WO2017086376A1 - 二酸化バナジウム含有粒子の製造方法 - Google Patents

二酸化バナジウム含有粒子の製造方法 Download PDF

Info

Publication number
WO2017086376A1
WO2017086376A1 PCT/JP2016/084062 JP2016084062W WO2017086376A1 WO 2017086376 A1 WO2017086376 A1 WO 2017086376A1 JP 2016084062 W JP2016084062 W JP 2016084062W WO 2017086376 A1 WO2017086376 A1 WO 2017086376A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
containing particles
particles
particle size
hydrothermal reaction
Prior art date
Application number
PCT/JP2016/084062
Other languages
English (en)
French (fr)
Inventor
貴志 鷲巣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017551918A priority Critical patent/JPWO2017086376A1/ja
Priority to CN201680066573.1A priority patent/CN108349745B/zh
Publication of WO2017086376A1 publication Critical patent/WO2017086376A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy

Definitions

  • the present invention relates to a method for producing vanadium dioxide-containing particles, and more particularly to a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and storage stability.
  • Vanadium dioxide (VO 2 ) particles have attracted attention as a material exhibiting a thermochromic phenomenon in which optical characteristics such as light transmittance and light reflectance change reversibly with temperature changes.
  • rutile-type crystal phase In the crystal structure of vanadium dioxide particles, there are several polymorphs of crystal phases such as A phase, B phase, C phase and R phase (referred to as so-called “rutile-type crystal phase”).
  • the crystal structure showing the thermochromic phenomenon as described above is limited to the R phase. Since this R phase has a monoclinic structure below the transition temperature, it is also called an M phase.
  • the particle size is on the order of nanometers, there is no aggregation, and the particle size distribution is narrow.
  • a hydrothermal synthesis method has been reported as a technique for producing such particles (see, for example, Patent Document 1). According to the hydrothermal synthesis method, it is possible to produce particles having a particle size of the order of nanometers. However, when vanadium dioxide particles are used for window films or the like, the vanadium dioxide particles need to have a particle size of 40 nm or less in order to prevent the occurrence of haze, but such vanadium dioxide particles are produced only by the hydrothermal synthesis method. Is not enough. In addition, it is difficult to synthesize vanadium dioxide particles having a uniform particle size, and particles having a particle size of 40 nm or more are mixed. Filtration or the like can be considered as a means for removing particles having a large particle diameter mixed in this way. However, particles having a particle diameter of about 200 nm are clogged during filtration and are difficult to remove.
  • Patent Document 2 As a method for obtaining vanadium dioxide particles having a smaller particle diameter, it is conceivable to crush vanadium dioxide particles (for example, see Patent Document 2).
  • Patent Document 2 introduces a crushing method and conditions using a bead mill. However, when a large particle size is crushed, many defective sites are generated in the crystal structure, resulting in decreased thermochromic properties and storage stability. Resulting in.
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is to provide a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and storage stability.
  • the present inventor has a process of forming vanadium dioxide-containing particles by hydrothermal reaction and a process of crushing vanadium dioxide-containing particles by a hydrothermal reaction.
  • the vanadium dioxide-containing particles having excellent thermochromic properties and storage stability can be provided by setting the particle size of the vanadium dioxide-containing particles of 80% by number or more to 50 nm or less.
  • the headline, the present invention has been reached.
  • a method for producing vanadium dioxide-containing particles having thermochromic properties Forming vanadium dioxide-containing particles by a hydrothermal reaction; Crushing the vanadium dioxide-containing particles; Have In the step of crushing the vanadium dioxide-containing particles, the particle size of the vanadium dioxide-containing particles of 80% by number or more is set to 50 nm or less.
  • the vanadium dioxide-containing particles according to claim 1 wherein the vanadium dioxide-containing particles having a particle diameter of 100 nm or less are formed by hydrothermal reaction to form 70% by number or more. Production method.
  • the hydrothermal reaction is performed at 230 ° C. or higher, and the time until the reaction system reaches from 25 ° C. to 200 ° C. is within one hour.
  • the above-mentioned means of the present invention can provide a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and storage stability.
  • the method for producing vanadium dioxide-containing particles according to the present invention is characterized in that after the vanadium dioxide-containing particles are formed by a hydrothermal reaction, the particle size of the vanadium dioxide-containing particles of 80% by number or more is crushed so as to be 50 nm or less. Yes.
  • particles having a large particle size are mixed, but as described above, by crushing the particles synthesized by the hydrothermal reaction, the target particles are minimized while minimizing the defect site. Particles containing vanadium dioxide having a diameter can be obtained.
  • particles synthesized by hydrothermal reaction are slightly lower in crystallinity than particles produced by a baking method, etc., and are easily crushed. It is done.
  • the vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles of the present invention have a particle size of 80% by number or more and 50 nm or less.
  • the haze value is small and the defect site is kept to a minimum, it is presumed that the thermochromic property and the storage stability of the thermochromic property can be maintained.
  • thermochromic vanadium dioxide-containing particles of the present invention comprises a step of forming vanadium dioxide-containing particles by a hydrothermal reaction, and a step of crushing vanadium dioxide-containing particles, and the vanadium dioxide-containing particles In the step of crushing, the particle size of the vanadium dioxide-containing particles of 80% by number or more is 50 nm or less. This feature is a technical feature common to the claimed invention.
  • part can be minimized more and thermochromic property and its storage stability can be maintained.
  • vanadium dioxide-containing particles that exhibit thermochromic properties
  • at least the vanadium compound, the reducing agent, and water are mixed and hydrothermally reacted in the step of forming the vanadium dioxide-containing particles.
  • the reducing agent is oxalic acid, formic acid, hydrazine, or a hydrate thereof from the viewpoint that 70% by number or more of vanadium dioxide-containing particles having a particle size of 100 nm or less can be stably produced. It is preferable that the hydrothermal reaction is performed at 230 ° C. or higher and the time until the reaction system reaches from 25 ° C. to 200 ° C. is within 1 hour.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the method for producing thermochromic vanadium dioxide-containing particles of the present invention comprises a step of forming vanadium dioxide-containing particles by a hydrothermal reaction, and a step of crushing vanadium dioxide-containing particles, and the vanadium dioxide-containing particles In the step of crushing, the particle size of the vanadium dioxide-containing particles of 80% by number or more is 50 nm or less.
  • the particle size of the vanadium dioxide-containing particles is measured with a laser diffraction particle size distribution meter, and for example, a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation can be used. Since the appropriate concentration range of the measurement object (sample) varies depending on each device, it is appropriately concentrated and diluted for use.
  • ⁇ Hydrothermal reaction> it is preferable to synthesize vanadium dioxide-containing particles by mixing at least a vanadium compound, a reducing agent, and water and causing a hydrothermal reaction.
  • vanadium dioxide-containing particles having a rutile-type crystal structure R phase (M layer)
  • the hydrothermal reaction means a chemical reaction in which temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa) and proceed in hot water (subcritical water) at 100 ° C. or higher.
  • the hydrothermal reaction is performed, for example, in a closed container such as an autoclave apparatus. At this time, hydrogen peroxide may be mixed.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the liquid temperature of the hydrothermal reaction is, for example, in the range of 200 to 350 ° C. Is preferable, more preferably in the range of 200 to 300 ° C., and particularly preferably in the range of 230 to 300 ° C. If the liquid temperature is 200 ° C. or higher, a sufficient reaction rate can be obtained.
  • the hydrothermal reaction is carried out at 230 ° C. or higher, and the time until the reaction system reaches from 25 ° C. to 200 ° C. is preferably within 2 hours, more preferably within 1 hour. Thereby, the vanadium dioxide containing particle produced can be reduced in particle size.
  • the hydrothermal reaction time is, for example, 1 hour to 7 days. By increasing the time, it is possible to control the average particle size and the like of the obtained vanadium dioxide-containing particles, and when it is within 7 days, it is possible to suppress an excessive increase in energy consumption.
  • the hydrothermal reaction is performed with stirring because the particle diameter of the vanadium dioxide-containing particles can be made more uniform.
  • the hydrothermal reaction may be performed by either a batch method or a continuous method.
  • the hydrothermal reaction it is preferable to form 70% by number or more of vanadium dioxide-containing particles having a particle size of 100 nm or less.
  • the method for controlling the particle size of the vanadium dioxide-containing particles produced by the hydrothermal reaction can be controlled by appropriately selecting the temperature during the hydrothermal reaction, the temperature rising rate, and the like.
  • the particle size is greatly influenced by the temperature rising rate, and the temperature rising rate up to 200 ° C. can be controlled within 1 hour to control the desired particle size.
  • the reaction After completion of the reaction, it is preferable to quickly cool to 150 ° C. or lower. More preferably, it cools to 150 degrees C or less within 30 minutes. Further, the solvent may be replaced by using ultrafiltration to perform washing.
  • the vanadium dioxide-containing particles may be dispersed in a predetermined solvent (dispersion medium) to form a dispersion.
  • the dispersion medium is not particularly limited, and a known medium can be used.
  • Ultrafiltration As the ultrafiltration, for example, using Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut-off 5000) manufactured by Sartorius steady, flow rate 300 mL / min, liquid pressure 1 bar (0.1 MPa), normal temperature (20-30) Filtration).
  • the particle size of the vanadium dioxide-containing particles of 80% by number or more is 50 nm or less.
  • the method for crushing the vanadium dioxide-containing particles is not particularly limited, and can be performed using a device such as a high-speed stirrer, a high-pressure homogenizer, a bead mill, and a shaker. Among them, it is preferable to crush using a high-pressure homogenizer or a bead mill from the viewpoint of particle miniaturization.
  • a high-pressure homogenizer is a commercially available device that grinds by shearing force due to accelerated high flow velocity, rapid pressure drop (cavitation), and impact force caused by high-velocity particles colliding face-to-face within a fine orifice.
  • a nanomizer manufactured by Nanomizer Co., Ltd.
  • a microfluidizer manufactured by Microfluidics
  • the degree of crushing by the high-pressure homogenizer depends on the pressure fed to the high-pressure homogenizer and the number of passes through the high-pressure homogenizer (number of passes).
  • the bead mill has a step of filling a container with beads as a medium, pouring a slurry of particles and medium into the stirred beads, and crushing and pulverizing and dispersing the aggregated particles by stirring together with the beads in the medium.
  • Device There is also an apparatus that uses centrifugal separation to separate the slurry and beads.
  • Such a bead mill include Star Mill ZRS (manufactured by Ashizawa Finetech Co., Ltd.), Ultra Apex Mill (manufactured by Kotobuki Kogyo Co., Ltd.), and MSC-MILL (Mitsui Mining Co., Ltd.).
  • the beads used in the bead mill are not particularly limited, and examples thereof include metals and ceramics.
  • zirconia beads and alumina beads can be used.
  • the size of the beads is selected according to the purpose.
  • the particle size of the beads to be applied is preferably about 0.03 to 0.3 mm.
  • the crushing using a bead mill is preferably used such that the beads are in the range of 10 to 80% by volume in the container.
  • the treatment time in the bead mill is preferably about 10 minutes to 24 hours, and if the treatment is further performed, contamination from the beads may be mixed.
  • a dispersing agent can be added as needed during crushing.
  • Commercially available anionic surfactants, cationic surfactants, nonionic surfactants, metal alkoxides and the like can be preferably used.
  • the addition amount of the dispersant is preferably 40% by mass or less of the particle mass.
  • the vanadium dioxide-containing particles according to the present invention are configured to include at least vanadium dioxide, and thereby can exhibit thermochromic properties.
  • the thermochromic property of the vanadium dioxide-containing particles is not particularly limited as long as optical properties such as light transmittance and light reflectance change reversibly with temperature.
  • the light transmittance of the film to which the vanadium dioxide-containing particles are added can be measured as the light transmittance at a wavelength of 2000 nm using, for example, a spectrophotometer V-670 (manufactured by JASCO Corporation).
  • the light transmittance of the film to which the vanadium dioxide-containing particles are added is preferably as high as possible, but is preferably 70% or more.
  • the vanadium dioxide-containing particles according to the present invention are characterized in that a particle size of 80% by number or more is 50 nm or less. For this reason, even when the vanadium dioxide-containing particles according to the present invention are used mixed with a window film, the haze value is small, and since the defect site is minimized, the thermochromic property and its storage stability Sex can be maintained.
  • the vanadium compound according to the present invention is not particularly limited, but is preferably divanadium pentoxide (V 2 O 5 ), ammonium vanadate or vanadium trichloride oxide.
  • ⁇ Reducing agent Although it does not specifically limit as a reducing agent which concerns on this invention, It is preferable that they are oxalic acid, formic acid, hydrazine, or those hydrates.
  • the particle size distribution of the produced particles was measured using a laser diffraction particle size distribution meter. Specifically, the particles were mixed with water so as to have a concentration of 1% by mass, dispersed with ultrasonic waves for 15 minutes to prepare a sample, and measured using a laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation. .
  • Vanadium dioxide particles were prepared with reference to Example 1 of Japanese Patent No. 5625172.
  • the vanadium dioxide particles contained 32% by number of particles having a particle size of 100 nm or less.
  • the produced particles were subjected to bead milling to crush the particles.
  • particles and water were mixed to make 500 mL of a 10% by mass dispersion.
  • 200 g of zirconia beads having a particle diameter of 0.1 mm was mixed, and crushed for 20 minutes using an Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.) to prepare Sample 101.
  • the particle diameter of 81% by number of vanadium dioxide-containing particles was 50 nm or less.
  • the prepared liquid mixture is put in a high-pressure reaction decomposition container stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample container HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), and subjected to a hydrothermal reaction at 260 ° C. for 48 hours. went. At this time, the temperature raising time from 25 ° C. to 200 ° C. was 3 hours.
  • the vanadium dioxide-containing particles contained 31% by number of particles having a particle size of 100 nm or less.
  • the obtained product was washed using ultrafiltration to prepare an aqueous dispersion of vanadium dioxide-containing particles.
  • the prepared dispersion was subjected to bead milling to crush the particles.
  • the dispersion was concentrated to 500 mL of a 10% by mass dispersion.
  • 200 g of zirconia beads having a particle size of 0.1 mm was mixed with this dispersion, and crushing was performed for 15 minutes using an Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.) to produce Sample 102.
  • the particle diameter of 73% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 103 was prepared in the same manner as in the preparation of sample 102, except that the crushing time by the bead mill was 20 minutes. In the sample 103 after crushing, the particle size of 82% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 104 was prepared in the same manner as in the preparation of Sample 103 except that the temperature raising time from 25 ° C. to 200 ° C. was set to 1 hour.
  • the vanadium dioxide-containing particles immediately after the hydrothermal reaction contained 72% by number of particles having a particle size of 100 nm or less. Further, in the sample 104 after crushing, the particle size of 81% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 105 was prepared in the same manner as in the preparation of sample 104 except that the crushing time by the bead mill was 45 minutes. In the sample 105 after crushing, the particle size of 92% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 106 was produced in the same manner as in the production of sample 105 except that the temperature raising time from 25 ° C. to 200 ° C. was changed to 45 minutes.
  • the vanadium dioxide-containing particles immediately after the hydrothermal reaction contained 81% by number of particles having a particle size of 100 nm or less.
  • the particle size of 91% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 107 was produced in the same manner as in the production of sample 105 except that the hydrothermal reaction was performed as follows.
  • V divanadium pentoxide
  • V 2 O 5 special grade, Wako Pure Chemical Industries
  • aqueous solution obtained by mixing 2 mL of 35% by mass of hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 20 mL of pure water.
  • the prepared liquid mixture is put in a high-pressure reaction decomposition container stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample container HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), and subjected to a hydrothermal reaction at 260 ° C. for 48 hours. went. At this time, the temperature raising time from 25 ° C. to 200 ° C. was set to 1 hour.
  • the vanadium dioxide-containing particles immediately after the hydrothermal reaction contained 71% by number of particles having a particle size of 100 nm or less. Further, in the sample 107 after crushing, the particle size of 91% by number of vanadium dioxide-containing particles was 50 nm or less.
  • Sample 108 was produced in the same manner as in the production of sample 105 except that the hydrothermal reaction was performed as follows.
  • V divanadium pentoxide
  • HCOOH formic acid
  • the prepared liquid mixture is put in a high-pressure reaction decomposition container stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample container HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), and subjected to a hydrothermal reaction at 260 ° C. for 48 hours. went. At this time, the temperature raising time from 25 ° C. to 200 ° C. was set to 1 hour.
  • the vanadium dioxide-containing particles immediately after the hydrothermal reaction contained 72% by number of particles having a particle size of 100 nm or less.
  • the particle size of 92% by number of vanadium dioxide-containing particles was 50 nm or less.
  • thermochromic storage stability The light transmittance difference ( ⁇ T (%)) after storing each measurement film prepared above at 60 ° C./90% RH for 1000 hours was calculated in the same manner as the thermochromic evaluation, before and after storage.
  • Retention rate (%) ( ⁇ T (%) after storage) / ( ⁇ T (%) before storage) ⁇ 100
  • the samples 103 to 108 produced by the method for producing vanadium dioxide-containing particles of the present invention are superior in thermochromic properties and their storage stability compared to the samples 101 and 102 of the comparative examples. It is shown that.
  • sample 101 vanadium dioxide-containing particles before crushing are produced by firing instead of the hydrothermal method. Therefore, particle deterioration (defect site) due to crushing is large, and as a result, thermochromic properties and storage stability thereof are improved. It is falling.
  • the sample 102 shortens the crushing time, the deterioration due to crushing is small and the same storage stability as that of the sample 103 is obtained.
  • the step of crushing vanadium dioxide-containing particles contains 80% or more vanadium dioxide. It can be seen that the method for producing vanadium dioxide-containing particles having a particle size of 50 nm or less is useful for providing vanadium dioxide-containing particles having excellent thermochromic properties and storage stability.
  • the present invention can be particularly suitably used for providing a method for producing vanadium dioxide-containing particles having excellent thermochromic properties and storage stability.

Abstract

本発明の課題は、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子の製造方法を提供することである。 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応により、二酸化バナジウム含有粒子を形成する工程と、二酸化バナジウム含有粒子を破砕する工程と、を有し、二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする。

Description

二酸化バナジウム含有粒子の製造方法
 本発明は、二酸化バナジウム含有粒子の製造方法に関し、より詳しくは、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子の製造方法に関する。
 二酸化バナジウム(VO)粒子は、温度変化によって光透過率や光反射率等の光学特性が可逆的に変化するサーモクロミック現象を示す材料として注目されている。
 二酸化バナジウム粒子の結晶構造には、A相、B相、C相及びR相(いわゆる「ルチル型の結晶相」のことをいう。)など、いくつかの結晶相の多形が存在する。この中でも、前述のようなサーモクロミック現象を示す結晶構造は、R相に限られる。このR相は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれている。
 このような二酸化バナジウム粒子において、実質的に優良なサーモクロミック性を発現させるためには、粒径がナノメートルオーダーであり、凝集がなく、狭い粒径分布であることが望ましい。
 このような粒子を作製する技術として、水熱合成法が報告されている(例えば、特許文献1参照。)。当該水熱合成法によれば、粒径がナノメートルオーダーの粒子を作製することが可能となる。
 しかしながら、二酸化バナジウム粒子をウィンドウフィルム等に用いる場合、ヘイズの発生を防ぐために二酸化バナジウム粒子の粒径を40nm以下にする必要があるが、水熱合成法のみではこのような二酸化バナジウム粒子を作製するには不十分である。加えて、均一な粒径を有する二酸化バナジウム粒子を合成するのは困難であり、粒径40nm以上の粒子が混在してしまう。
 このように混在してしまった粒径の大きい粒子を取り除く手段として濾過などが考えられるが、粒径200nm程度の粒子は濾過時に目詰まりを起こしてしまい、取り除くことが困難である。
 より粒径の小さい二酸化バナジウム粒子を得る方法として、二酸化バナジウム粒子を破砕することが考えられる(例えば、特許文献2参照。)。
 当該特許文献2には、ビーズミルを用いた破砕方法・条件が紹介されているが、粒径の大きい粒子を破砕すると結晶構造に多くの欠損部位が生じるため、サーモクロミック性や保存安定性が低下してしまう。
特開2011-178825号公報 特開2012-250879号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子の製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、水熱反応により、二酸化バナジウム含有粒子を形成する工程と、二酸化バナジウム含有粒子を破砕する工程と、を有し、二酸化バナジウム含有粒子を破砕する工程において、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とすることにより、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子を提供できることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、
 水熱反応により、二酸化バナジウム含有粒子を形成する工程と、
 前記二酸化バナジウム含有粒子を破砕する工程と、
を有し、
 前記二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の前記二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする二酸化バナジウム含有粒子の製造方法。
 2.前記二酸化バナジウム含有粒子を形成する工程では、水熱反応により、粒径が100nm以下である二酸化バナジウム含有粒子を70個数%以上形成することを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。
 3.前記二酸化バナジウム含有粒子を形成する工程では、少なくとも、バナジウム化合物と還元剤と水とを混合して水熱反応させることを特徴とする第1項又は第2項に記載の二酸化バナジウム含有粒子の製造方法。
 4.前記還元剤が、シュウ酸、ギ酸、ヒドラジン、又はそれらの水和物であることを特徴とする第3項に記載の二酸化バナジウム含有粒子の製造方法。
 5.前記二酸化バナジウム含有粒子を形成する工程では、230℃以上で水熱反応を行い、かつ、反応系が25℃から200℃に到達するまでの時間を1時間以内とすることを特徴とする第1項から第4項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。
 本発明の上記手段により、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子の製造方法を提供することができる。
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。
 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応により二酸化バナジウム含有粒子を形成した後、80個数%以上の二酸化バナジウム含有粒子の粒径が50nm以下となるように破砕することを特徴としている。
 特許文献1に記載の方法では粒径の大きい粒子が混在してしまうが、上記のように、水熱反応により合成した粒子を破砕することで、欠損部位を最小限にしつつ、目的とする粒径の二酸化バナジウム含有粒子を得ることができる。また、水熱反応で合成した粒子は、焼成法などで作製された粒子よりも結晶性がわずかに低く、破砕しやすいため、より少ない破砕処理で目的の粒径とすることができるものと考えられる。
 以上のように、本発明の二酸化バナジウム含有粒子の製造方法により作製された二酸化バナジウム含有粒子は80個数%以上の粒径が50nm以下であるため、ウィンドウフィルムに混合して使用した場合であってもヘイズ値が小さく、また、欠損部位を最小限にとどめているため、サーモクロミック性と、サーモクロミック性の保存安定性も維持できているものと推察される。
 本発明のサーモクロミック性を有する二酸化バナジウム含有粒子の製造方法は、水熱反応により、二酸化バナジウム含有粒子を形成する工程と、二酸化バナジウム含有粒子を破砕する工程と、を有し、二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、二酸化バナジウム含有粒子を形成する工程において、水熱反応により、粒径が100nm以下である二酸化バナジウム含有粒子を70個数%以上形成することが好ましい。これにより、より欠損部位を最小限にし、サーモクロミック性とその保存安定性も維持することができる。
 また、サーモクロミック性を発現する二酸化バナジウム含有粒子を得る観点から、二酸化バナジウム含有粒子を形成する工程では、少なくとも、バナジウム化合物と還元剤と水とを混合して水熱反応させることが好ましい。
 また、粒径が100nm以下である二酸化バナジウム含有粒子を70個数%以上安定して製造できる点から、還元剤がシュウ酸、ギ酸、ヒドラジン、又はそれらの水和物であることが好ましく、更には、230℃以上で水熱反応を行い、かつ、反応系が25℃から200℃に到達するまでの時間を1時間以内とすることが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
《二酸化バナジウム含有粒子の製造方法》
 本発明のサーモクロミック性を有する二酸化バナジウム含有粒子の製造方法は、水熱反応により、二酸化バナジウム含有粒子を形成する工程と、二酸化バナジウム含有粒子を破砕する工程と、を有し、二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする。
 なお、本発明において、二酸化バナジウム含有粒子の粒径は、レーザー回折式粒度分布計で測定し、例えば、島津製作所製のレーザー回折式粒度分布測定装置等を用いることができる。測定対象物(サンプル)の適正な濃度範囲は、各装置により異なるため、適宜濃縮、希釈して用いる。
〈水熱反応〉
 本発明においては、少なくとも、バナジウム化合物と還元剤と水とを混合して水熱反応させることにより、二酸化バナジウム含有粒子を合成することが好ましい。バナジウム化合物を水熱反応下で還元することで、ルチル型の結晶構造(R相(M層))を有する二酸化バナジウム含有粒子を作製することができる。
 本発明において、水熱反応とは、温度と圧力が水の臨界点(374℃、22MPa)よりも低く、100℃以上の熱水(亜臨界水)中において進行する化学反応を意味する。水熱反応は、例えば、オートクレーブ装置等の密閉容器内で実施される。このとき、過酸化水素を混合していてもよい。
 水熱反応処理の条件(反応物の量、処理温度、処理圧力、処理時間)は、適宜設定されるが、水熱反応の液温としては、例えば、200~350℃の範囲内であることが好ましく、200~300℃の範囲内であることがより好ましく、230~300℃の範囲内であることが特に好ましい。液温が200℃以上であれば十分な反応速度が得られる。
 また、本発明においては、230℃以上で水熱反応を行い、かつ、反応系が25℃から200℃に到達するまでの時間を2時間以内、より好ましくは1時間以内とすることが好ましい。これにより、作製される二酸化バナジウム含有粒子を小粒径化することができる。
 また、水熱反応時間は、例えば、1時間~7日である。時間を長くすることにより、得られる二酸化バナジウム含有粒子の平均粒径等を制御することができ、7日以内であると、エネルギー消費量が多くなりすぎることを抑制できる。
 また、水熱反応は、撹拌されながら行われることが、二酸化バナジウム含有粒子の粒径をより均一化できるため、好ましい。
 水熱反応は、バッチ式又は連続式のいずれの方法で実施してもよい。
 また、水熱反応では、粒径が100nm以下である二酸化バナジウム含有粒子を70個数%以上形成することが好ましい。
 水熱反応により作製される二酸化バナジウム含有粒子の粒径を制御する方法としては、水熱反応時の温度、昇温速度等を適宜選択することにより制御することができる。特に、粒径には昇温速度の影響が大きく、200℃までの昇温速度を1時間以内とすることで所望の粒径に制御することが可能となる。
 反応終了後は、速やかに150℃以下まで冷却することが好ましい。より好ましくは、30分以内に150℃以下まで冷却する。
 また、限外濾過を用いて溶媒の置換を行い、洗浄を行ってもよい。
 二酸化バナジウム含有粒子は、所定の溶媒(分散媒)中に分散させて、分散液としてもよい。分散媒としては、特に限定されるものではなく、公知のものを使用することができる。
(限外濾過)
 限外濾過としては、例えば、Sartorius stedim社製、ビバフロー50(有効濾過面積50cm、分画分子量5000)を用いて、流速300mL/min、液圧1bar(0.1MPa)、常温(20~30℃)で濾過を行うことができる。
〈破砕工程〉
 水熱反応により作製された二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする。
 二酸化バナジウム含有粒子を破砕する方法としては特に制限はないが、例えば、高速撹拌機、高圧ホモジナイザー、ビーズミル、振とう機等の装置を使用して行うことができる。中でも、粒子の微小化の観点で高圧ホモジナイザーやビーズミルを用いて破砕することが好ましい。
 高圧ホモジナイザーとは、加速された高流速によるせん断力、急激な圧力降下(キャビテーション)及び高流速の粒子同士が微細オリフィス内で対面衝突することによる衝撃力によって磨砕を行う装置であり、市販されている装置としては、ナノマイザー(ナノマイザー株式会社製)、マイクロフルイダイザー(Microfluidics社製)等を用いることができる。高圧ホモジナイザーによる破砕の程度は、高圧ホモジナイザーへ圧送する圧力と高圧ホモジナイザーに通過させる回数(パス回数)に依存する。
 ビーズミルは、容器内にメディアとしてビーズを充填し、撹拌されているビーズ中に粒子と媒体からなるスラリーを流し込み、媒体中でビーズとともに撹拌することにより凝集粒子を砕いて粉砕、分散する工程を有する装置である。また、スラリーとビーズの分離に遠心分離を用いる装置もある。このようなビーズミルとしては、スターミルZRS(アシザワファインテック(株)製)、ウルトラアペックスミル(寿工業(株)製)、MSC-MILL(三井鉱山株式会社)などがある。
 ビーズミルで用いるビーズは特に限定されず、金属製、セラミック製等が挙げられるが、例えば、ジルコニアビーズ、アルミナビーズ等を用いることができる。
 ビーズの大きさは、目的に合わせて選定するが、例えば、適用するビーズの粒径としては0.03~0.3mm程度のものが好ましい。
 ビーズミルを用いた破砕は、ビーズを容器内に10~80体積%の範囲内となるようにして用いるのが好ましい。
 また、ビーズミルでの処理時間は10分間から24時間程度が好ましく、これ以上の処理を行うとビーズからのコンタミが混入する可能性がある。
 また、破砕時には必要に応じて、分散剤を添加することができる。市販のアニオン系界面活性剤、カチオン系界面活性剤、非イオン系界面活性剤、金属アルコキシドなどを好ましく用いることができる。分散剤の添加量は、粒子質量の40質量%以下であることが好ましい。
《二酸化バナジウム含有粒子》
 本発明に係る二酸化バナジウム含有粒子は、少なくとも二酸化バナジウムを含んで構成され、これにより、サーモクロミック性を発現することができる。
 二酸化バナジウム含有粒子が有するサーモクロミック性としては、温度変化によって光透過率や光反射率等の光学特性が可逆的に変化すれば特に限定されるものではない。例えば、25℃/50%RH及び85℃/50%RHにおける光透過率(二酸化バナジウム含有粒子を添加したフィルムの光透過率)の差(=25℃/50%RHにおける光透過率-85℃/50%RHにおける光透過率)が30%以上であることが好ましい。
 二酸化バナジウム含有粒子を添加したフィルムの光透過率は、例えば、分光光度計V-670(日本分光株式会社製)を用いて、波長2000nmにおける光透過率として測定することができる。
 二酸化バナジウム含有粒子を添加したフィルムの光透過率は、高いほど好ましいが、70%以上であることが好ましい。
 また、本発明に係る二酸化バナジウム含有粒子は、80個数%以上の粒径が50nm以下であることを特徴とする。このため、本発明に係る二酸化バナジウム含有粒子をウィンドウフィルムに混合して使用した場合であってもヘイズ値が小さく、また、欠損部位を最小限に止めているため、サーモクロミック性とその保存安定性を維持することができる。
《バナジウム化合物》
 本発明に係るバナジウム化合物としては、特に限定されないが、五酸化二バナジウム(V)、バナジン酸アンモニウム又は三塩化酸化バナジウムであることが好ましい。
《還元剤》
 本発明に係る還元剤としては、特に限定されないが、シュウ酸、ギ酸、ヒドラジン、又はそれらの水和物であることが好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、本実施例において、作製された粒子の粒径分布は、レーザー回折式粒度分布計を用いて測定した。具体的には、粒子を1質量%の濃度となるように水と混合し、超音波で15分間分散してサンプルを作製し、島津製作所製のレーザー回折式粒度分布測定装置を用いて測定した。
《サンプルの作製》
〈サンプル101の作製〉
 特許第5625172号公報の実施例1を参考にして、二酸化バナジウム粒子を作製した。
 この二酸化バナジウム粒子には、粒径が100nm以下である粒子が32個数%含まれていた。
 作製した粒子にビーズミルを行い、粒子の破砕を行った。
 まず、粒子と水とを混合し、10質量%の分散液500mLとした。この分散液に、粒径0.1mmのジルコニアビーズを200g混合し、ウルトラアペックスミル(寿工業(株)製)を用いて、20分間、破砕を行い、サンプル101を作製した。
 サンプル101は、81個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル102の作製〉
 35質量%の過酸化水素水(和光純薬社製)2mLと純水15mLとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)0.55gを加え、30℃で4時間撹拌後、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の1.25mol/L水溶液を2.4mLゆっくり滴下した。
 調製した混合液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、260℃・48時間の水熱反応を行った。
 この際、25℃から200℃までの昇温時間を3時間とした。
 この二酸化バナジウム含有粒子には、粒径が100nm以下である粒子が31個数%含まれていた。
 反応後、得られた生成物について限外濾過を用いて洗浄を行い、二酸化バナジウム含有粒子の水分散液を調製した。
 調製した分散液にビーズミルを行い、粒子の破砕を行った。
 まず、分散液を濃縮することで、10質量%の分散液500mLとした。この分散液に、粒径0.1mmのジルコニアビーズを200g混合し、ウルトラアペックスミル(寿工業(株)製)を用いて、15分間、破砕を行い、サンプル102を作製した。
 サンプル102は、73個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル103の作製〉
 サンプル102の作製において、ビーズミルによる破砕時間を20分間とした以外は同様にして、サンプル103を作製した。
 破砕後のサンプル103は、82個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル104の作製〉
 サンプル103の作製において、25℃から200℃までの昇温時間を1時間とした以外は同様にして、サンプル104を作製した。
 水熱反応直後の二酸化バナジウム含有粒子には、粒径が100nm以下である粒子が72個数%含まれていた。
 また、破砕後のサンプル104は、81個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル105の作製〉
 サンプル104の作製において、ビーズミルによる破砕時間を45分間とした以外は同様にして、サンプル105を作製した。
 破砕後のサンプル105は、92個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル106の作製〉
 サンプル105の作製において、25℃から200℃までの昇温時間を45分間とした以外は同様にして、サンプル106を作製した。
 水熱反応直後の二酸化バナジウム含有粒子には、粒径が100nm以下である粒子が81個数%含まれていた。
 また、破砕後のサンプル106は、91個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル107の作製〉
 サンプル105の作製において、以下のようにして水熱反応を行った以外は同様にして、サンプル107を作製した。
 35質量%の過酸化水素水(和光純薬社製)2mLと純水20mLとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)0.55gを加え、30℃で4時間撹拌後、シュウ酸二水和物(H・2HO、和光純薬社製、特級)の1.25mol/L水溶液を3.0mLゆっくり滴下した。
 調製した混合液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、260℃・48時間の水熱反応を行った。
 この際、25℃から200℃までの昇温時間を1時間とした。
 水熱反応直後の二酸化バナジウム含有粒子には、粒径が100nm以下である粒子が71個数%含まれていた。
 また、破砕後のサンプル107は、91個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
〈サンプル108の作製〉
 サンプル105の作製において、以下のようにして水熱反応を行った以外は同様にして、サンプル108を作製した。
 35質量%の過酸化水素水(和光純薬社製)2mLと純水20mLとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)0.55gを加え、30℃で4時間撹拌後、ギ酸(HCOOH、和光純薬社製、特級)の1.25mol/L水溶液を3.0mLゆっくり滴下した。
 調製した混合液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、260℃・48時間の水熱反応を行った。
 この際、25℃から200℃までの昇温時間を1時間とした。
 水熱反応直後の二酸化バナジウム含有粒子には、粒径が100nm以下である粒子が72個数%含まれていた。
 また、破砕後のサンプル108は、92個数%の二酸化バナジウム含有粒子の粒径が50nm以下であった。
《評価》
〈ヘイズ値の測定〉
 作製した各サンプルについて、粒子濃度が5質量%となるように純水を加え、分散液を調製した。分散液20gを、90gの10質量%ポリビニルアルコール水溶液と混合し、塗布液を調製した。ポリエチレンテレフタレートフィルム(厚さ50μm)上に、上記塗布液を乾燥後膜厚が5μmとなるようにワイヤーバーで塗布し、60℃で24時間乾燥して測定用フィルムとした。なお、上記塗布液を塗布・乾燥して形成される層中の二酸化バナジウム含有粒子の含有量は、当該層の固形分に対して10質量%となるように調整した。
 この測定用フィルムを用いて、日本電色工業株式会社製 ヘーズメーター NDH7000を用いてヘイズ値(%)の測定を行い、下記評価基準に従って評価した。ヘイズ値は、小さいほど透明フィルムとして良好であることを示す。
 評価結果を表1に示す。
 ◎:4%未満
 ○:4%以上7%未満
 ×:7%以上
〈サーモクロミック性〉
 上記で作製した各測定用フィルムを用いて、25℃/50%RH及び85℃/50%RHの各条件における波長2000nmでのそれぞれの光透過率(%)を測定した後、光透過率差ΔT(%)(=25℃/50%RHにおける光透過率-85℃/50%RHにおける光透過率)を算出し、下記評価基準に従って評価した。光透過率の測定は、分光光度計V-670(日本分光(株)製)に温調ユニット(日本分光(株)製)を取り付けて行った。
 評価結果を表1に示す。
 ◎:35.0%以上
 ○:30.0%以上35.0%未満
 △:20.0%以上30.0%未満
 ×:20.0%未満
〈サーモクロミック性の保存安定性〉
 上記で作製した各測定用フィルムを60℃/90%RH下に1000時間保存した後の光透過率差(ΔT(%))を上記サーモクロミック性の評価と同様にして算出し、保存前後でのサーモクロミック性の保持率(光透過率差(%)の減少幅)(%)を下記評価基準に従って評価した。
 なお、サーモクロミック性の保持率(%)は、下記式に従って算出した。
 評価結果を表1に示す。
 保持率(%)=(保存後のΔT(%))/(保存前のΔT(%))×100
 ◎:90.0%以上
 ○:70.0%以上90.0%未満
 △:50.0%以上70.0%未満
 ×:50.0%未満
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の二酸化バナジウム含有粒子の製造方法により製造されたサンプル103~108は、比較例のサンプル101及び102と比較して、サーモクロミック性及びその保存安定性に優れていることが示されている。サンプル101は、破砕前の二酸化バナジウム含有粒子を水熱方法ではなく、焼成により作製しているため、破砕による粒子の劣化(欠損部位)が大きく、その結果、サーモクロミック性及びその保存安定性が低下している。また、サンプル102は、破砕時間を短縮しているため、破砕による劣化が少なく、サンプル103と同程度の保存安定性が得られているが、粒径が大きいため、ヘイズ値が大きく、サーモクロミック性も悪くなっている。
 以上から、水熱反応により、二酸化バナジウム含有粒子を形成する工程と、二酸化バナジウム含有粒子を破砕する工程と、を有し、二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の二酸化バナジウム含有粒子の粒径を50nm以下とする二酸化バナジウム含有粒子の製造方法が、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子を提供することに有用であることがわかる。
 本発明は、サーモクロミック性及び保存安定性に優れた二酸化バナジウム含有粒子の製造方法を提供することに、特に好適に利用することができる。

Claims (5)

  1.  サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法であって、
     水熱反応により、二酸化バナジウム含有粒子を形成する工程と、
     前記二酸化バナジウム含有粒子を破砕する工程と、
    を有し、
     前記二酸化バナジウム含有粒子を破砕する工程では、80個数%以上の前記二酸化バナジウム含有粒子の粒径を50nm以下とすることを特徴とする二酸化バナジウム含有粒子の製造方法。
  2.  前記二酸化バナジウム含有粒子を形成する工程では、水熱反応により、粒径が100nm以下である二酸化バナジウム含有粒子を70個数%以上形成することを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。
  3.  前記二酸化バナジウム含有粒子を形成する工程では、少なくとも、バナジウム化合物と還元剤と水とを混合して水熱反応させることを特徴とする請求項1又は請求項2に記載の二酸化バナジウム含有粒子の製造方法。
  4.  前記還元剤が、シュウ酸、ギ酸、ヒドラジン、又はそれらの水和物であることを特徴とする請求項3に記載の二酸化バナジウム含有粒子の製造方法。
  5.  前記二酸化バナジウム含有粒子を形成する工程では、230℃以上で水熱反応を行い、かつ、反応系が25℃から200℃に到達するまでの時間を1時間以内とすることを特徴とする請求項1から請求項4までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。
PCT/JP2016/084062 2015-11-20 2016-11-17 二酸化バナジウム含有粒子の製造方法 WO2017086376A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017551918A JPWO2017086376A1 (ja) 2015-11-20 2016-11-17 二酸化バナジウム含有粒子の製造方法
CN201680066573.1A CN108349745B (zh) 2015-11-20 2016-11-17 含有二氧化钒的粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227185 2015-11-20
JP2015-227185 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086376A1 true WO2017086376A1 (ja) 2017-05-26

Family

ID=58718894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084062 WO2017086376A1 (ja) 2015-11-20 2016-11-17 二酸化バナジウム含有粒子の製造方法

Country Status (3)

Country Link
JP (1) JPWO2017086376A1 (ja)
CN (1) CN108349745B (ja)
WO (1) WO2017086376A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031235A (ja) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
JP2011136873A (ja) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム
JP2014080350A (ja) * 2012-09-28 2014-05-08 Sekisui Chem Co Ltd 酸化バナジウム粒子
JP2014094881A (ja) * 2012-10-11 2014-05-22 Sekisui Chem Co Ltd 二酸化バナジウム粒子の製造方法
JP2015063455A (ja) * 2013-08-30 2015-04-09 積水化学工業株式会社 サーモクロミック性を有する二酸化バナジウム微粒子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989514A (en) * 1997-07-21 1999-11-23 Nanogram Corporation Processing of vanadium oxide particles with heat
WO2005060610A2 (en) * 2003-12-11 2005-07-07 The Trustees Of Columbia University In The City Ofnew York Nano-sized particles, processes of making, compositions and uses thereof
JP5548479B2 (ja) * 2010-02-26 2014-07-16 独立行政法人産業技術総合研究所 単結晶微粒子の製造方法
JP5781837B2 (ja) * 2011-06-03 2015-09-24 積水化学工業株式会社 サーモクロミック性フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルム
CN103157480B (zh) * 2013-02-04 2015-02-18 合肥工业大学 一种氧化钒/铁氧化物脱硝催化剂及其制备方法和应用
CN104261693B (zh) * 2014-08-28 2016-08-17 中国科学院上海硅酸盐研究所 一种二氧化钒基热致变色复合粉体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031235A (ja) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
JP2011136873A (ja) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム
JP2014080350A (ja) * 2012-09-28 2014-05-08 Sekisui Chem Co Ltd 酸化バナジウム粒子
JP2014094881A (ja) * 2012-10-11 2014-05-22 Sekisui Chem Co Ltd 二酸化バナジウム粒子の製造方法
JP2015063455A (ja) * 2013-08-30 2015-04-09 積水化学工業株式会社 サーモクロミック性を有する二酸化バナジウム微粒子の製造方法

Also Published As

Publication number Publication date
CN108349745A (zh) 2018-07-31
JPWO2017086376A1 (ja) 2018-09-06
CN108349745B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
Wu et al. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions
JP5077941B2 (ja) コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
US9909033B2 (en) Liquid suspensions and powders of cerium oxide particles and preparation and polishing applications thereof
JP4701409B2 (ja) コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
JP2010513718A (ja) 単分散性で安定したナノ金属銀を製造するための方法、及び当該方法により得られる生産物
KR102068386B1 (ko) 나노 입자의 합성 방법
US5653793A (en) TiO2 slurry process
JP6959290B2 (ja) 単斜晶ジルコニア系ナノ粒子及びその製造方法
JP6927687B2 (ja) ナノダイヤモンド分散液製造方法およびナノダイヤモンド分散液
JP7196861B2 (ja) コア・シェル粒子、その製造方法、及び組成物
JP2011063496A (ja) アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法
JP5392696B2 (ja) コアシェル型酸化コバルト微粒子又はそれを含有する分散液、それらの製造方法及び用途
Xie et al. A novel method for the preparation of Bi4Ti3O12 nanoparticles in w/o microemulsion
JP2017001916A (ja) ナノダイヤモンド粉体製造方法およびナノダイヤモンド粉体
WO2017086376A1 (ja) 二酸化バナジウム含有粒子の製造方法
JP2017202940A (ja) ナノダイヤモンド製造方法
WO2016152865A1 (ja) 二酸化バナジウム含有粒子の製造方法
He et al. Preparation and characterization of monodisperse zirconia spherical nanometer powder via lamellar liquid crystal template method
JP5474310B2 (ja) 粒状炭酸バリウム組成物粉末
JP5895557B2 (ja) 粒子状組成物、粒子状組成物の製造方法、及び、粒子状組成物分散体
JP2017110144A (ja) 二酸化バナジウム含有粒子の製造方法
JP2016166294A (ja) 酸化バナジウム含有粒子の製造方法及び酸化バナジウム含有粒子
JP2017226771A (ja) 二酸化バナジウム含有粒子の分散液の製造方法
JP6257243B2 (ja) 希土類チタン酸塩粉末及びその製造方法並びにそれを含む分散液
JP7316177B2 (ja) 含水ケイ酸スラリー及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866377

Country of ref document: EP

Kind code of ref document: A1