WO2017038452A1 - 透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法 - Google Patents

透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法 Download PDF

Info

Publication number
WO2017038452A1
WO2017038452A1 PCT/JP2016/073892 JP2016073892W WO2017038452A1 WO 2017038452 A1 WO2017038452 A1 WO 2017038452A1 JP 2016073892 W JP2016073892 W JP 2016073892W WO 2017038452 A1 WO2017038452 A1 WO 2017038452A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
screen
transparent screen
plates
user
Prior art date
Application number
PCT/JP2016/073892
Other languages
English (en)
French (fr)
Inventor
龍一 白石
海田 由里子
義規 井口
幸宏 垰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201680050216.6A priority Critical patent/CN108027551B/zh
Priority to JP2017537718A priority patent/JP6658760B2/ja
Priority to CN202111228617.5A priority patent/CN113934102B/zh
Priority to KR1020187005521A priority patent/KR20180048646A/ko
Priority to EP16841484.5A priority patent/EP3346330B1/en
Publication of WO2017038452A1 publication Critical patent/WO2017038452A1/ja
Priority to US15/905,880 priority patent/US11022873B2/en
Priority to US17/225,190 priority patent/US11385534B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the present invention relates to a transparent screen, a transparent screen assembly, a method for manufacturing a transparent screen, and a method for manufacturing a transparent screen assembly.
  • a normal screen displays an image projected from the front or rear to the user in front, but is specialized in displaying the image, and the user cannot visually recognize the background behind (for example, see Patent Document 1). ).
  • FIG. 1 is a cross-sectional view of a transparent screen according to a reference form.
  • the user 110 side with respect to the transparent screen 120 is referred to as the front, and the side opposite to the user 110 with respect to the transparent screen 120 is referred to as the rear.
  • the left side is the front and the right side is the rear, but the left side may be the rear and the right side may be the front. That is, in FIG. 1, the user 110 is on the left side of the transparent screen 120, but the user 110 may be on the right side of the transparent screen 120.
  • the transparent screen 120 displays an image projected from the front or rear to the user 110 in front and makes the user 110 visually recognize the background behind.
  • the transparent screen 120 has, for example, a rectangular shape when viewed in the front-rear direction.
  • the transparent screen 120 has a curved shape.
  • the transparent screen 120 has a convex shape toward the user 110 in FIG. 1, but may have a concave shape toward the user 110.
  • the transparent screen 120 is curved in a cross section orthogonal to a part of the outer edge of the transparent screen 120.
  • the “curved shape” includes an arc shape, an elliptic arc shape, and the like.
  • the transparent screen 120 includes a plurality of transparent plates 130 and 140 arranged in the front-rear direction, and a screen body 150 sandwiched between the plurality of transparent plates 130 and 140.
  • the plurality of transparent plates 130 and 140 protect the screen body 150 from both front and rear sides by sandwiching the screen body 150 from both front and rear sides.
  • the screen main body 150 displays an image projected from the front or rear to the front user 110 and makes the user 110 visually recognize the rear background.
  • the transparent screen 120 is held by a holding member 160.
  • the holding member 160 has an outer surface holding portion 161 and an inner surface holding portion 162.
  • the outer side surface holding portion 161 holds the main surface of the transparent screen 120 on the outer side in the radius direction of curvature.
  • the “curvature radius direction outer side” is a side opposite to the curvature center on both sides in the normal direction.
  • the inner surface holding part 162 holds the main surface of the transparent screen 120 on the inner side in the radius direction of curvature.
  • the “curvature radius direction inner side” means the curvature center side of both sides in the normal direction.
  • the plurality of transparent plates 130 and 140 are formed by bending a plurality of transparent plates having the same main surface in a curved shape while heating.
  • the size of the main surface can be read as the size of the center plane in the thickness direction.
  • the transparent screen 120 is curved, and the length of the center line 131 in the thickness direction of the transparent plate 130 on the outer side in the radius direction of curvature is the center in the thickness direction of the transparent plate 140 on the inner side in the direction of curvature.
  • the length of the line 141 is the same.
  • the plate thickness direction center line is a line that bisects the plate in the plate thickness direction. The length of the thickness direction center line is measured along the curved thickness direction center line.
  • a large step D occurs on the end surfaces of the plurality of transparent plates 130 and 140.
  • the outer surface holding portion 161 narrows the background visible through the transparent screen 120.
  • the outer surface holding portion 161 is shortened for the purpose of ensuring the background size visible through the transparent screen 120, the main surface outside the radius of curvature of the transparent screen 120 cannot be sufficiently held. The stability of the transparent screen 120 is poor.
  • the present invention has been made in view of the above-mentioned problems, and mainly provides a curved transparent screen that can secure a background size visible through the transparent screen and can stably hold the transparent screen. With a purpose.
  • a curved transparent screen that can ensure the size of a background visible through the transparent screen and can stably hold the transparent screen.
  • FIG. 3 is a cross-sectional view of the transparent screen taken along line III-III in FIG. 2.
  • 3 is a flowchart of a method for manufacturing a transparent screen according to an embodiment.
  • 1 is a cross-sectional view of a transparent screen assembly according to an embodiment.
  • 3 is a flowchart of a method for manufacturing a screen assembly according to an embodiment.
  • It is sectional drawing of the reflection type transparent screen by one Embodiment.
  • FIG. 8 is a detailed cross-sectional view of the reflective screen main body shown in FIG. 7.
  • FIG. 10 is a detailed cross-sectional view of the transmission type screen body shown in FIG. 9. It is sectional drawing of the transmissive
  • FIG. 2 is a cross-sectional view of a transparent screen according to an embodiment.
  • FIG. 3 is a cross-sectional view of the transparent screen taken along line III-III in FIG.
  • the user 10 side is referred to as the front with respect to the transparent screen 20, and the side opposite to the user 10 with respect to the transparent screen 20 is referred to as the rear. 2 and 3, the left side is the front and the right side is the rear, but the left side may be the rear and the right side may be the front. That is, in FIGS. 2 and 3, the user 10 is on the left side of the transparent screen 20, but the user 10 may be on the right side of the transparent screen 20.
  • the transparent screen 20 displays an image projected from the front or the rear to the user 10 in front, and allows the user 10 to visually recognize the back background.
  • the transparent screen 20 only needs to allow the user 10 to visually recognize the background behind at least when the image is not projected, and may allow the user 10 to visually recognize the background behind the image when the image is projected. Also good.
  • the transparent screen 20 has, for example, a rectangular shape when viewed in the front-rear direction.
  • the transparent screen 20 of the present embodiment has a substantially rectangular shape when viewed in the front-rear direction, but may be, for example, a substantially triangular shape or a circular shape, and may have a wide variety of shapes.
  • the transparent screen 20 has a curved shape.
  • the transparent screen 20 has a convex shape toward the user 10 in FIG. 2, but may have a concave shape toward the user 10.
  • the transparent screen 20 is curved in a first cross section orthogonal to a part of the outer edge of the transparent screen 20.
  • the “outer edge” is the outer edge of the main surface.
  • the “curved shape” includes an arc shape, an elliptical arc shape, and the like.
  • the transparent screen 20 is flat in the second cross section orthogonal to the other part of the outer edge of the transparent screen 20.
  • the first cross section shown in FIG. 2 and the second cross section shown in FIG. 3 are cross sections perpendicular to each other.
  • the transparent screen 20 includes a plurality of transparent plates 30 and 40 arranged in the front-rear direction, and a screen body 50 sandwiched between the plurality of transparent plates 30 and 40.
  • the transparent screen 20 is held by the holding member 60.
  • the plurality of transparent plates 30 and 40 each have a main surface and an end surface perpendicular to the main surface.
  • Each of the plurality of transparent plates 30 and 40 may have an inclined surface (not shown) at the boundary between the main surface and the end surface.
  • the inclined surface is formed by chamfering or the like, and is inclined with respect to both the main surface and the end surface.
  • the plurality of transparent plates 30 and 40 protect the screen body 50 from both the front and rear sides by sandwiching the screen body 50 from both the front and rear sides.
  • Each of the plurality of transparent plates 30 and 40 is, for example, a glass plate.
  • Laminated glass can be constituted by a plurality of glass plates and the screen body 50 sandwiched between these glass plates.
  • the plurality of glass plates sandwiching the screen body 50 may be either untempered glass or tempered glass.
  • Untempered glass is obtained by forming molten glass into a plate shape and slowly cooling it. Examples of the molding method include a float method and a fusion method.
  • the tempered glass may be either physically tempered glass or chemically tempered glass. Physically tempered glass strengthens the glass surface by rapidly cooling a uniformly heated glass plate from a temperature near the softening point and generating a compressive stress on the glass surface due to the temperature difference between the glass surface and the inside of the glass. . Chemically tempered glass is obtained by strengthening the glass surface by generating a compressive stress on the glass surface by an ion exchange method or the like.
  • the durability of the transparent screen 20 can be improved.
  • each of the plurality of glass plates sandwiching the screen body 50 is tempered glass, the probability of breaking by flying objects can be minimized.
  • the transparent plates 30 and 40 of this embodiment are glass plates, respectively, a resin plate may be sufficient.
  • One of the plurality of transparent plates 30 and 40 may be a glass plate and the other may be a resin plate.
  • the screen main body 50 displays the image projected from the front or the rear to the user 10 in front and makes the user 10 visually recognize the background behind the screen. A specific configuration of the screen body 50 will be described later.
  • the holding member 60 has an outer surface holding portion 61 and an inner surface holding portion 62.
  • the outer side surface holding portion 61 holds the main surface of the transparent screen 20 on the outer side in the radius direction of curvature.
  • the “curvature radius direction outer side” is a side opposite to the curvature center on both sides in the normal direction.
  • the inner surface holding part 62 holds the main surface on the inner side in the radius direction of curvature of the transparent screen 20.
  • the “curvature radius direction inner side” means the curvature center side of both sides in the normal direction.
  • the plurality of transparent plates 30 and 40 are formed by bending a plurality of transparent flat plates having different main surface sizes while being bent in a curved shape.
  • the size of the main surface can be read as the size of the center plane in the thickness direction.
  • the transparent screen 20 is curved, and the thickness of the center line 31 in the thickness direction of the transparent plate 30 on the outer side in the radius direction is the thickness of the transparent plate 40 on the inner side in the radius direction. It is longer than the length of the direction center line 41.
  • the plate thickness direction center line is a line that bisects the plate in the plate thickness direction. The length of the thickness direction center line is measured along the curved thickness direction center line.
  • the plurality of transparent plates 30, 40 are compared with the case of the plurality of transparent plates 130, 140 bent in a curved shape while heating a plurality of transparent plates having the same main surface size. End faces can be aligned. Therefore, the background which can be visually recognized through the transparent screen 20 can be expanded compared with the case shown in FIG. 1 while holding both main surfaces of the transparent screen 20 as in the case shown in FIG. Therefore, the size of the background visible through the transparent screen 20 can be secured, and the transparent screen 20 can be stably held.
  • the transparent screen 20 is curved, and the size of the step between the end faces of the plurality of transparent plates 30 and 40 is, for example, 5 mm or less (0 mm in FIG. 2).
  • the size of the step is measured along the curved screen body 50.
  • the size of the step is preferably 2 mm or less.
  • the size of the step is preferably in the above range over the entire outer periphery of the transparent screen 20.
  • the transparent screen 20 is flat and the lengths of the center lines 31 and 41 in the thickness direction of the plurality of transparent plates 30 and 40 are the same.
  • the step size of the end faces of the plurality of transparent plates 30 and 40 is 5 mm or less (0 mm in FIG. 3).
  • the transparent screen 20 of the present embodiment is flat in the second cross section, but may be curved in the second cross section as in the first cross section.
  • the length of the center line in the thickness direction of the transparent plate 30 on the outer side in the curvature radius direction may be longer than the length of the center line in the thickness direction of the transparent plate 40 on the inner side in the curvature radius direction.
  • the size of the step between the end faces of the plurality of transparent plates 30 and 40 may be, for example, 5 mm or less, preferably 2 mm or less.
  • FIG. 4 is a flowchart of a method for manufacturing a transparent screen according to an embodiment.
  • the manufacturing method of the transparent screen 20 has a bending process S10 and a lamination process S20.
  • a plurality of transparent plates 30 and 40 are produced by bending a plurality of transparent flat plates into a curved shape while heating.
  • the plurality of transparent flat plates may be stacked and bent at the same time, or may be bent separately.
  • gravity molding, press molding, or the like is used as the bending molding.
  • the glass surface is strengthened by quenching the uniformly heated glass plate from the temperature near the softening point and generating a compressive stress on the glass surface due to the temperature difference between the glass surface and the inside of the glass.
  • Good. Physically tempered glass is obtained.
  • the chemically strengthened glass is obtained by generating a compressive stress on the glass surface by an ion exchange method or the like after the bending step S10 and before the lamination step S20.
  • the plurality of transparent plates 30 and 40 are stacked with the screen body 50 interposed therebetween.
  • the screen body 50 may have an adhesive layer at both ends in the stacking direction, and may be fixed to the transparent plate 30 by the adhesive force of the adhesive layer.
  • the screen body 50 may be formed on any one of the plurality of transparent plates 30 and 40.
  • the screen body 50 is usually sandwiched between the plurality of transparent plates 30 and 40, and then heated and pressurized with an autoclave.
  • an autoclave Before the step of heating and pressurizing with an autoclave, there may be a deaeration step of deaeration with a vacuum bag or the like, and a pressure bonding step of pressure bonding with a pressing roll or the like. Moreover, you may perform a deaeration process and a crimping
  • a plurality of transparent plates 30 and 40 are produced by bending a plurality of transparent flat plates having different main surface sizes in a curved shape while heating.
  • the size of the main surface of the transparent flat plate is adjusted in advance so that the end faces of the plurality of transparent plates 30 and 40 are aligned as much as possible after the bending step S10. Therefore, after the bending step S10, it is possible to reduce the labor of cutting, grinding, chamfering, and the like, and it is possible to save the labor of these processes.
  • the effort which processes a flat plate is remarkably little compared with the effort which processes a curved plate. Further, the screen body 50 can be prevented from being damaged by omitting the processing after the lamination step S20.
  • FIG. 5 is a cross-sectional view of a transparent screen assembly according to an embodiment.
  • the transparent screen assembly includes a plurality of transparent screens 20 and a holding member 60 that continuously holds the plurality of transparent screens 20.
  • Each transparent screen 20 has a curved shape.
  • a plurality of curved transparent screens 20 are continuously arranged in a cross section orthogonal to a part of the outer edge of each transparent screen 20.
  • the end faces of the plurality of transparent plates 30 and 40 are aligned on the outer periphery of each transparent screen 20 as described above. Therefore, there is almost no gap between adjacent transparent screens 20. Therefore, there is almost no interference of image light leaking from both sides of the gap, and there is almost no blurring of the image. Further, if the adjacent transparent screens 20 have the same curvature, they are connected smoothly, so that the blurring of the image can be further suppressed.
  • FIG. 6 is a flowchart of a method for manufacturing a screen assembly according to an embodiment.
  • the method for manufacturing a screen assembly includes a transparent screen manufacturing step S30 and a transparent screen connecting step S40.
  • a plurality of transparent screens 20 are manufactured.
  • the production of the transparent screen 20 is performed by a bending process S10 and a lamination process S20 shown in FIG.
  • the transparent screen connecting step S40 the plurality of transparent screens 20 are continuously connected.
  • a holding member 60 is used for this connection.
  • FIG. 7 is a cross-sectional view of a reflective transparent screen according to an embodiment.
  • the reflective transparent screen displays the image projected from the front projector 70 to the front user 10 and allows the user 10 to visually recognize the back background.
  • the reflective transparent screen has a screen body 50 ⁇ / b> A sandwiched between a plurality of transparent plates 30 and 40.
  • FIG. 8 is a detailed cross-sectional view of the reflective screen body shown in FIG.
  • the screen main body 50A includes, for example, a plurality of adhesive layers 51A and 52A and a screen sheet 53A sandwiched between the plurality of adhesive layers 51A and 52A.
  • the thickness of the transparent plate 30 and the thickness of the transparent plate 40 can be arbitrarily selected according to the strength and design of the screen assembly.
  • the thickness of the adhesive layer 51A and the thickness of the adhesive layer 52A are not limited, but are preferably 0.01 to 1.5 mm, and more preferably 0.05 to 0.5 mm.
  • the thickness of the screen sheet 53A can be arbitrarily set according to the manufacturing method of the screen sheet 53A, the visibility of the projected image, and the like, but is preferably 0.02 to 1.5 mm, for example.
  • the plurality of adhesive layers 51A and 52A adhere the plurality of transparent plates 30 and 40 and the screen sheet 53A.
  • One adhesive layer 51A bonds one transparent plate 30 and the screen sheet 53A
  • the other adhesive layer 52A bonds the other transparent plate 40 and the screen sheet 53A.
  • the adhesive layers 51A and 52A are formed of, for example, a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin.
  • the adhesive layers 51A and 52A are preferably formed of at least one selected from a vinyl polymer, an ethylene-vinyl monomer copolymer, a styrene copolymer, a polyurethane resin, a urethane acrylate resin, a fluororesin, and an acrylic resin. Is done.
  • thermoplastic resins are polyvinyl butyral resin (PVB) and ethylene-vinyl acetate copolymer resin (EVA).
  • PVB polyvinyl butyral resin
  • EVA ethylene-vinyl acetate copolymer resin
  • a typical example of the thermosetting resin is urethane acrylate resin.
  • adhesion is performed by heat treatment.
  • adhesion is performed by ultraviolet irradiation.
  • the urethane acrylate resin can be cured by ultraviolet rays.
  • the end faces of the plurality of transparent plates 30 and 40 are aligned as compared with the case shown in FIG. 1, peeling due to a temperature change in the lamination step S20 can be suppressed.
  • the peeling includes peeling of at least one of peeling of one transparent plate 30 and the screen sheet 53A and peeling of the other transparent plate 40 and the screen sheet 53A. Since peeling can be suppressed, the generation of bubbles can be suppressed, and image disturbance can be suppressed.
  • the reason why the peeling can be suppressed when the end faces of the plurality of transparent plates 30 and 40 are aligned is that the adhesive state by one adhesive layer 51A and the adhesive by the other adhesive layer 52A at the time of temperature change in the lamination step S20. This is because the state changes to the same level.
  • the adhesion state by each adhesion layer 51A and 52A is fluctuate
  • Each of the adhesive layers 51A and 52A expands when the temperature rises and contracts when the temperature falls.
  • the adhesive layer 51A is disposed on the inner side of the outer edge of the transparent plate 30 to be bonded before the temperature rise in the stacking step S20, when the adhesive layer 51A expands, the adhesive layer 51A becomes transparent. It is possible to limit the protrusion from 30 outer edges. Therefore, thereafter, when the adhesive layer 51A contracts, the entrainment of air between the transparent plate 30 and the screen sheet 53A can be restricted, and the generation of bubbles can be suppressed.
  • the adhesive layer 51A may be processed to be smaller than the transparent plate 30 before the screen body 50 is sandwiched between the plurality of transparent plates 30 and 40, but the transparent plate after the screen body 50A is sandwiched between the plurality of transparent plates 30 and 40. It is preferable to process it smaller than 30.
  • the adhesive layer 51A may be processed by moving the cutter along an inclined surface formed at the boundary between the main surface and the end surface of the transparent plate 30.
  • the adhesive layer 52A is arranged on the inner side of the outer edge of the transparent plate 40 to be bonded before the temperature rise in the stacking step S20, the adhesive layer 52A is transparent when the adhesive layer 52A expands. The protrusion from the outer edge of the plate 40 can be restricted. Therefore, thereafter, when the adhesive layer 52A contracts, the entrainment of air between the transparent plate 40 and the screen sheet 53 can be restricted, and the generation of bubbles can be suppressed.
  • the adhesive layer 52A may be processed to be smaller than the transparent plate 40 before the screen body 50A is sandwiched between the plurality of transparent plates 30 and 40, but the transparent plate after the screen body 50A is sandwiched between the plurality of transparent plates 30 and 40. It is preferable to process it smaller than 40.
  • the adhesive layer 52 ⁇ / b> A may be processed by moving the cutter along an inclined surface formed at a boundary portion between the main surface and the end surface of the transparent plate 40.
  • the screen sheet 53A may not have flexibility, but preferably has flexibility. If the screen sheet 53 ⁇ / b> A has flexibility, it can be bent and deformed along the transparent plates 30 and 40.
  • the screen sheet 53A includes a base material 54A, an uneven layer 55A, a reflective film 56A, a coating layer 57A, and a protective sheet 58A in this order. In FIG. 8, the base 54A is on the left and the protective sheet 58A is on the right, but the base 54A may be on the right and the protective sheet 58A may be on the left.
  • the total thickness of the concavo-convex layer 55A, the reflective film 56A, and the coating layer 57A can be arbitrarily selected according to the manufacturing method, but is preferably 1 to 100 ⁇ m, for example.
  • the thickness of the base 54A and the thickness of the protective sheet 58A can be arbitrarily selected depending on the production method, but are preferably 0.01 to 0.5 mm, and more preferably 0.05 to 0.3 mm.
  • the protective sheet 58A may not be provided, and an adhesive layer may be formed on the covering layer 57A.
  • the substrate 54A may be either a glass sheet or a resin sheet, but is preferably a resin sheet from the viewpoint of flexibility.
  • the resin sheet is made of, for example, polycarbonate, PET, PEN, cycloolefin polymer, or polyester.
  • the concavo-convex layer 55 ⁇ / b> A is formed on the base 54 and has concavo-convex on the surface opposite to the base 54.
  • the uneven layer 55A may be formed of a resin.
  • an imprint method or the like is used as a method for forming the uneven layer 55A.
  • the resin material for the imprint method any of a photocurable resin, a thermoplastic resin, and a thermosetting resin may be used.
  • a resin sheet, a glass sheet, or a metal sheet can be used as a mold used for the imprint method. These types of concavo-convex patterns are formed by etching, sandblasting, extrusion molding or the like.
  • the reflective film 56A is formed along the unevenness of the surface of the uneven layer 55A.
  • the reflective film 56A reflects a part of the light from the front to the front and transmits a part of the light from the rear to the front.
  • the reflective film 56A may be formed of, for example, a metal, a metal oxide, or a metal nitride.
  • a vacuum deposition method or a sputtering method is used as a vacuum deposition method or a sputtering method.
  • aluminum (Al) or silver (Ag) is used as the metal material for the vacuum deposition method or the sputtering method.
  • the protective sheet 58A covers the coating layer 57A.
  • the protective sheet 58A may be either a transparent glass sheet or a transparent resin sheet, but is preferably a transparent resin sheet from the viewpoint of flexibility.
  • the resin sheet is made of, for example, polycarbonate, PET, PEN, cycloolefin polymer, or polyester.
  • corrugated layer 55A of this embodiment is formed on the base material 54A, you may form on any one of the some transparent plates 30 and 40.
  • FIG. Further, the covering layer 57A of the present embodiment is covered with the protective sheet 58A, but may be covered with either one of the plurality of transparent plates 30 and 40. In these cases, the plurality of adhesive layers 51A, 52A, the base material 54A, and the protective sheet 58A are unnecessary.
  • concavo-convex structure of the concavo-convex layer 55A may be a microlens array, a hologram, or the like in addition to the structure shown in FIG.
  • the optical characteristics of the reflective transparent screen are preferably such that the transmittance is 5% to 90%, the reflectance is 5% to 70%, and the forward haze is 20 or less.
  • the transmittance, reflectance, and forward haze are measured using a D65 light source defined in JIS Z8720 (2012) “Standard Illuminant for Colorimetry (Standard Light) and Standard Light Source”, respectively.
  • FIG. 9 is a cross-sectional view of a transmissive transparent screen according to an embodiment.
  • the transmissive transparent screen displays an image projected from the rear projector 70 to the front user 10 and makes the user 10 visually recognize the back background.
  • the transmission-type transparent screen has a screen body 50 ⁇ / b> B sandwiched between a plurality of transparent plates 30 and 40.
  • FIG. 10 is a detailed cross-sectional view of the transmission type screen body shown in FIG.
  • the screen body 50B includes, for example, a plurality of adhesive layers 51B and 52B and a screen sheet 53B sandwiched between the plurality of adhesive layers 51B and 52B.
  • the thickness of the transparent plate 30 and the thickness of the transparent plate 40 can be arbitrarily selected according to the strength and design properties of the screen assembly.
  • the thickness of the adhesive layer 51B and the thickness of the adhesive layer 52B are not limited, but are preferably 0.01 to 1.5 mm, and more preferably 0.05 to 0.5 mm.
  • the thickness of the screen sheet 53B can be arbitrarily set according to the manufacturing method of the screen sheet 53B, the visibility of the projected image, and the like, but is preferably 0.02 to 1.2 mm, for example.
  • the plurality of adhesive layers 51B and 52B adhere the plurality of transparent plates 30 and 40 and the screen sheet 53B.
  • One adhesive layer 51B bonds one transparent plate 30 and the screen sheet 53B, and the other adhesive layer 52B bonds the other transparent plate 40 and the screen sheet 53B.
  • the adhesive layers 51B and 52B can be the same as the adhesive layers 51A and 52A described with reference to FIG.
  • the screen sheet 53B may not have flexibility, but preferably has flexibility. It can be bent and deformed along the transparent plates 30 and 40.
  • the screen sheet 53B includes a base material 54B and a light scattering layer 55B.
  • the base material 54B is on the right side and the light scattering layer 55B is on the left side, but the base material 54B may be on the left side and the light scattering layer 55B may be on the right side.
  • the thickness of the light scattering layer 55B can be arbitrarily selected according to the manufacturing method of the light scattering layer 55B, but is preferably 1 to 200 ⁇ m, for example.
  • the thickness of the base material 54B can be arbitrarily selected according to the manufacturing method of the base material 54B, but is preferably 0.01 to 0.5 mm, and more preferably 0.05 to 0.3 mm.
  • the substrate 54B may be either a glass sheet or a resin sheet, but is preferably a resin sheet from the viewpoint of flexibility.
  • the resin sheet is formed of, for example, polycarbonate, PET, PEN, or cycloolefin polymer.
  • PET or PEN is preferable because it is difficult for wrinkles and strains due to bending stress when producing a curved transparent screen.
  • the light scattering layer 55B includes a transparent resin and a light scattering material.
  • a photocurable resin such as an acrylic resin or an epoxy resin, a thermosetting resin, a thermoplastic resin, or the like can be used.
  • Light scattering materials include fine particles of high refractive index materials such as titanium oxide (refractive index: 2.5 to 2.7), zirconium oxide (refractive index: 2.4), and aluminum oxide (refractive index: 1.76).
  • Fine particles of low refractive index materials such as porous silica (refractive index: 1.25 or lower), hollow silica (refractive index: 1.25 or lower), resin materials having different refractive indexes that are not compatible with the transparent resin, and crystallization
  • a resin material having a thickness of 1 ⁇ m or less can be used.
  • the ratio of the light scattering material in the light scattering layer 55B is, for example, 0.01 volume% or more and 5 volume% or less, preferably 0.05 volume% or more and 1 volume% or less.
  • the light scattering layer 55B may further include a light absorbing material.
  • a light absorbing material carbon black, titanium black, or the like can be used.
  • the ratio of the light absorbing material in the light scattering layer 55B is, for example, 0.01 volume% or more and 5 volume% or less, preferably 0.1 volume% or more and 3 volume% or less.
  • the light absorbing material can improve the contrast of the image displayed on the screen body 50B.
  • the light scattering layer 55B may be a layer in which a plurality of light scattering portions 57B are arranged at intervals in the transparent resin portion 56B, as shown in FIG. This arrangement is called a louver structure.
  • the light scattering portion 57B includes a light scattering material and a transparent resin.
  • the transparent resin portion 56B the same transparent resin used in the light scattering layer 55B shown in FIG. 10 can be used.
  • the light-scattering layer 55B of this embodiment is formed on the base material 54B, it may be formed on any one of the plurality of transparent plates 30 and 40.
  • the light-scattering layer 55B of this embodiment is covered with an adhesive layer, it may be covered with either one of the plurality of transparent plates 30 and 40. In these cases, the plurality of adhesive layers 51B and 52B and the base material 54B are unnecessary.
  • the optical characteristics of the transmissive transparent screen are preferably such that the transmittance is 5% or more and 90% or less, the front haze is 4 or more and 40 or less, and the rear haze is 0 or more and 60 or less.
  • the transmittance, front haze, and rear haze are measured using a D65 light source defined in JIS Z8720 (2012) “Standard Illuminant for Colorimetry (Standard Light) and Standard Light Source”, respectively.
  • the transparent screen of the above embodiment includes two transparent plates, but may include three or more transparent plates.
  • the reflective screen body 50A of the above embodiment includes the adhesive layers 51A and 52A and the screen sheet 53A, but may include other functional layers.
  • the transmission type screen main body 50B of the above embodiment includes the adhesive layers 51B and 52B and the screen sheet 53B, but may include other functional layers.
  • the functional layer examples include an antireflection layer having a three-dimensional shape or a layer configuration for reducing light reflection, a light attenuation layer for attenuating part of light, and an infrared shielding layer for suppressing infrared transmission.
  • These functional layers may have one or two or more layers at arbitrary positions in the configuration of the reflective screen main body 50A or the transmissive screen main body 50B, or may have two or more different functional layers. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

前後方向に並ぶ複数の透明板(30,40)と、複数の前記透明板に挟まれ、前方または後方から投映される映像を前方のユーザに表示し、かつ後方の背景を前記ユーザに視認させるスクリーン本体(50)とを備える透明スクリーン(20)であって、前記透明スクリーンの外縁の一部に直交する断面において、前記透明スクリーンが湾曲状であり、且つ、前記スクリーン本体よりも曲率半径方向外側の前記透明板(30)の板厚方向中心線(31)の長さが前記スクリーン本体よりも曲率半径方向内側の前記透明板(40)の板厚方向中心線(41)の長さよりも長い、透明スクリーン。

Description

透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法
 本発明は、透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法に関する。
 通常のスクリーンは、前方または後方から投映される映像を前方のユーザに表示するが、映像の表示に特化しているため、かつ後方の背景をユーザに視認させることはできない(例えば特許文献1参照)。
日本国特開2012-32513号公報
 後方の背景をユーザに視認させることができる透明スクリーンの開発過程で、透明スクリーンの形状を平坦状から湾曲状に変更すると、透明スクリーンの端面に大きな段差が生じるという問題が生じた。
 図1は、参考形態による透明スクリーンの断面図である。透明スクリーン120を基準としてユーザ110側を前方、透明スクリーン120を基準としてユーザ110とは反対側を後方と呼ぶ。図1では左側が前方であり右側が後方であるが、左側が後方であり右側が前方でもよい。つまり、図1では透明スクリーン120の左側にユーザ110がいるが透明スクリーン120の右側にユーザ110がいてもよい。
 透明スクリーン120は、前方または後方から投映される映像を前方のユーザ110に表示し、かつ後方の背景をユーザ110に視認させる。透明スクリーン120は、前後方向視で例えば矩形状である。
 透明スクリーン120は、湾曲状の形状を有する。透明スクリーン120は、図1ではユーザ110に向けて凸の形状を有するが、ユーザ110に向けて凹の形状を有してもよい。
 図1に示すように、透明スクリーン120の外縁の一部に直交する断面において、透明スクリーン120は湾曲状である。ここで、「湾曲状」とは、円弧状、楕円弧状などを含む。
 透明スクリーン120は、前後方向に並ぶ複数の透明板130、140と、複数の透明板130、140に挟まれるスクリーン本体150とを備える。複数の透明板130、140は、スクリーン本体150を前後両側から挟むことで、スクリーン本体150を前後両側から保護する。スクリーン本体150は、前方または後方から投映される映像を前方のユーザ110に表示し、かつ後方の背景をユーザ110に視認させる。透明スクリーン120は、保持部材160によって保持される。
 保持部材160は、外側面保持部161と、内側面保持部162とを有する。外側面保持部161は、透明スクリーン120の曲率半径方向外側の主表面を保持する。「曲率半径方向外側」とは、法線方向両側のうち、曲率中心とは反対側のことである。一方、内側面保持部162は、透明スクリーン120の曲率半径方向内側の主表面を保持する。「曲率半径方向内側」とは、法線方向両側のうち、曲率中心側のことである。
 ところで、複数の透明板130、140は、主表面の大きさが同じ複数の透明平板を加熱しながら湾曲状に曲げたものである。主表面の大きさは、板厚方向中心面の大きさと読み替えることができる。板厚方向中心面は、湾曲状に曲げるときに引張応力も圧縮応力もほとんど作用しないので、曲げの前後で板厚方向中心面の大きさはほとんど変化しない。
 図1に示す断面において、透明スクリーン120は湾曲状であり、且つ、曲率半径方向外側の透明板130の板厚方向中心線131の長さが曲率半径方向内側の透明板140の板厚方向中心線141の長さと同じである。ここで、板厚方向中心線とは、板を板厚方向に二等分する線である。板厚方向中心線の長さは、湾曲状の板厚方向中心線に沿って計測する。
 図1に示す断面において、複数の透明板130、140の板厚方向中心線131、141の長さが同じであると、複数の透明板130、140の端面に大きな段差Dが生じる。この場合に、図1に示すように透明スクリーン120の両方の主表面を同程度に保持しようとすると、透明スクリーン120越しに視認可能な背景を外側面保持部161が狭める。一方、この場合に、透明スクリーン120越しに視認可能な背景の大きさを確保する目的で、外側面保持部161を短くすると、透明スクリーン120の曲率半径方向外側の主表面を十分に保持できず、透明スクリーン120の安定性が悪い。
 本発明は、上記課題に鑑みてなされたものであって、透明スクリーン越しに視認可能な背景の大きさを確保でき、且つ透明スクリーンを安定的に保持できる、湾曲状の透明スクリーンの提供を主な目的とする。
 上記課題を解決するため、本発明の一態様によれば、
 前後方向に並ぶ複数の透明板と、複数の前記透明板に挟まれ、前方または後方から投映される映像を前方のユーザに表示し、かつ後方の背景を前記ユーザに視認させるスクリーン本体とを備える透明スクリーンであって、
 前記透明スクリーンの外縁の一部に直交する断面において、前記透明スクリーンが湾曲状であり、且つ、前記スクリーン本体よりも曲率半径方向外側の前記透明板の板厚方向中心線の長さが前記スクリーン本体よりも曲率半径方向内側の前記透明板の板厚方向中心線の長さよりも長い、透明スクリーンが提供される。
 本発明の一態様によれば、透明スクリーン越しに視認可能な背景の大きさを確保でき、且つ透明スクリーンを安定的に保持できる、湾曲状の透明スクリーンが提供される。
参考形態による透明スクリーンの断面図である。 一実施形態による透明スクリーンの断面図である。 図2のIII-III線に沿った透明スクリーンの断面図である。 一実施形態による透明スクリーンの製造方法のフローチャートである。 一実施形態による透明スクリーン組立体の断面図である。 一実施形態によるスクリーン組立体の製造方法のフローチャートである。 一実施形態による反射型の透明スクリーンの断面図である。 図7に示す反射型のスクリーン本体の詳細な断面図である。 一実施形態による透過型の透明スクリーンの断面図である。 図9に示す透過型のスクリーン本体の詳細な断面図である。 変形例による透過型の透明スクリーンの断面図である。
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。
 図2は、一実施形態による透明スクリーンの断面図である。図3は、図2のIII-III線に沿った透明スクリーンの断面図である。透明スクリーン20を基準としてユーザ10側を前方、透明スクリーン20を基準としてユーザ10とは反対側を後方と呼ぶ。図2および図3では左側が前方であり右側が後方であるが、左側が後方であり右側が前方でもよい。つまり、図2および図3では透明スクリーン20の左側にユーザ10がいるが、透明スクリーン20の右側にユーザ10がいてもよい。
 透明スクリーン20は、前方または後方から投映される映像を前方のユーザ10に表示し、かつ後方の背景をユーザ10に視認させる。透明スクリーン20は、少なくとも映像が投映されない場合に後方の背景をユーザ10に視認させることができればよく、映像が投映される場合に後方の背景をユーザ10に視認させてもよいし視認させなくてもよい。透明スクリーン20は、前後方向視で例えば矩形状である。
 尚、本実施形態の透明スクリーン20は、前後方向視で、略矩形状であるが、例えば略三角形状、円形状などでもよく、多種多様の形状であってよい。
 透明スクリーン20は、湾曲状の形状を有する。透明スクリーン20は、図2ではユーザ10に向けて凸の形状を有するが、ユーザ10に向けて凹の形状を有してもよい。
 図2に示すように、透明スクリーン20の外縁の一部に直交する第1断面において、透明スクリーン20は湾曲状である。本明細書において、「外縁」とは、主表面の外縁である。また、「湾曲状」とは、円弧状、楕円弧状などを含む。
 一方、図3に示すように、透明スクリーン20の外縁の他の一部に直交する第2断面において、透明スクリーン20は平坦状である。図2に示す第1断面と、図3に示す第2断面とは、互いに垂直な断面である。
 透明スクリーン20は、前後方向に並ぶ複数の透明板30、40と、複数の透明板30、40に挟まれるスクリーン本体50とを備える。透明スクリーン20は、保持部材60によって保持される。
 複数の透明板30、40は、それぞれ、主表面と、該主表面に対し垂直な端面とを有する。複数の透明板30、40は、それぞれ、主表面と端面との境界部に不図示の傾斜面を有してもよい。傾斜面は、面取などによって形成され、主表面および端面の両方に対し斜めとされる。
 複数の透明板30、40は、スクリーン本体50を前後両側から挟むことで、スクリーン本体50を前後両側から保護する。複数の透明板30、40は、それぞれ、例えばガラス板である。複数のガラス板と、これらのガラス板に挟まれるスクリーン本体50とで合わせガラスが構成できる。
 スクリーン本体50を挟む複数のガラス板は、それぞれ、未強化ガラス、強化ガラスのいずれでもよい。未強化ガラスは、溶融ガラスを板状に成形し、徐冷したものである。成形方法としては、フロート法、フュージョン法などが挙げられる。強化ガラスは、物理強化ガラス、化学強化ガラスのいずれでもよい。物理強化ガラスは、均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化したものである。化学強化ガラスは、イオン交換法などによってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化したものである。
 スクリーン本体50を挟む複数のガラス板のうち、少なくとも1つのガラス板が強化ガラスであれば、透明スクリーン20の耐久性を向上できる。
 スクリーン本体50を挟む複数のガラス板のうち、スクリーン本体50の前方に配設されるガラス板が強化ガラスであり、スクリーン本体50の後方に配設されるガラス板が未強化ガラスであれば、後方からの飛来物により万一未強化ガラスが割れた際に、スクリーン性能を維持する事ができる。未強化ガラスは、強化ガラスに比べて、粉々に割れにくいためである。
 スクリーン本体50を挟む複数のガラス板のうち、スクリーン本体50の後方に配設されるガラス板が強化ガラスであり、スクリーン本体50の前方に配設されるガラス板が未強化ガラスであれば、前方からの飛来物により万一未強化ガラスが割れた際に、スクリーン性能を維持する事ができる。未強化ガラスは、強化ガラスに比べて、粉々に割れにくいためである。
 スクリーン本体50を挟む複数のガラス板のそれぞれが強化ガラスであれば、飛来物により割れる確率を最小にすることができる。
 尚、本実施形態の透明板30、40は、それぞれ、ガラス板であるが、樹脂板でもよい。また、複数の透明板30、40のうち、一方がガラス板、他方が樹脂板でもよい。
 スクリーン本体50は、前方または後方から投映される映像を前方のユーザ10に表示し、かつ後方の背景をユーザ10に視認させる。スクリーン本体50の具体的な構成については後述する。
 保持部材60は、外側面保持部61と、内側面保持部62とを有する。外側面保持部61は、透明スクリーン20の曲率半径方向外側の主表面を保持する。「曲率半径方向外側」とは、法線方向両側のうち、曲率中心とは反対側のことである。一方、内側面保持部62は、透明スクリーン20の曲率半径方向内側の主表面を保持する。「曲率半径方向内側」とは、法線方向両側のうち、曲率中心側のことである。
 ところで、複数の透明板30、40は、主表面の大きさが異なる複数の透明平板を加熱しながら湾曲状に曲げたものである。主表面の大きさは、板厚方向中心面の大きさと読み替えることができる。板厚方向中心面は、湾曲状に曲げるときに引張応力も圧縮応力もほとんど作用しないので、曲げの前後で板厚方向中心面の大きさはほとんど変化しない。
 図2に示す第1断面において、透明スクリーン20は湾曲状であり、且つ、曲率半径方向外側の透明板30の板厚方向中心線31の長さが曲率半径方向内側の透明板40の板厚方向中心線41の長さよりも長い。ここで、板厚方向中心線とは、板を板厚方向に二等分する線である。板厚方向中心線の長さは、湾曲状の板厚方向中心線に沿って計測する。
 その結果、図1に示すように主表面の大きさが同じ複数の透明平板を加熱しながら湾曲状に曲げた複数の透明板130、140の場合に比べて、複数の透明板30、40の端面を揃えることができる。よって、図1に示す場合と同様に透明スクリーン20の両方の主表面を保持しつつ、図1に示す場合よりも透明スクリーン20越しに視認可能な背景を広げることができる。従って、透明スクリーン20越しに視認可能な背景の大きさを確保でき、且つ透明スクリーン20を安定的に保持できる。
 図2に示す第1断面において、透明スクリーン20は湾曲状であり、且つ、複数の透明板30、40の端面の段差の大きさが例えば5mm以下(図2では0mm)である。段差の大きさは、湾曲状のスクリーン本体50に沿って計測する。第1断面において、段差の大きさが5mm以下であれば、透明スクリーン20越しに視認可能な背景の大きさを確保でき、且つ透明スクリーン20を安定的に保持できる。第1断面において、段差の大きさは、好ましくは2mm以下である。透明スクリーン20の外周全周に亘って、段差の大きさが上記範囲であることが好ましい。
 一方、図3に示す第2断面において、透明スクリーン20は平坦状であり、且つ、複数の透明板30、40の板厚方向中心線31、41の長さが同じである。第2断面において、複数の透明板30、40の端面の段差の大きさは5mm以下(図3では0mm)である。
 尚、本実施形態の透明スクリーン20は、第2断面において平坦状であるが、第2断面においても第1断面と同様に湾曲状でもよい。この場合、第2断面において、曲率半径方向外側の透明板30の板厚方向中心線の長さが曲率半径方向内側の透明板40の板厚方向中心線の長さよりも長くてよい。また、この場合、第2断面において、複数の透明板30、40の端面の段差の大きさが例えば5mm以下、好ましくは2mm以下であってよい。
 図4は、一実施形態による透明スクリーンの製造方法のフローチャートである。透明スクリーン20の製造方法は、曲げ成形工程S10と、積層工程S20とを有する。
 曲げ成形工程S10では、複数の透明平板を加熱しながら湾曲状に曲げることで、複数の透明板30、40を作製する。複数の透明平板は、重ねて同時に湾曲状に曲げてもよいし、別々に湾曲状に曲げてもよい。曲げ成形としては、重力成形、またはプレス成形などが用いられる。
 曲げ成形工程S10では、均一に加熱したガラス板を軟化点付近の温度から急冷し、ガラス表面とガラス内部との温度差によってガラス表面に圧縮応力を生じさせることで、ガラス表面を強化してもよい。物理強化ガラスが得られる。尚、化学強化ガラスは、曲げ成形工程S10の後、積層工程S20の前に、イオン交換法などによってガラス表面に圧縮応力を生じさせることで得られる。
 積層工程S20では、複数の透明板30、40を、スクリーン本体50を挟んで積層する。スクリーン本体50は、積層方向両端に接着層を有してよく、接着層の接着力によって透明板30に対し固定されてよい。尚、スクリーン本体50は、複数の透明板30、40のいずれか一方の上に成膜されてもよい。
 積層工程S20では、通常、複数の透明板30、40でスクリーン本体50を挟んだ後、オートクレーブで加熱加圧する。オートクレーブで加熱加圧する工程の前に、真空バッグなどで脱気する脱気工程、押圧ロールなどで圧着する圧着工程があってもよい。また、脱気工程や圧着工程は、加熱条件で行ってもよい。積層工程S20では、積層体の端部に応力が集中しないようにすると、スクリーン本体50の端部の変形が抑制でき、投影した映像のゆがみが低減できるので好ましい。
 ところで、曲げ成形工程S10では、主表面の大きさの異なる複数の透明平板を加熱しながら湾曲状に曲げることで、複数の透明板30、40を作製する。曲げ成形工程S10の後に複数の透明板30、40の端面ができるだけ揃うように、透明平板の主表面の大きさが予め調整される。よって、曲げ成形工程S10の後に、切断、研削、面取などの加工の手間を軽減でき、これらの加工の手間を省くことも可能である。尚、平板を加工する手間は、湾曲板を加工する手間に比べ著しく少ない。また、積層工程S20の後の加工を省くことで、スクリーン本体50の損傷を防止できる。
 図5は、一実施形態による透明スクリーン組立体の断面図である。透明スクリーン組立体は、複数の透明スクリーン20と、複数の透明スクリーン20を連続的に保持する保持部材60とを含む。
 各透明スクリーン20は、湾曲状の形状を有する。各透明スクリーン20の外縁の一部に直交する断面において、複数の湾曲状の透明スクリーン20が連続的に並ぶ。
 本実施形態によれば、各透明スクリーン20の外周において、上述の如く、複数の透明板30、40の端面が揃っている。そのため、隣り合う透明スクリーン20の隙間がほとんどない。よって、隙間の両側から漏れる映像用の光の干渉がほとんどなく、映像のにじみがほとんどない。また、隣り合う透明スクリーン20どうしの曲率を同等にするとなめらかに連結するため、より映像のにじみが抑えられる。
 図6は、一実施形態によるスクリーン組立体の製造方法のフローチャートである。スクリーン組立体の製造方法は、透明スクリーン製造工程S30と、透明スクリーン連結工程S40とを有する。
 透明スクリーン製造工程S30は、透明スクリーン20を複数製造する。透明スクリーン20の製造は、図4に示す曲げ成形工程S10と、積層工程S20とにより行われる。
 透明スクリーン連結工程S40は、複数の透明スクリーン20を連続的に連結する。この連結には、保持部材60を用いる。
 図7は、一実施形態による反射型の透明スクリーンの断面図である。反射型の透明スクリーンは、前方の投影機70から投映される映像を前方のユーザ10に表示し、かつ後方の背景をユーザ10に視認させる。反射型の透明スクリーンは、複数の透明板30、40に挟まれるスクリーン本体50Aを有する。
 図8は、図7に示す反射型のスクリーン本体の詳細な断面図である。スクリーン本体50Aは、例えば複数の接着層51A、52Aと、複数の接着層51A、52Aに挟まれるスクリーンシート53Aとを有する。
 図8において、透明板30の板厚や透明板40の板厚は、それぞれ、スクリーン組立体の強度や意匠性に応じて任意に選択できる。接着層51Aの厚みや接着層52Aの厚みは、それぞれ、限定されるものではないが、例えば0.01~1.5mmが好ましく、0.05~0.5mmがより好ましい。スクリーンシート53Aの厚みは、スクリーンシート53Aの製造方法や投映像の視認性などに応じて任意に設定できるが、例えば0.02~1.5mmが好ましい。
 複数の接着層51A、52Aは、複数の透明板30、40とスクリーンシート53Aとを接着する。一方の接着層51Aは一方の透明板30とスクリーンシート53Aとを接着し、他方の接着層52Aは他方の透明板40とスクリーンシート53Aとを接着する。接着層51A、52Aは、例えば、熱可塑性樹脂、熱硬化性樹脂、または紫外線硬化性樹脂などで形成される。接着層51A、52Aは、好ましくは、ビニル系ポリマー、エチレン‐ビニル系モノマー共重合体、スチレン系共重合体、ポリウレタン樹脂、ウレタンアクリレート樹脂、フッ素樹脂及びアクリル樹脂から選択される一種類以上で形成される。熱可塑性樹脂としては、ポリビニルブチラール樹脂(PVB)、エチレン-酢酸ビニル共重合樹脂(EVA)が典型的である。熱硬化性樹脂としては、ウレタンアクリレート樹脂が典型的である。熱可塑性樹脂または熱硬化性樹脂の場合、熱処理によって接着が行われる。一方、紫外線硬化性樹脂の場合、紫外線照射によって接着が行われる。ウレタンアクリレート樹脂は紫外線硬化も可能である。
 本実施形態によれば、図1に示す場合に比べて、複数の透明板30、40の端面が揃っているので、積層工程S20における温度変化による剥離が抑制できる。剥離は、一方の透明板30とスクリーンシート53Aとの剥離、他方の透明板40とスクリーンシート53Aとの剥離のうちの少なくとも一方の剥離を含む。剥離が抑制できるので、気泡の発生が抑制でき、映像の乱れが抑制できる。
 ここで、複数の透明板30、40の端面が揃っていると上記剥離が抑制できる理由は、積層工程S20における温度変化時に、一方の接着層51Aによる接着状態と、他方の接着層52Aによる接着状態とが同程度に推移するためである。各接着層51A、52Aによる接着状態は、それぞれの膨張や収縮によって変動する。各接着層51A、52Aは、昇温時に膨張し、降温時に収縮する。また、各接着層51A、52Aは、加熱時に樹脂組成物の反応などによって収縮する。
 図1に示すように複数の透明板130、140の端面に大きな段差Dがあり、曲率半径方向外側の透明板130の端面とスクリーン本体150の端面とが揃っている場合を考える。この場合、昇温時に、一方の接着層はその接着対象である透明板130からはみ出るのに対し、他方の接着層はその接着対象である透明板140からはみ出ない。そのため、一方の接着層による接着状態と、他方の接着層による接着状態とが同程度に推移しにくい。そのため、透明スクリーンの板厚方向中心面に対し非対称な応力が生じやすく、剥離が生じやすい。
 尚、積層工程S20における昇温前に、接着層51Aがその接着対象である透明板30の外縁よりも内側に配されていると、接着層51Aが膨張するときに、接着層51Aが透明板30の外縁からはみ出すのを制限できる。よって、その後、接着層51Aが収縮するときに、透明板30とスクリーンシート53Aとの間への空気の巻き込みが制限でき、気泡の発生が抑制できる。接着層51Aは、複数の透明板30、40でスクリーン本体50を挟む前に透明板30よりも小さく加工されてもよいが、複数の透明板30、40でスクリーン本体50Aを挟んだ後に透明板30よりも小さく加工されることが好ましい。接着層51Aは、透明板30における主表面と端面との境界部に形成される傾斜面に沿ってカッターを移動させることで、加工されてもよい。
 同様に、積層工程S20における昇温前に、接着層52Aがその接着対象である透明板40の外縁よりも内側に配されていると、接着層52Aが膨張するときに、接着層52Aが透明板40の外縁からはみ出すのを制限できる。よって、その後、接着層52Aが収縮するときに、透明板40とスクリーンシート53との間への空気の巻き込みが制限でき、気泡の発生が抑制できる。接着層52Aは、複数の透明板30、40でスクリーン本体50Aを挟む前に透明板40よりも小さく加工されてもよいが、複数の透明板30、40でスクリーン本体50Aを挟んだ後に透明板40よりも小さく加工されることが好ましい。接着層52Aは、透明板40における主表面と端面との境界部に形成される傾斜面に沿ってカッターを移動させることで、加工されてもよい。
 スクリーンシート53Aは、可撓性を有しなくてもよいが、可撓性を有することが好ましい。スクリーンシート53Aが可撓性を有すると透明板30、40に沿って曲げ変形できる。スクリーンシート53Aは、基材54Aと、凹凸層55Aと、反射膜56Aと、被覆層57Aと、保護シート58Aとをこの順で有する。図8では基材54Aが左側、保護シート58Aが右側であるが、基材54Aが右側、保護シート58Aが左側でもよい。凹凸層55A、反射膜56Aおよび被覆層57Aとの合計の厚みは、製造方法に応じて任意に選択できるが、例えば1~100μmが好ましい。基材54Aの厚み、保護シート58Aの厚みは、それぞれ、製造方法に応じて任意に選択できるが、たとえば0.01~0.5mmが好ましく、0.05~0.3mmがより好ましい。尚、保護シート58Aはなくてもよく、被覆層57Aの上に接着層が形成されてもよい。
 基材54Aは、ガラスシート、樹脂シートのいずれでもよいが、可撓性の観点から樹脂シートであることが好ましい。樹脂シートは、例えば、ポリカーボネート、PET、PEN、シクロオレフィンポリマー、またはポリエステルで形成される。
 凹凸層55Aは、基材54の上に形成され、基材54とは反対側の表面に凹凸を有する。凹凸層55Aは、樹脂により形成されてよい。凹凸層55Aの形成方法としては、例えばインプリント法などが用いられる。インプリント法の樹脂材料としては、光硬化性樹脂、熱可塑性樹脂、熱硬化性樹脂のいずれが用いられてもよい。インプリント法に用いる型としては、樹脂シート、ガラスシート、または金属シートを用いることができる。これらの型の凹凸パターンは、エッチング、サンドブラスト、または押出成形などにより形成される。
 反射膜56Aは、凹凸層55Aの表面の凹凸に沿って形成される。反射膜56Aは、前方からの光の一部を前方に反射し、後方からの光の一部を前方に透過する。反射膜56Aは、例えば金属、金属酸化物、または金属窒化物などにより形成されてよい。反射膜56Aの形成方法としては、例えば真空蒸着法またはスパッタリング法などが用いられる。真空蒸着法またはスパッタリング法の金属材料としては、例えばアルミニウム(Al)または銀(Ag)などが用いられる。
 被覆層57Aは、反射膜56Aの凹凸を埋める。被覆層57Aは、樹脂により形成されてよく、好ましくは凹凸層55Aと同一の樹脂により形成される。
 保護シート58Aは、被覆層57Aを覆う。保護シート58Aは、透明ガラスシート、透明樹脂シートのいずれでもよいが、可撓性の観点から透明樹脂シートであることが好ましい。樹脂シートは、例えば、ポリカーボネート、PET、PEN、シクロオレフィンポリマー、またはポリエステルで形成される。
 尚、本実施形態の凹凸層55Aは、基材54Aの上に形成されるが、複数の透明板30、40のいずれか一方の上に形成されてもよい。また、本実施形態の被覆層57Aは、保護シート58Aで覆われるが、複数の透明板30、40のいずれか他方で覆われてもよい。これらの場合、複数の接着層51A、52A、基材54A、および保護シート58Aが不要である。
 尚、凹凸層55Aの凹凸構造は、図8で示した構造の他にマイクロレンズアレイ、ホログラム等でもよい。
 反射型の透明スクリーンの光学特性は、透過率が5%以上、90%以下であり、反射率が5%以上、70%以下であり、前方ヘイズが20以下であることが好ましい。透過率、反射率、および前方ヘイズは、それぞれ、JIS Z8720(2012)「測色用の標準イルミナント(標準の光)及び標準光源」で規定されるD65光源を用いて測定する。
 図9は、一実施形態による透過型の透明スクリーンの断面図である。透過型の透明スクリーンは、後方の投影機70から投映される映像を前方のユーザ10に表示し、かつ後方の背景をユーザ10に視認させる。透過型の透明スクリーンは、複数の透明板30、40に挟まれるスクリーン本体50Bを有する。
 図10は、図9に示す透過型のスクリーン本体の詳細な断面図である。スクリーン本体50Bは、例えば複数の接着層51B、52Bと、複数の接着層51B、52Bに挟まれるスクリーンシート53Bとを有する。
 図10において、透明板30の板厚や透明板40の板厚は、それぞれ、スクリーン組立体の強度や意匠性に応じて任意に選択できる。接着層51Bの厚みや接着層52Bの厚みは、それぞれ、限定されるものではないが、例えば0.01~1.5mmが好ましく、0.05~0.5mmがより好ましい。スクリーンシート53Bの厚みは、スクリーンシート53Bの製造方法や投映像の視認性などに応じて任意に設定できるが、例えば0.02~1.2mmが好ましい。
 複数の接着層51B、52Bは、複数の透明板30、40とスクリーンシート53Bとを接着する。一方の接着層51Bは一方の透明板30とスクリーンシート53Bとを接着し、他方の接着層52Bは他方の透明板40とスクリーンシート53Bとを接着する。接着層51B、52Bは、図8において説明した接着層51A、52Aと同様のものを用いることができ、好ましい態様も含めて同様である。
 スクリーンシート53Bは、可撓性を有しなくてもよいが、可撓性を有することが好ましい。透明板30、40に沿って曲げ変形できる。スクリーンシート53Bは、基材54Bと、光散乱層55Bとを有する。図10では基材54Bが右側、光散乱層55Bが左側であるが、基材54Bが左側、光散乱層55Bが右側でもよい。光散乱層55Bの厚みは、光散乱層55Bの製造方法に応じて任意に選択できるが、例えば1~200μmが好ましい。基材54Bの厚みは、基材54Bの製造方法に応じて任意に選択できるが、たとえば0.01~0.5mmが好ましく、0.05~0.3mmがより好ましい。
 基材54Bは、ガラスシート、樹脂シートのいずれでもよいが、可撓性の観点から樹脂シートであることが好ましい。樹脂シートは、例えば、ポリカーボネート、PET、PEN、またはシクロオレフィンポリマーで形成される。特に湾曲状の透明スクリーンを製造する際に曲げ応力による皺やひずみが入りにくい点で、PETまたはPENが好ましい。
 光散乱層55Bは、透明樹脂と光散乱材料とを含む。光散乱層55Bに用いられる透明樹脂は、アクリル樹脂、エポキシ樹脂等の光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等を用いることができる。光散乱材料は、酸化チタン(屈折率:2.5~2.7)、酸化ジルコニウム(屈折率:2.4)、酸化アルミニウム(屈折率:1.76)等の高屈折率材料の微粒子や、ポーラスシリカ(屈折率:1.25以下)、中空シリカ(屈折率:1.25以下)等の低屈折率材料の微粒子、上記透明樹脂に相溶性の低い屈折率が異なる樹脂材料や結晶化した1μm以下の樹脂材料等を用いることができる。光散乱層55Bに占める光散乱材料の割合は、例えば0.01体積%以上5体積%以下、好ましくは0.05体積%以上1体積%以下である。
 光散乱層55Bは、光吸収材料をさらに含んでもよい。光吸収材料としては、カーボンブラックやチタンブラック等を用いることができる。光散乱層55Bに占める光吸収材料の割合は、例えば0.01体積%以上5体積%以下、好ましくは0.1体積%以上3体積%以下である。光吸収材料は、スクリーン本体50Bに表示される映像のコントラストを向上できる。
 尚、光散乱層55Bは、図11で示すように、透明樹脂部56B中に複数の光散乱部57Bが間隔をおいて配置される層であってもよい。この配置は、ルーバ構造と呼ばれるものである。光散乱部57Bは光散乱材料と透明樹脂とを含む。透明樹脂部56Bは図10に示す光散乱層55Bで用いられる透明樹脂と同様のものを用いることができる。
 尚、本実施形態の光散乱層55Bは、基材54Bの上に形成されるが、複数の透明板30、40のいずれか一方の上に形成されてもよい。また、本実施形態の光散乱層55Bは接着層で覆われるが、複数の透明板30、40のいずれか他方で覆われてもよい。これらの場合、複数の接着層51B、52B、および基材54Bが不要である。
 透過型の透明スクリーンの光学特性は、透過率が5%以上、90%以下であり、前方ヘイズが4以上、40以下であり、後方ヘイズが0以上、60以下であることが好ましい。透過率、前方ヘイズ、および後方ヘイズは、それぞれ、JIS Z8720(2012)「測色用の標準イルミナント(標準の光)及び標準光源」で規定されるD65光源を用いて測定する。
 以上、透明スクリーンの実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
 例えば、上記実施形態の透明スクリーンは、2枚の透明板を含むが、3枚以上の透明板を含んでもよい。
 また、上記実施形態の反射型のスクリーン本体50Aは、接着層51A、52Aとスクリーンシート53Aとを有するが、その他の機能層を有してもよい。
 同様に、上記実施形態の透過型のスクリーン本体50Bは、接着層51B、52Bとスクリーンシート53Bとを有するが、その他の機能層を有してもよい。
 前記機能層としては、例えば光の反射を低減させるための立体形状または層構成を有する反射防止層、光の一部を減衰させる光減衰層、および赤外線の透過を抑える赤外線遮蔽層等が挙げられる。これらの機能層は、反射型のスクリーン本体50Aまたは透過型のスクリーン本体50Bの構成において、任意の位置に1または2層以上有してもよく、異なる2以上の機能層を有してもよい。
 本出願は、2015年9月3日に日本国特許庁に出願された特願2015-173639号に基づく優先権を主張するものであり、特願2015-173639号の全内容を本出願に援用する。
10 ユーザ
20 透明スクリーン
30 透明板
40 透明板
50 スクリーン本体
50A 反射型のスクリーン本体
51A 接着層
52A 接着層
53A スクリーンシート
54A 基材
55A 凹凸層
56A 反射膜
57A 被覆層
58A 保護シート
50B 透過型のスクリーン本体
51B 接着層
52B 接着層
53B スクリーンシート
54B 基材
55B 光散乱層
60 保持部材
61 外側面保持部
62 内側面保持部

Claims (12)

  1.  前後方向に並ぶ複数の透明板と、複数の前記透明板に挟まれ、前方または後方から投映される映像を前方のユーザに表示し、かつ後方の背景を前記ユーザに視認させるスクリーン本体とを備える透明スクリーンであって、
     前記透明スクリーンの外縁の一部に直交する断面において、前記透明スクリーンが湾曲状であり、且つ、前記スクリーン本体よりも曲率半径方向外側の前記透明板の板厚方向中心線の長さが前記スクリーン本体よりも曲率半径方向内側の前記透明板の板厚方向中心線の長さよりも長い、透明スクリーン。
  2.  前記透明スクリーンの外縁の一部に直交する断面において、前記透明スクリーンが湾曲状であり、且つ、前記スクリーン本体を挟む複数の前記透明板の端面の段差の大きさが5mm以下である、請求項1に記載の透明スクリーン。
  3.  前記透明スクリーンの外縁の他の一部に直交する断面において、前記透明スクリーンが平坦状である、請求項1または2に記載の透明スクリーン。
  4.  前記スクリーン本体を挟む複数の前記透明板のそれぞれがガラス板である、請求項1~3のいずれか1項に記載の透明スクリーン。
  5.  前記スクリーン本体を挟む複数の前記ガラス板のうち、少なくとも1つの前記ガラス板が強化ガラスである、請求項4に記載の透明スクリーン。
  6.  前記スクリーン本体は、
     前方から投映される前記映像を前方の前記ユーザに表示するものであって、
     表面に凹凸を有する凹凸層と、
     前記凹凸層の前記表面の前記凹凸に沿って形成され、前方からの光の一部を前方に反射し、後方からの光の一部を前方に透過する反射膜と、
     前記反射膜の凹凸を覆う被覆層とを有する、請求項1~5のいずれか1項に記載の透明スクリーン。
  7.  前記スクリーン本体は、
     後方から投映される前記映像を前方の前記ユーザに表示するものであって、
     透明樹脂および光散乱材料を含む光散乱層を有する、請求項1~5のいずれか1項に記載の透明スクリーン。
  8.  請求項1~7のいずれか1項に記載の透明スクリーンを複数有し、
     複数の前記透明スクリーンを連続的に保持する保持部材を有する、透明スクリーン組立体。
  9.  前後方向に並ぶ複数の透明板と、複数の前記透明板に挟まれ、前方または後方から投映される映像を前方のユーザに表示し、かつ後方の背景を前記ユーザに視認させるスクリーン本体とを備える透明スクリーンの製造方法であって、
     主表面の大きさの異なる複数の透明平板を加熱しながら湾曲状に曲げることで、前記スクリーン本体を挟む複数の前記透明板を作製する曲げ成形工程と、
     複数の前記透明板を、前記スクリーン本体を挟んで積層する積層工程とを有し、
     前記透明スクリーンの外縁の一部に直交する断面において、前記透明スクリーンが湾曲状であり、且つ、前記スクリーン本体よりも曲率半径方向外側の前記透明板の板厚方向中心線の長さが前記スクリーン本体よりも曲率半径方向内側の前記透明板の板厚方向中心線の長さよりも長い、透明スクリーンの製造方法。
  10.  前記スクリーン本体は、
     前方から投映される前記映像を前方の前記ユーザに表示するものであって、
     表面に凹凸を有する凹凸層と、
     前記凹凸層の前記表面の前記凹凸に沿って形成され、前方からの光の一部を前方に反射し、後方からの光の一部を前方に透過する反射膜と、
     前記反射膜の凹凸を覆う被覆層とを有する、請求項9に記載の透明スクリーンの製造方法。
  11.  前記スクリーン本体は、
     後方から投映される前記映像を前方の前記ユーザに表示するものであって、
     透明樹脂および光散乱材料を含む光散乱層を有する、請求項9に記載の透明スクリーンの製造方法。
  12.  請求項9~11のいずれか1項に記載の製造方法により前記透明スクリーンを複数製造する透明スクリーン製造工程と、
     複数の前記透明スクリーンを連続的に連結する透明スクリーン連結工程とを有する、透明スクリーン組立体の製造方法。
PCT/JP2016/073892 2015-09-03 2016-08-16 透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法 WO2017038452A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680050216.6A CN108027551B (zh) 2015-09-03 2016-08-16 透明屏幕、透明屏幕组装体、透明屏幕的制造方法以及透明屏幕组装体的制造方法
JP2017537718A JP6658760B2 (ja) 2015-09-03 2016-08-16 透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法
CN202111228617.5A CN113934102B (zh) 2015-09-03 2016-08-16 透明屏幕、透明屏幕组装体、透明屏幕的制造方法以及透明屏幕组装体的制造方法
KR1020187005521A KR20180048646A (ko) 2015-09-03 2016-08-16 투명 스크린, 투명 스크린 조립체, 투명 스크린의 제조 방법 및 투명 스크린 조립체의 제조 방법
EP16841484.5A EP3346330B1 (en) 2015-09-03 2016-08-16 Transparent screen, transparent screen assembly, manufacturing method of transparent screen, and manufacturing method of transparent screen assembly
US15/905,880 US11022873B2 (en) 2015-09-03 2018-02-27 Transparent screen, transparent screen assembly, manufacturing method of transparent screen, and manufacturing method of transparent screen assembly
US17/225,190 US11385534B2 (en) 2015-09-03 2021-04-08 Transparent screen, transparent screen assembly, manufacturing method of transparent screen, and manufacturing method of transparent screen assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-173639 2015-09-03
JP2015173639 2015-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/905,880 Continuation US11022873B2 (en) 2015-09-03 2018-02-27 Transparent screen, transparent screen assembly, manufacturing method of transparent screen, and manufacturing method of transparent screen assembly

Publications (1)

Publication Number Publication Date
WO2017038452A1 true WO2017038452A1 (ja) 2017-03-09

Family

ID=58187425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073892 WO2017038452A1 (ja) 2015-09-03 2016-08-16 透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法

Country Status (6)

Country Link
US (2) US11022873B2 (ja)
EP (1) EP3346330B1 (ja)
JP (1) JP6658760B2 (ja)
KR (1) KR20180048646A (ja)
CN (2) CN113934102B (ja)
WO (1) WO2017038452A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556983A (zh) * 2017-12-20 2020-08-18 Agc株式会社 透明屏幕、影像投影层合板及影像显示***
CN112600959A (zh) * 2020-12-18 2021-04-02 Oppo(重庆)智能科技有限公司 用于电子设备的盖板和具有其的电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094581A1 (ja) * 2015-12-01 2017-06-08 旭硝子株式会社 透明スクリーンシート、透明スクリーン、および映像表示システム
EP3470892A3 (en) * 2017-10-11 2019-07-17 Agc Inc. Transparent screen
CN112289175B (zh) * 2019-07-24 2022-09-02 北京小米移动软件有限公司 显示面板的制作方法、显示面板及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501386A (ja) * 1979-10-22 1981-09-24
JPH06118510A (ja) * 1992-10-01 1994-04-28 Fujitsu Ltd 透過型スクリーン
JP2001075178A (ja) * 1999-09-01 2001-03-23 Dainippon Printing Co Ltd プロジェクションスクリーン用取り付け枠
JP2002131842A (ja) * 2000-10-23 2002-05-09 Takenaka Komuten Co Ltd 曲面スクリーン
JP2012159646A (ja) * 2011-01-31 2012-08-23 Dainippon Printing Co Ltd 透過型曲面スクリーンの製造方法、及び表示装置の製造方法
JP2014509963A (ja) * 2011-01-31 2014-04-24 サン−ゴバン グラス フランス 拡散反射を備えた透明部材
JP2014095771A (ja) * 2012-11-08 2014-05-22 Dainippon Printing Co Ltd スクリーン、及びスクリーンの製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473355A (en) * 1983-06-30 1984-09-25 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Visual simulator and display screen for said simulator
US5724189A (en) * 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby
KR100591241B1 (ko) * 1997-07-24 2006-10-04 쌩-고벵 글래스 프랑스 헤드업디스플레이시스템반사경으로동시에사용되도록의도된적층된앞창유리
JP4052741B2 (ja) * 1998-09-30 2008-02-27 セントラル硝子株式会社 反射型ディスプレイ用積層ガラス
US6347012B1 (en) * 2000-03-06 2002-02-12 Lockheed Martin Corporation Display system with improved luminosity
WO2003074270A2 (en) * 2002-02-28 2003-09-12 Solutia Inc. Embossed reflective laminates
KR100516173B1 (ko) * 2002-12-28 2005-09-22 삼성전자주식회사 곡률 스크린을 구비한 투사형 영상 재생 장치
JP2007010803A (ja) * 2005-06-28 2007-01-18 Seiko Epson Corp 透過型スクリーンおよびリア型プロジェクタ
US8049960B1 (en) * 2006-02-13 2011-11-01 Ligon Thomas R Contrast rear projection screen and method for manufacturing the same
US7777960B2 (en) 2007-09-10 2010-08-17 Microvision, Inc. Wide field of view head-up display system
US7715103B2 (en) 2007-09-10 2010-05-11 Microvision, Inc. Buried numerical aperture expander having transparent properties
FR2929016B1 (fr) * 2008-03-19 2010-06-04 Saint Gobain Dispositif de visualisation tete haute.
DE102009005273A1 (de) * 2009-01-20 2010-07-22 Mitja Jelusic Rückprojektionssystem, Verfahren zur Herstellung und Anwendung
EP2634630A3 (en) 2010-03-08 2017-06-14 Dai Nippon Printing Co., Ltd. Screens for use as displays of small-sized display devices with touch panel functions, and small-sized display devices with touch panel functions comprising said screens
JP5605059B2 (ja) 2010-07-29 2014-10-15 大日本印刷株式会社 透過型スクリーンおよび表示装置
GB201016566D0 (en) * 2010-10-01 2010-11-17 Barco Nv Curved back projection screen
JP5031909B2 (ja) * 2011-01-18 2012-09-26 日本電信電話株式会社 3次元表示装置
MX2014002020A (es) * 2011-08-29 2014-03-27 Saint Gobain Dispositivo para generar una imagen de pantalla sobre un panel de vidrio compuesto.
WO2013051717A1 (ja) * 2011-10-07 2013-04-11 旭硝子株式会社 積層体の製造方法
FR2991064B1 (fr) 2012-05-25 2014-05-16 Saint Gobain Procede de projection ou de retroprojection sur un vitrage comprenant un element en couches transparent presentant des proprietes de reflexion diffuse
GB201304114D0 (en) * 2013-03-07 2013-04-24 The Technology Partnership Plc Embedded diffuser structure
FR3012363B1 (fr) * 2013-10-30 2015-10-23 Saint Gobain Element en couches transparent
EP3103777B1 (en) * 2014-02-05 2021-03-24 AGC Inc. Laminated glass production method
EP3133441B1 (en) * 2014-04-14 2020-09-16 Tokyo Institute of Technology Film for transparent screen, method for manufacture thereof, and transparent screen comprising same
CN106462047B (zh) * 2014-06-02 2018-09-21 Agc株式会社 映像投影结构体、映像投影结构体的制造方法、映像投影方法以及汽车用窗
US9289969B2 (en) * 2014-06-27 2016-03-22 Disney Enterprises, Inc. Rear projected screen materials and processes
KR101836788B1 (ko) * 2014-12-22 2018-03-08 제이엑스티지 에네루기 가부시키가이샤 시트상 투명 성형체, 그것을 구비한 투명 스크린, 및 그것을 구비한 화상 투영 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56501386A (ja) * 1979-10-22 1981-09-24
JPH06118510A (ja) * 1992-10-01 1994-04-28 Fujitsu Ltd 透過型スクリーン
JP2001075178A (ja) * 1999-09-01 2001-03-23 Dainippon Printing Co Ltd プロジェクションスクリーン用取り付け枠
JP2002131842A (ja) * 2000-10-23 2002-05-09 Takenaka Komuten Co Ltd 曲面スクリーン
JP2012159646A (ja) * 2011-01-31 2012-08-23 Dainippon Printing Co Ltd 透過型曲面スクリーンの製造方法、及び表示装置の製造方法
JP2014509963A (ja) * 2011-01-31 2014-04-24 サン−ゴバン グラス フランス 拡散反射を備えた透明部材
JP2014095771A (ja) * 2012-11-08 2014-05-22 Dainippon Printing Co Ltd スクリーン、及びスクリーンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346330A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556983A (zh) * 2017-12-20 2020-08-18 Agc株式会社 透明屏幕、影像投影层合板及影像显示***
CN112600959A (zh) * 2020-12-18 2021-04-02 Oppo(重庆)智能科技有限公司 用于电子设备的盖板和具有其的电子设备
CN112600959B (zh) * 2020-12-18 2022-11-15 Oppo(重庆)智能科技有限公司 用于电子设备的盖板和具有其的电子设备

Also Published As

Publication number Publication date
EP3346330B1 (en) 2021-05-12
EP3346330A1 (en) 2018-07-11
US20180188643A1 (en) 2018-07-05
US11385534B2 (en) 2022-07-12
EP3346330A4 (en) 2019-03-20
JP6658760B2 (ja) 2020-03-04
CN108027551B (zh) 2021-10-26
CN113934102A (zh) 2022-01-14
KR20180048646A (ko) 2018-05-10
US20210223676A1 (en) 2021-07-22
CN113934102B (zh) 2023-06-27
JPWO2017038452A1 (ja) 2018-08-02
CN108027551A (zh) 2018-05-11
US11022873B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2017038452A1 (ja) 透明スクリーン、透明スクリーン組立体、透明スクリーンの製造方法、および透明スクリーン組立体の製造方法
US10353200B2 (en) Laminated glass
JP6806082B2 (ja) 透明スクリーンシート、透明スクリーン、および映像表示システム
JP7114982B2 (ja) 合わせガラス
JP7003929B2 (ja) 合わせガラス
WO2018216574A1 (ja) 合わせガラス
US11458707B2 (en) Laminated glass
JP2018203608A (ja) 合わせガラス
JP2013020210A (ja) 透過型スクリーン、これを備えた背面投射型表示装置、および透過型スクリーンの製造方法
WO2018131684A1 (ja) 透明スクリーン、映像投影合わせ板、映像表示システム、および透明スクリーンの製造方法
JP6696354B2 (ja) 映像投影合わせ板の製造方法
JP6221319B2 (ja) 透過型曲面スクリーンの製造方法
JP4673681B2 (ja) 積層体
JP5910177B2 (ja) 透過型スクリーンの製造方法
JP6578908B2 (ja) 透明スクリーン
JP2015152891A (ja) フレネルレンズシート、透過型スクリーン、背面投射型表示装置
JP2016048357A (ja) 曲面スクリーンを構成する積層体の製造方法
JP2004226732A (ja) ディスプレイ用前面フィルターおよびその製造方法
JP7259511B2 (ja) 合わせガラス
JP6780751B2 (ja) 透明スクリーン
JP2017102307A (ja) 透明スクリーンの製造方法
JP2006235447A (ja) 光学部材及び背面投影型リアスクリーン及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537718

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187005521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841484

Country of ref document: EP