WO2017038941A1 - Resin composition, cured product, sealing film, and sealing structure - Google Patents

Resin composition, cured product, sealing film, and sealing structure Download PDF

Info

Publication number
WO2017038941A1
WO2017038941A1 PCT/JP2016/075688 JP2016075688W WO2017038941A1 WO 2017038941 A1 WO2017038941 A1 WO 2017038941A1 JP 2016075688 W JP2016075688 W JP 2016075688W WO 2017038941 A1 WO2017038941 A1 WO 2017038941A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
sealing
resin
inorganic filler
Prior art date
Application number
PCT/JP2016/075688
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 渡瀬
藤本 大輔
野村 豊
弘邦 荻原
知世 金子
正也 鳥羽
鈴木 雅彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201680049953.4A priority Critical patent/CN107924886A/en
Priority to JP2017538107A priority patent/JP6763391B2/en
Priority to KR1020187006211A priority patent/KR102486893B1/en
Publication of WO2017038941A1 publication Critical patent/WO2017038941A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a resin composition, a cured product, a sealing film, and a sealing structure.
  • the thermal conductivity of the sealing part (cured product of the sealing resin) that seals the object to be sealed is low, the heat dissipation is poor. For this reason, the low thermal conductivity causes deterioration of the apparatus, ignition of the apparatus, and the like.
  • a package form such as PoP (Package on Package) has the merit that the mounting area can be reduced by stacking the CPU and the memory that are normally mounted separately, while the thickness of the entire apparatus increases. Therefore, it is easy to worry about a decrease in heat dissipation. Therefore, there is a limit to improving heat dissipation by reducing the thickness of the sealing portion.
  • This invention is made
  • Another object of the present invention is to provide a sealing film and a sealing structure using the resin composition.
  • the thermal conductivity of a cured product of a conventional sealing resin composition is about 1.2 W / m ⁇ K.
  • the present inventors obtain a cured product having excellent thermal conductivity by using a resin composition containing a thermosetting component and a specific amount of an inorganic filler containing aluminum oxide. The present invention has been found to be possible.
  • the resin composition according to the present invention is a resin composition containing a thermosetting component and an inorganic filler, wherein the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total mass of the resin composition. 72% by mass or more based on (excluding the mass of the solvent).
  • the resin composition of the present invention it is possible to obtain a cured product having excellent thermal conductivity, for example, thermal conductivity exceeding 2.5 W / m ⁇ K (preferably 2.7 W / A cured product having a thermal conductivity of m ⁇ K or more can be obtained. If the thermal conductivity of the cured product of the sealing resin composition can be improved, the heat dissipation of an electronic component device (semiconductor device or the like) including a sealing part containing the cured product of the resin composition is improved. It is possible to suppress the progress of deterioration and ignition of the device.
  • an electronic component device semiconductor device or the like
  • the resin composition according to the present invention it is possible to improve heat dissipation, which is a problem in a package form (PoP or the like) having an increased thickness.
  • a cured product having excellent thermal conductivity can be obtained while ensuring the embedding property of the resin composition.
  • the thermosetting component may contain a thermosetting resin.
  • the thermosetting resin preferably contains an epoxy resin.
  • the thermosetting component may further contain a curing agent.
  • the curing agent preferably contains a phenol resin.
  • thermosetting component may further contain a curing accelerator.
  • the curing accelerator preferably contains an imidazole compound.
  • the content of the epoxy resin that is liquid at 25 ° C. is preferably 5% by mass or more and more preferably 7% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent).
  • the content of the inorganic filler is preferably 93% by mass or less, and more preferably 85% by mass or less, based on the total mass of the resin composition (excluding the mass of the solvent).
  • the average particle size of the inorganic filler is preferably 0.01 to 25 ⁇ m, more preferably 0.01 to 10 ⁇ m.
  • the content of aluminum oxide in the inorganic filler is preferably 50% by mass or more.
  • the resin composition according to the present invention may further contain a solvent.
  • the cured product according to the present invention is a cured product of the resin composition according to the present invention.
  • sealing of electronic components such as semiconductor elements is often performed at the final stage when manufacturing an electronic component device such as a semiconductor device.
  • the sealing structure sealed molded product
  • a plurality of electronic component devices may be obtained by dicing a sealing structure obtained by sealing a plurality of electronic components (semiconductor elements, etc.).
  • the more electronic components that are rearranged the more electronic component devices that can be manufactured in a single process.
  • studies have been conducted to enlarge the sealing structure.
  • the sealing structure is formed into a wafer shape, and the diameter of the wafer shape tends to increase.
  • the use of a sealing structure as a panel is also being studied so that a printed wiring board manufacturing apparatus or the like that can be made larger and cheaper than a semiconductor manufacturing apparatus can be used.
  • a mold molding in which a solid or liquid resin sealing material is molded with a mold may be used.
  • transfer molding may be used in which a pellet-shaped resin sealing material is melted and sealed by pouring the resin into a mold.
  • transfer molding is performed by pouring molten resin, when filling a large area, an unfilled portion may occur. Therefore, in recent years, compression molding has started to be performed in which molding is performed after supplying a resin sealing material to a mold or a sealed body in advance. In compression molding, since the resin sealing material is directly supplied to the mold or the object to be sealed, there is an advantage that an unfilled portion is hardly generated even when sealing a large area.
  • a solid or liquid resin sealing material is used as in transfer molding.
  • a liquid resin encapsulant may cause a liquid flow or the like, and it may be difficult to uniformly supply the encapsulated body onto the encapsulated body.
  • a solid or resin sealing material is not a conventional pellet-shaped resin, but a granular or powder resin sealing material. There is a case.
  • the resin composition according to the present invention may be in the form of a film as a sealing film for sealing an object to be sealed.
  • the sealing film according to the present invention includes the resin composition according to the present invention. In this case, it is possible to uniformly supply the resin onto the object to be sealed and reduce dust generation. In addition, it is possible to obtain an embedding ability capable of sealing not only by molding but also by a molding method (laminate, press, etc.) that does not require a mold (such as a mold for high pressure).
  • the content of the solvent is preferably 0.2 to 1.5% by mass.
  • the minimum melt viscosity of a film-like resin composition important for embedding an object to be sealed decreases as the content of a solvent (such as an organic solvent) increases. This is considered because a solvent improves the fluidity
  • an appropriate amount of the solvent gives the film-like resin composition stickiness and easily prevents peeling from the film-like support, cracking of the film-like resin composition itself, and the like.
  • the thickness of the sealing film according to the present invention is preferably 20 to 250 ⁇ m.
  • the sealing structure which concerns on this invention is equipped with the to-be-sealed body and the sealing part which seals the said to-be-sealed body,
  • the said sealing part is the hardened
  • the sealed object may be an electronic component.
  • the present invention it is possible to provide a resin composition capable of obtaining a cured product having excellent thermal conductivity, and a cured product thereof. Moreover, according to this invention, the film for sealing and the sealing structure using the said resin composition can be provided.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • Liquid epoxy resin is an epoxy resin that is liquid at 25 ° C. “Liquid at 25 ° C.” means that the viscosity at 25 ° C. measured with an E-type viscometer is 400 Pa ⁇ s or less.
  • the resin composition according to this embodiment is a resin composition containing a thermosetting component and an inorganic filler.
  • the thermosetting component include (A) thermosetting resins (excluding compounds corresponding to curing agents), (B) curing agents, and (C) curing accelerators.
  • the thermosetting component may contain a thermosetting resin without containing a curing agent and / or a curing accelerator.
  • the resin composition according to the present embodiment contains (D) an inorganic filler in addition to the thermosetting component, and (D) the inorganic filler contains aluminum oxide.
  • the resin composition according to the present embodiment may be in the form of a varnish or a film (a sealing film).
  • the cured product according to the present embodiment is a cured product of the resin composition according to the present embodiment.
  • thermosetting component [(A) component: thermosetting resin]
  • thermosetting resin include epoxy resin, phenoxy resin, cyanate resin, thermosetting polyimide, melamine resin, urea resin, unsaturated polyester, alkyd resin, polyurethane and the like.
  • an epoxy resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity.
  • the epoxy resin at least one selected from the group consisting of an epoxy resin that is liquid at 25 ° C. and an epoxy resin that is not liquid at 25 ° C. can be used.
  • the epoxy resin can be used without particular limitation as long as it is a resin having two or more glycidyl groups in one molecule.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol AF type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, and bisphenol.
  • F type epoxy resin bisphenol G type epoxy resin, bisphenol M type epoxy resin, bisphenol S type epoxy resin (hexanediol bisphenol S diglycidyl ether, etc.), bisphenol P type epoxy resin, bisphenol PH type epoxy resin, bisphenol TMC type epoxy resin Bisphenol Z type epoxy resin, phenol novolak type epoxy resin (orthocresol novolak type epoxy resin, etc.), biff Nyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bixylenol type epoxy resin (bixylenol diglycidyl ether, etc.), hydrogenated bisphenol A type epoxy resin (hydrogenated bisphenol A glycidyl ether, etc.), these Examples of the resin include dibasic acid-modified diglycidyl ether type epoxy resins and aliphatic epoxy resins. An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • liquid epoxy resins include bisphenol A type glycidyl ether, bisphenol AD type glycidyl ether, bisphenol S type glycidyl ether, bisphenol F type glycidyl ether, water-added bisphenol A type glycidyl ether, and ethylene oxide adduct bisphenol A type.
  • examples thereof include glycidyl ether, propylene oxide adduct bisphenol A-type glycidyl ether, naphthalene resin glycidyl ether, trifunctional or tetrafunctional glycidylamine, and the like.
  • epoxy resins include “EXA-4700” (tetrafunctional naphthalene type epoxy resin), “Epiclon HP-4032” and “EXA-4750” (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by DIC Corporation, Japan.
  • Naphthalene type epoxy resins such as “NC-7000” (Naphthalene skeleton-containing polyfunctional solid epoxy resin) manufactured by Kayaku Co., Ltd .
  • phenols such as “EPPN-502H” (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Dicyclopentadiene aralkyl epoxy resin Dicyclopentadiene aralkyl epoxy resin; Biphenyl aralkyl type epoxy resins such as “NC-3000H” (bifunctional skeleton-containing polyfunctional solid epoxy resin) manufactured by Kayaku Co., Ltd .; “Epicron N-660”, “Epicron N-690”, “Epicron” manufactured by DIC Corporation Novolak type epoxy resins such as “N-740” (phenol novolac type epoxy resin) and “N500P-1” (orthocresol novolak type epoxy resin), “EOCN-104S” manufactured by Nippon Kayaku Co., Ltd .; Nissan Chemical Industries, Ltd.
  • Tris (2,3-epoxypropyl) isocyanurate such as “TEPIC” manufactured by DIC Corporation; “Epicron 860”, “Epicron 900-IM”, “Epicron EXA-4816” and “Epicron EXA-4822” manufactured by DIC Corporation, “Araldite AER280” manufactured by Asahi Ciba Co., Ltd. "Epototo YD-134", “YD-8125” and “YDF8170” manufactured by Toto Kasei Co., Ltd. (Nippon Steel & Sumikin Chemical Co., Ltd.), “jER834" and “jER872” manufactured by Japan Epoxy Resin Co., Ltd.
  • the content of the thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily obtaining excellent fluidity.
  • 4% by mass or more is more preferable, 4% by mass or more is particularly preferable, 5% by mass or more is extremely preferable, 10% by mass or more is very preferable, and 15% by mass or more is even more preferable.
  • the content of the thermosetting resin is preferably 30% by mass or less, based on the total mass of the resin composition (excluding the mass of the solvent), from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface, and 25% by mass. % Or less is more preferable, and 20% by mass or less is still more preferable.
  • the content of the epoxy resin is based on the total mass of the thermosetting resin from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. 50 mass% or more is preferable, 80 mass% or more is more preferable, and 90 mass% or more is still more preferable.
  • the content of the epoxy resin may be 100% by mass based on the total mass of the thermosetting resin.
  • the content of the liquid epoxy resin is preferably 0.5% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. More preferably 3% by weight or more, still more preferably 5% by weight or more, particularly preferably 7% by weight or more, and very preferably 9% by weight or more.
  • the content of the liquid epoxy resin is based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing the increase in the tackiness of the film and from the viewpoint of easily suppressing edge fusion. 20 mass% or less is preferable, 15 mass% or less is more preferable, and 13 mass% or less is still more preferable.
  • the content of the liquid epoxy resin is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. More preferably, it is more than mass%.
  • the content of the liquid epoxy resin is 95% by mass or less based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing an excessive increase in the tackiness of the film and from the viewpoint of easily suppressing edge fusion.
  • 90 mass% or less is more preferable, and 80 mass% or less is still more preferable.
  • the content of the liquid epoxy resin may be 100% by mass based on the total mass of the thermosetting resin.
  • the content of the liquid epoxy resin causes cracks and cracks on the film surface.
  • it is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 3% by mass or more, and more preferably 5% by mass or more, based on the total mass of the components (A) to (D). Is particularly preferable, 7% by mass or more is very preferable and 9% by mass or more is very preferable.
  • the content of the liquid epoxy resin is 20 on the basis of the total mass of the components (A) to (D) from the viewpoint of easily suppressing an excessive increase in the tackiness of the film and from the viewpoint of easily suppressing the edge fusion. % By mass or less is preferred, 15% by mass or less is more preferred, and 13% by mass or less is still more preferred.
  • (B) component: curing agent Although it does not specifically limit as a hardening
  • the curing agent (B) can be used without particular limitation as long as it is a compound having two or more functional groups that react with a glycidyl group in one molecule. Examples of such curing agents include phenol resins and acid anhydrides.
  • the curing agent a phenol resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity.
  • curing agent may be used individually by 1 type, and may use 2 or more types together.
  • phenol resin is a resin having two or more phenolic hydroxyl groups in one molecule
  • a known phenol resin can be used without particular limitation.
  • phenol resins include resins obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes in the presence of an acidic catalyst, biphenyl skeleton type phenol resins, paraxylylene-modified phenol resins, metaxylylene / paraxylylene-modified phenol resins, melamine Examples thereof include a modified phenol resin, a terpene modified phenol resin, a dicyclopentadiene modified phenol resin, a cyclopentadiene modified phenol resin, a polycyclic aromatic ring modified phenol resin, and a xylylene modified naphthol resin.
  • phenols include phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, and the like.
  • naphthols include ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and the like.
  • aldehydes include formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde and the like.
  • phenol resins include “Phenolite LF2882”, “Phenolite LF2822”, “Phenolite TD-2090”, “Phenolite TD-2149”, “Phenolite VH-4150” and “Phenolite” manufactured by DIC Corporation. "Light VH4170”, “XLC-LL” and “XLC-4L” manufactured by Mitsui Chemicals, Inc. "SN-100”, “SN-300”, “SN-395" and “SN-” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the content of the curing agent is preferably 1 to 20% by mass, preferably 2 to 15% by mass based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of excellent curability of the thermosetting resin. More preferred is 3 to 10% by mass.
  • the equivalent of the glycidyl group (epoxy equivalent) of the epoxy resin and the equivalent of the functional group (such as phenolic hydroxyl group) that reacts with the glycidyl group in the curing agent (phenolic) is preferably 0.7 to 2.0, more preferably 0.8 to 1.8 0.9 to 1.7 is more preferable.
  • the ratio is 0.7 or more or 2.0 or less, unreacted epoxy resin and / or unreacted curing agent hardly remains, and desired cured product characteristics are easily obtained.
  • At least 1 sort (s) chosen from the group which consists of an amine type hardening accelerator and a phosphorus type hardening accelerator is preferable.
  • an amine-based curing accelerator is used as the curing accelerator.
  • at least one selected from the group consisting of imidazole compounds, aliphatic amines and alicyclic amines is more preferable, and imidazole compounds are more preferable.
  • imidazole compound examples include 2-phenyl-4-methylimidazole and 1-benzyl-2-methylimidazole.
  • a hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
  • Examples of commercially available curing accelerators include “2P4MZ” and “1B2MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the content of the curing accelerator is preferably in the following range based on the total amount of the thermosetting resin (epoxy resin or the like) and the curing agent (phenol resin or the like).
  • the content of the curing accelerator is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more from the viewpoint that a sufficient curing acceleration effect can be easily obtained.
  • the content of the curing accelerator is such that curing does not easily proceed during the process (for example, coating and drying) at the time of producing the sealing film, or during the storage of the sealing film, And from a viewpoint of being easy to prevent the molding defect accompanying a raise of melt viscosity, 5 mass% or less is preferable, 3 mass% or less is more preferable, and 1.5 mass% or less is still more preferable. From these viewpoints, the content of the curing accelerator is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.3 to 1.5% by mass.
  • the inorganic filler contains aluminum oxide (such as aluminum oxide particles).
  • aluminum oxide such as aluminum oxide particles.
  • examples of commercially available inorganic fillers containing aluminum oxide include “AA-1.5” manufactured by Sumitomo Chemical Co., Ltd. and “DAW20” manufactured by Denka Co., Ltd.
  • the inorganic filler may contain a constituent material other than aluminum oxide (such as aluminum oxide particles). That is, the resin composition according to this embodiment may contain particles containing aluminum oxide and a constituent material other than aluminum oxide, and contains aluminum oxide particles and particles containing components other than aluminum oxide. You may do it.
  • a constituent material other than aluminum oxide such as aluminum oxide particles
  • the content of aluminum oxide in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass, based on the total mass of the inorganic filler, from the viewpoint of further improving the thermal conductivity improvement effect. % Or more is more preferable, and 90 mass% or more is particularly preferable.
  • the content of aluminum oxide may be 100% by mass based on the total mass of the inorganic filler.
  • constituent materials contained in conventionally known inorganic fillers can be used, and are not limited to specific ones.
  • constituent materials other than aluminum oxide include barium sulfate, barium titanate, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum hydroxide, silicon nitride, and aluminum nitride.
  • the inorganic filler containing silica include amorphous silica, crystalline silica, fused silica, and spherical silica.
  • silica As a constituent material other than aluminum oxide, it has a relatively small thermal expansion coefficient as well as a viewpoint of easily obtaining a dispersibility improving effect in a resin and a sedimentation suppressing effect in a varnish by surface modification or the like. From the viewpoint of easily obtaining desired cured product characteristics, silica is preferable. Examples of commercially available inorganic fillers containing silica include “SC2500-SXJ”, “SC5500-SXE” and “SC2050-KC” manufactured by Admatechs Co., Ltd. As the constituent material other than aluminum oxide, one type may be used alone, or two or more types may be used in combination.
  • the surface of the inorganic filler may be modified.
  • the method of surface modification is not particularly limited. Surface modification using a silane coupling agent is preferable from the viewpoint of simple treatment, rich types of functional groups, and easy provision of desired characteristics.
  • silane coupling agent examples include alkyl silane, alkoxy silane, vinyl silane, epoxy silane, amino silane, acrylic silane, methacryl silane, mercapto silane, sulfide silane, isocyanate silane, sulfur silane, styryl silane, alkyl chlorosilane, and the like.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyl.
  • the average particle diameter of the inorganic filler is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more from the viewpoint of easily suppressing the aggregation of the inorganic filler and easy dispersion of the inorganic filler. Is more preferable, and 0.5 ⁇ m or more is particularly preferable.
  • the average particle diameter of the inorganic filler is preferably 25 ⁇ m or less, more preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less from the viewpoint of easily suppressing the precipitation of the inorganic filler in the varnish and easy to produce a uniform sealing film. Is more preferable.
  • the average particle size of the inorganic filler is preferably 0.01 to 25 ⁇ m, more preferably 0.01 to 10 ⁇ m, still more preferably 0.1 to 10 ⁇ m, particularly preferably 0.3 to 5 ⁇ m, and 0 Very preferably 5 to 5 ⁇ m.
  • the average particle diameter of the inorganic filler may be 10 to 18 ⁇ m.
  • the largest average particle size is preferably 15 to 25 ⁇ m.
  • the “average particle size” is the particle size at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle size is obtained with the total volume of the particles being 100%, and the particle size distribution using the laser diffraction scattering method It can be measured with a measuring device or the like.
  • the average particle diameter of each combined inorganic filler can be confirmed from the average particle diameter of each inorganic filler at the time of mixing, and can be confirmed by measuring the particle size distribution.
  • the content of the inorganic filler (the total amount of the inorganic filler containing aluminum oxide and the inorganic filler not containing aluminum oxide) is a viewpoint of improving the thermal conductivity and the coefficient of thermal expansion with the object to be sealed. 72% by mass based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing an increase in warpage of the sealing structure (for example, an electronic component device such as a semiconductor device) due to the difference in That's it.
  • the content of the inorganic filler is the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of further improving the thermal conductivity and from the viewpoint of further suppressing the warpage of the sealing structure.
  • the content of the inorganic filler is such that the sealing film is easily cracked in the drying step when the sealing film is produced, and the fluidity is increased due to an increase in the melt viscosity of the sealing film.
  • 93% by mass or less is preferable based on the total mass of the resin composition (excluding the mass of the solvent), 90 mass% or less is more preferable, 85 mass% or less is further more preferable, 84.5 mass% or less is especially preferable, 81 mass% or less is very preferable, and 80 mass% or less is very preferable.
  • the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, and more preferably 72 to 85% based on the total mass of the resin composition (excluding the mass of the solvent). More preferably, it is more preferably from 72 to 84.5% by weight, very particularly preferably from 72.5 to 81% by weight and very particularly preferably from 73 to 80% by weight.
  • the content of the inorganic filler containing aluminum oxide (such as aluminum oxide particles) is preferably in the following range based on the total mass of the resin composition (excluding the mass of the solvent). From the viewpoint of further improving the thermal conductivity, the content of the inorganic filler containing aluminum oxide is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. The content of the inorganic filler containing aluminum oxide is preferably 85% by mass or less, more preferably 80% by mass or less, and still more preferably 75% by mass or less, from the viewpoint of ensuring sufficient embedding properties.
  • the resin composition according to the present embodiment may contain (E) a solvent or may not contain (E) a solvent.
  • a conventionally well-known organic solvent can be used as a solvent.
  • the organic solvent a solvent capable of dissolving components other than the inorganic filler is preferable, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, terpenes, halogens, esters, ketones, alcohols, aldehydes, and the like. It is done.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the solvent is selected from the group consisting of esters, ketones, and alcohols from the viewpoint of low environmental burden and the ability to easily dissolve thermosetting resins (such as epoxy resins) and curing agents (such as phenolic resins). At least one is preferred. Among these, ketones are preferable from the viewpoint of easily dissolving a thermosetting resin (such as an epoxy resin) and a curing agent (such as a phenol resin).
  • the solvent is preferably at least one selected from the group consisting of acetone, methyl ethyl ketone and methyl isobutyl ketone, from the viewpoint of low volatilization at room temperature (25 ° C.) and easy removal during drying.
  • the resin composition according to the present embodiment may contain (F) an elastomer (flexible agent) as necessary.
  • an elastomer selected from the group consisting of polybutadiene particles, styrene butadiene particles, acrylic elastomers, silicone powders, silicone oils, and silicone oligomers.
  • One type of elastomer may be used alone, or two or more types may be used in combination.
  • the average particle diameter of the elastomer When the elastomer is particulate, there is no particular limitation on the average particle diameter of the elastomer. In eWLB (Embedded Wafer-Level Ball Grid Array) applications, it is necessary to embed between semiconductor elements, so when using a sealing film for eWLB applications, the average particle size of the elastomer may be 50 ⁇ m or less. preferable. The average particle diameter of the elastomer is preferably 0.1 ⁇ m or more from the viewpoint of excellent dispersibility of the elastomer.
  • elastomers examples include “HTR280” manufactured by Nagase ChemteX Corporation. Also, some commercially available elastomer components are dispersed in advance in a liquid resin (for example, a liquid epoxy resin) instead of the elastomer alone, but can be used without any problem. Examples of such commercially available products include “MX-136” and “MX-965” manufactured by Kaneka Corporation.
  • the resin composition according to the present embodiment can further contain other additives.
  • additives include pigments, dyes, mold release agents, antioxidants, surface tension adjusting agents and the like.
  • the sealing film according to the present embodiment includes the resin composition according to the present embodiment.
  • the sealing film according to the present embodiment may be obtained by molding the resin composition according to the present embodiment into a film shape and may be formed of the resin composition according to the present embodiment.
  • the sealing film according to this embodiment can be used, for example, for sealing a semiconductor device, embedding an electronic component arranged on a printed wiring board, and the like.
  • the thickness (film thickness) of the sealing film is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more, from the viewpoint of easily suppressing in-plane thickness variation during coating. Particularly preferred.
  • the thickness of the sealing film is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less, from the viewpoint that a certain drying property can be easily obtained in the depth direction during coating. From these viewpoints, the thickness of the sealing film is preferably 20 to 250 ⁇ m, more preferably 30 to 250 ⁇ m, still more preferably 50 to 200 ⁇ m, and particularly preferably 100 to 150 ⁇ m. Further, a plurality of sealing films can be laminated to produce a sealing film having a thickness exceeding 250 ⁇ m.
  • the content of the inorganic filler in the sealing film is the total mass of the sealing film (excluding the mass of the solvent) On the other hand, the following ranges are preferable.
  • the content of the inorganic filler is preferably 72% by mass or more, more preferably 72.5% by mass or more from the viewpoint of further improving the thermal conductivity and from the viewpoint of easily suppressing the warpage of the sealing structure. More preferably, 73 mass% or more is still more preferable.
  • the content of the inorganic filler is 93% by mass from the viewpoint that the fluidity is suppressed from lowering due to the increase in the melt viscosity of the sealing film, and the object to be sealed (electronic parts, etc.) is easily sealed.
  • the following is preferable, 90% by mass or less is more preferable, 85% by mass or less is further preferable, 84.5% by mass or less is particularly preferable, 81% by mass or less is extremely preferable, and 80% by mass or less is very preferable.
  • the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, further preferably 72 to 85% by mass, particularly preferably 72 to 84.5% by mass, 72.5 to 81% by mass is very preferable, and 73 to 80% by mass is very preferable.
  • content of the solvent (organic solvent etc.) contained in the sealing film is in the following range with respect to the total mass (including the mass of the solvent) of the sealing film.
  • the content of the solvent is from the viewpoint of easily suppressing the sealing film from becoming brittle and causing problems such as cracking of the sealing film, and the minimum melt viscosity to be increased and the embedding property to be lowered. 2 mass% or more is preferable, 0.3 mass% or more is more preferable, 0.5 mass% or more is further preferable, 0.6 mass% or more is particularly preferable, and 0.7 mass% or more is extremely preferable.
  • the content of the solvent is a problem that the adhesiveness of the sealing film becomes too strong and the handleability is lowered, and a problem such as foaming due to the volatilization of the solvent (organic solvent, etc.) during thermal curing of the sealing film.
  • the content of the solvent is preferably 0.2 to 1.5% by mass, more preferably 0.3 to 1% by mass, further preferably 0.5 to 1% by mass, and 0.6 to 1%. % By weight is particularly preferred, and 0.7 to 1% by weight is very particularly preferred.
  • the sealing film according to the present embodiment can be produced as follows.
  • thermosetting resin (B) curing agent, (C) curing accelerator, (D) inorganic filler, (E) solvent, etc.) are mixed.
  • a varnish (varnish-like resin composition) is produced.
  • the mixing method is not particularly limited, and a mill, a mixer, and a stirring blade can be used.
  • a solvent (such as an organic solvent) can be used to dissolve and disperse the constituents of the resin composition, which is a material for the sealing film, to prepare a varnish, or to assist in preparing the varnish. . Most of the solvent can be removed in the drying step after coating.
  • the sealing varnish can be produced by applying the varnish thus produced to a support (film-like support etc.) and then drying by heating with hot air blowing or the like.
  • a coating (coating) method For example, coating apparatuses, such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, a die coater, can be used.
  • a polymer film, a metal foil or the like can be used as the film-like support.
  • the polymer film include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; acetylcellulose films;
  • the metal foil include copper foil and aluminum foil.
  • the thickness of the support is not particularly limited, but is preferably 2 to 200 ⁇ m from the viewpoint of excellent workability and drying properties.
  • the thickness of the support is 2 ⁇ m or more, it is easy to suppress problems such as breakage of the support during coating, bending of the support due to the weight of the varnish, and the like.
  • the thickness of the support is 200 ⁇ m or less, it is easy to suppress problems that prevent solvent drying in the varnish when hot air is blown from both the coating surface and the back surface in the drying step.
  • a protective layer for the purpose of protecting the sealing film may be disposed on the sealing film formed on the support.
  • the handleability is improved, and the problem that the sealing film sticks to the back surface of the support can be avoided when the film is wound.
  • a polymer film, a metal foil or the like can be used as the protective layer.
  • the polymer film include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; acetylcellulose films; it can.
  • the metal foil include copper foil and aluminum foil.
  • the sealing film produced as described above includes a step of placing the object to be sealed (embedded object) facing the sealing film, and heating and melting the sealing film to obtain a pressure.
  • a sealing structure e.g., a semiconductor
  • a sealing structure by obtaining a cured body of the sealing film by applying the step of embedding the object to be sealed and the step of thermally curing the sealing film having an embedding ability by heating. It can be used to manufacture an electronic component device such as a device.
  • the sealing structure which concerns on this embodiment is provided with the to-be-sealed body and the sealing part which seals the said to-be-sealed body, and the sealing part is the hardened
  • An electronic component device etc. are mentioned as a sealing structure.
  • the electronic component device includes an electronic component and a sealing portion that seals the electronic component, and the sealing portion includes a cured product of the resin composition according to the present embodiment.
  • the electronic component include a semiconductor element; a semiconductor wafer; an integrated circuit; a semiconductor device; a filter such as a SAW filter; a passive component such as a sensor.
  • the electronic component device may be a semiconductor device including a semiconductor element or a semiconductor wafer as an electronic component; a printed wiring board or the like.
  • the sealing structure according to the present embodiment may include a plurality of objects to be sealed. The plurality of objects to be sealed may be of the same type or different types.
  • FIG. 1 is a schematic cross-sectional view for explaining an embodiment of a manufacturing method of a semiconductor device which is an electronic component device as an embodiment of a manufacturing method of a sealing structure.
  • the manufacturing method according to the present embodiment includes a step (FIG. 1A) of arranging a plurality of semiconductor elements 20 side by side on a substrate 30 having a temporary fixing material 40 as an object to be sealed (a target to be embedded), and a support.
  • the sealing film 2 with the support provided with the body 1 and the sealing film 2 provided on the support 1 is opposed to the semiconductor element 20, and then the sealing film 2 is heated on the semiconductor element 20.
  • the step of embedding the semiconductor element 20 in the sealing film 2 by pressing (laminating) (FIG. 1B) and the sealing film 2 embedded with the semiconductor element 20 are cured to obtain a cured product 2a.
  • a step of obtaining (FIG. 1C).
  • the sealing film 2 is thermally cured to provide the semiconductor element 20 embedded in the cured product 2a.
  • the structure electroactive component device
  • the sealing structure may be obtained by a compression mold.
  • the laminator used in the laminating method is not particularly limited, and examples thereof include roll type and balloon type laminators.
  • the laminator may be a balloon type capable of vacuum pressurization from the viewpoint of excellent embeddability.
  • Lamination is usually performed below the softening point of the support.
  • the laminating temperature is preferably around the minimum melt viscosity of the sealing film.
  • the pressure at the time of laminating varies depending on the size, density, etc. of an object to be sealed (for example, an electronic component such as a semiconductor element).
  • the pressure during lamination may be, for example, in the range of 0.2 to 1.5 MPa, or in the range of 0.3 to 1.0 MPa.
  • the lamination time is not particularly limited, but may be 20 to 600 seconds, 30 to 300 seconds, or 40 to 120 seconds.
  • the sealing film can be cured, for example, in the air or under an inert gas.
  • the curing temperature is not particularly limited, and may be 80 to 280 ° C., 100 to 240 ° C., or 120 to 200 ° C. When the curing temperature is 80 ° C. or higher, the curing of the sealing film proceeds sufficiently, and the occurrence of defects can be suppressed. When the curing temperature is 280 ° C. or lower, the occurrence of heat damage to other materials tends to be suppressed.
  • the curing time (heating time) is not particularly limited, and may be 30 to 600 minutes, 45 to 300 minutes, or 60 to 240 minutes. When the curing time is within these ranges, curing of the sealing film proceeds sufficiently, and better production efficiency can be obtained. Moreover, you may combine several conditions for hardening conditions.
  • varnish-like epoxy resin composition varnish-like epoxy resin composition
  • sealing film film-like epoxy resin composition
  • thermosetting resin (epoxy resin) A1: Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER806, epoxy equivalent: 160 g / eq, epoxy resin which shows liquid at 25 ° C.)
  • A3 Polybutadiene elastomer particle-containing bisphenol F type epoxy resin (manufactured by Kaneka Corporation, trade name: MX-136, liquid epoxy resin content: 75 mass%, elastomer particle content: 25 mass%, epoxy equivalent: 226 g / eq, average particle diameter of elastomer particles: 0.1 ⁇ m, a component containing an epoxy resin that is liquid at 25 ° C.)
  • B1 Phenol novolac resin (manufactured by Asahi Organic Materials Co., Ltd., trade name: PAPS-PN2, phenolic hydroxyl group equivalent: 104 g / eq, phenol resin not showing liquid at 25 ° C.)
  • B2 Alkylphenol novolak resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name: ELP40, phenolic hydroxyl group equivalent: 140 g / eq)
  • D1 Aluminum oxide particles (manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5, average particle size: 1.5 ⁇ m)
  • D2 Aluminum oxide particles (Denka Co., Ltd., trade name: DAW20, average particle size: 20 ⁇ m)
  • D3 Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC2500-SXJ, phenylaminosilane treatment, average particle size: 0.5 ⁇ m)
  • D4 Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC5500-SXE, phenylaminosilane treatment, average particle size: 1.6 ⁇ m)
  • D5 Silica slurry (manufactured by Admatechs Co., Ltd., trade name: SC2050-KC, silicone oligomer treatment, average particle size: 0.5 ⁇ m, methyl isobutyl ket
  • Elastomer F1 Polymer elastomer (manufactured by Nagase ChemteX Corporation, trade name: HTR280, epoxy-modified linear elastomer)
  • Example 1 172 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 542 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was collected to prepare a varnish-like epoxy resin composition.
  • this varnish-like epoxy resin composition is coated on the following film-like support under the following conditions, and a sealing film (film-like epoxy resin composition) having a film thickness of 100 ⁇ m is supported.
  • ⁇ Coating head method Comma coater
  • ⁇ Coating and drying speed 1 m / min
  • Drying conditions temperature / furnace length: 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • -Film-like support polyethylene terephthalate film with a thickness of 38 ⁇ m
  • the surface of the sealing film was protected by disposing a protective layer (12 ⁇ m thick polyethylene terephthalate film) on the side opposite to the support in the sealing film.
  • a protective layer (12 ⁇ m thick polyethylene terephthalate film)
  • Example 2 141 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 493 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 88 g of thermosetting resin A1, 22 g of thermosetting resin A2, and 70 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 1.4 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 ⁇ m was obtained. Produced.
  • Example 3 114 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 401 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 ⁇ m was obtained. Produced.
  • Example 4 149 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 423 g of the inorganic filler D1 to the container, 104 g of the inorganic filler D3 was added, and the inorganic fillers D1 and D3 were dispersed with a stirring blade to obtain a dispersion. The average particle diameter of the inorganic fillers D1 and D3 was 1.0 ⁇ m. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution.
  • This mixed solution was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was collected to prepare a varnish-like epoxy resin composition.
  • this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 ⁇ m was obtained. Produced.
  • thermosetting resin A1 4629 g of organic solvent E1 was placed in a 10 L polyethylene container. After adding 6622 g of inorganic filler D3 to the container, the inorganic filler D3 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 680 g of thermosetting resin A1, 240 g of thermosetting resin A2, 202 g of thermosetting resin A3, 78 g of thermosetting resin A4, and 711 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 15 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed solution.
  • This mixed solution was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was collected to prepare a varnish-like epoxy resin composition.
  • this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 ⁇ m was obtained. Produced.
  • Comparative Example 3 A sealing film (film epoxy resin composition) having a film thickness of 100 ⁇ m was prepared in the same manner as in Comparative Example 1 except that the coating and drying speed of Comparative Example 1 were changed from 1 m / min to 0.5 m / min. .
  • Example 5 83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 151 g of the inorganic filler D5 to the container, 660 g of the inorganic filler D2 and 53 g of the inorganic filler D4 are added, and the inorganic fillers D2, D4, and D5 are dispersed with a stirring blade to obtain a dispersion. It was. The average particle diameter of the inorganic fillers D2, D4 and D5 was 16 ⁇ m. To this dispersion, 34 g of thermosetting resin A5, 11 g of thermosetting resin A6, and 28 g of curing agent B2 were added and stirred.
  • Example 6 83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 98 g of inorganic filler D5 to the container, add 430 g of inorganic filler D2 and 34 g of inorganic filler D4, and disperse the inorganic fillers D2, D4 and D5 with a stirring blade to obtain a dispersion. It was. The average particle diameter of the inorganic fillers D2, D4 and D5 was 18 ⁇ m. To this dispersion, 21 g of thermosetting resin A5, 7 g of thermosetting resin A6, and 17 g of curing agent B2 were added and stirred.
  • Example 7 83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 68.6 g of inorganic filler D3 to the container, add 463 g of inorganic filler D2 and 34.3 g of inorganic filler D4, and disperse inorganic fillers D2, D3, and D4 with a stirring blade. A dispersion was obtained. The average particle diameter of the inorganic fillers D2, D3 and D4 was 18 ⁇ m. To this dispersion, 18.3 g of thermosetting resin A5, 4.6 g of thermosetting resin A6, and 14.4 g of curing agent B2 were added and stirred.
  • Example 8 83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 68.6 g of inorganic filler D3 to the container, add 463 g of inorganic filler D2 and 34.3 g of inorganic filler D4, and disperse inorganic fillers D2, D3, and D4 with a stirring blade. A dispersion was obtained. The average particle diameter of the inorganic fillers D2, D3 and D4 was 18 ⁇ m. To this dispersion, 17.9 g of thermosetting resin A5, 4.5 g of thermosetting resin A6, and 14 g of curing agent B2 were added and stirred.
  • the obtained film for sealing with double-sided copper foil was cured under the following conditions to produce a cured epoxy resin body with copper foil.
  • Oven Espec Co., Ltd., trade name "SAFETY OPEN SPH-201"
  • Oven temperature 140 °C ⁇ Heating time: 120 minutes
  • the copper foil of the produced epoxy resin cured body with copper foil was removed by etching to obtain an epoxy resin cured body (cured product of sealing film).
  • the obtained cured epoxy resin was cut into 1 cm square, and the thermal diffusivity was measured using the following apparatus.
  • ⁇ Thermal diffusivity measuring device Product name “LFA447” (Xenon Flash Analyzer) manufactured by NETZSCH
  • the specific heat of the obtained cured epoxy resin was determined by differential scanning calorimetry under the following conditions. ⁇ Differential scanning calorimeter: Trade name “Q-200” manufactured by TA Instruments Japan Test conditions: 25 ° C., 10 minutes (constant) ⁇ 25-60 ° C. (10 ° C./min) ⁇ 60° C., 10 minutes (constant)
  • thermal conductivity thermal diffusivity x specific gravity x specific heat
  • thermal conductivity was evaluated based on the following evaluation criteria.
  • the results of Examples 1 to 4 are shown in Table 1.
  • the thermal conductivity of Examples 5 to 8 is equivalent to that of Examples 1 to 4 (evaluation: A).
  • the thermal conductivity of Example 5 was 2.73 W / m ⁇ K.
  • A Thermal conductivity> 2.5 W / m ⁇ K
  • B Thermal conductivity ⁇ 2.5 W / m ⁇ K
  • the obtained laminated film having a thickness of 500 ⁇ m was cured under the following conditions to prepare an epoxy resin cured body (cured product of sealing film).
  • ⁇ Oven Product name “SAFETY OPEN SPH-201” manufactured by ESPEC Corporation ⁇ Oven temperature: 140 °C ⁇ Heating time: 90 minutes
  • the obtained cured epoxy resin was cut into 1 cm square, and the thermal conductivity of the cured epoxy resin was measured by a temperature gradient method using a thermal resistivity meter. And thermal conductivity was evaluated based on the following evaluation criteria. The results are shown in Table 2. “A”: Thermal conductivity> 2.5 W / m ⁇ K “B”: Thermal conductivity ⁇ 2.5 W / m ⁇ K
  • FIG. 2 shows a layout of silicon chips in this measurement. First, as shown in FIG. 2, silicon chips (7.3 mm square silicon chip 60 and 3 mm square silicon chip 70) having a thickness of 350 ⁇ m were arranged on the SUS plate 50. Next, the laminated film was cut into a circle having a diameter of 20 cm and placed on the silicon chip.
  • the silicon chip was sealed under the following conditions using a compression mold apparatus (manufactured by Apic Yamada Co., Ltd., trade name: WCM-300) to obtain a sealed body (sealed structure).
  • a compression mold apparatus manufactured by Apic Yamada Co., Ltd., trade name: WCM-300
  • ⁇ Compression molding temperature 140 °C
  • Compression mold pressure 2.5MPa
  • Compression mold time 10 minutes
  • the inorganic filler contains aluminum oxide, and the content of the inorganic filler is that of the resin composition. It can be seen that when the total mass (excluding the mass of the solvent) is 72% by mass or more, an excellent effect can be obtained with respect to the thermal conductivity of the cured product. From Example 4 shown in Table 1, it can be seen that even when the inorganic filler contains silica, an excellent effect can be obtained regarding the thermal conductivity of the cured product.
  • the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total mass of the resin composition (excluding the mass of the solvent). ) On the basis of 72% by mass or more, it was found that an excellent effect on the thermal conductivity of the cured product was obtained and the embedding property was excellent.
  • SYMBOLS 1 Support body, 2 ... Sealing film, 2a ... Hardened

Abstract

Provided is a resin composition containing a thermosetting component and an inorganic filler, wherein the inorganic filler includes aluminum oxide, and the content of the inorganic filler is at least 72 mass%, the total mass of the resin composition (excluding the mass of a solvent) serving as a reference.

Description

樹脂組成物、硬化物、封止用フィルム及び封止構造体Resin composition, cured product, sealing film, and sealing structure
 本発明は、樹脂組成物、硬化物、封止用フィルム及び封止構造体に関する。 The present invention relates to a resin composition, a cured product, a sealing film, and a sealing structure.
 電子機器の軽薄短小化に伴って、電子部品装置(半導体装置等)の小型化及び薄型化が進んでいる。半導体素子(シリコンチップ等の半導体チップ)とほぼ同じ大きさの半導体装置を用いる形態、又は、半導体装置の上に半導体装置を積む実装形態(パッケージ・オン・パッケージ)が盛んに行われており、今後、電子部品装置の小型化及び薄型化が一段と進むと予想される。 As electronic devices become lighter, thinner and smaller, electronic component devices (semiconductor devices, etc.) are becoming smaller and thinner. A form using a semiconductor device of almost the same size as a semiconductor element (a semiconductor chip such as a silicon chip), or a mounting form (package-on-package) in which a semiconductor device is stacked on a semiconductor device has been actively performed. In the future, it is expected that electronic component devices will be further reduced in size and thickness.
 半導体素子の微細化が進展し、端子数が増加してくると、半導体素子上にすべての外部接続端子(外部接続用の端子)を設けることが難しくなる。例えば、無理に外部接続端子を設けた場合、端子間のピッチが狭くなると共に端子高さが低くなり、半導体装置を実装した後の接続信頼性の確保が難しくなる。そこで、電子部品装置の小型化及び薄型化を実現するために、新たな実装方式が多々提案されている。 As the miniaturization of semiconductor elements progresses and the number of terminals increases, it becomes difficult to provide all the external connection terminals (external connection terminals) on the semiconductor elements. For example, when the external connection terminals are forcibly provided, the pitch between the terminals is reduced and the height of the terminals is reduced, and it is difficult to ensure connection reliability after the semiconductor device is mounted. Therefore, many new mounting methods have been proposed in order to realize a reduction in size and thickness of electronic component devices.
 例えば、半導体ウエハを個片化して作製された半導体素子を、適度な間隔を有するように再配置した後、固形又は液状の樹脂(封止樹脂)を用いて半導体素子を封止し、半導体素子の外側において半導体素子を封止する封止部分上に外部接続端子を設けることができる実装方法、及び、これを用いて作製される半導体装置が提案されている(例えば、下記特許文献1~3参照)。 For example, after rearranging a semiconductor element manufactured by dividing a semiconductor wafer into pieces having an appropriate interval, the semiconductor element is sealed using a solid or liquid resin (sealing resin). A mounting method in which an external connection terminal can be provided on a sealing portion for sealing a semiconductor element outside the semiconductor device and a semiconductor device manufactured using the mounting method have been proposed (for example, Patent Documents 1 to 3 below) reference).
特許第3616615号公報Japanese Patent No. 3616615 特開2001-244372号公報JP 2001-244372 A 特開2001-127095号公報Japanese Patent Laid-Open No. 2001-127095
 しかしながら、被封止体を封止する封止部(封止樹脂の硬化物)の熱伝導率が低い場合、放熱性が悪い。そのため、低い熱伝導率は、装置の劣化の進行、装置の発火等の原因となる。この場合、被封止体上の封止部の厚み(封止厚み)を薄膜化することで放熱性を上げることが考えられる。しかしながら、例えばPoP(Package on Package)のようなパッケージ形態では、通常別々に実装しているCPUとメモリーとを積み重ねることで実装面積を縮小できるというメリットがある一方で、装置全体の厚みが増すことから放熱性の低下が懸念されやすい。そのため、封止部の厚みを薄膜化することにより放熱性を向上させることには限界がある。 However, when the thermal conductivity of the sealing part (cured product of the sealing resin) that seals the object to be sealed is low, the heat dissipation is poor. For this reason, the low thermal conductivity causes deterioration of the apparatus, ignition of the apparatus, and the like. In this case, it is conceivable to increase heat dissipation by reducing the thickness (sealing thickness) of the sealing portion on the object to be sealed. However, for example, a package form such as PoP (Package on Package) has the merit that the mounting area can be reduced by stacking the CPU and the memory that are normally mounted separately, while the thickness of the entire apparatus increases. Therefore, it is easy to worry about a decrease in heat dissipation. Therefore, there is a limit to improving heat dissipation by reducing the thickness of the sealing portion.
 本発明は、上記課題を鑑みてなされたものであり、優れた熱伝導率を有する硬化物を得ることが可能な樹脂組成物、及び、その硬化物を提供することを目的とする。また、本発明は、前記樹脂組成物を用いた封止用フィルム及び封止構造体を提供することを目的とする。 This invention is made | formed in view of the said subject, and it aims at providing the resin composition which can obtain the hardened | cured material which has the outstanding heat conductivity, and its hardened | cured material. Another object of the present invention is to provide a sealing film and a sealing structure using the resin composition.
 従来の封止用樹脂組成物(フィルム状エポキシ樹脂組成物等)の硬化物の熱伝導率は1.2W/m・K程度である。これに対し、本発明者らは、熱硬化性成分と、酸化アルミニウムを含む特定量の無機充填材と、を含有する樹脂組成物を用いることで、優れた熱伝導率を有する硬化物を得ることが可能であることを見出し、本発明に至った。 The thermal conductivity of a cured product of a conventional sealing resin composition (film epoxy resin composition or the like) is about 1.2 W / m · K. On the other hand, the present inventors obtain a cured product having excellent thermal conductivity by using a resin composition containing a thermosetting component and a specific amount of an inorganic filler containing aluminum oxide. The present invention has been found to be possible.
 本発明に係る樹脂組成物は、熱硬化性成分及び無機充填材を含有する樹脂組成物であって、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である。 The resin composition according to the present invention is a resin composition containing a thermosetting component and an inorganic filler, wherein the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total mass of the resin composition. 72% by mass or more based on (excluding the mass of the solvent).
 本発明に係る樹脂組成物によれば、優れた熱伝導率を有する硬化物を得ることが可能であり、例えば、2.5W/m・Kを超える熱伝導率(好ましくは、2.7W/m・K以上の熱伝導率)を有する硬化物を得ることができる。封止用樹脂組成物の硬化物の熱伝導率を向上させることができれば、当該樹脂組成物の硬化物を含む封止部を備える電子部品装置(半導体装置等)の放熱性が向上し、装置の劣化の進行、装置の発火等を抑制できる。特に、本発明に係る樹脂組成物によれば、厚みを増したパッケージ形態(PoP等)で課題となる放熱性を向上させることができる。本発明に係る樹脂組成物によれば、樹脂組成物の埋め込み性を確保しつつ、優れた熱伝導率を有する硬化物を得ることができる。 According to the resin composition of the present invention, it is possible to obtain a cured product having excellent thermal conductivity, for example, thermal conductivity exceeding 2.5 W / m · K (preferably 2.7 W / A cured product having a thermal conductivity of m · K or more can be obtained. If the thermal conductivity of the cured product of the sealing resin composition can be improved, the heat dissipation of an electronic component device (semiconductor device or the like) including a sealing part containing the cured product of the resin composition is improved. It is possible to suppress the progress of deterioration and ignition of the device. In particular, according to the resin composition according to the present invention, it is possible to improve heat dissipation, which is a problem in a package form (PoP or the like) having an increased thickness. According to the resin composition of the present invention, a cured product having excellent thermal conductivity can be obtained while ensuring the embedding property of the resin composition.
 前記熱硬化性成分は、熱硬化性樹脂を含んでいてもよい。前記熱硬化性樹脂は、エポキシ樹脂を含むことが好ましい。 The thermosetting component may contain a thermosetting resin. The thermosetting resin preferably contains an epoxy resin.
 前記熱硬化性成分は、硬化剤を更に含んでいてもよい。前記硬化剤は、フェノール樹脂を含むことが好ましい。 The thermosetting component may further contain a curing agent. The curing agent preferably contains a phenol resin.
 前記熱硬化性成分は、硬化促進剤を更に含んでいてもよい。前記硬化促進剤は、イミダゾール化合物を含むことが好ましい。 The thermosetting component may further contain a curing accelerator. The curing accelerator preferably contains an imidazole compound.
 25℃で液状のエポキシ樹脂の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、5質量%以上であることが好ましく、7質量%以上であることがより好ましい。 The content of the epoxy resin that is liquid at 25 ° C. is preferably 5% by mass or more and more preferably 7% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent).
 前記無機充填材の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、93質量%以下であることが好ましく、85質量%以下であることがより好ましい。 The content of the inorganic filler is preferably 93% by mass or less, and more preferably 85% by mass or less, based on the total mass of the resin composition (excluding the mass of the solvent).
 前記無機充填材の平均粒子径は、0.01~25μmであることが好ましく、0.01~10μmであることがより好ましい。 The average particle size of the inorganic filler is preferably 0.01 to 25 μm, more preferably 0.01 to 10 μm.
 前記無機充填材における酸化アルミニウムの含有量は、50質量%以上であることが好ましい。 The content of aluminum oxide in the inorganic filler is preferably 50% by mass or more.
 本発明に係る樹脂組成物は、溶剤を更に含有してもよい。 The resin composition according to the present invention may further contain a solvent.
 本発明に係る硬化物は、本発明に係る樹脂組成物の硬化物である。 The cured product according to the present invention is a cured product of the resin composition according to the present invention.
 ところで、通常、半導体素子等の電子部品の封止(パッケージ方法における封止工程)は、半導体装置等の電子部品装置を製造する際の終盤に行われることが多い。この場合の実装方法では、電子部品を封止して作製した封止構造体(封止成形物)に対して、外部接続端子を配置するための配線、及び、外部接続端子を形成する工程が実施される。 By the way, normally, sealing of electronic components such as semiconductor elements (sealing process in the packaging method) is often performed at the final stage when manufacturing an electronic component device such as a semiconductor device. In the mounting method in this case, for the sealing structure (sealed molded product) produced by sealing the electronic component, there is a step of forming the wiring for arranging the external connection terminals and the external connection terminals. To be implemented.
 従来の実装方法では、複数の電子部品(半導体素子等)を封止して得られる封止構造体をダイシングして複数の電子部品装置(半導体装置等)を得る場合がある。この場合、再配置される電子部品が多いほど、一度の工程で作製可能な電子部品装置が増えることになる。そこで、封止構造体を大きくする検討が行われている。現状は、例えば、配線形成に半導体製造装置を使用するため、封止構造体はウエハ形状に成形されており、ウエハ形状の大径化が進む傾向がある。さらに、より大判化が可能であり且つ半導体製造装置よりも安価なプリント配線板製造装置等の使用が可能となるように、封止構造体のパネル化も検討されている。 In the conventional mounting method, a plurality of electronic component devices (semiconductor devices, etc.) may be obtained by dicing a sealing structure obtained by sealing a plurality of electronic components (semiconductor elements, etc.). In this case, the more electronic components that are rearranged, the more electronic component devices that can be manufactured in a single process. In view of this, studies have been conducted to enlarge the sealing structure. At present, for example, since a semiconductor manufacturing apparatus is used for wiring formation, the sealing structure is formed into a wafer shape, and the diameter of the wafer shape tends to increase. Furthermore, the use of a sealing structure as a panel is also being studied so that a printed wiring board manufacturing apparatus or the like that can be made larger and cheaper than a semiconductor manufacturing apparatus can be used.
 電子部品の封止には、固形又は液状の樹脂封止材を金型で成形するモールド成形が使用される場合がある。例えば、ペレット状の樹脂封止材を溶融させ、金型内に樹脂を流し込むことで封止するトランスファーモールド成形が使用される場合がある。しかしながら、トランスファーモールド成形では、溶融させた樹脂を流し込んで成形するため、大面積を封止しようとする場合、未充填部が発生する可能性がある。そこで、近年、予め金型又は被封止体に樹脂封止材を供給してから成形を行うコンプレッションモールド成形が使用され始めている。コンプレッションモールド成形では、樹脂封止材を金型又は被封止体に直接供給するため、大面積の封止でも未充填部が発生しにくい利点がある。 For the sealing of electronic parts, there is a case where a mold molding in which a solid or liquid resin sealing material is molded with a mold may be used. For example, transfer molding may be used in which a pellet-shaped resin sealing material is melted and sealed by pouring the resin into a mold. However, since transfer molding is performed by pouring molten resin, when filling a large area, an unfilled portion may occur. Therefore, in recent years, compression molding has started to be performed in which molding is performed after supplying a resin sealing material to a mold or a sealed body in advance. In compression molding, since the resin sealing material is directly supplied to the mold or the object to be sealed, there is an advantage that an unfilled portion is hardly generated even when sealing a large area.
 コンプレッションモールド成形では、トランスファーモールド成形と同様に、固形又は液状の樹脂封止材が用いられる。しかしながら、被封止体が大型化した場合、液状の樹脂封止材では、液流れ等が発生し被封止体上への均一供給が困難となる場合がある。また、樹脂を被封止体上に均一に供給する必要があるため、固形の樹脂封止材としては、従来のペレット状の樹脂ではなく、顆粒又は粉体の樹脂封止材が使用される場合がある。しかしながら、顆粒又は粉体の樹脂封止材では、樹脂封止材を金型又は被封止体上に均一に供給することは難しく、また、顆粒又は粉体であるため、樹脂封止材が発塵原となり、装置又はクリーンルームの汚染が懸念される。 In compression molding, a solid or liquid resin sealing material is used as in transfer molding. However, when the encapsulated body is increased in size, a liquid resin encapsulant may cause a liquid flow or the like, and it may be difficult to uniformly supply the encapsulated body onto the encapsulated body. Further, since it is necessary to supply the resin uniformly onto the object to be sealed, a solid or resin sealing material is not a conventional pellet-shaped resin, but a granular or powder resin sealing material. There is a case. However, it is difficult to uniformly supply the resin sealing material onto the mold or the object to be sealed in the granule or powder resin sealing material, and since it is a granule or powder, the resin sealing material is It becomes a source of dust generation, and there is concern about contamination of equipment or clean rooms.
 また、モールド成形では、樹脂を金型内で成形するため、封止構造体を大型化するには、金型の大型化が必須となる。しかしながら、金型の大型化には、高い金型精度が求められることから技術面での難易度が上がると共に、金型の製造コストが大幅に増加する。 Also, in molding, since the resin is molded in the mold, it is essential to increase the size of the mold in order to increase the size of the sealing structure. However, increasing the size of the mold requires high mold accuracy, which increases the technical difficulty and greatly increases the manufacturing cost of the mold.
 これに対し、本発明に係る樹脂組成物は、被封止体を封止する封止用フィルムとして、フィルム状であってもよい。本発明に係る封止用フィルムは、本発明に係る樹脂組成物を含む。この場合、樹脂の被封止体上への均一供給及び発塵の低減が可能である。また、モールド成形のみならず、金型(高圧力用の金型等)を必要としない成形方法(ラミネート、プレス等)による封止が可能な埋め込み能を得ることができる。 On the other hand, the resin composition according to the present invention may be in the form of a film as a sealing film for sealing an object to be sealed. The sealing film according to the present invention includes the resin composition according to the present invention. In this case, it is possible to uniformly supply the resin onto the object to be sealed and reduce dust generation. In addition, it is possible to obtain an embedding ability capable of sealing not only by molding but also by a molding method (laminate, press, etc.) that does not require a mold (such as a mold for high pressure).
 本発明に係る封止用フィルムにおいて溶剤の含有量は、0.2~1.5質量%であることが好ましい。被封止体(例えば、半導体素子等の電子部品)の埋め込みに重要なフィルム状の樹脂組成物の最低溶融粘度は、溶剤(有機溶剤等)の含有量が多いほど低下する。これは、溶剤がフィルム状の樹脂組成物の流動性を高めるためと考えられる。また、適度な量の溶剤は、フィルム状の樹脂組成物に粘りを与え、フィルム状の支持体からの剥離、フィルム状の樹脂組成物自体の割れ等を防止しやすい。これらの効果は、溶剤が0.2~1.5質量%であるときに、他の不具合を生じることなく最大限発揮しやすい。 In the sealing film according to the present invention, the content of the solvent is preferably 0.2 to 1.5% by mass. The minimum melt viscosity of a film-like resin composition important for embedding an object to be sealed (for example, an electronic component such as a semiconductor element) decreases as the content of a solvent (such as an organic solvent) increases. This is considered because a solvent improves the fluidity | liquidity of a film-form resin composition. Further, an appropriate amount of the solvent gives the film-like resin composition stickiness and easily prevents peeling from the film-like support, cracking of the film-like resin composition itself, and the like. These effects are easily exerted to the maximum when the solvent is 0.2 to 1.5% by mass without causing other problems.
 本発明に係る封止用フィルムの厚さは、20~250μmであることが好ましい。 The thickness of the sealing film according to the present invention is preferably 20 to 250 μm.
 本発明に係る封止構造体は、被封止体と、当該被封止体を封止する封止部と、を備え、前記封止部が、本発明に係る樹脂組成物の硬化物を含む。前記被封止体は、電子部品であってもよい。 The sealing structure which concerns on this invention is equipped with the to-be-sealed body and the sealing part which seals the said to-be-sealed body, The said sealing part is the hardened | cured material of the resin composition which concerns on this invention. Including. The sealed object may be an electronic component.
 本発明によれば、優れた熱伝導率を有する硬化物を得ることが可能な樹脂組成物、及び、その硬化物を提供することができる。また、本発明によれば、前記樹脂組成物を用いた封止用フィルム及び封止構造体を提供することができる。 According to the present invention, it is possible to provide a resin composition capable of obtaining a cured product having excellent thermal conductivity, and a cured product thereof. Moreover, according to this invention, the film for sealing and the sealing structure using the said resin composition can be provided.
封止構造体の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating one Embodiment of the manufacturing method of a sealing structure. 実施例で埋め込み性を評価するために用いたシリコンチップの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the silicon chip used in order to evaluate the embedding property in the Example.
 本明細書中において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書中に例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を併用してもよい。本明細書中において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
 「液状エポキシ樹脂」は、25℃で液状のエポキシ樹脂である。「25℃で液状」とは、E型粘度計で測定した25℃における粘度が400Pa・s以下であることを指す。 “Liquid epoxy resin” is an epoxy resin that is liquid at 25 ° C. “Liquid at 25 ° C.” means that the viscosity at 25 ° C. measured with an E-type viscometer is 400 Pa · s or less.
 以下、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
<樹脂組成物及び硬化物>
 本実施形態に係る樹脂組成物は、熱硬化性成分及び無機充填材を含有する樹脂組成物である。熱硬化性成分としては、(A)熱硬化性樹脂(硬化剤に該当する化合物を除く)、(B)硬化剤、(C)硬化促進剤等が挙げられる。熱硬化性成分は、硬化剤及び/又は硬化促進剤を含むことなく、熱硬化性樹脂を含んでいてもよい。本実施形態に係る樹脂組成物は、熱硬化性成分に加えて(D)無機充填材を含有しており、(D)無機充填材は、酸化アルミニウムを含んでいる。本実施形態に係る樹脂組成物は、ワニス状であってもよく、フィルム状(封止用フィルム)であってもよい。本実施形態に係る硬化物は、本実施形態に係る樹脂組成物の硬化物である。
<Resin composition and cured product>
The resin composition according to this embodiment is a resin composition containing a thermosetting component and an inorganic filler. Examples of the thermosetting component include (A) thermosetting resins (excluding compounds corresponding to curing agents), (B) curing agents, and (C) curing accelerators. The thermosetting component may contain a thermosetting resin without containing a curing agent and / or a curing accelerator. The resin composition according to the present embodiment contains (D) an inorganic filler in addition to the thermosetting component, and (D) the inorganic filler contains aluminum oxide. The resin composition according to the present embodiment may be in the form of a varnish or a film (a sealing film). The cured product according to the present embodiment is a cured product of the resin composition according to the present embodiment.
(熱硬化性成分)
[(A)成分:熱硬化性樹脂]
 熱硬化性樹脂としては、エポキシ樹脂、フェノキシ樹脂、シアネート樹脂、熱硬化性ポリイミド、メラミン樹脂、尿素樹脂、不飽和ポリエステル、アルキド樹脂、ポリウレタン等が挙げられる。熱硬化性樹脂としては、優れた熱伝導率を有する硬化物が得られやすい観点から、エポキシ樹脂が好ましい。エポキシ樹脂としては、25℃で液状のエポキシ樹脂、及び、25℃で液状ではないエポキシ樹脂からなる群より選ばれる少なくとも1種を用いることができる。
(Thermosetting component)
[(A) component: thermosetting resin]
Examples of the thermosetting resin include epoxy resin, phenoxy resin, cyanate resin, thermosetting polyimide, melamine resin, urea resin, unsaturated polyester, alkyd resin, polyurethane and the like. As the thermosetting resin, an epoxy resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. As the epoxy resin, at least one selected from the group consisting of an epoxy resin that is liquid at 25 ° C. and an epoxy resin that is not liquid at 25 ° C. can be used.
 エポキシ樹脂は、1分子中に2個以上のグリシジル基を有する樹脂であれば特に制限なく用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールG型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールS型エポキシ樹脂(ヘキサンジオールビスフェノールSジグリシジルエーテル等)、ビスフェノールP型エポキシ樹脂、ビスフェノールPH型エポキシ樹脂、ビスフェノールTMC型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、フェノールノボラック型エポキシ樹脂(オルトクレゾールノボラック型エポキシ樹脂等)、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビキシレノール型エポキシ樹脂(ビキシレノールジグリシジルエーテル等)、水添ビスフェノールA型エポキシ樹脂(水添ビスフェノールAグリシジルエーテル等)、これらの樹脂の二塩基酸変性ジグリシジルエーテル型エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 The epoxy resin can be used without particular limitation as long as it is a resin having two or more glycidyl groups in one molecule. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol AF type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, and bisphenol. F type epoxy resin, bisphenol G type epoxy resin, bisphenol M type epoxy resin, bisphenol S type epoxy resin (hexanediol bisphenol S diglycidyl ether, etc.), bisphenol P type epoxy resin, bisphenol PH type epoxy resin, bisphenol TMC type epoxy resin Bisphenol Z type epoxy resin, phenol novolak type epoxy resin (orthocresol novolak type epoxy resin, etc.), biff Nyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bixylenol type epoxy resin (bixylenol diglycidyl ether, etc.), hydrogenated bisphenol A type epoxy resin (hydrogenated bisphenol A glycidyl ether, etc.), these Examples of the resin include dibasic acid-modified diglycidyl ether type epoxy resins and aliphatic epoxy resins. An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
 液状エポキシ樹脂としては、ビスフェノールA型のグリシジルエーテル、ビスフェノールAD型のグリシジルエーテル、ビスフェノールS型のグリシジルエーテル、ビスフェノールF型のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型又は4官能型のグリシジルアミン等が挙げられる。 Examples of liquid epoxy resins include bisphenol A type glycidyl ether, bisphenol AD type glycidyl ether, bisphenol S type glycidyl ether, bisphenol F type glycidyl ether, water-added bisphenol A type glycidyl ether, and ethylene oxide adduct bisphenol A type. Examples thereof include glycidyl ether, propylene oxide adduct bisphenol A-type glycidyl ether, naphthalene resin glycidyl ether, trifunctional or tetrafunctional glycidylamine, and the like.
 市販のエポキシ樹脂としては、DIC株式会社製の「EXA-4700」(4官能ナフタレン型エポキシ樹脂)、「エピクロンHP-4032」及び「EXA-4750」(ナフタレン骨格含有多官能固形エポキシ樹脂)、日本化薬株式会社製の「NC-7000」(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬株式会社製の「EPPN-502H」(トリスフェノールエポキシ樹脂)等の、フェノール類と、フェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC株式会社製の「エピクロンHP-7200H」(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬株式会社製の「NC-3000H」(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;DIC株式会社製の「エピクロンN-660」、「エピクロンN-690」、「エピクロンN-740」(フェノールノボラック型エポキシ樹脂)及び「N500P-1」(オルトクレゾールノボラック型エポキシ樹脂)、日本化薬株式会社製の「EOCN-104S」等のノボラック型エポキシ樹脂;日産化学工業株式会社製の「TEPIC」等のトリス(2,3-エポキシプロピル)イソシアヌレート;DIC株式会社製の「エピクロン860」、「エピクロン900-IM」、「エピクロンEXA―4816」及び「エピクロンEXA-4822」、旭チバ株式会社製の「アラルダイトAER280」、東都化成株式会社(新日鉄住金化学株式会社)製の「エポトートYD-134」、「YD-8125」及び「YDF8170」、ジャパンエポキシレジン株式会社(三菱化学株式会社)製の「jER834」、「jER872」、「jER807」、「jER815」、「jER825」、「jER827」、「jER828」、「jER1001」、「jER1004」、「jER1007」及び「jER1009」、住友化学株式会社製の「ELA-134」、ダウケミカル社製の「DER-330」、「DER-301」及び「DER-361」等のビスフェノールA型エポキシ樹脂;ジャパンエポキシレジン株式会社(三菱化学株式会社)製の「jER806」等のビスフェノールF型エポキシ樹脂;ナガセケムテックス株式会社製の「ナデコールDLC301」等の脂肪族エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 Commercially available epoxy resins include “EXA-4700” (tetrafunctional naphthalene type epoxy resin), “Epiclon HP-4032” and “EXA-4750” (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by DIC Corporation, Japan. Naphthalene type epoxy resins such as “NC-7000” (Naphthalene skeleton-containing polyfunctional solid epoxy resin) manufactured by Kayaku Co., Ltd .; phenols such as “EPPN-502H” (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. And epoxidized products of condensation products of aromatic aldehydes having phenolic hydroxyl groups (Trisphenol type epoxy resin); “Epiclon HP-7200H” (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC Corporation, etc. Dicyclopentadiene aralkyl epoxy resin; Biphenyl aralkyl type epoxy resins such as “NC-3000H” (bifunctional skeleton-containing polyfunctional solid epoxy resin) manufactured by Kayaku Co., Ltd .; “Epicron N-660”, “Epicron N-690”, “Epicron” manufactured by DIC Corporation Novolak type epoxy resins such as “N-740” (phenol novolac type epoxy resin) and “N500P-1” (orthocresol novolak type epoxy resin), “EOCN-104S” manufactured by Nippon Kayaku Co., Ltd .; Nissan Chemical Industries, Ltd. Tris (2,3-epoxypropyl) isocyanurate such as “TEPIC” manufactured by DIC Corporation; “Epicron 860”, “Epicron 900-IM”, “Epicron EXA-4816” and “Epicron EXA-4822” manufactured by DIC Corporation, "Araldite AER280" manufactured by Asahi Ciba Co., Ltd. "Epototo YD-134", "YD-8125" and "YDF8170" manufactured by Toto Kasei Co., Ltd. (Nippon Steel & Sumikin Chemical Co., Ltd.), "jER834" and "jER872" manufactured by Japan Epoxy Resin Co., Ltd. (Mitsubishi Chemical Corporation) ”,“ JER807 ”,“ jER815 ”,“ jER825 ”,“ jER827 ”,“ jER828 ”,“ jER1001 ”,“ jER1004 ”,“ jER1007 ”and“ jER1009 ”,“ ELA-134 ”manufactured by Sumitomo Chemical Co., Ltd. Bisphenol A type epoxy resins such as “DER-330”, “DER-301” and “DER-361” manufactured by Dow Chemical Company; bisphenol F such as “jER806” manufactured by Japan Epoxy Resin Co., Ltd. (Mitsubishi Chemical Corporation) Type epoxy resin; Nagase ChemteX Corporation Examples thereof include aliphatic epoxy resins such as “Nadecor DLC301” manufactured by the manufacturer. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
 熱硬化性樹脂の含有量は、優れた流動性が得られやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、1質量%以上が好ましく、3質量%以上がより好ましく、4質量%以上が更に好ましく、4質量%以上が特に好ましく、5質量%以上が極めて好ましく、10質量%以上が非常に好ましく、15質量%以上がより一層好ましい。熱硬化性樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。 The content of the thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily obtaining excellent fluidity. Preferably, 4% by mass or more is more preferable, 4% by mass or more is particularly preferable, 5% by mass or more is extremely preferable, 10% by mass or more is very preferable, and 15% by mass or more is even more preferable. The content of the thermosetting resin is preferably 30% by mass or less, based on the total mass of the resin composition (excluding the mass of the solvent), from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface, and 25% by mass. % Or less is more preferable, and 20% by mass or less is still more preferable.
 樹脂組成物がエポキシ樹脂を含有するエポキシ樹脂組成物である場合、エポキシ樹脂の含有量は、優れた熱伝導率を有する硬化物が得られやすい観点から、熱硬化性樹脂の総質量を基準として、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。エポキシ樹脂の含有量は、熱硬化性樹脂の総質量を基準として100質量%であってもよい。 When the resin composition is an epoxy resin composition containing an epoxy resin, the content of the epoxy resin is based on the total mass of the thermosetting resin from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. 50 mass% or more is preferable, 80 mass% or more is more preferable, and 90 mass% or more is still more preferable. The content of the epoxy resin may be 100% by mass based on the total mass of the thermosetting resin.
 液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上が特に好ましく、7質量%以上が極めて好ましく、9質量%以上が非常に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、13質量%以下が更に好ましい。 The content of the liquid epoxy resin is preferably 0.5% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. More preferably 3% by weight or more, still more preferably 5% by weight or more, particularly preferably 7% by weight or more, and very preferably 9% by weight or more. The content of the liquid epoxy resin is based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing the increase in the tackiness of the film and from the viewpoint of easily suppressing edge fusion. 20 mass% or less is preferable, 15 mass% or less is more preferable, and 13 mass% or less is still more preferable.
 液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、熱硬化性樹脂の総質量を基準として、20質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、熱硬化性樹脂の総質量を基準として、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下が更に好ましい。液状エポキシ樹脂の含有量は、熱硬化性樹脂の総質量を基準として100質量%であってもよい。 The content of the liquid epoxy resin is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing the occurrence of cracks and cracks on the film surface. More preferably, it is more than mass%. The content of the liquid epoxy resin is 95% by mass or less based on the total mass of the thermosetting resin, from the viewpoint of easily suppressing an excessive increase in the tackiness of the film and from the viewpoint of easily suppressing edge fusion. Preferably, 90 mass% or less is more preferable, and 80 mass% or less is still more preferable. The content of the liquid epoxy resin may be 100% by mass based on the total mass of the thermosetting resin.
 樹脂組成物が(A)成分(エポキシ樹脂等)、(B)成分、(C)成分及び(D)成分を含有する場合、液状エポキシ樹脂の含有量は、フィルム表面の割れ及びひびの発生を抑制しやすい観点から、(A)~(D)成分の総質量を基準として、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上が特に好ましく、7質量%以上が極めて好ましく、9質量%以上が非常に好ましい。液状エポキシ樹脂の含有量は、フィルムのタック性が過剰に高まることを抑制しやすい観点、及び、エッジフュージョンを抑制しやすい観点から、(A)~(D)成分の総質量を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、13質量%以下が更に好ましい。 When the resin composition contains the component (A) (epoxy resin, etc.), the component (B), the component (C) and the component (D), the content of the liquid epoxy resin causes cracks and cracks on the film surface. From the viewpoint of easy suppression, it is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 3% by mass or more, and more preferably 5% by mass or more, based on the total mass of the components (A) to (D). Is particularly preferable, 7% by mass or more is very preferable and 9% by mass or more is very preferable. The content of the liquid epoxy resin is 20 on the basis of the total mass of the components (A) to (D) from the viewpoint of easily suppressing an excessive increase in the tackiness of the film and from the viewpoint of easily suppressing the edge fusion. % By mass or less is preferred, 15% by mass or less is more preferred, and 13% by mass or less is still more preferred.
[(B)成分:硬化剤]
 硬化剤としては、特に限定されないが、フェノール系硬化剤(フェノール樹脂等)、酸無水物系硬化剤、活性エステル系硬化剤、シアネートエステル系硬化剤などが挙げられる。(A)成分がエポキシ樹脂を含む場合、(B)硬化剤としては、グリシジル基と反応する官能基を1分子中に2個以上有する化合物であれば特に制限なく用いることができる。このような硬化剤としては、フェノール樹脂、酸無水物等が挙げられる。硬化剤としては、優れた熱伝導率を有する硬化物が得られやすい観点から、フェノール樹脂が好ましい。硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[(B) component: curing agent]
Although it does not specifically limit as a hardening | curing agent, A phenol type hardening | curing agent (phenol resin etc.), an acid anhydride type hardening | curing agent, an active ester type hardening | curing agent, a cyanate ester type hardening | curing agent etc. are mentioned. When the component (A) contains an epoxy resin, the curing agent (B) can be used without particular limitation as long as it is a compound having two or more functional groups that react with a glycidyl group in one molecule. Examples of such curing agents include phenol resins and acid anhydrides. As the curing agent, a phenol resin is preferable from the viewpoint of easily obtaining a cured product having excellent thermal conductivity. A hardening | curing agent may be used individually by 1 type, and may use 2 or more types together.
 フェノール樹脂は、1分子中に2個以上のフェノール性水酸基を有する樹脂であれば、特に制限なく公知のフェノール樹脂を用いることができる。フェノール樹脂としては、フェノール類及び/又はナフトール類とアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られる樹脂、ビフェニル骨格型フェノール樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン・パラキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、キシリレン変性ナフトール樹脂等が挙げられる。フェノール類としては、フェノール、クレゾール、キシレノール、レゾルシノール、カテコール、ビスフェノールA、ビスフェノールF等が挙げられる。ナフトール類としては、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等が挙げられる。アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等が挙げられる。 As long as the phenol resin is a resin having two or more phenolic hydroxyl groups in one molecule, a known phenol resin can be used without particular limitation. Examples of phenol resins include resins obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes in the presence of an acidic catalyst, biphenyl skeleton type phenol resins, paraxylylene-modified phenol resins, metaxylylene / paraxylylene-modified phenol resins, melamine Examples thereof include a modified phenol resin, a terpene modified phenol resin, a dicyclopentadiene modified phenol resin, a cyclopentadiene modified phenol resin, a polycyclic aromatic ring modified phenol resin, and a xylylene modified naphthol resin. Examples of phenols include phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, and the like. Examples of naphthols include α-naphthol, β-naphthol, dihydroxynaphthalene and the like. Examples of aldehydes include formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde and the like.
 市販のフェノール樹脂としては、DIC株式会社製の「フェノライトLF2882」、「フェノライトLF2822」、「フェノライトTD-2090」、「フェノライトTD-2149」、「フェノライトVH-4150」及び「フェノライトVH4170」、三井化学株式会社製の「XLC-LL」及び「XLC-4L」、新日鉄住金化学株式会社製の「SN-100」、「SN-300」、「SN-395」及び「SN-400」、エア・ウォーター株式会社製の「SKレジンHE910」、旭有機材工業株式会社製の「PAPS-PN2」(分子量分布集約型ノボラック樹脂)、群栄化学工業株式会社製の「ELP40」等が挙げられる。 Commercially available phenol resins include “Phenolite LF2882”, “Phenolite LF2822”, “Phenolite TD-2090”, “Phenolite TD-2149”, “Phenolite VH-4150” and “Phenolite” manufactured by DIC Corporation. "Light VH4170", "XLC-LL" and "XLC-4L" manufactured by Mitsui Chemicals, Inc. "SN-100", "SN-300", "SN-395" and "SN-" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. 400 ”,“ SK Resin HE910 ”manufactured by Air Water Co., Ltd.,“ PAPS-PN2 ”(molecular weight distribution intensive novolak resin) manufactured by Asahi Organic Materials Co., Ltd.,“ ELP40 ”manufactured by Gunei Chemical Industry Co., Ltd. Is mentioned.
 硬化剤の含有量は、熱硬化性樹脂の硬化性に優れる観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、1~20質量%が好ましく、2~15質量%がより好ましく、3~10質量%が更に好ましい。 The content of the curing agent is preferably 1 to 20% by mass, preferably 2 to 15% by mass based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of excellent curability of the thermosetting resin. More preferred is 3 to 10% by mass.
 エポキシ樹脂と硬化剤(フェノール樹脂等)との配合比率として、エポキシ樹脂のグリシジル基の当量(エポキシ当量)と、硬化剤におけるグリシジル基と反応する官能基(フェノール性水酸基等)の当量(フェノール性水酸基当量等)との比率(エポキシ樹脂のグリシジル基の当量/硬化剤におけるグリシジル基と反応する官能基の当量)は、0.7~2.0が好ましく、0.8~1.8がより好ましく、0.9~1.7が更に好ましい。前記比率が0.7以上又は2.0以下である場合、未反応のエポキシ樹脂及び/又は未反応の硬化剤が残存しにくく、所望の硬化物特性が得られやすい。 As the blending ratio of the epoxy resin and the curing agent (such as phenol resin), the equivalent of the glycidyl group (epoxy equivalent) of the epoxy resin and the equivalent of the functional group (such as phenolic hydroxyl group) that reacts with the glycidyl group in the curing agent (phenolic) (Equivalent of hydroxyl group equivalent) (equivalent of glycidyl group of epoxy resin / equivalent of functional group reacting with glycidyl group in curing agent) is preferably 0.7 to 2.0, more preferably 0.8 to 1.8 0.9 to 1.7 is more preferable. When the ratio is 0.7 or more or 2.0 or less, unreacted epoxy resin and / or unreacted curing agent hardly remains, and desired cured product characteristics are easily obtained.
[(C)成分:硬化促進剤]
 硬化促進剤としては、特に制限なく用いることができるが、アミン系の硬化促進剤及びリン系の硬化促進剤からなる群より選ばれる少なくとも1種が好ましい。硬化促進剤としては、特に、優れた熱伝導率を有する硬化物が得られやすい観点、誘導体が豊富である観点、及び、所望の活性温度が得られやすい観点から、アミン系の硬化促進剤が好ましく、イミダゾール化合物、脂肪族アミン及び脂環族アミンからなる群より選ばれる少なくとも1種がより好ましく、イミダゾール化合物が更に好ましい。イミダゾール化合物としては、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール等が挙げられる。硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。硬化促進剤の市販品としては、四国化成工業株式会社製の「2P4MZ」及び「1B2MZ」等が挙げられる。
[(C) component: curing accelerator]
Although it can use without a restriction | limiting especially as a hardening accelerator, At least 1 sort (s) chosen from the group which consists of an amine type hardening accelerator and a phosphorus type hardening accelerator is preferable. As the curing accelerator, in particular, from the viewpoint of easily obtaining a cured product having excellent thermal conductivity, the viewpoint that a derivative is abundant, and the viewpoint that a desired active temperature is easily obtained, an amine-based curing accelerator is used. Preferably, at least one selected from the group consisting of imidazole compounds, aliphatic amines and alicyclic amines is more preferable, and imidazole compounds are more preferable. Examples of the imidazole compound include 2-phenyl-4-methylimidazole and 1-benzyl-2-methylimidazole. A hardening accelerator may be used individually by 1 type, and may use 2 or more types together. Examples of commercially available curing accelerators include “2P4MZ” and “1B2MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.
 硬化促進剤の含有量は、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)の合計量を基準として、下記の範囲が好ましい。硬化促進剤の含有量は、充分な硬化促進効果が得られやすい観点から、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましい。硬化促進剤の含有量は、封止用フィルムを製造する際の工程(例えば塗工及び乾燥)中、又は、封止用フィルムの保管中に硬化が進行しにくく、封止用フィルムの割れ、及び、溶融粘度の上昇に伴う成形不良を防止しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1.5質量%以下が更に好ましい。これらの観点から、硬化促進剤の含有量は、0.01~5質量%が好ましく、0.1~3質量%がより好ましく、0.3~1.5質量%が更に好ましい。 The content of the curing accelerator is preferably in the following range based on the total amount of the thermosetting resin (epoxy resin or the like) and the curing agent (phenol resin or the like). The content of the curing accelerator is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more from the viewpoint that a sufficient curing acceleration effect can be easily obtained. The content of the curing accelerator is such that curing does not easily proceed during the process (for example, coating and drying) at the time of producing the sealing film, or during the storage of the sealing film, And from a viewpoint of being easy to prevent the molding defect accompanying a raise of melt viscosity, 5 mass% or less is preferable, 3 mass% or less is more preferable, and 1.5 mass% or less is still more preferable. From these viewpoints, the content of the curing accelerator is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.3 to 1.5% by mass.
((D)成分:無機充填材)
 無機充填材は、酸化アルミニウム(酸化アルミニウム粒子等)を含む。酸化アルミニウムを含む無機充填材の市販品としては、住友化学株式会社製の「AA-1.5」、デンカ株式会社製の「DAW20」等が挙げられる。
((D) component: inorganic filler)
The inorganic filler contains aluminum oxide (such as aluminum oxide particles). Examples of commercially available inorganic fillers containing aluminum oxide include “AA-1.5” manufactured by Sumitomo Chemical Co., Ltd. and “DAW20” manufactured by Denka Co., Ltd.
 無機充填材は、酸化アルミニウム(酸化アルミニウム粒子等)以外の構成材料を含んでいてもよい。すなわち、本実施形態に係る樹脂組成物は、酸化アルミニウムと、酸化アルミニウム以外の構成材料とを含む粒子を含有していてもよく、酸化アルミニウム粒子と、酸化アルミニウム以外の成分を含む粒子とを含有していてもよい。 The inorganic filler may contain a constituent material other than aluminum oxide (such as aluminum oxide particles). That is, the resin composition according to this embodiment may contain particles containing aluminum oxide and a constituent material other than aluminum oxide, and contains aluminum oxide particles and particles containing components other than aluminum oxide. You may do it.
 無機充填材における酸化アルミニウムの含有量は、熱伝導率の向上効果に更に優れる観点から、無機充填材の総質量を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましい。酸化アルミニウムの含有量は、無機充填材の総質量を基準として100質量%であってもよい。 The content of aluminum oxide in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass, based on the total mass of the inorganic filler, from the viewpoint of further improving the thermal conductivity improvement effect. % Or more is more preferable, and 90 mass% or more is particularly preferable. The content of aluminum oxide may be 100% by mass based on the total mass of the inorganic filler.
 酸化アルミニウム以外の構成材料としては、従来公知の無機充填材に含まれる構成材料が使用でき、特定のものに限定されない。酸化アルミニウム以外の構成材料としては、硫酸バリウム、チタン酸バリウム、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等が挙げられる。シリカを含む無機充填材としては、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ等が挙げられる。酸化アルミニウム以外の構成材料としては、表面改質等により、樹脂中の分散性の向上効果、及び、ワニス中での沈降抑制効果が得られやすい観点、並びに、比較的小さい熱膨張率を有することから所望の硬化物特性が得られやすい観点から、シリカが好ましい。シリカを含む無機充填材の市販品としては、株式会社アドマテックス製の「SC2500-SXJ」、「SC5500-SXE」及び「SC2050-KC」等が挙げられる。酸化アルミニウム以外の構成材料は、1種を単独で用いてもよく、2種以上を併用してもよい。 As the constituent material other than aluminum oxide, constituent materials contained in conventionally known inorganic fillers can be used, and are not limited to specific ones. Examples of constituent materials other than aluminum oxide include barium sulfate, barium titanate, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum hydroxide, silicon nitride, and aluminum nitride. Examples of the inorganic filler containing silica include amorphous silica, crystalline silica, fused silica, and spherical silica. As a constituent material other than aluminum oxide, it has a relatively small thermal expansion coefficient as well as a viewpoint of easily obtaining a dispersibility improving effect in a resin and a sedimentation suppressing effect in a varnish by surface modification or the like. From the viewpoint of easily obtaining desired cured product characteristics, silica is preferable. Examples of commercially available inorganic fillers containing silica include “SC2500-SXJ”, “SC5500-SXE” and “SC2050-KC” manufactured by Admatechs Co., Ltd. As the constituent material other than aluminum oxide, one type may be used alone, or two or more types may be used in combination.
 無機充填材は、表面改質されていてもよい。表面改質の手法は特に限定されない。処理が簡便であり、官能基の種類が豊富であり、所望の特性を付与しやすい観点から、シランカップリング剤を用いた表面改質が好ましい。 The surface of the inorganic filler may be modified. The method of surface modification is not particularly limited. Surface modification using a silane coupling agent is preferable from the viewpoint of simple treatment, rich types of functional groups, and easy provision of desired characteristics.
 シランカップリング剤としては、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、アルキルクロロシラン等が挙げられる。 Examples of the silane coupling agent include alkyl silane, alkoxy silane, vinyl silane, epoxy silane, amino silane, acrylic silane, methacryl silane, mercapto silane, sulfide silane, isocyanate silane, sulfur silane, styryl silane, alkyl chlorosilane, and the like.
 シランカップリング剤の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルシラノール、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン、アミノシラン(フェニルアミノシラン等)等が挙げられる。シランカップリング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the silane coupling agent include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyl. Trimethoxysilane, diisobutyldimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-dodecylmethoxysilane, phenyltrimethoxysilane, Diphenyldimethoxysilane, triphenylsilanol, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, -Octyldimethylchlorosilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyl Dimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldi Ethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, vinyltriacetoxysilane, vinyltrimethoxysilane, vinyltriet Sisilane, vinyltriisopropoxysilane, allyltrimethoxysilane, diallyldimethylsilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-mercaptopropyltrimethoxy Examples thereof include silane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, N- (1,3-dimethylbutylidene) -3-aminopropyltriethoxysilane, aminosilane (phenylaminosilane and the like), and the like. A silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
 無機充填材の平均粒子径は、無機充填材の凝集を抑制しやすく、無機充填材の分散が容易である観点から、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.3μm以上が更に好ましく、0.5μm以上が特に好ましい。無機充填材の平均粒子径は、ワニス中で無機充填材が沈降することが抑制されやすく、均質な封止用フィルムを作製しやすい観点から、25μm以下が好ましく、10μm以下がより好ましく、5μm以下が更に好ましい。これらの観点から、無機充填材の平均粒子径は、0.01~25μmが好ましく、0.01~10μmがより好ましく、0.1~10μmが更に好ましく、0.3~5μmが特に好ましく、0.5~5μmが極めて好ましい。無機充填材の平均粒子径は、10~18μmであってもよい。 The average particle diameter of the inorganic filler is preferably 0.01 μm or more, more preferably 0.1 μm or more, and more preferably 0.3 μm or more from the viewpoint of easily suppressing the aggregation of the inorganic filler and easy dispersion of the inorganic filler. Is more preferable, and 0.5 μm or more is particularly preferable. The average particle diameter of the inorganic filler is preferably 25 μm or less, more preferably 10 μm or less, and more preferably 5 μm or less from the viewpoint of easily suppressing the precipitation of the inorganic filler in the varnish and easy to produce a uniform sealing film. Is more preferable. From these viewpoints, the average particle size of the inorganic filler is preferably 0.01 to 25 μm, more preferably 0.01 to 10 μm, still more preferably 0.1 to 10 μm, particularly preferably 0.3 to 5 μm, and 0 Very preferably 5 to 5 μm. The average particle diameter of the inorganic filler may be 10 to 18 μm.
 樹脂組成物の流動性に優れる観点から、互いに異なる平均粒子径を有する複数の無機充填材を組み合わせて用いることが好ましい。無機充填材の組み合わせの中でも、最も大きい平均粒子径が15~25μmであることが好ましい。平均粒子径が15~25μmの無機充填材と、平均粒子径が0.5~2.5μmの無機充填材と、平均粒子径が0.1~1.0μmの無機充填材と、を組み合わせて用いることが好ましい。 From the viewpoint of excellent fluidity of the resin composition, it is preferable to use a combination of a plurality of inorganic fillers having different average particle diameters. Among the combinations of inorganic fillers, the largest average particle size is preferably 15 to 25 μm. A combination of an inorganic filler having an average particle diameter of 15 to 25 μm, an inorganic filler having an average particle diameter of 0.5 to 2.5 μm, and an inorganic filler having an average particle diameter of 0.1 to 1.0 μm. It is preferable to use it.
 「平均粒子径」とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径であり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。組み合わせた各無機充填材の平均粒子径は、混合時の各無機充填材の平均粒子径から確認できると共に、粒度分布を測定することで確認することができる。 The “average particle size” is the particle size at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle size is obtained with the total volume of the particles being 100%, and the particle size distribution using the laser diffraction scattering method It can be measured with a measuring device or the like. The average particle diameter of each combined inorganic filler can be confirmed from the average particle diameter of each inorganic filler at the time of mixing, and can be confirmed by measuring the particle size distribution.
 無機充填材の含有量(酸化アルミニウムを含む無機充填材、及び、酸化アルミニウムを含まない無機充填材の合計量)は、熱伝導率を向上させる観点、及び、被封止体との熱膨張率の差によって封止構造体(例えば、半導体装置等の電子部品装置)の反りが大きくなることが抑制されやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である。無機充填材の含有量は、熱伝導率を更に向上させる観点、及び、封止構造体の反りが大きくなることが更に抑制されやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、72.5質量%以上が好ましく、73質量%以上がより好ましい。無機充填材の含有量は、封止用フィルムの作製の際の乾燥工程において封止用フィルムが割れてしまうことが抑制されやすい観点、及び、封止用フィルムの溶融粘度の上昇により流動性が低下することが抑制され、被封止体(電子部品等)を充分に封止しやすい観点から、樹脂組成物の総質量(溶剤の質量を除く)を基準として、93質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、84.5質量%以下が特に好ましく、81質量%以下が極めて好ましく、80質量%以下が非常に好ましい。これらの観点から、無機充填材の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、72~93質量%が好ましく、72~90質量%がより好ましく、72~85質量%が更に好ましく、72~84.5質量%が特に好ましく、72.5~81質量%が極めて好ましく、73~80質量%が非常に好ましい。 The content of the inorganic filler (the total amount of the inorganic filler containing aluminum oxide and the inorganic filler not containing aluminum oxide) is a viewpoint of improving the thermal conductivity and the coefficient of thermal expansion with the object to be sealed. 72% by mass based on the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of easily suppressing an increase in warpage of the sealing structure (for example, an electronic component device such as a semiconductor device) due to the difference in That's it. The content of the inorganic filler is the total mass of the resin composition (excluding the mass of the solvent) from the viewpoint of further improving the thermal conductivity and from the viewpoint of further suppressing the warpage of the sealing structure. Is preferably at least 72.5% by mass, more preferably at least 73% by mass. The content of the inorganic filler is such that the sealing film is easily cracked in the drying step when the sealing film is produced, and the fluidity is increased due to an increase in the melt viscosity of the sealing film. From the viewpoint of suppressing the reduction and easily sealing the object to be sealed (such as an electronic component), 93% by mass or less is preferable based on the total mass of the resin composition (excluding the mass of the solvent), 90 mass% or less is more preferable, 85 mass% or less is further more preferable, 84.5 mass% or less is especially preferable, 81 mass% or less is very preferable, and 80 mass% or less is very preferable. From these viewpoints, the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, and more preferably 72 to 85% based on the total mass of the resin composition (excluding the mass of the solvent). More preferably, it is more preferably from 72 to 84.5% by weight, very particularly preferably from 72.5 to 81% by weight and very particularly preferably from 73 to 80% by weight.
 酸化アルミニウムを含む無機充填材(酸化アルミニウム粒子等)の含有量は、樹脂組成物の総質量(溶剤の質量を除く)を基準として、下記の範囲であることが好ましい。酸化アルミニウムを含む無機充填材の含有量は、熱伝導率を更に向上させる観点から、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。酸化アルミニウムを含む無機充填材の含有量は、充分な埋め込み性を確保しやすい観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましい。 The content of the inorganic filler containing aluminum oxide (such as aluminum oxide particles) is preferably in the following range based on the total mass of the resin composition (excluding the mass of the solvent). From the viewpoint of further improving the thermal conductivity, the content of the inorganic filler containing aluminum oxide is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. The content of the inorganic filler containing aluminum oxide is preferably 85% by mass or less, more preferably 80% by mass or less, and still more preferably 75% by mass or less, from the viewpoint of ensuring sufficient embedding properties.
((E)成分:溶剤)
 本実施形態に係る樹脂組成物は、(E)溶剤を含有してもよく、(E)溶剤を含有していなくてもよい。溶剤としては、従来公知の有機溶剤を使用できる。有機溶剤としては、無機充填材以外の成分を溶解できる溶剤が好ましく、脂肪族炭化水素類、芳香族炭化水素類、テルペン類、ハロゲン類、エステル類、ケトン類、アルコール類、アルデヒド類等が挙げられる。溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
((E) component: solvent)
The resin composition according to the present embodiment may contain (E) a solvent or may not contain (E) a solvent. A conventionally well-known organic solvent can be used as a solvent. As the organic solvent, a solvent capable of dissolving components other than the inorganic filler is preferable, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, terpenes, halogens, esters, ketones, alcohols, aldehydes, and the like. It is done. A solvent may be used individually by 1 type and may use 2 or more types together.
 溶剤としては、環境負荷が小さい観点、並びに、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)を溶解しやすい観点から、エステル類、ケトン類及びアルコール類からなる群より選ばれる少なくとも1種が好ましい。その中でも、熱硬化性樹脂(エポキシ樹脂等)及び硬化剤(フェノール樹脂等)を特に溶解しやすい観点から、ケトン類が好ましい。溶剤としては、室温(25℃)での揮発が少なく、乾燥時に除去しやすい観点から、アセトン、メチルエチルケトン及びメチルイソブチルケトンからなる群より選ばれる少なくとも1種が好ましい。 The solvent is selected from the group consisting of esters, ketones, and alcohols from the viewpoint of low environmental burden and the ability to easily dissolve thermosetting resins (such as epoxy resins) and curing agents (such as phenolic resins). At least one is preferred. Among these, ketones are preferable from the viewpoint of easily dissolving a thermosetting resin (such as an epoxy resin) and a curing agent (such as a phenol resin). The solvent is preferably at least one selected from the group consisting of acetone, methyl ethyl ketone and methyl isobutyl ketone, from the viewpoint of low volatilization at room temperature (25 ° C.) and easy removal during drying.
((F)成分:エラストマー)
 本実施形態に係る樹脂組成物は、必要に応じて、(F)エラストマー(可とう剤)を含有してもよい。エラストマーは、分散性及び溶解性に優れる観点から、ポリブタジエン粒子、スチレンブタジエン粒子、アクリル系エラストマー、シリコーンパウダ、シリコーンオイル及びシリコーンオリゴマからなる群より選ばれる少なくとも1種を用いることが好ましい。エラストマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
((F) component: elastomer)
The resin composition according to the present embodiment may contain (F) an elastomer (flexible agent) as necessary. From the viewpoint of excellent dispersibility and solubility, it is preferable to use at least one elastomer selected from the group consisting of polybutadiene particles, styrene butadiene particles, acrylic elastomers, silicone powders, silicone oils, and silicone oligomers. One type of elastomer may be used alone, or two or more types may be used in combination.
 エラストマーが粒子状である場合、エラストマーの平均粒子径に特に制限はない。eWLB(Embedded Wafer-Level Ball Grid Array)用途では、半導体素子間を埋め込む必要があることから、封止用フィルムをeWLB用途に用いる場合には、エラストマーの平均粒子径は、50μm以下であることが好ましい。エラストマーの平均粒子径は、エラストマーの分散性に優れる観点から、0.1μm以上であることが好ましい。 When the elastomer is particulate, there is no particular limitation on the average particle diameter of the elastomer. In eWLB (Embedded Wafer-Level Ball Grid Array) applications, it is necessary to embed between semiconductor elements, so when using a sealing film for eWLB applications, the average particle size of the elastomer may be 50 μm or less. preferable. The average particle diameter of the elastomer is preferably 0.1 μm or more from the viewpoint of excellent dispersibility of the elastomer.
 エラストマーの市販品としては、ナガセケムテックス株式会社製の「HTR280」等が挙げられる。また、市販のエラストマー成分の中には、エラストマー単体ではなく、予め液状樹脂(例えば、液状エポキシ樹脂)中に分散しているものもあるが、問題なく用いることができる。このような市販品としては、株式会社カネカ製の「MX-136」及び「MX-965」等が挙げられる。 Examples of commercially available elastomers include “HTR280” manufactured by Nagase ChemteX Corporation. Also, some commercially available elastomer components are dispersed in advance in a liquid resin (for example, a liquid epoxy resin) instead of the elastomer alone, but can be used without any problem. Examples of such commercially available products include “MX-136” and “MX-965” manufactured by Kaneka Corporation.
(その他の成分)
 本実施形態に係る樹脂組成物は、他の添加剤を更に含有することができる。このような添加剤の具体例としては、顔料、染料、離型剤、酸化防止剤、表面張力調整剤等を挙げることができる。
(Other ingredients)
The resin composition according to the present embodiment can further contain other additives. Specific examples of such additives include pigments, dyes, mold release agents, antioxidants, surface tension adjusting agents and the like.
<封止用フィルム>
 本実施形態に係る封止用フィルムは、本実施形態に係る樹脂組成物を含む。本実施形態に係る封止用フィルムは、本実施形態に係る樹脂組成物をフィルム状に成形して得られ、本実施形態に係る樹脂組成物からなる態様であってもよい。本実施形態に係る封止用フィルムは、例えば、半導体デバイスの封止、プリント配線板に配置された電子部品の埋め込み等に用いることができる。
<Sealing film>
The sealing film according to the present embodiment includes the resin composition according to the present embodiment. The sealing film according to the present embodiment may be obtained by molding the resin composition according to the present embodiment into a film shape and may be formed of the resin composition according to the present embodiment. The sealing film according to this embodiment can be used, for example, for sealing a semiconductor device, embedding an electronic component arranged on a printed wiring board, and the like.
 封止用フィルムの厚さ(膜厚)は、塗工時における面内の厚みのバラつきを抑制しやすい観点から、20μm以上が好ましく、30μm以上がより好ましく、50μm以上が更に好ましく、100μm以上が特に好ましい。封止用フィルムの厚さは、塗工時に深さ方向で一定の乾燥性が得られやすい観点から、250μm以下が好ましく、200μm以下がより好ましく、150μm以下が更に好ましい。これらの観点から、封止用フィルムの厚さは、20~250μmが好ましく、30~250μmがより好ましく、50~200μmが更に好ましく、100~150μmが特に好ましい。また、封止用フィルムを複数枚積層して、厚さ250μmを超える封止用フィルムを製造することもできる。 The thickness (film thickness) of the sealing film is preferably 20 μm or more, more preferably 30 μm or more, further preferably 50 μm or more, and more preferably 100 μm or more, from the viewpoint of easily suppressing in-plane thickness variation during coating. Particularly preferred. The thickness of the sealing film is preferably 250 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less, from the viewpoint that a certain drying property can be easily obtained in the depth direction during coating. From these viewpoints, the thickness of the sealing film is preferably 20 to 250 μm, more preferably 30 to 250 μm, still more preferably 50 to 200 μm, and particularly preferably 100 to 150 μm. Further, a plurality of sealing films can be laminated to produce a sealing film having a thickness exceeding 250 μm.
 封止用フィルムにおける無機充填材(酸化アルミニウムを含む無機充填材、及び、酸化アルミニウムを含まない無機充填材の合計量)の含有量は、封止用フィルムの総質量(溶剤の質量を除く)に対して、下記の範囲であることが好ましい。無機充填材の含有量は、熱伝導率を更に向上させる観点、及び、封止構造体の反りが大きくなることが抑制されやすい観点から、72質量%以上が好ましく、72.5質量%以上がより好ましく、73質量%以上が更に好ましい。無機充填材の含有量は、封止用フィルムの溶融粘度の上昇により流動性が低下することが抑制され、被封止体(電子部品等)を充分に封止しやすい観点から、93質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、84.5質量%以下が特に好ましく、81質量%以下が極めて好ましく、80質量%以下が非常に好ましい。これらの観点から、無機充填材の含有量は、72~93質量%が好ましく、72~90質量%がより好ましく、72~85質量%が更に好ましく、72~84.5質量%が特に好ましく、72.5~81質量%が極めて好ましく、73~80質量%が非常に好ましい。 The content of the inorganic filler in the sealing film (total amount of inorganic filler including aluminum oxide and inorganic filler not including aluminum oxide) is the total mass of the sealing film (excluding the mass of the solvent) On the other hand, the following ranges are preferable. The content of the inorganic filler is preferably 72% by mass or more, more preferably 72.5% by mass or more from the viewpoint of further improving the thermal conductivity and from the viewpoint of easily suppressing the warpage of the sealing structure. More preferably, 73 mass% or more is still more preferable. The content of the inorganic filler is 93% by mass from the viewpoint that the fluidity is suppressed from lowering due to the increase in the melt viscosity of the sealing film, and the object to be sealed (electronic parts, etc.) is easily sealed. The following is preferable, 90% by mass or less is more preferable, 85% by mass or less is further preferable, 84.5% by mass or less is particularly preferable, 81% by mass or less is extremely preferable, and 80% by mass or less is very preferable. From these viewpoints, the content of the inorganic filler is preferably 72 to 93% by mass, more preferably 72 to 90% by mass, further preferably 72 to 85% by mass, particularly preferably 72 to 84.5% by mass, 72.5 to 81% by mass is very preferable, and 73 to 80% by mass is very preferable.
 封止用フィルムに含まれる溶剤(有機溶剤等)の含有量は、封止用フィルムの総質量(溶剤の質量を含む)に対して、下記の範囲であることが好ましい。溶剤の含有量は、封止用フィルムが脆くなり封止用フィルムの割れ等の不具合が生じること、及び、最低溶融粘度が高くなり、埋め込み性が低下することを抑制しやすい観点から、0.2質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましく、0.6質量%以上が特に好ましく、0.7質量%以上が極めて好ましい。溶剤の含有量は、封止用フィルムの粘着性が強くなりすぎて取扱い性が低下する不具合、及び、封止用フィルムの熱硬化時における溶剤(有機溶剤等)の揮発に伴う発泡等の不具合を抑制しやすい観点から、1.5質量%以下が好ましく、1質量%以下がより好ましい。これらの観点から、溶剤の含有量は、0.2~1.5質量%が好ましく、0.3~1質量%がより好ましく、0.5~1質量%が更に好ましく、0.6~1質量%が特に好ましく、0.7~1質量%が極めて好ましい。 It is preferable that content of the solvent (organic solvent etc.) contained in the sealing film is in the following range with respect to the total mass (including the mass of the solvent) of the sealing film. The content of the solvent is from the viewpoint of easily suppressing the sealing film from becoming brittle and causing problems such as cracking of the sealing film, and the minimum melt viscosity to be increased and the embedding property to be lowered. 2 mass% or more is preferable, 0.3 mass% or more is more preferable, 0.5 mass% or more is further preferable, 0.6 mass% or more is particularly preferable, and 0.7 mass% or more is extremely preferable. The content of the solvent is a problem that the adhesiveness of the sealing film becomes too strong and the handleability is lowered, and a problem such as foaming due to the volatilization of the solvent (organic solvent, etc.) during thermal curing of the sealing film. Is preferably 1.5% by mass or less, more preferably 1% by mass or less. From these viewpoints, the content of the solvent is preferably 0.2 to 1.5% by mass, more preferably 0.3 to 1% by mass, further preferably 0.5 to 1% by mass, and 0.6 to 1%. % By weight is particularly preferred, and 0.7 to 1% by weight is very particularly preferred.
 本実施形態に係る封止用フィルムは、具体的には、次のようにして作製することができる。 Specifically, the sealing film according to the present embodiment can be produced as follows.
 まず、本実施形態に係る樹脂組成物の構成成分((A)熱硬化性樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填材、(E)溶剤等)を混合することでワニス(ワニス状樹脂組成物)を作製する。混合方法は、特に限定されず、ミル、ミキサ、攪拌羽根を使用できる。溶剤(有機溶剤等)は、封止用フィルムの材料である樹脂組成物の構成成分を溶解及び分散してワニスを調製するため、又は、ワニスを調製することを補助するために用いることができる。塗工後の乾燥工程で溶剤の大部分を除去することができる。 First, the components of the resin composition according to the present embodiment ((A) thermosetting resin, (B) curing agent, (C) curing accelerator, (D) inorganic filler, (E) solvent, etc.) are mixed. By doing so, a varnish (varnish-like resin composition) is produced. The mixing method is not particularly limited, and a mill, a mixer, and a stirring blade can be used. A solvent (such as an organic solvent) can be used to dissolve and disperse the constituents of the resin composition, which is a material for the sealing film, to prepare a varnish, or to assist in preparing the varnish. . Most of the solvent can be removed in the drying step after coating.
 このようにして作製したワニスを、支持体(フィルム状の支持体等)に塗布した後、熱風吹き付け等によって加熱乾燥することで、封止用フィルムを作製することができる。塗布(コーティング)方法としては、特に限定されないが、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。 The sealing varnish can be produced by applying the varnish thus produced to a support (film-like support etc.) and then drying by heating with hot air blowing or the like. Although it does not specifically limit as a coating (coating) method, For example, coating apparatuses, such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, a die coater, can be used.
 フィルム状の支持体としては、高分子フィルム、金属箔等を用いることができる。高分子フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリ塩化ビニルフィルム等のビニルフィルム;ポリエチレンテレフタレートフィルム等のポリエステルフィルム;ポリカーボネートフィルム;アセチルセルロースフィルム;テトラフルオロエチレンフィルムなどが挙げられる。金属箔としては、銅箔、アルミニウム箔等が挙げられる。 As the film-like support, a polymer film, a metal foil or the like can be used. Examples of the polymer film include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; acetylcellulose films; Examples of the metal foil include copper foil and aluminum foil.
 支持体の厚さは、特に限定されるものではないが、作業性及び乾燥性に優れる観点から、2~200μmが好ましい。支持体の厚さが2μm以上である場合、塗工時に支持体が切れる不具合、ワニスの重さで支持体がたわむ不具合等を抑制しやすい。支持体の厚さが200μm以下である場合、乾燥工程において、塗工面及び裏面の両面から熱風が吹きつけられる場合に、ワニス中の溶剤乾燥が妨げられる不具合を抑制しやすい。 The thickness of the support is not particularly limited, but is preferably 2 to 200 μm from the viewpoint of excellent workability and drying properties. When the thickness of the support is 2 μm or more, it is easy to suppress problems such as breakage of the support during coating, bending of the support due to the weight of the varnish, and the like. When the thickness of the support is 200 μm or less, it is easy to suppress problems that prevent solvent drying in the varnish when hot air is blown from both the coating surface and the back surface in the drying step.
 支持体上に形成された封止用フィルム上に、封止用フィルムの保護を目的とした保護層を配置してもよい。保護層を形成することで、取扱い性が向上し、巻き取りした場合に、支持体の裏面に封止用フィルムが張り付くといった不具合を回避することができる。 A protective layer for the purpose of protecting the sealing film may be disposed on the sealing film formed on the support. By forming the protective layer, the handleability is improved, and the problem that the sealing film sticks to the back surface of the support can be avoided when the film is wound.
 保護層としては、高分子フィルム、金属箔等を用いることができる。高分子フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリ塩化ビニルフィルム等のビニルフィルム;ポリエチレンテレフタレートフィルム等のポリエステルフィルム;ポリカーボネートフィルム;アセチルセルロースフィルム;テトラフルオロエチレンフィルムなどを例示することができる。金属箔としては、銅箔、アルミニウム箔等を例示することができる。 As the protective layer, a polymer film, a metal foil or the like can be used. Examples of the polymer film include polyolefin films such as polyethylene films and polypropylene films; vinyl films such as polyvinyl chloride films; polyester films such as polyethylene terephthalate films; polycarbonate films; acetylcellulose films; it can. Examples of the metal foil include copper foil and aluminum foil.
 上述のように作製した封止用フィルムは、封止用フィルムに対して被封止体(被埋め込み対象)を向かい合った状態に配置する工程と、封止用フィルムを加熱して溶融させ、圧力を加えて被封止体を埋め込む工程と、加熱により、埋め込み能を有する封止用フィルムを熱硬化させる工程と、によって封止用フィルムの硬化体を得ることにより封止構造体(例えば、半導体装置等の電子部品装置)を製造することに用いることができる。 The sealing film produced as described above includes a step of placing the object to be sealed (embedded object) facing the sealing film, and heating and melting the sealing film to obtain a pressure. A sealing structure (e.g., a semiconductor) by obtaining a cured body of the sealing film by applying the step of embedding the object to be sealed and the step of thermally curing the sealing film having an embedding ability by heating. It can be used to manufacture an electronic component device such as a device.
<封止構造体>
 本実施形態に係る封止構造体は、被封止体と、当該被封止体を封止する封止部と、を備え、封止部が、本実施形態に係る樹脂組成物の硬化物(本実施形態に係る封止用フィルムに含まれる樹脂組成物の硬化物等)を含む。封止構造体としては、電子部品装置等が挙げられる。電子部品装置は、電子部品と、当該電子部品を封止する封止部と、を備え、封止部が、本実施形態に係る樹脂組成物の硬化物を含む。電子部品としては、半導体素子;半導体ウエハ;集積回路;半導体デバイス;SAWフィルタ等のフィルタ;センサ等の受動部品などが挙げられる。半導体ウエハを個片化することにより得られる半導体素子を用いてもよい。電子部品装置は、電子部品として半導体素子又は半導体ウエハを備える半導体装置;プリント配線板等であってもよい。本実施形態に係る封止構造体は、複数の被封止体を備えていてもよい。複数の被封止体は、互いに同一の種類であってもよく、互いに異なる種類であってもよい。
<Sealing structure>
The sealing structure which concerns on this embodiment is provided with the to-be-sealed body and the sealing part which seals the said to-be-sealed body, and the sealing part is the hardened | cured material of the resin composition which concerns on this embodiment. (A cured product of the resin composition contained in the sealing film according to the present embodiment). An electronic component device etc. are mentioned as a sealing structure. The electronic component device includes an electronic component and a sealing portion that seals the electronic component, and the sealing portion includes a cured product of the resin composition according to the present embodiment. Examples of the electronic component include a semiconductor element; a semiconductor wafer; an integrated circuit; a semiconductor device; a filter such as a SAW filter; a passive component such as a sensor. A semiconductor element obtained by separating a semiconductor wafer may be used. The electronic component device may be a semiconductor device including a semiconductor element or a semiconductor wafer as an electronic component; a printed wiring board or the like. The sealing structure according to the present embodiment may include a plurality of objects to be sealed. The plurality of objects to be sealed may be of the same type or different types.
 次に、本実施形態に係る封止用フィルムを用いた電子部品装置の製造方法について説明する。ここでは、電子部品が半導体素子である場合について説明する。図1は、封止構造体の製造方法の一実施形態として、電子部品装置である半導体装置の製造方法の一実施形態を説明するための模式断面図である。本実施形態に係る製造方法は、被封止体(被埋め込み対象)として、仮固定材40を有する基板30上に複数の半導体素子20を並べて配置する工程(図1(a))と、支持体1と、支持体1上に設けられた封止用フィルム2と、を備える支持体付き封止用フィルム10を半導体素子20に対向させた後、半導体素子20に封止用フィルム2を加熱下で押圧(ラミネート)することにより、封止用フィルム2に半導体素子20を埋め込む工程(図1(b))と、半導体素子20が埋め込まれた封止用フィルム2を硬化させて硬化物2aを得る工程(図1(c))と、を備える。本実施形態においては、ラミネート法によって半導体素子20を封止用フィルム2によって封止した後、封止用フィルム2を熱硬化することで、硬化物2aに埋め込まれた半導体素子20を備える封止構造体(電子部品装置)が得られているが、封止構造体をコンプレッションモールドにより得てもよい。 Next, a method for manufacturing an electronic component device using the sealing film according to this embodiment will be described. Here, a case where the electronic component is a semiconductor element will be described. FIG. 1 is a schematic cross-sectional view for explaining an embodiment of a manufacturing method of a semiconductor device which is an electronic component device as an embodiment of a manufacturing method of a sealing structure. The manufacturing method according to the present embodiment includes a step (FIG. 1A) of arranging a plurality of semiconductor elements 20 side by side on a substrate 30 having a temporary fixing material 40 as an object to be sealed (a target to be embedded), and a support. The sealing film 2 with the support provided with the body 1 and the sealing film 2 provided on the support 1 is opposed to the semiconductor element 20, and then the sealing film 2 is heated on the semiconductor element 20. The step of embedding the semiconductor element 20 in the sealing film 2 by pressing (laminating) (FIG. 1B) and the sealing film 2 embedded with the semiconductor element 20 are cured to obtain a cured product 2a. And a step of obtaining (FIG. 1C). In the present embodiment, after sealing the semiconductor element 20 with the sealing film 2 by a laminating method, the sealing film 2 is thermally cured to provide the semiconductor element 20 embedded in the cured product 2a. Although the structure (electronic component device) is obtained, the sealing structure may be obtained by a compression mold.
 ラミネート法に使用するラミネータとしては、特に限定されるものではないが、例えば、ロール式、バルーン式等のラミネータが挙げられる。ラミネータは、埋め込み性に優れる観点から、真空加圧が可能なバルーン式であってもよい。 The laminator used in the laminating method is not particularly limited, and examples thereof include roll type and balloon type laminators. The laminator may be a balloon type capable of vacuum pressurization from the viewpoint of excellent embeddability.
 ラミネートは、通常、支持体の軟化点以下で行う。ラミネート温度は、封止用フィルムの最低溶融粘度付近であることが好ましい。ラミネート時の圧力は、埋め込む被封止体(例えば、半導体素子等の電子部品)のサイズ、密集度等によって異なる。ラミネート時の圧力は、例えば、0.2~1.5MPaの範囲であってもよく、0.3~1.0MPaの範囲であってもよい。ラミネート時間は、特に限定されるものではないが、20~600秒であってもよく、30~300秒であってもよく、40~120秒であってもよい。 Lamination is usually performed below the softening point of the support. The laminating temperature is preferably around the minimum melt viscosity of the sealing film. The pressure at the time of laminating varies depending on the size, density, etc. of an object to be sealed (for example, an electronic component such as a semiconductor element). The pressure during lamination may be, for example, in the range of 0.2 to 1.5 MPa, or in the range of 0.3 to 1.0 MPa. The lamination time is not particularly limited, but may be 20 to 600 seconds, 30 to 300 seconds, or 40 to 120 seconds.
 封止用フィルムの硬化は、例えば、大気下又は不活性ガス下で行うことができる。硬化温度(加熱温度)は、特に限定されるものではなく、80~280℃であってもよく、100~240℃であってもよく、120~200℃であってもよい。硬化温度が80℃以上であれば、封止用フィルムの硬化が充分に進み、不具合の発生を抑制することができる。硬化温度が280℃以下である場合は、他の材料への熱害の発生を抑制することができる傾向にある。硬化時間(加熱時間)は、特に限定されるものではなく、30~600分であってもよく、45~300分であってもよく、60~240分であってもよい。硬化時間がこれらの範囲である場合、封止用フィルムの硬化が充分に進み、より良好な生産効率が得られる。また、硬化条件は、複数の条件を組み合わせてもよい。 The sealing film can be cured, for example, in the air or under an inert gas. The curing temperature (heating temperature) is not particularly limited, and may be 80 to 280 ° C., 100 to 240 ° C., or 120 to 200 ° C. When the curing temperature is 80 ° C. or higher, the curing of the sealing film proceeds sufficiently, and the occurrence of defects can be suppressed. When the curing temperature is 280 ° C. or lower, the occurrence of heat damage to other materials tends to be suppressed. The curing time (heating time) is not particularly limited, and may be 30 to 600 minutes, 45 to 300 minutes, or 60 to 240 minutes. When the curing time is within these ranges, curing of the sealing film proceeds sufficiently, and better production efficiency can be obtained. Moreover, you may combine several conditions for hardening conditions.
 以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。 The preferred embodiments of the present invention have been described above, but the present invention is not necessarily limited to the above-described embodiments, and modifications may be made as appropriate without departing from the spirit of the present invention.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 封止用フィルム(フィルム状エポキシ樹脂組成物)を得るためのワニス状エポキシ樹脂組成物(ワニス)の成分として以下の成分を用いた。 The following components were used as components of a varnish-like epoxy resin composition (varnish) for obtaining a sealing film (film-like epoxy resin composition).
(A)成分;熱硬化性樹脂(エポキシ樹脂)
 A1:ビスフェノールF型エポキシ樹脂(三菱化学株式会社製、商品名:jER806、エポキシ当量:160g/eq、25℃にて液状を示すエポキシ樹脂)
 A2:ナフタレン骨格含有多官能固形エポキシ樹脂(DIC株式会社製、商品名:EXA-4750、エポキシ当量:182g/eq、25℃にて液状を示さないエポキシ樹脂)
 A3:ポリブタジエンエラストマー粒子含有ビスフェノールF型エポキシ樹脂(株式会社カネカ製、商品名:MX-136、液状エポキシ樹脂の含有量:75質量%、エラストマー粒子の含有量:25質量%、エポキシ当量:226g/eq、エラストマー粒子の平均粒子径:0.1μm、25℃にて液状を示すエポキシ樹脂を含む成分)
 A4:シリコーンエラストマー粒子含有エポキシ樹脂(ビスフェノールF型液状エポキシ樹脂及びビスフェノールA型液状エポキシ樹脂の混合物。株式会社カネカ製、商品名:MX-965、液状エポキシ樹脂の含有量:75質量%、エラストマー粒子の含有量:25質量%、25℃にて液状を示すエポキシ樹脂を含む成分)
 A5:オルトクレゾールノボラック型エポキシ樹脂(DIC株式会社製、商品名:N500P-1、エポキシ当量:201g/eq、25℃にて液状を示さないエポキシ樹脂)
 A6:柔軟性骨格含有ビスフェノールA型エポキシ樹脂(DIC株式会社製、商品名:エピクロンEXA-4816、エポキシ当量:403g/eq、25℃にて液状を示すエポキシ樹脂)
(A) component; thermosetting resin (epoxy resin)
A1: Bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: jER806, epoxy equivalent: 160 g / eq, epoxy resin which shows liquid at 25 ° C.)
A2: Naphthalene skeleton-containing polyfunctional solid epoxy resin (manufactured by DIC Corporation, trade name: EXA-4750, epoxy equivalent: 182 g / eq, epoxy resin not showing liquid at 25 ° C.)
A3: Polybutadiene elastomer particle-containing bisphenol F type epoxy resin (manufactured by Kaneka Corporation, trade name: MX-136, liquid epoxy resin content: 75 mass%, elastomer particle content: 25 mass%, epoxy equivalent: 226 g / eq, average particle diameter of elastomer particles: 0.1 μm, a component containing an epoxy resin that is liquid at 25 ° C.)
A4: Epoxy resin containing silicone elastomer particles (mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, manufactured by Kaneka Corporation, trade name: MX-965, liquid epoxy resin content: 75% by mass, elastomer particles Content: 25 mass%, a component containing an epoxy resin that is liquid at 25 ° C.)
A5: Ortho-cresol novolac type epoxy resin (manufactured by DIC Corporation, trade name: N500P-1, epoxy equivalent: 201 g / eq, epoxy resin not showing liquid at 25 ° C.)
A6: Flexible skeleton-containing bisphenol A type epoxy resin (manufactured by DIC Corporation, trade name: Epicron EXA-4816, epoxy equivalent: 403 g / eq, epoxy resin that shows liquid at 25 ° C.)
(B)成分;硬化剤(フェノール樹脂)
 B1:フェノールノボラック樹脂(旭有機材工業株式会社製、商品名:PAPS-PN2、フェノール性水酸基当量:104g/eq、25℃にて液状を示さないフェノール樹脂)
 B2:アルキルフェノールノボラック型樹脂(群栄化学工業株式会社製、商品名:ELP40、フェノール性水酸基当量:140g/eq)
(B) component; curing agent (phenolic resin)
B1: Phenol novolac resin (manufactured by Asahi Organic Materials Co., Ltd., trade name: PAPS-PN2, phenolic hydroxyl group equivalent: 104 g / eq, phenol resin not showing liquid at 25 ° C.)
B2: Alkylphenol novolak resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name: ELP40, phenolic hydroxyl group equivalent: 140 g / eq)
(C)成分;硬化促進剤
 C1:2-フェニル-4-メチルイミダゾール(四国化成工業株式会社製、商品名:2P4MZ)
 C2:1-ベンジル-2-メチルイミダゾール(四国化成工業株式会社製、商品名:1B2MZ)
Component (C): Curing accelerator C1: 2-phenyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2P4MZ)
C2: 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 1B2MZ)
(D)成分;無機充填材
 D1:酸化アルミニウム粒子(住友化学株式会社製、商品名:AA-1.5、平均粒子径:1.5μm)
 D2:酸化アルミニウム粒子(デンカ株式会社製、商品名:DAW20、平均粒子径:20μm)
 D3:シリカ粒子(株式会社アドマテックス製、商品名:SC2500-SXJ、フェニルアミノシラン処理、平均粒子径:0.5μm)
 D4:シリカ粒子(株式会社アドマテックス製、商品名:SC5500-SXE、フェニルアミノシラン処理、平均粒子径:1.6μm)
 D5:シリカスラリ(株式会社アドマテックス製、商品名:SC2050-KC、シリコーンオリゴマ処理、平均粒子径:0.5μm、メチルイソブチルケトン溶剤カット(シリカフィラの含有量:70質量%))
Component (D): Inorganic filler D1: Aluminum oxide particles (manufactured by Sumitomo Chemical Co., Ltd., trade name: AA-1.5, average particle size: 1.5 μm)
D2: Aluminum oxide particles (Denka Co., Ltd., trade name: DAW20, average particle size: 20 μm)
D3: Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC2500-SXJ, phenylaminosilane treatment, average particle size: 0.5 μm)
D4: Silica particles (manufactured by Admatechs Co., Ltd., trade name: SC5500-SXE, phenylaminosilane treatment, average particle size: 1.6 μm)
D5: Silica slurry (manufactured by Admatechs Co., Ltd., trade name: SC2050-KC, silicone oligomer treatment, average particle size: 0.5 μm, methyl isobutyl ketone solvent cut (silica filler content: 70 mass%))
(E)成分;溶剤
 E1:メチルエチルケトン
(E) component; solvent E1: methyl ethyl ketone
(F)成分;エラストマー
 F1:高分子エラストマー(ナガセケムテックス株式会社製、商品名:HTR280、エポキシ変性線状エラストマー)
Component (F): Elastomer F1: Polymer elastomer (manufactured by Nagase ChemteX Corporation, trade name: HTR280, epoxy-modified linear elastomer)
<封止用フィルムの作製>
(実施例1)
 10Lのポリエチレン容器に有機溶剤E1を172g入れた。無機充填材D1を542g前記容器に加えた後、撹拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物を下記フィルム状の支持体上に下記条件で塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を支持体上に作製した。
 ・塗布ヘッド方式:コンマコーター
 ・塗布及び乾燥速度:1m/分
 ・乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
 ・フィルム状の支持体:38μm厚のポリエチレンテレフタレートフィルム
<Preparation of sealing film>
Example 1
172 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 542 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition is coated on the following film-like support under the following conditions, and a sealing film (film-like epoxy resin composition) having a film thickness of 100 μm is supported. Made above.
・ Coating head method: Comma coater ・ Coating and drying speed: 1 m / min ・ Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
-Film-like support: polyethylene terephthalate film with a thickness of 38 μm
 封止用フィルムにおける支持体とは反対側に保護層(12μm厚のポリエチレンテレフタレートフィルム)を配置することにより封止用フィルムの表面を保護した。なお、下記の各評価においては、支持体及び保護層を剥離した上で評価を行った。以下の実施例及び比較例についても同様である。 The surface of the sealing film was protected by disposing a protective layer (12 μm thick polyethylene terephthalate film) on the side opposite to the support in the sealing film. In addition, in each following evaluation, it evaluated, after peeling a support body and a protective layer. The same applies to the following examples and comparative examples.
(実施例2)
 10Lのポリエチレン容器に有機溶剤E1を141g入れた。無機充填材D1を493g前記容器に加えた後、撹拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を88g、熱硬化性樹脂A2を22g、硬化剤B1を70g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を1.4g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 2)
141 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 493 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 88 g of thermosetting resin A1, 22 g of thermosetting resin A2, and 70 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 1.4 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 μm was obtained. Produced.
(実施例3)
 10Lのポリエチレン容器に有機溶剤E1を114g入れた。無機充填材D1を401g前記容器に加えた後、攪拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 3)
114 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 401 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 μm was obtained. Produced.
(実施例4)
 10Lのポリエチレン容器に有機溶剤E1を149g入れた。無機充填材D1を423g前記容器に加えた後、無機充填材D3を104g加えて、攪拌羽根で無機充填材D1及びD3を分散して分散液を得た。無機充填材D1及びD3の平均粒子径は1.0μmであった。この分散液に、熱硬化性樹脂A1を48g、熱硬化性樹脂A2を12g、硬化剤B1を38g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を0.8g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
Example 4
149 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 423 g of the inorganic filler D1 to the container, 104 g of the inorganic filler D3 was added, and the inorganic fillers D1 and D3 were dispersed with a stirring blade to obtain a dispersion. The average particle diameter of the inorganic fillers D1 and D3 was 1.0 μm. To this dispersion, 48 g of thermosetting resin A1, 12 g of thermosetting resin A2, and 38 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 0.8 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 μm was obtained. Produced.
(比較例1)
 10Lのポリエチレン容器に有機溶剤E1を96g入れた。無機充填材D1を328g前記容器に加えた後、攪拌羽根で無機充填材D1を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を144g、熱硬化性樹脂A2を36g、硬化剤B1を114g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を2.3g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative Example 1)
96 g of the organic solvent E1 was put in a 10 L polyethylene container. After adding 328 g of the inorganic filler D1 to the container, the inorganic filler D1 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 144 g of thermosetting resin A1, 36 g of thermosetting resin A2, and 114 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 2.3 g of the curing accelerator C1 was added and further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 μm was obtained. Produced.
(比較例2)
 10Lのポリエチレン容器に有機溶剤E1を4629g入れた。無機充填材D3を6622g前記容器に加えた後、攪拌羽根で無機充填材D3を分散して分散液を得た。この分散液に、熱硬化性樹脂A1を680g、熱硬化性樹脂A2を240g、熱硬化性樹脂A3を202g、熱硬化性樹脂A4を78g、硬化剤B1を711g加えて撹拌した。硬化剤B1が溶解したことを確認した後、硬化促進剤C1を15g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#200メッシュ(開口75μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative Example 2)
4629 g of organic solvent E1 was placed in a 10 L polyethylene container. After adding 6622 g of inorganic filler D3 to the container, the inorganic filler D3 was dispersed with a stirring blade to obtain a dispersion. To this dispersion, 680 g of thermosetting resin A1, 240 g of thermosetting resin A2, 202 g of thermosetting resin A3, 78 g of thermosetting resin A4, and 711 g of curing agent B1 were added and stirred. After confirming that the curing agent B1 was dissolved, 15 g of the curing accelerator C1 was added, and the mixture was further stirred for 1 hour to obtain a mixed solution. This mixed solution was filtered through nylon # 200 mesh (opening 75 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 100 μm was obtained. Produced.
(比較例3)
 比較例1の塗布及び乾燥速度を1m/分から0.5m/分へ変更した以外は、比較例1と同様にしてフィルム厚が100μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Comparative Example 3)
A sealing film (film epoxy resin composition) having a film thickness of 100 μm was prepared in the same manner as in Comparative Example 1 except that the coating and drying speed of Comparative Example 1 were changed from 1 m / min to 0.5 m / min. .
(実施例5)
 10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D5を151g前記容器に加えた後、無機充填材D2を660g、及び、無機充填材D4を53g加えて、攪拌羽根で無機充填材D2,D4及びD5を分散して分散液を得た。無機充填材D2,D4及びD5の平均粒子径は16μmであった。この分散液に、熱硬化性樹脂A5を34g、熱硬化性樹脂A6を11g、硬化剤B2を28g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を7g、硬化促進剤C2を0.5g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 5)
83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 151 g of the inorganic filler D5 to the container, 660 g of the inorganic filler D2 and 53 g of the inorganic filler D4 are added, and the inorganic fillers D2, D4, and D5 are dispersed with a stirring blade to obtain a dispersion. It was. The average particle diameter of the inorganic fillers D2, D4 and D5 was 16 μm. To this dispersion, 34 g of thermosetting resin A5, 11 g of thermosetting resin A6, and 28 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 7 g of the elastomer F1 and 0.5 g of the curing accelerator C2 were added and further stirred for 1 hour to obtain a mixed solution. The mixture was filtered through nylon # 150 mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 125 μm was obtained. Produced.
(実施例6)
 10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D5を98g前記容器に加えた後、無機充填材D2を430g、及び、無機充填材D4を34g加えて、攪拌羽根で無機充填材D2,D4及びD5を分散して分散液を得た。無機充填材D2,D4及びD5の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を21g、熱硬化性樹脂A6を7g、硬化剤B2を17g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を8g、硬化促進剤C1を0.14g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 6)
83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 98 g of inorganic filler D5 to the container, add 430 g of inorganic filler D2 and 34 g of inorganic filler D4, and disperse the inorganic fillers D2, D4 and D5 with a stirring blade to obtain a dispersion. It was. The average particle diameter of the inorganic fillers D2, D4 and D5 was 18 μm. To this dispersion, 21 g of thermosetting resin A5, 7 g of thermosetting resin A6, and 17 g of curing agent B2 were added and stirred. After confirming that the curing agent B2 was dissolved, 8 g of the elastomer F1 and 0.14 g of the curing accelerator C1 were added and further stirred for 1 hour to obtain a mixed solution. The mixture was filtered through nylon # 150 mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 125 μm was obtained. Produced.
(実施例7)
 10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D3を68.6g前記容器に加えた後、無機充填材D2を463g、及び、無機充填材D4を34.3g加えて、攪拌羽根で無機充填材D2,D3及びD4を分散して分散液を得た。無機充填材D2,D3及びD4の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を18.3g、熱硬化性樹脂A6を4.6g、硬化剤B2を14.4g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を5.6g、硬化促進剤C1を0.11g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 7)
83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 68.6 g of inorganic filler D3 to the container, add 463 g of inorganic filler D2 and 34.3 g of inorganic filler D4, and disperse inorganic fillers D2, D3, and D4 with a stirring blade. A dispersion was obtained. The average particle diameter of the inorganic fillers D2, D3 and D4 was 18 μm. To this dispersion, 18.3 g of thermosetting resin A5, 4.6 g of thermosetting resin A6, and 14.4 g of curing agent B2 were added and stirred. After confirming that curing agent B2 was dissolved, 5.6 g of elastomer F1 and 0.11 g of curing accelerator C1 were added, and the mixture was further stirred for 1 hour to obtain a mixed solution. The mixture was filtered through nylon # 150 mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 125 μm was obtained. Produced.
(実施例8)
 10Lのポリエチレン容器に有機溶剤E1を83g入れた。無機充填材D3を68.6g前記容器に加えた後、無機充填材D2を463g、及び、無機充填材D4を34.3g加えて、攪拌羽根で無機充填材D2,D3及びD4を分散して分散液を得た。無機充填材D2,D3及びD4の平均粒子径は18μmであった。この分散液に、熱硬化性樹脂A5を17.9g、熱硬化性樹脂A6を4.5g、硬化剤B2を14g加えて撹拌した。硬化剤B2が溶解したことを確認した後、エラストマーF1を6.4g、硬化促進剤C1を0.11g加えて更に1時間撹拌して混合液を得た。この混合液をナイロン製#150メッシュ(開口106μm)でろ過し、ろ液を採取してワニス状エポキシ樹脂組成物を作製した。塗工機を使用してこのワニス状エポキシ樹脂組成物をフィルム状の支持体上に実施例1と同様に塗布して、フィルム厚が125μmの封止用フィルム(フィルム状エポキシ樹脂組成物)を作製した。
(Example 8)
83 g of organic solvent E1 was put in a 10 L polyethylene container. After adding 68.6 g of inorganic filler D3 to the container, add 463 g of inorganic filler D2 and 34.3 g of inorganic filler D4, and disperse inorganic fillers D2, D3, and D4 with a stirring blade. A dispersion was obtained. The average particle diameter of the inorganic fillers D2, D3 and D4 was 18 μm. To this dispersion, 17.9 g of thermosetting resin A5, 4.5 g of thermosetting resin A6, and 14 g of curing agent B2 were added and stirred. After confirming that curing agent B2 was dissolved, 6.4 g of elastomer F1 and 0.11 g of curing accelerator C1 were added and further stirred for 1 hour to obtain a mixed solution. The mixture was filtered through nylon # 150 mesh (opening 106 μm), and the filtrate was collected to prepare a varnish-like epoxy resin composition. Using a coating machine, this varnish-like epoxy resin composition was applied onto a film-like support in the same manner as in Example 1, and a film for sealing (film-like epoxy resin composition) having a film thickness of 125 μm was obtained. Produced.
<評価>
(1)封止用フィルムの硬化物の熱伝導率A
 下記条件で、実施例1~8及び比較例1~3の封止用フィルム(厚さ:100μm又は125μm)の両面を銅箔でラミネートし、両面銅箔付き封止用フィルムを得た。
 ・ラミネータ装置:株式会社名機製作所製の真空加圧ラミネータ、商品名「MVLP-500」
 ・ラミネート温度:90℃
 ・ラミネート圧力:0.5MPa
 ・真空引き時間:30秒
 ・ラミネート時間:40秒
<Evaluation>
(1) Thermal conductivity A of cured product of sealing film
Under the following conditions, both surfaces of the sealing films of Examples 1 to 8 and Comparative Examples 1 to 3 (thickness: 100 μm or 125 μm) were laminated with copper foil to obtain a sealing film with double-sided copper foil.
・ Laminator: Vacuum pressure laminator manufactured by Meiki Seisakusho Co., Ltd., trade name “MVLP-500”
・ Lamination temperature: 90 ℃
・ Lamination pressure: 0.5 MPa
・ Vacuum drawing time: 30 seconds ・ Lamination time: 40 seconds
 得られた両面銅箔付き封止用フィルムを、下記条件で硬化し、銅箔付きエポキシ樹脂硬化体を作製した。
 ・オーブン:エスペック株式会社製、商品名「SAFETY OVEN SPH-201」
 ・オーブン温度:140℃
 ・加熱時間:120分
The obtained film for sealing with double-sided copper foil was cured under the following conditions to produce a cured epoxy resin body with copper foil.
・ Oven: Espec Co., Ltd., trade name "SAFETY OPEN SPH-201"
・ Oven temperature: 140 ℃
・ Heating time: 120 minutes
 作製した銅箔付きエポキシ樹脂硬化体の銅箔をエッチングにより除去し、エポキシ樹脂硬化体(封止用フィルムの硬化物)を得た。得られたエポキシ樹脂硬化体を1cm角にカットし、下記装置を用いて熱拡散率を測定した。
 ・熱拡散率測定装置:ネッチ(NETZSCH)社製の商品名「LFA447」(キセノンフラッシュアナライザー)
The copper foil of the produced epoxy resin cured body with copper foil was removed by etching to obtain an epoxy resin cured body (cured product of sealing film). The obtained cured epoxy resin was cut into 1 cm square, and the thermal diffusivity was measured using the following apparatus.
・ Thermal diffusivity measuring device: Product name “LFA447” (Xenon Flash Analyzer) manufactured by NETZSCH
 また、得られたエポキシ樹脂硬化体の比重を下記比重計にて測定した。
 ・比重計:アルファミラージュ社製の商品名「SD200L」
Moreover, the specific gravity of the obtained epoxy resin cured body was measured with the following specific gravity meter.
・ Hydrometer: Trade name “SD200L” manufactured by Alpha Mirage
 また、得られたエポキシ樹脂硬化体の比熱を下記条件の示差走査熱量測定にて求めた。
 ・示差走査熱量測定装置:TAインスツルメントジャパン社製の商品名「Q-200」
 ・試験条件:25℃、10分(一定)→25~60℃(10℃/min)→60℃、10分(一定)
The specific heat of the obtained cured epoxy resin was determined by differential scanning calorimetry under the following conditions.
・ Differential scanning calorimeter: Trade name “Q-200” manufactured by TA Instruments Japan
Test conditions: 25 ° C., 10 minutes (constant) → 25-60 ° C. (10 ° C./min)→60° C., 10 minutes (constant)
 得られた熱拡散率、比重及び比熱を用いて、下記式(1)により熱伝導率を求めた。
   熱伝導率=熱拡散率×比重×比熱・・・(1)
Using the obtained thermal diffusivity, specific gravity and specific heat, the thermal conductivity was determined by the following formula (1).
Thermal conductivity = thermal diffusivity x specific gravity x specific heat (1)
 そして、下記評価基準に基づいて熱伝導率を評価した。実施例1~4の結果を表1に示す。なお、実施例5~8の熱伝導率は実施例1~4と同等(評価:A)であり、例えば、実施例5の熱伝導率は2.73W/m・Kであった。
 「A」:熱伝導率>2.5W/m・K
 「B」:熱伝導率≦2.5W/m・K
And thermal conductivity was evaluated based on the following evaluation criteria. The results of Examples 1 to 4 are shown in Table 1. The thermal conductivity of Examples 5 to 8 is equivalent to that of Examples 1 to 4 (evaluation: A). For example, the thermal conductivity of Example 5 was 2.73 W / m · K.
“A”: Thermal conductivity> 2.5 W / m · K
“B”: Thermal conductivity ≦ 2.5 W / m · K
 (2)封止用フィルムの硬化物の熱伝導率B
 実施例5~8の封止用フィルム(厚さ125μm)をそれぞれ4枚重ね、ハンドプレスを用いて下記条件で厚さ500μmの積層フィルムを作製した。
 ・ハンドプレス装置:株式会社井元製作所製の商品名「BIG HEART」
 ・ハンドプレス成形温度:140℃
 ・ハンドプレス成形時間:30分
 ・成形荷重:20kN
(2) Thermal conductivity B of cured product of sealing film
Four sealing films (thickness: 125 μm) of Examples 5 to 8 were respectively stacked, and a laminated film having a thickness of 500 μm was produced using a hand press under the following conditions.
・ Hand press machine: Product name “BIG HEART” manufactured by Imoto Seisakusho Co., Ltd.
・ Hand press molding temperature: 140 ℃
・ Hand press molding time: 30 minutes ・ Molding load: 20 kN
 得られた厚さ500μmの積層フィルムを下記条件で硬化し、エポキシ樹脂硬化体(封止用フィルムの硬化物)を作製した。
 ・オーブン:エスペック株式会社製の商品名「SAFETY OVEN SPH-201」
 ・オーブン温度:140℃
 ・加熱時間:90分
The obtained laminated film having a thickness of 500 μm was cured under the following conditions to prepare an epoxy resin cured body (cured product of sealing film).
・ Oven: Product name “SAFETY OPEN SPH-201” manufactured by ESPEC Corporation
・ Oven temperature: 140 ℃
・ Heating time: 90 minutes
 得られたエポキシ樹脂硬化体を1cm角にカットし、熱抵抗率測定器を用いて温度傾斜法によりエポキシ樹脂硬化体の熱伝導率を測定した。そして、下記評価基準に基づいて熱伝導率を評価した。結果を表2に示す。
 「A」:熱伝導率>2.5W/m・K
 「B」:熱伝導率≦2.5W/m・K
The obtained cured epoxy resin was cut into 1 cm square, and the thermal conductivity of the cured epoxy resin was measured by a temperature gradient method using a thermal resistivity meter. And thermal conductivity was evaluated based on the following evaluation criteria. The results are shown in Table 2.
“A”: Thermal conductivity> 2.5 W / m · K
“B”: Thermal conductivity ≦ 2.5 W / m · K
(3)封止用フィルムの溶剤含有量
 得られた封止用フィルムを5cm角の試料に切り出した。この試料を予め質量を測定したアルミニウムカップに入れて、試料が入ったアルミニウムカップの質量を測定した。次いで、試料をアルミニウムカップに入れたまま、180℃のオーブンで10分間加熱した後、室温(25℃)にて10分間放置した。次いで、試料が入ったアルミニウムカップの質量を再度測定した。次いで、試料が入ったアルミニウムカップの質量の測定値(加熱前及び加熱後)から、別途測定したアルミニウムカップの質量を差し引いて、加熱前及び加熱後の封止用フィルムの質量をそれぞれ求めた。そして、加熱前の封止用フィルムの質量から加熱後の封止用フィルムの質量を差し引いた値を、加熱前の封止用フィルムの質量で除して得られる割合を溶剤含有量として得た。結果を表1及び表2に示す。
(3) Solvent content of sealing film The obtained sealing film was cut into a 5 cm square sample. This sample was put in an aluminum cup whose mass was measured in advance, and the mass of the aluminum cup containing the sample was measured. Next, the sample was heated in an oven at 180 ° C. for 10 minutes while being placed in an aluminum cup, and then allowed to stand at room temperature (25 ° C.) for 10 minutes. Next, the mass of the aluminum cup containing the sample was measured again. Next, the mass of the aluminum cup separately measured was subtracted from the measured value of the mass of the aluminum cup containing the sample (before and after heating) to determine the mass of the sealing film before and after heating, respectively. And the value obtained by dividing the value obtained by subtracting the mass of the sealing film after heating from the mass of the sealing film before heating by the mass of the sealing film before heating was obtained as the solvent content. . The results are shown in Tables 1 and 2.
(4)埋め込み性
 厚さ100μm又は125μmの封止用フィルムをそれぞれ4枚重ね、厚さが400μm又は500μmである積層フィルムを得た。以下の手順で、積層フィルムを用いて、8インチサイズのeWLBパッケージを作製した。図2は、本測定におけるシリコンチップの配置図を示す。まず、図2に示すように、SUS板50上に、厚さ350μmのシリコンチップ(7.3mm角シリコンチップ60、及び、3mm角シリコンチップ70)を配置した。次いで、積層フィルムを直径20cmの円状に切り出し、前記シリコンチップの上に載せた。次いで、コンプレッションモールド装置(アピックヤマダ株式会社製、商品名:WCM-300)を用いて、下記条件でシリコンチップを封止して封止体(封止構造体)を得た。
 ・コンプレッションモールド成形温度:140℃
 ・コンプレッションモールド圧力:2.5MPa
 ・コンプレッションモールド時間:10分
(4) Embeddability Four sealing films each having a thickness of 100 μm or 125 μm were stacked to obtain a laminated film having a thickness of 400 μm or 500 μm. An 8-inch sized eWLB package was produced using the laminated film by the following procedure. FIG. 2 shows a layout of silicon chips in this measurement. First, as shown in FIG. 2, silicon chips (7.3 mm square silicon chip 60 and 3 mm square silicon chip 70) having a thickness of 350 μm were arranged on the SUS plate 50. Next, the laminated film was cut into a circle having a diameter of 20 cm and placed on the silicon chip. Next, the silicon chip was sealed under the following conditions using a compression mold apparatus (manufactured by Apic Yamada Co., Ltd., trade name: WCM-300) to obtain a sealed body (sealed structure).
・ Compression molding temperature: 140 ℃
・ Compression mold pressure: 2.5MPa
・ Compression mold time: 10 minutes
 次いで、作製した封止体を下記条件で加熱することにより硬化し、硬化体を作製した。これにより、eWLBパッケージを得た。
 ・オーブン:エスペック株式会社製の商品名「SAFETY OVEN SPH-201」
 ・オーブン温度:140℃
 ・加熱時間:120分
Next, the produced sealing body was cured by heating under the following conditions to produce a cured body. Thereby, an eWLB package was obtained.
・ Oven: Product name “SAFETY OPEN SPH-201” manufactured by ESPEC Corporation
・ Oven temperature: 140 ℃
・ Heating time: 120 minutes
 作製した硬化体の埋め込み性を下記評価基準に基づいて評価した。結果を表1及び表2に示す。
 「A」:ボイドなく埋め込みでき、表面が平滑であるもの
 「B」:ボイドが一部に見られ、表面が平滑であるもの
 「C」:ボイドが見られ、表面の平滑に劣るもの
The embedding property of the produced cured body was evaluated based on the following evaluation criteria. The results are shown in Tables 1 and 2.
"A": Can be embedded without voids and has a smooth surface. "B": Some voids are seen and the surface is smooth. "C": Voids are found and the surface is inferior.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<評価結果>
 表1及び表2に示したように、熱硬化性成分及び無機充填材を含有する樹脂組成物におおいて、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である場合、硬化物の熱伝導率に関して優れた効果を得られることが分かる。表1に示した実施例4から、無機充填材がシリカを含む場合であっても、硬化物の熱伝導率に関して優れた効果を得られることが分かる。
<Evaluation results>
As shown in Table 1 and Table 2, in the resin composition containing the thermosetting component and the inorganic filler, the inorganic filler contains aluminum oxide, and the content of the inorganic filler is that of the resin composition. It can be seen that when the total mass (excluding the mass of the solvent) is 72% by mass or more, an excellent effect can be obtained with respect to the thermal conductivity of the cured product. From Example 4 shown in Table 1, it can be seen that even when the inorganic filler contains silica, an excellent effect can be obtained regarding the thermal conductivity of the cured product.
 以上の結果から、熱硬化性成分及び無機充填材を含有する樹脂組成物において、無機充填材が酸化アルミニウムを含み、無機充填材の含有量が、樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である場合に、硬化物の熱伝導率に関して優れた効果が得られ、埋め込み性に優れることが分かった。 From the above results, in the resin composition containing the thermosetting component and the inorganic filler, the inorganic filler contains aluminum oxide, and the content of the inorganic filler is the total mass of the resin composition (excluding the mass of the solvent). ) On the basis of 72% by mass or more, it was found that an excellent effect on the thermal conductivity of the cured product was obtained and the embedding property was excellent.
 1…支持体、2…封止用フィルム、2a…硬化物、10…支持体付き封止用フィルム、20…半導体素子、30…基板、40…仮固定材、50…SUS板、60…7.3mm角シリコンチップ、70…3mm角シリコンチップ。 DESCRIPTION OF SYMBOLS 1 ... Support body, 2 ... Sealing film, 2a ... Hardened | cured material, 10 ... Sealing film with a support body, 20 ... Semiconductor element, 30 ... Board | substrate, 40 ... Temporary fixing material, 50 ... SUS board, 60 ... 7 3mm square silicon chip, 70 ... 3mm square silicon chip.

Claims (21)

  1.  熱硬化性成分及び無機充填材を含有する樹脂組成物であって、
     前記無機充填材が酸化アルミニウムを含み、
     前記無機充填材の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として72質量%以上である、樹脂組成物。
    A resin composition containing a thermosetting component and an inorganic filler,
    The inorganic filler comprises aluminum oxide;
    The resin composition whose content of the said inorganic filler is 72 mass% or more on the basis of the total mass (except the mass of a solvent) of the said resin composition.
  2.  前記熱硬化性成分が熱硬化性樹脂を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the thermosetting component contains a thermosetting resin.
  3.  前記熱硬化性樹脂がエポキシ樹脂を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the thermosetting resin contains an epoxy resin.
  4.  前記熱硬化性成分が硬化剤を更に含む、請求項2又は3に記載の樹脂組成物。 The resin composition according to claim 2 or 3, wherein the thermosetting component further contains a curing agent.
  5.  前記硬化剤がフェノール樹脂を含む、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the curing agent comprises a phenol resin.
  6.  前記熱硬化性成分が硬化促進剤を更に含む、請求項2~5のいずれか一項に記載の樹脂組成物。 6. The resin composition according to any one of claims 2 to 5, wherein the thermosetting component further contains a curing accelerator.
  7.  前記硬化促進剤がイミダゾール化合物を含む、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the curing accelerator contains an imidazole compound.
  8.  25℃で液状のエポキシ樹脂の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として5質量%以上である、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin according to any one of claims 1 to 7, wherein the content of the epoxy resin that is liquid at 25 ° C is 5% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent). Composition.
  9.  25℃で液状のエポキシ樹脂の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として7質量%以上である、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin according to any one of claims 1 to 7, wherein the content of the epoxy resin that is liquid at 25 ° C is 7% by mass or more based on the total mass of the resin composition (excluding the mass of the solvent). Composition.
  10.  前記無機充填材の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として93質量%以下である、請求項1~9のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the content of the inorganic filler is 93% by mass or less based on the total mass of the resin composition (excluding the mass of the solvent).
  11.  前記無機充填材の含有量が、前記樹脂組成物の総質量(溶剤の質量を除く)を基準として85質量%以下である、請求項1~9のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the content of the inorganic filler is 85% by mass or less based on the total mass (excluding the mass of the solvent) of the resin composition.
  12.  前記無機充填材の平均粒子径が0.01~25μmである、請求項1~11のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the inorganic filler has an average particle size of 0.01 to 25 µm.
  13.  前記無機充填材の平均粒子径が0.01~10μmである、請求項1~11のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the inorganic filler has an average particle size of 0.01 to 10 袖 m.
  14.  前記無機充填材における酸化アルミニウムの含有量が50質量%以上である、請求項1~13のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the content of aluminum oxide in the inorganic filler is 50% by mass or more.
  15.  溶剤を更に含有する、請求項1~14のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, further comprising a solvent.
  16.  請求項1~15のいずれか一項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 15.
  17.  請求項1~15のいずれか一項に記載の樹脂組成物を含む、封止用フィルム。 A sealing film comprising the resin composition according to any one of claims 1 to 15.
  18.  溶剤の含有量が0.2~1.5質量%である、請求項17に記載の封止用フィルム。 The sealing film according to claim 17, wherein the content of the solvent is 0.2 to 1.5 mass%.
  19.  厚さが20~250μmである、請求項17又は18に記載の封止用フィルム。 The sealing film according to claim 17 or 18, having a thickness of 20 to 250 µm.
  20.  被封止体と、当該被封止体を封止する封止部と、を備え、
     前記封止部が、請求項1~15のいずれか一項に記載の樹脂組成物の硬化物を含む、封止構造体。
    A sealed body and a sealing portion for sealing the sealed body,
    A sealing structure in which the sealing portion includes a cured product of the resin composition according to any one of claims 1 to 15.
  21.  前記被封止体が電子部品である、請求項20に記載の封止構造体。 The sealing structure according to claim 20, wherein the object to be sealed is an electronic component.
PCT/JP2016/075688 2015-09-02 2016-09-01 Resin composition, cured product, sealing film, and sealing structure WO2017038941A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680049953.4A CN107924886A (en) 2015-09-02 2016-09-01 Resin combination, solidfied material, film for sealing and seal structure
JP2017538107A JP6763391B2 (en) 2015-09-02 2016-09-01 Resin composition, cured product, sealing film and sealing structure
KR1020187006211A KR102486893B1 (en) 2015-09-02 2016-09-01 Resin composition, cured product, encapsulation film and encapsulation structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-172851 2015-09-02
JP2015172851 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038941A1 true WO2017038941A1 (en) 2017-03-09

Family

ID=58187629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075688 WO2017038941A1 (en) 2015-09-02 2016-09-01 Resin composition, cured product, sealing film, and sealing structure

Country Status (5)

Country Link
JP (3) JP6763391B2 (en)
KR (1) KR102486893B1 (en)
CN (1) CN107924886A (en)
TW (2) TWI714625B (en)
WO (1) WO2017038941A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017283A1 (en) * 2017-07-21 2019-01-24 株式会社村田製作所 Electronic component
WO2020065872A1 (en) * 2018-09-27 2020-04-02 日立化成株式会社 Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
WO2022149602A1 (en) * 2021-01-08 2022-07-14 昭和電工マテリアルズ株式会社 Thermosetting resin composition and electronic component device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400473B2 (en) * 2017-12-28 2023-12-19 株式会社レゾナック Epoxy resin compositions for sealing ball grid array packages, cured epoxy resins, and electronic component devices
CN114437511A (en) * 2021-12-31 2022-05-06 江苏科化新材料科技有限公司 Epoxy resin composition and application thereof, epoxy resin molding material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025907A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Method for producing electronic part-sealing sheet-like epoxy resin composition material and electronic part
JP2014029958A (en) * 2012-07-31 2014-02-13 Ajinomoto Co Inc Semiconductor device manufacturing method
JP2015106698A (en) * 2013-12-02 2015-06-08 味の素株式会社 Method for manufacturing semiconductor device
WO2015098838A1 (en) * 2013-12-26 2015-07-02 日東電工株式会社 Method for producing semiconductor device, and thermosetting resin sheet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166729A (en) 1980-05-06 1981-12-22 Mitsubishi Electric Corp Automatic speed aligning device
JP2001127095A (en) 1999-10-29 2001-05-11 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2001244372A (en) 2000-03-01 2001-09-07 Seiko Epson Corp Semiconductor device and its manufacturing method
JP3995421B2 (en) * 2001-01-19 2007-10-24 株式会社ルネサステクノロジ Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2005200533A (en) 2004-01-15 2005-07-28 Kyocera Chemical Corp Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2006028264A (en) 2004-07-13 2006-02-02 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic component device
JP2008274083A (en) 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2010229269A (en) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Heat-conductive epoxy resin sheet material
JP5799532B2 (en) * 2011-03-10 2015-10-28 住友ベークライト株式会社 Semiconductor sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP2013006893A (en) 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP5983085B2 (en) 2012-06-25 2016-08-31 住友ベークライト株式会社 Epoxy resin composition and electronic component device
WO2015098842A1 (en) * 2013-12-26 2015-07-02 日東電工株式会社 Method for manufacturing semiconductor device
JP2015126124A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Semiconductor package manufacturing method
JP6584752B2 (en) 2014-06-12 2019-10-02 日東電工株式会社 Resin sheet for sealing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025907A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Method for producing electronic part-sealing sheet-like epoxy resin composition material and electronic part
JP2014029958A (en) * 2012-07-31 2014-02-13 Ajinomoto Co Inc Semiconductor device manufacturing method
JP2015106698A (en) * 2013-12-02 2015-06-08 味の素株式会社 Method for manufacturing semiconductor device
WO2015098838A1 (en) * 2013-12-26 2015-07-02 日東電工株式会社 Method for producing semiconductor device, and thermosetting resin sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017283A1 (en) * 2017-07-21 2019-01-24 株式会社村田製作所 Electronic component
US11335617B2 (en) 2017-07-21 2022-05-17 Murata Manufacturing Co., Ltd. Electronic component
WO2020065872A1 (en) * 2018-09-27 2020-04-02 日立化成株式会社 Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JPWO2020065872A1 (en) * 2018-09-27 2021-08-30 昭和電工マテリアルズ株式会社 Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP7272368B2 (en) 2018-09-27 2023-05-12 株式会社レゾナック Sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2022149602A1 (en) * 2021-01-08 2022-07-14 昭和電工マテリアルズ株式会社 Thermosetting resin composition and electronic component device

Also Published As

Publication number Publication date
JP6763391B2 (en) 2020-09-30
JP2022136188A (en) 2022-09-15
TW202126719A (en) 2021-07-16
CN107924886A (en) 2018-04-17
TW201718692A (en) 2017-06-01
KR102486893B1 (en) 2023-01-09
JP2020200478A (en) 2020-12-17
TWI714625B (en) 2021-01-01
KR20180048674A (en) 2018-05-10
JP7115520B2 (en) 2022-08-09
JPWO2017038941A1 (en) 2018-06-14
TWI825365B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
KR102359868B1 (en) Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
JP7115520B2 (en) Sealing film and sealing structure
JP6749887B2 (en) Sealing film and electronic component device using the same
WO2016125350A1 (en) Epoxy resin composition, film-like epoxy resin composition, cured product, and electronic device
JP6705501B2 (en) Manufacturing method of sealing structure
JP6717005B2 (en) Resin composition, cured product, resin film, sealing material and sealing structure
JP7099453B2 (en) Encapsulating film, encapsulation structure and method for manufacturing encapsulation structure
TWI733014B (en) Manufacturing method of sealing film, electronic part device, and electronic part device
JP7070559B2 (en) Encapsulating film and encapsulation structure, and methods for manufacturing these
JP7354666B2 (en) Sealing film, sealing structure, and method for manufacturing the sealing structure
JP7124819B2 (en) Sealing film, sealing structure, and method for producing sealing structure
JP6834265B2 (en) Manufacturing method of sealing structure, sealing material and cured product
WO2016204182A1 (en) Thermosetting resin composition, cured material, resin sheet, sealing structure and method for manufacturing same, and electronic component device and method for manufacturing same
JP2018064054A (en) Encapsulation material, and manufacturing method of encapsulation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538107

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006211

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841970

Country of ref document: EP

Kind code of ref document: A1