WO2017114375A1 - 一种水泥基材料增强剂及其制备方法和应用 - Google Patents

一种水泥基材料增强剂及其制备方法和应用 Download PDF

Info

Publication number
WO2017114375A1
WO2017114375A1 PCT/CN2016/112249 CN2016112249W WO2017114375A1 WO 2017114375 A1 WO2017114375 A1 WO 2017114375A1 CN 2016112249 W CN2016112249 W CN 2016112249W WO 2017114375 A1 WO2017114375 A1 WO 2017114375A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
siloxane
organic
polymerizable monomer
parts
Prior art date
Application number
PCT/CN2016/112249
Other languages
English (en)
French (fr)
Inventor
舒鑫
刘加平
杨勇
冉千平
李申桐
赵红霞
曹攀攀
翟树英
张志勇
Original Assignee
江苏苏博特新材料股份有限公司
南京博特新材料有限公司
博特建材(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 南京博特新材料有限公司, 博特建材(天津)有限公司 filed Critical 江苏苏博特新材料股份有限公司
Publication of WO2017114375A1 publication Critical patent/WO2017114375A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/022Agglomerated materials, e.g. artificial aggregates agglomerated by an organic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0004Microcomposites or nanocomposites, e.g. composite particles obtained by polymerising monomers onto inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the field of admixtures for modifying cement-based materials, in particular to an enhancer which can improve the mechanical properties (including compression resistance, flexural strength and tensile strength) of cement-based materials and a preparation method thereof.
  • Cement-based materials refer to materials such as concrete, mortar, and grouting. As the most widely used building material in the world, cement-based materials continue to expand in its application fields, but complex and diverse construction and use environments are constantly demanding higher performance. Therefore, improving its mechanical properties is an inevitable trend of its development.
  • Ordinary cement-based material is a typical brittle material, which has high compressive strength, and is resistant to bending and tensile strength. In actual use, it is easy to generate various cracks or damages due to stress concentration or uneven force. The durability is reduced, which limits its application. For example, the surface layer of the cement pavement is prone to premature failure of the board and surface structure, thus limiting its application in high-grade roads.
  • the existing main modified components include fibers (organic polymers, steel fibers). And glass fiber) and polymer particles (emulsion or dry powder).
  • the principle of fiber toughening is: (1) limit the development of micro-cracks. When the fibers are evenly distributed in the concrete matrix, it is assumed that there is a tendency for microcracks to occur inside the concrete matrix. When any micro-cracks occur and may develop in any direction, the fibers are not farther than the fiber average in the concrete matrix. Within the distance of the center distance, the crack will encounter a fiber that traverses in front of it. When the crack is generated, due to the high modulus of the fiber and the high tensile strength of the single root, the further development of the crack can be prevented, and a closed cavity similar to a harmless hole or a hole having a very small inner diameter can be formed only in the concrete matrix. (2) The toughness of high-strength fiber itself is much higher than that of concrete. The strength of fiber-modified concrete is the superposition of the properties of concrete phase and fiber phase, so its toughness is higher than that of ordinary concrete.
  • the polymer particles act as admixtures to improve the bond between the concrete components. Dispersion and film formation of polymer particles are the main reason for their modification. Due to the presence of the polymer film, the mechanical properties (especially toughness) of the concrete material are more excellent.
  • the physical interaction or partial chemical bonding between the polymer and the inorganic material that is, the modification of the cement mortar in the form of particles or membranes, or the formation of a more dense chelating body combined by coordination, Thereby improving the performance of the polymer cement concrete.
  • the introduction of reactive groups such as -OH, -COOH, -COOR into the polymer can coordinate with the cement hydration product, change the bond type of the cement material with silicon-oxygen bond, and add organic hydrocarbon.
  • the bond type of the bond significantly enhances the structure, forming a double-stack network structure with overlapping layers, improving the interface between the interfaces and improving the interface fracture energy and toughness (Bulletin of the Chinese Ceramic Society, 2014, 33, 365).
  • the fiber tends to agglomerate when the concrete is stirred, is difficult to disperse, and cannot be uniformly distributed in the concrete.
  • the performance of fiber-modified concrete is closely related to the dispersion and orientation of fibers. Therefore, the concrete preparation process has a great influence on the performance of concrete, and its preparation is more difficult than conventional concrete.
  • the agglomeration makes the concrete workability poor, pumping difficult, and difficult to construct.
  • the failure mode of the steel fiber during use is mainly pulled out without being broken, which indicates that the adhesion of the steel fiber to the concrete is insufficient, which affects the effect of improving the tensile strength of the concrete.
  • the density of the synthetic fiber is small, the diameter of the monofilament is small, and there is a thickening effect, which is not conducive to the vibration compaction of the concrete. Due to the poor alkali resistance of glass fibers, the application of glass fiber reinforced concrete is limited.
  • the cement-based material toughening method disclosed in the patent CN101891417B requires uniform dispersion of the components (including fibers) of the formulation by stirring, and the stirring time is long (25-35 min).
  • the patent CN101913188B adds a magnetic field to make the steel fiber single-phase distribution and improve the flexural strength of the steel fiber concrete, which undoubtedly complicates the preparation of the concrete.
  • Patent US7192643 prepares a readily dispersible organic fiber membrane for toughening cement-based materials by a special method.
  • the patents EP0488577, US5993537, and US4524101 all require the addition of so-called wetting agents or inorganic binding agents to allow the fibers to disperse. These patents typically require the preparation of the desired fibrous material or corresponding modified concrete by specific means or equipment.
  • the polymer blending amount in the polymer modified concrete is too high. Since polymer modified concrete is more likely to form a polymer network, it is equivalent to improving the performance of concrete through the form of material blending.
  • the polymer network itself has limited adhesion to cement-based materials, so the modification performance is not high at low dosage. Obviously, it is necessary to add a higher amount, which makes it costly.
  • Polymer emulsions may also accumulate in the environment of high alkali and high salt of concrete, affecting its function (the emulsion of anionic emulsifier synthesis is easy to coagulate, Journal of Materials in Civil Engineering 2011, 23, 1412).
  • Patent CN102276764B provides a chemical modification method for polymer powder modification, which is chemically grafted on a surface of a polymer powder by a coupling agent to improve the interaction between the powder and the matrix, thereby improving the impact resistance of the modified mortar. But it does not solve the problem of dispersion of polymer powder itself.
  • the polymer emulsion (Handbook of polymer-modified concrete and mortars, 1995, 55) has an effect on the setting time of cement-based materials. It is related to the type and amount of polymer emulsion used, and generally delays the setting time. Ten minutes - hours).
  • Patents CN103130436A and CN101239800B respectively report the use of graphene (graphene oxide) and carbon nanotube modified cement-based materials to improve the compression and tensile strength, but the cost is too high.
  • Patent CN103274620A generates metamorphic kaolin minerals with a certain morphology by heating and calcining ordinary kaolin clay minerals, and strengthening the strength of cement-based materials.
  • EP 2 695 850 A1 discloses a method for the in situ nucleation of growing calcium silicate (wollastonite) nanocrystals in a cementitious material for toughening. The modifiers reported in these patents require specific conditions such as temperature and pressure, which make preparation difficult.
  • CN104446091A, CN103787609A and CN104119014A respectively introduce several concrete reducers, which increase the degree of cement dispersion by enhancing the cementation of cement particles, thereby improving the degree of hydration, but in principle, it cannot fundamentally improve the cement-based materials. brittleness.
  • CN104609759A and CN104446102A each introduce an admixture which can increase the flexural strength and tensile strength of the cement-based material.
  • the active ingredient is a core-shell structure particle, because the organic phase and the inorganic phase are connected to the inner and outer interfaces of the core-shell structure, and the covalent bonding depends on the inner surface area of the core-shell structure, which is limited. Therefore, the degree of improvement of the mechanical properties of cement-based materials is also limited, and the two admixtures have little effect on the compressive strength of cement-based materials.
  • the present invention provides an organic-inorganic hybrid particle and a preparation method thereof, and the aqueous dispersion of the organic-inorganic hybrid particle as a reinforcing agent for a cement-based material can simultaneously improve the compressive and anti-pressure resistance of the cement-based material. Fold and tensile (or anti-pull) strength.
  • Tensile and anti-pull strength are slightly different parameters of the test method. Generally, the tensile strength is high and the tensile strength should be high.
  • the index used in the present invention is the tensile strength, which is used instead of the tensile strength.
  • the organic component and the inorganic component are mutually connected by a covalent bond, not a core-shell structure, but interpenetrated with each other, and are linked by a covalent chemical bond, but the organic group
  • the phase separation boundary refers to a clear boundary between the core layer and the shell layer.
  • the organic moiety is an organic polymer network formed by covalently linking a long ethylene glycol segment, an intermediate segment, and a siloxane segment, wherein the siloxane segment does not comprise an alkoxy group and the alkoxy group occurs. a silicon-oxygen bond portion formed by the hydrolysis reaction;
  • the intermediate segment means styrene or substituted styrene, acrylic acid, methacrylic acid, acrylate, methyl propyl a homopolymeric segment or a copolymerized segment formed by polymerization of any of a acrylate, acrylate or substituted acrylate, methacrylate or substituted methacrylate;
  • the organic component is styrene or substituted styrene, acrylic acid, methacrylic acid, acrylate or substituted acrylate, methyl in the presence of a long monomer and siloxane containing a long ethylene glycol chain.
  • Siloxanes are the key to linking organic and inorganic components.
  • the siloxanes may or may not contain double bonds, but must contain more than three siloxane functional groups; siloxane functional groups can be hydrolyzed to link them to none.
  • the double bond polymerization can be attached to the organic component. If it does not contain a double bond, the siloxane functional group reacts with the hydroxyl group or amino group contained in the organic polymer component to cause it to be attached. On the organic component.
  • the inorganic component is a network of silicon-oxygen bonds prepared by hydrolyzing the siloxane.
  • a silane containing three or more alkoxy groups such as methyltrimethoxysilane, wherein the methyl group is also an organic functional group, is used in the present invention, but the methyl group has less influence on the performance of the hybrid particles. .
  • Organic component When the material is incorporated into the cement-based material for modification, it functions as a cross-linking node. Due to the excellent tensile properties of the organic material, it can bear part of the external force to improve the flexural strength of the cement-based material. And tensile strength; at the same time, the macromonomer is continuously grafted onto the hybrid particles during the preparation of the hybrid particles, thereby stabilizing the hybrid particles by providing steric hindrance and preventing the hybrid particles from coagulation.
  • Inorganic component a chemical reaction can occur in a strongly alkaline environment of a cement-based material, and a covalent bond is formed with the main gelling component hydrated calcium silicate gel (CSH) to thereby organically bond through a covalent chemical bond.
  • the components are connected with the CSH particles, and the organic components are fully utilized to improve the mechanical properties of the cement-based materials.
  • the CSH junction function is acted upon to increase the CSH gel content in the cement-based material and improve the mechanical properties of the cement-based material (eg, Compressive strength).
  • the particles react with the alkaline environment of the cement-based material, and the hydrated product is crystallized by the particles, thereby functioning as a cross-linking node.
  • the hydrated product particles are connected to improve the mechanical properties of the cement-based material.
  • the hybrid structure covalently connects the organic component and the inorganic component to a smaller scale than the core-shell structure, further improves the connection efficiency of the organic component and the inorganic component, and is beneficial to improve the mechanics of the hybrid particle itself. Performance, at the same time, when used in the modification of cement-based materials, the connection efficiency of organic components is further increased compared with the core-shell structure, thereby improving its ability to increase the compressive, tensile and flexural strength of cement-based materials.
  • the organic-inorganic hybrid particles are spherical particles having a diameter of less than 1000 nm; their forces in all directions are more uniform than fibers, and thus there is no problem of orientation.
  • the preparation method of the organic-inorganic hybrid particle aqueous dispersion of the present invention specifically comprises the following steps:
  • a part of the polymerizable monomer A, a polymerizable monomer B, a part of the crosslinking agent C, a part of the siloxane D, and water are added to the reactor, and the mixture is thoroughly stirred and mixed to obtain a mixed solution; the mixture is adjusted to pH.
  • the polymerizable monomer A is added in two portions, and the monomer A directly added to the reactor at the initial stage of the reaction accounts for 10-50% of the total amount of the monomer A.
  • the cross-linking agent C was added in two portions, wherein the ratio of the first addition amount was 0-100% of the total cross-linking agent C.
  • the siloxane D was added in two portions, wherein the proportion of the first addition amounted to 0-100% of the total siloxane D.
  • the polymerizable monomer A is one of the following general formula ((1)-(2)):
  • R 1 , R 2 and R 3 each independently represent H or CH 3 , and R 4 represents an alkyl group of 6 to 30 carbon atoms;
  • X 1 , X 2 and X 3 each independently represent O or NH;
  • a and b respectively Independently refers to the average number of repeating units of the ethoxy-CH 2 CH 2 O-chain, a, b ranges from 4 to 50;
  • the values of a and b are too small, the self-emulsification is weak, and the steric hindrance provided is small, which is unfavorable for stabilizing the hybrid particles.
  • the value is too large, the polymerization activity is too low compared to the monomer B and the crosslinking agent C. Therefore, a large amount remains in the polymerization system because it is difficult to copolymerize.
  • the polymerizable monomer A can be used on the one hand to stabilize the hybrid particles during the synthesis process and in the application process, and the effect is similar to the polymerizable emulsifier in the conventional emulsion polymerization.
  • the small molecular weight polymer formed by the preliminary polymerization of the monomer A Micellars can be formed which can swell the subsequent polymerizable monomer B, crosslinker C and siloxane D.
  • the amount thereof also has a close influence on the size of the organic polymer core particles synthesized in the first stage, and the higher the amount of the initial addition to the reactor, the smaller the particle size.
  • the polymerizable monomer B is composed of a functional group monomer and a non-functional monomer.
  • the functional group monomer in the monomer B accounts for 1-5% of the total mass of the monomer B, and the rest is a non-functional monomer.
  • the functional group monomer is one or more than any one of all of the following functional group monomers.
  • the amino group-containing polymerizable monomer includes 3-aminostyrene, 4-aminostyrene, 2-(tert-butylamino)ethyl methacrylate, aminoethyl methacrylate, and hydrochloride of these monomers. Or sulfonate;
  • the hydroxyl group-containing polymerizable monomer is a hydroxy acrylate or methacrylate, hydroxy acrylamide or hydroxymethyl acrylamide monomer, and includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
  • HEMA 2-hydroxypropyl acrylate
  • 4-hydroxybutyl acrylate 2-hydroxypropyl methacrylate
  • 4-hydroxybutyl methacrylate N-methylol acrylamide
  • HEMA 2-hydroxypropyl acrylate
  • 4-hydroxybutyl acrylate 2-hydroxypropyl methacrylate
  • 4-hydroxybutyl methacrylate N-methylol acrylamide
  • N- Hydroxyethyl acrylamide N-(2-hydroxypropyl) acrylamide
  • N-methylol methacrylamide N-(2-
  • the non-functional monomer is one or more than any one of styrene and a monomer represented by the following formula (3).
  • R 5 represents H or CH 3
  • R 6 represents H, Na, K or an alkyl group of 1 to 12 carbon atoms.
  • the polymerizable monomer B is the most important component of the organic polymer core particles, and its role is to provide a better tough organic substrate for ultimately improving the flexural strength and tensile strength of the cement-based material.
  • the crosslinking agent C is divinylbenzene and any one of the structures represented by the following formula (4).
  • R 7 represents H or CH 3
  • X represents a saturated alkyl group of 2 to 12 carbon atoms or a structure of (CH 2 CH 2 O) c CH 2 CH 2 wherein c is an ethylene oxide structure (-CH 2 CH 2 O-)
  • c is an ethylene oxide structure (-CH 2 CH 2 O-)
  • the average molar addition number, c ranges from 1-44. If the value of c is too large, the polymerization activity is low, which is disadvantageous for the full performance of the crosslinking property.
  • the cross-linking agent C assists in forming an organic polymer network, improves the mechanical strength of the organic polymer network, and reduces the solubility of the organic polymer component in water, thereby promoting nucleation.
  • the siloxane D is a silane substituted with three or more alkoxy groups, which may form a network of siloxane bonds, and may be one or more of a radically polymerizable siloxane and/or a non-radical polymerizable siloxane. In any combination of one.
  • the radically polymerizable siloxane may be vinyltrimethoxysilane, vinyltriethoxysilane (VTES), methacryloxypropyltrimethoxysilane (MAPTMS), methacryloxypropane Triethoxysilane (MAPTES), methacryloxymethyltriethoxysilane (AAPTES), acryloxymethyltrimethoxysilane (AAMTMS), acryloxypropyltrimethoxy Any of silane (AAPTMS).
  • the non-radically polymerizable siloxane is any one of the structures represented by the following formula (5).
  • R 8 , R 9 and R 10 each independently represent a saturated alkyl group of 1 to 4 carbon atoms, and R 11 represents a phenyl group (-C 6 H 5 ) or a saturated alkyl group of 1 to 12 carbon atoms or 1 A saturated alkoxy group of 4 carbon atoms.
  • Siloxane D is the main source of the inorganic component of the organic-inorganic hybrid particles, and the silicon-oxygen bonds generated by the hydrolysis reaction are connected to each other to react with Ca(OH) 2 in the alkaline environment of the cement-based material.
  • the hydrolysis process produces volatile organic small molecule alcohols which are extracted by depressurization after the reaction is completed.
  • the siloxane D may be added at a time before or after the addition of the initiator during the reaction, or may be added in two portions at any ratio.
  • the polymerizable monomer E is composed of a functional group type monomer and a non-functional group type monomer.
  • the functional group monomer in the monomer E accounts for 1-10% of the total mass of the monomer E, and the rest is a non-functional monomer.
  • the functional group monomer in the polymerizable monomer E is one or more than any one of all the functional group monomers described in the foregoing polymerizable monomer B; the non-functional monomer is styrene and One or more than any one of the monomers represented by the formula (4); the composition of the polymerizable monomer E may be the same as or different from the polymerizable monomer B.
  • the ratio of the amount of the polymerizable monomer A, the polymerizable monomer B, the crosslinking agent C, the siloxane D, and the polymerizable monomer E is required to satisfy the following conditions:
  • the alkoxy group of siloxane D is hydrolyzed to produce a volatile small molecule organic alcohol.
  • the effective mass of siloxane D (referred to as D 0 ) is deducted from these small amounts. Calculation of the remaining silica or organofunctional substituted silica of the molecular organic alcohol. Taking a tetraalkoxy-substituted silane and a trialkoxy-substituted silane as an example, the description is as follows:
  • the left reactant is tetraethoxysilane (TEOS), which is completely hydrolyzed to produce ethanol.
  • TEOS tetraethoxysilane
  • the ethanol can be extracted during decompression, and the remaining effective mass is SiO 2 .
  • the calculation method is TEOS and water.
  • the total mass is deducted from the quality of the ethanol.
  • the left reactant is methyltrimethoxysilane (MTMOS), which is completely hydrolyzed to produce methanol.
  • MTMOS methyltrimethoxysilane
  • the methanol can be extracted during the decompression process, and the remaining effective mass is a methyl-substituted siloxane network. Calculated by subtracting the mass of methanol from the total mass of MTMOS and water.
  • the amount of polymerizable monomers A, B, E, crosslinker C and siloxane D should be such that the non-volatile components of the aqueous dispersion are based on the mass of the aqueous dispersion minus all volatile small organic alcohols. That is, the effective component, the hybrid particle) accounts for 5-40% (mass fraction) of the total mass of the aqueous dispersion. Specifically, the total mass of the effective reactant (A+B+C+E+D 0 ) accounts for 5-40% of the final mass of the aqueous dispersion.
  • the final mass of the aqueous dispersion herein means the total mass of the aqueous dispersion obtained after the end of the reaction, that is, the total mass of all species in the reaction minus the mass of all volatile small molecule organic alcohols.
  • monomer A accounts for 1-10% of the total mass of the effective reactant (A+B+C+E+D 0 )
  • crosslinker C accounts for the total mass of the effective reactant (A+B+C+E+D 0 0-5%
  • monomers B and E (B+E) account for 20-70% of the total mass of the active reactant (A+B+C+E+D 0 )
  • the polymerizable monomer B accounts for B and
  • the total mass ratio of E(B+E) is not less than 10%.
  • Monomer A is equivalent to a dispersant of self-polymerizing emulsifier and hybrid particles. When the amount is too low, dispersed hybrid particles cannot be formed. The hybrid particles will agglomerate and precipitate during nucleation, and hybridized during application. The particles may be unstable and coagulate in the environment where the cement-based material is strong in alkali and high in salt. Similarly, monomer A contributes a limited amount to the tensile properties of the hybrid particles themselves because of their low double bond content and less contribution to the organic polymer backbone (polymer backbone) after polymerization. At 5%.
  • Limiting the amount of monomer A directly added to the reactor at the beginning of the reaction is to: (a) maintain the minimum amount of self-polymerizing emulsifier that initially promotes nucleation and swelling; (b) continuously graft by the addition reaction during the maintenance of the reaction. The minimum amount of long side chains to the surface of the particle, thereby stabilizing the particles.
  • the reason for limiting the amount of cross-linking agent C to not more than 5% is that the hybridized particles with too high degree of cross-linking have less deformability during preparation, and the degree of swelling of the monomers is low, so that the hydrolysis reaction and the polymerization reaction may be Occurrence occurs outside the particle, producing homogeneous organic polymer particles or inorganic polymer particles.
  • the sum of the amounts of the monomers B and E is limited to a range of 20-80% in order to ensure the minimum content of the organic component and the inorganic component in the hybrid particles, otherwise it is difficult to fully exert the mechanical properties of the hybrid particles.
  • Limiting the amount of the polymerizable monomer B to not less than 10% of the total mass of B and E is to form a water-insoluble polymer at the initial stage of the reaction, thereby promoting particle nucleation.
  • the initial stage of the reaction there are many water-soluble monomers A. If the initial monomer A is self-polymerized to form a water-soluble polymer, nucleation cannot be precipitated, and A as an emulsifier in the reaction process is consumed; in the presence of B B and A may form an amphoteric polymer to form micelles or an increase in the degree of polymerization of B in the polymer to cause the polymer to precipitate to form particles.
  • the upper limit of the amount of the functional group monomer in the monomers B and E is limited because the functional group monomer is generally water-soluble, and the large amount of use may cause the hybrid particles to partially dissolve in water, which is disadvantageous for the nucleation growth of the hybrid particles, and these
  • the dissolved polymer on the one hand increases the viscosity of the system, reduces the content of hybrid particles, and on the other hand may entangle each other to cause coagulation.
  • the upper limit of the functional group monomer ratio is lower than that of the monomer E.
  • the lower limit of the amount is limited to ensure an effective covalent bond between the organic component and the inorganic component.
  • the effective mass of the polymerizable monomers A, B, E, crosslinker C and siloxane D is not less than 5% of the total effective mass of the aqueous dispersion because the admixture is used for the modification of cement-based materials.
  • the amount of solid active ingredient incorporated into the system should be no less than 0.5% of the total gum, otherwise its contribution to mechanical properties is not significant.
  • the total solid content of the admixture is too low, the use requirements may not be met. In fact, even below 5%, the reaction can be successfully carried out.
  • the initiator is a thermal decomposition initiation system or a redox initiation system as follows:
  • Thermal decomposition initiation system azo (VA044 or V50), persulfate (ammonium persulfate, potassium persulfate and Sodium sulfate);
  • Or redox initiation system one of H 2 O 2 and a reducing agent (such as vitamin C, sodium formaldehyde sulfoxylate), persulfate (ammonium persulfate, sodium persulfate and potassium persulfate) and low-priced sulfate
  • a reducing agent such as vitamin C, sodium formaldehyde sulfoxylate
  • persulfate ammonium persulfate, sodium persulfate and potassium persulfate
  • low-priced sulfate One of the classes (sodium sulfite, sodium hydrogen sulfite, sodium metabisulfite, sodium formaldehyde sulfoxylate).
  • the amount of oxidizing agent and reducing agent is such that the oxidizing agent/reducing agent is between 0.5 and 2.0 (molar ratio).
  • the amount of initiator (the redox system is calculated as the lower molar amount of the oxidizing agent and the reducing agent); it is 0.05-3% of the total mass of the monomer.
  • the mass of the oxidizing agent is calculated as the mass of the oxidizing agent, and the mass of the oxidizing agent is 0.05-3% of the total mass of the monomer, and vice versa.
  • the amount of the initiator is less than 0.05%, the monomer mass may cause insufficient conversion of the organic monomer. If the amount of the initiator is more than 3%, the reaction may fail due to excessive initial polymerization rate (a large amount of precipitation or condensation will occur). gum).
  • the thermal decomposition initiator may be added directly or in a slow and uniform manner; for the redox initiator, the desired mass of the oxidant is first added to the polymerization system, and then the reducing agent solution is slowly and uniformly added to the polymerization system, and should not be in the monomer. Add all before adding to the reaction system. Because of the half-life, the thermal decomposition initiator is relatively gentle, so it can be added at one time or slowly and evenly. However, for the redox initiation system, the activation energy is generally low. If the addition is initiated, the conversion rate will be low because the late radical concentration is too low. The early radical concentration is too high, which may cause the reaction rate to be too fast. Redispersed precipitate.
  • Applicable reaction temperature is 20-90 ° C
  • the redox initiation system initiated temperature is lower, even close to normal temperature
  • the thermal decomposition initiation system initiation temperature can be determined based on its half-life. The longer the polymerization time, the higher the conversion rate.
  • the reaction time of the system can be generally controlled at 4-24h. Generally, it is necessary to ensure that the initiator is substantially completely decomposed when the polymerization is completed.
  • the hybrid particle preparation process includes two synchronizations of polymerization and hydrolysis. The reaction is carried out in which the hydrolysis reaction usually takes a long time, and all the reactions are as complete as possible so as not to affect the storage use of the resulting hybrid particle dispersion.
  • the initial pH of the reaction system in the reaction step is in the range of 2-12. Beyond this range, a large amount of homogeneous silica will be formed under acidic conditions, and the polymerizable monomer A cannot sufficiently cover all the hybrid particles due to insufficient reaction rate to cause the hybrid particles to coagulate; the same or hydrolysis reaction under alkaline conditions The coagulation is too fast, or the particles themselves lose stability due to reaction with a high concentration of OH - in the reaction environment.
  • the method for applying the dispersion of the organic-inorganic hybrid particles of the present invention as a reinforcing agent for a cement-based material when preparing the cement-based material, directly adding the organic-inorganic hybrid particles to the stirring process in the mixing process;
  • the amount of the particles used is 0.5 to 5.0% of the total mass of the rubber.
  • the organic-inorganic hybrid particle according to the invention is used for improving the mechanical properties of the cement-based material, and the organic component is fully connected with the CSH particle through the covalent bond through the inorganic component, thereby improving the toughness of the organic component. Performance efficiency.
  • the introduced inorganic component can generate more CSH gelling components, and the nanoparticle itself is connected by chemical bonding to a high degree, the mechanical strength (compressive strength) of the nanoparticle itself is improved, so that the cement base can be significantly improved.
  • the compressive strength of the material since the introduced inorganic component can generate more CSH gelling components, and the nanoparticle itself is connected by chemical bonding to a high degree, the mechanical strength (compressive strength) of the nanoparticle itself is improved, so that the cement base can be significantly improved.
  • the compressive strength of the material since the introduced inorganic component can generate more CSH gelling components, and the nanoparticle itself is connected by chemical bonding to a high degree, the mechanical strength (compressive strength) of the nanoparticle itself is improved, so that the cement base can be significantly improved.
  • the compressive strength of the material since the introduced inorganic component can generate more CSH gelling components, and the nanoparticle itself is connected by chemical bonding to a high degree, the mechanical strength (compressive strength) of the nano
  • the admixture dosage of the invention can be greatly reduced (the amount of hybrid particles is 0.5-5.0% of the total rubber material quality), Compared with organic polymer-inorganic hybrid particles of traditional polymer emulsion or core-shell structure, organic polymers and inorganic polymers can fully utilize organic polymers and inorganic polymers because they are interconnected by covalent bonds at a finer scale.
  • the advantages of mechanical properties, the flexural and tensile (or tensile) performance of cement-based materials are more obvious under the same dosage conditions, and the compressive strength can be effectively improved, and the traditional polymer modified cement-based materials are overcome. Because of the high amount of polymer, it affects the defects of the compressive strength of cement-based materials.
  • the amount of the present invention refers to the ratio of the mass of the active ingredient (organic-inorganic hybrid particles) in the finally synthesized aqueous dispersion of the present invention to the mass of the rubber in the cement-based material.
  • the hybrid particles are used for the modification of cement-based materials, and the higher the blending amount, the more obvious the mechanical properties (compression, flexural strength and tensile strength) are improved.
  • Figure 1 is a transmission electron micrograph of the hybrid particles obtained in Example 2.
  • the attached structure 1 corresponds to the structural formula corresponding to each abbreviation in the embodiment.
  • polymerizable monomers used below are either commercially available or synthesized according to literature (source of polymerizable monomer A: (1) commercially available; (2) Polymer Bulletin, 2008, 16; Polymer Bulletin 1999, 42, 287; Journal Of Applied Polymer Science 2000, 77, 2768).
  • 4-Aminostyrene hydrochloride (4-VBAH) is a synthetic product obtained by reference to literature synthesis (Analytical Chemistry 2012, 84, 3500).
  • a part of the polymerizable monomer A was added to the reactor (No. A1, polyethylene glycol methacrylate, -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 6, and the terminal group was a hydroxyl group.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • polymerizable monomer E 4-VBAH 0.36 parts and St.35.64 parts
  • a part of the polymerizable monomer A was added to the reactor (No. A2, polyethylene glycol monomethyl ether acrylate, -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 22, and the terminal group was A Base, dosage: 1.8 parts), polymerizable monomer B (4-VBAH 1.8 parts, methacrylic acid (MAA) 58.2 parts), part of crosslinker C (No.
  • ethylene glycol diacrylate, -CH 2 CH 2 O-average repeat unit number is 45,2 parts
  • part of siloxane D (1.25 parts of methacryloxypropyltrimethoxysilane (MAPTMS) and 20.53 parts of TMOS), 6 parts of APS and 270 parts of water, thoroughly stirred and mixed; with 1mol / LNaOH the mixture was adjusted to pH 10, drops of N 2 through the mixture evenly into the reactor in addition to O 2, the reactor temperature was raised to 70 °C, under stirring to An aqueous solution of the remainder of the polymerizable monomer A (4.2 parts of A2 dissolved in 3 parts of water), the remainder of the crosslinking agent C (C2, 2 parts), and the remainder of the siloxane D (MAPTMS 11.22 parts and TMOS 184) .76 parts), polymerizable monomer E (2 parts of aminoethyl methacrylate hydrochloride (AEMH) and 38 parts of methyl methacrylate) and initiator solution (3.28 parts of
  • the TEM image of the obtained hybrid particles is shown in Fig. 1.
  • the obtained particles have a diameter of about 50-400 nm, and the contrast of the particles shown in the figure changes uniformly and continuously without any phase separation such as the core-shell interface, indicating the miscibility of the organic phase and the inorganic phase.
  • the level of hierarchy is at least observable with ordinary TEM.
  • a part of the polymerizable monomer A was added to the reactor (No. A3, polyethylene glycol monomethyl ether methacrylate, and -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 45, and the amount was 1 part), polymerizable monomer B (1.4 parts of 2-hydroxyethyl acrylate (HEA) and 26.6 parts of dodecyl acrylate (LA)), crosslinker C (divinylbenzene (DVB) 10 parts, Commercial DVB contains meta and para isomers), part of siloxane D (methacryloxypropyltriethoxysilane (MAPTES) 16.21 parts, methyltrimethoxysilane (MTMOS) 4.06 parts and TEOS27.75 parts) and 270 parts of water, mixing thoroughly stirred; the pH was adjusted to 3 with 1mol / LH 2 SO 4 the mixture to N 2 through the mixture in addition to O 2, the reactor temperature was raised to 60 °C, The initiator was added to the reactor
  • Aqueous solution (9 parts of A3 dissolved in 5 parts of water), the remainder of siloxane D (MAPTES 16.21 parts, MTMOS 4.06 parts and TEOS 27.75 parts) and polymerizable monomer E (HEA 11.2 parts and LA 100.8) Part), starting from the initiator
  • the aqueous solution of the remaining part of the polymerizable monomer A, the remainder of the siloxane D, and the polymerizable monomer E are added dropwise for 8 hours, and the reaction is continued for 4 hours after the dropwise addition, and the inert atmosphere protection is removed, and the pressure is extracted under reduced pressure.
  • the organic small molecule can be volatilized to obtain an aqueous dispersion of hybrid particles AE03.
  • a part of the polymerizable monomer A was added to the reactor (No. A4, N-polyethylene glycol monomethyl ether-acrylamide, and -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 45, the amount 0.6 parts), polymerizable monomer B (4 parts of 4-VBAH and 57 parts of n-butyl acrylate (BA)), a part of siloxane D (36.72 parts of vinyltrimethoxysilane (VTMS)) and 270 parts of water, sufficiently stirred and mixed; with 1mol / LH 2 SO 4 the mixture was adjusted to pH 3.5, passed through a mixture of N 2 addition to O 2, the reactor temperature was raised to 50 °C, even to the reactor dropwise with stirring to the initiator
  • the agent (4 parts of azobisisobutyrazoline hydrochloride VA044 dissolved in 22 parts of water) initiates polymerization, and at the same time, the remaining aqueous solution of the polymerizable monomer A
  • polymerizable monomer E (4-hydroxypropyl acrylate (HPA) 4 parts and St36 parts) and the remainder of siloxane D (VTES 146.9 parts), timed from the start of the initiator to the reactor, dripping After adding 6h, the initiator, the remaining part of the polymerizable monomer A, the remaining part of the siloxane D and the polymerizable monomer E were added dropwise for 6 hours, and the addition was continued for 6 hours, and then withdrawn. Protective inert atmosphere, under reduced pressure and extracted volatile small organic molecules, to obtain an aqueous dispersion of hybrid particles AE04.
  • HPA 4-hydroxypropyl acrylate
  • VTES 146.9 parts siloxane D
  • polymerizable monomer A to the reactor (No. A1, polyethylene glycol methacrylate, -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number is 6, the terminal group is hydroxyl group, the amount is 0.6 parts), polymerizable monomer B (1.4 parts of AEMH and 138.6 parts of n-octyl acrylate), crosslinker C (No.
  • polymerizable monomer A to the reactor (No. A6, n-dodecyl-polyethylene glycol monomethyl ether-maleic acid diester, -CH 2 CH 2 O - average repeating unit number 45, in an amount of 5 Part), polymerizable monomer B (HPA 0.12 part and methyl acrylate 3.88 parts), part of crosslinker C (No.
  • polymerizable monomer A No. A2, polyethylene glycol monomethyl ether acrylate, -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 22, and the terminal group was methyl group.
  • Amount of 1 part polymerizable monomer B (N-hydroxymethyl acrylamide (N-HMAAm) 1.2 parts and lauryl methacrylate (LMA) 38.8 parts), part of siloxane D (acryloyloxy group) 21.84 parts of propyltrimethoxysilane (AAPTMS) and 82.19 parts of tetra-n-butylsilane (TBOS), 4.04 parts by weight of 30% aqueous solution of H 2 O 2 and 265.96 parts of water, mixed well; 1 mol/L H 2 SO 4 the mixture was adjusted to pH 3.5, to the mixture through the other N 2 O 2, the reaction temperature was maintained at 30 °C, uniformly added dropwise with stirring to the reactor an initiator (5 parts of sodium s
  • polymerizable monomer A No. A8, polyethylene glycol monomethyl ether methacrylate, -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 22, and the terminal group was A Base, the amount is 3 parts
  • polymerizable monomer B (2-(tert-butylamino)ethyl methacrylate (t-BAEMA) 0.5 parts and MMA 9.5 parts)
  • crosslinking agent C No.
  • a part of the polymerizable monomer A was added to the reactor (No. A3, polyethylene glycol monomethyl ether methacrylate, and -CH 2 CH 2 O in the polyethylene glycol chain - the average repeating unit number was 45, and the amount was 3 parts), polymerizable monomer B (N-HMAAm 0.84 parts and MMA 83.16 parts), a part of siloxane D (phenyl triethoxysilane PhTEOS 88.4 parts) and 270 parts of water, thoroughly stirred and mixed ; the pH was adjusted to 11 with 1mol / LNaOH the mixture to N 2 through the mixture in addition to O 2, the reaction temperature was maintained at 85 °C, uniformly added dropwise with stirring to the reactor initiator (persulfate 0.2 parts Potassium KPS was dissolved in 16.8 parts of water to initiate polymerization, and an aqueous solution of the remainder of the polymerizable monomer A was dropwise added to the reactor (7 parts of A3 dissolved in 3 parts of water), and
  • polymerizable monomer A No. A6, n-dodecyl-polyethylene glycol monomethyl ether-maleic acid diester, -CH 2 -CH 2 O - average repeating unit number 45, the amount is 0.4 parts
  • polymerizable monomer B (2.52 parts of 4-VBAH and 81.48 parts of BA)
  • part of crosslinker C C1, ethylene glycol dimethacrylate, 9 parts
  • siloxane D TMOS30.41 parts methyltrimethoxysilane and MTMOS31.89 parts
  • a part of the polymerizable monomer A was added to the reactor (No. A10, n-dodecyl-polyethylene glycol monomethyl ether-maleic acid diester, -CH 2 -CH 2 O - average repeating unit number 6, Amount of 0.6 parts), a polymerizable monomer B (3-aminostyrene (3-VBA) and 38 parts of St) and a part of siloxane D (TBOS82.19 parts) and 250 parts of water, mixed well; 1mol / LH 2 SO 4 the mixture was adjusted to pH 3 to N 2 through the mixture in addition to O 2, the reaction temperature was maintained at 70 °C, uniformly added dropwise with stirring to the reactor initiator (APS 1 part Dissolved in 14 parts of water; 1.1 parts of sodium sulfite SS dissolved in 13.9 parts of water, respectively, were added dropwise) to initiate polymerization, and at the same time, the aqueous solution of the remainder of the polymerizable monomer A was added dropwise to
  • a part of the polymerizable monomer A was added to the reactor (No. A7, n-dodecyl-hydroxypolyethylene glycol-maleic acid diester, -CH 2 -CH 2 O - average repeating unit number 32, amount 5 parts), polymerizable monomer B (0.1 parts HEMA and 9.9 parts LMA), cross-linking agent C (C2, 0.8 parts) and 270 parts water, mixed well; adjust the pH of the mixture to 11 with 1 mol/L NaOH , N 2 through the mixture in addition to O 2, the reaction temperature was maintained at 60 °C, stirring uniformly added dropwise into the reactor initiator (V50 were dissolved in 2 parts of water 28 parts of) the polymerization initiator, while the reaction began to An aqueous solution of the remainder of the polymerizable monomer A was dropwise added (5 parts of A10 dissolved in 25 parts of water), the remainder of the crosslinking agent C (C2, 3.2 parts), siloxane D (TEOS 298.36 parts) and Polymerization
  • Mortar is prepared by Onodada P ⁇ II ⁇ 52.5 cement (Jiangnan Xiaoyetian Cement Co., Ltd.) and ISO standard sand.
  • the sand-ash ratio is 3:1
  • the water-cement ratio is 0.36
  • the dosage of W05 and PE01-02 is calculated based on the amount of solidification based on the cementitious material (unit: mass percentage, %bwoc).
  • the defoaming agent used is commercially available from Jiangsu Subote New Material Co., Ltd.
  • PXP-I concrete defoamer the gas content of each group of mortar is basically controlled by the amount of defoaming agent.
  • the water reducing agent used is a conventional polycarboxylate water reducing agent commercially available from Subote.
  • the fluidity of each group of mortar was basically the same through the amount of water reducing agent. After the test piece is formed, it is cured at 25 ° C and 95% humidity. Test Methods Reference (Construction and Building Materials, 2013, 49, 121).
  • PE01 carboxylated butylbenzene (SD622S) emulsion of Shanghai Gaoqiao BASF Dispersion Co., Ltd.;
  • PE02 BASF styrene-acrylic emulsion (Acronal S 400).
  • W01 refer to the patent CN104446102A embodiment W01 synthesis
  • the AE01-AE12 dosage refers to the ratio of the mass of the pure active ingredient (organic-inorganic hybrid particles) in the finally synthesized aqueous dispersion of the examples of the present invention to the quality of the rubber material in the cement-based material.
  • the hybrid particles synthesized in this patent can improve the compressive strength, flexural strength and tensile strength of the mortar, and the 28-day compressive strength is improved by 10 -18% (52.5MPa up to 61.8MPa), flexural strength increased by 10-24% (9.98MPa up to 12.41MPa), tensile strength increased by 11-23% (4.77MPa up to 5.87MPa).
  • the use of ordinary polymer emulsions commercial or synthetic, PE01, PE02
  • the core-shell structure particles reported by the patent CN104446102A have improved the flexural strength and tensile strength, but the improvement is small (5-14%), and the compressive strength of the mortar is not significantly improved.
  • AE01, AE05, AE10 and AE12 can also significantly improve the compressive and flexural strength and tensile strength of the mortar (28-day strength increased by 13-25%, 16-30% and 18-35%).
  • ordinary polymer emulsions commercially available or synthetic, PE01, PE02
  • PE01, PE02 have a weaker effect on the folding and tensile strength (2-5%).
  • the core-shell structure particles reported by the patent CN104446102A although their flexural strength and tensile strength are improved (6-23%), their compressive strength is still not significantly improved.
  • the hybrid particles synthesized in this patent have obvious improvement effects on the compressive strength, flexural strength and tensile strength of the mortar, and the compressive strength of the 28-day specimen is improved by 17-49%.
  • the folding strength is increased by 22-52%, and the tensile strength is increased by 29-59%.
  • the admixtures (W01 and W05) of the core-shell structure reported by the patent CN104446102A have improved the flexural strength (11-25% increase) and tensile strength (23-31% increase) of the mortar specimen, but compared with this
  • the hybrid particles reported by the patent have no advantage and, more importantly, their degree of improvement in compressive strength is small (generally ⁇ 10%).
  • the AE01, AE05, AE10 and AE12 dosages can increase the flexural strength and tensile strength of the mortar when the amount of cement is 1-2.5%, and the performance of adding polymer emulsions such as PE01-PE02 can reach 5%, and compared with W01. And W05, hybrid particles can comprehensively improve the compressive and flexural strength and tensile strength of mortar, showing obvious advantages.
  • the dosage of admixtures AH01-AH12, W01, W05 and PE01-02 is calculated based on the amount of solidification of the cementitious material (unit: mass percentage, %bwoc).
  • the defoaming agent used is Jiangsu Subote New Material Co., Ltd. Co., Ltd. commercially available ordinary PXP-I concrete defoamer, the gas content of each group of mortar is basically controlled by defoaming agent.
  • the water reducing agent used is a conventional polycarboxylate water reducing agent commercially available from Subote.
  • the concrete slump of each group was controlled by the amount of water reducing agent (20 ⁇ 1cm). After the test piece is formed, it is cured at 25 ° C and 95% humidity.
  • the AE01-AE12 dosage refers to the ratio of the mass of the pure active ingredient (organic-inorganic hybrid particles) in the finally synthesized aqueous dispersion of the examples of the present invention to the quality of the rubber material in the cement-based material.
  • the hybrid particles synthesized in this patent have obvious improvement effects on concrete compressive strength, flexural strength and tensile strength, and the compressive strength of 28-day specimens is improved by 14-41%.
  • the folding strength is increased by 20-44%, and the tensile strength is increased by 25-53%.
  • the admixtures (W01 and W05) of the core-shell structure reported by the patent CN104446102A have improved the flexural strength (15-22%) and tensile strength (19-24%) of the concrete specimens, but compared with this patent report.
  • the hybrid particles have no advantage and, more importantly, have no significant improvement in their compressive strength (1-7%).
  • the AE01, AE05, AE10 and AE12 dosages increase the flexural strength and tensile strength of the concrete at 1-2.5% of the cement content, which is obviously better than or even better than the performance of adding 5% of the polymer emulsion such as PE01-PE02.
  • hybrid particles can comprehensively improve the compressive and flexural strength and tensile strength of concrete, showing obvious advantages.
  • the tensile strength can be measured in general experiments; for concrete specimens, the split tensile strength is usually determined, which is positively correlated with the tensile strength, but not equal to the tensile strength (generally slightly Above tensile strength), the higher the split tensile strength, the higher the tensile strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种有机无机杂化粒子及其制备方法和在水泥基材料改性中的应用。本发明所述有机无机杂化粒子由有机组分和无机组分组成,有机组分与无机组分之间相互以共价键相互连接,并非核壳结构,而是相互穿插,相互之间以共价化学键进行连接。本发明所述的有机无机杂化粒子,有机组分用于改善水泥基材料的力学性能,通过无机组分将有机物组分通过共价键与CSH颗粒充分连接起来,提升了有机物组分发挥韧性性能的效率;且本发明所述有机无机杂化粒子在水泥基材料中的掺量越高,水泥基材料的力学性能提升越明显。

Description

一种水泥基材料增强剂及其制备方法和应用 技术领域
本发明涉及用于水泥基材料改性的外加剂领域,具体涉及一种可提高水泥基材料力学性能(包括抗压、抗折和抗拉强度)的增强剂及其制备方法。
背景技术
水泥基材料是指混凝土、砂浆、注浆等材料。水泥基材料作为世界上使用最广泛的建筑材料,其应用领域的不断扩大,但复杂多样的施工和使用环境对其性能不断提出更高要求,因此,提高其力学性能是其发展的必然趋势。
普通水泥基材料是一种典型的脆性材料,其抗压强度高,抗弯折、抗拉强度明显不足,在实际使用中,容易因为应力集中或受力不均产生各种裂纹或损伤,使得耐久性下降,从而限制了其应用,例如,水泥路面的面层易过早出现断板及表面结构破坏等病害,因而限制了其在高等级公路中的应用。
人们在改善水泥基材料脆性方面开展了大量的研究,比如:通过添加改性组分从而提高混凝土的抗弯折、抗拉强度,现有主要改性组分包括纤维(有机聚合物、钢纤维和玻璃纤维)和聚合物粒子(乳液或干粉)等。
纤维增韧的原理是:(1)限制微裂缝发展。当纤维均匀分布在混凝土基体之中时,假定混凝土基体内部存在有发生微裂缝的倾向,当任何一条微裂缝发生、并且可能向任意方向发展时,在最远不超过纤维在混凝土基体内纤维平均中心距的路程之内,该裂缝将遇到横亘在它前方的一根纤维。当裂缝产生后,由于纤维的高模量和单根的高抗拉强度,可阻止裂缝的进一步发展,只能在混凝土基体内形成类似于无害孔洞的封闭空腔或者内径非常细小的孔洞。(2)高强度纤维本身韧性远高于混凝土,纤维改性混凝土的强度是混凝土相和纤维相性能的叠加,因而其韧性高于普通混凝土。
聚合物粒子作为外加剂,可以改善混凝土组分之间的结合。聚合物粒子的分散和成膜是其能够改性的主要原因。由于聚合物膜的存在,使混凝土材料的力学性能(尤其是韧性)更加优异。聚合物与无机材料之间产生了物理作用或部分化学键合作用,即聚合物以粒子或膜的形式对水泥砂浆进行改性,也可以形成以配位作用结合的结构更为致密的螯合体,从而改善了聚合物水泥混凝土的性能。向聚合物中引入活性基团如-OH、-COOH、-COOR等可以与水泥水化产物产生配位作用,改变水泥材料以硅氧键为主的键型,添加有机碳氢 键的键型,使结构得到明显增强,形成叠迭交错的双套网络结构,改善了界面间的结合,提高界面断裂能和韧性(Bulletin of the Chinese Ceramic Society,2014,33,365)。
但以上技术都存在明显不足:
(1)纤维在混凝土搅拌时容易结团,难以分散,不能均匀分布于混凝土中。纤维改性混凝土的性能与纤维的分散和取向有密切关系,因而混凝土制备工艺对混凝土性能影响较大,其制备比常规混凝土更为困难。结团使混凝土和易性差,泵送困难、难以施工。钢纤维在使用过程中破坏形态主要是被拔出,而不会被拉断,这说明钢纤维的与混凝土的粘附性不足,这会影响提高混凝土抗拉强度的效果。合成纤维密度小,单丝直径较小,存在增稠效应,不利于混凝土的震动密实。由于玻璃纤维耐碱性差,玻璃纤维增强混凝土的应用受到限制。
专利CN101891417B揭示的水泥基材料增韧方法,需要通过搅拌将其配方各组分(包括纤维)分散均匀,搅拌时间较长(25-35min)。专利CN101913188B加磁场使钢纤维单相分布,提高钢纤维混凝土抗折强度,这无疑使得混凝土的制备复杂化。专利US7192643通过特殊方法制备易分散的有机纤维膜用于水泥基材料增韧。专利EP0488577、US5993537、US4524101均需添加所谓润湿剂或无机偶联试剂(binding agent)等特定手段使得纤维能分散。这些专利通常需要通过特定的手段或设备来制备所需纤维材料或相应改性混凝土。
(2)聚合物改性混凝土中聚合物掺量过高。由于聚合物改性混凝土更多的是形成聚合物网络,相当于通过材料共混的形式改善混凝土性能,聚合物网络本身与水泥基材料粘结力有限,因而在低掺量时改性性能不明显,必须要添加较高掺量,这使得其成本较高。聚合物乳液在混凝土强碱高盐的环境中也有可能发生聚沉,影响其作用发挥(阴离子乳化剂合成的乳液易聚沉,Journal of Materials in Civil Engineering 2011,23,1412)。专利CN102276764B提供了一种聚合物粉末改性的化学改性方法,在聚合物粉末表面通过偶联剂进行化学接枝,以提高粉末与基体的相互作用,从而提高改性砂浆的抗冲击性能,但它本身并没有解决聚合物粉体的分散问题。
虽然聚合物增加了抗折强度和韧性,但高掺量聚合物改性混凝土的抗压强度明显降低。即使在聚合物掺量相对较低(5wt%)的条件下(同水灰比条件,甚至考虑到聚合物乳液的减水作用,采用更低的水灰比还会有轻微的强度下降),混凝土抗压强度也有不同程度的下降,其幅度甚至可达15~50%(Journal of Jilin Institute of Architecture&Civil Engineering 2012,29,7;Cement and Concrete Research 2005,35,900等)。
聚合物乳液(Handbook of polymer-modified concrete and mortars,1995,55)对水泥基材料的凝结时间有所影响,受到使用的聚合物乳液种类和用量有关,一般会延迟凝结时间(数 十分钟-数小时)。
另外,专利CN103130436A和CN101239800B分别报道采用石墨烯(氧化石墨烯)和碳纳米管改性水泥基材料,对抗压抗拉抗折强度提升,但其成本过高。专利CN103274620A通过加热煅烧普通高岭土系粘土矿物生成具有一定形貌的偏高岭土矿物,增强水泥基材料强度。EP2695850A1揭示了一种在水泥基材料中原位成核生长硅酸钙(wollastonite)纳米晶体的方法用于增韧。这些专利报道的改性剂都需要特定的温度压力等条件,给制备带来难度。
CN104446091A、CN103787609A和CN104119014A分别介绍了几种混凝土减胶剂,通过增强水泥颗粒的螯合作用提高水泥分散程度,从而提高其水化程度,但从原理上考虑并不能从根本上改善水泥基材料的脆性。
基于增加有机相与无机相相互作用的原理,将配位作用用共价键合作用替代,CN104609759A和CN104446102A各介绍了一种可以增加水泥基材料抗折和抗拉强度的外加剂,这些外加剂有效成分是一种核壳结构的粒子,因为有机相和无机相连接的位点只有核壳结构的内外层界面,其共价键合作用依赖于核壳结构内层表面积,这是受到限制的,因而其对水泥基材料力学性能的改善程度也受到一定限制,两种外加剂对水泥基材料抗压强度影响较小。
发明内容
现有外加剂无法从根本上解决水泥基材料的脆性问题,以及即使能一定程度上缓解该问题,也存在拉低水泥基材料的强度,或者外加剂的制备工艺复杂,或者成本过高,以及应用受到限制等等的各种缺陷。为解决以上问题,本发明提供了一种有机无机杂化粒子及其制备方法,所述有机无机杂化粒子的水分散液作为水泥基材料的增强剂,可以同时提升水泥基材料抗压、抗折和抗拉(或抗劈拉)强度。
抗拉和抗劈拉强度是测试方法略有不同的参数,一般地,劈拉强度高,抗拉强度应该也较高。本发明中所用指标是劈拉强度,用来代替抗拉强度。
本发明所述有机无机杂化粒子,有机组分与无机组分之间相互以共价键相互连接,并非核壳结构,而是相互穿插,相互之间以共价化学键进行连接,但有机组分和无机组分之间没有较大尺度的分相界限,此处分相界限指类似核层与壳层之间清晰的分界线。
所述有机部分为长乙二醇链段、中间链段、以及硅氧烷链段通过共价连接所形成的有机聚合物网络,其中硅氧烷链段不包含烷氧基以及烷氧基发生水解反应形成的硅氧键部分;
所述中间链段是指由苯乙烯或取代苯乙烯、丙烯酸、甲基丙烯酸、丙烯酸盐、甲基丙 烯酸盐、丙烯酸酯或取代的丙烯酸酯、甲基丙烯酸酯或取代的甲基丙烯酸酯中的任意种类聚合形成的均聚链段或共聚链段;
所述有机组分是在含长乙二醇链的大单体和硅氧烷存在的条件下,由苯乙烯或取代苯乙烯、丙烯酸、甲基丙烯酸、丙烯酸酯或取代的丙烯酸酯、甲基丙烯酸酯或取代的甲基丙烯酸酯中的任意种类聚合形成的均聚链段或共聚链段。
硅氧烷是连接有机组分和无机组分的关键,所述硅氧烷可以含有或者不含有双键,但一定含有三个以上硅氧烷官能团;硅氧烷官能团水解可以将其连接在无机组分上,若含有双键,则双键聚合可以将其连接在有机组分上,若不含有双键,则硅氧烷官能团与有机聚合物组分含有的羟基或氨基反应使其连接在有机组分上。
无机组分是硅氧键构成的网络,通过硅氧烷水解制备。
需要注意的是,本发明中还使用了含三个以上烷氧基取代的硅烷,例如甲基三甲氧基硅烷,其中甲基也是有机官能团,但该甲基对杂化粒子的性能影响较小。
所述有机无机杂化粒子各组分的作用分别为:
有机组分:在将该材料掺入水泥基材料进行改性时,起到交联结点的作用,由于有机物有优异的拉伸性能,可以承担部分外力,用以提升水泥基材料的抗折强度和抗拉强度;同时大单体在杂化粒子制备过程中不断通过聚合接枝到杂化粒子上,从而通过提供空间位阻稳定杂化粒子,阻止杂化粒子聚沉。
无机组分:在水泥基材料强碱性的环境中可以发生化学反应,与其中的主要胶凝组分水化硅酸钙凝胶(CSH)产生共价键连接,从而通过共价化学键将有机组分与CSH颗粒连接起来,充分发挥有机组分改善水泥基材料力学性能的作用;同时,起到CSH结点作用,提高水泥基材料内CSH凝胶含量,提升水泥基材料力学性能(如抗压强度)。
所述有机无机杂化粒子在用于水泥基材料改性时,粒子与水泥基材料的碱性环境发生反应,并促使水化产物以粒子为核进行结晶,从而起到交联结点的作用,连接水化产物颗粒,提升水泥基材料力学性能。
这种杂化结构将有机组分和无机组分在相比核壳结构更小的尺度共价连接,进一步提高了有机组分和无机组分的连接效率,有利于提高杂化粒子本身的力学性能,同时,用于水泥基材料改性时,相比核壳结构更进一步增加了有机组分的连接效率,从而提高其增加水泥基材料抗压、抗拉和抗折强度的能力。
所述有机无机杂化粒子为球形粒子,直径小于1000nm;其各方向受力比纤维更均匀,因而不存在取向问题。
本发明所述有机无机杂化粒子水分散液的制备方法,具体包括如下步骤:
向反应器中加入可聚合单体A的一部分、可聚合单体B、交联剂C的一部分、硅氧烷 D的一部分和水,充分搅拌混合,得混合液;将混合液调节至pH为2-12,向混合液中通N2除O2,将反应器升至20-90℃,搅拌条件下向反应器中加入引发剂引发聚合,同时开始向反应器中滴加可聚合单体A的剩余部分、交联剂C的剩余部分、硅氧烷D的剩余部分和可聚合单体E,自引发剂开始加入时计时,在反应条件下反应4-24h,撤除惰性气氛保护,降温减压抽出可挥发的有机小分子得到杂化粒子分散液。
可聚合单体A分两次加入,反应初始直接加入反应器内的单体A占单体A的全部用量的10-50%。
交联剂C分两次加入,其中第一次加入量的比例占全部交联剂C的0-100%。
硅氧烷D分两次加入,其中第一次加入量的比例占全部硅氧烷D的0-100%。
所述可聚合单体A为符合以下通式((1)-(2))有机物中的一种:
Figure PCTCN2016112249-appb-000001
R1、R2和R3分别独立地表示H或者CH3,R4表示6-30个碳原子的烷基;X1、X2和X3分别独立地表示O或NH;a和b分别独立地指代乙氧基-CH2CH2O-链节的平均重复单元数,a、b的取值范围为4-50;
a和b取值过小则自乳化作用弱,且提供的空间位阻较小,对稳定杂化粒子不利,而取值过大则相比于单体B和交联剂C聚合活性过低,从而因为难以共聚导致大量残留于聚合体系中。
可聚合单体A一方面可用于在合成过程中和应用过程中稳定杂化粒子,其作用类似传统乳液聚合中的可聚合乳化剂,另一方面,单体A初步聚合形成的小分子量聚合物可以形成胶束,可以溶胀后续可聚合单体B、交联剂C与硅氧烷D。其用量同样对第一阶段合成的有机聚合物核粒子的尺寸有密切影响,其初始加入反应器的用量越高,粒子尺寸越小。
所述可聚合单体B由官能团型单体和非官能团型单体组成,单体B中官能团型单体占单体B总质量的1-5%,其余为非官能团型单体。
官能团单体是以下所有官能团单体中的一种或多于一种的任意组合。
所述含氨基的可聚合单体包括3-氨基苯乙烯、4-氨基苯乙烯、2-(叔丁基氨基)甲基丙烯酸乙酯、甲基丙烯酸氨乙酯以及这些单体的盐酸盐或磺酸盐;
所述含羟基的可聚合单体为羟基丙烯酸酯或甲基丙烯酸酯、羟基丙烯酰胺或羟基甲基丙烯酰胺类单体,包括丙烯酸-2-羟乙酯、甲基丙烯酸-2-羟乙酯(HEMA)、丙烯酸-2-羟基丙酯、丙烯酸-4-羟基丁酯、甲基丙烯酸-2-羟基丙酯、甲基丙烯酸-4-羟基丁酯、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、N-(2-羟丙基)丙烯酰胺、N-羟甲基甲基丙烯酰胺和N-(2-羟丙基)甲基丙烯酰胺;
非官能团型单体是苯乙烯和以下通式(3)所示单体中的一种或多于一种的任意组合。
Figure PCTCN2016112249-appb-000002
R5表示H或者CH3,R6表示H、Na、K或者1-12个碳原子的烷基。
可聚合单体B为有机聚合物核粒子的最主要成分,其作用在于提供韧性较好的有机物基体,用于最终提升水泥基材料的抗折强度和劈拉强度。
所述交联剂C为二乙烯基苯和以下通式(4)所示结构中的任意一种。
Figure PCTCN2016112249-appb-000003
R7表示H或者CH3,X表示2-12个碳原子的饱和烷基或者(CH2CH2O)cCH2CH2的结构,其中c为环氧乙烷结构(-CH2CH2O-)平均摩尔加成数,c的取值范围为1-44。c的数值过大将使得聚合活性较低,不利于其交联性能的充分发挥。
交联剂C协助形成有机聚合物网络,提高有机聚合物网络力学强度,降低有机聚合物组分在水中的溶解性,从而促进成核。
所述硅氧烷D为三个以上烷氧基取代的硅烷,可形成硅氧键网络,可以是可自由基聚合硅氧烷和/或不可自由基聚合的硅氧烷中的一种或多于一种的任意组合。
可自由基聚合硅氧烷可以是乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷(VTES)、甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)、甲基丙烯酰氧基丙基三乙氧基硅烷(MAPTES)、甲基丙烯酰氧基甲基三乙氧基硅烷(AAPTES)、丙烯酰氧基甲基三甲氧基硅烷(AAMTMS)、丙烯酰氧基丙基三甲氧基硅烷(AAPTMS)中的任意一种。
不可自由基聚合的硅氧烷为以下通式(5)所示结构中任意一种。
Figure PCTCN2016112249-appb-000004
R8、R9、R10分别独立地表示1-4个碳原子的饱和烷基,R11表示苯基(-C6H5)或1-12个碳原子的饱和烷基或含1-4个碳原子的饱和烷氧基。
硅氧烷D为所述有机无机杂化粒子无机组分的主要来源,通过水解反应产生的硅氧键相互连接,可以与水泥基材料碱性环境的Ca(OH)2反应。水解过程会产生可挥发的有机小分子醇类,在反应结束后通过减压抽出。
硅氧烷D在反应过程中可以在引发剂加入前或加入后一次加入,也可以以任意比例分两次加入。
所述可聚合单体E由官能团型单体和非官能团型单体组成。单体E中官能团型单体占单体E总质量的1-10%,其余为非官能团型单体。
可聚合单体E中的官能团型单体是前文所述可聚合单体B时所述所有官能团单体中的一种或多于一种的任意组合;非官能团型单体是苯乙烯与通式(4)所示单体中的一种或多于一种的任意组合;所述可聚合单体E的组成可以与所述可聚合单体B相同,也可以是不同的。
可聚合单体A、可聚合单体B、交联剂C、硅氧烷D和可聚合单体E的用量比例需满足以下条件:
反应过程中硅氧烷D的烷氧基会水解产生可挥发的小分子有机醇类,在烷氧基完全水解的条件下,硅氧烷D的有效质量(记作D0)以扣除这些小分子有机醇类剩余的二氧化硅或有机官能团取代的二氧化硅计算。以四烷氧基取代的硅烷和三烷氧基取代的硅烷为例,说明如下:
Figure PCTCN2016112249-appb-000005
上式(6)中,左侧反应物为四乙氧基硅烷(TEOS),经完全水解后产生乙醇,乙醇减压过程中可以抽出,剩余有效质量为SiO2,计算方法为以TEOS和水的总质量扣除乙醇的质量。上式(7)中,左侧反应物为甲基三甲氧基硅烷(MTMOS),经完全水解后产生甲醇,甲醇在减压过程中可以抽出,剩余有效质量为甲基取代的硅氧烷网络,计算方法为以MTMOS和水的总质量扣除甲醇的质量。
以扣除全部可挥发的小分子有机醇类的水分散液质量为基准,可聚合单体A、B、E、交联剂C和硅氧烷D用量需使得水分散液中不可挥发组分(亦即有效组分,杂化粒子)占水分散液总质量的范围为5-40%(质量分数)。具体而言,有效反应物总质量(A+B+C+E+D0)占水分散液最终质量的5-40%。此处水分散液最终质量指,反应结束后得到的水分散液的总质量,也就是反应中所有物种的总质量扣除全部可挥发的小分子有机醇类的质量。
其中,单体A占有效反应物总质量(A+B+C+E+D0)的1-10%,交联剂C占有效反应物总质量(A+B+C+E+D0)的0-5%,单体B和E(B+E)占有效反应物总质量(A+B+C+E+D0)的20-70%,且可聚合单体B占B与E(B+E)的总质量比例不小于10%。
单体A同时相当于自聚合型乳化剂和杂化粒子的分散剂,用量过低则不能形成分散的杂化粒子,杂化粒子在成核过程中将团聚沉淀,且在应用过程中杂化粒子可能在水泥基材料强碱高盐的环境中不稳定而聚沉。同样地,单体A对杂化粒子本身的拉伸性能贡献有限,因为其双键含量较低,聚合后对有机聚合物骨架(聚合物主链)贡献较小,因而需要限制其用量不高于5%。限制反应初始直接加入反应器内的单体A的用量范围是为了:(a)维持初始促进成核与溶胀的自聚合乳化剂最低用量;(b)维持反应过程中不断通过加入反应而接枝到粒子表面的长侧链的最低量,从而稳定粒子。
限制交联剂C用量不高于5%的原因在于,交联程度过高的杂化粒子在制备过程中,其变形性较小,单体溶胀程度较低,使得水解反应和聚合反应可能在粒子外发生,产生均相的有机聚合物粒子或无机聚合物粒子。
限制单体B和E的用量之和范围在20-80%是为了保证杂化粒子中有机组分和无机组分的最低含量,否则难以充分发挥杂化粒子的力学性能。
限制可聚合单体B用量不低于B与E的总质量的10%是为了在反应初期形成不溶于水的聚合物,从而促进粒子成核。反应初期体系中有较多的水溶性单体A,若反应初始单体A自聚形成水溶性聚合物,则无法析出成核,且消耗作为反应过程中乳化剂的A;在B的存在下,B与A可以形成两性聚合物形成胶束或聚合物中B的聚合度增加从而使得聚合物析出形成粒子。
限制单体B和E中官能团型单体的用量上限是由于,官能团型单体一般是水溶性的,大量使用可能导致杂化粒子部分溶解于水中,不利于杂化粒子成核生长,同时这些溶解的聚合物一方面增加体系的粘度,降低杂化粒子含量,另一方面可能相互缠结造成聚沉。但单体B由于一开始就加入聚合体系,参与成核过程,因而其官能团单体比例上限较单体E要低一些。而限制其用量下限是为了保证有机组分与无机组分之间的有效共价连接。
需要注意的是,限制可聚合单体A、B、E、交联剂C和硅氧烷D的有效质量不小于水分散液总有效质量的5%是因为该外加剂用于水泥基材料改性时,掺入体系的固体有效成分用量应当不少于总胶材的0.5%,否则其对力学性能的贡献不明显。而若外加剂总固含量过低,则可能无法满足使用要求。实际上,即使低于5%,该反应也是可以成功进行的。
所述引发剂为如下所述热分解引发体系或氧化还原引发体系:
热分解引发体系:偶氮类(VA044或V50),过硫酸盐类(过硫酸铵、过硫酸钾和过 硫酸钠);
或氧化还原引发体系:H2O2与还原剂(如维生素C、甲醛次硫酸氢钠)、过硫酸盐(过硫酸铵、过硫酸钠和过硫酸钾)中的一种与低价硫酸盐类(亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠、甲醛次硫酸氢钠)中的一种。氧化剂与还原剂的用量满足氧化剂/还原剂在0.5-2.0之间(摩尔比)。
引发剂用量(氧化还原体系以氧化剂和还原剂中摩尔量较低的一方计算);为单体总质量的0.05-3%。
如果是加入的氧化剂摩尔量低,就以氧化剂的质量计算,氧化剂质量为单体总质量的0.05-3%,反之则以还原剂计算。
引发剂用量低于0.05%单体质量可能使得有机单体转化率不足,引发剂用量若高于3%,则可能会因为初始引发速度过快而暴聚使反应失败(将出现大量沉淀或凝胶)。
对于热分解引发剂,可以直接一次加入,也可以缓慢均匀加入;对于氧化还原引发剂,先将所需质量氧化剂加入聚合体系,然后将还原剂溶液缓慢均匀加入聚合体系,且不应在单体全部加入反应体系前加完。因为半衰期的存在,热分解引发剂引发过程相对平缓,故而可以一次加入,也可以缓慢均匀加入。但是对于氧化还原引发体系,一般活化能较低,如果一次加入引发,则不仅会因为后期自由基浓度过低使得转化率偏低,早期自由基浓度过高容易导致反应速度过快使得体系出现不可再分散的沉淀。
适用反应温度(引发、聚合和水解温度)为20-90℃,本领域研究人员可以根据其他文献和使用经验判定所用引发剂的合适引发温度,氧化还原引发体系引发温度较低,甚至接近常温,热分解引发体系引发温度可根据其半衰期决定。聚合时间越长,转化率越高。自引发剂加入时开始计时,本体系反应时间一般可控制在4-24h,一般地,需要确保引发剂在聚合完成时基本完全分解,另外,杂化粒子制备过程中包含聚合与水解两个同步进行的反应,其中水解反应通常需要较长时间,所有反应都尽可能完全以免对之后所得杂化粒子分散液储存使用产生影响。
所述反应步骤中反应体系初始所需的pH范围为2-12。超出该范围,酸性条件下将生成大量均相二氧化硅,且可聚合单体A因为反应速度不足而不能充分覆盖所有杂化粒子,使杂化粒子聚沉;碱性条件下同样或者水解反应过快聚沉,或者粒子本身因为与反应环境中的高浓度OH-发生反应而失去稳定性。
本发明所述有机无机杂化粒子的分散液作为水泥基材料的增强剂的应用方法,制备水泥基材料时,直接在拌合过程中一次加入所述有机无机杂化粒子参与搅拌即可;杂化粒子用量为总胶材质量的0.5-5.0%。
相比于单纯的聚合物改性水泥基材料或聚合物纤维改性水泥基材料,大幅降低了聚合 物改性组分的掺量,与传统聚合物乳液在同掺量条件下对水泥基材料抗拉抗折性能提升更明显,克服了传统聚合物改性水泥基材料因为聚合物掺量高从而影响水泥基材料抗压强度的缺陷。
本发明所述的有机无机杂化粒子,有机组分用于改善水泥基材料的力学性能,通过无机组分将有机物组分通过共价键与CSH颗粒充分连接起来,提升了有机物组分发挥韧性性能的效率。
同时,由于引入的无机组分能够产生更多的CSH胶凝组分,且纳米粒子本身通过化学键连接的程度高,提高纳米粒子本身力学强度(抗压强度),因而能较显著地提升水泥基材料的抗压强度。
相比于单纯的聚合物改性水泥基材料或聚合物纤维改性水泥基材料,本发明所述外加剂掺量可以大幅降低(杂化粒子用量为总胶材质量的0.5-5.0%),与传统聚合物乳液或核壳结构的有机无机杂化粒子相比,由于有机聚合物与无机聚合物在更精细的尺度通过共价键相互连接,本身更能充分发挥有机聚合物与无机聚合物的力学性能的优势,在同掺量条件下对水泥基材料抗折和抗拉(或劈拉)性能提升更明显,同时可以有效提升其抗压强度,克服了传统聚合物改性水泥基材料因为聚合物掺量高从而影响水泥基材料抗压强度的缺陷。
本发明所述的掺量指本发明最终合成的水分散液中有效成分(有机-无机杂化粒子)的质量相对于水泥基材料中胶材质量的比例。
将该杂化粒子用于水泥基材料改性,掺量越高,其力学性能(抗压、抗折和抗拉强度)提高越明显。以相对于胶凝材料总质量的比例计算掺量(%bwoc),掺量5bwoc%条件下,抗压强度可提高14-41%,抗折强度提高20-44%,抗拉强度提高25-53%。
附图说明
图1:为实施例2中所得杂化粒子的透射电镜图片。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明作进一步详述,这些实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
另外,一般地,高固含量条件下,这些合成反应更加困难,例如,易因为反应速度过快而失控(出现粒子团聚),高固含量可以合成,则相应低固含量的水分散液也可以得到。以下实施例均以高固含量样品的制备进行说明和对比。
以下合成步骤中物料所用单位均为质量份。
附页1中为实施例中各缩写所对应的结构式。
1.杂化粒子水分散液的制备
以下所用可聚合单体均为市售商品,或依据文献合成所得(可聚合单体A的来源:(1)市售;(2)高分子通报,2008,16;Polymer Bulletin 1999,42,287;Journal of Applied Polymer Science 2000,77,2768)。
4-氨基苯乙烯盐酸盐(4-VBAH)为合成品,参照文献合成所得(Analytical Chemistry2012,84,3500)。
实施例1
向反应器中加入可聚合单体A的一部分(编号A1,聚乙二醇甲基丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为6,端基为羟基,用量1.0份)、可聚合单体B(4-羟丁基丙烯酸酯(4-HBA)0.04份和苯乙烯(St)3.96份)和270份水,用1mol/LNaOH将混合液pH调节至10,充分搅拌混合;向混合液中通N2除O2,将反应器温度升至80℃,搅拌条件下向反应器中一次加入引发剂(0.1份过硫酸铵APS溶解于15份水中)引发聚合,同时开始向反应器中滴加可聚合单体A的剩余部分的水溶液(A1,1.0份溶解于14.9份水中)、硅氧烷D(乙烯基三乙氧基硅烷(VTES)38.01份、四甲氧基硅烷(TMOS)180.2份和四乙氧基硅烷(TEOS)246.67份)和可聚合单体E(4-VBAH0.36份和St35.64份),自引发剂开始加入反应器时计时,可聚合单体A剩余部分的水溶液、硅氧烷D和可聚合单体E均滴加3h,滴加完毕继续保温3h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE01。
实施例2
向反应器中加入可聚合单体A的一部分(编号A2,聚乙二醇单甲醚丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为22,端基为甲基,用量为1.8份)、可聚合单体B(4-VBAH1.8份、甲基丙烯酸(MAA)58.2份)、交联剂C的一部分(编号C2,乙二醇二丙烯酸酯,-CH2CH2O-平均重复单元数为45,2份)、硅氧烷D的一部分(甲基丙烯酰氧基丙基三甲氧基硅(MAPTMS)1.25份和TMOS20.53份)、6份APS和270份水,充分搅拌混合;用1mol/LNaOH将混合液pH调节至10,向混合液中通N2除O2,将反应器温度升至70℃,搅拌条件下向反应器中均匀滴加可聚合单体A的剩余部分的水溶液(4.2份A2溶解于3份水)、交联剂C的剩余部分(C2,2份)、硅氧烷D的剩余部分(MAPTMS11.22份和TMOS184.76份)、可聚合单体E(甲基丙烯酸氨乙酯盐酸盐(AEMH)2份和甲基丙烯酸甲酯38份)和引发剂溶液(3.28份亚硫酸氢钠SBS溶解于23.72份水中)引发聚合, 自引发剂开始加入反应器时计时,引发剂溶液、可聚合单体A剩余部分的水溶液、交联剂C的剩余部分、硅氧烷D的剩余部分和可聚合单体E均滴加4h,滴加完毕继续保温2h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE02。
所得杂化粒子TEM图见图1,所得粒子直径约50-400nm,且图中所示粒子的衬度均匀连续地变化,并无任何分相如核壳界面,说明有机相和无机相的杂化层次至少用普通TEM是无法观察到的。
实施例3
向反应器中加入可聚合单体A的一部分(编号A3,聚乙二醇单甲醚甲基丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为45,用量为1份)、可聚合单体B(丙烯酸-2-羟基乙酯(HEA)1.4份和丙烯酸十二醇酯(LA)26.6份)、交联剂C(二乙烯基苯(DVB)10份,商品DVB包含间位和对位异构体)、硅氧烷D的一部分(甲基丙烯酰氧基丙基三乙氧基硅(MAPTES)16.21份、甲基三甲氧基硅烷(MTMOS)4.06份和TEOS27.75份)和270份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至3,向混合液中通N2除O2,将反应器温度升至60℃,搅拌条件下向反应器中一次加入引发剂(2份偶氮二异丁基脒盐酸盐V50溶解于23份水中)引发聚合,同时向反应器中滴加可聚合单体A的剩余部分的水溶液(9份A3溶解于5份水中)、硅氧烷D的剩余部分(MAPTES16.21份、MTMOS4.06份和TEOS27.75份)和可聚合单体E(HEA11.2份和LA100.8份),自引发剂开始加入反应器时计时,可聚合单体A剩余部分的水溶液、硅氧烷D的剩余部分和可聚合单体E滴加8小时,滴加完毕继续反应4小时,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE03。
实施例4
向反应器中加入可聚合单体A的一部分(编号A4,N-聚乙二醇单甲醚-丙烯酰胺,聚乙二醇链中-CH2CH2O-平均重复单元数为45,用量0.6份)、可聚合单体B(4-VBAH3份和丙烯酸正丁酯(BA)57份)、硅氧烷D的一部分(乙烯基三甲氧基硅烷(VTMS)36.72份)和270份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至3.5,向混合液中通N2除O2,将反应器温度升至50℃,搅拌条件下向反应器中均匀滴加引发剂(4份偶氮二异丁咪唑啉盐酸盐VA044溶解于22份水中)引发聚合,同时开始向反应器中滴加可聚合单体A的剩余部分水溶液(用量1.4份溶解于4份水中)、可聚合单体E(丙烯酸-2-羟基丙酯(HPA)4份和St36份)和硅氧烷D的剩余部分(VTES146.9份),自引发剂开始加入反应器时计时,滴加6h,引发剂、可聚合单体A的剩余部分的水溶液、硅氧烷D的剩余部分和可聚合单体E均滴加6h,滴加完毕继续保温6h,再撤除惰性气氛保护,减压抽出可 挥发有机小分子,得到杂化粒子水分散液AE04。
实施例5
向反应器中加入可聚合单体A(编号A1,聚乙二醇甲基丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为6,端基为羟基,用量为0.6份)、可聚合单体B(AEMH1.4份和丙烯酸正辛酯(n-OctA)138.6份)、交联剂C(编号C3,乙二醇二甲基丙烯酸酯,-CH2CH2O-平均重复单元数为45,1.6份)、硅氧烷D(VTES108.27份和正十二烷基三甲氧基硅烷(DTMOS)6.56份)、0.26份质量分数30%的H2O2水溶液和269.74份水,充分搅拌混合;用1mol/LNaOH将混合液pH调节至11,向混合液中通N2除O2,将反应器温度维持在20℃,搅拌条件下向反应器中均匀滴加引发剂(0.2份维生素C(VC)溶解于2份水中)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(5.4份A1溶解于27.8份水中)、交联剂C的剩余部分(C3,2.4份),自引发剂开始加入反应器时计时,引发剂、可聚合单体A剩余部分的水溶液和交联剂C的剩余部分均滴加6h。滴加完毕继续保温18h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE05。
实施例6
向反应器中加入可聚合单体A(编号A6,正十二烷基-聚乙二醇单甲醚-马来酸双酯,-CH2CH2O-平均重复单元数45,用量为5份)、可聚合单体B(HPA0.12份和丙烯酸甲酯3.88份)、交联剂C的一部分(编号C4,乙二醇二甲基丙烯酸酯,-CH2CH2O-平均重复单元数为22,8份)、硅氧烷D的一部分(VTES67.37份)、4.8份过硫酸钠(SPS)和265.2份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至2,向混合液中通N2除O2,将反应器温度维持在60℃,搅拌条件下向反应器中均匀滴加引发剂(2份焦亚硫酸钠(SMBS)溶解于23份水中)引发聚合,同时向反应体系中滴加可聚合单体A剩余部分的水溶液(5份A6溶解于5份水中)、交联剂C的剩余部分(C4,2份)和硅氧烷D的剩余部分(VTES269.47份)和可聚合单体E(4-VBAH1.8份和BA34.2份),自引发剂开始加入反应器时计时,引发剂溶液、硅氧烷D的剩余部分和可聚合单体E均滴加3h,滴加完毕继续保温1h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE06。
实施例7
向反应器中加入可聚合单体A(编号A2,聚乙二醇单甲醚丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为22,端基为甲基,用量为1份)、可聚合单体B(N-羟甲基丙烯酰胺(N-HMAAm)1.2份和甲基丙烯酸月桂酯(LMA)38.8份)、硅氧烷D的一部分(丙烯酰氧基丙基三甲氧基硅烷(AAPTMS)21.84份和四正丁基硅烷(TBOS)82.19份)、4.04份 质量分数30%的H2O2水溶液和265.96份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至3.5,向混合液中通N2除O2,将反应器温度维持在30℃,搅拌条件下向反应器中均匀滴加引发剂(5份甲醛次硫酸氢钠(SFA)溶解于23份水中)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(1份A2溶解于2份水中)、交联剂C(编号C5,乙二醇二丙烯酸酯,-CH2CH2O-平均重复单元数为22,4份)和硅氧烷D的剩余部分(AAPTMS87.37份和TBOS328.76份),自引发剂开始加入反应器时计时,引发剂、可聚合单体A剩余部分的水溶液和硅氧烷D的剩余部分均滴加12h,滴加完继续保温12h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE07。
实施例8
向反应器中加入可聚合单体A(编号A8,聚乙二醇单甲醚甲基丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为22,端基为甲基,用量为3份)、可聚合单体B(2-(叔丁基氨基)甲基丙烯酸乙酯(t-BAEMA)0.5份和MMA9.5份)、交联剂C的一部分(编号C6,1,12-十二双醇二甲基丙烯酸酯,5份)、硅氧烷D(VTES4.04份和TEOS23.31份)和270份水,充分搅拌混合;用1mol/LNaOH将混合液pH调节至12,向混合液中通N2除O2,将反应器温度维持在90℃,搅拌条件下向反应器中均匀滴加引发剂(6份SPS溶解于16份水中)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(3份A8溶解于4份水中)、交联剂C的剩余部分(C6,5份)、硅氧烷D的剩余部分(VTES36.38份和TEOS309.82份)和可聚合单体E(N-HMAAm0.9份溶解于4份水中和LMA89.1份,两者分别同时滴加),自引发剂开始加入反应器时计时,引发剂、可聚合单体A剩余部分的水溶液、硅氧烷D的剩余部分和可聚合单体E均滴加2h,滴加完毕继续保温2h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE08。
实施例9
向反应器中加入可聚合单体A的一部分(编号A3,聚乙二醇单甲醚甲基丙烯酸酯,聚乙二醇链中-CH2CH2O-平均重复单元数为45,用量为3份)、可聚合单体B(N-HMAAm0.84份和MMA83.16份)、硅氧烷D的一部分(苯基三乙氧基硅烷PhTEOS88.4份)和270份水,充分搅拌混合;用1mol/LNaOH将混合液pH调节至11,向混合液中通N2除O2,将反应器温度维持在85℃,搅拌条件下向反应器中均匀滴加引发剂(0.2份过硫酸钾KPS溶解于16.8份水中)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(7份A3溶解于3份水中)、硅氧烷D的剩余部分(PhTEOS4.65份)和可聚合单体E(N-HMAAm2.8份溶解于10份水中和MMA53.2份,两者同时分别滴加),自引发剂开始加入反应器时计时,引发剂、可聚合单体A剩余部分的水溶液、硅氧烷D的剩余部分和可聚合单体E均滴加5h,滴加完毕继续保温1h,再撤除惰性气氛保护,减压 抽出可挥发有机小分子,得到杂化粒子水分散液AE09。
实施例10
向反应器中加入可聚合单体A(编号A6,正十二烷基-聚乙二醇单甲醚-马来酸双酯,-CH2-CH2O-平均重复单元数45,用量为0.4份)、可聚合单体B(2.52份4-VBAH和81.48份BA)、交联剂C的一部分(C1,乙二醇二甲基丙烯酸酯,9份)和硅氧烷D的一部分(TMOS30.41份和甲基三甲氧基硅烷MTMOS31.89份)和270份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至3,向混合液中通N2除O2,将反应器温度维持在80℃,搅拌条件下向反应器中一次加入引发剂(6份APS溶解于20份水中)引发聚合,同时向其中均匀滴加可聚合单体A剩余部分的水溶液(1.6份A6溶解于4份水中)、交联剂C的剩余部分(C1,1份)、硅氧烷D的剩余部分(TMOS30.41份和MTMOS31.89份)和可聚合单体E(AEMH0.56份和55.44份St)。自引发剂开始加入反应器时计时,硅氧烷D和可聚合单体E均匀滴加6h,滴加完毕后继续反应6h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE10。
实施例11
向反应器中加入可聚合单体A的一部分(编号A10,正十二烷基-聚乙二醇单甲醚-马来酸双酯,-CH2-CH2O-平均重复单元数6,用量为0.6份)、可聚合单体B(3-氨基苯乙烯(3-VBA)和38份St)和硅氧烷D的一部分(TBOS82.19份)和250份水,充分搅拌混合;用1mol/LH2SO4将混合液pH调节至3,向混合液中通N2除O2,将反应器温度维持在70℃,搅拌条件下向反应器中均匀滴加引发剂(1份APS溶解于14份水中;1.1份亚硫酸钠SS溶解于13.9份水中,两者分别滴加)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(5.4份A10溶解于25份水中)和硅氧烷D的剩余部分(TBOS739.71份),自引发剂开始加入反应器时计时,引发剂、可聚合单体A剩余部分的水溶液和剩余部分硅氧烷D均滴加2h,滴加完毕继续保温2h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE11。
实施例12
向反应器中加入可聚合单体A的一部分(编号A7,正十二烷基-羟基聚乙二醇基-马来酸双酯,-CH2-CH2O-平均重复单元数32,用量为5份)、可聚合单体B(0.1份HEMA和9.9份LMA)、交联剂C(C2,0.8份)和270份水,充分搅拌混合;用1mol/LNaOH将混合液pH调节至11,向混合液中通N2除O2,将反应器温度维持在60℃,搅拌条件下向反应器中均匀滴加引发剂(2份V50溶解于28份水中)引发聚合,同时开始向反应器中滴加可聚合单体A剩余部分的水溶液(5份A10溶解于25份水中)、交联剂C的剩余部分(C2,3.2份)、硅氧烷D(TEOS298.36份)和可聚合单体E(9份HEMA和81份LA), 自引发剂开始加入反应器时计时,引发剂、硅氧烷D和可聚合单体E均滴加3h,滴加完毕继续保温3h,再撤除惰性气氛保护,减压抽出可挥发有机小分子,得到杂化粒子水分散液AE12。
2.增强剂用于水泥基材料改性测试
应用实施例1
对砂浆力学性能的改善:砂浆采用小野田P·II·52.5水泥(江南小野田水泥有限公司)、ISO标准砂制备,砂灰比为3:1,水灰比为0.36,增强剂AE01-AE12、W01、W05、PE01-02的掺量为以胶凝材料为基准的折固量计算(单位:质量百分比,%bwoc),所用消泡剂为江苏苏博特新材料股份有限公司市售普通常规的PXP-I混凝土消泡剂,通过消泡剂用量控制各组砂浆含气量基本一致,所用减水剂为苏博特公司市售普通常规的聚羧酸减水剂
Figure PCTCN2016112249-appb-000006
通过减水剂用量控制各组砂浆流动度基本一致。试件成型后置于25℃、95%以上湿度条件下养护。测试方法参考文献(Construction and Building Materials,2013,49,121)。
PE01:上海高桥BASF分散体有限公司的羧基丁苯(SD622S)乳液;
PE02:BASF苯丙乳液(Acronal S 400)。
W01:参照专利CN104446102A实施例W01合成;
W05:参照专利CN104446102A实施例W05合成。
表1 砂浆性能测试表
Figure PCTCN2016112249-appb-000007
Figure PCTCN2016112249-appb-000008
注:AE01-AE12掺量指本发明各实施例最终合成的水分散液中纯有效成分(有机-无机杂化粒子)的质量相对于水泥基材料中胶材质量的比例。
由表中实验结果可见,相同水灰比条件下,本发明实施例所示合成有机无机杂化粒子AE01-AE12在用于砂浆改性时:
(1)在低掺量条件下(相对于水泥用量的1.0%),本专利所合成杂化粒子对砂浆抗压、抗折和劈拉强度均有一定改善作用,28天抗压强度提升10-18%(52.5MPa最高提升到61.8MPa),抗折强度提升10-24%(9.98MPa最高提升到12.41MPa),抗拉强度提升11-23%(4.77MPa最高提升到5.87MPa)。相比之下,采用普通的聚合物乳液(市售或合成,PE01、PE02)仅略有提升。采用专利CN104446102A报道的核壳结构粒子,尽管其抗折强度和抗拉强度有所改善,但改善幅度较小(5-14%),且对砂浆的抗压强度无明显改善。
(2)提升AE01等掺量至2.5%,AE01、AE05、AE10和AE12同样能明显改善对砂浆的抗压抗折和抗拉强度(28天强度分别提升13-25%,16-30%和18-35%)。相比之下,采用普通的聚合物乳液(市售或合成,PE01、PE02)对抗折和抗拉强度的提升效果较弱(2-5%)。采用专利CN104446102A报道的核壳结构粒子,尽管其抗折强度和抗拉强度有所改善(6-23%),但其抗压强度依然无明显改善。
(3)提升AE01等掺量至5.0%,本专利所合成杂化粒子对砂浆抗压、抗折和抗拉强度均有明显改善作用,28天试件抗压强度提升17-49%,抗折强度提升22-52%,抗拉强度提升29-59%。专利CN104446102A报道的核壳结构的外加剂(W01和W05)虽然对砂浆试件的抗折强度(提升11-25%)与抗拉强度(提升23-31%)也有所改善,但相比本专利报道的杂化粒子无任何优势,更重要的是,其对抗压强度改善程度较小(一般<10%)。
相比之下,采用普通的聚合物乳液(市售或合成,PE01-PE02),无论抗压、抗折还是抗拉强度,其改性效果明显弱于AE01-AE12。
可见AE01、AE05、AE10和AE12掺量在水泥用量的1-2.5%时对砂浆抗折和抗拉强度的提升已经可以达到添加PE01-PE02等聚合物乳液5%时的性能,同时相比W01和W05,杂化粒子能全面改善砂浆的抗压抗折和抗拉强度,表现出明显的优势。
应用实施例2
参照GB/T50080-2002和GB/T50081-2002进行混凝土力学性能试验,采用基准水泥(曲阜中联水泥有限公司),II级粉煤灰,细度模数为2.6的河沙,5-25mm连续级配的碎石。混凝土配合比见表2,混凝土试验结果见表3。
表2 混凝土配合比(kg/m3)
水泥 粉煤灰
373 77 700 1130 145
外加剂AH01-AH12、W01、W05、PE01-02的掺量为以胶凝材料为基准的折固量计算(单位:质量百分比,%bwoc),所用消泡剂为江苏苏博特新材料股份有限公司市售普通常规的PXP-I混凝土消泡剂,通过消泡剂控制各组砂浆含气量基本一致,所用减水剂为苏博特公司市售普通常规的聚羧酸减水剂
Figure PCTCN2016112249-appb-000009
通过减水剂用量控制各组混凝土塌落度基本一致(20±1cm)。试件成型后置于25℃、95%以上湿度条件下养护。
表3 混凝土性能测试表
Figure PCTCN2016112249-appb-000010
Figure PCTCN2016112249-appb-000011
注:AE01-AE12掺量指本发明各实施例最终合成的水分散液中纯有效成分(有机-无机杂化粒子)的质量相对于水泥基材料中胶材质量的比例。
由表中实验结果可见,相同水灰比条件下,本发明实施例所示合成有机无机杂化粒子AE01-AE12在用于混凝土时:
(1)在低掺量条件下(相对于胶材用量的1.0%bwoc),对混凝土抗压抗折和劈拉强度有一定改善。抗压强度提升7-15%,抗折强度提升8-20%,抗拉强度提升9-22%。相比之下,采用普通的聚合物乳液(市售或合成,PE01、PE02)均无明显提升。核壳粒子W01和W05对其抗压强度无明显影响。
(2)提升AE01等掺量至2.5%,AE01、AE05、AE10和AE12对混凝土28天抗压强度提升11-22%,抗折强度提升13-28%,劈拉强度提升15-31%。同样地,采用普通的聚合物 乳液(市售或合成,PE01、PE02)改善抗折和劈拉强度的效果相对较弱。而核壳粒子则对抗压强度无明显改善。
(3)提升AE01等掺量至5.0%,本专利所合成杂化粒子对混凝土抗压、抗折和劈拉强度均有明显改善作用,28天试件抗压强度提升14-41%,抗折强度提升20-44%,劈拉强度提升25-53%。专利CN104446102A报道的核壳结构的外加剂(W01和W05)虽然对混凝土试件的抗折强度(15-22%)与劈拉强度(19-24%)也有所改善,但相比本专利报道的杂化粒子无任何优势,更重要的是,其对抗压强度无明显改善(1-7%)。
相比之下,采用普通的聚合物乳液(市售或合成,PE01-PE02),无论抗压、抗折还是劈拉强度,其改性效果明显弱于AE01-AE12。
可见AE01、AE05、AE10和AE12掺量在水泥用量的1-2.5%时对混凝土抗折和劈拉强度的提升明显达到甚至优于添加PE01-PE02等聚合物乳液5%时的性能,同时相比W01和W05,杂化粒子能全面改善混凝土的抗压抗折和劈拉强度,表现出明显的优势。
需要说明的是,对于砂浆试件,一般实验可以测定抗拉强度;对于混凝土试件,通常测定劈裂抗拉强度,该值与抗拉强度呈正相关性,但不等于抗拉强度(一般略高于抗拉强度),劈裂抗拉强度越高,抗拉强度越高。
附页1
Figure PCTCN2016112249-appb-000012

Claims (6)

  1. 一种有机无机杂化粒子,其特征在于,有机组分与无机组分之间,并非核壳结构,而是相互穿插,相互之间以共价化学键进行连接;
    所述有机部分为长乙二醇链段、中间链段、以及硅氧烷链段通过共价连接所形成的有机聚合物网络,其中硅氧烷链段不包含烷氧基以及烷氧基发生水解反应形成的硅氧键部分;
    所述中间链段是指由苯乙烯或取代苯乙烯、丙烯酸、甲基丙烯酸、丙烯酸盐、甲基丙烯酸盐、丙烯酸酯或取代的丙烯酸酯、甲基丙烯酸酯或取代的甲基丙烯酸酯中的任意种类聚合形成的均聚链段或共聚链段;
    无机组分是硅氧键构成的网络,通过硅氧烷水解制备。
  2. 根据权利要求1所述的有机无机杂化粒子,其特征在于,所述硅氧烷含有或者不含有双键均可,但一定含有三个以上硅氧烷官能团;硅氧烷官能团水解后,即连接在无机组分上,若含有双键,则双键聚合可以将其连接在有机组分上,若不含有双键,则硅氧烷官能团与有机聚合物组分含有的羟基或氨基反应使其连接在有机组分上。
  3. 权利要求1或2所述有机无机杂化粒子的水分散液的制备方法,其特征在于,具体包括如下步骤:
    向反应器中加入可聚合单体A的一部分、可聚合单体B、交联剂C的一部分、硅氧烷D的一部分和水,充分搅拌混合,得混合液;将混合液调节至pH为2-12,向混合液中通N2除O2,将反应器升至20-90℃,搅拌条件下向反应器中加入引发剂引发聚合,同时开始向反应器中滴加可聚合单体A的剩余部分、交联剂C的剩余部分、硅氧烷D的剩余部分和可聚合单体E,自引发剂加入时开始计时,在反应条件下反应4-24h,撤除惰性气氛保护,降温减压抽出可挥发的有机小分子得到杂化粒子分散液;
    可聚合单体A分两次加入,反应初始直接加入反应器内的单体A占单体A的全部用量的10-50%;
    交联剂C分两次加入,其中第一次加入量的比例占全部交联剂C的0-100%;
    硅氧烷D分两次加入,其中第一次加入量的比例占全部硅氧烷D的0-100%;
    所述可聚合单体A为符合以下通式((1)-(2))有机物中的一种:
    Figure PCTCN2016112249-appb-100001
    R1、R2和R3分别独立地表示H或者CH3,R4表示6-30个碳原子的烷基;X1、X2和X3分别独立地表示O或NH;a和b分别独立地指代乙氧基-CH2CH2O-链节的平均重复单元数,a、b的取值范围为4-50;
    所述可聚合单体B由官能团型单体和非官能团型单体组成,单体B中官能团型单体占单体B总质量的1-5%,其余为非官能团型单体;
    官能团单体是以下所有官能团单体中的一种或多于一种的任意组合;
    官能团单体为含羟基或氨基的可聚合单体,
    所述含氨基的可聚合单体包括3-氨基苯乙烯、4-氨基苯乙烯、2-(叔丁基氨基)甲基丙烯酸乙酯、甲基丙烯酸氨乙酯以及这些单体的盐酸盐或磺酸盐;
    所述含羟基的可聚合单体为羟基丙烯酸酯或甲基丙烯酸酯、羟基丙烯酰胺或羟基甲基丙烯酰胺类单体,包括丙烯酸-2-羟乙酯、甲基丙烯酸-2-羟乙酯(HEMA)、丙烯酸-2-羟基丙酯、丙烯酸-4-羟基丁酯、甲基丙烯酸-2-羟基丙酯、甲基丙烯酸-4-羟基丁酯、N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺、N-(2-羟丙基)丙烯酰胺、N-羟甲基甲基丙烯酰胺和N-(2-羟丙基)甲基丙烯酰胺;
    非官能团型单体是苯乙烯与以下通式(3)所示单体中的一种或多于一种的任意组合;
    Figure PCTCN2016112249-appb-100002
    R5表示H或者CH3,R6表示H、Na、K或者1-12个碳原子的烷基;
    所述交联剂C为二乙烯基苯和以下通式(4)所示结构中的任意一种;
    Figure PCTCN2016112249-appb-100003
    R7表示H或者CH3,X表示2-12个碳原子的饱和烷基或者(CH2CH2O)cCH2CH2的结构,其中c为环氧乙烷结构(-CH2CH2O-)平均摩尔加成数,c的取值范围为1-44;
    所述硅氧烷D为三个以上烷氧基取代的硅烷,可形成硅氧键网络,是可自由基聚合硅氧烷和/或不可自由基聚合的硅氧烷中的一种或多于一种的任意组合;
    可自由基聚合硅氧烷选自乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷(VTES)、甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)、甲基丙烯酰氧基丙基三乙氧基硅烷(MAPTES)、甲基丙烯酰氧基甲基三乙氧基硅烷(AAPTES)、丙烯酰氧基甲基三甲氧基硅烷(AAMTMS)、丙烯酰氧基丙基三甲氧基硅烷(AAPTMS)中的任意一种;
    不可自由基聚合的硅氧烷为以下通式(5)所示结构中任意一种;
    Figure PCTCN2016112249-appb-100004
    R8、R9、R10分别独立地表示1-4个碳原子的饱和烷基,R11表示苯基(-C6H5)或1-12个碳原子的饱和烷基或含1-4个碳原子的饱和烷氧基;
    所述可聚合单体E由官能团型单体和非官能团型单体组成。单体E中官能团型单体占单体E总质量的1-10%,其余为非官能团型单体;
    可聚合单体E中的官能团型单体是前述可聚合单体B时所述所有官能团单体中的一种或多于一种的任意组合;非官能团型单体是苯乙烯与通式(4)所示单体中的一种或多于一种的任意组合;所述可聚合单体E的组成可以与可聚合单体B相同,也可以是不同的。
  4. 根据权利要求3所述方法,其特征在于,可聚合单体A、可聚合单体B、交联剂C、硅氧烷D和可聚合单体E的用量比例需满足以下条件:
    反应过程中硅氧烷D的烷氧基会水解产生可挥发的小分子有机醇类,在烷氧基完全水解的条件下,硅氧烷D的有效质量(记作D0)以扣除这些小分子有机醇类剩余的二氧化硅或有机官能团取代的二氧化硅计算;
    以扣除全部可挥发的小分子有机醇类的水分散液质量为基准,可聚合单体A、B、E、交联剂C和硅氧烷D用量需使得水分散液中不可挥发组分,亦即有效组分,占水分散液总质量的范围为5-40%质量分数;具体而言,有效反应物总质量(A+B+C+E+D0)占水分散液最终质量的5-40%;此处水分散液最终质量指反应结 束后得到的水分散液的总质量,也就是反应中所有物种的总质量扣除全部可挥发的小分子有机醇类的质量;
    其中,单体A占有效反应物总质量(A+B+C+E+D0)的1-10%,交联剂C占有效反应物总质量(A+B+C+E+D0)的0-5%,单体B和E(B+E)占有效反应物总质量(A+B+C+E+D0)的20-70%,且可聚合单体B占B与E(B+E)的总质量比例不小于10%。
  5. 根据权利要求3或4所述方法,其特征在于,所述引发剂为如下所述热分解引发体系或氧化还原引发体系:
    所述热引发体系选自偶氮类引发剂或过硫酸盐类引发剂,所述偶氮类引发剂是指VA044或V50,所述过硫酸盐类引发剂是指过硫酸铵、过硫酸钾和过硫酸钠;
    所述氧化还原引发体系选自下述氧化还原体系中的任意一种:H2O2与还原剂,所述还原剂选自维生素C、甲醛次硫酸氢钠;前述过硫酸盐中的一种与低价硫酸盐类,所述低价硫酸盐类选自亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠、甲醛次硫酸氢钠中的一种。氧化剂与还原剂的用量满足氧化剂/还原剂的摩尔比在0.5-2.0之间;
    引发剂用量,氧化还原体系以氧化剂和还原剂中摩尔量较低的一方计算,为单体总质量的0.05-3%。
  6. 权利要求1或2所述有机无机杂化粒子的应用方法,其特征在于,制备水泥基材料时,直接在拌合过程中一次加入所述有机无机杂化粒子参与搅拌即可;杂化粒子用量为总胶材质量的0.5-5.0%。
PCT/CN2016/112249 2015-12-31 2016-12-27 一种水泥基材料增强剂及其制备方法和应用 WO2017114375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511028806.2 2015-12-31
CN201511028806.2A CN105713125B (zh) 2015-12-31 2015-12-31 一种水泥基材料增强剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017114375A1 true WO2017114375A1 (zh) 2017-07-06

Family

ID=56147025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112249 WO2017114375A1 (zh) 2015-12-31 2016-12-27 一种水泥基材料增强剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN105713125B (zh)
WO (1) WO2017114375A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111392721A (zh) * 2020-03-26 2020-07-10 重庆永固新型建材有限公司 一种氧化石墨烯分散液及其制备方法和应用
CN112574365A (zh) * 2020-12-10 2021-03-30 桂林理工大学 一种常温合成混凝土聚羧酸系减水剂及其制备方法
CN115490805A (zh) * 2022-09-30 2022-12-20 郑州轻工业大学 一种基于氧化还原反应引发的水凝胶
CN115651571A (zh) * 2022-10-19 2023-01-31 广州双虹建材有限公司 一种环保型有机复合注浆料及其制备方法
CN116477903A (zh) * 2023-04-25 2023-07-25 河北工业大学 衬砌支护结构的3d打印强韧混凝土及其制备方法
WO2023164987A1 (zh) * 2022-03-02 2023-09-07 青岛理工大学 一种双尺度增韧水泥基复合材料及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713125B (zh) * 2015-12-31 2018-05-25 江苏苏博特新材料股份有限公司 一种水泥基材料增强剂及其制备方法和应用
CN110627470B (zh) * 2019-11-01 2020-05-05 新化县天马建筑新材料科技有限公司 一种双网络增强复合快干凝胶水泥材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725573A (zh) * 2014-10-11 2015-06-24 江苏苏博特新材料股份有限公司 一种促进水泥水化的超塑化剂及其制备方法与应用
CN105713125A (zh) * 2015-12-31 2016-06-29 江苏苏博特新材料股份有限公司 一种水泥基材料增强剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374192A (en) * 1964-07-01 1968-03-19 Exxon Research Engineering Co Modified cement mortar containing emulsion polymer of 2 methyl alpha olefin and mixed dialkyl fumarate
CN104609759B (zh) * 2014-11-25 2017-04-12 江苏苏博特新材料股份有限公司 一种可提高水泥基材料抗折和抗拉强度的外加剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725573A (zh) * 2014-10-11 2015-06-24 江苏苏博特新材料股份有限公司 一种促进水泥水化的超塑化剂及其制备方法与应用
CN105713125A (zh) * 2015-12-31 2016-06-29 江苏苏博特新材料股份有限公司 一种水泥基材料增强剂及其制备方法和应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111392721A (zh) * 2020-03-26 2020-07-10 重庆永固新型建材有限公司 一种氧化石墨烯分散液及其制备方法和应用
CN112574365A (zh) * 2020-12-10 2021-03-30 桂林理工大学 一种常温合成混凝土聚羧酸系减水剂及其制备方法
WO2023164987A1 (zh) * 2022-03-02 2023-09-07 青岛理工大学 一种双尺度增韧水泥基复合材料及其应用
CN115490805A (zh) * 2022-09-30 2022-12-20 郑州轻工业大学 一种基于氧化还原反应引发的水凝胶
CN115490805B (zh) * 2022-09-30 2023-08-18 郑州轻工业大学 一种基于氧化还原反应引发的水凝胶
CN115651571A (zh) * 2022-10-19 2023-01-31 广州双虹建材有限公司 一种环保型有机复合注浆料及其制备方法
CN115651571B (zh) * 2022-10-19 2024-05-07 广州双虹建材有限公司 一种环保型有机复合注浆料及其制备方法
CN116477903A (zh) * 2023-04-25 2023-07-25 河北工业大学 衬砌支护结构的3d打印强韧混凝土及其制备方法
CN116477903B (zh) * 2023-04-25 2024-05-31 河北工业大学 衬砌支护结构的3d打印强韧混凝土及其制备方法

Also Published As

Publication number Publication date
CN105713125A (zh) 2016-06-29
CN105713125B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
WO2017114375A1 (zh) 一种水泥基材料增强剂及其制备方法和应用
CN104609759B (zh) 一种可提高水泥基材料抗折和抗拉强度的外加剂及其制备方法
CN105712645B (zh) 一种提高水泥基材料力学性能的外加剂及其制备方法
CN102617065B (zh) 一种具有保坍性能的多支链聚羧酸减水剂及其制备方法
CN103803846B (zh) 一种抗泥抗盐型聚羧酸减水剂及其制备方法
CN108483980B (zh) 纳米碳材料-聚合物-硅酸盐复合微纳粒子成核剂的制备方法
CN104446102B (zh) 一种提升水泥基材料抗折和抗拉强度的外加剂及其制备方法
WO2016026346A1 (zh) 一种高适应性醚类聚羧酸减水剂的低温制备方法
WO2019144973A1 (zh) 一种两亲性多功能杂化纳米粒子、其制备方法及其应用
Ren et al. Preparation and properties of nanosilica-doped polycarboxylate superplasticizer
CN111592272A (zh) 一种机制砂混凝土预应力构件用聚羧酸减水剂及其制备方法
CN108840587A (zh) 一种抗泥型混凝土减水剂及其制备方法
JP2024504563A (ja) 酸化グラフェン変性スチレンアクリルピッカリングエマルション及び複合エマルションの調製方法並びにセメント系材料の防食方法
CN109704619B (zh) 一种氨基磺酸盐高效减水剂及其制备工艺
CA2168826A1 (en) Redispersible, pulverulent core-shell polymers, their preparation and use
CN105693927B (zh) 一种有机无机杂化粒子及其制备方法和应用
CN112897929B (zh) 一种缓释型聚羧酸减水剂微球及其制备方法
CN114316289A (zh) 一种预制构件用晶种型聚羧酸减水剂及其制备方法
CN105778010A (zh) 一种高保坍型聚羧酸减水剂及其制备方法
CN113683736B (zh) 一种高强混凝土用降粘型聚羧酸减水剂及其制备方法
CN111675518A (zh) 一种半刚性混凝土路面基层材料及其制备方法和施工方法
CN102040712A (zh) 具有减水功能的聚合物类减缩剂的制备方法
CN113185223A (zh) 门窗专用纳米膨胀填缝砂浆及其制备方法
WO2020238158A1 (zh) 一种湿拌砂浆稳塑剂及其制备方法
CN117105596B (zh) 一种再生混凝土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881164

Country of ref document: EP

Kind code of ref document: A1