WO2017201730A1 - 基于激光雷达测距的图像调焦***及方法 - Google Patents

基于激光雷达测距的图像调焦***及方法 Download PDF

Info

Publication number
WO2017201730A1
WO2017201730A1 PCT/CN2016/083646 CN2016083646W WO2017201730A1 WO 2017201730 A1 WO2017201730 A1 WO 2017201730A1 CN 2016083646 W CN2016083646 W CN 2016083646W WO 2017201730 A1 WO2017201730 A1 WO 2017201730A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
ranging
ranging module
slave
laser
Prior art date
Application number
PCT/CN2016/083646
Other languages
English (en)
French (fr)
Inventor
徐红兵
何景川
Original Assignee
深圳市莫孚康技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市莫孚康技术有限公司 filed Critical 深圳市莫孚康技术有限公司
Priority to PCT/CN2016/083646 priority Critical patent/WO2017201730A1/zh
Priority to CN201680083977.1A priority patent/CN108885384B/zh
Publication of WO2017201730A1 publication Critical patent/WO2017201730A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/671Focus control based on electronic image sensor signals in combination with active ranging signals, e.g. using light or sound signals emitted toward objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Definitions

  • the invention relates to the field of imaging and communication, and in particular to an image focusing system and method based on laser radar ranging.
  • the automatic focusing method of the image can generally be: measuring the focusing object and the camera by using a laser range finder or an ultrasonic range finder The distance of the focal plane, based on which the camera controls the automatic focusing of the camera.
  • the laser range finder or the ultrasonic range finder can only aim at the midpoint of the image or fix an angle.
  • the focus object may be at any position of the image, thus causing inconsistent focus or inaccurate focus.
  • manual focus adjustment is only possible.
  • a skilled focus person needs many years of focusing experience. In some cases where the depth of field is relatively shallow and the focus target is continuously moving, manual focusing is extremely difficult.
  • the prior art image focusing cannot achieve accurate and fast focusing, especially when the focus object is in motion, and fast and accurate focus cannot be achieved.
  • the invention provides an image focusing system based on laser radar ranging, wherein the system adopts a laser radar ranging sensor to detect a plurality of points, and then determines a point with the smallest distance difference as a focus distance by screening a plurality of points. Thereby achieving fast and accurate focus, so it has the advantage of fast and accurate focus.
  • an image focusing system based on laser radar ranging comprising: a main ranging module, at least one slave ranging module, a laser radar ranging sensor, and a focusing device, wherein the main ranging The module communicates with the plurality of distance measuring modules by short-range wireless communication, the focusing device is mounted on the image acquiring device, and the relative position of the main ranging module and the image acquiring device is fixed, the laser The relative position of the radar ranging sensor and the image acquisition device is fixed;
  • Main ranging module for broadcasting distance to at least one ranging module by short-range wireless communication From the acquisition message, the distance acquisition message includes an identifier of the ranging module that needs to acquire the distance;
  • the ranging module is configured to parse the distance acquisition message, and compare the identifier of the ranging module in the distance acquisition message with the locally stored identifier, and if yes, send the distance acquisition response message;
  • the main ranging module is configured to receive the distance obtaining response message, record the receiving time of receiving the distance obtaining response message, and obtain the slave ranging module that needs to be acquired according to the sending time of the distance obtaining message and the receiving time of the response message.
  • the master-slave distance between the main ranging modules, and the master-slave distance is sent to the focusing device;
  • a laser radar ranging sensor for transmitting a plurality of laser beams, and receiving the reflected signals to obtain a plurality of laser detection distances
  • the focusing device is configured to calculate a difference between the master-slave distance correction value and each laser detection distance correction value, and obtain a minimum difference value, and if the minimum difference value is less than a set threshold value, corresponding to the minimum difference value
  • the laser detection distance correction value adjusts the angle at which the lens focus ring rotates
  • the master-slave distance correction value is: a master-slave distance plus or minus a master-slave deviation value
  • the laser detection distance correction value is: a laser detection distance plus or minus a laser deviation value
  • the focusing device is specifically used for
  • the L-switch is used to query the focus ring rotation angle corresponding to the L-tone from the pre-stored distance and the focus circle rotation angle mapping list, and then rotate the lens focus ring to the focus corresponding to the L-tone.
  • the angle of rotation of the circle is used to query the focus ring rotation angle corresponding to the L-tone from the pre-stored distance and the focus circle rotation angle mapping list, and then rotate the lens focus ring to the focus corresponding to the L-tone. The angle of rotation of the circle.
  • the focusing device is specifically used for
  • the two distances L n and L n+1 adjacent to the L tone and L n and L n+1 are obtained.
  • the rotation angles of the lens are ⁇ n and ⁇ n+1 , and then the angle ⁇ of the rotation of the lens focus ring is calculated by a preset formula; then the focus ring of the lens is rotated to ⁇ ; the preset formula is specifically:
  • the short-range wireless communication manner includes:
  • an image focusing system method based on laser radar ranging includes:
  • the main ranging module adopts short-range wireless communication mode to acquire a message from at least one ranging distance from the ranging module, where the distance obtaining message includes an identifier of the ranging module that needs to acquire a distance;
  • the main ranging module receives the distance obtaining response message, records the receiving time of receiving the distance obtaining response message, and obtains the slave ranging module and the main ranging module that need to be acquired according to the sending time of the distance obtaining message and the receiving time of the response message.
  • the master-slave distance between the master and slave distances is sent to the focusing device;
  • the laser radar ranging sensor emits a plurality of laser beams, and receives the reflected signals to obtain a plurality of laser detection distances;
  • the focusing device calculates a difference between the master-slave distance correction value and each laser detection distance correction value, and obtains a minimum difference value, if the minimum difference is less than the set threshold, the laser detection corresponding to the minimum difference is performed.
  • the distance correction value adjusts the angle at which the lens focus ring rotates;
  • the master-slave distance correction value is: a master-slave distance plus or minus a master-slave deviation value
  • the laser detection distance correction value is: a laser detection distance plus or minus a laser deviation value
  • the determining the angle of rotation of the focus ring of the lens according to the laser detection distance correction value corresponding to the minimum difference comprises:
  • the focus circle rotation angle corresponding to the L tone is searched from the pre-stored distance and the focus circle rotation angle mapping list, and then the lens focus ring is rotated to the focus circle corresponding to the L adjustment. angle.
  • the focusing device is specifically used for
  • the two distances L n and L n+1 adjacent to the L tone and L n and L n+1 are obtained.
  • the rotation angles of the lens are ⁇ n and ⁇ n+1 , and then the angle ⁇ of the rotation of the lens focus ring is calculated by a preset formula; then the focus ring of the lens is rotated to ⁇ ; the preset formula is specifically:
  • the short-range wireless communication manner includes:
  • a photographing system comprising the above-described image focusing system based on laser radar ranging image focusing.
  • the main ranging module and the lidar ranging sensor are fixedly mounted on the image acquiring device.
  • the technical solution provided according to various embodiments has the advantage of accurate motion and focus.
  • FIG. 1 is a schematic structural view of an image focusing system for laser radar ranging in a first preferred embodiment of the present invention
  • FIG. 2A is a schematic structural diagram of a camera according to a first preferred embodiment of the present invention.
  • 2B is a schematic diagram of a laser radar ranging sensor according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an image acquiring device according to a first preferred embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for image focusing system for laser radar ranging according to a second preferred embodiment of the present invention.
  • FIG. 5 is a structural diagram of a photographing system according to a third preferred embodiment of the present invention.
  • FIG. 1 is an image focusing system 100 based on laser radar ranging according to a first preferred embodiment of the present invention.
  • the system includes: a main ranging module 101 and at least one slave.
  • Ranging module 102 (such as a plurality of slave ranging modules in FIG. 1 ), laser radar ranging sensor 108 And the focusing device 103, wherein the main ranging module 101 communicates with the plurality of distance measuring modules by short-range wireless communication, and one of the distance measuring modules is fixed relative to a focusing object (for example, an actor), and the focusing is performed.
  • a focusing object for example, an actor
  • the device 103 is mounted on an image acquisition device (for example, a camera), the relative position of the main ranging module 101 and the image acquisition device is fixed, and the relative position between the laser radar ranging sensor 108 and the image acquisition device is fixed (preferred to be the main
  • the ranging module is installed on the image acquisition device).
  • the main ranging module 101 is configured to broadcast a distance acquisition message to the at least one ranging module 102 by using a short-range wireless communication manner, where the distance acquisition message includes an identifier of the ranging module 102 that needs to acquire a distance;
  • the short-range wireless communication method in the above-mentioned main ranging module 101 includes but is not limited to: ultra-wideband (Ultra-wideband, UWB for short), WIFI, Bluetooth or ZIGBEE, of course, in addition to the first preferred embodiment of the present invention. In the embodiment, other short-range wireless communication modes may also be adopted.
  • the first preferred embodiment of the present invention does not limit the specific expression of the short-distance communication mode.
  • the representation of the distance acquisition message in the main ranging module 101 is not limited.
  • the distance acquisition message may be a new message customized by the user. Of course, it may also be carried in the extended byte of the short-range wireless communication standard protocol.
  • the present invention does not limit the specific expression of the above distance acquisition message.
  • the distance measurement module 102 is configured to parse the distance acquisition message, and compare the identifier of the ranging module in the distance acquisition message with the locally stored identifier. If the identifier is consistent, the distance acquisition response message is sent. Do not process the distance to get the message;
  • the method for parsing the distance acquisition message from the ranging module 102 can adopt a prior art analysis method, and the present invention is not limited to the analysis method.
  • the identifier of the ranging module may be a plurality of representations.
  • the identifier of the ranging module may be: a MAC address or a product label;
  • the identifier of the slave ranging module may also be an identifier set by the user, for example, the first slave ranging module identifier setting 01 and the second slave ranging module identifier are set to
  • the user can also replace the different ranging module according to the actual focus.
  • the replacement method can be replaced by, for example, one or more physical buttons. Of course, in practical applications, different software commands can also be used. Replace the different ranging module.
  • the main ranging module 101 is configured to receive the distance acquisition response message, record the receiving time of receiving the distance obtaining response message, and obtain the sending time of the message according to the distance and the receiving time of the response message. Obtaining a master-slave distance between the ranging module and the main ranging module, and transmitting the master-slave distance to the focusing device 103;
  • L is the master-slave distance
  • t0 The time at which the message is sent for sending the distance
  • t3 is the time at which the response message is received
  • t2 is the time at which the response message is sent
  • t1 is the time at which the message is received
  • C can be the propagation speed, generally the speed of light
  • T2 and t1 may be carried in the response message.
  • the response message may not carry t2 and t1, and the user may set the distance measurement module so that the difference of t2-t1 is a fixed value, for example, 0.1. s, of course, can also be other values, such as 0.2s.
  • a laser radar ranging sensor 108 configured to emit a plurality of laser beams, and receive the reflected signals to obtain a plurality of laser detection distances;
  • the above-mentioned laser radar ranging sensor may specifically be a device or a module capable of realizing multi-point ranging by laser, for example, a two-dimensional laser ranging module.
  • a two-dimensional laser ranging module may be used in practical applications as long as it can realize multiple points by laser. Ranging can be.
  • the focusing device 103 is configured to calculate a difference between the master-slave distance correction value and each laser detection distance correction value, and obtain a minimum difference value, if the minimum difference is less than a set threshold, according to the minimum difference
  • the corresponding laser detection distance correction value adjusts the angle at which the lens focus ring rotates.
  • the above-mentioned master-slave distance correction value may specifically be: the master-slave distance plus or minus the master-slave deviation
  • the laser detection distance correction value may specifically be: the laser detection distance plus or minus the laser deviation.
  • the above-mentioned master-slave deviation and laser deviation can be set according to the actual situation, and the two deviation values can be the same. Of course, in practical applications, the above two deviation values are different in most cases.
  • the angle of the focus of the lens focus adjustment according to the laser detection distance correction value corresponding to the minimum difference may be: according to the laser detection distance correction value L, the query is from the pre-stored distance and the focus circle rotation angle map list from the L Adjust the corresponding focus ring rotation angle.
  • the data stored in the above distance and focus circle rotation angle map list can be as follows: (L 1 , ⁇ 1 ), (L 2 , ⁇ 2 ).....(L n , ⁇ n ), (L n+1 , ⁇ n+1 ).....;
  • L n is the scale of the lens focus ring in the above stored data, which is a distance data. The meaning of this scale is when the focus ring of the lens is rotated to this scale, if the camera is focused The straight line distance between the plane and the focus object is equal to this scale, the focus object is accurately focused, and the image is clear;
  • ⁇ n is the rotation angle of the lens, indicating the angle at which the lens focus ring rotates from the initial position to the current position and the lens focus ring rotates.
  • the implementation may specifically include: if the L tone cannot be queried from the pre-stored distance and the focus circle rotation angle mapping list, obtain two distances L n and L n+1 adjacent to the L tone and adjacent The rotation angles ⁇ n and ⁇ n+1 of the lens corresponding to the two distances L n and L n+1 , and then calculating the angle ⁇ of the rotation of the lens focus ring by a preset formula; the preset formula may specifically be:
  • is the calculated rotation angle of the lens focus ring
  • ⁇ n is the rotation angle corresponding to L n
  • ⁇ n+1 is the rotation angle corresponding to L n+1
  • L n and L n+1 are pre-stored distances and The two distance values in the list of focus angle rotation angle maps adjacent to the L adjustment.
  • the advantages of the high precision of the range finder are utilized, the camera is accurately focused, and the wireless ranging module can be used for continuous ranging, and during the continuous movement of the actor, Fast focus, specifically, for laser radar ranging, since it emits a laser beam, which enables multi-point detection, for focusing objects, since it can achieve ranging of multiple points, such as 16-point ranging, Then, as long as there are 16 laser spots or one laser spot in the laser beam or the laser beam hits the focusing object, the laser ranging can be realized, thereby achieving the focus.
  • the one-dimensional laser ranging unit there is only one laser beam. Or a laser spot, so that there is only one point of distance measurement.
  • a point is easily offset from the focus target, so it cannot obtain an accurate focus distance, and accurate focus cannot be achieved.
  • laser radar ranging since it is a plurality of laser beams, as long as any one of the laser beams hits the focus object, the focus can be achieved, which is especially important for the moving target object. Suitable for photographers, as long as the alignment of its general direction will be able to achieve accurate follow focus, so its focus has now accurate.
  • the first preferred embodiment of the present invention measures the distance between the main ranging module and the ranging module by UWB, detects a plurality of distances by the laser radar ranging sensor, and then selects the most from the plurality of distances according to the master-slave distance. Close distance and the difference is within the set threshold range, adjust the focus circle according to the distance From the perspective of the motion, it is proved by experiments that the above system can realize the advantage of precise focusing of the moving focus object.
  • focus ring may also be referred to as a focus ring in practical applications, and the corresponding “focus” may also be referred to as “focus”.
  • the specific expression of the above-mentioned focusing device may be a focusing device of a camera capable of imaging such as a camera or a DV.
  • the focusing device preferentially selects a focusing device of a professional camera, for example, Focusing motor (such as the camera when shooting a movie, as shown in Figure 2).
  • the above-mentioned image acquisition device 300 may specifically include a focus motor 31, a motor driver 32, and a main controller 33.
  • the main controller 33 includes but is not limited to a microprocessor 330 (specific model: STM32F103) , FLASH ROM memory 331, OLED display 332 and button 334;
  • the focusing motor is used to drive the lens focus ring to rotate
  • the motor driver is used to drive the focus motor to rotate
  • a main controller for receiving a distance value of the output of the main ranging module and controlling the motor driver;
  • the microprocessor is mainly used for receiving the distance value output by the main ranging module 101 and controlling the motor driver;
  • the FLASH ROM memory mainly stores the program code and the data of the mapping table;
  • the OLED display screen is mainly used for displaying the distance value and the parameter, and the button is mainly used for the button.
  • Setting parameters and switching between multiple ranging modules ; of course, the above setting parameters and the manner of switching between the ranging modules can also be switched by manual wheel rotation. Of course, in practical applications, it can also be used. Other ways to implement setup parameters and multiple switching from ranging modules.
  • a second preferred embodiment of the present invention provides an image focusing method based on laser radar ranging, which is performed by an image focusing system based on laser radar ranging, and the method is as shown in FIG. 4 . As shown, the following steps are included:
  • Step S401 The main ranging module adopts short-range wireless communication mode to broadcast a distance acquisition message to at least one ranging module, where the distance obtaining message includes an identifier of the ranging module that needs to acquire a distance;
  • the short-range wireless communication method in the above step S401 includes but is not limited to: ultra-wideband, WIFI, Bluetooth or ZIGBEE.
  • other short-range wireless communication may also be adopted.
  • the second preferred embodiment of the present invention is not limited to the short distance described above.
  • the representation of the distance acquisition message in the main ranging module 101 is not limited.
  • the distance acquisition message may be a new message customized by the user. Of course, it may also be carried in the extended byte of the short-range wireless communication standard protocol.
  • the present invention does not limit the specific expression of the above distance acquisition message.
  • Step S402 parsing the distance acquisition message from the ranging module, comparing the identifier of the ranging module in the distance obtaining message with the locally stored identifier, and if yes, transmitting the distance obtaining response message;
  • the method for parsing the distance acquisition message in the above step S402 can adopt the prior art analysis method, and the present invention is not limited to the analysis method.
  • the identifier of the ranging module may be a plurality of representations.
  • the identifier of the ranging module may be: a MAC address or a product label;
  • the identifier of the slave ranging module may also be an identifier set by the user, for example, the first slave ranging module identifier setting 01, and the second slave ranging module identifier is set to 11.
  • Step S403 The main ranging module receives the distance obtaining response message, records the receiving time of receiving the distance obtaining response message, and obtains the distance measuring module that needs to be acquired according to the sending time of the distance obtaining message and the receiving time of the response message.
  • the master-slave distance between the main ranging modules, and the master-slave distance is sent to the focusing device;
  • the response message may not carry t2 and t1, and the user can set the distance measurement module so that the difference of t2-t1 is a fixed value, for example, 0.1s, of course. It can also be other values, such as 0.2s.
  • Step S404 the laser radar ranging sensor emits a plurality of laser beams, and receives the reflected signals to obtain a plurality of laser detection distances;
  • Step S405 the focusing device calculates a difference between the master-slave distance correction value and each laser detection distance correction value, and obtains a minimum difference value, if the minimum difference is less than the set threshold, corresponding to the minimum difference value.
  • the laser detection distance correction value adjusts the angle at which the lens focus ring rotates.
  • the angle of the focus of the lens focus adjustment according to the laser detection distance correction value corresponding to the minimum difference may be: according to the laser detection distance correction value L, the query is from the pre-stored distance and the focus circle rotation angle map list. Corresponding focus ring rotation angle.
  • the data stored in the above distance and focus circle rotation angle map list can be as follows: (L 1 , ⁇ 1 ), (L 2 , ⁇ 2 ).....(L n , ⁇ n ), (L n+1 , ⁇ n+1 ).....; L n is the scale of the lens focus ring in the above stored data, which is a distance data.
  • this scale is when the focus ring of the lens is rotated to this scale, if the camera is focused The straight line distance between the plane and the focus object is equal to this scale, the focus object is accurately focused, and the image is clear; ⁇ n is the rotation angle of the lens, indicating the angle at which the lens focus ring rotates from the initial position to the current position and the lens focus ring rotates.
  • the implementation may specifically include: if the L tone cannot be queried from the pre-stored distance and the focus circle rotation angle mapping list, obtain two distances L n and L n+1 adjacent to the L tone and adjacent The rotation angles ⁇ n and ⁇ n+1 of the lens corresponding to the two distances L n and L n+1 , and then calculating the angle ⁇ of the rotation of the lens focus ring by a preset formula; the preset formula may specifically be:
  • is the calculated rotation angle of the lens focus ring
  • ⁇ n is the rotation angle corresponding to L n
  • ⁇ n+1 is the rotation angle corresponding to L n+1
  • L n and L n+1 are pre-stored distances and The two distance values in the list of focus angle rotation angle maps adjacent to the L adjustment.
  • the technical solution of the second preferred embodiment of the present invention utilizes the advantages of the high precision of the range finder to make the camera focus accurately, and utilizes the wireless ranging module to continuously measure the distance, and during the continuous movement of the actor, Fast focus, specifically, for the laser radar ranging sensor, since it emits a laser beam, that is, multi-point detection can be realized, for the focusing object, since it can realize ranging of a plurality of points, for example, 16-point ranging. Then, as long as one of the 16 points mainly hits the in-focus object (as shown in FIG. 2B), laser ranging can be realized to achieve the focus, and for the one-dimensional laser ranging unit, there is only one laser beam.
  • FIG. 5 is a photographing system 500 according to a third preferred embodiment of the present invention.
  • the photographing system includes: an image focusing system 100 based on laser radar ranging; wherein image tuning based on laser radar ranging
  • image tuning based on laser radar ranging For a specific structure of the coke system 100, reference may be made to the description of the first preferred embodiment of the present invention, and details are not described herein.
  • the main ranging module and the laser radar ranging sensor are fixedly mounted on the image acquiring device.
  • the present invention can be implemented in hardware, firmware implementation, or a combination thereof.
  • the functions described above may be stored in or transmitted as one or more instructions or code on a computer readable medium.
  • the computer readable medium includes a computer storage medium and a communication medium, wherein the communication medium includes any medium that facilitates transfer of the computer program from one location to another. quality.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a random access memory (RAM), a read-only memory (ROM), and an electrically erasable programmable read-only memory (Electrically Erasable Programmable).
  • EEPROM Electrically Error Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), or wireless technologies such as infrared, radio, and microwave, Then coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • DSL Digital Subscriber Line
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is Refers to the use of laser optical copy data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于激光雷达测距的图像调焦***(100)、方法,所述***(100)包括:主测距模块(101)、至少一个从测距模块(102)、激光雷达测距传感器(108)和调焦设备(103),其中,主测距模块(101)与多个从测距离模块(102)之间通过短距离无线通信方式连接。上述技术方案具有自动控制镜头对焦圈转动,使摄影机快速跟焦的功能。

Description

基于激光雷达测距的图像调焦***及方法 技术领域
本发明涉及摄像及通信领域,尤其涉及一种基于激光雷达测距的图像调焦***及方法。
背景技术
随着影视业的发展,摄影设备也越来越先进和智能,在现有的技术中,图像的自动调焦方式一般可以为:利用激光测距仪或超声波测距仪测量调焦对象与摄影机焦平面的距离,依据该距离控制摄影机自动合焦的装置。但激光测距仪或超声波测距仪只能对准图像的中点或固定某一角度,实际应用中,调焦对象可能在图像的任意位置,因此造成不能连续合焦或合焦不精准。在不适合自动对焦的情况下,只能人工调焦,一个熟练的对焦员需要多年的调焦经验,在一些景深比较浅、对焦目标连续移动的情况下,人工调焦极其困难。
因此,现有技术的图像调焦无法实现准确快速的合焦,尤其在跟焦对象在运动状态下,无法实现快速准确跟焦。
发明内容
本发明提供一种基于激光雷达测距的图像调焦***,所述***采用了激光雷达测距传感器检测多个点,然后通过对多个点的筛选确定距离差最小的点作为对焦的距离,从而实现快速准确跟焦,所以其具有快速准确跟焦的优点。
第一方面,提供一种基于激光雷达测距的图像调焦***,所述***包括:主测距模块、至少一个从测距模块、激光雷达测距传感器和调焦设备,其中,主测距模块与多个从测距离模块之间通过短距离无线通信方式通信,所述调焦设备安装在图像获取设备上,所述主测距模块与所述图像获取设备的相对位置固定,所述激光雷达测距传感器与所述图像获取设备的相对位置固定;
主测距模块,用于采用短距离无线通信方式向至少一个从测距模块广播距 离获取消息,该距离获取消息包含需要获取距离的从测距模块的标识;
从测距模块,用于解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息;
主测距模块,用于接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,并依据距离获取消息的发送时间和该响应消息的接收时间获取需要获取的从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备;
激光雷达测距传感器,用于发射多个激光束,接收反射回的信号获取多个激光检测距离;
调焦设备,用于计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度;
所述主从距离修正值为:主从距离加上或减去主从偏差值,所述激光检测距离修正值为:激光检测距离加上或减去激光偏差值。
可选的,所述调焦设备具体,用于
依据激光检测距离修正值调L调从预先存储的距离与对焦圈转动角度映射列表中查询从所述L调对应的对焦圈转动角度,然后将该镜头对焦圈转动到所述L调对应的对焦圈转动角度。
可选的,所述调焦设备具体,用于
如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到,则获取与该L调相邻的两个距离Ln和Ln+1以及Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;然后将该镜头对焦圈转动到θ;该预设公式具体为:
Figure PCTCN2016083646-appb-000001
可选的,所述短距离无线通信方式具体,包括:
WIFI、蓝牙、超宽带或ZIGBEE。
第二方面,提供一种基于激光雷达测距的图像调焦***方法,所述方法包 括:
主测距模块采用短距离无线通信方式向至少一个从测距模块广播距离获取消息,该距离获取消息包含需要获取距离的从测距模块的标识;
从测距模块解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息;
主测距模块接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,依据距离获取消息的发送时间和该响应消息的接收时间获取需要获取的从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备;
激光雷达测距传感器发射多个激光束,接收反射回的信号获取多个激光检测距离;
调焦设备计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度;
所述主从距离修正值为:主从距离加上或减去主从偏差值,所述激光检测距离修正值为:激光检测距离加上或减去激光偏差值。
可选的,所述依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度具体,包括:
依据激光检测距离修正值L调从预先存储的距离与对焦圈转动角度映射列表中查询所述L调对应的对焦圈转动角度,然后将该镜头对焦圈转动到所述L调对应的对焦圈转动角度。
可选的,所述调焦设备具体,用于
如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到,则获取与该L调相邻的两个距离Ln和Ln+1以及Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;然后将该镜头对焦圈转动到θ;该预设公式具体为:
Figure PCTCN2016083646-appb-000002
可选的,所述短距离无线通信方式具体,包括:
WIFI、蓝牙、超宽带或ZIGBEE。
第三方面,提供一种拍摄***,所述拍摄***包括上述基于激光雷达测距的图像调焦的图像调焦***。
可选的,主测距模块、激光雷达测距传感器均固定安装在图像获取装置上。
根据各实施方式提供的技术方案具有运动跟焦准确的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一较佳实施方式中的于激光雷达测距的图像调焦***的结构示意图;
图2A为本发明第一较佳实施方式提供的摄像机的结构示意图;
图2B为本发明具体实施方式提供的激光雷达测距传感器的示意图;
图3为本发明第一较佳实施方式提供的图像获取设备结构示意图;
图4为本发明第二较佳实施方式提供的于激光雷达测距的图像调焦***方法的流程图;
图5为本发明第三较佳实施方式提供的拍摄***的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,图1为本发明第一较佳实施方式提供的一种基于激光雷达测距的图像调焦***100,如图1所示,该***包括:主测距模块101、至少一个从测距模块102(如图1中以多个从测距模块为例)、激光雷达测距传感器108 和调焦设备103其中,主测距模块101与多个从测距离模块之间通过短距离无线通信方式通信,一个从测距模块与一个调焦对象(例如演员)相对位置固定,该调焦设备103安装在图像获取设备(例如摄影机)上,该主测距模块101与图像获取设备的相对位置固定,该激光雷达测距传感器108与图像获取设备之间的相对位置固定(优先选择将主测距模块安装在图像获取设备上)。
主测距模块101,用于采用短距离无线通信方式向至少一个从测距模块102广播距离获取消息,该距离获取消息包含需要获取距离的从测距模块102的标识;
上述主测距模块101中短距离无线通信方式包括但不限于:超宽带(英文全称:Ultra-wideband,简称UWB)、WIFI、蓝牙或ZIGBEE,当然在本发明第一较佳实施方式的另外的实施例中,也可以采用其他的短距离无线通信方式,本发明第一较佳实施方式并不局限上述短距离通信方式的具体表现形式。上述主测距模块101中的距离获取消息的表现形式也不限定,该距离获取消息可以为用户自定义的一个新消息,当然其也可以携带在上述短距离无线通信标准协议的扩展字节内,本发明并不局限上述距离获取消息的具体表现形式。
从测距模块102,用于解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息,如不一致,则不处理该距离获取消息;
上述从测距模块102中的解析该距离获取消息的方法可以采用现有技术的解析方法,本发明对该解析方法并不限定。上述从测距模块的标识可以为多种表现形式,例如在本发明第一较佳实施方式的一个实施例中,上述从测距模块的标识具体可以为:MAC地址或产品标号;当然在本发明第一较佳实施方式的另一个实施例中,上述从测距模块的标识也可以为用户自行设置的标识,例如第一从测距模块标识设置01、第二从测距模块标识设置为11,另外,用户也可以根据实际对焦的需要更换不同从测距模块,更换的方式可以通过例如一个或多个物理按键的方式来更换,当然在实际应用中,也可以通过不同的软件命令来更换不同的从测距模块。
主测距模块101,用于接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,并依据距离获取消息的发送时间和该响应消息的接收时 间获取从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备103;
上述主测距模块101中获取该主从距离的方式具体可以为,主从距离L=[(t3-t0)-(t2-t1)]*C/2;其中,L为主从距离,t0为发送该距离获取消息的时间,t3为接收到该响应消息的时间,t2为发送该响应消息的时间,t1为接收到该距离获取消息的时间,C可以为传播速度,一般为光速;上述t2、t1可以在响应消息内携带,当然在实际应用中上述响应消息内也可以不携带t2、t1,用户可以对从测距模块进行设定使得t2-t1的差值为定值,例如0.1s,当然也可以为其他的值,例如0.2s等。
激光雷达测距传感器108,用于发射多个激光束,接收反射回的信号获取多个激光检测距离;
上述激光雷达测距传感器具体可以为能够通过激光实现多点测距的设备或模块,例如二维激光测距模块,当然在实际应用中也可以采用其他的设备,只要其能够通过激光实现多点测距即可。
调焦设备103,用于计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度。
上述主从距离修正值具体可以为,主从距离加或减主从偏差,上述激光检测距离修正值具体可以为:激光检测距离加或减激光偏差。上述主从偏差、激光偏差根据实际情况用于可以自行设定,两个偏差值可以相同,当然在实际应用中,绝大多数情况上述两个偏差值不同。上述依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度具体可以为:依据该激光检测距离修正值L调从预先存储的距离与对焦圈转动角度映射列表中查询从该L调对应的对焦圈转动角度。上述距离与对焦圈转动角度映射列表存储的数据可以如下所示:(L1,θ1),(L2,θ2).....(Ln,θn),(Ln+1,θn+1).....;上述存储的数据中Ln是镜头对焦圈的刻度,是一个距离数据,此刻度的含义为当镜头的对焦圈转动到此刻度时,如果摄影机焦平面与对焦对象的直线距离与此刻度相等,对焦对象准确合焦,图像清晰;θn是镜头的转动角度,表示镜头对焦圈从初始位置转动到当前位置,镜头对焦圈转动的角度。
上述实现方式具体可以包括:如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到,则获取与该L调相邻的两个距离Ln和Ln+1以及相邻的两个距离Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;该预设公式具体可以为:
Figure PCTCN2016083646-appb-000003
其中,θ为计算出的镜头对焦圈转动角度,θn为Ln对应的转动角度,θn+1为Ln+1对应的转动角度;Ln和Ln+1为预先存储的距离与对焦圈转动角度映射列表中与L调相邻的两个距离值。
采用本发明第一较佳实施方式的技术方案,利用了测距仪高精度的优点,使摄影机合焦精准,又利用了无线测距模块可连续测距特点,当演员连续运动过程中,可快速跟焦,具体为,对于激光雷达测距,由于其发射的是激光束,即能够实现多点检测,那么对于对焦对象,由于其可以实现多个点的测距,例如16点测距,那么只要16个激光点或激光束中有1个激光点或激光束射中对焦对象,就可以实现激光测距,从而实现跟焦,对于一维的激光测距单元,其仅有一个激光束或激光点,这样就只能有一个点的测距,这对于运动的对焦对象来说,一个点很容易偏移跟焦目标,所以其就无法获取准确的跟焦距离,无法实现准确跟焦,对于激光雷达测距,由于其是多个激光束,只要激光束中任意一个点射中该跟焦对象,就能够实现跟焦,这对于运动的对焦对象尤其的适用,对于摄影师来说,其只要对准大致的方向就能够实现准确的跟焦,所以其具有跟焦准确的优点。
本发明第一较佳实施方式通过UWB测量主测距模块与从测距模块之间的距离,通过激光雷达测距传感器检测多个距离,然后依据主从距离从该多个距离中选择中最接近的距离且差值在设定阈值范围内,依据该距离调整对焦圈转 动的角度,通过实验证明,采用上述***可以实现运动对焦对象的精确对焦的优点。
需要说明的是,上述对焦圈在实际应用中,也可能被称为调焦圈,对应的上述“对焦”也可能被称为“调焦”。
上述调焦设备的具体表现形式可以为摄像机、DV等能够摄像的设备的调焦装置,当然在本发明第一较佳实施方式中,上述调焦设备优先选择专业的摄像机的调焦设备,例如调焦电机(例如电影拍摄时的摄像机,如图2所示)。上述图像获取设备300如图3所示,具体可以包括:调焦电机31、电机驱动器32、主控器33,该主控器33包括但不限于微处理器330(具体型号可以为:STM32F103)、FLASH ROM存储器331、OLED显示屏332及按键334;
该调焦电机用于驱动镜头对焦圈转动;
该电机驱动器用于驱动调焦电机转动;
主控器,用于接收主测距模块输出的距离值及控制电机驱动器;其中,
微处理器主要用于接收主测距模块101输出的距离值及控制电机驱动器;FLASH ROM存储器主要保存程序代码和映射表的数据;OLED显示屏主要用于显示距离值及参数,按键主要用于设置参数及在多个从测距模块之间切换;当然上述设置参数以及多个从测距模块之间切换的方式还可以通过手动轮旋转的方式来切换,当然在实际应用中,也可以采用其他的方式来实现设置参数以及多个从测距模块之间的切换。
如图4所示,本发明第二较佳实施方式提供一种基于激光雷达测距的图像调焦方法,该调焦方法由基于激光雷达测距的图像调焦***执行,该方法如图4所示,包括如下步骤:
步骤S401、主测距模块采用短距离无线通信方式向至少一个从测距模块广播距离获取消息,该距离获取消息包含需要获取距离的从测距模块的标识;
上述步骤S401中的短距离无线通信方式包括但不限于:超宽带、WIFI、蓝牙或ZIGBEE,当然在本发明第一较佳实施方式的另外的实施例中,也可以采用其他的短距离无线通信方式,本发明第二较佳实施方式并不局限上述短距 离无线通信方式的具体表现形式。上述主测距模块101中的距离获取消息的表现形式也不限定,该距离获取消息可以为用户自定义的一个新消息,当然其也可以携带在上述短距离无线通信标准协议的扩展字节内,本发明并不局限上述距离获取消息的具体表现形式。
步骤S402、从测距模块解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息;
上述步骤S402的解析该距离获取消息的方法可以采用现有技术的解析方法,本发明对该解析方法并不限定。上述从测距模块的标识可以为多种表现形式,例如在本发明第二较佳实施方式的一个实施例中,上述从测距模块的标识具体可以为:MAC地址或产品标号;当然在本发明第二较佳实施方式的另一个实施例中,上述从测距模块的标识也可以为用户自行设置的标识,例如第一从测距模块标识设置01、第二从测距模块标识设置为11。
步骤S403、主测距模块接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,并依据距离获取消息的发送时间和该响应消息的接收时间获取需要获取的从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备;
上述步骤S403中获取该主从距离的方式具体可以为,主从距离L=[(t3-t0)-(t2-t1)]*C/2;其中,L为主从距离,t0为发送该距离获取消息的时间,t3为接收到该响应消息的时间,t2为发送该响应消息的时间,t1为接收到该距离获取消息的时间,C可以为传播速度,一般为光速;上述t2、t1可以在响应消息内携带,当然在实际应用中上述响应消息内也可以不携带t2、t1,用户可以对从测距模块进行设定使得t2-t1的差值为定值,例如0.1s,当然也可以为其他的值,例如0.2s等。
步骤S404、激光雷达测距传感器发射多个激光束,接收反射回的信号获取多个激光检测距离;
步骤S405、调焦设备计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度。
上述依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度具体可以为:依据激光检测距离修正值L调从预先存储的距离与对焦圈转动角度映射列表中查询从该L调对应的对焦圈转动角度。上述距离与对焦圈转动角度映射列表存储的数据可以如下所示:(L1,θ1),(L2,θ2).....(Ln,θn),(Ln+1,θn+1).....;上述存储的数据中Ln是镜头对焦圈的刻度,是一个距离数据,此刻度的含义为当镜头的对焦圈转动到此刻度时,如果摄影机焦平面与对焦对象的直线距离与此刻度相等,对焦对象准确合焦,图像清晰;θn是镜头的转动角度,表示镜头对焦圈从初始位置转动到当前位置,镜头对焦圈转动的角度。
上述实现方式具体可以包括:如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到,则获取与该L调相邻的两个距离Ln和Ln+1以及相邻的两个距离Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;该预设公式具体可以为:
Figure PCTCN2016083646-appb-000004
其中,θ为计算出的镜头对焦圈转动角度,θn为Ln对应的转动角度,θn+1为Ln+1对应的转动角度;Ln和Ln+1为预先存储的距离与对焦圈转动角度映射列表中与L调相邻的两个距离值。
采用本发明第二较佳实施方式的技术方案,利用了测距仪高精度的优点,使摄影机合焦精准,又利用了无线测距模块可连续测距特点,当演员连续运动过程中,可快速跟焦,具体为,对于激光雷达测距传感器,由于其发射的是激光束,即能够实现多点检测,那么对于对焦对象,由于其可以实现多个点的测距,例如16点测距,那么只要16个点中主要有1个点射中对焦对象(如图2B所示),就可以实现激光测距,从而实现跟焦,对于一维的激光测距单元,其仅有一个激光束,这样就只能有一个点,这对于运动的对焦对象来说,其需 要摄影师有很高的水平,不然如果该一个点无法对着运动的对焦对象,那么其就无法获取准确的跟焦值,对于激光雷达测距传感器,由于其是多个激光束,只要激光束中任意一个点射中该跟焦对象,就能够实现跟焦,这对于运动的对焦对象尤其的适用,对于摄影师来说,其只要对准大致的方向就能够实现准确的跟焦,所以其具有跟焦准确的优点。
参阅图5,图5为本发明第三较佳实施方式提供的一种拍摄***500,该拍摄***包括:基于激光雷达测距的图像调焦***100;其中,基于激光雷达测距的图像调焦***100的具体结构可以参见本发明第一较佳实施方式的描述,这里不在赘述。
优选的,上述主测距模块、激光雷达测距传感器均固定安装在图像获取装置上。
需要说明的是,对于前述的各方法实施方式或实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述实施方式或实施例均属于优选实施例,所涉及的动作和单元并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介 质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟指用激光光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于激光雷达测距的图像调焦***,其特征在于,所述***包括:主测距模块、至少一个从测距模块、激光雷达测距传感器和调焦设备,其中,主测距模块与多个从测距离模块之间通过短距离无线通信方式通信,所述调焦设备安装在图像获取设备上,所述主测距模块与所述图像获取设备的相对位置固定,所述激光雷达测距传感器与所述图像获取设备的相对位置固定;
    主测距模块,用于采用短距离无线通信方式向至少一个从测距模块广播距离获取消息,该距离获取消息包含需要获取距离的从测距模块的标识;
    从测距模块,用于解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息;
    主测距模块,用于接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,并依据距离获取消息的发送时间和该响应消息的接收时间获取需要获取的从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备;
    激光雷达测距传感器,用于发射多个激光束,接收反射回的信号获取多个激光检测距离;
    调焦设备,用于计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度;
    所述主从距离修正值为:主从距离加上或减去主从偏差值,所述激光检测距离修正值为:激光检测距离加上或减去激光偏差值。
  2. 根据权利要求1所述的基于无线测距的图像调焦***,其特征在于,所述调焦设备具体,用于
    依据激光检测距离修正值调L调从预先存储的距离与对焦圈转动角度映射列表中查询从所述L调对应的对焦圈转动角度,然后将该镜头对焦圈转动到所述L调对应的对焦圈转动角度。
  3. 根据权利要求2所述的基于无线测距的图像调焦***,其特征在于,所述调焦设备具体,用于
    如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到, 则获取与该L调相邻的两个距离Ln和Ln+1以及Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;然后将该镜头对焦圈转动到θ;该预设公式具体为:
    Figure PCTCN2016083646-appb-100001
  4. 根据权利要求1-3任一所述的基于无线测距的图像调焦***,其特征在于,所述短距离无线通信方式具体,包括:
    WIFI、蓝牙、超宽带或ZIGBEE。
  5. 一种基于激光雷达测距的图像调焦***方法,其特征在于,所述方法包括:
    主测距模块采用短距离无线通信方式向至少一个从测距模块广播距离获取消息,该距离获取消息包含需要获取距离的从测距模块的标识;
    从测距模块解析该距离获取消息,将该距离获取消息内的从测距模块的标识与本地存储的标识比对,如一致,则发送该距离获取响应消息;
    主测距模块接收该距离获取响应消息,记录接收到该距离获取响应消息的接收时间,依据距离获取消息的发送时间和该响应消息的接收时间获取需要获取的从测距模块与主测距模块之间的主从距离,将该主从距离发送给调焦设备;
    激光雷达测距传感器发射多个激光束,接收反射回的信号获取多个激光检测距离;
    调焦设备计算主从距离修正值与每个激光检测距离修正值的差值,获取差值中的最小差值,如该最小差值小于设定阈值,则依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度;
    所述主从距离修正值为:主从距离加上或减去主从偏差值,所述激光检测距离修正值为:激光检测距离加上或减去激光偏差值。
  6. 根据权利要求5所述的方法,其特征在于,所述依据该最小差值对应的激光检测距离修正值调整镜头对焦圈转动的角度具体,包括:
    依据激光检测距离修正值L调从预先存储的距离与对焦圈转动角度映射 列表中查询所述L调对应的对焦圈转动角度,然后将该镜头对焦圈转动到所述L调对应的对焦圈转动角度。
  7. 根据权利要求6所述的基于无线测距的图像调焦***,其特征在于,所述调焦设备具体,用于
    如该L调无法从预先存储的距离与对焦圈转动角度映射列表中查询到,则获取与该L调相邻的两个距离Ln和Ln+1以及Ln和Ln+1所对应的镜头的转动角度θn和θn+1,然后通过预设公式计算出镜头对焦圈转动的角度θ;然后将该镜头对焦圈转动到θ;该预设公式具体为:
    Figure PCTCN2016083646-appb-100002
  8. 根据权利要求5-7任一所述的方法,其特征在于,所述短距离无线通信方式具体,包括:
    WIFI、蓝牙、超宽带或ZIGBEE。
  9. 一种拍摄***,其特征在于,所述拍摄***包括如权利要求1-4任一所述的基于激光雷达测距的图像调焦***。
  10. 根据权利要求9所述的拍摄***,其特征在于,所述主测距模块、激光雷达测距传感器均固定安装在图像获取装置上。
PCT/CN2016/083646 2016-05-27 2016-05-27 基于激光雷达测距的图像调焦***及方法 WO2017201730A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/083646 WO2017201730A1 (zh) 2016-05-27 2016-05-27 基于激光雷达测距的图像调焦***及方法
CN201680083977.1A CN108885384B (zh) 2016-05-27 2016-05-27 基于激光雷达测距的图像调焦***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083646 WO2017201730A1 (zh) 2016-05-27 2016-05-27 基于激光雷达测距的图像调焦***及方法

Publications (1)

Publication Number Publication Date
WO2017201730A1 true WO2017201730A1 (zh) 2017-11-30

Family

ID=60411022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083646 WO2017201730A1 (zh) 2016-05-27 2016-05-27 基于激光雷达测距的图像调焦***及方法

Country Status (2)

Country Link
CN (1) CN108885384B (zh)
WO (1) WO2017201730A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095783A (zh) * 2019-06-05 2019-08-06 深圳市度彼电子有限公司 Vr测距信息展示装置及vr测距模组
CN112761092A (zh) * 2020-12-10 2021-05-07 南京熊猫电子股份有限公司 一种基于激光雷达探测技术的闸机设备及运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927909A (zh) * 2012-11-05 2013-02-13 河南理工大学 一种激光束快速自动定位跟踪测量方法及其装置
CN104714209A (zh) * 2015-03-27 2015-06-17 中国矿业大学 一种基于uwb与激光测距组合的动态定位方法及装置
CN104822019A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 计算摄影机视场角的方法
CN104991255A (zh) * 2015-06-26 2015-10-21 郎一宁 一种基于目视原理的多点激光测距雷达
US20150341542A1 (en) * 2014-05-23 2015-11-26 Howard Preston Methods, Apparatuses, Systems and Software for Focusing a Camera
CN105580350A (zh) * 2015-10-29 2016-05-11 深圳市莫孚康技术有限公司 基于无线测距的图像调焦***、方法及拍摄***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351310B2 (ja) * 2014-03-10 2018-07-04 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
CN105204269B (zh) * 2015-07-04 2018-11-13 魅族科技(中国)有限公司 一种激光辅助对焦方法及拍摄装置
CN105227835B (zh) * 2015-09-11 2018-09-18 浙江宇视科技有限公司 一种辅助聚焦方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927909A (zh) * 2012-11-05 2013-02-13 河南理工大学 一种激光束快速自动定位跟踪测量方法及其装置
US20150341542A1 (en) * 2014-05-23 2015-11-26 Howard Preston Methods, Apparatuses, Systems and Software for Focusing a Camera
CN104714209A (zh) * 2015-03-27 2015-06-17 中国矿业大学 一种基于uwb与激光测距组合的动态定位方法及装置
CN104822019A (zh) * 2015-03-31 2015-08-05 深圳市莫孚康技术有限公司 计算摄影机视场角的方法
CN104991255A (zh) * 2015-06-26 2015-10-21 郎一宁 一种基于目视原理的多点激光测距雷达
CN105580350A (zh) * 2015-10-29 2016-05-11 深圳市莫孚康技术有限公司 基于无线测距的图像调焦***、方法及拍摄***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095783A (zh) * 2019-06-05 2019-08-06 深圳市度彼电子有限公司 Vr测距信息展示装置及vr测距模组
CN110095783B (zh) * 2019-06-05 2024-02-23 深圳市杜比激光有限公司 Vr测距信息展示装置及vr测距模组
CN112761092A (zh) * 2020-12-10 2021-05-07 南京熊猫电子股份有限公司 一种基于激光雷达探测技术的闸机设备及运行方法

Also Published As

Publication number Publication date
CN108885384A (zh) 2018-11-23
CN108885384B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2017070884A1 (zh) 基于无线测距的图像调焦***、方法及拍摄***
EP3416370B1 (en) Photography focusing method, device, and apparatus for terminal
CN104469168A (zh) 摄像模组及其自动对焦方法
WO2017117749A1 (zh) 基于多种测距方式的跟焦***、方法及拍摄***
WO2018082184A1 (zh) 距离测量方法、装置、摄像头和移动终端
US20180234617A1 (en) Motion camera autofocus systems
US20160103209A1 (en) Imaging device and three-dimensional-measurement device
CN105204269B (zh) 一种激光辅助对焦方法及拍摄装置
US10921693B2 (en) Focal length calibration method and projection device
CN105245768A (zh) 一种焦距调节方法、装置和终端
WO2021189404A1 (zh) 温漂系数补偿方法、装置、镜头、成像装置和可移动平台
KR20180040336A (ko) 카메라 시스템 및 이의 객체 인식 방법
US20210051262A1 (en) Camera device and focus method
CN113215653B (zh) 一种确定液口距的方法和***
WO2017117750A1 (zh) 简易多种测距方式的跟焦***及拍摄***
WO2017201730A1 (zh) 基于激光雷达测距的图像调焦***及方法
CN110673433A (zh) 一种自动调焦方法及装置
JP2006072384A (ja) 自動焦点調節装置及び方法
KR102270254B1 (ko) 타겟의 초기 위치 감지 기능을 구비한 다변측량 레이저 추적 장치 및 추적 방법
CN107462967B (zh) 一种激光测距的定焦方法和***
WO2019085260A1 (zh) 自动调焦***、方法以及投影设备
CN117294938A (zh) 摄像头对焦方法、装置、电子设备及计算机可读存储介质
CN112073601B (zh) 一种聚焦方法、装置、成像设备及计算机可读存储介质
WO2021035704A1 (zh) 成像装置的对焦方法、组件、成像装置和可移动物体
KR20110082734A (ko) 자동 초점 조절 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902720

Country of ref document: EP

Kind code of ref document: A1