WO2017122428A1 - プレート式熱交換器 - Google Patents

プレート式熱交換器 Download PDF

Info

Publication number
WO2017122428A1
WO2017122428A1 PCT/JP2016/084040 JP2016084040W WO2017122428A1 WO 2017122428 A1 WO2017122428 A1 WO 2017122428A1 JP 2016084040 W JP2016084040 W JP 2016084040W WO 2017122428 A1 WO2017122428 A1 WO 2017122428A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
ridges
flow path
plate
adjacent
Prior art date
Application number
PCT/JP2016/084040
Other languages
English (en)
French (fr)
Inventor
田中 信雄
Original Assignee
株式会社日阪製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日阪製作所 filed Critical 株式会社日阪製作所
Priority to US16/065,935 priority Critical patent/US20190011193A1/en
Priority to EP16885031.1A priority patent/EP3404350B1/en
Priority to CN201680078789.XA priority patent/CN108463683A/zh
Priority to JP2017561528A priority patent/JP6407454B2/ja
Publication of WO2017122428A1 publication Critical patent/WO2017122428A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to a plate heat exchanger used as a condenser or an evaporator.
  • the plate heat exchanger is a kind of heat exchanger that exchanges heat between a first fluid and a second fluid.
  • the plate heat exchanger has a plurality of heat transfer plates.
  • Each of the plurality of heat transfer plates includes a heat transfer portion.
  • the heat transfer part has a first surface on which the ridges and ridges are formed, a ridge and a first surface that face the opposite side of the first surface and are in a relation of front and back with the ridges on the first surface. And the second surface on which the ridges are formed in a relation of front and back.
  • the ridge crosses the center line (hereinafter referred to as the longitudinal center line) of the heat transfer section extending in the second direction orthogonal to the first direction.
  • the ridge is formed over the entire length of the heat transfer section in the third direction orthogonal to the first direction and the second direction.
  • each of the plurality of heat transfer plates causes the first surface of its own heat transfer portion to face the first surface of the heat transfer portion of the heat transfer plate arranged next to it on one side in the first direction.
  • each of the plurality of heat transfer plates has its second surface of the heat transfer portion opposed to the second surface of the heat transfer portion of the heat transfer plate arranged next to the other side in the first direction.
  • the ridges of the heat transfer portions of adjacent heat transfer plates intersect each other. Along with this, a space is formed between the heat transfer portions of the adjacent heat transfer plates by the recesses of the heat transfer portions.
  • circulates a 1st fluid to a 2nd direction is formed between the 1st surfaces of the heat-transfer part of the adjacent heat-transfer plate.
  • circulates a 2nd fluid to a 2nd direction is formed between the 2nd surfaces of the heat-transfer part of the adjacent heat-transfer plate.
  • the first fluid flows in the second direction in the first flow path. Further, the second fluid flows in the second direction in the second flow path. Accordingly, the plate heat exchanger exchanges heat between the first fluid in the first channel and the second fluid in the second channel via a heat transfer section that partitions the first channel and the second channel.
  • a heat transfer section that partitions the first channel and the second channel.
  • this type of plate heat exchanger is a condenser that condenses the second fluid in the second channel by heat exchange between the first fluid in the first channel and the second fluid in the second channel. May be used as In addition, this type of plate heat exchanger is an evaporator that evaporates the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path.
  • this type of plate heat exchanger is an evaporator that evaporates the second fluid in the second flow path by heat exchange between the first fluid in the first flow path and the second fluid in the second flow path.
  • the conventional plate heat exchanger when the conventional plate heat exchanger is a condenser or an evaporator, the conventional plate heat exchanger has a heat transfer performance in relation to the characteristics of the second fluid to be condensed or evaporated. There are limits to improvement.
  • the ridge of the heat transfer section is formed across the entire length of the heat transfer section in the third direction across the longitudinal center line of the heat transfer section. Therefore, the protrusions of the heat transfer section increase the respective flow resistances of the first flow path and the second flow path.
  • a fluid that does not cause a phase change (a fluid that becomes a single-phase flow) is employed as the first fluid. Therefore, the increase in the flow resistance of the first flow path increases the chance of having a thermal influence on the heat transfer section. Therefore, the increase in the flow resistance of the first flow path becomes a factor for improving the heat transfer performance.
  • a fluid that causes a phase change such as Freon (a fluid that has a two-phase flow including a liquid and a gas) is employed.
  • a liquid film of the second fluid is formed on the second surface of the heat transfer section that defines the second flow path. Therefore, in order to improve the heat transfer performance, it is necessary to increase the flow rate of the second fluid and disturb the flow of the liquid film formed on the second surface of the heat transfer unit.
  • the ridge of the heat transfer section is formed across the entire length of the heat transfer section in the third direction across the longitudinal center line of the heat transfer section. Therefore, the ridges of the heat transfer part obstruct the flow of the second fluid in the second flow path. That is, the ridges on the second surface of the heat transfer section are formed so as to cross the flow of the second fluid in the second flow path, so that the flow of the second fluid in the second flow path Increase resistance.
  • the conventional plate heat exchanger has a limit in improving the heat transfer performance of the second fluid flowing through the second flow path to the heat transfer section.
  • an object of the present invention is to provide a plate heat exchanger capable of improving the heat transfer performance with respect to the heat transfer section of the second fluid that changes phase by heat exchange with the first fluid.
  • the present invention relates to a first surface on which ridges and ridges are formed, and the ridges and first surface of the first surface facing away from the first surface and in a relationship between the ridges on the first surface and the front and back sides.
  • a heat transfer plate including a heat transfer portion having a concave surface and a second surface on which a ridge in front and back is formed, and each heat transfer portion is superposed in a first direction.
  • Each of the plurality of heat transfer plates is opposed to the first surface of the heat transfer portion in the heat transfer plate arranged next to the first surface of the heat transfer portion on one side in the first direction.
  • the second surface of the heat transfer section is opposed to the second surface of the heat transfer section in the heat transfer plate arranged next to the other side in the first direction, and the first fluid is circulated in the second direction orthogonal to the first direction.
  • a second flow path is formed between the first surfaces of the heat transfer portions of the adjacent heat transfer plates, and the second fluid flows in the second direction. It is formed between the second surfaces of the heat transfer portions of the adjacent heat transfer plates, and the heat transfer portion in at least one of the adjacent heat transfer plates is a ridge formed on the first surface.
  • the heat transfer section is formed over the entire length of the first direction and the third direction orthogonal to the second direction across the center line extending in the second direction of the heat transfer section.
  • At least one barrier protrusion that divides into two or more divided regions, and the barrier protrusion intersects with the protrusion formed on the first surface of the heat transfer portion of the adjacent heat transfer plate.
  • a plurality of grooves for forming a second flow path each of which constitutes a part of the second flow path, and each of the two or more divided regions.
  • the divided region is arranged from one end to the other end in the second direction and spaced in the third direction. Characterized in that it comprises a plurality of second flow path forming concave was.
  • Each heat transfer part of the adjacent heat transfer plate includes a barrier rib and a second flow path forming groove, each of which constitutes a part of the first flow path as a groove formed on the first surface.
  • a plurality of first flow path forming grooves each of which is arranged in each of the two or more divided regions, extending from one end to the other end in the second direction of the divided region and spaced in the third direction.
  • Each including a plurality of first flow path side ridges extending from one end to the other end in the second direction in the divided area, and the first flow path side ridges in the corresponding divided areas of the adjacent heat transfer plates are spaced apart from each other.
  • it is.
  • the protruding amount of the barrier ridge in the first direction may be set larger than the protruding amount of the first flow path side ridge in the first direction.
  • the plurality of first flow path side ridges in the divided regions corresponding to each other in the adjacent heat transfer plates may be shifted in the third direction.
  • Each heat transfer part of the adjacent heat transfer plate includes a barrier ridge and a second channel forming recess, and is a second channel adjacent in the third direction as a ridge formed on the second surface.
  • Each heat transfer part of the adjacent heat transfer plate includes a barrier ridge and a second channel forming recess, and is a second channel adjacent in the third direction as a ridge formed on the second surface.
  • the plurality of second flow path side ridges in the divided regions corresponding to each other in the adjacent heat transfer plates may be shifted in the third direction.
  • two or more barrier ribs are provided at intervals in the second direction, and the two or more barrier ribs divide the heat transfer section into three or more divided regions.
  • the barrier ridges are a pair of inclined ridge portions each having a base end and a tip opposite to the base end, and a center line extending in the second direction or an imaginary line parallel to the center line May have at least one bent ridge portion including a pair of inclined ridge portions that are inclined in directions opposite to each other and connected to each other.
  • Each heat transfer portion of the adjacent heat transfer plate includes a barrier protrusion having a bent protrusion, and the bent protrusion of the barrier protrusion of the adjacent heat transfer plate is formed by bending oppositely to each other. It is preferable that the inclined ridges of the bent ridges intersect each other.
  • the barrier ridges may extend straight in the third direction.
  • Each of the heat transfer portions of the adjacent heat transfer plates includes a barrier protrusion extending in the third direction, and each of the barrier protrusions of the adjacent heat transfer plate is disposed so as to be shifted in the second direction. Also good.
  • FIG. 1 is a perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the plate heat exchanger according to the embodiment, and is an exploded perspective view including a flow path of the first fluid and the second fluid.
  • FIG. 3 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the first surface side.
  • FIG. 4 is a view of the heat transfer plate (first heat transfer plate) of the plate heat exchanger according to the embodiment viewed from the second surface side.
  • FIG. 5 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the first surface side.
  • FIG. 1 is a perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the plate heat exchanger according to the embodiment, and is an exploded perspective view including a flow path of the first fluid and the second fluid.
  • FIG. 6 is a view of the heat transfer plate (second heat transfer plate) of the plate heat exchanger according to the same embodiment as viewed from the second surface side.
  • FIG. 7 is a diagram showing a flow of the first fluid in the first flow path in the plate heat exchanger according to the embodiment.
  • FIG. 8 is a partial cross-section along the second flow path side ridge of the plate heat exchanger according to the same embodiment, and is a schematic cross-sectional view of the first flow path as viewed mainly from the third direction.
  • FIG. 9 is a view showing a flow of the second fluid in the second flow path in the plate heat exchanger according to the embodiment.
  • FIG. 10 is a partial cross-section along the first flow path side ridge of the plate heat exchanger according to the same embodiment, and is a schematic cross-sectional view mainly viewed from the third direction with the second flow path.
  • FIG. 11 is a schematic diagram illustrating a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to the embodiment.
  • FIG. 12 is a view of a heat transfer plate (first heat transfer plate) of a plate heat exchanger according to another embodiment of the present invention as viewed from the first surface side.
  • FIG. 13 is the figure which looked at the heat-transfer plate (1st heat-transfer plate) of the plate-type heat exchanger which concerns on other embodiment from the 2nd surface side.
  • FIG. 14 is a view of a heat transfer plate (second heat transfer plate) of a plate heat exchanger according to another embodiment as viewed from the first surface side.
  • FIG. 15 is a view of a heat transfer plate (second heat transfer plate) of a plate heat exchanger according to another embodiment as viewed from the second surface side.
  • FIG. 16 is a schematic view showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to another embodiment of the present invention. is there.
  • FIG. 17 is a schematic diagram showing a flow path of the first fluid in the first flow path and a flow path of the second fluid in the second flow path of the plate heat exchanger according to still another embodiment of the present invention. It is.
  • the plate heat exchanger 1 includes a plurality of heat transfer plates 2 and 3. That is, the plate heat exchanger 1 includes at least three heat transfer plates 2 and 3. In the present embodiment, the plate heat exchanger 1 includes more than three heat transfer plates 2 and 3. In the present embodiment, the plurality of heat transfer plates 2 and 3 include two types of heat transfer plates. Accordingly, in the following description, one heat transfer plate 2 of the two types of heat transfer plates 2 and 3 is referred to as a first heat transfer plate, and the other of the two types of heat transfer plates 2 and 3 is used. The heat transfer plate 3 is referred to as a second heat transfer plate. However, since the first heat transfer plate 2 and the second heat transfer plate 3 have a common configuration, the first heat transfer plate 2 and the second heat transfer plate 3 are collectively referred to for explanation of these common configurations. Simply referred to as heat transfer plates 2 and 3.
  • the heat transfer plates 2 and 3 include heat transfer portions 20 and 30 having first surfaces Sa1 and Sb1 and second surfaces Sa2 and Sb2 facing away from the first surfaces Sa1 and Sb1.
  • the heat transfer parts 20 and 30 are provided with annular fitting parts 21 and 31 extending from the entire outer periphery of the heat transfer parts 20 and 30 in a direction intersecting the heat transfer parts 20 and 30.
  • the heat transfer parts 20 and 30 have a thickness in the first direction. Accordingly, the first surfaces Sa1, Sb1 and the second surfaces Sa2, Sb2 of the heat transfer units 20, 30 are arranged in the first direction. As shown in FIGS. 3 to 6, the outer shape (contour) of the heat transfer sections 20 and 30 is arranged with a pair of long sides extending in the second direction orthogonal to the first direction and spaced apart in the second direction. The pair of short sides is defined by a pair of short sides that extend in a third direction orthogonal to the first direction and the second direction and connect the pair of long sides. That is, the outer shape of the heat transfer sections 20 and 30 viewed from the first direction is a rectangular shape that is elongated in the second direction.
  • the heat transfer units 20 and 30 have one end in the second direction and the other end opposite to the one end.
  • the heat transfer units 20 and 30 have at least two openings 200, 201, 202, 203, 300, 301, 302, and 303 at one end and the other end in the second direction, respectively.
  • the heat transfer sections 20 and 30 have two openings 200, 203, 300, and 303 at one end in the second direction, and two openings 201, 202, and 301 at the other end in the second direction. , 302.
  • the two openings 200, 203, 300, 303 at one end of the heat transfer sections 20, 30 in the second direction are aligned in the third direction.
  • the two openings 201, 202, 301, 302 at the other end of the heat transfer sections 20, 30 in the second direction are aligned in the third direction.
  • the periphery of one opening 200, 300 at one end in the second direction in the heat transfer section 20, 30 and the periphery of one opening 201, 301 at the other end are recessed on the first surface Sa1, Sb1 side. . Accordingly, the periphery of one opening 200, 300 at one end in the second direction in the heat transfer section 20, 30 and the periphery of one opening 201, 301 at the other end are on the second surface Sa2, Sb2 side. Bulges out.
  • the periphery of the other openings 203 and 303 at one end in the second direction in the heat transfer sections 20 and 30 and the periphery of the other openings 202 and 302 at the other end are on the first surface Sa1, Sb1 side. Bulges out. Accordingly, the periphery of the other openings 203 and 303 at one end in the second direction in the heat transfer sections 20 and 30 and the periphery of the other openings 202 and 302 at the other end are on the second surface Sa2 and Sb2 side. It is depressed in.
  • Openings 202, 203, 302, 303 (one end portion) of the heat transfer portions 20, 30 of the heat transfer plates 2, 3 that are lined up next to each other around the openings 202, 203, 302, 303 swelled on the first surface Sa1, Sb1 side
  • the openings 202, 203, swelled to the first surface Sa1, Sb1 side so as to come into contact with the surroundings (bulged portions) of the other opening 202, 302 and the other opening 203, 303 at the other end.
  • the amount of swelling around 302 and 303 is set.
  • the openings 200, 201, 202, 203, 300, 301, 302, and 303 are shown in order to clarify the concavo-convex relationship on the first surface Sa1, Sb1 and the second surface Sa2, Sb2. Dots are attached to the area recessed around and the bottom portions of the recesses 22 and 32 described later.
  • 201 and 301 are at diagonal positions.
  • the other openings 203 and 303 at one end in the second direction in the heat transfer sections 20 and 30 and the other openings 202 and 302 at the other end are at diagonal positions.
  • each of the concave strips 22 and 32 and the convex strips 23 and 33 is plural (many).
  • the heat transfer plates 2 and 3 are formed by press forming a metal plate.
  • the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer units 20 and 30 and the ridges 22 and 32 formed on the second surfaces Sa2 and Sb2 of the heat transfer units 20 and 30 are as follows. There is a relationship between the front and back.
  • the recesses 22 and 32 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate accompanying the press forming are formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30. It is formed at a position corresponding to the formed ridges 23 and 33. Further, the protrusions 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 due to the deformation of the metal plate accompanying press forming are formed on the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30, respectively. It is formed at a position corresponding to the formed concave strips 22 and 32.
  • the heat transfer sections 20 and 30 are center lines (hereinafter referred to as vertical center lines) CL extending in the second direction as the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1.
  • At least one barrier protrusion 230, 330 that is formed across the entire length in the third direction and divides the heat transfer sections 20, 30 into two or more divided regions Da ..., Db ... in the second direction.
  • the barrier ribs 230 and 330 that cross-abut with the ribs 23 and 33 formed on the first surfaces Sa1 and Sb1 of the heat transfer sections 20 and 30 of the other party are included.
  • the heat transfer parts 20 and 30 are a plurality of first flow path forming concave stripes 220 and 320, each constituting a part of the first flow path Ra, as the concave stripes 22 and 32 formed on the first surfaces Sa1 and Sb1.
  • a plurality of the divided regions Da ..., Db ... that are arranged at intervals in the third direction from one end in the second direction to the other end.
  • the first flow path forming recesses 220 and 320 are included.
  • the heat-transfer parts 20 and 30 are extended in a 2nd direction between the groove
  • a plurality of first flow path side ridges 231 and 331 are formed.
  • two or more barrier ribs 230 and 330 are provided at intervals in the second direction.
  • the two or more barrier ridges 230 and 330 divide the heat transfer sections 20 and 30 into three or more divided areas Da.
  • the barrier ridges 230 and 330 have at least one bent ridge portion 232 and 332.
  • the bent ridges 232 and 332 are a pair of inclined ridges 232a, 232b, 332a, and 332b each having a base end and a tip opposite to the base end, and are connected to each other with respect to the longitudinal center line CL. It includes a pair of inclined ridges 232a, 232b, 332a, 332b that are inclined in the opposite direction and connected to each other.
  • the barrier ridges 230 and 330 have one bent ridge portion 232 and 332.
  • the base ends of the pair of inclined ridge portions 232a, 232b, 332a, 332b constituting the bent ridge portions 232, 332 are on the edges of the heat transfer portions 20, 30 in the third direction. positioned.
  • the respective tips of the pair of inclined ridge portions 232a, 232b, 332a, 332b are located at the center (on the longitudinal center line CL) of the heat transfer portions 20, 30 in the third direction.
  • line parts 232a, 232b, 332a, 332b is connected in the state mutually matched.
  • the barrier ridges 230 and 330 themselves constitute the bent ridge portions 232 and 332 by adopting such an aspect.
  • the pair of inclined ridges 232a, 232b, 332a, 332b are arranged symmetrically with reference to an imaginary line extending in the second direction. That is, the inclination directions of the pair of inclined protrusions 232a, 232b, 332a, 332b are opposite to each other. However, the inclination angles of the pair of inclined protrusions 232a, 232b, 332a, 332b with respect to the vertical center line CL extending in the second direction are the same.
  • the protrusion amount in the first direction of the barrier ribs 230 and 330 is set to be larger than that of the first flow path side protrusions 231 and 331. Accordingly, the tops of the barrier ridges 230 and 330 are positioned outside the tops of the first flow path side ridges 231 and 331. Thereby, only the barrier ribs 230 and 330 among the ribs 23 formed on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 are the heat transfer portions 20 and 30 of the counterpart heat transfer plates 2 and 3. To touch. That is, the first flow path side ridges 231 and 331 are formed lower than the barrier ridges 230 and 330 and are formed so as to be non-contact with the counterpart heat transfer plates 2 and 3.
  • the first flow path forming ridges 220 and 320 and the first flow path side ridges 231 and 331 formed in each of the divided areas Da ..., Db ... extend over the entire length of the divided areas Da ..., Db ... in the second direction. It is formed. Accordingly, at least one end of the first flow path forming concave stripes 220 and 320 and the first flow path side convex stripes 231 and 331 are connected to barrier convex stripes 230 and 330 that divide the divided areas Da. That is, one end of the first flow path forming concave stripes 220 and 320 and the first flow path side convex stripes 231 and 331 is one barrier of the pair of barrier convex stripes 230 and 330 that define the divided areas Da.
  • the other ends of the first flow path forming concave stripes 220 and 320 and the first flow path side convex stripes 231 and 331 are of the pair of barrier convex stripes 230 and 330 that define the divided areas Da.
  • the other barrier ribs 230 and 330 are connected.
  • the plurality of first flow path forming ridges 220, 320 formed in each of the two or more divided regions Da ..., Db ... are aligned in the second direction. That is, the number and arrangement of the first flow path forming concave strips 220 and 320 formed in each of the two or more divided regions Da. Accordingly, the number and arrangement of the first flow path side ridges 231 and 331 formed in each of the two or more divided regions Da.
  • the heat transfer portions 20 and 30 are formed as the concave strips 22 and 32 formed on the second surfaces Sa ⁇ b> 2 and Sb ⁇ b> 2 of the barrier convex strips 230 and 330 on the first surface Sa ⁇ b> 1 and Sb ⁇ b> 1.
  • Concave ridges formed on the back side (hereinafter referred to as back side ridges) 222 and 322 are included.
  • the heat-transfer parts 20 and 30 are the 2nd flow path formation groove
  • the plurality of second flow path forming recesses 221 and 321 are arranged.
  • the heat-transfer parts 20 and 30 are the 1st formed in the 3rd direction between the 2nd flow path formation concave strips 221 and 321 as the convex strips 23 and 33 formed in 2nd surface Sa2, Sb2. Two flow path side ridges 233 and 333, each including a plurality of second flow path side ridges 233 and 333 extending from one end to the other end in the second direction of the divided regions Da.
  • the back side concave stripes 222 and 322 are formed in the same form except that the concave and convex relation with the barrier convex stripes 230 and 330 is reversed. Therefore, on the second surfaces Sa2 and Sb2 of the heat transfer parts 20 and 30, a pair of inclined recesses 22 and 32 which are the recesses 22 and 32 formed on the back sides of the pair of inclined protrusions 232a, 232b, 332a and 332b, respectively. Bent concave portions 223 and 323 including the strip portions 223a, 223b, 323a, and 323b are formed.
  • the bent ridges 232 and 332 (the pair of inclined ridges 232a, 232b, 332a, and 332b) constitute the barrier ridges 230 and 330. Therefore, the bent concave portions 223 and 323 constitute the entire back side concave portions 222 and 322 formed on the back side of the barrier convex portions 230 and 330.
  • the second flow path forming concave strips 221 and 321 are the concave strips 22 and 32 formed on the back side of the first flow path side convex strips 231 and 331 on the first surfaces Sa1 and Sb1.
  • the second flow path forming grooves 221 and 321 will be described in detail.
  • the second flow path forming concave strips 221 and 321 extend from one end to the other end in the second direction in the divided regions Da.
  • “from one end of the second direction to the other end” means that the angle with respect to the virtual line extending in the second direction is smaller than the inclination angle with respect to the virtual line extending in the third direction. Means that it exists from end to end in the second direction.
  • the second flow path forming concave strips 221 and 321 extend in the second direction.
  • the second flow path forming concave strips 221 and 321 have an angle with respect to an imaginary line extending in the second direction of 0 degrees and an angle with respect to the imaginary line extending in the third direction is 90 degrees.
  • the second flow path side convex strips 233 and 333 formed between the second flow path forming concave strips 221 and 321 also extend in the second direction.
  • the inner surface that defines the second flow path forming concave strips 221 and 321 and the outer surface that defines the second flow path side convex strips 233 and 333 are continuous.
  • region Da ..., Db %) of the heat-transfer parts 20 and 30 is formed in the wave shape which undulated in the 3rd direction.
  • the second flow path forming concave stripes 221 and 321 and the second flow path side convex stripes 233 and 333 are formed over the entire length in the second direction in the divided areas Da. Accordingly, the second flow path forming ridges 221 and 321 are formed on the back side ridges 222 formed on the back side of the barrier ridges 230 and 330 that define the divided areas Da. 322 is continuous. That is, the second flow path forming grooves 221 and 321 are open toward the back side grooves 222 and 322.
  • Both the first heat transfer plate 2 and the second heat transfer plate 3 have the heat transfer portions 20 and 30 having the above-described configuration.
  • the first heat transfer plate 2 and the second heat transfer plate 3 are overlapped so that the first surfaces Sa1 and Sb1 face each other and the second surfaces Sa2 and Sb2 face each other. Therefore, in the first heat transfer plate 2, the fitting portion 21 extends to the first surface Sa ⁇ b> 1 side of the heat transfer portion 20 as shown in FIG. 3. In contrast, in the second heat transfer plate 3, the fitting portion 31 extends to the second surface Sb ⁇ b> 2 side of the heat transfer portion 30 as shown in FIG. 6.
  • Each of the plurality of heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) is as described above.
  • Each of the plurality of heat transfer plates 2 and 3 (first heat transfer plate 2 and second heat transfer plate 3) is overlapped in the first direction as shown in FIG.
  • the first heat transfer plate 2 and the second heat transfer plate 3 are alternately stacked in the first direction.
  • each of the plurality of heat transfer plates 2 and 3 has heat transfer in the heat transfer plates 2 and 3 arranged next to each other on the one side in the first direction on the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 thereof.
  • the first surfaces Sa1 and Sb1 of the portions 20 and 30 are opposed to each other.
  • each of the plurality of heat transfer plates 2 and 3 includes the heat transfer portions in the heat transfer plates 2 and 3 that are arranged next to each other on the other side in the first direction on the second surfaces Sa2 and Sb2 of their own heat transfer portions 20 and 30.
  • the second surfaces Sa2 and Sb2 of 20 and 30 are opposed to each other.
  • the tip ends of the inclined ridge portions 232a and 232b of the barrier ridge 230 (bending ridge portion 232) of the first heat transfer plate 2 are in the second direction from the base end portion.
  • the distal ends of the inclined ridges 332a and 332b of the barrier ridges 330 (bending ridges 332) of the second heat transfer plate 3 are located on the one end side of the heat transfer portion 20 from the base end portion.
  • the plurality of heat transfer plates 2 and 3 are overlapped so as to be positioned on the other end side of the heat transfer section 30 in the second direction.
  • one inclined ridge portion 232 a constituting the barrier ridge 230 (bending ridge portion 232) of the first heat transfer plate 2 is the barrier of the second heat transfer plate 3. It intersects with one inclined ridge portion 332a constituting the projection ridge 330 (bending ridge portion 332) and constitutes the barrier ridge 230 (bending ridge portion 232) of the first heat transfer plate 2.
  • the first heat transfer so that the other inclined ridge portion 232b cross-abuts with the other inclined ridge portion 332b constituting the barrier ridge 330 (bent ridge portion 332) of the second heat transfer plate 3.
  • the plate 2 and the second heat transfer plate 3 are alternately stacked.
  • one first heat transfer plate 2 and one second heat transfer plate 3 are superposed in a state where the back side concave grooves 222 and 322 face each other. Is done. When a plurality of sets are overlapped, every other set is inverted by 180 degrees around the imaginary line extending in the first direction. In this state, the fitting portions 21 and 31 of one of the heat transfer plates 2 and 3 adjacent in the first direction (the first heat transfer plate 2 or the second heat transfer plate 3) are The heat transfer plates 2 and 3 adjacent to each other in the first direction are fitted on the fitting portions 21 and 31 of the other heat transfer plates 2 and 3 (the first heat transfer plate 2 or the second heat transfer plate 3).
  • the first surfaces Sa1 and Sb1 of the heat transfer sections 20 and 30 are opposed to each other and the adjacent heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) correspond to each other.
  • the heat transfer plates 2 and 3 correspond to each other with the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 facing each other.
  • the heat transfer plates 2 and 3 correspond to each other with the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 facing each other.
  • the heat transfer plates 2 and 3 (the first heat transfer plate 2 and the second heat transfer plate 3) that are adjacent to each other face each other, and the second flow path side ridges 233 in the corresponding divided regions Da. , 333 are brought into contact with each other.
  • circulates the 1st fluid A to the 2nd direction orthogonal to a 1st direction is adjacent. It is formed between Sa1 and Sb1. Further, the second flow path Rb for circulating the second fluid B in the second direction is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.
  • the plurality of heat transfer plates 2 and 3 are overlapped in the first direction, so that the openings 200, 201, 202, 203, 300, 301, 302 and 303 are connected in the first direction. Moreover, the part which swelled around the opening 200,201,202,203,300,301,302,303 which opposes mutually and which swelled toward the other party contacts. Accordingly, the first inflow path Pa1 that supplies the first fluid A to the first flow path Ra, the first outflow path Pa2 that causes the first fluid A to flow out from the first flow path Ra, and the second fluid B in the second flow path Rb. Are formed, and a second outflow path Pb2 through which the second fluid B flows out from the second flow path Rb is formed.
  • the abutted portions of the adjacent heat transfer plates 2 and 3 are brazed.
  • the plurality of heat transfer plates 2 and 3 are connected integrally (mechanically), and the opposing surfaces (contact portions) of the adjacent heat transfer plates 2 and 3 are sealed.
  • the plate heat exchanger 1 according to the present embodiment is as described above.
  • the first fluid A flows into the plurality of first flow paths Ra from the first inflow path Pa ⁇ b> 1.
  • the first fluid A flows in the second direction in each of the plurality of first flow paths Ra and flows out to the first outflow path Pa2.
  • the second fluid B flows into the plurality of second flow paths Rb from the second inflow path Pb1.
  • the second fluid B flows in the second direction in each of the plurality of second flow paths Rb and flows out to the second outflow path Pb2.
  • the first fluid A circulates around the diagonal line connecting the diagonals of the heat transfer sections 20 and 30 in the first flow path Ra.
  • the second fluid B is a diagonal line connecting the diagonals of the heat transfer sections 20 and 30 in the second flow path Rb, and is a diagonal line that is the center of the flow of the first fluid A. It circulates around another diagonal line.
  • the first fluid A flowing through the first flow path Ra and the second fluid B flowing through the second flow path Rb are heat transfer plates 2 and 3 that partition the first flow path Ra and the second flow path Rb ( Heat exchange is performed via the heat transfer units 20 and 30).
  • the second fluid B condenses or evaporates in the process of flowing in the second direction in the second flow path Rb.
  • the plate heat exchanger 1 has the first surfaces Sa1 and Sb1 on which the ridges 23 and 33 and the ridges 22 and 32 are formed, and the first surfaces Sa1 and Sb1. Facing the opposite side, and the concave strips 22 and 32 having a front and back relationship with the convex strips 23 and 33 of the first surfaces Sa1 and Sb1 and the convex strip having a front and back relationship with the concave strips 22 and 32 of the first surface Sa1 and Sb1 Heat transfer plates 2 and 3 including heat transfer portions 20 and 30 having second surfaces Sa2 and Sb2 on which strips 23 and 33 are formed, and the heat transfer portions 20 and 30 are overlapped in the first direction.
  • a plurality of heat transfer plates 2 and 3 are provided, and each of the plurality of heat transfer plates 2 and 3 has the first surfaces Sa1 and Sb1 of its own heat transfer portions 20 and 30 arranged next to each other on one side in the first direction. Paired with the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 in the heat transfer plates 2 and 3 And the second surfaces Sa2 and Sb2 of the heat transfer parts 20 and 30 in the heat transfer plates 2 and 3 arranged next to each other on the other side in the first direction.
  • a first flow path Ra that causes the first fluid A to flow in a second direction orthogonal to the first direction is formed between the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3.
  • the second flow path Rb for circulating the second fluid B in the second direction is formed between the second surfaces Sa2 and Sb2 of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 and adjacent to each other.
  • the heat transfer portions 20 and 30 in at least one of the heat transfer plates 2 and 3 are formed as ridges 23 and 33 formed on the first surfaces Sa1 and Sb1, respectively.
  • the heat transfer sections 20 and 30 are formed over the entire length in the first direction and the third direction orthogonal to the second direction, and the heat transfer sections 20 and 30 are divided into two or more divided regions Da in the second direction.
  • the barrier rib 230, 330 partitioned into Db are formed on the first surfaces Sa1, Sb1 of the heat transfer portions 20, 30 of the heat transfer plates 2, 3 of the other party.
  • a plurality of second streams each constituting a part of the second flow path Rb are included.
  • the path forming concave strips 221, 321 extend from one end in the second direction to the other end of the divided areas Da ..., Db ... and in the third direction.
  • a plurality of second flow path forming ridges 221 and 32 arranged at intervals in each other 1 is included.
  • the barrier ribs 230 and 330 are provided at intermediate positions in the first flow path Ra formed between the first surfaces Sa1 and Sb1 of the adjacent heat transfer units 20 and 30. It exists in the state which protruded toward the other party heat-transfer parts 20 and 30 (refer FIG. 8). Accordingly, the barrier ribs 230 and 330 inhibit the flow of the first fluid A in the first flow path Ra and increase the flow resistance of the first fluid A in the first flow path Ra. Thereby, the opportunity with which the 1st fluid A has a thermal influence with respect to the heat-transfer parts 20 and 30 increases, and the heat transfer performance to the 2nd fluid B side becomes high.
  • the ridges 22 and 32 of the first surfaces Sa1 and Sb1 and the ridges 23 and 33 of the second surfaces Sa2 and Sb2 are in a front-back relationship, and the ridges 23 and 33 of the first surfaces Sa1 and Sb1 and the second surface
  • the concave strips 22 and 32 of Sa2 and Sb2 are in a front-back relationship. Therefore, on the second surfaces Sa ⁇ b> 2 and Sb ⁇ b> 2 of the heat transfer parts 20 and 30, back side concave strips 222 and 322 corresponding to the barrier convex strips 230 and 330 are formed.
  • back side concave stripes 222 and 322 are formed across the center line (vertical center line) CL extending in the second direction in the heat transfer portions 20 and 30.
  • back side concave stripe 222,322 divides heat-transfer parts 20 and 30 into two or more division field Da ..., Db ... by the 2nd surface Sa2, Sb2.
  • the plurality of second flow path forming grooves 221 and 321 extend from one end to the other end in the second direction of the divided areas Da.
  • the plurality of second flow path forming ridges 221 and 321 include back side ridges 222 and 322 (corresponding to the barrier ridges 230 and 330) that define the divided areas Da. 22 and 32).
  • the second flow path Rb does not have anything that obstructs the flow of the second fluid B over the entire length in the second direction (that crosses the flow path) (see FIG. 10).
  • the second flow path forming recesses 221 and 321 extend from one end to the other end in the second direction in the divided areas Da. Therefore, the second flow path forming grooves 221 and 321 extend straight in the second direction, or the inclination component (angle) with respect to the virtual line extending in the second direction is the inclination component (angle) with respect to the virtual line extending in the third direction. ) And extend in an inclined manner in a state smaller than. Accordingly, the second flow path forming concave strips 221 and 321 form a space (part of the second flow path Rb) corresponding to or substantially corresponding to the flow direction of the second fluid B. Accordingly, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow velocity of the second fluid B can be increased.
  • the heat transfer performance of the second fluid B flowing through the second flow path Rb to the heat transfer sections 20 and 30 (first fluid A side) is enhanced.
  • each heat-transfer part 20 and 30 of the adjacent heat-transfer plates 2 and 3 contains the ribs 230 and 330 for barriers, and the concaves 221 and 321 for 2nd flow path formation
  • the recesses 22 and 32 formed on the surfaces Sa1 and Sb1 are a plurality of first passage forming recesses 220 and 320 that respectively constitute a part of the first passage Ra, and two or more divided areas Da. .., Db..., A plurality of first flow path forming ridges 220 extending from one end in the second direction to the other end of the divided regions Da.
  • first flow path side ridges 231 formed between the first flow path forming ridges 220 and 320 adjacent in the third direction as the ridges 23 and 33 formed on the first surfaces Sa1 and Sb1.
  • 331 each of which is a divided area Da ...
  • a plurality of first flow path side ridges 231 and 331 extending from one end to the other end in the second direction in Db... And the first flow path side in the corresponding divided regions Da.
  • the ridges 231 and 331 are spaced apart from each other (see FIG. 8). Therefore, the inside of the first flow path Ra is not completely closed, and the flowability of the first fluid A is ensured while the flow resistance of the first fluid A is provided in the first flow path Ra.
  • the protruding amount of the barrier ridges 230 and 330 in the first direction is set larger than the protruding amount of the first flow path side ridges 231 and 331 in the first direction. Therefore, the barrier protrusions 230 and 330 having a larger protrusion than the first flow path side protrusions 231 and 331 are the protrusions 23 and 33 of the counterpart heat transfer plates 2 and 3 (the barrier protrusions 230 and 330 or the first flow path side). Intersecting with ridges 231 and 331). In connection with this, the 1st flow path side convex strips 231 and 331 of the heat-transfer parts 20 and 30 which mutually oppose in 1st flow path Ra do not contact.
  • the first flow path Ra is formed over the entire length in the third direction in the heat transfer sections 20 and 30. Thereby, the first fluid A spreads in the third direction and flows in the second direction while causing flow resistance in the first flow path Ra. Accordingly, the entire or substantially entire area of the first surfaces Sa1 and Sb1 of the heat transfer sections 20 and 30 contributes to heat transfer.
  • each heat-transfer part 20 and 30 of the adjacent heat-transfer plates 2 and 3 contains the ribs 230 and 330 for barriers, and the concaves 221 and 321 for 2nd flow-path formation, on 2nd surface Sa2 and Sb2.
  • second channel-side ridges 233 and 333 formed between the second channel forming recesses 221 and 321 adjacent in the third direction, each of which is a divided region Da.
  • Db ... includes a plurality of second flow path side ridges 233, 333 extending from one end to the other end in the second direction, and the second surfaces Sa2, Sb2 of the heat transfer sections 20, 30 are opposed to each other to be adjacent to each other.
  • two or more barrier ribs 230 and 330 are provided at intervals in the second direction, and the two or more barrier ribs 230 and 330 divide the heat transfer sections 20 and 30 into three or more. It is divided into areas Da ..., Db ... (see FIGS. 7 and 8). Accordingly, the barrier ribs 230 and 330 obstruct the flow of the first channel Ra at a plurality of locations (two or more locations) in the first channel Ra. As a result, the flow resistance of the first fluid A in the first flow path Ra is increased, so that the heat transfer performance of the first fluid A in the first flow path Ra is improved.
  • the barrier ridges 230, 330 are a pair of inclined ridge portions 232a, 232b, 332a, 332b each having a base end and a tip opposite to the base end, and extending in the second direction.
  • the barrier protrusions 230 and 330 across the first flow path Ra become the flow resistance of the first fluid A, but also the bent protrusions 232 and 332 (a pair of the barrier protrusions 230 and 330).
  • the inclined ridges 232a, 232b, 332a, 332b) diffuse the first fluid A in the first flow path Ra. Therefore, the area
  • Each of the heat transfer portions 20 and 30 of the adjacent heat transfer plates 2 and 3 includes barrier ribs 230 and 330 having bent protrusions 232 and 332, and the barrier of the adjacent heat transfer plates 2 and 3.
  • the bent ridges 232 and 332 of the projecting ridges 230 and 330 are formed to be bent diametrically opposite to each other, and the inclined ridges 232a, 232b, 332a, and 332b of the respective bent ridges 232 and 332 cross each other. (See FIG. 7). Accordingly, the flow resistance of the first fluid A in the first flow path Ra is increased, and the diffusion effect of the first fluid A is increased. Thereby, the heat transfer performance of the first fluid A in the first flow path Ra is improved.
  • first heat transfer plate 2 and second heat transfer plate 3 two types are provided as adjacent heat transfer plates 2 and 3, and the adjacent heat transfer plates 2 and 3 are provided.
  • 3 includes the barrier ribs 230 and 330 and the second flow path forming ribs 221 and 321, but is not limited thereto.
  • one of the adjacent heat transfer plates 2 and 3 may include the barrier ribs 230 and 330 and the second flow path forming ribs 221 and 321.
  • the second flow path forming grooves 221 and 321 are formed to extend straight in the second direction, but the present invention is not limited to this.
  • the second flow path forming grooves 221 and 321 may be inclined with respect to an imaginary line extending in the second direction on the assumption that the second groove 221 and 321 are continuous with the back-side grooves 222 and 322.
  • the inclination component (angle) with respect to the imaginary line extending in the second direction may be inclined in a state smaller than the inclination component (angle) with respect to the imaginary line extending in the third direction. It is a condition.
  • two or more barrier ribs 230 and 330 are provided at intervals in the second direction, and the two or more barrier ribs 230 and 330 include three or more heat transfer portions 20 and 30.
  • the present invention is not limited to this.
  • one barrier protrusion 230, 330 is provided for one heat transfer section 20, 30, and the one barrier protrusion 230, 330 divides the heat transfer section 20, 30 into two divided areas Da ... , Db...
  • the 2nd surface Sa2, Sb2 of the heat-transfer parts 20 and 30 is made to oppose, and the adjacent heat-transfer plates 2 and 3 are the 2nd flow-path side which exists in the division area Da ..., Db ... mutually corresponding.
  • the tops of the ridges 233 and 333 are brought into contact with each other, the present invention is not limited to this.
  • the 2nd flow path Rb is formed in the state which continued over the full length of the 2nd direction in the heat-transfer parts 20 and 30, and the full length of the 3rd direction. Accordingly, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow rate of the second fluid B can be further increased.
  • the plurality of second flow path side ridges 233 and 333 in the corresponding divided regions Da..., Db... In the adjacent heat transfer plates 2 and 3 are shifted in the third direction (for example, 1/4). May be arranged (off the pitch).
  • the second flow path side protrusions 233 and 333 of the heat transfer sections 20 and 30 facing each other in the second flow path Rb do not come into contact with each other, and the second flow path Rb becomes the heat transfer section 20. , 30 in a continuous state over the entire length in the second direction and the entire length in the third direction. Accordingly, the flow resistance of the second fluid B in the second flow path Rb is reduced, and the flow rate of the second fluid B can be further increased.
  • the protrusion amount of the protrusions 230 and 330 for barriers is set larger than the protrusion amount of the 1st flow path side protrusions 231 and 331, and the 1st flow path side protrusions 231 and 331 are the other heat-transfer parts 20. , 30 is configured so as to be non-contact, but is not limited thereto.
  • the protrusion amount of the barrier ribs 230 and 330 may be set to be the same as the protrusion amount of the first flow path side protrusions 231 and 331.
  • 231 and 331 may be arranged so as to be shifted in the third direction (for example, shifted by 1/4 pitch).
  • 1st flow path side convex strips 231 and 331 of the heat-transfer parts 20 and 30 which mutually oppose in 1st flow path Ra do not contact.
  • 1st flow path Ra is connected over the whole area of a 2nd direction in each division area Da ... in the heat-transfer parts 20 and 30, ....
  • barrier ribs 230 and 330 intersect each other, or the barrier ribs 230 and 330 and the mating heat transfer sections 20 and 30 intersect with the ribs 23 and 33 in the first flow path Ra.
  • the flow resistance of the first fluid A is increased.
  • the barrier ridges 230 and 330 constitute one bent ridge portion 232 and 332 including a pair of inclined ridge portions 232a, 232b, 332a, and 332b, but the present invention is not limited to this.
  • the barrier ridges 230 and 330 may include a plurality (two or more) of bent ridges 232 and 332.
  • the barrier ridges 230 and 330 may be curved as viewed from the first direction.
  • the barrier ridges 230 and 330 may be formed in a wave shape in which a plurality of curved portions are connected when viewed from the first direction.
  • the plurality of barrier ridges 230 and 330 formed on the first surfaces Sa1 and Sb1 of the heat transfer sections 20 and 30 have the same form, but are not limited thereto.
  • a plurality of barrier protrusions 230 and 330 having different forms may be formed on the first surfaces Sa1 and Sb1 of the heat transfer units 20 and 30.
  • different forms mean that the inclined ridges 232a, 232b, 332a, 332b have different inclination angles on the premise that the barrier ridges 230, 330 have bent ridges 232, 332, respectively.
  • the bent ridges 232, 332 (inclined ridges 232a, 232b, 332a, 332b) have different inclination directions and have different shapes as viewed from the first direction.
  • 1st surface Sa1, Sb1 of the heat-transfer parts 20 and 30 is made to oppose, and each heat-transfer part 20 and 30 of the adjacent heat-transfer plates 2 and 3 has the said bent convex part 232, Barrier ridges 230 and 330 having 332 are formed, and bent ridges 232 and 332 of the barrier ridges 230 and 330 of the adjacent heat transfer plates 2 and 3 are formed to be bent diametrically opposite each other, Although the inclined ridges 232a, 232b, 332a, 332b of the bending ridges 232, 332 of each other intersect each other, the present invention is not limited to this. For example, as shown in FIGS.
  • the barrier protrusions 230 and 330 and the back-side recesses 222 and 322 may extend straight in the third direction. In this way, the barrier protrusions 230 and 330 cross the first flow path Ra over the entire length of the first flow path Ra, so that the flow resistance of the first fluid A is increased. Thereby, since the opportunity with which the 1st fluid A has a thermal influence with respect to the heat-transfer parts 20 and 30 increases, heat transfer performance improves.
  • the barrier ribs extending in the third direction are provided on the heat transfer portions 20 and 30 of the heat transfer plates 2 and 3 adjacent to each other with the first surfaces Sa1 and Sb1 of the heat transfer portions 20 and 30 facing each other.
  • 230, 330 are formed, and the barrier ribs 230, 330 of the adjacent heat transfer plates 2, 3 are arranged so as to be shifted from each other in the second direction, and the divided regions Da of the counterpart heat transfer sections 20, 30 ... , Db..., Db...
  • barrier ribs 230 and 330 will block the flow of the 1st channel Ra in a plurality of places (two or more places). As a result, the flow resistance of the first fluid A in the first flow path Ra is increased, so that the heat transfer performance of the first fluid A in the first flow path Ra is improved.
  • the first flow path Ra directly communicates the first inflow path Pa1 and the first outflow path Pa2 and the second flow path Rb directly communicates the second inflow path Pb1 and the second outflow path Pb2.
  • the second flow path Rb directly communicates the second inflow path Pb1 and the second outflow path Pb2.
  • at least two second flow paths Rb communicate with each other by a connection flow path PJ extending in the first direction at a position different from the second inflow path Pb1 and the second outflow path Pb2.
  • the second flow path Rb located at the most upstream of the flow path of the second fluid B including the flow path PJ is connected to the second inflow path Pb1, and the most downstream of the flow path of the second fluid B including the connection flow path PJ. You may connect 2nd flow path Rb located in 2nd outflow path Pb2.
  • a branch reference space Ds1 is formed between the adjacent heat transfer plates 2 and 3 at a midway position in the overlapping direction (first direction) of the heat transfer plates 2 and 3.
  • the second flow path Rb on one side of the branch reference space Ds1 in the first direction and the branch reference space Ds1 are connected via the connection flow path PJ, and from the branch reference space Ds1 in the first direction.
  • the second flow path Rb on the other side and the branch reference space Ds1 may be connected via the connection flow path PJ.
  • the flow path of the second fluid B is at least one first system S1 continuous on one side in the first direction from the branch reference space Ds1, and on the other side in the first direction from the branch reference space Ds1. It branches to at least one continuous second system S2.
  • the flow path of the second fluid B includes the first system S1 and the second system S2, in each of the first system S1 and the second system S2, at least one second that is in the middle of the first direction.
  • the branch reference space (between the heat transfer plates 2 and 3 that defines the second flow path Rb that is directly or indirectly connected to the upstream branch reference space Ds1 via the connection flow path PJ.
  • a downstream branch reference space) Ds2 may be formed.
  • the second flow path Rb on one side of the branch reference space Ds2 in the first direction and the branch reference space Ds2 on the downstream side are connected via the connection flow path PJ, and the branch reference space Ds2 in the first direction.
  • the second flow path Rb on the other side and the downstream branch reference space Ds2 are connected via the connection flow path PJ.
  • the flow path of the second fluid B in each of the first system S1 and the second system S2 further branches into at least two systems S1a, S1b, S2a, S2b, and the most in the systems S1a, S1b, S2a, S2b.
  • the second flow path Rb located downstream is connected to the second outflow path Pb2.
  • the second flow path Rb (second flow path Rb connected to the second outflow path Pb2) located on the most downstream side in each system S1a, S1b, S2a, S2b is not limited to one, and may be plural. Good.
  • SYMBOLS 1 Plate type heat exchanger, 2 ... 1st heat transfer plate (heat transfer plate), 3 ... 2nd heat transfer plate (heat transfer plate), 20, 30 ... Heat transfer part, 21, 31 ... Fitting part, 22, 32 ... concave groove, 23, 33 ... convex stripe, 200, 201, 202, 203, 300, 301, 302, 303 ... opening, 220, 320 ... first flow path forming concave groove, 221, 321 ... second Recessed grooves for forming a flow path, 222, 322 ... Back-side recessed grooves, 223, 323 ... Bent grooves, 223a, 223b, 323a, 323b ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本発明は、第一流体との熱交換によって相変化する第二流体を流通させる流路での伝熱部に対する熱伝達性能を向上させることのできるプレート式熱交換器を提供する。本発明は、第一面と、該第一面に対して反対側を向く第二面とを有する伝熱部を含み、且つそれぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、第一流体を第一方向と直交する第二方向に流通させる第一流路が隣合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣合う伝熱プレートの伝熱部の第二面間に形成され、隣合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートにおける伝熱部は、第一面に形成される凸条として、第二方向と交差する方向に延びて伝熱部を第二方向で二つ以上の分割領域に区画する少なくとも一つの障壁用凸条であって、相手方の伝熱部の第一面に形成された凸条と交差衝合する障壁用凸条を含み、第二面同士を対向させて隣合う伝熱プレートの伝熱部は、第二面に形成される凹条として、それぞれが第二流路の一部を構成する複数の第二流路形成用凹条であって、二つ以上の分割領域のそれぞれで、分割領域における第二方向の一端から他端に至り且つ第一方向及び第二方向のそれぞれと直交する第三方向に間隔をあけて配置された複数の第二流路形成用凹条を含む。

Description

プレート式熱交換器 関連出願の相互参照
 本願は、日本国特願2016-004234号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、凝縮器や蒸発器として使用されるプレート式熱交換器に関する。
 従来から、プレート式熱交換器が提供されている。プレート式熱交換器は、第一流体と第二流体とを熱交換させる熱交換器の一種である。
 プレート式熱交換器は、複数の伝熱プレートを備える。複数の伝熱プレートのそれぞれは、伝熱部を含む。伝熱部は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する。
 伝熱部の第一面及び第二面のそれぞれにおいて、凸条は、第一方向と直交する第二方向に延びる伝熱部の中心線(以下、縦中心線という)を横切る。該凸条は、第一方向及び第二方向のそれぞれに直交する第三方向における伝熱部の全長に亘って形成される。
 複数の伝熱プレートは、第一方向に重ね合わされる。すなわち、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートの伝熱部の第一面と対向させる。また、複数の伝熱プレートのそれぞれは、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートの伝熱部の第二面と対向させる。この状態で、隣合う伝熱プレートの伝熱部の凸条同士は、交差衝合する。これに伴い、伝熱部の凹条により、隣合う伝熱プレートの伝熱部間に空間が形成される。すなわち、第一流体を第二方向に流通させる第一流路が隣合う伝熱プレートの伝熱部の第一面間に形成される。また、第二流体を第二方向に流通させる第二流路が隣合う伝熱プレートの伝熱部の第二面間に形成される。
 上記構成のプレート式熱交換器において、第一流体は、第一流路内を第二方向に流通する。また、第二流体は、第二流路内を第二方向に流通する。これに伴い、プレート式熱交換器は、第一流路と第二流路とを仕切る伝熱部を介して第一流路内の第一流体と第二流路内の第二流体とを熱交換させる(例えば、特許文献1参照)。
 ところで、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を凝縮させる凝縮器として使用されることがある。また、この種のプレート式熱交換器は、第一流路内の第一流体と第二流路内の第二流体との熱交換により、第二流路内の第二流体を蒸発させる蒸発器として使用されることもある。
 しかしながら、従来のプレート式熱交換器が凝縮器や蒸発器とされた場合、従来のプレート式熱交換器では、凝縮や蒸発の対象となる第二流体の特性との関係で、熱伝達性能を向上させるのに限界がある。
 具体的に説明すると、伝熱部の凸条は、該伝熱部の縦中心線を横切り、第三方向における伝熱部の全長に亘って形成される。そのため、伝熱部の凸条は、第一流路及び第二流路のそれぞれの流動抵抗を大きくする。
 一般的に、第一流体には、相変化を起こさない流体(単相流となる流体)が採用される。そのため、第一流路の流動抵抗の増加は、伝熱部に対して熱的な影響を及ぼす機会を増やす。従って、第一流路の流動抵抗の増加は、熱伝達性能を高める要因となる。
 これに対し、第二流体には、フロン等の相変化を起こす流体(液体と気体とを含む二相流となる流体)が採用される。これに伴い、第二流路を画定する伝熱部の第二面上に、第二流体の液膜が形成される。そのため、熱伝達性能を向上させるべく、第二流体の流速を速め、伝熱部の第二面上に形成される液膜の流れを乱す必用がある。
 しかしながら、伝熱部の凸条は、該伝熱部の縦中心線を横切って、第三方向における伝熱部の全長に亘って形成される。そのため、伝熱部の凸条は、第二流路内での第二流体の流れを阻害する。すなわち、伝熱部の第二面にある凸条は、第二流路内での第二流体の流れに対して横切るように形成されるため、第二流路内での第二流体の流動抵抗を大きくする。
 そのため、従来のプレート式熱交換器では、第二流路内での第二流体の流速を速めるには限界があり、伝熱部の第二面上に形成される第二流体の液膜の流れを十分に乱すことができない。
 従って、従来のプレート式熱交換器では、第二流路を流通する第二流体の伝熱部に対する熱伝達性能を高めるのに限界がある。
日本国特開2001-99588号公報
 そこで、本発明は、第一流体との熱交換によって相変化する第二流体の伝熱部に対する熱伝達性能を向上させることのできるプレート式熱交換器を提供することを課題とする。
 本発明は、凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ第一面の凸条と表裏の関係にある凹条及び第一面の凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、複数の伝熱プレートのそれぞれは、自身の伝熱部の第一面を第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、第一流体を第一方向と直交する第二方向に流通させる第一流路が隣合う伝熱プレートの伝熱部の第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣合う伝熱プレートの伝熱部の第二面間に形成され、隣合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートにおける伝熱部は、第一面に形成される凸条として、該伝熱部における第二方向に延びる中心線を横切って該伝熱部における第一方向及び第二方向と直交する第三方向の全長に亘って形成され、伝熱部を第二方向で二つ以上の分割領域に区画する少なくとも一つの障壁用凸条であって、隣に並ぶ相手方の伝熱プレートの伝熱部の第一面に形成された凸条と交差衝合する障壁用凸条を含み、第二面に形成される凹条として、それぞれが第二流路の一部を構成する複数の第二流路形成用凹条であって、二つ以上の分割領域のそれぞれにおいて、該分割領域の第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第二流路形成用凹条を含むことを特徴とする。
 隣合う伝熱プレートのそれぞれの伝熱部は、障壁用凸条及び第二流路形成用凹条を含み、第一面に形成される凹条として、それぞれが第一流路の一部を構成する複数の第一流路形成用凹条であって、二つ以上の分割領域のそれぞれにおいて、該分割領域の第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第一流路形成用凹条を含むとともに、第一面に形成される凸条として、第三方向で隣合う第一流路形成用凹条間に形成される第一流路側凸条であって、それぞれが分割領域における第二方向の一端から他端に至る複数の第一流路側凸条を含み、隣合う伝熱プレートの互いに対応する分割領域内の第一流路側凸条同士が間隔をあけていることが好ましい。
 この場合、第一方向における障壁用凸条の突出量が第一方向における第一流路側凸条の突出量よりも大きく設定されていてもよい。
 また、隣合う伝熱プレートにおける互い対応する分割領域内にある複数の第一流路側凸条は、第三方向にずれて配置されてもよい。
 隣合う伝熱プレートのそれぞれの伝熱部は、障壁用凸条及び第二流路形成用凹条を含み、第二面に形成される凸条として、第三方向で隣合う第二流路形成用凹条間に形成される第二流路側凸条であって、それぞれが分割領域の第二方向の一端から他端に至る複数の第二流路側凸条を含み、伝熱部の第二面同士を対向させて隣合う伝熱プレートの互いに対応する分割領域内の第二流路側凸条の頂部同士が接触していてもよい。
 隣合う伝熱プレートのそれぞれの伝熱部は、障壁用凸条及び第二流路形成用凹条を含み、第二面に形成される凸条として、第三方向で隣合う第二流路形成用凹条間に形成される第二流路側凸条であって、それぞれが分割領域の第二方向の一端から他端に至る複数の第二流路側凸条を含み、伝熱部の第二面同士を対向させて隣合う伝熱プレートの互いに対応する分割領域内の第二流路側凸条同士が間隔をあけていることが好ましい。
 この場合、隣合う伝熱プレートにおける互い対応する分割領域内にある複数の第二流路側凸条は、第三方向にずれて配置されてもよい。
 障壁用凸条は、第二方向に間隔をあけて二つ以上設けられ、該二つ以上の障壁用凸条が伝熱部を三つ以上の分割領域に区画していることが好ましい。
 障壁用凸条は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部であって、第二方向に延びる中心線又は該中心線に対して平行な仮想線に対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部を含む少なくとも一つの屈曲凸条部を有していてもよい。
 隣合う伝熱プレートのそれぞれの伝熱部は、屈曲凸条部を有する障壁用凸条を含み、隣合う伝熱プレートの障壁用凸条の屈曲凸条部は、互いに正反対に屈曲して形成され、互いの屈曲凸条部の傾斜凸条部同士が交差衝合していることが好ましい。
 障壁用凸条は、第三方向に真っ直ぐ延びていてもよい。
 隣合う伝熱プレートのそれぞれの伝熱部は、第三方向に延びる障壁用凸条を含み、隣合う伝熱プレートのそれぞれの障壁用凸条は、互いに第二方向にずれて配置されていてもよい。
図1は、本発明の一実施形態に係るプレート式熱交換器の斜視図である。 図2は、同実施形態に係るプレート式熱交換器の分解斜視図であって、第一流体及び第二流体の流通経路を含む分解斜視図である。 図3は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。 図4は、同実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。 図5は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。 図6は、同実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。 図7は、同実施形態に係るプレート式熱交換器における第一流路内での第一流体の流れを示す図である。 図8は、同実施形態に係るプレート式熱交換器の第二流路側凸条に沿った部分断面であって、第一流路を主体に第三方向から見た概略断面図である。 図9は、同実施形態に係るプレート式熱交換器における第二流路内での第二流体の流れを示す図である。 図10は、同実施形態に係るプレート式熱交換器の第一流路側凸条に沿った部分断面であって、第二流路を主体に第三方向から見た概略断面図である。 図11は、同実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。 図12は、本発明の他実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第一面側から見た図である。 図13は、他実施形態に係るプレート式熱交換器の伝熱プレート(第一伝熱プレート)を第二面側から見た図である。 図14は、他実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第一面側から見た図である。 図15は、他実施形態に係るプレート式熱交換器の伝熱プレート(第二伝熱プレート)を第二面側から見た図である。 図16は、本発明の別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。 図17は、本発明のさらに別の実施形態に係るプレート式熱交換器の第一流路内での第一流体の流通経路及び第二流路内での第二流体の流通経路を示す概略図である。
 以下、本発明の一実施形態について、添付図面を参照して説明する。
 図1に示す如く、プレート式熱交換器1は、複数の伝熱プレート2,3を備える。すなわち、プレート式熱交換器1は、少なくとも三つの伝熱プレート2,3を備える。本実施形態において、プレート式熱交換器1は、三つよりも多い伝熱プレート2,3を備える。また、本実施形態において、複数の伝熱プレート2,3には、二種類の伝熱プレートが含まれる。これに伴い、以下の説明において、二種類の伝熱プレート2,3のうちの一方の伝熱プレート2を第一伝熱プレートといい、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3を第二伝熱プレートということとする。但し、第一伝熱プレート2及び第二伝熱プレート3は、共通した構成を有するため、これらの共通する構成の説明については、第一伝熱プレート2及び第二伝熱プレート3を総称して単に伝熱プレート2,3ということとする。
 まず、第一伝熱プレート2及び第二伝熱プレート3の共通する構成について説明する。図2に示す如く、伝熱プレート2,3は、第一面Sa1,Sb1と該第一面Sa1,Sb1に対して反対向きの第二面Sa2,Sb2とを有する伝熱部20,30と、伝熱部20,30の外周縁全周から該伝熱部20,30と面交差する方向に延出した環状の嵌合部21,31とを備える。
 伝熱部20,30は、第一方向に厚みを有する。これに伴い、伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2は、第一方向に並ぶ。図3乃至図6に示す如く、伝熱部20,30の外形(輪郭)は、第一方向と直交する第二方向に延びる一対の長辺と、第二方向に間隔をあけて配置される一対の短辺であって、それぞれが第一方向及び第二方向と直交する第三方向に延びて一対の長辺を繋ぐ一対の短辺とによって画定される。すなわち、第一方向から見た伝熱部20,30の外形は、第二方向に長手をなす長方形状である。
 伝熱部20,30は、第二方向に一端部と該一端部の反対側の他端部を有する。伝熱部20,30は、第二方向の一端部及び他端部のそれぞれに少なくとも二つの開口200,201,202,203,300,301,302,303を有する。本実施形態において、伝熱部20,30は、第二方向の一端部に二つの開口200,203,300,303を有し、第二方向の他端部に二つの開口201,202,301,302を有する。
 第二方向における伝熱部20,30の一端部にある二つの開口200,203,300,303は、第三方向に並んでいる。また、第二方向における伝熱部20,30の他端部にある二つの開口201,202,301,302は、第三方向に並んでいる。
 伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第一面Sa1,Sb1側において窪んでいる。これに伴い、伝熱部20,30における第二方向の一端部にある一方の開口200,300の周囲及び他端部にある一方の開口201,301の周囲は、第二面Sa2,Sb2側において膨出している。
 第二面Sa2,Sb2側に膨出した開口200,201,300,301の周囲が隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口200,201,300,301(一端部の一方の開口200,300及び他端部の一方の開口201,301)の周囲と当接するように、第二面Sa2,Sb2側に膨出した開口200,201,300,301の周囲の膨出量が設定される。
 これに対し、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第一面Sa1,Sb1側において膨出している。これに伴い、伝熱部20,30における第二方向の一端部にある他方の開口203,303の周囲及び他端部にある他方の開口202,302の周囲は、第二面Sa2,Sb2側において窪んでいる。
 第一面Sa1,Sb1側に膨出した開口202,203,302,303の周囲が隣に並ぶ伝熱プレート2,3の伝熱部20,30の開口202,203,302,303(一端部の他方の開口202,302及び他端部にある他方の開口203,303)の周囲(膨出した部分)と当接するように、第一面Sa1,Sb1側に膨出した開口202,203,302,303の周囲の膨出量が設定される。なお、図3乃至図4において、第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおける凹凸関係を明確にすべく、開口200,201,202,203,300,301,302,303の周囲で窪んでいる領域、及び後述する凹条22,32の底部分に対してドットを付している。
 本実施形態において、伝熱プレート2,3を重ね合わせる態様との関係で、伝熱部20,30における第二方向の一端部にある一方の開口200,300と他端部にある一方の開口201,301とは、対角位置にある。また、伝熱部20,30における第二方向の一端部にある他方の開口203,303と他端部にある他方の開口202,302とは、対角位置にある。
 伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれには、凹条22,32及び凸条23,33が形成されている。伝熱部20,30の第一面Sa1,Sb1及び第二面Sa2,Sb2のそれぞれにおいて、凹条22,32及び凸条23,33のそれぞれは、複数(多数)ある。
 より具体的には、伝熱プレート2,3は、金属プレートをプレス成形することで成形される。これに伴い、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32と、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33とは、表裏の関係にある。また、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32とは、表裏の関係にある。すなわち、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凹条22,32は、伝熱部20,30の第二面Sa2,Sb2に形成された凸条23,33と対応した位置に形成される。また、プレス成形に伴う金属プレートの変形により、伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33は、伝熱部20,30の第二面Sa2,Sb2に形成された凹条22,32と対応した位置に形成される。
 図3及び図5に示す如く、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第二方向に延びる中心線(以下、縦中心線という)CLを横切って第三方向の全長に亘って形成され、伝熱部20,30を第二方向で二つ以上の分割領域Da…,Db…に区画する少なくとも一つの障壁用凸条230,330であって、相手方の伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と交差衝合する障壁用凸条230,330を含む。
 伝熱部20,30は、第一面Sa1,Sb1に形成される凹条22,32として、それぞれが第一流路Raの一部を構成する複数の第一流路形成用凹条220,320であって、二つ以上の分割領域Da…,Db…のそれぞれで、分割領域Da…,Db…における第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第一流路形成用凹条220,320を含む。
 また、伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、第三方向で隣合う第一流路形成用凹条220,320間で第二方向に延びて形成された複数の第一流路側凸条231,331を含む。
 本実施形態において、障壁用凸条230,330は、第二方向に間隔をあけて二つ以上設けられる。該二つ以上の障壁用凸条230,330は、伝熱部20,30を三つ以上の分割領域Da…,Db…に区画している。
 障壁用凸条230,330は、少なくとも一つの屈曲凸条部232,332を有する。屈曲凸条部232,332は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部232a,232b,332a,332bであって、縦中心線CLに対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部232a,232b,332a,332bを含む。本実施形態において、障壁用凸条230,330は、一つの屈曲凸条部232,332を有する。
 本実施形態において、屈曲凸条部232,332を構成する一対の傾斜凸条部232a,232b,332a,332bのそれぞれの基端は、第三方向における伝熱部20,30の端縁上に位置している。
 これに対し、一対の傾斜凸条部232a,232b,332a,332bのそれぞれの先端は、第三方向における伝熱部20,30の中央(縦中心線CL上)に位置している。これにより、一対の傾斜凸条部232a,232b,332a,332bの先端部は、互いに合致した状態で接続されている。
 このような態様にされることで、本実施形態において、障壁用凸条230,330自体が屈曲凸条部232,332を構成している。一対の傾斜凸条部232a,232b,332a,332bは、第二方向に延びる仮想線を基準に対称的に配置されている。すなわち、一対の傾斜凸条部232a,232b,332a,332bの互いの傾斜方向は、真逆ではある。しかし、一対の傾斜凸条部232a,232b,332a,332bの第二方向に延びる縦中心線CLに対する傾斜角度は同一である。
 障壁用凸条230,330の第一方向における突出量は、第一流路側凸条231,331よりも大きく設定される。これに伴い、障壁用凸条230,330の頂部は、第一流路側凸条231,331の頂部よりも外側に位置している。これにより、伝熱部20,30の第一面Sa1,Sb1に形成される凸条23のうち、障壁用凸条230,330のみが相手方の伝熱プレート2,3の伝熱部20,30に接触する。すなわち、第一流路側凸条231,331は、障壁用凸条230,330よりも低く形成され、相手方の伝熱プレート2,3に対して非接触になるように形成されている。
 各分割領域Da…,Db…に形成される第一流路形成用凹条220,320及び第一流路側凸条231,331は、その分割領域Da…,Db…の第二方向における全長に亘って形成される。これに伴い、第一流路形成用凹条220,320及び第一流路側凸条231,331の少なくとも一端は、分割領域Da…,Db…を区画する障壁用凸条230,330に繋がる。すなわち、第一流路形成用凹条220,320及び第一流路側凸条231,331の一端は、分割領域Da…,Db…を画定する一対の障壁用凸条230,330のうちの一方の障壁用凸条230,330に繋がる。これに対し、第一流路形成用凹条220,320及び第一流路側凸条231,331の他端は、分割領域Da…,Db…を画定する一対の障壁用凸条230,330のうちの他方の障壁用凸条230,330に繋がる。
 本実施形態において、二つ以上の分割領域Da…,Db…のそれぞれに形成された複数の第一流路形成用凹条220,320は、第二方向で整列している。すなわち、二つ以上の分割領域Da…,Db…のそれぞれに形成された第一流路形成用凹条220,320の数及び配置が対応している。これに伴い、二つ以上の分割領域Da…,Db…のそれぞれに形成された第一流路側凸条231,331の数及び配置も対応している。
 図4及び図6に示す如く、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、第一面Sa1,Sb1上の障壁用凸条230,330の裏側に形成される凹条(以下、裏側凹条という)222,322を含む。
 また、伝熱部20,30は、第二面Sa2,Sb2に形成される凹条22,32として、それぞれが第二流路Rbの一部を構成する複数の第二流路形成用凹条221,321であって、二つ以上の分割領域Da…,Db…のそれぞれにおいて、該分割領域Da…,Db…の第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第二流路形成用凹条221,321を含む。また、伝熱部20,30は、第二面Sa2,Sb2に形成される凸条23,33として、第三方向で隣合う第二流路形成用凹条221,321間に形成される第二流路側凸条233,333であって、それぞれが分割領域Da…,Db…の第二方向の一端から他端に至る複数の第二流路側凸条233,333を含む。
 裏側凹条222,322は、障壁用凸条230,330と凹凸関係を逆にする以外は同形態で形成される。従って、伝熱部20,30の第二面Sa2,Sb2には、一対の傾斜凸条部232a,232b,332a,332bのそれぞれの裏側に形成される凹条22,32である一対の傾斜凹条部223a,223b,323a,323bを含む屈曲凹条部223,323が形成される。
 本実施形態において、屈曲凸条部232,332(一対の傾斜凸条部232a,232b,332a,332b)が障壁用凸条230,330を構成する。そのため、屈曲凹条部223,323は、障壁用凸条230,330の裏側に形成される裏側凹条222,322全体を構成する。
 第二流路形成用凹条221,321は、第一面Sa1,Sb1上の第一流路側凸条231,331の裏側に形成される凹条22,32である。ここで第二流路形成用凹条221,321について、具体的に説明する。第二流路形成用凹条221,321は、上述の如く、分割領域Da…,Db…における第二方向の一端から他端に至る。ここで「第二方向の一端から他端に至る」とは、第二方向に延びる仮想線に対する角度が第三方向に延びる仮想線に対する傾斜角度よりも小さい状態で、分割領域Da…,Db…の第二方向の端から端まで存在することを意味する。本実施形態において、第二流路形成用凹条221,321は、第二方向に延びている。すなわち、本実施形態において、第二流路形成用凹条221,321は、第二方向に延びる仮想線に対する角度が0度であり、第三方向に延びる仮想線に対する角度が90度である。
 これに伴い、第二流路形成用凹条221,321間に形成される第二流路側凸条233,333についても、第二方向に延びている。なお、第二流路形成用凹条221,321を画定する内面と第二流路側凸条233,333を画定する外面とは連続している。これにより、伝熱部20,30の第二面Sa2,Sb2(分割領域Da…,Db…)は、第三方向に起伏した波形状に形成される。
 第二流路形成用凹条221,321及び第二流路側凸条233,333は、分割領域Da…,Db…における第二方向の全長に亘って形成される。これに伴い、第二流路形成用凹条221,321は、自身の形成された分割領域Da…,Db…を区画した障壁用凸条230,330の裏側に形成される裏側凹条222,322と連続している。すなわち、第二流路形成用凹条221,321は、裏側凹条222,322内に向けて開放している。
 第一伝熱プレート2及び第二伝熱プレート3は、何れも上記構成の伝熱部20,30を有する。そして、第一伝熱プレート2及び第二伝熱プレート3は、互いの第一面Sa1,Sb1同士を対向させつつ互いの第二面Sa2,Sb2同士を対向させるように重ね合わされる。そのため、第一伝熱プレート2においては、図3に示す如く、嵌合部21は伝熱部20の第一面Sa1側に延出する。これに対し、第二伝熱プレート3においては、図6に示す如く、嵌合部31は伝熱部30の第二面Sb2側に延出する。
 複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、以上の通りである。複数の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)のそれぞれは、図2に示す如く、第一方向に重ね合わされる。本実施形態において、第一伝熱プレート2と第二伝熱プレート3とが、第一方向で交互に重ね合わされる。
 これにより、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させる。また、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させる。
 本実施形態において、図7に示す如く、第一伝熱プレート2の障壁用凸条230(屈曲凸条部232)の傾斜凸条部232a,232bの先端部が基端部よりも第二方向において伝熱部20の一端側に位置するのに対し、第二伝熱プレート3の障壁用凸条330(屈曲凸条部332)の傾斜凸条部332a,332bの先端部が基端部よりも第二方向において伝熱部30の他端側に位置するように、複数の伝熱プレート2,3が重ね合わされる。
 すなわち、図7及び図8に示す如く、第一伝熱プレート2の障壁用凸条230(屈曲凸条部232)を構成する一方の傾斜凸条部232aが、第二伝熱プレート3の障壁用凸条330(屈曲凸条部332)を構成する一方の傾斜凸条部332aと交差衝合するとともに、第一伝熱プレート2の障壁用凸条230(屈曲凸条部232)を構成する他方の傾斜凸条部232bが、第二伝熱プレート3の障壁用凸条330(屈曲凸条部332)を構成する他方の傾斜凸条部332bと交差衝合するように、第一伝熱プレート2と第二伝熱プレート3とが交互に重ね合わされる。
 本実施形態において、図2に示す如く、一つの第一伝熱プレート2と一つの第二伝熱プレート3とを互いの裏側凹条222,322を対向させた状態で重ね合わせて一組とされる。この組を複数組重ね合わせるに際し、一組おきに第一方向に延びる仮想線周りで180度反転させて重ね合わされる。この状態において、第一方向で隣合う伝熱プレート2,3のうちの一方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31は、第一方向で隣合う伝熱プレート2,3のうちの他方の伝熱プレート2,3(第一伝熱プレート2又は第二伝熱プレート3)の嵌合部21,31に外嵌される。
 図7に示す如く、伝熱部20,30の第一面Sa1,Sb1同士を対向させて隣合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の互いに対応する分割領域Da…,Db…内にある第一流路側凸条231,331は、第一方向から見て重なり合った配置になる。図8に示す如く、伝熱部20,30の第一面Sa1,Sb1同士を対向させて隣合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の互いに対応する分割領域Da…,Db…内にある第一流路側凸条231,331は、間隔をあける。
 図9に示す如く、伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)の互いに対応する分割領域Da…,Db…内にある第二流路側凸条233,333は、第一方向から見て重なり合った配置になる。また、図10に示す如く、伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3のそれぞれの伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)は、互い対応する分割領域Da…,Db…内にある第二流路側凸条233,333の頂部同士を接触させる。
 これにより、図2に示す如く、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成される。また、第二流体Bを第二方向に流通させる第二流路Rbが隣合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成される。
 そして、上述の如く、複数の伝熱プレート2,3が第一方向に重ね合わされることで、伝熱部20,30の対応する位置にある開口200,201,202,203,300,301,302,303が第一方向に連なる。また、互いに対向する開口200,201,202,203,300,301,302,303の周囲であって、相手方に向かって膨出した部分が当接する。これにより、第一流路Raに第一流体Aを供給する第一流入路Pa1と、第一流路Raから第一流体Aを流出させる第一流出路Pa2と、第二流路Rbに第二流体Bを供給する第二流入路Pb1と、第二流路Rbから第二流体Bを流出させる第二流出路Pb2とが形成される。
 なお、本実施形態に係るプレート式熱交換器1において、隣合う伝熱プレート2,3の当接した部分同士がロウ付けされる。これにより、複数の伝熱プレート2,3が一体的(機械的)に接続されるとともに、隣合う伝熱プレート2,3の対向面間(当接部分)が封止される。
 本実施形態に係るプレート式熱交換器1は、以上の通りである。第一流体Aは、図2、図7、及び図11に示す如く、第一流入路Pa1から複数の第一流路Raに流入する。第一流体Aは、複数の第一流路Raのぞれぞれで第二方向に流通し、第一流出路Pa2に流出する。これに対し、第二流体Bは、図2、図9、及び図11に示す如く、第二流入路Pb1から複数の第二流路Rbに流入する。第二流体Bは、該複数の第二流路Rbのぞれぞれで第二方向に流通し、第二流出路Pb2に流出する。
 本実施形態において、第一流体Aは、図7に示す如く、第一流路Raにおいて、伝熱部20,30の対角を結ぶ対角線を中心として流通する。これに対し、第二流体Bは、図9に示す如く、第二流路Rbにおいて、伝熱部20,30の対角を結ぶ対角線であって、第一流体Aの流れの中心となる対角線とは別の対角線を中心に流通する。
 このとき、第一流路Raを流通する第一流体A、及び第二流路Rbを流通する第二流体Bは、第一流路Raと第二流路Rbとを仕切る伝熱プレート2,3(伝熱部20,30)を介して熱交換する。これにより、第二流体Bは、第二流路Rb内で第二方向に流通する過程において、凝縮或いは蒸発する。
 以上のように、本実施形態に係るプレート式熱交換器1は、凸条23,33及び凹条22,32の形成された第一面Sa1,Sb1と、該第一面Sa1,Sb1に対して反対側を向き、且つ第一面Sa1,Sb1の凸条23,33と表裏の関係にある凹条22,32及び第一面Sa1,Sb1の凹条22,32と表裏の関係にある凸条23,33の形成された第二面Sa2,Sb2とを有する伝熱部20,30を含む伝熱プレート2,3であって、それぞれの伝熱部20,30が第一方向に重ね合わされた複数の伝熱プレート2,3を備え、複数の伝熱プレート2,3のそれぞれは、自身の伝熱部20,30の第一面Sa1,Sb1を第一方向の一方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第一面Sa1,Sb1と対向させるとともに、自身の伝熱部20,30の第二面Sa2,Sb2を第一方向の他方側で隣に並ぶ伝熱プレート2,3における伝熱部20,30の第二面Sa2,Sb2と対向させ、第一流体Aを第一方向と直交する第二方向に流通させる第一流路Raが隣合う伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1間に形成されるとともに、第二流体Bを第二方向に流通させる第二流路Rbが隣合う伝熱プレート2,3の伝熱部20,30の第二面Sa2,Sb2間に形成され、隣合う伝熱プレート2,3のうちの少なくとも何れか一方の伝熱プレート2,3における伝熱部20,30は、第一面Sa1,Sb1に形成される凸条23,33として、該伝熱部20,30における第二方向に延びる中心線(縦中心線)CLを横切って該伝熱部20,30における第一方向及び第二方向と直交する第三方向の全長に亘って形成され、伝熱部20,30を第二方向で二つ以上の分割領域Da…,Db…に区画する少なくとも一つの障壁用凸条230,330であって、相手方の伝熱プレート2,3の伝熱部20,30の第一面Sa1,Sb1に形成された凸条23,33と交差衝合する障壁用凸条230,330を含み、第二面Sa2,Sb2に形成される凹条22,32として、それぞれが第二流路Rbの一部を構成する複数の第二流路形成用凹条221,321であって、二つ以上の分割領域Da…,Db…のそれぞれにおいて、該分割領域Da…,Db…の第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第二流路形成用凹条221,321を含む。
 上記構成のプレート式熱交換器1によれば、隣合う伝熱部20,30の第一面Sa1,Sb1間に形成される第一流路Raの途中位置において、障壁用凸条230,330が相手方の伝熱部20,30に向けて突出した状態で存在する(図8参照)。これに伴い、障壁用凸条230,330は、第一流路Ra内で第一流体Aの流通を阻害し、第一流路Ra内における第一流体Aの流通抵抗を増大させる。これにより、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増え、第二流体B側への熱伝達性能が高くなる。
 第一面Sa1,Sb1の凹条22,32と第二面Sa2,Sb2の凸条23,33とが表裏の関係にあり、第一面Sa1,Sb1の凸条23,33と、第二面Sa2,Sb2の凹条22,32とが表裏の関係にある。そのため、伝熱部20,30の第二面Sa2,Sb2には、障壁用凸条230,330と対応した裏側凹条222,322が形成される。すなわち、伝熱部20,30の第二面Sa2,Sb2には、伝熱部20,30における第二方向に延びる中心線(縦中心線)CLを横切った裏側凹条222,322が形成される。これにより、裏側凹条222,322は、伝熱部20,30を第二面Sa2,Sb2側で二つ以上の分割領域Da…,Db…に区画する。
 複数の第二流路形成用凹条221,321は、自身の存在する分割領域Da…,Db…の第二方向の一端から他端に至る。また、複数の第二流路形成用凹条221,321は、自身の存在する分割領域Da…,Db…を画定する裏側凹条222,322(障壁用凸条230,330と対応した凹条22,32)と連続する。その結果、第二流路Rbには第二方向の全長に亘って第二流体Bの流通を阻害するもの(流路を横切るもの)が存在しない(図10参照)。
 また、第二流路形成用凹条221,321は、分割領域Da…,Db…における第二方向の一端から他端に至る。そのため、第二流路形成用凹条221,321は、第二方向に真っ直ぐ延びる、或いは、第二方向に延びる仮想線に対する傾き成分(角度)が第三方向に延びる仮想線に対する傾き成分(角度)よりも小さい状態で傾斜して延びる。これにより、第二流路形成用凹条221,321は、第二流体Bの流通方向に対応或いは略対応した空間(第二流路Rbの一部)を形成する。従って、第二流路Rbでの第二流体Bの流通抵抗が小さくなり、第二流体Bの流速を速めることができる。
 これにより、相変化を起こす流体(液体と気体とを含む二相流となる流体)が第二流体Bとして採用されとしても、第二流体Bの流速により、伝熱部20,30の表面上に形成された第二流体Bの液膜の流れが乱される。
 従って、上記構成のプレート式熱交換器1では、第二流路Rbを流通する第二流体Bの伝熱部20,30(第一流体A側)に対する熱伝達性能が高まる。
 また、本実施形態において、隣合う伝熱プレート2,3のそれぞれの伝熱部20,30は、障壁用凸条230,330及び第二流路形成用凹条221,321を含み、第一面Sa1,Sb1に形成される凹条22,32として、それぞれが第一流路Raの一部を構成する複数の第一流路形成用凹条220,320であって、二つ以上の分割領域Da…,Db…のそれぞれにおいて、該分割領域Da…,Db…の第二方向の一端から他端に至り且つ第三方向に間隔をあけて配置された複数の第一流路形成用凹条220,320を含むとともに、第一面Sa1,Sb1に形成される凸条23,33として、第三方向で隣合う第一流路形成用凹条220,320間に形成される第一流路側凸条231,331であって、それぞれが分割領域Da…,Db…における第二方向の一端から他端に至る複数の第一流路側凸条231,331を含み、隣合う伝熱プレート2,3の互いに対応する分割領域Da…,Db…内の第一流路側凸条231,331同士が間隔をあけている(図8参照)。そのため、第一流路Ra内が完全に閉じられることがなく、第一流路Ra内において第一流体Aの流通抵抗が付与されつつ第一流体Aの流通性も確保される。
 特に、本実施形態において、第一方向における障壁用凸条230,330の突出量が第一方向における第一流路側凸条231,331の突出量よりも大きく設定されている。そのため、第一流路側凸条231,331よりも突出量の大きい障壁用凸条230,330が相手方の伝熱プレート2,3の凸条23,33(障壁用凸条230,330又は第一流路側凸条231,331)と交差衝合する。これに伴い、第一流路Ra内で互いに対向する伝熱部20,30の第一流路側凸条231,331同士が接触することがない。第一流路Raは、伝熱部20,30における第三方向の全長に亘って形成される。これにより、第一流体Aは、第一流路Ra内で流通抵抗を生じさせつつ第三方向に広がって第二方向に流通する。従って、伝熱部20,30の第一面Sa1,Sb1の全域或いは略全域が伝熱に寄与する。
 また、隣合う伝熱プレート2,3のそれぞれの伝熱部20,30は、障壁用凸条230,330及び第二流路形成用凹条221,321を含み、第二面Sa2,Sb2に形成される凸条23,33として、第三方向で隣合う第二流路形成用凹条221,321間に形成される第二流路側凸条233,333であって、それぞれが分割領域Da…,Db…の第二方向の一端から他端に至る複数の第二流路側凸条233,333を含み、伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3の互いに対応する分割領域Da…,Db…内の第二流路側凸条233,333の頂部同士が接触している(図10参照)。これにより、第一流路Ra内を流通する第一流体Aの流動圧が伝熱部20,30に作用しても、該伝熱部20,30が押し広げられることがない。従って、第二流路Rbを構成する空間が確保され、第二流体Bの流通の円滑性が確保される。
 さらに、障壁用凸条230,330は、第二方向に間隔をあけて二つ以上設けられ、該二つ以上の障壁用凸条230,330が伝熱部20,30を三つ以上の分割領域Da…,Db…に区画している(図7及び図8参照)。これに伴い、第一流路Ra内において、複数箇所(二箇所以上)で障壁用凸条230,330が第一流路Raの流れを阻害する。これにより、第一流路Ra内での第一流体Aの流通抵抗が増加する結果、第一流路Raにおける第一流体Aの熱伝達性能が向上する。
 また、障壁用凸条230,330は、それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部232a,232b,332a,332bであって、第二方向に延びる中心線(縦中心線)CL又は該中心線(縦中心線)CLに対して平行な仮想線に対して互いに逆向きに傾斜し、互いの先端同士が接続された一対の傾斜凸条部232a,232b,332a,332bを含む少なくとも一つの屈曲凸条部232,332を有している(図3、図5、及び図7参照)。これに伴い、第一流路Raを横切る障壁用凸条230,330全体が第一流体Aの流動抵抗になるだけでなく、障壁用凸条230,330の有する屈曲凸条部232,332(一対の傾斜凸条部232a,232b,332a,332b)が第一流体Aを第一流路Ra内で拡散させる。従って、伝熱部20,30における伝熱に寄与する領域が増える。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。
 また、隣合う伝熱プレート2,3のそれぞれの伝熱部20,30は、屈曲凸条部232,332を有する障壁用凸条230,330を含み、隣合う伝熱プレート2,3の障壁用凸条230,330の屈曲凸条部232,332は、互いに正反対に屈曲して形成され、互いの屈曲凸条部232,332の傾斜凸条部232a,232b,332a,332b同士が交差衝合している(図7参照)。これに伴い、第一流路Raにおける第一流体Aの流動抵抗が大きくなる上に、第一流体Aの拡散効果が大きくなる。これにより、第一流路Raにおける第一流体Aの熱伝達性能が向上する。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、適宜変更を加え得ることは勿論のことである。
 上記実施形態において、隣合う伝熱プレート2,3として二種類の伝熱プレート2,3(第一伝熱プレート2及び第二伝熱プレート3)が設けられ、この隣合う伝熱プレート2,3のそれぞれが障壁用凸条230,330及び第二流路形成用凹条221,321を含んだが、これに限定されない。例えば、隣合う伝熱プレート2,3のうちの一方の伝熱プレート2,3が障壁用凸条230,330及び第二流路形成用凹条221,321を含んでもよい。
 上記実施形態において、第二流路形成用凹条221,321が第二方向に真っ直ぐに延びて形成されたが、これに限定されない。例えば、第二流路形成用凹条221,321は、裏側凹条222,322と連続していることを前提に、第二方向に延びる仮想線に対して傾斜していてもよい。但し、第二流体Bの流速を速めるためには、第二方向に延びる仮想線に対する傾き成分(角度)が第三方向に延びる仮想線に対する傾き成分(角度)よりも小さい状態で傾斜することが条件である。
 上記実施形態において、障壁用凸条230,330が第二方向に間隔をあけて二つ以上設けられ、該二つ以上の障壁用凸条230,330が伝熱部20,30を三つ以上の分割領域Da…,Db…に区画したが、これに限定されない。例えば、一つの伝熱部20,30に対して一つの障壁用凸条230,330が設けられ、該一つの障壁用凸条230,330が伝熱部20,30を二つの分割領域Da…,Db…に区画してもよい。
 上記実施形態において、伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3は、互い対応する分割領域Da…,Db…内にある第二流路側凸条233,333の頂部同士を接触させたが、これに限定されない。例えば、伝熱部20,30の第二面Sa2,Sb2同士を対向させて隣合う伝熱プレート2,3の互いに対応する分割領域Da…,Db…内の第二流路側凸条233,333同士が間隔をあけていてもよい。このようにすれば、第二流路Rbが伝熱部20,30における第二方向の全長及び第三方向の全長に亘って連続した状態で形成される。従って、第二流路Rbにおける第二流体Bの流通抵抗が小さくなり、第二流体Bの流速をさらに速めることができる。
 この場合、隣合う伝熱プレート2,3における互い対応する分割領域Da…,Db…内にある複数の第二流路側凸条233,333は、第三方向にずれて(例えば、1/4ピッチずれて)配置されてもよい。このようにすれば、第二流路Rb内で互いに対向する伝熱部20,30の第二流路側凸条233,333同士が接触することがなく、第二流路Rbが伝熱部20,30における第二方向の全長及び第三方向の全長に亘って連続した状態で形成される。従って、第二流路Rbにおける第二流体Bの流通抵抗が小さくなり、第二流体Bの流速をさらに速めることができる。
 また、上記実施形態において、障壁用凸条230,330の突出量が第一流路側凸条231,331の突出量よりも大きく設定され、第一流路側凸条231,331が相手方の伝熱部20,30に対して非接触になるように構成されたが、これに限定されない。例えば、障壁用凸条230,330の突出量が第一流路側凸条231,331の突出量と同じに設定されてもよい。
 この場合、伝熱部20,30の第一面Sa1,Sb1同士を対向させて隣合う伝熱プレート2,3における互い対応する分割領域Da…,Db…内にある複数の第一流路側凸条231,331は、第三方向にずれて(例えば、1/4ピッチずれて)配置されればよい。このようにすることで、第一流路Ra内で互いに対向する伝熱部20,30の第一流路側凸条231,331同士が接触することがない。そして、第一流路Raは、伝熱部20,30における各分割領域Da…,Db…において第二方向の全域に亘って連通する。しかし、障壁用凸条230,330同士の交差衝合、或いは障壁用凸条230,330と相手方の伝熱部20,30の凸条23,33との交差衝合により、第一流路Ra内における第一流体Aの流動抵抗は増す。
 上記実施形態において、障壁用凸条230,330が一対の傾斜凸条部232a,232b,332a,332bを含む一つの屈曲凸条部232,332を構成したが、これに限定されない。例えば、障壁用凸条230,330は、複数(二つ以上)の屈曲凸条部232,332を含んでいてもよい。また、障壁用凸条230,330は、第一方向から見て湾曲した形状にされてもよい。また、障壁用凸条230,330は、第一方向から見て複数の湾曲部が繋がった波形状に形成されてもよい。
 上記実施形態において、伝熱部20,30の第一面Sa1,Sb1上に形成される複数の障壁用凸条230,330が同一形態にされたが、これに限定されない。例えば、伝熱部20,30の第一面Sa1,Sb1上に形態を異にする複数の障壁用凸条230,330が形成されてもよい。ここで形態を異にするとは、障壁用凸条230,330が屈曲凸条部232,332を有することを前提に、傾斜凸条部232a,232b,332a,332bの傾斜角度を異にするものや、屈曲凸条部232,332(傾斜凸条部232a,232b,332a,332b)の傾斜方向を異にするものの他、第一方向から見た形状を異にするものを意味する。
 上記実施形態において、伝熱部20,30の第一面Sa1,Sb1同士を対向させて隣合う伝熱プレート2,3のそれぞれの伝熱部20,30には、前記屈曲凸条部232,332を有する障壁用凸条230,330が形成され、該隣合う伝熱プレート2,3の障壁用凸条230,330の屈曲凸条部232,332は、互いに正反対に屈曲して形成され、互いの屈曲凸条部232,332の傾斜凸条部232a,232b,332a,332b同士が交差衝合したが、これに限定されない。例えば、図12乃至図15に示す如く、障壁用凸条230,330及び裏側凹条222,322は、第三方向に真っ直ぐ延びていてもよい。このようにすれば、障壁用凸条230,330が第一流路Raの全長に亘って該第一流路Raを横切るため、第一流体Aの流動抵抗を大きくする。これにより、第一流体Aが伝熱部20,30に対して熱的な影響を及ぼす機会が増えるため、熱伝達性能が高まる。
 この場合、伝熱部20,30の第一面Sa1,Sb1同士を対向させて隣合う伝熱プレート2,3のそれぞれの伝熱部20,30には、第三方向に延びる障壁用凸条230,330が形成され、隣合う伝熱プレート2,3のそれぞれの障壁用凸条230,330は、互いに第二方向にずれて配置され、相手方の伝熱部20,30の分割領域Da…,Db…内の第一流路側凸条231,331と交差衝合していてもよい。
 このようにすれば、第一流路Ra内において、複数箇所(二箇所以上)で障壁用凸条230,330が第一流路Raの流れを阻害する。これにより、第一流路Ra内での第一流体Aの流通抵抗が増加する結果、第一流路Raにおける第一流体Aの熱伝達性能が向上する。
 上記実施形態において、第一流路Raが第一流入路Pa1と第一流出路Pa2とを直接連通させるとともに、第二流路Rbが第二流入路Pb1と第二流出路Pb2とを直接連通させたが、これに限定されない。例えば、図16及び図17に示す如く、第二流入路Pb1及び第二流出路Pb2と異なる位置で第一方向に延びる接続流路PJによって少なくとも二つの第二流路Rb同士を連通させ、接続流路PJを含む第二流体Bの流通経路の最上流に位置する第二流路Rbを第二流入路Pb1に接続するとともに、接続流路PJを含む第二流体Bの流通経路の最下流に位置する第二流路Rbを第二流出路Pb2に接続してもよい。
 より詳しくは、伝熱プレート2,3の重ね合わせ方向(第一方向)の途中位置で隣合う伝熱プレート2,3間に分岐基準空間Ds1が形成される。これを前提に、第一方向において分岐基準空間Ds1よりも一方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds1よりも他方側にある第二流路Rbと分岐基準空間Ds1とが接続流路PJを介して接続されてもよい。このようにすれば、第二流体Bの流通経路が、分岐基準空間Ds1から第一方向の一方側で連続する少なくとも一つの第一系統S1と、分岐基準空間Ds1から第一方向の他方側で連続する少なくとも一つの第二系統S2とに分岐される。
 また、第二流体Bの流通経路が第一系統S1と第二系統S2とを含む場合、第一系統S1及び第二系統S2のそれぞれにおいて、第一方向の途中位置にある少なくとも一つの第二流路Rbであって、接続流路PJを介して上流の分岐基準空間Ds1と直接的又は間接的に接続された第二流路Rbを画定する伝熱プレート2,3間に分岐基準空間(下流側の分岐基準空間)Ds2を形成してもよい。この場合、第一方向において分岐基準空間Ds2よりも一方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続され、第一方向において分岐基準空間Ds2よりも他方側にある第二流路Rbと下流側の分岐基準空間Ds2とが接続流路PJを介して接続される。これにより、第一系統S1及び第二系統S2のそれぞれにおける第二流体Bの流通経路が、さらに少なくとも二系統S1a,S1b,S2a,S2bに分岐し、その系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rbが第二流出路Pb2に接続される。なお、各系統S1a,S1b,S2a,S2bにおける最下流にある第二流路Rb(第二流出路Pb2に接続される第二流路Rb)は、一つに限らず、複数であってもよい。
 1…プレート式熱交換器、2…第一伝熱プレート(伝熱プレート)、3…第二伝熱プレート(伝熱プレート)、20,30…伝熱部、21,31…嵌合部、22,32…凹条、23,33…凸条、200,201,202,203,300,301,302,303…開口、220,320…第一流路形成用凹条、221,321…第二流路形成用凹条、222,322…裏側凹条、223,323…屈曲凹条部、223a,223b,323a,323b…傾斜凹条部、230,330…障壁用凸条、231,331…第一流路側凸条、232,332…屈曲凸条部、232a,232b,332a,332b…傾斜凸条部、233,333…第二流路側凸条、A…第一流体、B…第二流体、CL…縦中心線(中心線)、Da,Db…分割領域、Ds1…分岐基準空間、Ds2…分岐基準空間、Pa1…第一流入路、Pa2…第一流出路、Pb1…第二流入路、Pb2…第二流出路、PJ…接続流路、Ra…第一流路、Rb…第二流路、S1…第一系統、S2…第二系統、S1a,S1b,S2a,S2b…系統、Sa1,Sb1…第一面、Sa2,Sb2…第二面

Claims (12)

  1.  凸条及び凹条の形成された第一面と、該第一面に対して反対側を向き、且つ前記第一面の前記凸条と表裏の関係にある凹条及び前記第一面の前記凹条と表裏の関係にある凸条の形成された第二面とを有する伝熱部を含む伝熱プレートであって、それぞれの前記伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備え、
     前記複数の伝熱プレートのそれぞれは、
     自身の伝熱部の第一面を前記第一方向の一方側で隣に並ぶ伝熱プレートにおける伝熱部の第一面と対向させるとともに、自身の伝熱部の第二面を前記第一方向の他方側で隣に並ぶ伝熱プレートにおける伝熱部の第二面と対向させ、
     第一流体を前記第一方向と直交する第二方向に流通させる第一流路が隣合う伝熱プレートの前記伝熱部の前記第一面間に形成されるとともに、第二流体を第二方向に流通させる第二流路が隣合う伝熱プレートの前記伝熱部の前記第二面間に形成され、
     隣合う伝熱プレートのうちの少なくとも何れか一方の伝熱プレートにおける伝熱部は、
     前記第一面に形成される前記凸条として、該伝熱部における前記第二方向に延びる中心線を横切って該伝熱部における前記第一方向及び前記第二方向と直交する第三方向の全長に亘って形成され、前記伝熱部を前記第二方向で二つ以上の分割領域に区画する少なくとも一つの障壁用凸条であって、隣に並ぶ相手方の伝熱プレートの伝熱部の第一面に形成された凸条と交差衝合する障壁用凸条を含み、
     前記第二面に形成される前記凹条として、それぞれが前記第二流路の一部を構成する複数の第二流路形成用凹条であって、前記二つ以上の分割領域のそれぞれにおいて、該分割領域の前記第二方向の一端から他端に至り且つ前記第三方向に間隔をあけて配置された複数の第二流路形成用凹条を含む、
     プレート式熱交換器。
  2.  前記隣合う伝熱プレートのそれぞれの前記伝熱部は、
     前記障壁用凸条及び前記第二流路形成用凹条を含み、
     前記第一面に形成される前記凹条として、それぞれが前記第一流路の一部を構成する複数の第一流路形成用凹条であって、前記二つ以上の分割領域のそれぞれにおいて、該分割領域の前記第二方向の一端から他端に至り且つ前記第三方向に間隔をあけて配置された複数の第一流路形成用凹条を含むとともに、
     前記第一面に形成される前記凸条として、前記第三方向で隣合う第一流路形成用凹条間に形成される第一流路側凸条であって、それぞれが前記分割領域における前記第二方向の一端から他端に至る複数の第一流路側凸条を含み、
     前記隣合う伝熱プレートの互いに対応する前記分割領域内の前記第一流路側凸条同士が間隔をあけている、
     請求項1に記載のプレート式熱交換器。
  3.  前記第一方向における前記障壁用凸条の突出量が前記第一方向における前記第一流路側凸条の突出量よりも大きく設定されている請求項2に記載のプレート式熱交換器。
  4.  前記隣合う伝熱プレートにおける互い対応する前記分割領域内にある前記複数の第一流路側凸条は、
     前記第三方向にずれて配置されている、
     請求項2に記載のプレート式熱交換器。
  5.  前記隣合う伝熱プレートのそれぞれの前記伝熱部は、
     前記障壁用凸条及び前記第二流路形成用凹条を含み、
     前記第二面に形成される前記凸条として、前記第三方向で隣合う前記第二流路形成用凹条間に形成される第二流路側凸条であって、それぞれが前記分割領域の前記第二方向の一端から他端に至る複数の第二流路側凸条を含み、
     前記伝熱部の前記第二面同士を対向させて隣合う伝熱プレートの互いに対応する前記分割領域内の前記第二流路側凸条の頂部同士が接触している、
     請求項1乃至4の何れか1項に記載のプレート式熱交換器。
  6.  前記隣合う伝熱プレートのそれぞれの前記伝熱部は、
     前記障壁用凸条及び前記第二流路形成用凹条を含み、
     前記第二面に形成される前記凸条として、前記第三方向で隣合う前記第二流路形成用凹条間に形成される第二流路側凸条であって、それぞれが前記分割領域の第二方向の一端から他端に至る複数の第二流路側凸条を含み、
     前記伝熱部の前記第二面同士を対向させて隣合う伝熱プレートの互いに対応する前記分割領域内の前記第二流路側凸条同士が間隔をあけている、
    請求項1乃至4の何れか1項に記載のプレート式熱交換器。
  7.  前記隣合う伝熱プレートにおける互い対応する前記分割領域内にある複数の前記第二流路側凸条は、
     前記第三方向にずれて配置されている、
     請求項6に記載のプレート式熱交換器。
  8.  前記障壁用凸条は、
     前記第二方向に間隔をあけて二つ以上設けられ、
     該二つ以上の障壁用凸条が前記伝熱部を三つ以上の分割領域に区画している、
     請求項1乃至7の何れか1項に記載のプレート式熱交換器。
  9.  前記障壁用凸条は、
     それぞれが基端と該基端の反対側の先端とを有する一対の傾斜凸条部であって、前記第二方向に延びる中心線又は該中心線に対して平行な仮想線に対して互いに逆向きに傾斜し、互いの前記先端同士が接続された一対の傾斜凸条部を含む少なくとも一つの屈曲凸条部を有する、
     請求項1乃至8の何れか1項に記載のプレート式熱交換器。
  10.  前記隣合う伝熱プレートのそれぞれの前記伝熱部は、
     前記屈曲凸条部を有する前記障壁用凸条を含み、
     前記隣合う伝熱プレートの前記障壁用凸条の前記屈曲凸条部は、
     互いに正反対に屈曲して形成され、互いの前記屈曲凸条部の前記傾斜凸条部同士が交差衝合している、
     請求項9に記載のプレート式熱交換器。
  11.  前記障壁用凸条は、
     前記第三方向に真っ直ぐ延びている、
     請求項1乃至8の何れか1項に記載のプレート式熱交換器。
  12.  前記隣合う伝熱プレートのそれぞれの前記伝熱部は、
     前記第三方向に延びる前記障壁用凸条を含み、
     前記隣合う伝熱プレートのそれぞれの前記障壁用凸条は、
     互いに前記第二方向にずれて配置されている、
     請求項11に記載のプレート式熱交換器。
PCT/JP2016/084040 2016-01-13 2016-11-17 プレート式熱交換器 WO2017122428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/065,935 US20190011193A1 (en) 2016-01-13 2016-11-17 Plate heat exchanger
EP16885031.1A EP3404350B1 (en) 2016-01-13 2016-11-17 Plate heat exchanger
CN201680078789.XA CN108463683A (zh) 2016-01-13 2016-11-17 板式热交换器
JP2017561528A JP6407454B2 (ja) 2016-01-13 2016-11-17 プレート式熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-004234 2016-01-13
JP2016004234 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122428A1 true WO2017122428A1 (ja) 2017-07-20

Family

ID=59312157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084040 WO2017122428A1 (ja) 2016-01-13 2016-11-17 プレート式熱交換器

Country Status (5)

Country Link
US (1) US20190011193A1 (ja)
EP (1) EP3404350B1 (ja)
JP (1) JP6407454B2 (ja)
CN (1) CN108463683A (ja)
WO (1) WO2017122428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021124242A (ja) * 2020-02-05 2021-08-30 株式会社日阪製作所 プレート式熱交換器
JP2022509667A (ja) * 2018-11-29 2022-01-21 アルファ-ラヴァル・コーポレート・アーベー 海水などの供給物を処理するためのプレート熱交換器
CN116670460A (zh) * 2020-12-15 2023-08-29 阿法拉伐股份有限公司 传热板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2884840T3 (es) 2018-11-29 2021-12-13 Alfa Laval Corp Ab Un intercambiador de calor de placas y una placa de intercambio de calor para tratar un suministro tal como agua de mar
CN113424010B (zh) * 2019-04-23 2023-07-18 株式会社日阪制作所 板式热交换器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
JPS5055952A (ja) * 1973-09-13 1975-05-16
JPS5022503B1 (ja) * 1969-06-05 1975-07-31
JPS60162183A (ja) * 1984-02-01 1985-08-23 フオルケル・ハンネマン 熱交換器
JP2000283683A (ja) * 1999-03-30 2000-10-13 Hisaka Works Ltd プレート式熱交換器
JP2001099588A (ja) 1999-09-29 2001-04-13 Hisaka Works Ltd プレート式熱交換器
JP2004184075A (ja) * 2002-12-05 2004-07-02 Packinox 伝熱プレート及びプレート式熱交換器
JP2006078091A (ja) * 2004-09-09 2006-03-23 Xenesys Inc 熱交換ユニット
JP2006162154A (ja) * 2004-12-07 2006-06-22 Ebara Corp 積層プレート式吸収器、吸収式ヒートポンプ及び吸収式冷凍機
EP2233873A1 (en) * 2009-03-12 2010-09-29 Robert Bosch GmbH Plate Heat Exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182411A (en) * 1975-12-19 1980-01-08 Hisaka Works Ltd. Plate type condenser
JPS52105354A (en) * 1976-02-28 1977-09-03 Hisaka Works Ltd Condenser
SE8306795D0 (sv) * 1983-12-08 1983-12-08 Alfa Laval Thermal Ab Vermevexlarplatta
JP3543992B2 (ja) * 1994-03-28 2004-07-21 株式会社日阪製作所 プレート式熱交換器
JPH08101000A (ja) * 1994-09-30 1996-04-16 Hisaka Works Ltd プレート式熱交換器
JP2002107074A (ja) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd プレート型熱交換器及びそれを用いたヒートポンプ給湯機
DE10320812B4 (de) * 2003-05-08 2007-03-01 Gea Wtt Gmbh Plattenwärmeübertrager mit einwandigen und doppelwandigen Wärmeübertragerplatten
US20070169916A1 (en) * 2006-01-20 2007-07-26 Wand Steven M Double-wall, vented heat exchanger
FR2954480B1 (fr) * 2009-12-17 2012-12-07 Valeo Systemes Thermiques Plaque d'echangeur de chaleur, en particulier pour un condenseur de climatisation
SE534918C2 (sv) * 2010-06-24 2012-02-14 Alfa Laval Corp Ab Värmeväxlarplatta och plattvärmeväxlare
CN105008843B (zh) * 2013-03-29 2017-05-17 株式会社日阪制作所 板式热交换器
JP6552499B2 (ja) * 2013-12-10 2019-07-31 スウェップ インターナショナル アクティエボラーグ 改良された流れを有する熱交換器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580368A (en) * 1944-01-01 1946-09-05 Separator Ab Improvements in or relating to plate heat exchangers
JPS5022503B1 (ja) * 1969-06-05 1975-07-31
JPS5055952A (ja) * 1973-09-13 1975-05-16
JPS60162183A (ja) * 1984-02-01 1985-08-23 フオルケル・ハンネマン 熱交換器
JP2000283683A (ja) * 1999-03-30 2000-10-13 Hisaka Works Ltd プレート式熱交換器
JP2001099588A (ja) 1999-09-29 2001-04-13 Hisaka Works Ltd プレート式熱交換器
JP2004184075A (ja) * 2002-12-05 2004-07-02 Packinox 伝熱プレート及びプレート式熱交換器
JP2006078091A (ja) * 2004-09-09 2006-03-23 Xenesys Inc 熱交換ユニット
JP2006162154A (ja) * 2004-12-07 2006-06-22 Ebara Corp 積層プレート式吸収器、吸収式ヒートポンプ及び吸収式冷凍機
EP2233873A1 (en) * 2009-03-12 2010-09-29 Robert Bosch GmbH Plate Heat Exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404350A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022509667A (ja) * 2018-11-29 2022-01-21 アルファ-ラヴァル・コーポレート・アーベー 海水などの供給物を処理するためのプレート熱交換器
JP7222091B2 (ja) 2018-11-29 2023-02-14 アルファ-ラヴァル・コーポレート・アーベー 海水などの供給物を処理するためのプレート熱交換器
JP2021124242A (ja) * 2020-02-05 2021-08-30 株式会社日阪製作所 プレート式熱交換器
JP7181241B2 (ja) 2020-02-05 2022-11-30 株式会社日阪製作所 プレート式熱交換器
EP4098965A4 (en) * 2020-02-05 2023-07-19 Hisaka Works, Ltd. PLATE HEAT EXCHANGER
CN116670460A (zh) * 2020-12-15 2023-08-29 阿法拉伐股份有限公司 传热板
CN116670460B (zh) * 2020-12-15 2024-04-30 阿法拉伐股份有限公司 传热板
US12025384B2 (en) 2020-12-15 2024-07-02 Alfa Laval Corporate Ab Heat transfer plate

Also Published As

Publication number Publication date
EP3404350A1 (en) 2018-11-21
CN108463683A (zh) 2018-08-28
JP6407454B2 (ja) 2018-10-17
EP3404350B1 (en) 2022-08-17
US20190011193A1 (en) 2019-01-10
JPWO2017122428A1 (ja) 2018-07-12
EP3404350A4 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6407454B2 (ja) プレート式熱交換器
JP6567097B2 (ja) プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
WO2018216165A1 (ja) プレート式熱交換器
JP2020012630A (ja) 熱交換器用伝熱プレート
JP5818397B2 (ja) プレート式熱交換器
KR102321867B1 (ko) 열전달 플레이트
WO2018216166A1 (ja) プレート式熱交換器
JP5947959B1 (ja) プレート式熱交換器用の伝熱プレート及びこれを備えたプレート式熱交換器
JP5085723B2 (ja) プレート式熱交換器
JP2014085044A (ja) プレート式熱交換器
JP7072790B2 (ja) 熱交換器
JP6069425B2 (ja) プレート式熱交換器
CN211903861U (zh) 板式换热器
JP5244162B2 (ja) プレート式熱交換器
JP6235645B2 (ja) プレート式熱交換器
JP5933605B2 (ja) プレート式熱交換器
JP5918904B2 (ja) プレート式熱交換器
JP5818396B2 (ja) プレート式熱交換器
JP6865354B2 (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム
JPWO2014155837A1 (ja) プレート式熱交換器
JP2019086235A (ja) プレート式熱交換器
JP2019070472A (ja) プレート式熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016885031

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016885031

Country of ref document: EP

Effective date: 20180813