WO2017134929A1 - ズームレンズおよび光学機器 - Google Patents

ズームレンズおよび光学機器 Download PDF

Info

Publication number
WO2017134929A1
WO2017134929A1 PCT/JP2016/086674 JP2016086674W WO2017134929A1 WO 2017134929 A1 WO2017134929 A1 WO 2017134929A1 JP 2016086674 W JP2016086674 W JP 2016086674W WO 2017134929 A1 WO2017134929 A1 WO 2017134929A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
zoom
focusing
optical axis
Prior art date
Application number
PCT/JP2016/086674
Other languages
English (en)
French (fr)
Inventor
直己 宮川
永華 陳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680079925.7A priority Critical patent/CN108496106A/zh
Priority to US16/064,807 priority patent/US10823942B2/en
Priority to JP2017565417A priority patent/JP6747458B2/ja
Publication of WO2017134929A1 publication Critical patent/WO2017134929A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function

Definitions

  • This disclosure relates to an internal focus type telephoto zoom lens and an optical device. Specifically, it is suitable for use with single-lens reflex cameras, non-reflex cameras, digital still cameras, etc., and uses a focusing method that can correct aberrations over the entire object distance from infinity to short distance.
  • the present invention relates to a zoom lens and an optical apparatus including such a zoom lens.
  • Patent Documents 1 and 2 propose F2.8 class telephoto zoom lenses suitable for photographic cameras, digital still cameras, video cameras, and the like.
  • the zoom lens described in Patent Document 1 has the focusing lens group only in the first lens group, and requires a long stroke by focusing, making it difficult to reduce the entire length of the zoom lens, and high-speed focusing. Have difficulty. Further, in the method of focusing by moving only one lens group, the aberration variation due to focusing is large, and it is difficult to obtain good optical performance particularly at the closest distance.
  • the refractive power of each lens group is composed of five groups of positive, negative, positive, negative, and positive in order from the object side, and the second lens group having a negative refractive power.
  • Zooming is performed by moving the third lens group having a positive refractive power and the fourth lens group having a negative refractive power.
  • Focusing is performed by moving the third lens unit having a positive refractive power.
  • a long stroke is required for focusing, and it is difficult to reduce the overall length of the zoom lens.
  • zoom lens capable of realizing a reduction in overall length, a reduction in size and weight of a focusing lens group, and an optical apparatus equipped with such a zoom lens while having high imaging performance desirable.
  • a zoom lens includes, in order from the object side to the image surface side, a first lens group having a positive refractive power, a second lens group, a third lens group, and a fourth lens group. It consists of a lens group, a fifth lens group, and a sixth lens group.
  • the first lens group is zoomed from the wide-angle end to the telephoto end and close to an object at infinity, in order from the object side to the image plane side.
  • the lens group moves along the optical axis during zooming, and the fourth lens group and the sixth lens group are fixed in the optical axis direction with respect to the image plane during zooming, and the rear first lens group is Including at least two lens groups along the optical axis during focusing. It is intended to move Te.
  • An optical apparatus includes a zoom lens and an image sensor that outputs an imaging signal corresponding to an optical image formed by the zoom lens. It is comprised by the zoom lens which concerns on a form.
  • the first lens group includes a front first lens group and a rear first lens group, and includes a second lens group.
  • the third lens group and the fifth lens group move along the optical axis during zooming.
  • at least two lens groups including the rear first lens group move along the optical axis during focusing.
  • the first lens group is configured to include the front first lens group and the rear first lens group as a whole with the six-group configuration, and the rear side. Since at least two lens groups including the first lens group are moved along the optical axis during focusing, the overall length is reduced and the focusing lens group is reduced while having high imaging performance. And lighter weight.
  • FIG. 3 is an aberration diagram showing various aberrations at a wide-angle end, an intermediate position, and a telephoto end in Numerical Example 1 in which specific numerical values are applied to the zoom lens illustrated in FIG. 1.
  • FIG. 5 is an aberration diagram showing various aberrations at a wide-angle end, an intermediate position, and a telephoto end in Numerical Example 2 in which specific numerical values are applied to the zoom lens illustrated in FIG. 2.
  • FIG. 4 is an aberration diagram showing various aberrations at a wide-angle end, an intermediate position, and a telephoto end in Numerical Example 3 in which specific numerical values are applied to the zoom lens illustrated in FIG. 3. It is a block diagram which shows one structural example of an optical apparatus.
  • FIG. 1 illustrates a first configuration example of a zoom lens according to an embodiment of the present disclosure.
  • FIG. 2 shows a second configuration example of the zoom lens.
  • FIG. 3 shows a third configuration example of the zoom lens. Numerical examples in which specific numerical values are applied to these configuration examples will be described later.
  • Z1 represents an optical axis.
  • an optical member such as a seal glass for protecting the image sensor and various optical filters may be disposed.
  • the configuration of the zoom lens according to the present embodiment will be described in association with the configuration example illustrated in FIG. 1 as appropriate, but the technology according to the present disclosure is not limited to the illustrated configuration example.
  • the zoom lens according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power in order from the object side to the image plane side along the optical axis Z1.
  • G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group having a positive refractive power
  • the lens group G6 is substantially composed of six lens groups.
  • the first lens group G1 includes, in order from the object side to the image plane side, a first F lens group (front first lens group) G1F having a positive refractive power and a first R lens group (rear) having a positive refractive power. Side first lens group) G1R.
  • FIGS. 1 to 3 show the arrangement of the lens groups at the wide angle end (short focal length end), the intermediate position (standard angle of view, intermediate focal length), and the telephoto end (long focal length end). Show.
  • FIGS. 1 to 3 show the movement trajectory of each lens group during zooming from the wide-angle end to the telephoto end.
  • At least the second lens group G2, the third lens group G3, and the fifth lens group G5 move along the optical axis during zooming from the wide-angle end to the telephoto end. Is configured to do.
  • the fourth lens group G4 and the sixth lens group G6 are fixed in the optical axis direction with respect to the image plane during zooming.
  • At least two lens groups including the rear first lens group G1R are moved along the optical axis during focusing from an infinite object to a close object. It is configured.
  • the front first lens group G1F is fixed with respect to the image plane during zooming and focusing.
  • the zoom lens according to the present embodiment satisfies a predetermined conditional expression described later.
  • the first lens group G1 includes the front first lens group G1F and the rear first lens group G1R, and the rear first lens has a six-group structure as a whole. Since at least two lens groups including the group G1R are moved along the optical axis during focusing, the overall length is reduced and the focusing lens group is reduced in size and weight while having high imaging performance. Can be realized. In particular, it is possible to provide a telescopic zoom lens having a short stroke due to focusing and capable of high-speed focusing, having a small overall length and high optical performance over the entire object distance, and an optical device using the telephoto zoom lens. .
  • the zoom lens according to the present embodiment during zooming from the wide-angle end to the telephoto end, the front first lens group G1F, the fourth lens group G4, and the sixth lens group G6 are fixed in the optical axis direction with respect to the image plane. At least the second lens group G2, the third lens group G3, and the fifth lens group G5 move in the optical axis direction.
  • the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 constitute a main imaging system in the zoom lens. Therefore, by moving the fifth lens group G5 during zooming, it becomes possible to change the focal length of the main imaging system, and as a result, a small zoom lens with an optical total length can be obtained.
  • the rear first lens group G1R be fixed in the optical axis direction with respect to the image plane during zooming. Note that the zoom lens 1 of the first configuration example in FIG. 1 and the zoom lens 3 of the third configuration example in FIG. 3 satisfy this configuration. However, the rear first lens group G1R can be moved along the optical axis during zooming, for example, like the zoom lens 2 of the second configuration example of FIG.
  • the zoom lens according to the present embodiment is a so-called floating focus type in which at least two lens groups including the rear first lens group G1R move as a focusing lens group during focusing from an infinitely distant object to a close object. It is a zoom lens. Focusing from an infinite object to a close object is performed by moving at least two lens units including the rear first lens unit G1R, so that the stroke of each focusing lens unit can be reduced. Not only can the speed be increased, but also various aberrations can be effectively corrected during close-up shooting.
  • the zoom lens according to the present embodiment satisfies the following conditional expression (1).
  • F1 Focal length of the first lens group G1
  • F1R The focal length of the rear first lens group G1R.
  • Conditional expression (1) defines the ratio between the focal length of the first lens group G1 and the focal length of the rear first lens group G1R within an appropriate range. By satisfying conditional expression (1), the focusing stroke of the rear first lens group G1R can be properly defined.
  • the upper limit of conditional expression (1) is exceeded, the refractive power of the rear first lens group G1R becomes too weak, the stroke due to focusing increases, and it becomes difficult to shorten the optical total length of the zoom lens.
  • the lower limit of conditional expression (1) is not reached, the amount of aberration generated by the rear first lens group G1R becomes too large, making it difficult to suppress mainly spherical aberration and coma during focusing.
  • conditional expression (1) In order to better realize the effect of the conditional expression (1), it is more desirable to set the numerical range of the conditional expression (1) as the following conditional expression (1) ′. 0.42 ⁇ F1R / F1 ⁇ 0.53 (1) '
  • the zoom lens according to the present embodiment satisfies the following conditional expression (2).
  • OL4 Distance on the optical axis from the vertex of the lens surface closest to the object side of the fourth lens group G4 to the image plane
  • F456T Telephoto of the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 The combined focal length at the end.
  • Conditional expression (2) defines the distance on the optical axis from the top of the lens surface located closest to the object side of the fourth lens group G4 to the image plane within an appropriate range. By satisfying conditional expression (2), it is possible to appropriately correct various aberrations generated in the fourth lens group G4 while keeping the distance from the fourth lens group G4 to the image plane short.
  • the upper limit of conditional expression (2) is exceeded, the distance from the fourth lens group G4 to the image plane becomes too long with respect to the focal length of the telephoto end of the fourth lens group G4, and the optical total length of the zoom lens is shortened. It becomes difficult. If the lower limit of conditional expression (2) is not reached, the distance from the fourth lens group G4 to the image plane becomes too short, and it becomes difficult to mainly correct spherical aberration, coma aberration, and field curvature.
  • conditional expression (2) In order to better realize the effect of the conditional expression (2), it is more desirable to set the numerical range of the conditional expression (2) as the following conditional expression (2) ′. 0.55 ⁇ OL4 / F456T ⁇ 1.0 (2) ′
  • the fifth lens group G5 moves along the optical axis in addition to the rear first lens group G1R during focusing.
  • * is a multiplication symbol. -5.5 ⁇ (1- ⁇ t5 2 ) * ⁇ t6 2 ⁇ -2 (3)
  • ⁇ t5 Lateral magnification when focusing on infinity at the telephoto end of the fifth lens group G5
  • ⁇ t6 Lateral magnification when focusing on infinity at the telephoto end of the sixth lens group G6.
  • Conditional expression (3) defines the focus sensitivity within an appropriate range when the fifth lens group G5 is a focusing lens group.
  • conditional expression (3) By satisfying conditional expression (3), not only the total length of the optical system can be shortened, but also various aberrations can be appropriately corrected over the entire object distance. If the upper limit of conditional expression (3) is exceeded, the refractive power when the fifth lens group G5 is a focusing lens group becomes too strong, and it becomes difficult to correct various aberrations due to focusing, as well as the stopping position accuracy of focusing. It will be difficult to control such as. If the lower limit of conditional expression (3) is not reached, the stroke when the fifth lens group G5 is a focusing lens group becomes too long, and it becomes difficult to shorten the optical total length.
  • conditional expression (3) it is more desirable to set the numerical range of the conditional expression (3) as the following conditional expression (3) ′. ⁇ 5 ⁇ (1- ⁇ t5 2 ) * ⁇ t6 2 ⁇ 2.3 (3) ′
  • the second lens group G2 may have a negative lens on the most image side.
  • the negative lens closest to the image plane may be moved along the optical axis as a third focusing lens group.
  • the negative lens closest to the image plane of the second lens group G2 as the third focusing lens group, in addition to shortening the optical total length and correcting various aberrations by focusing, fluctuations in the field angle caused by focusing, So-called breathing can be effectively suppressed.
  • the zoom lens according to the present embodiment satisfies the following conditional expression (4). -1.2 ⁇ Hft / Ft ⁇ -0.5 (4)
  • Hft distance from the lens surface closest to the object side to the front principal point position when focusing at infinity at the telephoto end
  • Ft the focal length of the entire lens system at the telephoto end.
  • Conditional expression (4) defines the front principal point position of the entire optical system within an appropriate range.
  • conditional expression (4) not only the overall length of the zoom lens can be shortened, but also the maximum photographing magnification at the closest distance can be increased.
  • the upper limit of conditional expression (4) is exceeded, the telephoto ratio of the main imaging system of the zoom lens mainly composed of the fourth lens group G4 and beyond becomes too long, and therefore mainly spherical aberration, coma aberration, and image plane. It becomes difficult to correct the curvature.
  • the lower limit of conditional expression (4) is not reached, it is difficult to shorten the overall length of the zoom lens.
  • conditional expression (4) it is more desirable to set the numerical range of the conditional expression (4) as the following conditional expression (4) ′. -1.1 ⁇ Hft / Ft ⁇ -0.6 (4) '
  • the front first lens group G1F includes two positive lenses. In this case, it is desirable that the following conditional expression (5) is satisfied. 80 ⁇ d1F ⁇ 110 (5) However, ⁇ d1F: The maximum Abbe number of the two positive lenses in the front first lens group G1F.
  • Conditional expression (5) defines the range of the maximum value of the Abbe number of the two positive lenses included in the front first lens group G1F. Chromatic aberration occurring at the telephoto end can be effectively corrected by using a low dispersion material that exceeds the lower limit of conditional expression (5).
  • the fourth lens group G4 includes, in order from the object side to the image surface side, two positive lenses, and a cemented lens including a negative lens and a positive lens. It is desirable.
  • the fourth lens group G4 constituting the main imaging group of the zoom lens is configured as described above, mainly spherical aberration, coma aberration, and field curvature can be favorably corrected.
  • the fifth lens group G5 is composed of one negative lens. In this case, it is desirable to satisfy the following conditional expression (6). 1.45 ⁇ nd5 ⁇ 1.65 (6) However, nd5: The refractive index of the negative lens constituting the fifth lens group G5.
  • Conditional expression (6) defines an appropriate range for the refractive index of the negative lens constituting the fifth lens group G5. By satisfying conditional expression (6), the focusing lens group can be reduced in weight when the fifth lens group G5 is a focusing lens group, and high-speed focusing is possible.
  • the zoom lens according to the present embodiment includes a position detection sensor that detects a position when one focusing lens group performs focusing among at least two focusing lens groups, and the other focusing lens groups are positioned. It is desirable to move along the optical axis based on the position information of the detection sensor.
  • the rear first lens group G1R preferably has a position detection sensor. This is a so-called wobbling operation in which, for example, in moving image shooting, a small and lightweight lens group such as the fifth lens group G5 is always driven minutely before and after the in-focus position in order to follow the rapid movement of the subject. Since the fifth lens group G5 is subordinate to the rear first lens group G1R, the focus position of the rear first lens group G1R is affected during the wobbling operation of the fifth lens group G5. This is to avoid receiving it.
  • the image position can be shifted by shifting in a direction substantially perpendicular to the.
  • Example of application to optical equipment> An application example of the zoom lens according to the present embodiment to an optical device will be described.
  • a configuration example of an imaging apparatus will be described as an example of an optical apparatus.
  • FIG. 7 shows a configuration example of the imaging apparatus 100 to which the zoom lens according to the present embodiment is applied.
  • the imaging apparatus 100 is, for example, a digital still camera, and includes a camera block 10, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and an R / W (reader / writer) 50. , A CPU (Central Processing Unit) 60, an input unit 70, and a lens drive control unit 80.
  • the camera block 10 is responsible for an imaging function, and includes an optical system including an imaging lens 11 and an imaging device 12 such as a CCD (Charge-Coupled Devices) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • the imaging element 12 outputs an imaging signal (image signal) corresponding to the optical image by converting the optical image formed by the imaging lens 11 into an electrical signal.
  • the zoom lenses 1 to 3 of the respective configuration examples shown in FIGS. 1, 2, and 3 can be applied.
  • the camera signal processing unit 20 performs various signal processing such as analog-digital conversion, noise removal, image quality correction, and conversion to luminance / color difference signals on the image signal output from the image sensor 12.
  • the image processing unit 30 performs recording and reproduction processing of an image signal, and performs compression encoding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like. It has become.
  • the LCD 40 has a function of displaying various data such as an operation state of the user input unit 70 and a photographed image.
  • the R / W 50 performs writing of the image data encoded by the image processing unit 30 to the memory card 1000 and reading of the image data recorded on the memory card 1000.
  • the memory card 1000 is a semiconductor memory that can be attached to and detached from a slot connected to the R / W 50, for example.
  • the CPU 60 functions as a control processing unit that controls each circuit block provided in the imaging apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
  • the input unit 70 includes various switches and the like that are operated by a user.
  • the input unit 70 includes, for example, a shutter release button for performing a shutter operation, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal corresponding to an operation by the user to the CPU 60.
  • the lens drive control unit 80 controls driving of the lenses arranged in the camera block 10 and controls a motor (not shown) that drives each lens of the imaging lens 11 based on a control signal from the CPU 60. It has become.
  • the imaging apparatus 100 includes a shake detection unit that detects a shake of the apparatus due to a camera shake.
  • an image signal shot by the camera block 10 is output to the LCD 40 via the camera signal processing unit 20 and displayed as a camera through image.
  • the CPU 60 outputs a control signal to the lens drive control unit 80, and the imaging lens 11 is controlled based on the control of the lens drive control unit 80.
  • the predetermined lens moves.
  • the captured image signal is output from the camera signal processing unit 20 to the image processing unit 30 and subjected to compression encoding processing. Converted to digital data in data format. The converted data is output to the R / W 50 and written to the memory card 1000.
  • focusing is performed by the lens drive control unit 80 based on a control signal from the CPU 60, for example, when the shutter release button of the input unit 70 is half-pressed or when it is fully pressed for recording (photographing). This is performed by moving a predetermined lens of the imaging lens 11.
  • predetermined image data is read from the memory card 1000 by the R / W 50 in response to an operation on the input unit 70, and decompressed and decoded by the image processing unit 30. After the processing is performed, the reproduction image signal is output to the LCD 40 and the reproduction image is displayed.
  • the CPU 60 operates the lens drive control unit 80 based on a signal output from a shake detection unit (not shown), and moves the image stabilizing lens group in a direction substantially perpendicular to the optical axis Z1 according to the shake amount.
  • the optical device is applied to an imaging apparatus such as a digital still camera.
  • the scope of application of the optical device is not limited to the digital still camera, and other various optical devices.
  • Applicable to equipment the present invention can be applied to a digital single lens reflex camera, a digital non-reflex camera, a digital video camera, a surveillance camera, and the like.
  • it can be widely applied as a camera unit of a digital input / output device such as a mobile phone with a camera incorporated therein or an information terminal with a camera incorporated therein.
  • the present invention can also be applied to an interchangeable lens camera.
  • Si indicates the number of the i-th surface counted from the object side to the image surface side.
  • Ri indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
  • Di indicates a value (mm) of an interval on the optical axis between the i-th surface and the (i + 1) -th surface.
  • Ni indicates the value of the refractive index at the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ i represents the value of the Abbe number in the d-line of the material of the optical element having the i-th surface.
  • the portion where the value of “ri” is “ ⁇ ” indicates a flat surface or a diaphragm surface (aperture stop St).
  • the surface marked “ASP” indicates an aspherical surface.
  • the surface marked “STO” indicates the aperture stop St.
  • “BF” indicates back focus.
  • F indicates the focal length of the entire lens system, “FNo.” Indicates the F number, and “ ⁇ ” indicates the half angle of view.
  • the aspheric shape is defined by the following aspheric expression.
  • a power of 10 is expressed using E.
  • E For example, “1.2 ⁇ 10 ⁇ 02 ” is represented as “1.2E-02”.
  • x distance in the optical axis direction from the lens surface apex y: height in the direction perpendicular to the optical axis c: paraxial curvature at the lens apex (reciprocal of paraxial radius of curvature) K: Conic constant Ai: i-th aspherical coefficient.
  • Each of the zoom lenses 1 to 3 to which the following numerical examples are applied has a configuration satisfying the basic configuration of the lens described above. That is, in each of the zoom lenses 1 to 3, the first lens group G1 having a positive refractive power and the second lens having a negative refractive power in order from the object side to the image plane side along the optical axis Z1.
  • 6 lens groups G6 are arranged, and it is substantially composed of 6 lens groups.
  • the first lens group G1 includes, in order from the object side to the image plane side, a first F lens group (front first lens group) G1F having a positive refractive power and a first R lens group (rear) having a positive refractive power. Side first lens group) G1R.
  • the front first lens group G1F, the fourth lens group G4, and the sixth lens group G6 are fixed in the optical axis direction with respect to the image plane, and at least the second lens group G2
  • the third lens group G3 and the fifth lens group G5 move in the optical axis direction.
  • the aperture stop St is disposed between the third lens group G3 and the fourth lens group G4.
  • [Table 1] shows basic lens data of Numerical Example 1 in which specific numerical values are applied to the zoom lens 1 shown in FIG.
  • [Table 2] shows coefficient values in the aspherical surface.
  • [Table 3] shows the focal length of the entire lens system at the wide-angle end (short focal length end), the intermediate position (standard angle of view, intermediate focal length), and the telephoto end (long focal length end). The values of f, F number (FNo.), half angle of view ⁇ , and total lens length are shown.
  • Table 3 also shows the value of the variable face spacing.
  • the values of the surface distances d10, d17, d22, d30, and d32 change during zooming.
  • the rear first lens group G1R and the fifth lens group G5 are focusing lens groups.
  • the rear first lens group G1R moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.
  • the fifth lens group G5 moves toward the image plane along the optical axis during focusing from an infinitely distant object to a close object.
  • the front first lens group G1F includes a negative meniscus lens L1F1, a positive lens L1F2, and a positive meniscus lens L1F3 in order from the object side.
  • the positive lens L1F2 and the positive meniscus lens L1F3 are made of a material having an Abbe number of 95.1, and are particularly configured to satisfactorily correct chromatic aberration at the telephoto end.
  • the rear first lens group G1R is fixed in the optical axis direction with respect to the image plane during zooming.
  • the rear first lens group G1R includes, in order from the object side, a negative meniscus lens L1R1 and a positive meniscus lens L1R2.
  • the rear first lens group G1R having the configuration of the numerical value example 1 can suppress variation in chromatic aberration during focusing.
  • the second lens group G2 includes, in order from the object side, a negative lens L21, a cemented lens obtained by bonding the negative lens L22 and the positive lens L23, and a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a positive lens L31 and a cemented lens obtained by bonding a positive lens L32 and a negative lens L33.
  • the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power constitute a main imaging system of the zoom lens.
  • the total length of the zoom lens can be shortened by moving the fifth lens group G5 during zooming.
  • the fourth lens group G4 includes, in order from the object side, a positive lens L41 having an aspheric surface formed on the object side surface, a positive lens L42, and a cemented lens obtained by bonding the negative lens L43 and the positive lens L44 together. ing.
  • the fourth lens group G4 has the configuration of the numerical value example 1, spherical aberration generated in the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 constituting the main imaging system, Comatic aberration and field curvature can be corrected.
  • the fifth lens group G5 includes, in order from the object side, a negative lens L51 in which aspheric surfaces are formed on both surfaces.
  • the sixth lens group G6 includes, in order from the object side, a cemented lens in which a positive lens L61 and a negative lens L62 having an aspheric surface formed on the object side surface are bonded together, and a cemented lens in which the positive lens L63 and the negative lens L64 are bonded together.
  • the lens includes a lens, a negative lens L65, and a negative lens L66.
  • the sixth lens group G6 is configured as in the numerical value example 1, whereby the exit pupil position can be brought closer to the image side, and in the case of use in an interchangeable lens camera, in order to avoid interference between the mount diameter and the light beam. This is an advantageous configuration.
  • the cemented lens composed of the positive lens L61 and the negative lens L62 can correct image blur by moving in the direction perpendicular to the optical axis Z1 as a vibration-proof lens group.
  • FIG. 4 shows various aberrations at the wide-angle end in Numerical Example 1.
  • the middle part of FIG. 4 shows various aberrations at the intermediate position in Numerical Example 1.
  • the lower part of FIG. 4 shows various aberrations at the telephoto end in Numerical Example 1.
  • FIG. 4 shows spherical aberration, astigmatism (field curvature), and distortion as various aberrations.
  • a solid line (S) indicates a value on a sagittal image plane
  • a broken line (M) indicates a value on a meridional image plane.
  • Each aberration diagram shows a value at e-line (wavelength 546.07 nm).
  • values of C line (wavelength 656.3 nm) and g line (wavelength 435.8 nm) are also shown. The same applies to aberration diagrams in other numerical examples.
  • each aberration is well corrected in a balanced manner at the wide-angle end, the intermediate position, and the telephoto end, and has excellent imaging performance. It is clear.
  • [Table 4] shows basic lens data of Numerical Example 2 in which specific numerical values are applied to the zoom lens 2 shown in FIG.
  • [Table 5] shows coefficient values in the aspherical surface.
  • [Table 6] also shows the focal length of the entire lens system at the wide-angle end (short focal length end), intermediate position (standard angle of view, intermediate focal length), and telephoto end (long focal length end). The values of f, F number (FNo.), half angle of view ⁇ , and total lens length are shown.
  • Table 6 also shows the value of the variable face spacing.
  • the values of the inter-surface distances d6, d10, d17, d22, d30, and d32 change during zooming.
  • the rear first lens group G1R and the fifth lens group G5 are focusing lens groups.
  • the rear first lens group G1R moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.
  • the fifth lens group G5 moves toward the image plane along the optical axis during focusing from an infinitely distant object to a close object.
  • the front first lens group G1F includes a negative meniscus lens L1F1, a positive lens L1F2, and a positive meniscus lens L1F3 in order from the object side.
  • the positive lens L1F2 and the positive meniscus lens L1F3 are made of a material having an Abbe number of 95.1, and are particularly configured to satisfactorily correct chromatic aberration at the telephoto end.
  • the rear first lens group G1R moves along the optical axis during zooming.
  • the total length of the zoom lens can be shortened by moving the rear first lens group G1R along the optical axis during zooming.
  • the rear first lens group G1R includes, in order from the object side, a negative meniscus lens L1R1 and a positive meniscus lens L1R2.
  • the second lens group G2 includes, in order from the object side, a negative lens L21, a cemented lens obtained by bonding the negative lens L22 and the positive lens L23, and a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a positive lens L31 and a cemented lens obtained by bonding a positive lens L32 and a negative lens L33.
  • the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power constitute a main imaging system of the zoom lens.
  • the total length of the zoom lens can be shortened by moving the fifth lens group G5 during zooming.
  • the fourth lens group G4 includes, in order from the object side, a positive lens L41, a positive lens L42 having an aspheric surface formed on the object-side surface, and a cemented lens in which the negative lens L43 and the positive lens L44 are bonded together. ing.
  • the fifth lens group G5 includes, in order from the object side, a negative lens L51 in which aspheric surfaces are formed on both surfaces.
  • the sixth lens group G6 includes, in order from the object side, a cemented lens obtained by bonding a positive lens L61 and a negative lens L62 each having an aspheric surface on the object side surface, a positive lens L63, a negative lens L64, and a positive lens L65. And a negative lens L66.
  • the sixth lens group G6 is configured as in Numerical Example 2, so that the exit pupil position can be brought closer to the image side, and in the case of use in an interchangeable lens camera, in order to avoid interference between the mount diameter and the light beam. This is an advantageous configuration.
  • the cemented lens composed of the positive lens L61 and the negative lens L62 can correct image blur by moving in the direction perpendicular to the optical axis Z1 as a vibration-proof lens group.
  • FIG. 5 shows various aberrations at the wide-angle end in Numerical Example 2.
  • the middle part of FIG. 5 shows various aberrations at the intermediate position in Numerical Example 2.
  • the lower part of FIG. 5 shows various aberrations at the telephoto end in Numerical Example 2.
  • each aberration is corrected well in a balanced manner at the wide-angle end, the intermediate position, and the telephoto end, and has excellent imaging performance. It is clear.
  • Table 7 shows basic lens data of Numerical Example 3 in which specific numerical values are applied to the zoom lens 3 shown in FIG.
  • Table 8 shows coefficient values in the aspheric surface.
  • [Table 9] the focal lengths of the entire lens systems at the wide angle end (short focal length end), the intermediate position (standard field angle, intermediate focal length), and the telephoto end (long focal length end) are shown.
  • the values of f, F number (FNo.), half angle of view ⁇ , and total lens length are shown.
  • Table 9 also shows the value of the variable face spacing.
  • the values of the surface distances d10, d15, d17, d22, d30, and d32 change during zooming.
  • the negative lens closest to the image plane of the second lens group G2 is a focusing lens group.
  • the rear first lens group G1R moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.
  • the fifth lens group G5 moves toward the image plane along the optical axis during focusing from an infinitely distant object to a close object.
  • the negative lens closest to the image plane in the second lens group G2 moves toward the object side along the optical axis during focusing from an object at infinity to a near object.
  • the front first lens group G1F includes, in order from the object side, a negative meniscus lens L1F1, a positive lens L1F2, and a positive meniscus lens L1F3.
  • the positive lens L1F2 and the positive meniscus lens L1F3 are made of a material having an Abbe number of 95.1, and are particularly configured to satisfactorily correct chromatic aberration at the telephoto end.
  • the rear first lens group G1R is fixed in the optical axis direction with respect to the image plane during zooming.
  • the rear first lens group G1R includes, in order from the object side, a negative meniscus lens L1R1 and a positive meniscus lens L1R2.
  • the rear first lens group G1R having the configuration of the numerical value example 3 can suppress variation in chromatic aberration during focusing.
  • the second lens group G2 includes, in order from the object side, a negative lens L21, a cemented lens obtained by bonding the negative lens L22 and the positive lens L23, and a negative meniscus lens L24.
  • the negative lens L21 and the cemented lens formed by bonding the negative lens L22 and the positive lens L23 constitute a second F lens group (front second lens group) G2F.
  • the negative meniscus lens L24 which is the most negative lens on the image plane side of the second lens group G2, constitutes the second R lens group (rear side second lens group) G2R.
  • the second F lens group G2F and the second R lens group G2R move along the optical axis along different paths.
  • the third lens group G3 includes, in order from the object side, a positive lens L31 and a cemented lens obtained by bonding a positive lens L32 and a negative lens L33.
  • the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power constitute a main imaging system of the zoom lens.
  • the total length of the zoom lens can be shortened by moving the fifth lens group G5 during zooming.
  • the fourth lens group G4 includes, in order from the object side, a positive lens L41 having an aspheric surface formed on the object side surface, a positive lens L42, and a cemented lens obtained by bonding the negative lens L43 and the positive lens L44 together. ing.
  • the fifth lens group G5 includes, in order from the object side, a negative lens L51 in which aspheric surfaces are formed on both surfaces.
  • the sixth lens group G6 includes, in order from the object side, a cemented lens in which a positive lens L61 and a negative lens L62 are bonded together, a positive lens L63 having an aspheric surface formed on the object side surface, a negative lens L64, and a positive lens L65. And a negative lens L66.
  • the sixth lens group G6 is configured as in Numerical Example 3, so that the exit pupil position can be brought closer to the image side, and in the case of use in an interchangeable lens camera, in order to avoid interference between the mount diameter and the light beam. This is an advantageous configuration.
  • the cemented lens composed of the positive lens L61 and the negative lens L62 can correct image blur by moving in the direction perpendicular to the optical axis Z1 as a vibration-proof lens group.
  • FIG. 6 shows various aberrations at the wide-angle end in Numerical Example 3.
  • the middle part of FIG. 6 shows various aberrations at the intermediate position in Numerical Example 3.
  • the lower part of FIG. 6 shows various aberrations at the telephoto end in Numerical Example 3.
  • the zoom lens 3 according to Numerical Example 3 has excellent imaging performance in which each aberration is well corrected in a balanced manner at the wide-angle end, the intermediate position, and the telephoto end. It is clear.
  • [Other numerical data of each example] [Table 10] shows a summary of values relating to the above-mentioned conditional expressions for each numerical example. As can be seen from [Table 10], for each conditional expression, the value of each numerical example is within the numerical range.
  • the configuration including substantially six lens groups has been described.
  • the configuration may further include a lens having substantially no refractive power.
  • this technique can take the following composition.
  • a first lens group having a positive refractive power In order from the object side to the image surface side, a first lens group having a positive refractive power, a second lens group, a third lens group, a fourth lens group, a fifth lens group, and a sixth lens A group of The first lens group is a front-side first lens that is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end and focusing from an infinite object to a short-distance object in order from the object side to the image plane side.
  • the second lens group, the third lens group, and the fifth lens group move along an optical axis during the zooming;
  • the fourth lens group and the sixth lens group are fixed in the optical axis direction with respect to the image plane during the zooming,
  • F1 The focal length of the first lens group
  • F1R The focal length of the rear first lens group.
  • OL4 Distance on the optical axis from the apex of the lens surface located closest to the object side of the fourth lens group to the image plane
  • F456T Telephoto of the fourth lens group, the fifth lens group, and the sixth lens group The combined focal length at the end.
  • the fourth lens group includes, in order from the object side to the image plane side, two positive lenses and a cemented lens including a negative lens and a positive lens. Any one of [1] to [10] Zoom lens described in 1. [12] The zoom lens according to any one of [1] to [11], wherein the fifth lens group includes one negative lens. [13] The zoom lens according to [12], which satisfies the following condition. 1.45 ⁇ nd5 ⁇ 1.65 (6) However, nd5: The refractive index of the negative lens constituting the fifth lens group. [14] The zoom lens according to any one of [1], [3] to [13], wherein the rear first lens group moves along an optical axis during the zooming.
  • the zoom lens according to any one of [1] to [14], further including a lens having substantially no refractive power.
  • the zoom lens is In order from the object side to the image surface side, a first lens group having a positive refractive power, a second lens group, a third lens group, a fourth lens group, a fifth lens group, and a sixth lens
  • a group of The first lens group is a front-side first lens that is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end and focusing from an infinite object to a short-distance object in order from the object side to the image plane side.
  • the second lens group, the third lens group, and the fifth lens group move along an optical axis during the zooming;
  • the fourth lens group and the sixth lens group are fixed in the optical axis direction with respect to the image plane during the zooming,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

本開示のズームレンズは、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、第1レンズ群は、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、第2レンズ群、第3レンズ群、および第5レンズ群が、ズーミングの際に光軸に沿って移動し、第4レンズ群、および第6レンズ群がズーミングの際に像面に対して光軸方向に固定され、後側第1レンズ群を含む少なくとも2つのレンズ群が、フォーカシングの際に光軸に沿って移動する。

Description

ズームレンズおよび光学機器
 本開示は、インターナルフォーカス方式の望遠ズームレンズおよび光学機器に関する。詳しくは、特に一眼レフレックスカメラ、ノンレフレックスカメラ、およびデジタルスチルカメラなどに好適に用いられ、無限遠から近距離に至る物体距離全般に亘って良好な収差補正を行うことのできるフォーカシング方式を用いたズームレンズ、およびそのようなズームレンズを備えた光学機器に関する。
 例えば、特許文献1,2には、写真用カメラ、デジタルスチルカメラ、ビデオカメラ等に適したF2.8クラスの望遠ズームレンズが提案されている。
特開2012-93548号公報 特開2010-191336号公報
 しかしながら、特許文献1に記載のズームレンズは、フォーカシングレンズ群が第1レンズ群中のみにあり、フォーカシングによるストロークが長く必要でありズームレンズの全長の小型化が困難であり、かつ高速なフォーカシングが困難である。また、1つのレンズ群のみを移動させてフォーカシングする方式では、フォーカシングによる収差変動が大きく、特に最至近距離で良好な光学性能を得ることが難しい。
 また、特許文献2に記載のズームレンズは、各レンズ群の屈折力が、物体側から順に、正、負、正、負、正の5群構成で、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群との移動によりズーミングを行っている。フォーカシングは、正の屈折力の第3レンズ群の移動によって行っているが、やはりフォーカシングによるストロークが長く必要であり、ズームレンズの全長の小型化が困難である。
 また、近年では、レンズ交換式デジタルカメラにおいても、静止画だけでなく動画撮影にも最適化されたズームレンズ系が求められている。動画撮影においては被写体の急速な動きに追従するために、フォーカシングを行うレンズ群を高速に移動させる必要がある。そのため、フォーカシングレンズ群は移動量が少なくかつ軽量であることが求められる。
 高い結像性能を有しながらも、全長の小型化とフォーカシングレンズ群の小型化および軽量化とを実現することができるズームレンズ、およびそのようなズームレンズを搭載した光学機器を提供することが望ましい。
 本開示の一実施の形態に係るズームレンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、第1レンズ群は、物体側から像面側に向かって順に、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、第2レンズ群、第3レンズ群、および第5レンズ群が、ズーミングの際に光軸に沿って移動し、第4レンズ群、および第6レンズ群がズーミングの際に像面に対して光軸方向に固定され、後側第1レンズ群を含む少なくとも2つのレンズ群が、フォーカシングの際に光軸に沿って移動するものである。
 本開示の一実施の形態に係る光学機器は、ズームレンズと、ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、ズームレンズを、上記本開示の一実施の形態に係るズームレンズによって構成したものである。
 本開示の一実施の形態に係るズームレンズまたは光学機器では、全体として6群構成で、第1レンズ群が、前側第1レンズ群と後側第1レンズ群とを含み、第2レンズ群、第3レンズ群、および第5レンズ群が、ズーミングの際に光軸に沿って移動する。また、後側第1レンズ群を含む少なくとも2つのレンズ群が、フォーカシングの際に光軸に沿って移動する。
 本開示の一実施の形態に係るズームレンズまたは光学機器によれば、全体として6群構成で、第1レンズ群を前側第1レンズ群と後側第1レンズ群とを含む構成とし、後側第1レンズ群を含む少なくとも2つのレンズ群を、フォーカシングの際に光軸に沿って移動させるようにしたので、高い結像性能を有しながらも、全長の小型化とフォーカシングレンズ群の小型化および軽量化とを実現できる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示の一実施の形態に係るズームレンズの第1の構成例を示すレンズ断面図である。 ズームレンズの第2の構成例を示すレンズ断面図である。 ズームレンズの第3の構成例を示すレンズ断面図である。 図1に示したズームレンズに具体的な数値を適用した数値実施例1における広角端、中間位置、および望遠端での諸収差を示す収差図である。 図2に示したズームレンズに具体的な数値を適用した数値実施例2における広角端、中間位置、および望遠端での諸収差を示す収差図である。 図3に示したズームレンズに具体的な数値を適用した数値実施例3における広角端、中間位置、および望遠端での諸収差を示す収差図である。 光学機器の一構成例を示すブロック図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.レンズの基本構成
 2.作用・効果
 3.光学機器への適用例
 4.レンズの数値実施例
 5.その他の実施の形態
<1.レンズの基本構成>
 図1は、本開示の一実施の形態に係るズームレンズの第1の構成例を示している。図2は、ズームレンズの第2の構成例を示している。図3は、ズームレンズの第3の構成例を示している。これらの構成例に具体的な数値を適用した数値実施例は後述する。図1等において、Z1は光軸を示す。ズームレンズと像面との間には、撮像素子保護用のシールガラスや各種の光学フィルタ等の光学部材が配置されていてもよい。
 以下、本実施の形態に係るズームレンズの構成を、適宜図1等に示した構成例に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。
 本実施の形態に係るズームレンズは、光軸Z1に沿って物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とが配置された、実質的に6つのレンズ群で構成されている。
 第1レンズ群G1は、物体側から像面側に向かって順に、正の屈折力を有する第1Fレンズ群(前側第1レンズ群)G1Fと、正の屈折力を有する第1Rレンズ群(後側第1レンズ群)G1Rとを含んでいる。
 ここで、図1~図3には、広角端(短焦点距離端)と、中間位置(標準画角、中間焦点距離)と、望遠端(長焦点距離端)とにおける各レンズ群の配置を示す。また、図1~図3には、広角端から望遠端へとズーミングする際の、各レンズ群の移動の軌跡を示す。
 本実施の形態に係るズームレンズは、少なくとも、第2レンズ群G2、第3レンズ群G3、および第5レンズ群G5が、広角端から望遠端へのズーミングの際に、光軸に沿って移動するように構成されている。第4レンズ群G4、および第6レンズ群G6は、ズーミングの際に像面に対して光軸方向に固定されている。
 また、本実施の形態に係るズームレンズは、後側第1レンズ群G1Rを含む少なくとも2つのレンズ群が、無限遠物体から近距離物体へのフォーカシングの際に光軸に沿って移動するように構成されている。
 また、本実施の形態に係るズームレンズにおいて、前側第1レンズ群G1Fは、ズーミング、およびフォーカシングに際して像面に対して固定されている。
 その他、本実施の形態に係るズームレンズは、後述する所定の条件式等を満足することが望ましい。
<2.作用・効果>
 次に、本実施の形態に係るズームレンズの作用および効果を説明する。併せて、本実施の形態に係るズームレンズにおける望ましい構成を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 本実施の形態に係るズームレンズによれば、全体として6群構成で、第1レンズ群G1を前側第1レンズ群G1Fと後側第1レンズ群G1Rとを含む構成とし、後側第1レンズ群G1Rを含む少なくとも2つのレンズ群を、フォーカシングの際に光軸に沿って移動させるようにしたので、高い結像性能を有しながらも、全長の小型化とフォーカシングレンズ群の小型化および軽量化とを実現できる。特に、フォーカシングによるストロークが短く高速なフォーカスが可能となり、全長が小型でかつ物体距離全域に亘って高い光学性能を持つ望遠ズームレンズ、およびその望遠ズームレンズを用いた光学機器を提供することができる。
 本実施の形態に係るズームレンズでは、広角端から望遠端へのズーミングに際して、前側第1レンズ群G1Fと第4レンズ群G4と第6レンズ群G6とが像面に対して光軸方向に固定され、少なくとも、第2レンズ群G2と第3レンズ群G3と第5レンズ群G5とが光軸方向に移動する。本実施の形態に係るズームレンズでは、第4レンズ群G4と第5レンズ群G5と第6レンズ群G6とが、ズームレンズにおける主結像系を構成している。このため、第5レンズ群G5をズーミング中に移動させることにより、主結像系の焦点距離を変動することが可能になり、結果として光学全長の小型のズームレンズを得ることができる。
 後側第1レンズ群G1Rは、ズーミングの際に像面に対して光軸方向に固定されていることが望ましい。なお、図1の第1の構成例のズームレンズ1と、図3の第3の構成例のズームレンズ3とが、この構成を満たしている。ただし、例えば図2の第2の構成例のズームレンズ2のように、後側第1レンズ群G1Rを、ズーミングの際に光軸に沿って移動させることも可能である。
 本実施の形態に係るズームレンズは、無限遠物体から近距離物体へのフォーカシングに際し、後側第1レンズ群G1Rを含む少なくとも2つのレンズ群が、フォーカシングレンズ群として移動する、いわゆるフローティングフォーカス方式のズームレンズである。無限遠物体から近距離物体へのフォーカシングを、後側第1レンズ群G1Rを含む、少なくとも2つのレンズ群の移動により行うことで、各フォーカシングレンズ群のストロークを減少させることが可能となり、フォーカシングの高速化が可能となるだけでなく、近距離撮影時の諸収差の補正を効果的に行うことができる。
 本実施の形態に係るズームレンズは、以下の条件式(1)を満足することが望ましい。
 0.4<F1R/F1<0.56 ……(1)
ただし、
 F1:第1レンズ群G1の焦点距離
 F1R:後側第1レンズ群G1Rの焦点距離
とする。
 条件式(1)は、第1レンズ群G1の焦点距離と後側第1レンズ群G1Rの焦点距離との比を適切な範囲に規定するものである。条件式(1)を満たすことにより、後側第1レンズ群G1Rのフォーカシングストロークを適切に規定することができる。条件式(1)の上限を超えると、後側第1レンズ群G1Rの屈折力が弱くなりすぎ、フォーカシングによるストロークが増大し、ズームレンズの光学全長の短縮が困難となる。一方、条件式(1)の下限を下回ると、後側第1レンズ群G1Rによる収差発生量が大きくなりすぎ、フォーカシング時の主に球面収差とコマ収差の発生を抑えることが困難となる。
 なお、上記した条件式(1)の効果をより良好に実現するためには、条件式(1)の数値範囲を下記条件式(1)’のように設定することがより望ましい。
 0.42<F1R/F1<0.53 ……(1)’
 また、本実施の形態に係るズームレンズは、以下の条件式(2)を満足することが望ましい。
 0.5<OL4/F456T<1.0 ……(2)
ただし、
 OL4:第4レンズ群G4の最も物体側に位置するレンズ面の頂点から像面までの光軸上の距離
 F456T:第4レンズ群G4、第5レンズ群G5、および第6ンズ群G6の望遠端での合成焦点距離
とする。
 条件式(2)は、第4レンズ群G4の最も物体側に位置するレンズ面の面頂から像面までの光軸上の距離を適切な範囲に規定するものである。条件式(2)を満たすことにより、第4レンズ群G4から像面までの距離を短く保ちつつ、第4レンズ群G4で発生する諸収差を適切に補正することができる。条件式(2)の上限を超えると、第4レンズ群G4の望遠端の焦点距離に対して、第4レンズ群G4から像面までの距離が長くなりすぎ、ズームレンズの光学全長の短縮が困難となる。条件式(2)の下限を下回ると、第4レンズ群G4から像面までの距離が短くなりすぎ、主に球面収差、コマ収差、および像面湾曲の補正が困難となる。
 なお、上記した条件式(2)の効果をより良好に実現するためには、条件式(2)の数値範囲を下記条件式(2)’のように設定することがより望ましい。
 0.55<OL4/F456T<1.0 ……(2)’
 また、本実施の形態に係るズームレンズは、フォーカシングの際に、後側第1レンズ群G1Rに加え、さらに、第5レンズ群G5が光軸に沿って移動することが望ましい。この場合、以下の条件式(3)を満足することが望ましい。なお、*は乗算記号である。
 -5.5<(1-βt52)*βt62<-2 ……(3)
 βt5:第5レンズ群G5の望遠端における無限遠合焦時の横倍率
 βt6:第6レンズ群G6の望遠端における無限遠合焦時の横倍率
とする。
 条件式(3)は、第5レンズ群G5をフォーカシングレンズ群とした場合のピント敏感度を適切な範囲に規定するものである。条件式(3)を満たすことにより、光学系の全長を短縮するだけでなく、物体距離全域に亘って諸収差を適切に補正することができる。条件式(3)の上限を超えると、第5レンズ群G5をフォーカシングレンズ群とした場合の屈折力が強くなりすぎ、フォーカシングによる諸収差の補正が困難になるだけでなく、フォーカシングの停止位置精度などに関しての制御が困難となってしまう。条件式(3)の下限を下回ると、第5レンズ群G5をフォーカシングレンズ群とした場合のストロークが長くなりすぎ、光学全長を短縮することが困難となってしまう。
 なお、上記した条件式(3)の効果をより良好に実現するためには、条件式(3)の数値範囲を下記条件式(3)’のように設定することがより望ましい。
 -5<(1-βt52)*βt62<-2.3 ……(3)’
 また、本実施の形態に係るズームレンズにおいて、第2レンズ群G2は、最も像面側に負レンズを有していてもよい。この場合、例えば図3の第3の構成例のズームレンズ3のように、フォーカシングの際に、後側第1レンズ群G1R、および第5レンズ群G5に加え、さらに、第2レンズ群G2の最も像面側の負レンズを第3のフォーカシングレンズ群として光軸に沿って移動させてもよい。
 第2レンズ群G2の最も像面側の負レンズを第3のフォーカシングレンズ群とすることにより、光学全長の短縮化とフォーカシングによる諸収差の補正のほかに、フォーカシングにより発生する画角の変動、いわゆるブリージングを効果的に抑制することができる。
 また、本実施の形態に係るズームレンズは、以下の条件式(4)を満足することが望ましい。
 -1.2<Hft/Ft<-0.5 ……(4)
ただし、
 Hft:望遠端において無限遠にフォーカスしているときの、最も物体側のレンズ面から前側主点位置までの距離
 Ft:望遠端におけるレンズ全系の焦点距離
とする。
 条件式(4)は、光学系全体の前側主点位置を適切な範囲に規定するものである。条件式(4)を満たすことにより、ズームレンズの全長短縮化ができるだけでなく、最至近距離での最大撮影倍率を大きくすることができる。条件式(4)の上限を超えると、主に第4レンズ群G4以降で構成されるズームレンズの主結像系の望遠比が長くなりすぎるため、主に球面収差、コマ収差、および像面湾曲の補正が困難となる。一方、条件式(4)の下限を下回ると、ズームレンズの全長短縮化が困難となる。
 なお、上記した条件式(4)の効果をより良好に実現するためには、条件式(4)の数値範囲を下記条件式(4)’のように設定することがより望ましい。
 -1.1<Hft/Ft<-0.6 ……(4)’
 また、本実施の形態に係るズームレンズにおいて、前側第1レンズ群G1Fは2枚の正レンズを含むことが望ましい。この場合、以下の条件式(5)を満足することが望ましい。
 80<νd1F<110 ……(5)
ただし、
 νd1F:前側第1レンズ群G1Fの2枚の正レンズのアッベ数の最大値
とする。
 条件式(5)は、前側第1レンズ群G1Fに含まれる2枚の正レンズのアッベ数の最大値の範囲を規定するものである。条件式(5)の下限を上回る、低分散の素材を用いることで望遠端で発生する色収差を効果的に補正することができる。
 また、本実施の形態に係るズームレンズにおいて、第4レンズ群G4は、物体側から像面側に向かって順に、2枚の正レンズと、負レンズおよび正レンズからなる接合レンズとから構成されることが望ましい。
 ズームレンズの主結像群を構成する第4レンズ群G4を、上記の構成とすることにより、主に球面収差、コマ収差、および像面湾曲を良好に補正することが可能となる。
 また、本実施の形態に係るズームレンズにおいて、第5レンズ群G5は、1枚の負レンズで構成されることが望ましい。この場合、以下の条件式(6)を満足することが望ましい。
 1.45<nd5<1.65 ……(6)
ただし、
 nd5:第5レンズ群G5を構成する負レンズの屈折率
とする。
 条件式(6)は、第5レンズ群G5を構成する負レンズの屈折率を適切な範囲を規定するものである。条件式(6)を満たすことにより、第5レンズ群G5をフォーカシングレンズ群とした場合の、フォーカシングレンズ群の軽量化が可能となり、高速なフォーカシングが可能となる。
 また、本実施の形態に係るズームレンズにおいて、少なくとも2つのフォーカシングレンズ群のうち、1つのフォーカシングレンズ群がフォーカシングをする際の位置を検出する位置検出センサを有し、その他のフォーカシングレンズ群が位置検出センサの位置情報に基づいて光軸に沿って移動することが望ましい。例えば、後側第1レンズ群G1Rが位置検出センサを有することが好ましい。これは、例えば動画撮影において、被写体の急速な動きに追従するために、第5レンズ群G5のように小型軽量であるレンズ群を、常に合焦位置の前後に微小に駆動させる、いわゆるウォブリング動作をさせることが可能であるため、第5レンズ群G5を後側第1レンズ群G1Rに従属させることで、第5レンズ群G5のウォブリング動作時に、後側第1レンズ群G1Rのフォーカス位置が影響を受けないようにするためである。
 また、本実施の形態に係るズームレンズにおいて、レンズ系を構成するレンズ群のうち、1つのレンズ群、もしくは、1つのレンズ群のうち、一部のレンズ成分を防振レンズ群として、光軸にほぼ垂直な方向にシフトさせることにより、像位置をシフトさせることが可能である。特に、第6レンズ群G6の最も物体側のレンズ成分を光軸にほぼ垂直な方向にシフトさせた際の収差変化が少ないので、好ましい。
<3.光学機器への適用例>
 本実施の形態に係るズームレンズの光学機器への適用例を説明する。以下では光学機器の一例として撮像装置の構成例を説明する。
 図7は、本実施の形態に係るズームレンズを適用した撮像装置100の一構成例を示している。この撮像装置100は、例えばデジタルスチルカメラであり、カメラブロック10と、カメラ信号処理部20と、画像処理部30と、LCD(Liquid Crystal Display)40と、R/W(リーダ/ライタ)50と、CPU(Central Processing Unit)60と、入力部70と、レンズ駆動制御部80とを備えている。
 カメラブロック10は、撮像機能を担うものであり、撮像レンズ11を含む光学系と、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子12とを有している。撮像素子12は、撮像レンズ11によって形成された光学像を電気信号へ変換することで、光学像に応じた撮像信号(画像信号)を出力するようになっている。撮像レンズ11として、図1、図2、および図3に示した各構成例のズームレンズ1~3を適用可能である。
 カメラ信号処理部20は、撮像素子12から出力された画像信号に対してアナログ-デジタル変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行うものである。
 画像処理部30は、画像信号の記録再生処理を行うものであり、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行うようになっている。
 LCD40は、ユーザの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。R/W50は、画像処理部30によって符号化された画像データのメモリカード1000への書き込み、およびメモリーカード1000に記録された画像データの読み出しを行うものである。メモリカード1000は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能するものであり、入力部70からの指示入力信号等に基づいて各回路ブロックを制御するようになっている。入力部70は、ユーザによって所要の操作が行われる各種のスイッチ等からなる。入力部70は例えば、シャッタ操作を行うためのシャッタレリーズボタンや、動作モードを選択するための選択スイッチ等によって構成され、ユーザによる操作に応じた指示入力信号をCPU60に対して出力するようになっている。レンズ駆動制御部80は、カメラブロック10に配置されたレンズの駆動を制御するものであり、CPU60からの制御信号に基づいて撮像レンズ11の各レンズを駆動する図示しないモータ等を制御するようになっている。
 図示は省略するが、この撮像装置100は、手ぶれに伴う装置のぶれを検出するぶれ検出部を備えている。
 以下に、撮像装置100における動作を説明する。
 撮影の待機状態では、CPU60による制御の下で、カメラブロック10において撮影された画像信号が、カメラ信号処理部20を介してLCD40に出力され、カメラスルー画像として表示される。また、例えば入力部70からのズーミングやフォーカシングのための指示入力信号が入力されると、CPU60がレンズ駆動制御部80に制御信号を出力し、レンズ駆動制御部80の制御に基づいて撮像レンズ11の所定のレンズが移動する。
 入力部70からの指示入力信号によりカメラブロック10の図示しないシャッタが動作されると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリカード1000に書き込まれる。
 なお、フォーカシングは、例えば、入力部70のシャッタレリーズボタンが半押しされた場合や記録(撮影)のために全押しされた場合等に、CPU60からの制御信号に基づいてレンズ駆動制御部80が撮像レンズ11の所定のレンズを移動させることにより行われる。
 メモリカード1000に記録された画像データを再生する場合には、入力部70に対する操作に応じて、R/W50によってメモリカード1000から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後、再生画像信号がLCD40に出力されて再生画像が表示される。
 また、CPU60は、図示しないぶれ検出部から出力される信号に基づいてレンズ駆動制御部80を動作させ、ぶれ量に応じて防振レンズ群を光軸Z1に略垂直な方向に移動させる。
 なお、上記した実施の形態においては、光学機器をデジタルスチルカメラ等の撮像装置に適用した例を示したが、光学機器の適用範囲はデジタルスチルカメラに限られることはなく、他の種々の光学機器に適用可能である。例えば、デジタル一眼レフカメラ、デジタルノンレフレックスカメラ、デジタルビデオカメラ、および監視カメラ等に適用することができる。また、カメラが組み込まれた携帯電話や、カメラが組み込まれた情報端末等のデジタル入出力機器のカメラ部等として広く適用することができる。また、レンズ交換式のカメラにも適用することができる。
<4.レンズの数値実施例>
 次に、本実施の形態に係るズームレンズの具体的な数値実施例について説明する。ここでは、図1、図2、および図3に示した各構成例のズームレンズ1~3に、具体的な数値を適用した数値実施例を説明する。
 なお、以下の各表や説明において示した記号の意味等については、下記に示す通りである。「si」は、物体側から像面側へ数えたi番目の面の番号を示している。「ri」は、i番目の面の近軸の曲率半径の値(mm)を示す。「di」はi番目の面とi+1番目の面との間の光軸上の間隔の値(mm)を示す。「ni」はi番目の面を有する光学要素の材質のd線(波長587.6nm)における屈折率の値を示す。「νi」はi番目の面を有する光学要素の材質のd線におけるアッベ数の値を示す。「ri」の値が「∞」となっている部分は平面、または絞り面(開口絞りSt)を示す。「ASP」と記した面は非球面であることを示す。「STO」と記した面は開口絞りStであることを示す。「BF」はバックフォーカスを示す。「f」はレンズ系全体の焦点距離、「FNo.」はFナンバー、「ω」は半画角を示す。
 各数値実施例において、非球面形状は以下の非球面の式によって定義される。なお、後述する非球面係数を示す各表では、10のべき乗数をEを用いて表す。例えば、「1.2×10-02」であれば、「1.2E-02」と表す。
(非球面の式)
 x=c22/[1+{1-(1+K)c221/2]+ΣAi・yi
ここで、
 x:レンズ面頂点からの光軸方向の距離
 y:光軸と垂直な方向の高さ
 c:レンズ頂点での近軸曲率(近軸曲率半径の逆数)
 K:コーニック定数
 Ai:第i次の非球面係数
である。
(各数値実施例に共通の構成)
 以下の各数値実施例が適用されるズームレンズ1~3はいずれも、上記したレンズの基本構成を満足した構成となっている。すなわち、ズームレンズ1~3はいずれも、光軸Z1に沿って物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とが配置された、実質的に6つのレンズ群で構成されている。
 第1レンズ群G1は、物体側から像面側に向かって順に、正の屈折力を有する第1Fレンズ群(前側第1レンズ群)G1Fと、正の屈折力を有する第1Rレンズ群(後側第1レンズ群)G1Rとで構成されている。
 広角端から望遠端へのズーミングに際しては、前側第1レンズ群G1Fと第4レンズ群G4と第6レンズ群G6とが像面に対して光軸方向に固定され、少なくとも、第2レンズ群G2と第3レンズ群G3と第5レンズ群G5とが光軸方向に移動する。
 無限遠物体から近距離物体へのフォーカシングに際しては、後側第1レンズ群G1Rを含む少なくとも2つのレンズ群が、フォーカシングレンズ群として移動する。
 開口絞りStは、第3レンズ群G3と第4レンズ群G4との間に配置されている。
[数値実施例1]
 [表1]に、図1に示したズームレンズ1に具体的な数値を適用した数値実施例1の基本的なレンズデータを示す。また、[表2]には、非球面における係数の値を示す。また、[表3]には、広角端(短焦点距離端)と、中間位置(標準画角、中間焦点距離)と、望遠端(長焦点距離端)とにおけるそれぞれのレンズ系全体の焦点距離f、Fナンバー(FNo.)、半画角ω、およびレンズ全長の値を示す。
 また、[表3]には、可変の面間隔の値も示す。数値実施例1では、ズーミングに際して、面間隔d10、d17、d22、d30、およびd32の値が変化する。
 数値実施例1に係るズームレンズ1は、後側第1レンズ群G1Rと第5レンズ群G5とがフォーカシングレンズ群となっている。後側第1レンズ群G1Rは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。第5レンズ群G5は、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って像面側に移動する。
 数値実施例1に係るズームレンズ1において、前側第1レンズ群G1Fは、物体側より順に、負メニスカスレンズL1F1と、正レンズL1F2と、正メニスカスレンズL1F3とから構成されている。正レンズL1F2と正メニスカスレンズL1F3はアッベ数95.1の素材からなり、特に望遠端での色収差が良好に補正される構成となっている。
 後側第1レンズ群G1Rは、ズーミングの際に像面に対して光軸方向に固定されている。後側第1レンズ群G1Rは、物体側より順に、負メニスカスレンズL1R1と、正メニスカスレンズL1R2とから構成されている。後側第1レンズ群G1Rを、数値実施例1の構成とすることでフォーカシング時の色収差の変動を抑えることができる。
 第2レンズ群G2は、物体側より順に、負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズと、負メニスカスレンズL24とから構成されている。第2レンズ群G2を数値実施例1の構成とすることにより、主にズーミング時の収差の変動を抑制することができる。
 第3レンズ群G3は、物体側より順に、正レンズL31と、正レンズL32および負レンズL33を貼り合わせた接合レンズとから構成されている。第3レンズ群G3を数値実施例1の構成とすることにより、主にズーミング時の収差の変動を抑制することができる。
 正の屈折力を有する第4レンズ群G4、負の屈折力を有する第5レンズ群G5、および正の屈折力を有する第6レンズ群G6は、ズームレンズの主結像系を構成しており、ズーミング時に第5レンズ群G5を移動させることにより、ズームレンズの全長を短縮することができる。
 第4レンズ群G4は、物体側より順に、物体側の面に非球面が形成された正レンズL41と、正レンズL42と、負レンズL43および正レンズL44を貼り合わせた接合レンズとから構成されている。第4レンズ群G4を、数値実施例1の構成とすることにより、主結像系を構成する第4レンズ群G4、第5レンズ群G5、および第6レンズ群G6で発生する、球面収差、コマ収差、および像面湾曲を補正することができる。
 第5レンズ群G5は、物体側より順に、両面に非球面が形成された負レンズL51から構成されている。第5レンズ群G5を、数値実施例1の構成とすることで、軽量なフォーカシングレンズ群を実現することができる。
 第6レンズ群G6は、物体側より順に、物体側の面に非球面が形成された正レンズL61および負レンズL62を貼り合わせた接合レンズと、正レンズL63および負レンズL64を貼り合わせた接合レンズと、負レンズL65と、負レンズL66とから構成されている。第6レンズ群G6を数値実施例1の構成とすることで、射出瞳位置を像側に近づけることができ、レンズ交換式カメラに用いる場合においてはマウント径と光線との干渉を回避するのに有利な構成となる。
 正レンズL61および負レンズL62からなる接合レンズは、防振レンズ群として、光軸Z1に対して垂直方向へ移動させることにより、像のぶれを補正することが可能である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図4の上段には、数値実施例1における広角端での諸収差を示す。図4の中段には、数値実施例1における中間位置での諸収差を示す。図4の下段には、数値実施例1における望遠端での諸収差を示す。図4には、諸収差として、球面収差、非点収差(像面湾曲)、および歪曲収差を示す。非点収差図において実線(S)はサジタル像面、破線(M)はメリディオナル像面における値を示す。各収差図には、e線(波長546.07nm)における値を示す。球面収差図では、C線(波長656.3nm)と、g線(波長435.8nm)の値も示す。以降の他の数値実施例における収差図についても同様である。
 各収差図から分かるように、数値実施例1に係るズームレンズ1は、広角端、中間位置、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。
[数値実施例2]
 [表4]に、図2に示したズームレンズ2に具体的な数値を適用した数値実施例2の基本的なレンズデータを示す。また、[表5]には、非球面における係数の値を示す。また、[表6]には、広角端(短焦点距離端)と、中間位置(標準画角、中間焦点距離)と、望遠端(長焦点距離端)とにおけるそれぞれのレンズ系全体の焦点距離f、Fナンバー(FNo.)、半画角ω、およびレンズ全長の値を示す。
 また、[表6]には、可変の面間隔の値も示す。数値実施例2では、ズーミングに際して、面間隔d6、d10、d17、d22、d30、およびd32の値が変化する。
 数値実施例2に係るズームレンズ2は、後側第1レンズ群G1Rと第5レンズ群G5とがフォーカシングレンズ群となっている。後側第1レンズ群G1Rは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。第5レンズ群G5は、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って像面側に移動する。
 数値実施例2に係るズームレンズ2において、前側第1レンズ群G1Fは、物体側より順に、負メニスカスレンズL1F1と、正レンズL1F2と、正メニスカスレンズL1F3とから構成されている。正レンズL1F2と正メニスカスレンズL1F3はアッベ数95.1の素材からなり、特に望遠端での色収差が良好に補正される構成となっている。
 数値実施例2では、後側第1レンズ群G1Rは、ズーミングの際に光軸に沿って移動する。後側第1レンズ群G1Rをズーミング時に光軸に沿って移動させることで、ズームレンズの全長を短縮することができる。
 後側第1レンズ群G1Rは、物体側より順に、負メニスカスレンズL1R1と、正メニスカスレンズL1R2とから構成されている。後側第1レンズ群G1Rを、数値実施例2の構成とすることでフォーカシング時の色収差の変動を抑えることができる。
 第2レンズ群G2は、物体側より順に、負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズと、負メニスカスレンズL24とから構成されている。第2レンズ群G2を数値実施例2の構成とすることにより、主にズーミング時の収差の変動を抑制することができる。
 第3レンズ群G3は、物体側より順に、正レンズL31と、正レンズL32および負レンズL33を貼り合わせた接合レンズとから構成されている。第3レンズ群G3を数値実施例2の構成とすることにより、主にズーミング時の収差の変動を抑制することができる。
 正の屈折力を有する第4レンズ群G4、負の屈折力を有する第5レンズ群G5、および正の屈折力を有する第6レンズ群G6は、ズームレンズの主結像系を構成しており、ズーミング時に第5レンズ群G5を移動させることにより、ズームレンズの全長を短縮することができる。
 第4レンズ群G4は、物体側より順に、正レンズL41と、物体側の面に非球面が形成された正レンズL42と、負レンズL43および正レンズL44を貼り合わせた接合レンズとから構成されている。第4レンズ群G4を、数値実施例2の構成とすることにより、主結像系を構成する第4レンズ群G4、第5レンズ群G5、および第6レンズ群G6で発生する、球面収差、コマ収差、および像面湾曲を補正することができる。
 第5レンズ群G5は、物体側より順に、両面に非球面が形成された負レンズL51から構成されている。第5レンズ群G5を、数値実施例2の構成とすることで、軽量なフォーカシングレンズ群を実現することができる。
 第6レンズ群G6は、物体側より順に、物体側の面に非球面が形成された正レンズL61および負レンズL62を貼り合わせた接合レンズと、正レンズL63と、負レンズL64および正レンズL65を貼り合わせた接合レンズと、負レンズL66とから構成されている。第6レンズ群G6を数値実施例2の構成とすることで、射出瞳位置を像側に近づけることができ、レンズ交換式カメラに用いる場合においてはマウント径と光線との干渉を回避するのに有利な構成となる。
 正レンズL61および負レンズL62からなる接合レンズは、防振レンズ群として、光軸Z1に対して垂直方向へ移動させることにより、像のぶれを補正することが可能である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 図5の上段には、数値実施例2における広角端での諸収差を示す。図5の中段には、数値実施例2における中間位置での諸収差を示す。図5の下段には、数値実施例2における望遠端での諸収差を示す。
 各収差図から分かるように、数値実施例2に係るズームレンズ2は、広角端、中間位置、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。
[数値実施例3]
 [表7]に、図3に示したズームレンズ3に具体的な数値を適用した数値実施例3の基本的なレンズデータを示す。また、[表8]には、非球面における係数の値を示す。また、[表9]には、広角端(短焦点距離端)と、中間位置(標準画角、中間焦点距離)と、望遠端(長焦点距離端)とにおけるそれぞれのレンズ系全体の焦点距離f、Fナンバー(FNo.)、半画角ω、およびレンズ全長の値を示す。
 また、[表9]には、可変の面間隔の値も示す。数値実施例3では、ズーミングに際して、面間隔d10、d15、d17、d22、d30、およびd32の値が変化する。
 数値実施例3に係るズームレンズ3は、後側第1レンズ群G1Rと第5レンズ群G5とに加え、第2レンズ群G2の最も像面側の負レンズがフォーカシングレンズ群となっている。後側第1レンズ群G1Rは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。第5レンズ群G5は、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って像面側に移動する。第2レンズ群G2の最も像面側の負レンズは、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に移動する。
 数値実施例3に係るズームレンズ3において、前側第1レンズ群G1Fは、物体側より順に、負メニスカスレンズL1F1と、正レンズL1F2と、正メニスカスレンズL1F3とから構成されている。正レンズL1F2と正メニスカスレンズL1F3はアッベ数95.1の素材からなり、特に望遠端での色収差が良好に補正される構成となっている。
 後側第1レンズ群G1Rは、ズーミングの際に像面に対して光軸方向に固定されている。後側第1レンズ群G1Rは、物体側より順に、負メニスカスレンズL1R1と、正メニスカスレンズL1R2とから構成されている。後側第1レンズ群G1Rを、数値実施例3の構成とすることでフォーカシング時の色収差の変動を抑えることができる。
 第2レンズ群G2は、物体側より順に、負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズと、負メニスカスレンズL24とから構成されている。
 数値実施例3においては、負レンズL21と、負レンズL22および正レンズL23を貼り合わせた接合レンズとが、第2Fレンズ群(前側第2レンズ群)G2Fを構成している。また、第2レンズ群G2の最も像面側の負レンズである負メニスカスレンズL24が、第2Rレンズ群(後側第2レンズ群)G2Rを構成している。そして、ズーミングの際には、第2Fレンズ群G2Fと第2Rレンズ群G2Rとが、それぞれ違った軌道で光軸に沿って移動する。
 数値実施例3においては、第2Rレンズ群G2Rを、フォーカシングに際して、光軸方向に移動させることにより、フォーカシング時の収差の変動を抑制することができるだけでなく、フォーカシングによるブリージングを効果的に抑制することができる。
 第3レンズ群G3は、物体側より順に、正レンズL31と、正レンズL32および負レンズL33を貼り合わせた接合レンズとから構成されている。第3レンズ群G3を数値実施例3の構成とすることにより、主にズーミング時の収差の変動を抑制することができる。
 正の屈折力を有する第4レンズ群G4、負の屈折力を有する第5レンズ群G5、および正の屈折力を有する第6レンズ群G6は、ズームレンズの主結像系を構成しており、ズーミング時に第5レンズ群G5を移動させることにより、ズームレンズの全長を短縮することができる。
 第4レンズ群G4は、物体側より順に、物体側の面に非球面が形成された正レンズL41と、正レンズL42と、負レンズL43および正レンズL44を貼り合わせた接合レンズとから構成されている。第4レンズ群G4を、数値実施例3の構成とすることにより、主結像系を構成する第4レンズ群G4、第5レンズ群G5、および第6レンズ群G6で発生する、球面収差、コマ収差、および像面湾曲を補正することができる。
 第5レンズ群G5は、物体側より順に、両面に非球面が形成された負レンズL51から構成されている。第5レンズ群G5を、数値実施例3の構成とすることで、軽量なフォーカシングレンズ群を実現することができる。
 第6レンズ群G6は、物体側より順に、正レンズL61および負レンズL62を貼り合わせた接合レンズと、物体側の面に非球面が形成された正レンズL63と、負レンズL64および正レンズL65を貼り合わせた接合レンズと、負レンズL66とから構成されている。第6レンズ群G6を数値実施例3の構成とすることで、射出瞳位置を像側に近づけることができ、レンズ交換式カメラに用いる場合においてはマウント径と光線との干渉を回避するのに有利な構成となる。
 正レンズL61および負レンズL62からなる接合レンズは、防振レンズ群として、光軸Z1に対して垂直方向へ移動させることにより、像のぶれを補正することが可能である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 図6の上段には、数値実施例3における広角端での諸収差を示す。図6の中段には、数値実施例3における中間位置での諸収差を示す。図6の下段には、数値実施例3における望遠端での諸収差を示す。
 各収差図から分かるように、数値実施例3に係るズームレンズ3は、広角端、中間位置、および望遠端において、各収差がバランス良く良好に補正され、優れた結像性能を有していることが明らかである。
[各実施例のその他の数値データ]
 [表10]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表10]から分かるように、各条件式について、各数値実施例の値がその数値範囲内となっている。
Figure JPOXMLDOC01-appb-T000010
<5.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
 また、上記実施の形態および実施例では、実質的に6つのレンズ群からなる構成について説明したが、実質的に屈折力を有さないレンズをさらに備えた構成であってもよい。
 また例えば、本技術は以下のような構成を取ることができる。
[1]
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、
 前記第1レンズ群は、物体側から像面側に向かって順に、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、
 前記第2レンズ群、前記第3レンズ群、および前記第5レンズ群が、前記ズーミングの際に光軸に沿って移動し、
 前記第4レンズ群、および前記第6レンズ群が前記ズーミングの際に像面に対して光軸方向に固定され、
 前記後側第1レンズ群を含む少なくとも2つのレンズ群が、前記フォーカシングの際に光軸に沿って移動する
 ズームレンズ。
[2]
 前記後側第1レンズ群は、前記ズーミングの際に像面に対して光軸方向に固定されている
 上記[1]に記載のズームレンズ。
[3]
 以下の条件式を満足する
 上記[1]または[2]に記載のズームレンズ。
 0.4<F1R/F1<0.56 ……(1)
ただし、
 F1:前記第1レンズ群の焦点距離
 F1R:前記後側第1レンズ群の焦点距離
とする。
[4]
 以下の条件式を満足する
 上記[1]ないし[3]のいずれか1つに記載のズームレンズ。
ただし、
 OL4:前記第4レンズ群の最も物体側に位置するレンズ面の頂点から像面までの光軸上の距離
 F456T:前記第4レンズ群、前記第5レンズ群、および前記第6ンズ群の望遠端での合成焦点距離
とする。
[5]
 前記フォーカシングの際に、前記後側第1レンズ群に加え、さらに、前記第5レンズ群が光軸に沿って移動する
 上記[1]ないし[4]のいずれか1つに記載のズームレンズ。
[6]
 以下の条件式を満足する
 上記[5]に記載のズームレンズ。
ただし、
 -5.5<(1-βt52)*βt62<-2 ……(3)
 βt5:前記第5レンズ群の望遠端における無限遠合焦時の横倍率
 βt6:前記第6レンズ群の望遠端における無限遠合焦時の横倍率
とする。
[7]
 前記第2レンズ群は、最も像面側に負レンズを有し、
 前記フォーカシングの際に、前記後側第1レンズ群、および前記第5レンズ群に加え、さらに、前記第2レンズ群の最も像面側の負レンズが光軸に沿って移動する
 上記[5]または[6]に記載のズームレンズ。
[8]
 以下の条件式を満足する
 上記[1]ないし[7]のいずれか1つに記載のズームレンズ。
 -1.2<Hft/Ft<-0.5 ……(4)
ただし、
 Hft:望遠端において無限遠にフォーカスしているときの、最も物体側のレンズ面から前側主点位置までの距離
 Ft:望遠端におけるレンズ全系の焦点距離
とする。
[9]
 前記前側第1レンズ群は2枚の正レンズを含む
 上記[1]ないし[8]のいずれか1つに記載のズームレンズ。
[10]
 以下の条件式を満足する
 上記[9]に記載のズームレンズ。
 80<νd1F<110 ……(5)
ただし、
 νd1F:前記前側第1レンズ群の前記2枚の正レンズのアッベ数の最大値
とする。
[11]
 前記第4レンズ群は物体側から像面側に向かって順に、2枚の正レンズと、負レンズおよび正レンズからなる接合レンズとで構成される
 上記[1]ないし[10]のいずれか1つに記載のズームレンズ。
[12]
 前記第5レンズ群は、1枚の負レンズで構成される
 上記[1]ないし[11]のいずれか1つに記載のズームレンズ。
[13]
 以下の条件を満足する
 上記[12]に記載のズームレンズ。
 1.45<nd5<1.65 ……(6)
ただし、
 nd5:前記第5レンズ群を構成する前記負レンズの屈折率
とする。
[14]
 前記後側第1レンズ群は、前記ズーミングの際に光軸に沿って移動する
 上記[1]、[3]ないし[13]のいずれか1つに記載のズームレンズ。
[15]
 実質的に屈折力を有さないレンズをさらに備えた
 上記[1]ないし[14]のいずれか1つに記載のズームレンズ。
[16]
 ズームレンズと、前記ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
 前記ズームレンズは、
 物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、
 前記第1レンズ群は、物体側から像面側に向かって順に、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、
 前記第2レンズ群、前記第3レンズ群、および前記第5レンズ群が、前記ズーミングの際に光軸に沿って移動し、
 前記第4レンズ群、および前記第6レンズ群が前記ズーミングの際に像面に対して光軸方向に固定され、
 前記後側第1レンズ群を含む少なくとも2つのレンズ群が、前記フォーカシングの際に光軸に沿って移動する
 光学機器。
[17]
 前記ズームレンズは、実質的に屈折力を有さないレンズをさらに備える
 上記[16]に記載の光学機器。
 本出願は、日本国特許庁において2016年2月1日に出願された日本特許出願番号第2016-016980号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (15)

  1.  物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、
     前記第1レンズ群は、物体側から像面側に向かって順に、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、
     前記第2レンズ群、前記第3レンズ群、および前記第5レンズ群が、前記ズーミングの際に光軸に沿って移動し、
     前記第4レンズ群、および前記第6レンズ群が前記ズーミングの際に像面に対して光軸方向に固定され、
     前記後側第1レンズ群を含む少なくとも2つのレンズ群が、前記フォーカシングの際に光軸に沿って移動する
     ズームレンズ。
  2.  前記後側第1レンズ群は、前記ズーミングの際に像面に対して光軸方向に固定されている
     請求項1に記載のズームレンズ。
  3.  以下の条件式を満足する
     請求項1に記載のズームレンズ。
     0.4<F1R/F1<0.56 ……(1)
    ただし、
     F1:前記第1レンズ群の焦点距離
     F1R:前記後側第1レンズ群の焦点距離
    とする。
  4.  以下の条件式を満足する
     請求項1に記載のズームレンズ。
     0.5<OL4/F456T<1.0 ……(2)
    ただし、
     OL4:前記第4レンズ群の最も物体側に位置するレンズ面の頂点から像面までの光軸上の距離
     F456T:前記第4レンズ群、前記第5レンズ群、および前記第6ンズ群の望遠端での合成焦点距離
    とする。
  5.  前記フォーカシングの際に、前記後側第1レンズ群に加え、さらに、前記第5レンズ群が光軸に沿って移動する
     請求項1に記載のズームレンズ。
  6.  以下の条件式を満足する
     請求項5に記載のズームレンズ。
    ただし、
     -5.5<(1-βt52)*βt62<-2 ……(3)
     βt5:前記第5レンズ群の望遠端における無限遠合焦時の横倍率
     βt6:前記第6レンズ群の望遠端における無限遠合焦時の横倍率
    とする。
  7.  前記第2レンズ群は、最も像面側に負レンズを有し、
     前記フォーカシングの際に、前記後側第1レンズ群、および前記第5レンズ群に加え、さらに、前記第2レンズ群の最も像面側の負レンズが光軸に沿って移動する
     請求項5に記載のズームレンズ。
  8.  以下の条件式を満足する
     請求項1に記載のズームレンズ。
     -1.2<Hft/Ft<-0.5 ……(4)
    ただし、
     Hft:望遠端において無限遠にフォーカスしているときの、最も物体側のレンズ面から前側主点位置までの距離
     Ft:望遠端におけるレンズ全系の焦点距離
    とする。
  9.  前記前側第1レンズ群は2枚の正レンズを含む
    請求項1に記載のズームレンズ。
  10.  以下の条件式を満足する
     請求項9に記載のズームレンズ。
     80<νd1F<110 ……(5)
    ただし、
     νd1F:前記前側第1レンズ群の前記2枚の正レンズのアッベ数の最大値
    とする。
  11.  前記第4レンズ群は物体側から像面側に向かって順に、2枚の正レンズと、負レンズおよび正レンズからなる接合レンズとで構成される
     請求項1に記載のズームレンズ。
  12.  前記第5レンズ群は、1枚の負レンズで構成される
     請求項1に記載のズームレンズ。
  13.  以下の条件を満足する
     請求項12に記載のズームレンズ。
     1.45<nd5<1.65 ……(6)
    ただし、
     nd5:前記第5レンズ群を構成する前記負レンズの屈折率
    とする。
  14.  前記後側第1レンズ群は、前記ズーミングの際に光軸に沿って移動する
     請求項1に記載のズームレンズ。
  15.  ズームレンズと、前記ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
     前記ズームレンズは、
     物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、第2レンズ群と、第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、
     前記第1レンズ群は、物体側から像面側に向かって順に、広角端から望遠端へのズーミング、および無限遠物体から近距離物体へのフォーカシングに際して像面に対して固定された前側第1レンズ群と、正の屈折力を有する後側第1レンズ群とを含み、
     前記第2レンズ群、前記第3レンズ群、および前記第5レンズ群が、前記ズーミングの際に光軸に沿って移動し、
     前記第4レンズ群、および前記第6レンズ群が前記ズーミングの際に像面に対して光軸方向に固定され、
     前記後側第1レンズ群を含む少なくとも2つのレンズ群が、前記フォーカシングの際に光軸に沿って移動する
     光学機器。
PCT/JP2016/086674 2016-02-01 2016-12-09 ズームレンズおよび光学機器 WO2017134929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680079925.7A CN108496106A (zh) 2016-02-01 2016-12-09 变焦透镜和光学仪器
US16/064,807 US10823942B2 (en) 2016-02-01 2016-12-09 Zoom lens and optical instrument
JP2017565417A JP6747458B2 (ja) 2016-02-01 2016-12-09 ズームレンズおよび光学機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016980 2016-02-01
JP2016016980 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017134929A1 true WO2017134929A1 (ja) 2017-08-10

Family

ID=59500755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086674 WO2017134929A1 (ja) 2016-02-01 2016-12-09 ズームレンズおよび光学機器

Country Status (4)

Country Link
US (1) US10823942B2 (ja)
JP (1) JP6747458B2 (ja)
CN (1) CN108496106A (ja)
WO (1) WO2017134929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663831A1 (en) * 2018-12-03 2020-06-10 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
JP2022103302A (ja) * 2018-11-20 2022-07-07 株式会社ニコン 変倍光学系および光学機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633434B1 (en) * 2017-05-26 2022-07-13 Nittoh Inc. Optical system for image pickup, and image pickup device
TWI768422B (zh) * 2020-07-31 2022-06-21 大立光電股份有限公司 影像鏡片組、變焦取像裝置及電子裝置
CN114994885B (zh) * 2022-06-17 2023-09-01 湖南长步道光学科技有限公司 一种具有微距功能的全画幅光学***及电影镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2011175185A (ja) * 2010-02-25 2011-09-08 Nikon Corp 変倍光学系、光学機器及び変倍光学系の製造方法
JP2011197471A (ja) * 2010-03-19 2011-10-06 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012098592A (ja) * 2010-11-04 2012-05-24 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2012108244A (ja) * 2010-11-16 2012-06-07 Canon Inc ズームレンズおよび光学機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808815B2 (ja) * 1990-04-19 1998-10-08 株式会社ニコン 内部合焦式望遠ズームレンズ
JP5152833B2 (ja) * 2007-06-22 2013-02-27 富士フイルム株式会社 投影用ズームレンズおよび投写型表示装置
JP2009192771A (ja) * 2008-02-14 2009-08-27 Sony Corp ズームレンズおよび撮像装置ならびにズームレンズの制御方法
JP5633111B2 (ja) 2009-02-20 2014-12-03 株式会社ニコン 変倍光学系、及び、この変倍光学系を備えた光学機器
JP5710925B2 (ja) * 2010-09-28 2015-04-30 オリンパス株式会社 ズームレンズおよびそれを有する電子撮像装置
JP5582303B2 (ja) 2010-10-27 2014-09-03 株式会社ニコン 変倍光学系、及び、この変倍光学系を有する光学機器
JP6299060B2 (ja) * 2012-10-30 2018-03-28 株式会社ニコン 変倍光学系、光学装置
JP2014235217A (ja) * 2013-05-31 2014-12-15 富士フイルム株式会社 投写用レンズおよび投写型表示装置
JP6300507B2 (ja) * 2013-12-16 2018-03-28 オリンパス株式会社 ズームレンズ及びそれを有するズームレンズ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2011175185A (ja) * 2010-02-25 2011-09-08 Nikon Corp 変倍光学系、光学機器及び変倍光学系の製造方法
JP2011197471A (ja) * 2010-03-19 2011-10-06 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012098592A (ja) * 2010-11-04 2012-05-24 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2012108244A (ja) * 2010-11-16 2012-06-07 Canon Inc ズームレンズおよび光学機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022103302A (ja) * 2018-11-20 2022-07-07 株式会社ニコン 変倍光学系および光学機器
JP7260036B2 (ja) 2018-11-20 2023-04-18 株式会社ニコン 変倍光学系および光学機器
EP3663831A1 (en) * 2018-12-03 2020-06-10 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
US11372206B2 (en) 2018-12-03 2022-06-28 Canon Kabushiki Kaisha Optical system with two lens groups of +− refractive powers having five lens subgroups of +−+−− refractive powers, and image pickup apparatus including the same

Also Published As

Publication number Publication date
JPWO2017134929A1 (ja) 2018-11-22
CN108496106A (zh) 2018-09-04
JP6747458B2 (ja) 2020-08-26
US10823942B2 (en) 2020-11-03
US20190018229A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018088038A1 (ja) 撮像レンズおよび撮像装置
JP6597626B2 (ja) 広角レンズおよび撮像装置
WO2017130571A1 (ja) 撮像レンズおよび撮像装置
JP5915437B2 (ja) 可変焦点距離レンズ系および撮像装置
JP6984615B2 (ja) ズームレンズおよび撮像装置
JPWO2017134928A1 (ja) テレコンバータレンズおよび光学機器
JP5870786B2 (ja) ズームレンズおよび撮像装置
JP2011128445A (ja) ズームレンズ及び撮像装置
JP2011237588A (ja) ズームレンズ及び撮像装置
JP2015068910A (ja) 撮像レンズおよび撮像装置
US8836846B2 (en) Zoom lens and imaging apparatus
US7880974B2 (en) Zoom lens and imaging apparatus
JP4697555B2 (ja) ズームレンズ及び撮像装置
JP6747458B2 (ja) ズームレンズおよび光学機器
JP2015064492A (ja) ズームレンズ及び撮像装置
JP2014219601A (ja) マクロレンズおよび撮像装置
JP2013182054A (ja) ズームレンズ及び撮像装置
WO2016136352A1 (ja) マクロレンズおよび撮像装置
JP4697556B2 (ja) ズームレンズ及び撮像装置
JP2014211468A (ja) ズームレンズおよび撮像装置
JP2015166834A (ja) ズームレンズおよび撮像装置
JP2013254020A (ja) ズームレンズおよび撮像装置
JP5906998B2 (ja) 可変焦点距離レンズ系および撮像装置
JP6287647B2 (ja) ズームレンズおよび撮像装置
JP2015090424A (ja) ズームレンズ及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889412

Country of ref document: EP

Kind code of ref document: A1