WO2017117749A1 - 基于多种测距方式的跟焦***、方法及拍摄*** - Google Patents

基于多种测距方式的跟焦***、方法及拍摄*** Download PDF

Info

Publication number
WO2017117749A1
WO2017117749A1 PCT/CN2016/070300 CN2016070300W WO2017117749A1 WO 2017117749 A1 WO2017117749 A1 WO 2017117749A1 CN 2016070300 W CN2016070300 W CN 2016070300W WO 2017117749 A1 WO2017117749 A1 WO 2017117749A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
focus
ranging
wireless
wireless ranging
Prior art date
Application number
PCT/CN2016/070300
Other languages
English (en)
French (fr)
Inventor
徐红兵
何景川
Original Assignee
深圳市莫孚康技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市莫孚康技术有限公司 filed Critical 深圳市莫孚康技术有限公司
Priority to PCT/CN2016/070300 priority Critical patent/WO2017117749A1/zh
Priority to CN201680000519.7A priority patent/CN105874384B/zh
Publication of WO2017117749A1 publication Critical patent/WO2017117749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/285Systems for automatic generation of focusing signals including two or more different focus detection devices, e.g. both an active and a passive focus detecting device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the invention relates to the field of imaging and communication, and in particular to a focus tracking system, a method and a photographing system based on a plurality of ranging methods.
  • the existing automatic focus tracking device based on video target tracking includes a tablet computer with video target tracking software installed, and the tablet computer outputs the two-dimensional coordinates of the current focus target on the video image; used to measure the distance between the camera focal plane and the actor Ranging sensor; two-axis pan/tilt for pointing the distance measuring sensor to the actor, the distance measuring sensor mounted on the pan/tilt; the motor for driving the rotation of the lens FOCUS ring; the motor driver for driving the motor; for receiving the camera
  • the video capture card of the output video signal the tablet computer receives the video signal output by the video capture card; is used for receiving the coordinate signal outputted by the video output of the tablet computer, the ranging data output by the ranging sensor, and the ranging data according to the ranging data
  • the advantage of the automatic focus follower based on video target tracking is that the focus target can be selected, the distance measuring sensor is controlled to point to the target, and the focus is automatically followed by the ranging data;
  • the ranging sensor is generally a laser ranging sensor or an ultrasonic ranging sensor, ranging High precision and precise focus.
  • the video frame rate output by the camera is generally below 30 frames per second.
  • the tablet receives the image image and the actual object movement delay is relatively large, plus the time required for image processing, causing the tablet output to follow the focal target coordinates and the actual target.
  • the moving coordinate delay is large, especially in the case where the coordinates of the actor continuously change in the image, the pan-tilt motion delay, the ranging sensor usually cannot accurately focus, and the distance between the focal plane of the camera and the actor cannot be obtained in time, The focus is severely delayed, causing the image to be out of focus, when the image is out of focus After that, the video target tracking cannot effectively identify the target, and the ranging sensor cannot accurately focus, reducing the efficiency of the automatic focus.
  • the invention provides a focus-focusing system based on a plurality of ranging methods, which adopts a plurality of ranging methods to perform a focus-focus operation on a focus, so that it has the advantage of improving the efficiency of automatic focus-focusing.
  • a focus tracking system based on a plurality of ranging methods is provided, wherein the focus tracking system based on a plurality of ranging methods is used to adjust a focus of the camera device, and the system includes: a focusing device, a pan/tilt, and a computing device; wherein the cloud platform comprises: a ranging sensor, the system further comprising: a wireless ranging device; the wireless ranging device comprises: a wireless ranging main module, at least one wireless ranging slave module and a computing module; The distance from the main module and the camera device is fixed, and the distance of the at least one wireless ranging from the position of the module to the at least one focus target is fixed;
  • a computing device configured to receive video data output by the camera device, and calculate a two-dimensional coordinate of the focus target in the video data according to the video data;
  • a distance measuring sensor configured to measure a first distance between a focal plane of the camera and a target
  • a cloud platform for acquiring the two-dimensional coordinates, and controlling the pan-tilt movement according to the two-dimensional coordinates
  • a calculating module configured to calculate a second distance between the wireless ranging main module and the wireless ranging slave module according to a wireless signal transmission time between the wireless ranging main module and the wireless ranging slave module ;
  • the focusing device is configured to adjust the focus of the camera device according to the second distance and the lens data if the distance difference between the first distance and the second distance is greater than or equal to the distance threshold.
  • the focusing device is further configured to adjust a focus of the imaging device according to the first distance and the lens data, such that the distance difference between the first distance and the second distance is less than a distance threshold.
  • the focusing device is further configured to: when the video target tracking software of the computing device does not recognize the target according to the video data, adjust the focus of the camera according to the second distance and the lens data.
  • the second distance L is calculated according to a preset formula, where the preset formula is specifically:
  • t0 is the time when the wireless ranging main module sends the distance acquisition message
  • t3 is the time when the wireless ranging main module receives the response message of the distance acquisition message
  • t2 is the wireless ranging from the module sending the response cancellation
  • t1 is the time when the wireless ranging receives the distance acquisition message from the module
  • C is the radio wave propagation speed.
  • a focus method based on a plurality of ranging methods is provided, and the method is applied to a focus tracking system based on a plurality of ranging methods provided by the first aspect, the method comprising:
  • FIG. 3 is a flowchart of a method for following a focus of various ranging methods according to a fourth preferred embodiment of the present invention.
  • the above-mentioned imaging device does not belong to a device in a focus-focusing system based on a plurality of ranging methods
  • a focusing system based on a plurality of ranging methods needs to focus the imaging device, and in general, based on a plurality of ranging methods
  • the focus system and camera unit are used in unison.
  • the computing device 105 may be a device such as a tablet computer, a smart phone, or a personal computer.
  • the specific preferred embodiment of the computing device is not limited in the first preferred embodiment of the present invention.
  • the video data may be the receiving camera 103.
  • Video data of the video capture card, the format of the video data may also be various, for example, video data in the H.263, H.264, MPEG-4 or MPEG-6 format, the first preferred embodiment of the present invention The specific form of the above video format is not limited.
  • the computing device calculates the two-dimensional coordinates of the focus target in the video data using video object tracking software installed in the computing device.
  • the distance measuring sensor 1041 is configured to measure a first distance between the focal plane of the camera 103 and the target of the focus;
  • the ranging sensor 1041 may be specifically a laser ranging sensor or an ultrasonic ranging sensor.
  • the manner in which the ranging sensor obtains the first distance may be in a manner of the prior art, and the first preferred embodiment of the present invention is used for the ranging.
  • the manner in which the sensor obtains the first distance is not limited.
  • the ranging sensor may also adopt other types of ranging sensors, and the specific preferred form of the above-mentioned ranging sensor is also used in the first preferred embodiment of the present invention. Not limited.
  • the cloud platform 104 is configured to acquire the two-dimensional coordinates, and adjust the pan-tilt movement according to the two-dimensional coordinates to make the ranging sensor 1041 point to the focus target;
  • the manner in which the pan/tilt head 104 obtains the two-dimensional coordinates may be in various manners, for example, in the first comparison of the present invention.
  • the method may be obtained by means of wireless transmission.
  • the method may be obtained by a wired manner, and the specific embodiment of the present invention is not The specific representation of the above two-dimensional coordinates is defined.
  • the pan/tilt controls the motor of the pan/tilt to move the gimbal according to the two-dimensional coordinates, so that the ranging sensor 1041 disposed on the pan/tilt head 104 is directed to the target of the focus.
  • the calculating module 1013 is configured to calculate a second distance between the wireless ranging main module 1011 and the wireless ranging slave module 1012 according to the wireless signal transmission time between the wireless ranging main module 1011 and the wireless ranging slave module 1012;
  • the focusing device 102 is configured to adjust the focus of the imaging device 103 according to the second distance and the lens data, if the distance difference between the first distance and the second distance is greater than or equal to the distance threshold.
  • the main reason that the focusing device 102 adopts the focusing strategy is that after the wireless ranging device is added, two ranging data can be received (that is, the first distance and the second distance can be obtained), and one way is installed on the PTZ.
  • the above-mentioned ranging sensor that is, the first distance, generally a laser ranging sensor or an ultrasonic ranging sensor, has high ranging accuracy, but sometimes cannot accurately point to an actor (focus target); the other is wireless ranging, that is, the second distance , the ranging accuracy is low, and when there is occlusion between the wireless ranging main module and the slave module, The ranging error is large, and the advantage is that the approximate second distance can always be output.
  • Most of the wireless ranging data is used as reference data.
  • the ranging sensor on the gimbal accurately points to the actor (focus target) ), using the value of laser ranging and lens data to control the rotation of the lens FOCUS circle, when the deviation between the laser ranging data and the wireless ranging data exceeds a certain range, it is considered that the ranging sensor on the gimbal does not accurately point to the actor (focus Target), using the second distance minus a distance offset value and lens data to control the lens FOCUS circle rotation.
  • the focusing device 102 is further configured to adjust a focus of the imaging device 103 according to the first distance and the lens data, such that the distance difference between the first distance and the second distance is less than a distance threshold.
  • the implementation manner of adjusting the imaging device according to the first distance and the lens data in the above steps may specifically: adjusting the angle of rotation of the focus ring of the lens according to the first distance and the lens data, which may be: calculating according to the first distance and the distance deviation adjusting the distance L1 adjusted (e.g., increase or decrease the distance from the second deviation); rotated from the query list L1 corresponding to the focus ring tone according to the angle of L1 tone map pre-stored distance of the focus ring rotation angle.
  • ⁇ n is the rotation angle of the lens, indicating that the lens focus ring is rotated from the initial position to the current position, and the lens focus ring is rotated. Angle.
  • This kind of setting is because the first distance detected by the distance measuring sensor is within the set range at this time, and the working is normal at this time, so no adjustment is needed, and the focus of the imaging device can be directly adjusted by using the first distance and the lens data.
  • the focusing device 102 is further configured to: when the computing device does not recognize the target according to the video data, adjust the focus of the camera 103 according to the second distance and the lens data.
  • the method for judging the above-mentioned unidentified target may adopt the prior art judging method.
  • the video object tracking software may be used to determine whether there is a tracking target.
  • other methods may be used to obtain whether there is a tracking target.
  • FIG. 2 is a focusing system based on multiple ranging methods according to a second preferred embodiment of the present invention, and includes the following modules for converting a video signal 10 output by a camera into a tablet computer 12;
  • the tablet computer has a touch screen function, and is pre-installed with video target tracking software for receiving the video signal output by the video capture card 11, and the coordinates of the target relative to the image from the COM communication port Output; for receiving the coordinate signal outputted by the tablet 12, the distance sensor 21, that is, the distance data output by the laser ranging sensor, the distance data output by the wireless ranging main module 17, and controlling the pan/tilt motor driver 14, the motor 15, and the motor 16 Lens FOCUS motor driver 23, the main controller stores the lens data; the FOCUS motor 24 for driving the rotation of the lens FOCUS circle; the pan/tilt motor 15 and the pan/tilt motor 16 for driving the horizontal and vertical movement of the gimbal respectively;
  • the distance module is fixed to the actor (
  • the computing device 105 is configured to receive video data output by the camera device 103, and calculate a two-dimensional coordinate of the focus target in the video data according to the video data;
  • the cloud platform 104 is configured to acquire the two-dimensional coordinates, and adjust the pan-tilt movement according to the two-dimensional coordinates to make the ranging sensor 1041 point to the focus target;
  • the ranging sensor 1041 may be specifically a laser ranging sensor or an ultrasonic ranging sensor.
  • the manner in which the ranging sensor obtains the first distance may be in a manner of the prior art, and the first preferred embodiment of the present invention is used for the ranging.
  • the manner in which the sensor obtains the first distance is not limited.
  • the ranging sensor may also adopt other types of ranging sensors, and the specific preferred form of the above-mentioned ranging sensor is also used in the first preferred embodiment of the present invention. Not limited.
  • the focusing device 102 is further configured to adjust the focus of the camera device 103 according to the second distance and the lens data, such as the first distance and the distance difference between the first distance and the second distance.
  • the distance difference between the second distances is less than the distance threshold, and the focus of the imaging device 103 is adjusted according to the first distance and the lens data.
  • the focus of the above-mentioned adjustment camera 103 is to make the target of the tracking clear, because for the movie, the target to be tracked (ie, the shooting target) is clear, so it is necessary to adjust the focus to achieve accurate focusing to achieve the tracking target image clear. purpose.
  • the second preferred embodiment of the present invention enables automatic focusing of target tracking in any case.
  • the second preferred embodiment of the present invention has the advantage of using a high-precision feature of a ranging sensor (generally a laser ranging sensor or an ultrasonic ranging sensor) to make the focus accurate.
  • a ranging sensor generally a laser ranging sensor or an ultrasonic ranging sensor
  • the motion of the gimbal will have a certain delay, and the target cannot be pointed to the target in real time, and the ranging sensor cannot point to the target in real time, and the wireless ranging can output a substantially accurate value.
  • the rotation angle of the lens FOCUS circle is not too large to deviate from the target focus, so the focus speed is fast. According to the deviation between the distance value output by the ranging sensor and the distance value of the wireless ranging output, it can be determined whether the ranging sensor accurately points to the target.
  • the third preferred embodiment of the present invention further provides a focus tracking system based on multiple ranging methods, and the system may specifically include: a wireless ranging device 101, a focusing device 102, a cloud platform 104, and a computing device 105;
  • the station 104 may include a ranging sensor 1041, and the wireless ranging device 101 may include: a wireless ranging main module 1011, at least one wireless ranging slave module 1012, and a computing module 1013; wherein the wireless ranging main module 1012 and the PTZ The distance between the two is fixed, and the distance of the at least one wireless ranging from the module 1012 to the target of the focus is fixed;
  • the relative position of the above wireless ranging from the module to the actor does not need to be strictly limited, such as focusing on the actor's face, the wireless ranging from the module can be placed in the jacket pocket, or in the trouser pocket.
  • the distance from the focal plane of the camera to the face of the actor is not equal to the distance from the focal plane of the camera to the slave module.
  • the ranging sensor on the pan/tilt accurately points to the face, the ranging sensor outputs high-precision data according to the preset.
  • the distance deviation and other parameters can calculate the distance difference between the focal plane of the camera and the face of the actor and the slave module. After obtaining the distance difference, the distance between the focal plane of the camera and the face of the actor can be corrected in real time.
  • the computing device 105 is configured to receive video data output by the camera device 103, and calculate a two-dimensional coordinate of the focus target in the video data according to the video data;
  • the computing device 105 may be specifically a device such as a tablet computer, a smart phone, or a personal computer.
  • the first preferred embodiment of the present invention is not limited to the specific representation of the computing device.
  • the video data may be video data of the video capture card of the receiving camera 103, and the format of the video data may also be multiple.
  • the video data in the H.263, H.264, MPEG-4 or MPEG-6 format may be used.
  • the first preferred embodiment of the present invention does not limit the specific expression of the video format.
  • the computing device is configured to calculate a two-dimensional coordinate of the focus target in the video data using video target tracking software installed in the computing device.
  • the ranging sensor can be directed to the focus target according to the two-dimensional coordinates.
  • the cloud platform 104 is configured to acquire the two-dimensional coordinates, and adjust the pan-tilt movement according to the two-dimensional coordinates to make the ranging sensor 1041 point to the focus target;
  • the manner in which the cloud platform 104 obtains the two-dimensional coordinates may be in various manners.
  • the method may be obtained by wireless transmission, of course, in the first preferred embodiment of the present invention.
  • the method may be obtained by a wired manner, and the specific embodiment of the present invention does not limit the specific representation of the two-dimensional coordinates.
  • the pan/tilt controls the motor of the pan/tilt to move the gimbal according to the two-dimensional coordinates, so that the ranging sensor 1041 disposed on the pan/tilt head 104 is directed to the target of the focus.
  • the distance measuring sensor 1041 is configured to measure a first distance between the focal plane of the camera 103 and the target of the focus;
  • the ranging sensor 1041 may be specifically a laser ranging sensor or an ultrasonic ranging sensor.
  • the manner in which the ranging sensor obtains the first distance may be in a manner of the prior art, and the first preferred embodiment of the present invention is used for the ranging.
  • the manner in which the sensor obtains the first distance is not limited.
  • the ranging sensor may also adopt other types of ranging sensors, and the specific preferred form of the above-mentioned ranging sensor is also used in the first preferred embodiment of the present invention. Not limited.
  • the calculating module 1013 is configured to calculate a second distance between the wireless ranging main module 1011 and the wireless ranging slave module 1012 according to the wireless signal transmission time between the wireless ranging main module 1011 and the wireless ranging slave module 1012;
  • the focusing device 102 is further configured to adjust the focus of the imaging device 103 according to the second distance and the lens data to achieve accurate focusing of the imaging device 103 when the computing device does not recognize the target according to the video data.
  • the case of the third preferred embodiment of the present invention generally occurs when the power is turned on, and the situation is generally open.
  • the machine will appear, because the distance sensor has not yet entered the optimal working state when the machine is turned on, and the video target tracking software of the computing device cannot achieve normal tracking. At this time, the computing device cannot recognize the target according to the video data. In this state, it is very convenient to adjust the focus of the image pickup device 103 by the second distance at this time.
  • the method for judging the above-mentioned unidentified target may adopt the prior art judging method.
  • the video object tracking software may be used to determine whether there is a tracking target.
  • other methods may be used to obtain whether there is a tracking target.
  • the time at which the message is obtained, C can be the propagation speed, generally the speed of light; the above t2 and t1 can be carried in the response message.
  • the response message may not carry t2 and t1, and the user can
  • the module is set such that the difference of t2-t1 is a fixed value, for example, 0.1 s, and of course other values, such as 0.2 s.
  • FIG. 3 is a method for following a focus based on multiple ranging methods according to a fourth preferred embodiment of the present invention.
  • the method is based on multiple measurements provided by the first, second, and third preferred embodiments of the present invention. Executed from the system, the method is as shown in FIG. 4, and includes the following steps:
  • the foregoing step S401 may be performed by the computing device 105 based on the plurality of ranging systems.
  • the fourth preferred embodiment of the present invention does not limit the specific representation of the computing device.
  • the video data may be the video of the receiving camera 103.
  • the video data of the capture card may be in a plurality of formats, for example, video data in the H.263, H.264, MPEG-4 or MPEG-6 format, and the fourth preferred embodiment of the present invention
  • the specific form of the video format is not limited.
  • the computing device is configured to calculate a two-dimensional coordinate of the focus target in the video data using video target tracking software installed in the computing device.
  • Step S402 measuring a first distance between the focal plane of the camera and the target of the focus, according to the second The dimensional coordinates adjust the movement of the gimbal;
  • step S402 can be implemented by using the ranging sensor 1041 in the plurality of ranging systems, and the implementation manner thereof can be specifically adopted in the prior art manner.
  • the manner in which the fourth preferred embodiment of the present invention acquires the first distance is not limited. .
  • the movement of the pan/tilt is to adjust the movement of the gimbal according to the two-dimensional coordinates so that the ranging sensor accurately points to the target.
  • Step S403 calculating a second distance between the wireless ranging main module and the wireless ranging slave module according to the wireless signal transmission time between the wireless ranging main module and the wireless ranging slave module;
  • the implementation method of the foregoing step S403 may specifically be: acquiring the transmission time t0 of the distance acquisition message of the wireless ranging master template and the receiving time t3 of the distance acquisition response message, acquiring the distance acquisition message receiving time t2 and distance acquisition of the wireless ranging slave module.
  • the transmission time t1 of the corresponding message, the second distance L [(t3-t0)-(t2-t1)]*C/2; wherein C can be the wireless signal propagation speed, generally the speed of light.
  • Step S404 If the distance difference between the first distance and the second distance is greater than or equal to the distance threshold, adjust the focus of the imaging device according to the second distance and the lens data to achieve accurate focusing of the imaging device.
  • the method may further include: if the distance difference between the first distance and the second distance is less than the distance threshold, adjusting the focus of the camera 103 according to the first distance and the lens data.
  • the method may further include: adjusting, when the computing device does not identify the target according to the video data, adjusting the focus of the camera 103 according to the second distance and the lens data.
  • the embodiment of the present invention further provides a photographing system 500.
  • the photographing system 500 includes: an image capturing device 103 and a focus tracking system 100 based on a plurality of ranging methods, based on a plurality of measurements.
  • a focus tracking system 100 based on a plurality of ranging methods, based on a plurality of measurements.
  • EEPROM Electrically Error Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Any connection may suitably be a computer readable medium.
  • the software uses coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), or wireless such as infrared, radio, and microwave Where technology is transmitted from a website, server or other remote source, then coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • DSL Digital Subscriber Line

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一种基于多种测距方式的跟焦***(100),所述基于多种测距方式的跟焦***(100)用于调整摄像装置(103)的焦点,所述***(100)包括:调焦装置(102)、云台(104)和计算装置(105);其中云台(104)包括:测距传感器(1041),所述***(100)还包括:无线测距装置(101);所述无线测距装置(101)包括:无线测距主模块(1011)、至少一个无线测距从模块(1012)和计算模块(1013);无线测距主模块(1011)与云台(104)之间的距离固定,至少一个无线测距从模块(1012)的位置与跟焦目标的距离固定。上述基于多种测距方式的跟焦***(100)具有提高自动跟焦的效率的优点,让跟焦更准确。

Description

基于多种测距方式的跟焦***、方法及拍摄*** 技术领域
本发明涉及摄像及通信领域,尤其涉及一种基于多种测距方式的跟焦***、方法及拍摄***。
背景技术
在广播电影电视拍摄过程中,随着摄影机焦平面与演员(对焦目标)之间的距离变化,需要不断的调整镜头FOCUS圈转动角度,使摄影机的焦点始终保持在演员(对焦目标)上。
现有基于视频目标跟踪的自动跟焦装置,包括安装了视频目标跟踪软件的平板电脑,平板电脑输出当前跟焦目标的在视频画面的二维坐标;用于测量摄影机焦平面与演员之间距离的测距传感器;用于使测距传感器指向演员的两轴云台,测距传感器安装于云台上;用于驱动镜头FOCUS圈转动的电机;用于驱动电机的电机驱动器;用于接收摄影机输出的视频信号的视频采集卡,平板电脑接收视频采集卡输出的视频信号;用于接收平板电脑输出的视频跟焦目标输出的坐标信号、测距传感器输出的测距数据,及根据测距数据控制镜头FOCUS圈和云台转动的主控器,主控器预存了镜头FOCUS圈转动角度与镜头FOCUS圈刻度之间对应关系的镜头数据;所述镜头刻度是一组距离数据,当摄影机焦平面与演员之间的距离与当前镜头刻度相等时,摄影机的焦点在演员上,当然,某些镜头需要进行微调。基于视频目标跟踪的自动跟焦装置优点是可选择跟焦目标,控制测距传感器指向目标,并根据测距数据自动跟焦;测距传感器一般是激光测距传感器或超声波测距传感器,测距精度高,跟焦精准。
在实现现有技术的方案中,发现现有技术存在如下问题:
摄影机输出的视频帧率一般在每秒30帧以下,平板电脑接收到图像画面与实际物体移动延时比较大,再加上图像处理的所需时间,造成平板电脑输出跟焦目标坐标与实际目标移动坐标延时较大,尤其是演员在图像中的坐标连续变化的情况下,云台运动延时,测距传感器通常不能准确跟焦,不能及时获取摄影机焦平面与演员之间的距离,跟焦严重延时,导致图像失焦,当图像失焦 后,视频目标跟踪无法有效识别目标,测距传感器也无法准确跟焦,降低自动跟焦的效率。
发明内容
本发明提供一种基于多种测距方式的跟焦***,所述***采用了多种测距方式对焦点进行跟焦操作,所以其具有提高自动跟焦的效率的优点。
第一方面,提供一种基于多种测距方式的跟焦***,所述基于多种测距方式的跟焦***用于调整摄像装置的焦点,所述***包括:调焦装置、云台和计算设备;其中云台包括:测距传感器,所述***还包括:无线测距装置;所述无线测距装置包括:无线测距主模块、至少一个无线测距从模块和计算模块;无线测距主模块与摄像装置之间的距离固定,至少一个无线测距从模块的位置与至少一个跟焦目标的距离固定;
计算设备,用于接收所述摄像装置输出的视频数据,依据所述视频数据计算出跟焦目标在该视频数据中的二维坐标;
测距传感器,用于测量所述摄像装置焦平面与跟焦目标之间的第一距离;
云台,用于获取所述二维坐标,依据所述二维坐标控制云台移动;
计算模块,用于依据所述无线测距主模块与所述无线测距从模块之间的无线信号传输时间计算所述无线测距主模块与所述无线测距从模块之间的第二距离;
调焦装置,用于如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离和镜头数据调整所述摄像装置焦点。
可选的,所述调焦装置,还用于如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离和镜头数据调整摄像装置的焦点。
可选的,所述调焦装置,还用于如计算设备的视频目标跟踪软件依据所述视频数据未识别到目标时,依据该第二距离和镜头数据调整摄像装置的焦点。
可选的,依据预设公式计算得到所述第二距离L,所述预设公式具体为:
L=[(t3-t0)-(t2-t1)]*C/2;
其中,t0为无线测距主模块发送距离获取消息的时间,t3为无线测距主模块接收到距离获取消息的响应消息的时间,t2为无线测距从模块发送响应消 息的时间,t1为无线测距从模块接收到距离获取消息的时间,C为无线电波传播速度。
第二方面,提供一种基于多种测距方式的跟焦方法,所述方法应用于第一方面提供的基于多种测距方式的跟焦***中,所述方法包括:
获取摄像装置的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
测量摄像装置焦平面与跟焦目标之间的第一距离,依据所述二维坐标控制云台移动;
依据无线测距主模块与无线测距从模块之间的无线信号传输时间计算无线测距主模块与无线测距从模块之间的第二距离;
如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离调整摄像装置的焦点。
可选的,所述方法还包括:
如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离调整摄像装置的焦点。
可选的,所述方法还包括:
如计算设备的视频目标跟踪软件依据所述视频数据未识别到目标时,依据该第二距离调整摄像装置的焦点,使所述摄像装置准确合焦。
可选的,所述依据无线测距主模块与无线测距从模块之间的无线信号传输时间计算无线测距主模块与无线测距从模块之间的第二距离具体,包括:
获取无线测距主模板的距离获取消息的发送时间t0和距离获取响应消息的接收时间t3;
获取无线测距从模块的距离获取消息接收时间t2和距离获取相应消息的发送时间t1,则第二距离L=[(t3-t0)-(t2-t1)]*C/2;其中C为无线信号传播速度。
第三方面,提供一种拍摄***,其特征在于,上述拍摄***包括摄像装置和上述第一方面提供的基于多种测距方式的跟焦***。
可选的,所述无线测距主模块固定安装在摄像装置或云台上。
根据各实施方式提供的技术方案具有两套测距***,两套测距***相互配 合,具有提高自动跟焦的效率的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一较佳实施方式中的基于多种测距方式的跟焦***的结构示意图;
图2为本发明第二较佳实施方式提供的多种测距方式的跟焦***结构示意图;
图3为本发明第四较佳实施方式提供的多种测距方式的跟焦方法的流程图;
图4为本发明具体实施方式提供的拍摄***的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,图1为本发明第一较佳实施方式提供的一种基于多种测距方式的跟焦***100,该基于多种测距方式的跟焦***100用于调整摄像装置103的焦点,该***如图1所示,包括:无线测距装置101、调焦装置102、云台104和计算设备105;其中云台104可以包括:测距传感器1041,上述云台可以为双轴云台,该无线测距装置101可以包括:无线测距主模块1011、至少一个无线测距从模块1012和计算模块1013;其中,无线测距主模块1011与云台之间的距离固定,至少一个无线测距从模块1012的位置与至少一个跟焦目标的距离固定;上述无线测距从模块1012的数量为多个时,一个无线测距从模块1012对应一个跟焦目标。
上述无线测距从模块与演员(对焦目标)的相对位置不需要很严格限定,比如需要对演员脸部对焦,无线测距从模块可以放在上衣口袋里,也可以放在裤兜里。显然,摄影机焦平面到演员脸部的距离与摄影机焦平面到从模块的距离不相等,当云台上的测距传感器准确指向人脸的时候,测距传感器输出高精度的数据,根据预设的距离偏差等参数,可计算出摄影机焦平面到演员脸部与到从模块的距离差,获取距离差之后,可实时修正摄影机焦平面到演员脸部的距离值。
上述摄像装置虽然不属于基于多种测距方式的跟焦***内的设备,基于多种测距方式的跟焦***需要对该摄像装置进行调焦,在通常情况下,基于多种测距方式的跟焦***和摄像装置统一使用。
计算设备105,用于接收摄像装置103输出的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
上述计算设备105具体可以为:平板电脑、智能手机或个人计算机等设备,本发明第一较佳实施方式对上述计算设备的具体表现形式并不限定,另外,上述视频数据可以是接收摄像装置103的视频采集卡的视频数据,上述视频数据的格式也可以为多种,例如可以为H.263、H.264、MPEG-4或MPEG-6格式的视频数据,本发明第一较佳实施方式对上述视频格式的具体表现形式并不限定。上述计算设备采用安装在计算设备内的视频目标跟踪软件计算出跟焦目标在该视频数据中的二维坐标。
测距传感器1041,用于测量摄像装置103焦平面与跟焦目标之间的第一距离;
上述测距传感器1041具体可以为:激光测距传感器或超声波测距传感器,上述测距传感器获取该第一距离的方式可以采用现有技术的方式,本发明第一较佳实施方式对上述测距传感器如何获取第一距离的方式并不限定,当然在实际应用中,上述测距传感器也可以采用其他形式的测距传感器,本发明第一较佳实施方式对上述测距传感器的具体表现形式也不限定。
云台104,用于获取该二维坐标,依据该二维坐标调整云台移动使测距传感器1041指向跟焦目标;
上述云台104获取二维坐标的方式可以有多种方式,例如在本发明第一较 佳实施方式的一个实施例中,可以通过无线传输的方式来获取,当然在本发明第一较佳实施方式的另一个实施例中,可以通过有线的方式来获取,本发明具体实施方式并不限定上述二维坐标的具体表现形式。该云台获取该二维坐标以后,依据该二维坐标控制云台的电机使云台移动,这样带动设置在云台104上的测距传感器1041指向跟焦目标。
计算模块1013,用于依据无线测距主模块1011与无线测距从模块1012之间的无线信号传输时间计算无线测距主模块1011与无线测距从模块1012之间的第二距离;
调焦装置102,用于如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离和镜头数据调整摄像装置103的焦点。
上述依据该第二距离和镜头数据调整摄像装置103的焦点的目的是为了使得视频数据中的跟焦目标的图像更加的清晰,俗称跟焦目标处于合焦状态。
上述步骤中的依据该第二距离和镜头数据调整摄像装置103的实现方式具体可以为:依据第二距离和镜头数据调整镜头对焦圈转动的角度,具体可以为:依据第二距离和距离偏差计算得到调整后的距离L(例如在第二距离增加或减少该距离偏差);依据该L从预先存储的距离与对焦圈转动角度映射列表中查询从该L对应的对焦圈转动角度。上述距离与对焦圈转动角度映射列表存储的数据可以如下所示:(L1,θ1),(L2,θ2).....(Ln,θn),(Ln+1,θn+1).....;上述存储的数据中Ln是镜头对焦圈的刻度(即镜头数据),是一个距离数据,此刻度的含义为当镜头的对焦圈转动到此刻度时,如果摄影机焦平面与对焦对象的直线距离与此刻度相等,对焦对象准确合焦,图像清晰;θn是镜头的转动角度,表示镜头对焦圈从初始位置转动到当前位置,镜头对焦圈转动的角度。
上述调焦装置102采用此调焦策略的主要原因是,增加无线测距装置后,就可以接收到两路测距数据(即可以得到第一距离和第二距离),一路是安装于云台上的测距传感器,即第一距离,一般为激光测距传感器或超声波测距传感器,测距精度高,但有时无法准确指向演员(对焦目标);另一路是无线测距,即第二距离,测距精度低,且当无线测距主模块与从模块之间有遮挡时, 测距误差较大,优点是总能输出大概的第二距离。无线测距数据大部分时间都是作为参考数据,当激光测距数据与无线测距数据之间的距离偏差在一定范围内的时候,认为云台上的测距传感器准确指向了演员(对焦目标),采用激光测距的值及镜头数据控制镜头FOCUS圈转动,当激光测距数据与无线测距数据之间的偏差超过一定范围时,认为云台上的测距传感器没有准确指向演员(对焦目标),采用第二距离减去一个距离偏移值及镜头数据控制镜头FOCUS圈转动。
可选的,上述调焦装置102,还用于如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离和镜头数据调整摄像装置103的焦点。
上述调整摄像装置103的焦点是为了使得追踪的目标清晰,因为对于电影来说,需要追踪的目标(即拍摄目标)清晰,所以这里需要通过调整焦点来实现准确合焦以达到追踪目标图像清晰的目的。
上述步骤中的依据该第一距离和镜头数据调整摄像装置的实现方式具体可以为:依据第一距离和镜头数据调整镜头对焦圈转动的角度,具体可以为:依据第一距离和距离偏差计算得到调整后的距离L1(例如在第二距离增加或减少该距离偏差);依据该L1从预先存储的距离与对焦圈转动角度映射列表中查询从该L1对应的对焦圈转动角度。上述距离与对焦圈转动角度映射列表存储的数据可以如下所示:(L1,θ1),(L2,θ2).....(Ln,θn),(Ln+1,θn+1).....;上述存储的数据中Ln是镜头对焦圈的刻度(即镜头数据),是一个距离数据,此刻度的含义为当镜头的对焦圈转动到此刻度时,如果摄影机焦平面与对焦对象的直线距离与此刻度相等,对焦对象准确合焦,图像清晰;θn是镜头的转动角度,表示镜头对焦圈从初始位置转动到当前位置,镜头对焦圈转动的角度。
此种设置是由于此时测距传感器检测的第一距离在设定的范围内,此时工作正常,所以无需进行调整,直接采用第一距离和镜头数据调整摄像装置的焦点即可。
可选的,上述调焦装置102,还用于如计算设备依据该视频数据未识别出目标时,依据该第二距离和镜头数据调整摄像装置103的焦点。
此种情况一般在开机时会出现,因为开机时,此时测距传感器还未能进入最佳的工作状态,计算设备的视频目标追踪软件也不能实现正常追踪,此时会出现计算设备依据视频数据无法识别到目标的状态,此时通过第二距离调整摄像装置103的焦点是非常方便的。上述未识别到目标的判断方法可以采用现有技术的判断方法,例如可以采用视频目标跟踪软件来确定是否有追踪目标,当然在实际应用中也可以采用其他的方式来获取是否有追踪目标。
参阅图2,图2为本发明第二较佳实施方式提供的一种基于多种测距方式的跟焦***,包括以下模块,用于把摄影机输出的视频信号10转换为平板电脑12可接受的信号的视频采集卡11;所述平板电脑带有触摸屏功能,并预装有视频目标跟踪软件,用于接收视频采集卡11输出的视频信号,并把目标相对于图像的坐标从COM通信口输出;用于接收平板电脑12输出的坐标信号、测距传感器21即激光测距传感器输出的距离数据、无线测距主模块17输出的距离数据,控制云台电机驱动器14、电机15、电机16、镜头FOCUS电机驱动器23,主控器存储了镜头数据;用于驱动镜头FOCUS圈转动的FOCUS电机24;分别用于驱动云台水平和垂直运动的云台电机15和云台电机16;无线测距从模块固定于演员(对焦目标)上。本发明第二较佳实施方式提供的技术方案具体可以为:
无线测距装置101、调焦装置102、云台104和计算设备105;其中云台104可以包括:测距传感器1041,无线测距装置101可以包括:无线测距主模块1011、至少一个无线测距从模块1012和计算模块1013;其中,无线测距主模块1012与云台之间的距离固定,至少一个无线测距从模块1012的位置与跟焦目标的距离固定;
上述无线测距从模块与演员(对焦目标)的相对位置不需要很严格限定,比如需要对演员脸部对焦,无线测距从模块可以放在上衣口袋里,也可以放在裤兜里。显然,摄影机焦平面到演员脸部的距离与摄影机焦平面到从模块的距离不相等,当云台上的测距传感器准确指向人脸的时候,测距传感器输出高精度的数据,根据预设的距离偏差等参数,可计算出摄影机焦平面到演员脸部与到从模块的距离差,获取距离差之后,可实时修正摄影机焦平面到演员脸部的距离值。
计算设备105,用于接收摄像装置103输出的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
上述计算设备105具体可以为:平板电脑、智能手机或个人计算机等设备,本发明第一较佳实施方式对上述计算设备的具体表现形式并不限定,另外,上述视频数据可以是接收摄像装置103的视频采集卡的视频数据,上述视频数据的格式也可以为多种,例如可以为H.263、H.264、MPEG-4或MPEG-6格式的视频数据,本发明第一较佳实施方式对上述视频格式的具体表现形式并不限定。上述计算设备用于采用安装在计算设备内的视频目标跟踪软件计算出跟焦目标在该视频数据中的二维坐标。
云台104,用于获取该二维坐标,依据该二维坐标调整云台移动使测距传感器1041指向跟焦目标;
上述云台104获取二维坐标的方式可以有多种方式,例如在本发明第一较佳实施方式的一个实施例中,可以通过无线传输的方式来获取,当然在本发明第一较佳实施方式的另一个实施例中,可以通过有线的方式来获取,本发明具体实施方式并不限定上述二维坐标的具体表现形式。该云台获取该二维坐标以后,依据该二维坐标控制云台的电机使云台移动,这样带动设置在云台104上的测距传感器1041指向跟焦目标。
测距传感器1041,用于测量摄像装置103焦平面与跟焦目标之间的第一距离;
上述测距传感器1041具体可以为:激光测距传感器或超声波测距传感器,上述测距传感器获取该第一距离的方式可以采用现有技术的方式,本发明第一较佳实施方式对上述测距传感器如何获取第一距离的方式并不限定,当然在实际应用中,上述测距传感器也可以采用其他形式的测距传感器,本发明第一较佳实施方式对上述测距传感器的具体表现形式也不限定。
计算模块1013,用于依据无线测距主模块1011与无线测距从模块1012之间的无线信号传输时间计算无线测距主模块1011与无线测距从模块1012之间的第二距离;
调焦装置102,还用于如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离和镜头数据调整摄像装置103的焦点,如第一距离与 第二距离之间的距离差小于距离阈值,则依据该第一距离和镜头数据调整摄像装置103的焦点。
上述调整摄像装置103的焦点是为了使得追踪的目标清晰,因为对于电影来说,需要追踪的目标(即拍摄目标)清晰,所以这里需要通过调整焦点来实现准确合焦以达到追踪目标图像清晰的目的。
本发明第二较佳实施方式在任何情况下均能够实现目标追踪的自动调焦。本发明第二较佳实施方式的优点是利用测距传感器(一般是激光测距传感器或超声波测距传感器)高精度特点,使跟焦精准高。当视频跟焦目标在图像中的坐标连续变化时,云台的运动会有一定的延时,无法实时指向目标,测距传感器也就无法实时指向目标,无线测距可输出一个基本准确的值,使镜头FOCUS圈转动角度不至于偏离目标焦点太大,所以跟焦速度快。依据测距传感器输出的距离值与无线测距输出的距离值偏差大小,可判断测距传感器是否准确指向目标。
本发明第三较佳实施方式还提供一种基于多种测距方式的跟焦***,该***具体可以包括:无线测距装置101、调焦装置102、云台104和计算设备105;其中云台104可以包括:测距传感器1041,无线测距装置101可以包括:无线测距主模块1011、至少一个无线测距从模块1012和计算模块1013;其中,无线测距主模块1012与云台之间的距离固定,至少一个无线测距从模块1012的位置与跟焦目标的距离固定;
上述无线测距从模块与演员(对焦目标)的相对位置不需要很严格限定,比如需要对演员脸部对焦,无线测距从模块可以放在上衣口袋里,也可以放在裤兜里。显然,摄影机焦平面到演员脸部的距离与摄影机焦平面到从模块的距离不相等,当云台上的测距传感器准确指向人脸的时候,测距传感器输出高精度的数据,根据预设的距离偏差等参数,可计算出摄影机焦平面到演员脸部与到从模块的距离差,获取距离差之后,可实时修正摄影机焦平面到演员脸部的距离值。
计算设备105,用于接收摄像装置103输出的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
上述计算设备105具体可以为:平板电脑、智能手机或个人计算机等设备, 本发明第一较佳实施方式对上述计算设备的具体表现形式并不限定,另外,上述视频数据可以是接收摄像装置103的视频采集卡的视频数据,上述视频数据的格式也可以为多种,例如可以为H.263、H.264、MPEG-4或MPEG-6格式的视频数据,本发明第一较佳实施方式对上述视频格式的具体表现形式并不限定。上述计算设备用于采用安装在计算设备内的视频目标跟踪软件计算出跟焦目标在该视频数据中的二维坐标。测距传感器可以根据该二维坐标指向跟焦目标。
云台104,用于获取该二维坐标,依据该二维坐标调整云台移动使测距传感器1041指向跟焦目标;
上述云台104获取二维坐标的方式可以有多种方式,例如在本发明第一较佳实施方式的一个实施例中,可以通过无线传输的方式来获取,当然在本发明第一较佳实施方式的另一个实施例中,可以通过有线的方式来获取,本发明具体实施方式并不限定上述二维坐标的具体表现形式。该云台获取该二维坐标以后,依据该二维坐标控制云台的电机使云台移动,这样带动设置在云台104上的测距传感器1041指向跟焦目标。
测距传感器1041,用于测量摄像装置103焦平面与跟焦目标之间的第一距离;
上述测距传感器1041具体可以为:激光测距传感器或超声波测距传感器,上述测距传感器获取该第一距离的方式可以采用现有技术的方式,本发明第一较佳实施方式对上述测距传感器如何获取第一距离的方式并不限定,当然在实际应用中,上述测距传感器也可以采用其他形式的测距传感器,本发明第一较佳实施方式对上述测距传感器的具体表现形式也不限定。
计算模块1013,用于依据无线测距主模块1011与无线测距从模块1012之间的无线信号传输时间计算无线测距主模块1011与无线测距从模块1012之间的第二距离;
调焦装置102,还用于如计算设备依据该视频数据未识别到目标时,依据该第二距离和镜头数据调整摄像装置103的焦点以实现摄像装置103的准确合焦。
本发明第三较佳实施方式的情况一般在开机时会出现,此种情况一般在开 机时会出现,因为开机时,此时测距传感器还未能进入最佳的工作状态,计算设备的视频目标追踪软件也不能实现正常追踪,此时会出现计算设备依据视频数据无法识别到目标的状态,此时通过第二距离调整摄像装置103的焦点是非常方便的。上述未识别到目标的判断方法可以采用现有技术的判断方法,例如可以采用视频目标跟踪软件来确定是否有追踪目标,当然在实际应用中也可以采用其他的方式来获取是否有追踪目标。
可选的,上述第一、二、三较佳实施方式中,上述计算模块1013具体可以用于,无线测距主模块向无线测距从模块发送距离获取消息,无线测距从模块接收到该距离获取消息后,向无线测距主模块发送响应消息,则第二距离L=[(t3-t0)-(t2-t1)]*C/2;其中,L为第二距离,t0为无线测距主模块发送该距离获取消息的时间,t3为无线测距主模块接收到该响应消息的时间,t2为无线测距从模块发送该响应消息的时间,t1为无线测距从模块接收到距离获取消息的时间,C可以为传播速度,一般为光速;上述t2、t1可以在响应消息内携带,当然在实际应用中上述响应消息内也可以不携带t2、t1,用户可以对从测距模块进行设定使得t2-t1的差值为定值,例如0.1s,当然也可以为其他的值,例如0.2s等。
参阅图3,图3为本发明第四较佳实施方式提供的一种基于多种测距方式的跟焦方法,该方法由本发明第一、二、三较佳实施方式提供的基于多种测距***来执行,该方法如图4所示,包括如下步骤:
步骤S401、获取摄像装置的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
上述步骤S401可以由基于多种测距***中计算设备105完成,本发明第四较佳实施方式对上述计算设备的具体表现形式并不限定,另外,上述视频数据可以是接收摄像装置103的视频采集卡的视频数据,上述视频数据的格式也可以为多种,例如可以为H.263、H.264、MPEG-4或MPEG-6格式的视频数据,本发明第四较佳实施方式对上述视频格式的具体表现形式并不限定。上述计算设备用于采用安装在计算设备内的视频目标跟踪软件计算出跟焦目标在该视频数据中的二维坐标。
步骤S402、测量摄像装置焦平面与跟焦目标之间的第一距离,依据该二 维坐标调整云台的移动;
上述步骤S402可以由基于多种测距***中的测距传感器1041来实现,其实现方式具体可以采用现有技术的方式,本发明第四较佳实施方式如何获取第一距离的方式并不限定。上述云台的移动是为了依据该二维坐标调整云台的移动使得测距传感器准确的指向跟焦目标。
步骤S403、依据无线测距主模块与无线测距从模块之间的无线信号传输时间计算无线测距主模块与无线测距从模块之间的第二距离;
上述步骤S403的实现方法具体可以为:获取无线测距主模板的距离获取消息的发送时间t0和距离获取响应消息的接收时间t3,获取无线测距从模块的距离获取消息接收时间t2和距离获取相应消息的发送时间t1,则第二距离L=[(t3-t0)-(t2-t1)]*C/2;其中C可以为无线信号传播速度,一般为光速。
步骤S404、如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离和镜头数据调整摄像装置的焦点以实现摄像装置准确合焦。
可选的,上述方法在步骤S404之后还可以包括:如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离和镜头数据调整摄像装置103的焦点。
此种设置是由于此时测距传感器检测的第一距离在设定的范围内,此时工作正常,所以无需进行调整,直接采用第一距离和该二维坐标调整摄像装置103的焦点即可。
可选的,上述方法在步骤S404之后还可以包括:如计算设备依据视频数据未识别目标时,依据该第二距离和镜头数据调整摄像装置103的焦点。
此种情况一般在开机时会出现,因为开机时,此时测距传感器还未能进入最佳的工作状态,计算设备的视频目标追踪软件也不能实现正常追踪,此时会出现计算设备依据视频数据无法识别到目标的状态,此时通过第二距离调整摄像装置103的焦点是非常方便的。上述未识别到目标的判断方法可以采用现有技术的判断方法,例如可以采用视频目标跟踪软件来确定是否有追踪目标,当然在实际应用中也可以采用其他的方式来获取是否有追踪目标。
本发明具体实施方式还提供一种拍摄***500,如图4所示,该拍摄***500包括:摄像装置103和基于多种测距方式的跟焦***100,该基于多种测 距方式的跟焦***100的具体结构可以参见本发明第一、二、三较佳实施方式的描述。
可选的,上述无线测距主模块固定安装在云台。
需要说明的是,对于前述的各方法实施方式或实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述实施方式或实施例均属于优选实施例,所涉及的动作和单元并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,DSL)或者诸如红外线、无线电和微波之类的无线 技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于多种测距方式的跟焦***,所述基于多种测距方式的跟焦***用于调整摄像装置的焦点,所述***包括:调焦装置、云台和计算设备;其中云台包括:测距传感器,其特征在于,所述***还包括:无线测距装置;所述无线测距装置包括:无线测距主模块、至少一个无线测距从模块和计算模块;无线测距主模块与摄像装置之间的距离固定,至少一个无线测距从模块的位置与至少一个跟焦目标的距离固定;
    计算设备,用于接收所述摄像装置输出的视频数据,依据所述视频数据计算出跟焦目标在该视频数据中的二维坐标;
    测距传感器,用于测量所述摄像装置焦平面与跟焦目标之间的第一距离;
    云台,用于获取所述二维坐标,依据所述二维坐标控制云台移动;
    计算模块,用于依据所述无线测距主模块与所述无线测距从模块之间的无线信号传输时间计算所述无线测距主模块与所述无线测距从模块之间的第二距离;
    调焦装置,用于如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离和镜头数据调整所述摄像装置焦点。
  2. 根据权利要求1所述的***,其特征在于,
    所述调焦装置,还用于如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离和镜头数据调整摄像装置的焦点。
  3. 根据权利要求1所述的***,其特征在于,
    所述调焦装置,还用于如计算设备的视频目标跟踪软件依据所述视频数据未识别到目标时,依据该第二距离和镜头数据调整摄像装置的焦点。
  4. 根据权利要求1所述的***,其特征在于,依据预设公式计算得到所述第二距离L,所述预设公式具体为:
    L=[(t3-t0)-(t2-t1)]*C/2;
    其中,t0为无线测距主模块发送距离获取消息的时间,t3为无线测距主模块接收到距离获取消息的响应消息的时间,t2为无线测距从模块发送响应消息的时间,t1为无线测距从模块接收到距离获取消息的时间,C为无线电波传 播速度。
  5. 一种基于多种测距方式的跟焦方法,其特征在于,所述方法应用于如权利要求1-4任一所述的基于多种测距方式的跟焦***中,所述方法包括:
    获取摄像装置的视频数据,依据视频数据计算出跟焦目标在该视频数据中的二维坐标;
    测量摄像装置焦平面与跟焦目标之间的第一距离,依据所述二维坐标控制云台移动;
    依据无线测距主模块与无线测距从模块之间的无线信号传输时间计算无线测距主模块与无线测距从模块之间的第二距离;
    如第一距离与第二距离之间的距离差大于等于距离阈值,则依据该第二距离调整摄像装置的焦点。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    如第一距离与第二距离之间的距离差小于距离阈值,则依据该第一距离调整摄像装置的焦点。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    如计算设备的视频目标跟踪软件依据所述视频数据未识别到目标时,依据该第二距离调整摄像装置的焦点,使所述摄像装置准确合焦。
  8. 根据权利要求5所述的方法,其特征在于,所述依据无线测距主模块与无线测距从模块之间的无线信号传输时间计算无线测距主模块与无线测距从模块之间的第二距离具体,包括:
    获取无线测距主模板的距离获取消息的发送时间t0和距离获取响应消息的接收时间t3;
    获取无线测距从模块的距离获取消息接收时间t2和距离获取相应消息的发送时间t1,则第二距离L=[(t3-t0)-(t2-t1)]*C/2;其中C为无线信号传播速度。
  9. 一种拍摄***,其特征在于,所述拍摄***包括摄像装置和如权利要求1-4任一所述的基于多种测距方式的跟焦***。
  10. 根据权利要求9所述的拍摄***,其特征在于,所述无线测距主模块固定安装在云台或摄像装置上。
PCT/CN2016/070300 2016-01-06 2016-01-06 基于多种测距方式的跟焦***、方法及拍摄*** WO2017117749A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/070300 WO2017117749A1 (zh) 2016-01-06 2016-01-06 基于多种测距方式的跟焦***、方法及拍摄***
CN201680000519.7A CN105874384B (zh) 2016-01-06 2016-01-06 基于多种测距方式的跟焦***、方法及拍摄***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070300 WO2017117749A1 (zh) 2016-01-06 2016-01-06 基于多种测距方式的跟焦***、方法及拍摄***

Publications (1)

Publication Number Publication Date
WO2017117749A1 true WO2017117749A1 (zh) 2017-07-13

Family

ID=56655551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070300 WO2017117749A1 (zh) 2016-01-06 2016-01-06 基于多种测距方式的跟焦***、方法及拍摄***

Country Status (2)

Country Link
CN (1) CN105874384B (zh)
WO (1) WO2017117749A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083246A (zh) * 2020-09-11 2020-12-15 四川长虹教育科技有限公司 一种触摸显示设备***延时测量装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521860A (zh) * 2017-06-22 2018-09-11 深圳市大疆创新科技有限公司 拍摄设备的控制方法、拍摄设备及***
CN107918278B (zh) * 2017-11-16 2021-01-19 江苏省生产力促进中心 一种影视镜头自动跟焦方法
WO2022061534A1 (zh) * 2020-09-22 2022-03-31 深圳市大疆创新科技有限公司 拍摄控制方法、装置、云台、跟焦器电机及存储介质
CN113841383B (zh) * 2020-09-22 2023-04-04 深圳市大疆创新科技有限公司 拍摄控制方法、装置、云台及跟焦器电机
CN113841376B (zh) * 2020-09-22 2023-05-16 深圳市大疆创新科技有限公司 拍摄控制方法和装置
CN112188089A (zh) * 2020-09-22 2021-01-05 北京小米移动软件有限公司 距离获取方法及装置、焦距调节方法及装置、测距组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020025152A1 (en) * 2000-08-24 2002-02-28 Olympus Optical Co., Ltd. Distance measuring apparatus and distance measuring method
CN102256109A (zh) * 2011-06-07 2011-11-23 上海芯启电子科技有限公司 多目标自动跟踪摄像***及该***的聚焦方法
CN104010131A (zh) * 2014-05-05 2014-08-27 深圳市莫孚康技术有限公司 一种摄影机自动跟焦装置和方法
CN104822019A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 计算摄影机视场角的方法
CN104822020A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 基于视频目标跟踪的自动跟焦装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289613A (ja) * 2000-04-03 2001-10-19 Canon Inc オートフォーカス方法
JP4670545B2 (ja) * 2005-08-16 2011-04-13 富士ゼロックス株式会社 画像撮影装置
CN102801914A (zh) * 2012-08-21 2012-11-28 深圳市影歌科技有限公司 一种数码相机电子跟焦器及变焦方法
CN102970058B (zh) * 2012-12-17 2014-08-20 中国石油大学(华东) 一种基于固定周转时延的超宽带无线测距方法
CN104883502A (zh) * 2015-05-19 2015-09-02 广东欧珀移动通信有限公司 移动终端的对焦方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020025152A1 (en) * 2000-08-24 2002-02-28 Olympus Optical Co., Ltd. Distance measuring apparatus and distance measuring method
CN102256109A (zh) * 2011-06-07 2011-11-23 上海芯启电子科技有限公司 多目标自动跟踪摄像***及该***的聚焦方法
CN104010131A (zh) * 2014-05-05 2014-08-27 深圳市莫孚康技术有限公司 一种摄影机自动跟焦装置和方法
CN104822019A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 计算摄影机视场角的方法
CN104822020A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 基于视频目标跟踪的自动跟焦装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083246A (zh) * 2020-09-11 2020-12-15 四川长虹教育科技有限公司 一种触摸显示设备***延时测量装置及方法

Also Published As

Publication number Publication date
CN105874384B (zh) 2019-07-16
CN105874384A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017117749A1 (zh) 基于多种测距方式的跟焦***、方法及拍摄***
KR102143456B1 (ko) 심도 정보 취득 방법 및 장치, 그리고 이미지 수집 디바이스
CN102984530B (zh) 图像处理***及自动对焦方法
CN103776419B (zh) 一种提高测量范围的双目视觉测距方法
CN109120883B (zh) 基于远近景的视频监控方法、装置及计算机可读存储介质
US20160295097A1 (en) Dual camera autofocus
CN108028887B (zh) 一种终端的拍照对焦方法、装置及设备
CN104469168A (zh) 摄像模组及其自动对焦方法
WO2014044161A1 (zh) 一种智能跟踪高速球机的目标跟踪的方法与***
CN104469169A (zh) 相位测距摄像模组及其自动对焦方法
CN108833795B (zh) 一种图像获取设备的对焦方法及装置
CN108007426B (zh) 一种摄像头测距方法
CN105245768A (zh) 一种焦距调节方法、装置和终端
US20210051262A1 (en) Camera device and focus method
WO2017070884A1 (zh) 基于无线测距的图像调焦***、方法及拍摄***
CN104822019A (zh) 计算摄影机视场角的方法
CN104571135A (zh) 一种云台追踪摄影***和云台追踪摄影方法
JP2014021328A (ja) 立体映像撮影システムに用いる光学装置
CN110602376B (zh) 抓拍方法及装置、摄像机
WO2017117750A1 (zh) 简易多种测距方式的跟焦***及拍摄***
CN105301279B (zh) 一种基于摄像头的速度测量方法、装置及移动终端
US10880536B2 (en) Three-dimensional image capturing device and method
WO2017201730A1 (zh) 基于激光雷达测距的图像调焦***及方法
CN113906362A (zh) 测绘相机的控制方法、测绘相机、无人机以及测绘***
GB2556389A (en) Method for readjusting a parallactic or azimuthal mounting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16882894

Country of ref document: EP

Kind code of ref document: A1