred. This can be prevented and is more preferable. Here, in order to direct the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 in the direction of the preparator 10, that is, in the upward direction, the upper side of the connection portion 40 in the first pipe 20. It is necessary to create a pressure gradient between the lower side and the lower side. More specifically, the pipe pressure in the first pipe 20 needs to be relatively low on the upper side of the connection part 40 and relatively high on the lower side of the connection part 40. As shown in FIG. 1 (a), when the particle processing apparatus 100 is viewed around the first pipe 20, the upper end of the preparation device 10 is open on the upper side of the apparatus, and conversely, the lower side of the apparatus. Then, it closes with the particle | grain container 70 mentioned later. For this reason, if the preparator gas is introduced into the particle processing apparatus 100 via the preparator gas supply pipe 30, the tube pressure in the first pipe becomes relatively high below the connection portion 40. Therefore, the preparator gas introduced into the first pipe 20 through the preparator gas supply pipe 30 is directed upward. In addition, by providing a first pipe closing mechanism such as a valve (not shown) for the first pipe 20 below the connection portion 40, such a pressure gradient can be formed more easily.
<粒子収容器>
 粒子収容器70は、調製器10内で製造された、触媒を担持した触媒担持体を収容する。調製器ガス供給管から供給する調製器ガスの流速を小さくする、或いは調整器ガスの供給を停止すれば、図1(b)に示すように、調製器10内の粒子50が落下して、粒子収容器70内へと移動する。なお、第1配管20が、接続部40よりも下側にバルブを有する場合には、調製器ガスの流速を小さくする、或いは調整器ガスの供給を停止することに先立って、かかるバルブを開放する。粒子50により第1配管20に目詰まりが生じることを回避するためである。粒子収容器70は、特に限定されることなく、任意の形状のガラスやスチール等の材質により構成することができる。さらに、粒子収容器70は、蓋71を有することが好ましい。蓋71は、第1供給管20と粒子収容器70とを気密に連結できる限りにおいて、特に限定されることなく、任意の材質及び形状にて構成することができる。
<Particle container>
The particle container 70 accommodates the catalyst carrier produced in the preparation device 10 and carrying the catalyst. If the flow rate of the preparator gas supplied from the preparator gas supply pipe is reduced or the supply of the regulator gas is stopped, the particles 50 in the preparator 10 fall as shown in FIG. It moves into the particle container 70. When the first pipe 20 has a valve below the connection portion 40, the valve is opened prior to reducing the flow rate of the regulator gas or stopping the supply of the regulator gas. To do. This is to avoid the clogging of the first pipe 20 caused by the particles 50. The particle container 70 is not particularly limited, and can be made of a material such as glass or steel having an arbitrary shape. Furthermore, the particle container 70 preferably has a lid 71. The lid 71 is not particularly limited as long as the first supply pipe 20 and the particle container 70 can be connected in an airtight manner, and can be formed of any material and shape.
(触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法)
 本発明の粒子処理装置を用いた触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法は、調製器10内部を反応温度まで加熱する工程(加熱工程)、加熱状態の調製器10内に、担体粒子及び粒子状の触媒担持体の少なくとも一方を供給する供給工程(粒子供給工程)、調製器10内にて、担体粒子及び粒子状の触媒担持体の少なくとも一方と調製器ガスとを接触させて触媒担持体及び繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を得る接触工程(調製器ガス接触工程)、及び調製器ガスの流量を調節して調製器10内の触媒担持体及び前記繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を流下させる工程(回収工程)を含みうる。より具体的には、本発明の粒子処理装置を用いた触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法にあたり、まず、調製器10内を加熱状態に保持する。そして、上記粒子供給工程にて、調製器10に対して中程度の流量で調製器ガスを供給しつつ粒子を供給し、調製器ガスを大流量で供給して粒子に接触させ、上記回収工程にてガス流量を低下又はゼロとして処理済粒子を流下させて回収することが好ましい。そして、上記粒子供給工程から回収工程までの操作を繰り返すことが好ましい。
 以下、各工程について詳述する。なお、各工程において用いる各種ガスとしては、上述したガスと同様のガスを用いることができる。
(Method for producing catalyst carrier and / or fibrous carbon nanostructure)
The method for producing a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus of the present invention includes a step of heating the inside of the preparation device 10 to a reaction temperature (heating step), and the preparation device 10 in a heated state. A supply step (particle supply step) for supplying at least one of the carrier particles and the particulate catalyst carrier, and at least one of the carrier particles and the particulate catalyst carrier is brought into contact with the regulator gas in the preparation device 10 Contact step (preparer gas contact step) for obtaining at least one of a catalyst carrier and a catalyst carrier having a fibrous carbon nanostructure, and adjusting the flow rate of the regulator gas to adjust the flow rate of the regulator gas. And a step (recovery step) of allowing at least one of the catalyst carrier having the fibrous carbon nanostructure to flow down. More specifically, in the manufacturing method of the catalyst carrier and / or the fibrous carbon nanostructure using the particle processing apparatus of the present invention, first, the inside of the preparation device 10 is held in a heated state. In the particle supplying step, the particles are supplied while supplying the preparator gas at a medium flow rate to the preparator 10, and the preparator gas is supplied at a large flow rate to contact the particles, and the recovery step It is preferable to recover the treated particles by lowering the gas flow rate at or with zero. And it is preferable to repeat the operation | movement from the said particle | grain supply process to a collection process.
Hereinafter, each process is explained in full detail. In addition, as various gas used in each process, the gas similar to the gas mentioned above can be used.
<粒子供給工程>
 粒子供給工程では、加熱状態の調製器10内に、粒子を供給する。この際、調製器10内に調製器ガスを供給しつつ、粒子を供給することができる。なお、粒子としては、担体粒子及び触媒担持体の少なくとも一方を供給し得る。
<Particle supply process>
In the particle supply step, particles are supplied into the heated preparation device 10. At this time, the particles can be supplied while supplying the preparation gas into the preparation device 10. As particles, at least one of carrier particles and catalyst support can be supplied.
<調製器ガス接触工程>
 調製器ガス接触工程では、供給するガスの種類を選択又は変更することで、1)担体粒子の表面を酸化させる、2)担体粒子に金属酸化物又は触媒を担持させる、3)担体粒子を還元処理する、及び/又は、4)触媒担持体上にて繊維状炭素ナノ構造体を合成することができる。なお、担体粒子表面を酸化する目的において供給する酸素元素含有ガスを含む調製器ガス中における酸素元素含有ガスの濃度は、通常、1体積%以上であり、好ましくは、5体積%以上である。酸化処理を効率的に実施することができるからである。
<Preparator gas contact process>
In the preparator gas contact step, by selecting or changing the type of gas to be supplied, 1) the surface of the carrier particles is oxidized, 2) the carrier particles carry a metal oxide or catalyst, and 3) the carrier particles are reduced. 4) Fibrous carbon nanostructures can be synthesized on the catalyst support. Note that the concentration of the oxygen element-containing gas in the preparation gas containing the oxygen element-containing gas supplied for the purpose of oxidizing the surface of the carrier particles is usually 1% by volume or more, preferably 5% by volume or more. This is because the oxidation treatment can be carried out efficiently.
 また、担体粒子表面に金属酸化物を担持させるにあたり供給する調製器ガスは、通常、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスを、0.01体積%以上10体積%以下、酸素元素含有ガスを、0.01体積%以上21体積%以下含みうる。これらの他に、調製器ガスは、窒素などの不活性ガスを、通常、69体積%以上含みうる。なお、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスとしては、例えば、アルミニウムイソプロポキシド(化学式:Al(O-i-Pr)3[i-Prはイソプロピル基-CH(CH])が挙げられる。 The preparation gas supplied to support the metal oxide on the surface of the carrier particles is usually 0.01% by volume of a gas containing one or more elements selected from Si, Al, and Mg. The oxygen element-containing gas may be contained in an amount of 0.01 vol% or more and 21 vol% or less. In addition to these, the preparer gas may typically contain 69% by volume or more of an inert gas such as nitrogen. As a gas containing one or more elements selected from Si, Al, and Mg, for example, aluminum isopropoxide (chemical formula: Al (Oi-Pr) 3 [i-Pr is isopropyl Group --CH (CH 3 ) 2 ]).
 また、担体粒子に触媒を担持させるにあたり供給する調製器ガスは、通常、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気を、0.001体積%以上10体積%以下、酸素元素含有ガスを、0.01体積%以上21体積%以下含みうる。これらの他に、調製器ガスは、窒素などの不活性ガスを、通常、69体積%以上含みうる。具体的には、調製器ガスとして、Feを含有する化合物であるフェロセンを気体化して得たガスを導入すれば、担体粒子表面にFe触媒を担持させることができる。このようにして、調製器ガス接触工程において担体粒子に触媒を付着させることができる。 Further, the preparator gas supplied when the catalyst is supported on the carrier particles is usually 0.001% by volume or more of a vapor of a compound containing at least one element selected from the group containing Fe, Co, and Ni. 10% by volume or less and oxygen element-containing gas may be included in an amount of 0.01% by volume to 21% by volume. In addition to these, the preparer gas may typically contain 69% by volume or more of an inert gas such as nitrogen. Specifically, if a gas obtained by gasifying ferrocene, which is a compound containing Fe, is introduced as the preparation gas, the Fe catalyst can be supported on the surface of the carrier particles. In this way, the catalyst can be attached to the support particles in the preparator gas contact step.
 さらに、触媒を担持させた担体粒子に対して、調製器ガスとして水素、アンモニア、メタン等の還元性ガスを含有するガスを供給すれば、調製器10にて還元状態の触媒担持体を製造することができる。なお、この場合、調製器ガスの好ましくは1%以上が還元性ガスであればよく、100%が還元性ガスであってもよい。 Further, if a gas containing a reducing gas such as hydrogen, ammonia or methane is supplied as a preparation gas to the carrier particles carrying the catalyst, a reduced catalyst carrier is produced by the preparation device 10. be able to. In this case, preferably, 1% or more of the preparation gas may be a reducing gas, and 100% may be a reducing gas.
 さらにまた、触媒担持体に対して、調製器ガスとして上述したような炭素原料含有ガスを供給すれば、調製器10内にて繊維状炭素ナノ構造体を合成することができる。炭素原料含有ガス中における炭素原料の濃度は、特に限定されることなく、通常、0.5体積%以上である。なお、炭素源を含む原料ガスの送気圧力は、特に限定されることなく、例えば、0.001MPa以上1.500MPa以下とすることができる。そして、合成工程に要する時間や、第2ガス中における炭素原料濃度等は、所望の繊維状炭素ナノ構造体の性状及び製造効率に応じて、適宜設定することができる。例えば、合成工程の時間を長くすることで繊維状炭素ナノ構造体の長さを長くすることができる。また、炭素原料ガス中における炭素原料濃度を上げることで、製造効率を向上させることができる。 Furthermore, if the carbon raw material-containing gas as described above is supplied as the preparation gas to the catalyst carrier, the fibrous carbon nanostructure can be synthesized in the preparation device 10. The density | concentration of the carbon raw material in carbon raw material containing gas is not specifically limited, Usually, it is 0.5 volume% or more. In addition, the supply pressure of the raw material gas containing the carbon source is not particularly limited, and can be, for example, 0.001 MPa or more and 1.500 MPa or less. The time required for the synthesis step, the carbon raw material concentration in the second gas, and the like can be appropriately set according to the desired properties of the fibrous carbon nanostructure and the production efficiency. For example, the length of the fibrous carbon nanostructure can be increased by increasing the time of the synthesis process. Further, the production efficiency can be improved by increasing the carbon source concentration in the carbon source gas.
<回収工程>
 そして、調製器10内に導入する調製器ガスの流速を小さくする、或いは調整器ガスの供給を停止することで、調製器10内で得られた処理済粒子を、第1配管20を通じて粒子収容器70に移送することができる。
<Recovery process>
Then, the treated particles obtained in the preparation device 10 are accommodated through the first pipe 20 by reducing the flow rate of the preparation gas introduced into the preparation device 10 or by stopping the supply of the adjustment gas. Can be transferred to the container 70.
 なお、調製器ガスを低流速で供給することで、粒子の供給工程、調製器ガス接触工程、回収工程を同時に実施しても良いし、調製器ガス接触工程の最中に調製器ガスの流速を小さくすることで、回収工程を実施しても良いし、調製器ガス接触工程を完了した後に回収工程を実施しても良い。例えば、調製器ガス接触工程の最中に回収工程を実施する際には、調製器ガスの流速を、調製器10から一定速度で触媒担持体が流下するような流速に設定して、一定速度で粒子を回収するようにすることができる。さらにこのとき、一定速度で調製器10に対して粒子を投入することができる。このようにすれば、一定の速度で処理対象の粒子を「連続的に」処理することができる。なお、「連続的」な処理では、粒子の投入量と流下量とが略同一となるように調節して、調製器10内に滞留する粒子量が略一定となるようにすることが好ましい。 In addition, by supplying the preparator gas at a low flow rate, the particle supply step, the preparator gas contact step, and the recovery step may be performed simultaneously, or during the preparator gas contact step, the flow rate of the preparator gas The recovery step may be carried out by reducing the value, or the recovery step may be carried out after the preparation gas contact step is completed. For example, when the recovery step is performed during the preparation gas contact step, the flow rate of the preparation gas is set to such a flow rate that the catalyst carrier flows down from the preparation device 10 at a constant speed. The particles can be recovered with Further, at this time, the particles can be charged into the preparation device 10 at a constant speed. In this way, the particles to be processed can be processed “continuously” at a constant speed. In the “continuous” treatment, it is preferable that the amount of particles staying in the preparation device 10 is made substantially constant by adjusting the amount of charged particles and the amount of flowing down to be substantially the same.
 一方、調製器ガス接触工程を完了した後に回収工程を実施する場合には、調製器10に対して、粒子を一旦導入した後に、調製器ガス接触工程を終了するまでは追加で導入することなく、目的に応じた各種ガスを切り替えて調製器ガスとして供給し、所定時間反応させた後に、調製器ガスの流速を小さくし、或いは調整器ガスの供給を停止して、調製器10内の粒子の略全量を流下させることで、目的の処理を経た処理済粒子を回収することができる。かかる処理によれば、一旦加熱工程を行った後に、「半連続的に」目的の処理を経た処理済粒子を得ることができる。なお、半連続的な製造方法によれば、同じ投入タイミングで投入された粒子について、処理時間を略同一に揃えることができる。そして、このような半連続的な製造方法を繰り返した場合に、各回の処理時間を同一とすれば、得られる触媒担持体及び/又は繊維状炭素ナノ構造体の性状を略均一に揃えることができる。このため、例えば、得られた触媒担持体を、繊維状炭素ナノ構造体の合成に用いた場合、或いは、調製器10内にて繊維状炭素ナノ構造体の合成を行った場合に、得られる繊維状炭素ナノ構造体の径や長さ等の属性を均一化することができる。 On the other hand, when carrying out the recovery step after completing the preparator gas contact step, the particles are once introduced into the preparator 10 and then are not additionally introduced until the preparator gas contact step is completed. The various gases according to the purpose are switched and supplied as a preparator gas, and after reacting for a predetermined time, the flow rate of the preparator gas is reduced or the supply of the regulator gas is stopped, and the particles in the preparator 10 By flowing down substantially the entire amount of the treated particles, the treated particles that have undergone the target treatment can be recovered. According to such treatment, treated particles can be obtained that have undergone the intended treatment “semi-continuously” once the heating step is performed. In addition, according to the semi-continuous manufacturing method, it is possible to make the processing times substantially the same for the particles charged at the same charging timing. And, when such a semi-continuous production method is repeated, if the processing time of each round is the same, the properties of the obtained catalyst carrier and / or fibrous carbon nanostructure can be made substantially uniform. it can. For this reason, for example, when the obtained catalyst carrier is used for the synthesis of a fibrous carbon nanostructure, or when the fibrous carbon nanostructure is synthesized in the preparation device 10, it is obtained. Attributes such as the diameter and length of the fibrous carbon nanostructure can be made uniform.
(触媒担持体を用いたカーボンナノチューブの合成)
 ここで、上述した粒子処理装置を用いて触媒担持体を得て、得られた触媒担持体を本発明の粒子処理装置とは別の合成器を用いてカーボンナノチューブを合成する際の手順の一例を以下に説明する。まず、上述のようにして得られた触媒担持体を合成器内に配置する。ここで、合成器は、粒子状の触媒担持体を用いて繊維状炭素ナノ構造体を合成できる容器である限りにおいて特に限定されることなく、例えば、気流層合成器、固定層合成器、移動層合成器、及び流動層合成器等でありうる。以下、流動層合成器を用いたものとして説明する。
(Synthesis of carbon nanotubes using catalyst support)
Here, an example of a procedure for synthesizing a carbon nanotube using a synthesizer different from the particle processing apparatus of the present invention is obtained using the particle processing apparatus described above to obtain a catalyst supporting body. Is described below. First, the catalyst carrier obtained as described above is placed in a synthesizer. Here, the synthesizer is not particularly limited as long as it is a container capable of synthesizing a fibrous carbon nanostructure using a particulate catalyst support, for example, an airflow bed synthesizer, a fixed bed synthesizer, a transfer It can be a bed synthesizer, a fluidized bed synthesizer, or the like. Hereinafter, it demonstrates as what uses a fluidized bed synthesizer.
 まず、炭素源を含む原料ガスを流動層合成器内に送気して、触媒担持体と接触させて触媒担持体上に繊維状炭素ナノ構造体を成長させる。炭素源としては、上述した本発明の粒子処理装置100を用いて繊維状炭素ナノ構造体を合成する場合に、上記調製器ガスとして供給し得る炭素原料含有ガスを用いることができる。以下、流動層合成器内に送気するガスを「合成器ガス」とも称する。なお、合成器ガスとしての炭素源を含む原料ガスの送気圧力も、上記調製器ガスとしての炭素原料含有ガスと同様とすることができる。 First, a raw material gas containing a carbon source is fed into a fluidized bed synthesizer and brought into contact with the catalyst carrier to grow fibrous carbon nanostructures on the catalyst carrier. As a carbon source, when a fibrous carbon nanostructure is synthesized using the particle processing apparatus 100 of the present invention described above, a carbon raw material-containing gas that can be supplied as the preparation gas can be used. Hereinafter, the gas fed into the fluidized bed synthesizer is also referred to as “synthesizer gas”. The air supply pressure of the raw material gas containing the carbon source as the synthesizer gas can be the same as that of the carbon raw material-containing gas as the preparation gas.
 そして、得られた繊維状炭素ナノ構造体を有する触媒担持体は、例えば、アルゴン等の希ガスや、窒素等の不活性ガスを一時的に大流量で供給して分離器に移送し、回収することができる。分離器で不活性ガス流から重力沈降、遠心分離、ろ過などにより分離された繊維状炭素ナノ構造体を有する触媒担持体は、特に限定されることなく、例えば、振とうする、液中に投入して撹拌する等の比較的簡易な方法で繊維状炭素ナノ構造体と触媒担持体とに分離することができる。 Then, the obtained catalyst carrier having the fibrous carbon nanostructure is, for example, temporarily supplied with a rare gas such as argon or an inert gas such as nitrogen at a high flow rate, transferred to a separator, and recovered. can do. A catalyst carrier having a fibrous carbon nanostructure separated from an inert gas flow by a separator by gravity sedimentation, centrifugation, filtration, or the like is not particularly limited, and is shaken, for example, put into a liquid. Then, the fibrous carbon nanostructure and the catalyst carrier can be separated by a relatively simple method such as stirring.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
(実施例1)
 実施例1において、粒子処理効率、触媒担持体の均一性、金属酸化物層の換算厚み、及びCNTの収量は以下の方法により評価した。
Example 1
In Example 1, the particle treatment efficiency, the uniformity of the catalyst support, the converted thickness of the metal oxide layer, and the yield of CNTs were evaluated by the following methods.
<処理効率>
 触媒担持に使用した粒子処理装置における、目詰まりが発生しないことを確認した。目詰まりの発生が無ければ粒子処理効率に優れる。
<触媒担持体の均一性>
 走査型電子顕微鏡(日立ハイテクノロジーズ社製S-4800)付属のエネルギー分散X線分光装置(アメテック社製、EDAX Genesis)を用いて、実施例で得られた触媒担持体について元素分析を行い、触媒担持が均一であることを確認した。
<Processing efficiency>
It was confirmed that no clogging occurred in the particle processing apparatus used for supporting the catalyst. If clogging does not occur, particle processing efficiency is excellent.
<Uniformity of catalyst carrier>
Using the energy dispersive X-ray spectrometer (Ametech, EDAX Genesis) attached to the scanning electron microscope (Hitachi High-Technologies S-4800), elemental analysis was performed on the catalyst support obtained in the examples, and the catalyst It was confirmed that the loading was uniform.
<触媒層及び金属酸化物層の換算厚み>
 「触媒層の触媒金属換算厚み」は、1つの触媒層の単位面積あたりの触媒金属の量がa(g/cm)、触媒金属の真密度がb(g/cm)の場合、両者の比a/b(cm)=10a/b(nm)が「触媒金属換算厚み」となる。走査型電子顕微鏡(日立ハイテクノロジーズ社製S-4800)付属のエネルギー分散X線分光装置(アメテック社製、EDAX Genesis)を用いて、触媒担持体についての特性X線強度を測定し、得られた特性X線強度測定値を予め得たFe標準膜を用いて得た検量線と比較して、触媒層の触媒金属換算厚みを測定した。同様にして、金属酸化物層の金属酸化物換算厚みも測定した。なお、触媒層の触媒金属換算厚みについては、Fe標準膜を用いて得た検量線を基準とし、金属酸化物層の金属酸化物換算厚みについては、Al標準膜を用いて得た検量線を基準として、それぞれの換算厚みを測定した。
<Conversion thickness of catalyst layer and metal oxide layer>
“Catalyst metal equivalent thickness of catalyst layer” means that when the amount of catalyst metal per unit area of one catalyst layer is a (g / cm 2 ) and the true density of catalyst metal is b (g / cm 3 ), both The ratio a / b (cm) = 10 7 a / b (nm) is the “catalyst metal equivalent thickness”. It was obtained by measuring the characteristic X-ray intensity of the catalyst carrier using an energy dispersive X-ray spectrometer (Ametech, EDAX Genesis) attached to a scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation). The characteristic X-ray intensity measurement value was compared with a calibration curve obtained using a previously obtained Fe standard film, and the catalyst metal equivalent thickness of the catalyst layer was measured. Similarly, the metal oxide equivalent thickness of the metal oxide layer was also measured. The catalyst metal equivalent thickness of the catalyst layer is based on the calibration curve obtained using the Fe standard film, and the metal oxide equivalent thickness of the metal oxide layer is the standard curve obtained using the Al standard film. As a reference, each converted thickness was measured.
<カーボンナノチューブの収量>
 CNT合成用流動層装置よりCNT合成中に排気されるガスについて、水素炎イオン化型検出器を備えるガスクロマトグラフ(島津製作所社製、GC-2014)により分析した。分析値より、排気ガス中における炭素含有成分の質量を算出し、CNTの合成に際してCNT合成用流動層装置に導入した炭素原料の質量(C)から差し引いてCNTに転化したと考えられる炭素原料の質量(CCNT,gas)を算出した。そして、得られた値について(CCNT,gas/C)×100を計算して炭素原料の転換率を算出した。また、CNT合成前後の触媒担持体の質量変化を電子天秤(島津製作所製、型番AUW120D)で測定し、CNTの質量(CCNT,powder)を求め、(CCNT,powder/Cs)×100を計算して、CNTの収率を算出した。
<Yield of carbon nanotube>
The gas exhausted during the CNT synthesis from the CNT synthesis fluidized bed apparatus was analyzed by a gas chromatograph (manufactured by Shimadzu Corporation, GC-2014) equipped with a flame ionization detector. From the analytical value, the mass of the carbon-containing component in the exhaust gas is calculated, and the carbon raw material that is considered to have been converted into CNT by subtracting from the mass (C S ) of the carbon raw material introduced into the fluidized bed device for CNT synthesis at the time of CNT synthesis Mass (C CNT, gas ) was calculated. Then, the obtained value (C CNT, gas / C S ) was calculated conversion of the carbon source by calculating × 100. Further, the mass change of the catalyst carrier before and after the synthesis of CNT was measured with an electronic balance (manufactured by Shimadzu Corporation, model number AUW120D) to obtain the mass of CNT (C CNT, powder ), and (C CNT, powder / C s ) × 100 And the yield of CNT was calculated.
<触媒担持体の製造>
[準備工程]
 粒子処理装置として、図1(a)に示したような構成を有する粒子処理装置を利用した。担体粒子として、メーカー公称粒子径150μmのムライト粉末(伊藤忠セラテック株式会社製、「ナイガイセラビーズ60」、#750)70gを準備した。そして、ムライト粉末70gを、テーパ上部の管内径が5.1cm、下端の管内径が0.6cmのガラス管よりなる調製器を有する粒子処理装置に充填し、酸素4体積%、窒素96体積%雰囲気下で800℃まで40℃/分で昇温した。
[調製器ガス接触工程]
 アルミニウムイソプロポキシド(和光純薬工業社製、「012-16012」、化学式:Al(O-i-Pr)3[i-Prはイソプロピル基-CH(CH])の蒸気を0.03体積%(設定値)、酸素を3.8体積%、及び窒素を96.2体積%含有するガスを10.5slmで5分間供給して、支持体としてのムライト粉末上に、金属酸化物としての酸化アルミニウムを形成した。
 次いで、フェロセン(和光純薬工業社製、「060-05981」)蒸気を0.009体積%(設定値)、酸素を3.9体積%、窒素を96.1体積%含有するガスを10.2slmで5分間供給して、Feにより形成される微粒子を含む触媒層を形成した。なお、調製器ガス接触工程では、触媒担持体を調製器内に追加で導入しなかった。かかる調製器ガス接触工程をさらに4回繰り返した。得られた触媒担持体を、上述した方法に従って評価した。結果を表1に示す。
<Manufacture of catalyst carrier>
[Preparation process]
As the particle processing apparatus, a particle processing apparatus having a configuration as shown in FIG. As carrier particles, 70 g of mullite powder having a nominal particle diameter of 150 μm (manufactured by ITOCHU CERATECH Co., Ltd., “Nagai Cera Beads 60”, # 750) was prepared. Then, 70 g of mullite powder is charged into a particle processing apparatus having a preparation device made of a glass tube having a tube inner diameter of 5.1 cm at the upper part of the taper and a tube inner diameter of 0.6 cm at the lower end, and is 4% oxygen by volume and 96% by volume nitrogen. The temperature was raised to 800 ° C. at 40 ° C./min under the atmosphere.
[Preparer gas contact process]
Vapor of aluminum isopropoxide (Wako Pure Chemical Industries, “012-16012”, chemical formula: Al (Oi-Pr) 3 [i-Pr is isopropyl group—CH (CH 3 ) 2 ]) A gas containing 03% by volume (setting value), 3.8% by volume of oxygen, and 96.2% by volume of nitrogen was supplied at 10.5 slm for 5 minutes, and a metal oxide was applied onto the mullite powder as a support. As a result, aluminum oxide was formed.
Next, ferrocene (manufactured by Wako Pure Chemical Industries, Ltd., “060-05981”) vapor of 0.009% by volume (set value), oxygen of 3.9% by volume, and nitrogen containing 96.1% by volume of gas is 10. A catalyst layer containing fine particles formed of Fe was formed by supplying at 2 slm for 5 minutes. In the preparation gas contact step, no catalyst carrier was additionally introduced into the preparation device. This preparator gas contact step was repeated four more times. The obtained catalyst carrier was evaluated according to the method described above. The results are shown in Table 1.
<CNTの合成>
 そして、触媒担持体を、管内径2.2cmのガラス管よりなるカーボンナノチューブ合成用流動層装置に層高3cmになるように充填した。CNT合成用流動層装置内を、水素10体積%、窒素90体積%を含む雰囲気下で800℃に昇温し、触媒担持体を還元した。そして、CNT合成用流動層装置内に、炭素源としてのアセチレン(C22)を0.7体積%と、水素10体積%と、二酸化炭素3体積%と、窒素86.3体積%とを含む合成器ガスを2slmで10分間供給して、CNTを合成した。CNT合成後、粒子処理装置を冷却してCNT付き触媒担持体を回収した。得られたCNTについて、上述した方法に従って各種測定及び評価を行った。結果を表1に示す。また、実施例1に従って得られた表面にCNTを有する触媒担持体のSEM画像を図2に示す。図2によれば、触媒担持体粒子の全面にて、CNTが成長していることがわかる。
<Synthesis of CNT>
Then, the catalyst carrier was filled in a fluidized bed apparatus for carbon nanotube synthesis composed of a glass tube having an inner diameter of 2.2 cm so as to have a layer height of 3 cm. The inside of the fluidized bed device for CNT synthesis was heated to 800 ° C. in an atmosphere containing 10% by volume of hydrogen and 90% by volume of nitrogen to reduce the catalyst carrier. And in the fluidized bed apparatus for CNT synthesis, acetylene (C 2 H 2 ) as a carbon source is 0.7 volume%, hydrogen is 10 volume%, carbon dioxide is 3 volume%, and nitrogen is 86.3 volume%. Was supplied at 2 slm for 10 minutes to synthesize CNTs. After the CNT synthesis, the particle processing apparatus was cooled to recover the catalyst carrier with CNTs. About the obtained CNT, various measurements and evaluation were performed according to the method mentioned above. The results are shown in Table 1. Moreover, the SEM image of the catalyst support body which has CNT on the surface obtained according to Example 1 is shown in FIG. According to FIG. 2, it can be seen that CNT grows on the entire surface of the catalyst carrier particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 よって、表1により、調製器ガス供給管と第1配管との接続部よりも上側に、触媒担持体の移動を遮断するための部材を備えない本発明による粒子処理装置によれば、効率的に担体粒子を処理できることが明らかとなった。また、得られた触媒担持体は、良好な触媒活性を呈し得ることが分かった。 Therefore, according to Table 1, according to the particle processing apparatus of the present invention that does not include a member for blocking the movement of the catalyst carrier above the connecting portion between the preparation gas supply pipe and the first pipe, It was revealed that the carrier particles can be processed. Further, it was found that the obtained catalyst carrier can exhibit good catalytic activity.
(実施例2)
 本発明の粒子処理装置ではなく、ドラムスパッタ装置を用いて得た触媒担持体用いた。そして、かかる触媒担持体を、本発明に従う粒子処理装置に導入して、CNTを合成した。
<触媒担持体の調製>
 担体粒子である直径0.3mmのAlビーズ100gをドラムスパッタ装置内に充填した。ドラムスパッタ装置により、Alビーズ表面に、金属酸化物層であるAl層と触媒層であるFe層を交互に4層形成した。層構成は以下の通りとなるように、ドラムスパッタ装置を操作した。
 第1層(担体粒子表面に隣接する層):Al層(平均膜厚:15nm)
 第2層:Fe層(平均膜厚:0.6nm)
 第3層:Al層(平均膜厚:15nm)
 第4層:Fe層(平均膜厚:2.1nm)
<CNTの合成>
 CNT合成を行うための粒子処理装置として、図1(a)に示したような構成を有する粒子処理装置を利用した。調製器のテーパ上部の管内径は4cmであった。電気炉のプログラム温度調整器により、調製器を昇温し、プログラム温度調整器の温度が300℃に到達した時点で、窒素ガスを5slmで流通を開始し、上述のようにして得られた触媒担持体30gを調製器内に投入した。そして、1分間パージした後に、流入ガスの組成が、水素10体積%、二酸化炭素1体積%、窒素89体積%となるように調節した。そして、昇温開始から10分後の時点で、プログラム温度調整器の温度が725℃に到達したことを確認し、流入ガスの流量を3slmに変更して、5分間アニーリングした。さらに、流入ガスを、流量:2.5slm、組成:アセチレン1体積%、水素10体積%、二酸化炭素1体積%、窒素88%となるように調節して、20分間保持し、CNTを合成した。その後、粒子処理装置を冷却し、CNT付き触媒担持体を回収した。粒子処理効率を実施例1と同様に評価したところ、粒子処理装置に目詰まりは発生しておらず、粒子処理効率に優れていた。実施例2に従って得られた、表面にCNTを有する触媒担持体のSEM画像を図3に示す。
 図3より、本発明に従う粒子処理装置を用いて、CNTを合成可能であることが分かる。
(Example 2)
A catalyst carrier obtained by using a drum sputtering apparatus was used instead of the particle processing apparatus of the present invention. And this catalyst carrier was introduce | transduced into the particle processing apparatus according to this invention, and CNT was synthesize | combined.
<Preparation of catalyst carrier>
The drum sputtering apparatus was filled with 100 g of Al 2 O 3 beads having a diameter of 0.3 mm as carrier particles. Four layers of Al 2 O 3 layers as metal oxide layers and Fe layers as catalyst layers were alternately formed on the surface of Al 2 O 3 beads by a drum sputtering apparatus. The drum sputtering apparatus was operated so that the layer structure was as follows.
First layer (layer adjacent to the carrier particle surface): Al 2 O 3 layer (average film thickness: 15 nm)
Second layer: Fe layer (average film thickness: 0.6 nm)
Third layer: Al 2 O 3 layer (average film thickness: 15 nm)
Fourth layer: Fe layer (average film thickness: 2.1 nm)
<Synthesis of CNT>
As a particle processing apparatus for performing CNT synthesis, a particle processing apparatus having a configuration as shown in FIG. The inner diameter of the top of the taper of the preparation device was 4 cm. The temperature of the preparation device was raised by the programmed temperature regulator of the electric furnace, and when the temperature of the programmed temperature regulator reached 300 ° C, the nitrogen gas started to flow at 5 slm, and the catalyst obtained as described above 30 g of the support was put into the preparation device. After purging for 1 minute, the composition of the inflowing gas was adjusted to 10% by volume of hydrogen, 1% by volume of carbon dioxide, and 89% by volume of nitrogen. Then, 10 minutes after the start of temperature increase, it was confirmed that the temperature of the program temperature regulator reached 725 ° C., and the flow rate of the inflowing gas was changed to 3 slm and annealing was performed for 5 minutes. Furthermore, the inflow gas was adjusted to be flow rate: 2.5 slm, composition: acetylene 1% by volume, hydrogen 10% by volume, carbon dioxide 1% by volume, nitrogen 88%, and held for 20 minutes to synthesize CNT. . Thereafter, the particle processing apparatus was cooled, and the catalyst carrier with CNTs was collected. When the particle processing efficiency was evaluated in the same manner as in Example 1, no clogging occurred in the particle processing apparatus, and the particle processing efficiency was excellent. FIG. 3 shows an SEM image of the catalyst carrier having CNTs on the surface obtained according to Example 2.
FIG. 3 shows that CNTs can be synthesized using the particle processing apparatus according to the present invention.
 本発明によれば、調製器内の粒子を効率的に処理することができる。 According to the present invention, the particles in the preparation device can be processed efficiently.
10  調製器
11  テーパ部
12  排出口
13  位置
14  加熱機構
20  第1配管
30  調製器ガス供給管
31  調製器ガス供給制御機構
40  接続部
50  粒子
70  粒子収容器
71  蓋
100 粒子処理装置
DESCRIPTION OF SYMBOLS 10 Preparation device 11 Tapered part 12 Outlet 13 Position 14 Heating mechanism 20 1st piping 30 Preparation device gas supply pipe 31 Preparation device gas supply control mechanism 40 Connection part 50 Particle | grain 70 Particle container 71 Cover 100 Particle processing apparatus

Claims (11)

  1.  下方に向かって内径が小さくなるテーパ部を有し、前記テーパ部内に収容物として担体粒子及び粒子状の触媒担持体の少なくとも一方を収容可能であるともに、前記テーパ部の底部に配置された排出口から前記収容物を排出可能に構成された調製器と、
     前記テーパ部の前記排出口に連結された第1配管と、
     前記第1配管に接続された、少なくとも1つの調製器ガス供給管を有し、前記テーパ部の前記排出口から、前記テーパ部内に収容されている前記収容物に向けて調製器ガスを供給する、調製器ガス供給機構と、を備え、
     前記調製器ガス供給管と前記第1配管との接続部よりも上側に、前記担体粒子及び前記触媒担持体の移動を遮断するための部材を備えない、粒子処理装置。
    The tapered portion has an inner diameter that decreases downward, and can accommodate at least one of the carrier particles and the particulate catalyst carrier as contained in the tapered portion, and is disposed at the bottom of the tapered portion. A preparation device configured to be able to discharge the contents from an outlet;
    A first pipe connected to the outlet of the tapered portion;
    The apparatus has at least one preparator gas supply pipe connected to the first pipe, and supplies the preparator gas from the discharge port of the taper part toward the accommodation housed in the taper part. A preparator gas supply mechanism,
    A particle processing apparatus, comprising no member for blocking movement of the carrier particles and the catalyst carrier above the connecting portion between the preparation gas supply pipe and the first pipe.
  2.  前記調製器ガス供給機構が、前記収容物の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記収容物の少なくとも一部を流動させうるガス流量にて、前記調製器ガスを供給可能な、調製器ガス供給制御機構を備える、請求項1に記載の粒子処理装置。 The preparator gas supply mechanism holds at least part of the container in the preparator, and at a gas flow rate that allows at least part of the container to flow in the preparator. The particle processing apparatus according to claim 1, further comprising a preparation gas supply control mechanism capable of supplying
  3.  前記調製器が、前記収容物を加熱する加熱機構を更に備える、請求項1又は2に記載の粒子処理装置。 The particle processing apparatus according to claim 1 or 2, wherein the preparation device further includes a heating mechanism for heating the contents.
  4.  前記調製器ガス供給制御機構が、還元性ガス、酸素元素含有ガス、触媒材料ガス、及び炭素原料含有ガスのうち少なくとも1種を供給可能な、請求項1~3のいずれかに記載の粒子処理装置。 The particle processing according to any one of claims 1 to 3, wherein the preparation gas supply control mechanism can supply at least one of a reducing gas, an oxygen element-containing gas, a catalyst material gas, and a carbon raw material-containing gas. apparatus.
  5.  請求項1~4の何れかに記載の粒子処理装置を用いて触媒担持体及び/又は繊維状炭素ナノ構造体を製造する方法であって、
     加熱状態の前記調製器内に、担体粒子及び粒子状の触媒担持体の少なくとも一方を供給する供給工程(1)と、
     前記調製器内にて、前記担体粒子及び前記粒子状の触媒担持体の少なくとも一方と前記調製器ガスとを接触させて触媒担持体及び繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を得る接触工程(2)と、
     前記調製器内の、前記接触工程(2)で得られた前記触媒担持体及び前記繊維状炭素ナノ構造体を有する触媒担持体の少なくとも一方を流下させて前記調製器外へと排出させる回収工程(3)を含む、
     触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。
    A method for producing a catalyst carrier and / or fibrous carbon nanostructure using the particle processing apparatus according to any one of claims 1 to 4,
    A supply step (1) of supplying at least one of carrier particles and a particulate catalyst carrier into the heated preparation device;
    In the preparation device, at least one of the carrier particles and the particulate catalyst support is brought into contact with the preparation gas, and at least one of the catalyst support and the catalyst support having the fibrous carbon nanostructure is brought into contact with the preparation gas. Obtaining contact step (2);
    A recovery step in which at least one of the catalyst carrier obtained in the contacting step (2) and the catalyst carrier having the fibrous carbon nanostructure in the preparation device is caused to flow down and discharged out of the preparation device. Including (3),
    A method for producing a catalyst carrier and / or a fibrous carbon nanostructure.
  6.  前記調製器ガスが、触媒材料ガス、還元性ガス、酸素元素含有ガス、及び/又は、炭素原料含有ガスを含み、
     前記接触工程(2)は、触媒担持ステップ(i)、還元処理ステップ(ii)、酸化処理ステップ(iii)、および、繊維状炭素ナノ構造体合成ステップ(iv)の少なくともいずれか1つのステップを有し、
     前記触媒担持ステップ(i)は、前記調製器ガスとして前記触媒材料ガスを供給することにより、前記担体粒子に触媒を担持するステップであり、
     前記還元処理ステップ(ii)は、前記調製器ガスとして前記還元性ガスを供給することにより、前記担体粒子を還元処理するステップであり、
     前記酸化処理ステップ(iii)は、前記調製器ガスとして前記酸素元素含有ガスを供給することにより、前記担体粒子を酸化処理するステップであり、
     前記繊維状炭素ナノ構造体合成ステップ(iv)は、前記調製器ガスとして前記炭素原料含有ガスを供給することにより、前記触媒担持体上にて繊維状炭素ナノ構造体を合成するステップである、請求項5に記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。
    The preparation gas includes a catalyst material gas, a reducing gas, an oxygen element-containing gas, and / or a carbon raw material-containing gas,
    The contact step (2) includes at least one of a catalyst supporting step (i), a reduction treatment step (ii), an oxidation treatment step (iii), and a fibrous carbon nanostructure synthesis step (iv). Have
    The catalyst supporting step (i) is a step of supporting a catalyst on the carrier particles by supplying the catalyst material gas as the preparation gas.
    The reduction treatment step (ii) is a step of reducing the carrier particles by supplying the reducing gas as the preparation gas.
    The oxidation treatment step (iii) is a step of oxidizing the carrier particles by supplying the oxygen element-containing gas as the preparation gas.
    The fibrous carbon nanostructure synthesis step (iv) is a step of synthesizing a fibrous carbon nanostructure on the catalyst carrier by supplying the carbon raw material-containing gas as the preparation gas. A method for producing a catalyst carrier and / or fibrous carbon nanostructure according to claim 5.
  7.  前記調製器ガスを一定の流量及び/又は組成で供給し、前記工程(1)~(3)及び/又は前記ステップ(i)~(iv)の内の複数を同時に行う、請求項5又は6に記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。 The preparation gas is supplied at a constant flow rate and / or composition, and the steps (1) to (3) and / or a plurality of the steps (i) to (iv) are simultaneously performed. A method for producing the catalyst carrier and / or the fibrous carbon nanostructure according to claim 1.
  8.  前記調製器ガスの流量及び/又は種類を切り替えるガス切替工程をさらに含み、
     前記工程(1)~(3)及び/又は前記ステップ(i)~(iv)の内の何れか2つ以上を時間的に分けて行う、請求項5又は6に記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。
    A gas switching step of switching the flow rate and / or type of the preparator gas;
    The catalyst carrier and / or the catalyst carrier according to claim 5 or 6, wherein any two or more of the steps (1) to (3) and / or the steps (i) to (iv) are performed in a time division manner. Or the manufacturing method of fibrous carbon nanostructure.
  9.  前記酸化処理ステップは、前記還元処理ステップ、及び/又は、前記触媒担持ステップの前に実施し、
     前記還元処理ステップは、前記酸化処理ステップ、及び/又は、前記触媒担持ステップの後に実施する、請求項8に記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。
    The oxidation treatment step is performed before the reduction treatment step and / or the catalyst loading step,
    The method for producing a catalyst carrier and / or fibrous carbon nanostructure according to claim 8, wherein the reduction treatment step is performed after the oxidation treatment step and / or the catalyst loading step.
  10.  前記担体粒子が、触媒成分の付着していない担体粒子、触媒前駆体付着済みの担体粒子、及び/又は失活した触媒の付着した担体粒子である、請求項5~9のいずれかに記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。 The carrier particles according to any one of claims 5 to 9, wherein the carrier particles are carrier particles to which no catalyst component is attached, carrier particles to which a catalyst precursor has been attached, and / or carrier particles to which a deactivated catalyst is attached. A method for producing a catalyst carrier and / or a fibrous carbon nanostructure.
  11.  前記触媒材料ガスは、Fe、及び/又はAlを含み、
     前記還元性ガスは、水素、アンモニア、及び/又は炭化水素を含み、
     前記酸素元素含有ガスは、空気、酸素、水蒸気、及び/又は二酸化炭素を含む、請求項5~10のいずれかに記載の触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法。
    The catalyst material gas contains Fe and / or Al,
    The reducing gas includes hydrogen, ammonia, and / or hydrocarbons,
    The method for producing a catalyst carrier and / or fibrous carbon nanostructure according to any one of claims 5 to 10, wherein the oxygen element-containing gas contains air, oxygen, water vapor, and / or carbon dioxide.
PCT/JP2017/005992 2016-02-27 2017-02-17 Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure WO2017145952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780013014.9A CN108778493B (en) 2016-02-27 2017-02-17 Particle processing device and method for producing catalyst support and/or fibrous carbon nanostructure
JP2018501646A JP6875705B2 (en) 2016-02-27 2017-02-17 Particle processing device and method for producing catalyst carrier and / or fibrous carbon nanostructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036479 2016-02-27
JP2016036479 2016-02-27

Publications (1)

Publication Number Publication Date
WO2017145952A1 true WO2017145952A1 (en) 2017-08-31

Family

ID=59686534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005992 WO2017145952A1 (en) 2016-02-27 2017-02-17 Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure

Country Status (3)

Country Link
JP (1) JP6875705B2 (en)
CN (1) CN108778493B (en)
WO (1) WO2017145952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788152A (en) * 2018-03-30 2020-10-16 日本瑞翁株式会社 Separation and recovery method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2004238261A (en) * 2003-02-06 2004-08-26 Mitsubishi Heavy Ind Ltd Manufacturing method of carbon nanofiber and manufacturing unit
US20080274277A1 (en) * 2006-03-20 2008-11-06 Alimorad Rashidi Continuous process for producing carbon nanotubes
WO2011030821A1 (en) * 2009-09-10 2011-03-17 国立大学法人東京大学 Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
WO2011102433A1 (en) * 2010-02-19 2011-08-25 国立大学法人東京大学 Apparatus for producing nanocarbon material and method for producing nanocarbon material
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2015533762A (en) * 2012-09-18 2015-11-26 エクソンモービル アップストリーム リサーチ カンパニー Reactor system for producing carbon allotropes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898050A (en) * 1973-12-28 1975-08-05 Universal Oil Prod Co Regeneration apparatus with internal regenerated-catalyst recycle means
DE19847647A1 (en) * 1998-10-15 2000-04-20 Elenac Gmbh Solid catalyst treatment by e.g. fluidization, removal of fines and roasting with introduction of gases, liquids and solids, takes place continuously in catalyst reactor,
US6905544B2 (en) * 2002-06-26 2005-06-14 Mitsubishi Heavy Industries, Ltd. Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
US7927984B2 (en) * 2008-11-05 2011-04-19 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor utilizing tetrachlorosilane to reduce wall deposition
CN203484138U (en) * 2013-10-15 2014-03-19 江苏中圣高科技产业有限公司 Polysilicon fluidized bed reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2004238261A (en) * 2003-02-06 2004-08-26 Mitsubishi Heavy Ind Ltd Manufacturing method of carbon nanofiber and manufacturing unit
US20080274277A1 (en) * 2006-03-20 2008-11-06 Alimorad Rashidi Continuous process for producing carbon nanotubes
WO2011030821A1 (en) * 2009-09-10 2011-03-17 国立大学法人東京大学 Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
WO2011102433A1 (en) * 2010-02-19 2011-08-25 国立大学法人東京大学 Apparatus for producing nanocarbon material and method for producing nanocarbon material
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2015533762A (en) * 2012-09-18 2015-11-26 エクソンモービル アップストリーム リサーチ カンパニー Reactor system for producing carbon allotropes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788152A (en) * 2018-03-30 2020-10-16 日本瑞翁株式会社 Separation and recovery method
CN111788152B (en) * 2018-03-30 2022-11-04 日本瑞翁株式会社 Separation and recovery method

Also Published As

Publication number Publication date
CN108778493B (en) 2022-02-11
JPWO2017145952A1 (en) 2018-12-13
CN108778493A (en) 2018-11-09
JP6875705B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP5447367B2 (en) Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus
KR101753918B1 (en) Method for producing solid carbon by reducing carbon oxides
JP5937669B2 (en) Carbon nanotube production method and apparatus for carrying out the method
US20120148476A1 (en) Method for producing carbon nanotube assembly having high specific surface area
WO2007074629A1 (en) Process for producing carbon nanotube and catalyst for carbon nanotube production
JP2014065033A (en) Method for producing metal-carbon composite supported catalyst using co-vaporization method for producing hydrogen, and metal-carbon composite supported catalyst for producing hydrogen produced thereby
JP6860174B2 (en) Method for producing catalyst carrier and fibrous carbon nanostructure
WO2019049983A1 (en) Hydrogen reduction catalyst for carbon dioxide and method for producing same, hydrogen reduction method for carbon dioxide, and hydrogen reduction device for carbon dioxide
CN102482097B (en) Apparatus and method for producing carbon nanotube
JP5582574B2 (en) Carbon nanotube production equipment
JP2005068000A (en) Method and apparatus for gas phase reaction
WO2017145952A1 (en) Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure
Mohammadi et al. Synthesis of carbon nanotubes on macroporous kaolin substrate via a new simple CVD method
JP6810408B2 (en) Catalyst carrier and its preparation method
JP6755029B2 (en) Fibrous carbon nanostructure manufacturing equipment and fibrous carbon nanostructure manufacturing method
Pooperasupong et al. Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3
US9896338B1 (en) Segregated flow reactor and method for growth of ultra-long carbon nanotubes
KR20230083719A (en) Method and apparatus for manufacturing hydrogen and carbon product using fluidized reactor comprising activation-pretreated catalyst
Shen et al. Synthesis of high-specific volume carbon nanotube structures for gas-phase applications
JP2006088082A (en) Hydrogen storage material and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756391

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756391

Country of ref document: EP

Kind code of ref document: A1