WO2017033445A1 - 投射光学系及びプロジェクター - Google Patents

投射光学系及びプロジェクター Download PDF

Info

Publication number
WO2017033445A1
WO2017033445A1 PCT/JP2016/003789 JP2016003789W WO2017033445A1 WO 2017033445 A1 WO2017033445 A1 WO 2017033445A1 JP 2016003789 W JP2016003789 W JP 2016003789W WO 2017033445 A1 WO2017033445 A1 WO 2017033445A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
projection
projection optical
group
Prior art date
Application number
PCT/JP2016/003789
Other languages
English (en)
French (fr)
Inventor
峯藤 延孝
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/753,912 priority Critical patent/US10466452B2/en
Priority to CN201680048554.6A priority patent/CN107924046B/zh
Publication of WO2017033445A1 publication Critical patent/WO2017033445A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/082Catadioptric systems using three curved mirrors
    • G02B17/0828Catadioptric systems using three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present invention relates to a projection optical system suitable for incorporation into a projector that magnifies and projects an image of an image display element, and a projector using the same.
  • Patent Document 1 As a projection optical system for a projector capable of projecting from a short distance to obtain a large screen, for example, one using a refractive optical system and one aspherical reflecting surface has been proposed (for example, Patent Document 1). Etc.).
  • the refractive optical system includes an aspheric lens, and there is only one aspheric reflecting surface for re-imaging. It takes a burden. For example, if the F-number is brightened to cope with a wide zooming range, for example, a dozen or so lenses may be required even if a plurality of strong aspheric surfaces are included.
  • the present invention has been made in view of the above-described background, and an object thereof is to provide a projection optical system that can perform close-up projection while being compact, and a projector including the projection optical system.
  • a first projection optical system includes a refractive optical system including a plurality of lenses and having a positive power, which is provided in order from the reduction side, and a reflective optical system.
  • a projection optical system wherein the reflection optical system is a first reflection optical system, a second reflection optical system, and a third reflection optical system that are sequentially provided from the refractive optical system side on the optical path of light emitted from the refractive optical system.
  • the first reflective optical system includes a first reflective surface having a concave shape
  • the second reflective optical system includes a second reflective surface having a curved shape
  • the third reflective optical system has a convex shape.
  • the focal length of the first reflecting optical system is f1
  • the second reflecting optical When the focal length of the system is f2, and the focal length of the third reflecting optical system is f3, f1, f2, f There, characterized by satisfying the conditional expression (1).
  • the projection optical system includes first to third reflecting optical systems each having a first reflecting surface having a concave shape, a second reflecting surface having a curved shape, and a third reflecting surface having a convex shape.
  • ) k 1, 2, 3 However, fk can also be expressed as the focal length of each reflecting optical system shown in the conditional expression (1). That is, the power of the second reflecting optical system is the weakest, the power of the first reflecting optical system is the strongest, and the power of the third reflecting optical system is intermediate.
  • conditional expression (2) when the focal length of the entire system is F and the focal length of the refractive optical system is FL, conditional expression (2) is satisfied. 0.05 ⁇ F / FL ⁇ 0.15 (2) In this case, downsizing of the entire apparatus can be achieved while taking a long back focus.
  • the plurality of lenses are all rotationally symmetric systems.
  • all the surfaces of the plurality of lenses and the first to third reflection optical systems are configured as rotationally symmetric surfaces and are coaxial optical systems having the same optical axis.
  • the plurality of lenses includes a light transmission / reflection optical system having a light transmission region functioning as a part of a refractive optical system and a light reflection region functioning as a second reflection surface.
  • a part of the lens surface of the refractive optical system lens and the reflective surface of the reflective optical system can be configured as a common surface.
  • the light transmission / reflection optical system is disposed on the most enlarged side in the refractive optical system, and is fixed at the time of focusing at the time of zooming accompanying a change in the projection distance.
  • the refractive optical system has at least one moving lens group at the time of zooming, and has positive power in order from the reduction side with a variable interval on the most reduction side as a boundary.
  • the first lens group includes a first lens group having a positive power, and the first lens group has a focal length of F 1-1 , and the focal length of the first lens group of F-1 When 1-2 , the conditional expression (3) is satisfied. 0.0 ⁇
  • the numerical aperture on the object side is 0.27 or more.
  • the reduction side is substantially telecentric.
  • the zoom range is 1.4 times or more.
  • a second projection optical system includes a refractive optical system that includes a plurality of lenses and has positive power, and is provided in order from the reduction side, and at least three reflecting surfaces.
  • a light transmission / reflection optical system having a region.
  • the light transmission / reflection optical system can be used as a refractive lens and a function as a reflection mirror, so that it is possible to perform close projection while being compact.
  • a projector includes a light source, a light modulation element that modulates light from the light source to form image light, and any one of the projection optical systems that projects the image light. .
  • the projector can perform proximity projection while being compact.
  • FIG. 3 is a partially enlarged view from the object plane to the concave reflecting mirror in FIG. 2.
  • 1 is a diagram illustrating a configuration of a projection optical system according to Example 1.
  • FIG. FIGS. 4A to 4C are reduction side aberration diagrams of the projection optical system of Example 1.
  • FIGS. 5A to 5E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 5A to 5E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 5A to 5E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 5A to 5E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIG. 5A to 5E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIG. 6 is a diagram illustrating a configuration of a projection optical system of Example 2.
  • FIGS. 7A to 7C are reduction side aberration diagrams of the projection optical system according to Example 2.
  • FIGS. 10A to 10E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 10A to 10E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 10A to 10E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIG. 6 is a diagram illustrating a configuration of a projection optical system according to Example 3.
  • FIGS. 7A to 7C are reduction side aberration diagrams of the projection optical system according to Example 3.
  • FIGS. (A) to (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. (A) to (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. (A) to (E) are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIG. 10 is a diagram illustrating a configuration of a projection optical system according to Example 4.
  • FIGS. 9A to 9C are reduction side aberration diagrams of the projection optical system of Example 4.
  • FIGS. (A) to (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. (A) to (E) are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIG. 10 is a diagram illustrating a configuration of a projection optical system according to Example 5.
  • FIGS. 7A to 7C are reduction side aberration diagrams of the projection optical system according to Example 5.
  • FIG. 10 is a diagram illustrating a configuration of a projection optical system according to Example 5.
  • FIGS. 7A to 7C are reduction side aberration diagrams of the projection optical system according to Example 5.
  • FIGS. 9A to 9C are reduction side aberration diagrams of the projection optical system according to Example 6.
  • a projector 2 incorporating a projection optical system includes an optical system portion 50 that projects image light, and a circuit device 80 that controls the operation of the optical system portion 50. Prepare.
  • the light source 10 is, for example, an ultra-high pressure mercury lamp, and emits light including R light, G light, and B light.
  • the light source 10 may be a discharge light source other than an ultra-high pressure mercury lamp, or may be a solid light source such as an LED or a laser.
  • the first integrator lens 11 and the second integrator lens 12 have a plurality of lens elements arranged in an array.
  • the first integrator lens 11 splits the light flux from the light source 10 into a plurality of parts. Each lens element of the first integrator lens 11 condenses the light beam from the light source 10 in the vicinity of the lens element of the second integrator lens 12.
  • the lens elements of the second integrator lens 12 cooperate with the superimposing lens 14 to form images of the lens elements of the first integrator lens 11 on the liquid crystal panels 18R, 18G, and 18B.
  • the light from the light source 10 illuminates the entire display area of the liquid crystal panels 18R, 18G, and 18B with substantially uniform brightness.
  • the polarization conversion element 13 converts the light from the second integrator lens 12 into predetermined linearly polarized light.
  • the superimposing lens 14 superimposes the image of each lens element of the first integrator lens 11 on the display area of the liquid crystal panels 18R, 18G, and 18B via the second integrator lens 12.
  • the first dichroic mirror 15 reflects R light incident from the superimposing lens 14 and transmits G light and B light.
  • the R light reflected by the first dichroic mirror 15 passes through the reflection mirror 16 and the field lens 17R and enters the liquid crystal panel 18R that is a light modulation element.
  • the liquid crystal panel 18R forms an R color image by modulating the R light according to the image signal.
  • the second dichroic mirror 21 reflects the G light from the first dichroic mirror 15 and transmits the B light.
  • the G light reflected by the second dichroic mirror 21 passes through the field lens 17G and enters the liquid crystal panel 18G that is a light modulation element.
  • the liquid crystal panel 18G modulates the G light according to the image signal to form a G color image.
  • the B light transmitted through the second dichroic mirror 21 passes through the relay lenses 22 and 24, the reflection mirrors 23 and 25, and the field lens 17B and enters the liquid crystal panel 18B that is a light modulation element.
  • the liquid crystal panel 18B forms a B-color image by modulating the B light according to the image signal.
  • the cross dichroic prism 19 is a light combining prism that combines light modulated by the liquid crystal panels 18R, 18G, and 18B into image light and advances it to the projection optical system 40.
  • the projection optical system 40 is a projection zoom lens that enlarges and projects the image light modulated by the liquid crystal panels 18G, 18R, and 18B and synthesized by the cross dichroic prism 19 onto a screen (not shown).
  • the circuit device 80 includes an image processing unit 81 to which an external image signal such as a video signal is input, and display driving for driving the liquid crystal panels 18G, 18R, and 18B provided in the optical system portion 50 based on the output of the image processing unit 81.
  • Unit 82 a lens driving unit 83 that adjusts the state of the projection optical system 40 by operating a drive mechanism (not shown) provided in the projection optical system 40, and the operations of these circuit portions 81, 82, 83, etc.
  • a main control unit 88 for controlling automatically.
  • the image processing unit 81 converts the input external image signal into an image signal including a gradation of each color.
  • the image processing unit 81 can also perform various image processing such as distortion correction and color correction on the external image signal.
  • the display driving unit 82 can operate the liquid crystal panels 18G, 18R, and 18B based on the image signal output from the image processing unit 81, and can display an image corresponding to the image signal or an image that has been subjected to image processing. Corresponding images can be formed on the liquid crystal panels 18G, 18R, 18B.
  • the lens driving unit 83 operates under the control of the main control unit 88, and appropriately moves a part of the optical elements constituting the projection optical system 40 along the optical axis OA via the actuator AC. In the projection of the image on the screen by 40, it is possible to perform focus accompanying zooming (focus during zooming).
  • the lens driving unit 83 can also change the vertical position of the image projected on the screen by adjusting the tilt of moving the entire projection optical system 40 in the vertical direction perpendicular to the optical axis OA.
  • the projection optical system 40 illustrated in FIG. 2 and the like has the same configuration as the projection optical system 40 of Example 1 described later.
  • the + Y direction is the upward direction and the -Y direction is the downward direction.
  • the projection optical system 40 of the embodiment projects an image formed on the liquid crystal panel 18G (18R, 18B) onto a screen (not shown).
  • a prism PR corresponding to the cross dichroic prism 19 of FIG. 1 is disposed between the projection optical system 40 and the liquid crystal panel 18G (18R, 18B).
  • the projection optical system 40 includes, in order from the reduction side, a first optical group 40a that is a refractive optical system that includes a plurality of lenses and has a positive power, and a reflection optical system that includes a plurality of mirrors and has various curved surface reflection surfaces. And the second optical group 40b.
  • the first optical group 40a is provided on the reduction side of the space formed between the included lenses, and is provided on the reduction side with the variable interval BD on the reduction side as the boundary among the intervals that are variable by the movement of the lens.
  • a refractive lens system, and a first-second lens group 42 provided on the enlargement side and having a weak positive power compared to the power of the first-first lens group 41. It is.
  • the second optical group 40b includes a first reflecting optical system MR1, a second reflecting optical system MR2, and a third reflecting optical system MR2 that are sequentially provided from the first optical group 40a side on the optical path of the light emitted from the first optical group 40a.
  • This is a reflection optical system including the reflection optical system MR3.
  • the first optical group 40a and the second optical group 40b share some elements (referred to as the lens L7 or the second reflective optical system MR2).
  • the part of the element functions as a part of the first optical group 40a that is a refractive optical system when viewed as the lens L7
  • the second element that is a reflective optical system when viewed as the second reflective optical system MR2.
  • This is a light transmission / reflection optical system that functions as a part of the optical group 40b.
  • the lower region of the lens L7 (or the second reflection optical system MR2) is a light transmission region having a function as a lens (refractive lens) that transmits and refracts light.
  • the upper region of the second reflective optical system MR2 (or lens L7) is a light reflecting region that functions as a mirror (mirror lens) that reflects light. Therefore, in the case shown in FIG. 1, when the light rays of the image light projected from the liquid crystal panel 18G (18R, 18B) through the prism PR are emitted to the second optical group 40b through the first optical group 40a, the first light is emitted. It passes under the lens L7 (or the second reflection optical system MR2) disposed on the most enlarged side of the optical group 40a. Further, the light beam is reflected by the first reflection optical system MR1 of the second optical group 40b, and then enters the second reflection optical system MR2 (or the lens L7) again. At this time, the light beam is reflected toward the third reflection optical system MR3 above the second reflection optical system MR2 (or the lens L7).
  • the first optical group 40a which is a refractive optical system will be described in detail.
  • the 1-1st lens group 41 has an aperture stop ST, and has lens groups (lenses L1 to L4) closer to the reduction side than the aperture stop ST.
  • the lenses L1 to L4 are fixed at the time of focusing at the time of zooming accompanying the change of the projection distance.
  • the first-second lens group 42 includes lens groups (lenses L5 to L7) arranged on the enlargement side with respect to the aperture stop ST.
  • the lenses L5 and L6 constitute a focus group.
  • Each of the lenses L5 and L6 is moved in the direction A1 (optical axis direction) along the optical axis OA by the actuator AC at the time of zooming when changing the projection distance.
  • the actuator AC can be moved in various ways depending on the focus at the time of zooming.
  • each lens may be moved completely independently, or may be mutually connected using a cam mechanism or the like. You may move in conjunction.
  • the lens L7 (or the second reflection optical system MR2) disposed on the most enlarged side in the first optical group 40a is fixed at the time of focusing accompanying the above zooming.
  • the first-first lens group 41 includes four lenses L1 to L4, the lenses L1 and L2 are positive lenses, and the lens L3 and the lens L4 are cemented lenses.
  • the first-second lens group 42 includes three lenses L5 to L7, the lens L5 is a positive lens, the lens L6 is a positive meniscus lens, and the lens L7 is It is a double-sided aspheric negative lens. That is, the first optical group 40a is composed of seven lenses L1 to L7 as a whole. Each of the lenses L1 to L7 has a circular shape that is symmetric about the optical axis OA.
  • all of the plurality of lenses L1 to L7 constituting the first optical group 40a which is a refractive optical system is a rotationally symmetric system.
  • All of the lenses other than the lens L7 are glass spherical lenses.
  • the lens L7 is a double-sided aspheric lens, and since the lens diameter is relatively large, it is preferable to use a resin lens because it is inexpensive.
  • the lens L7 since the lens L7 has an axisymmetric circular shape and is used even if a part of it is a reflecting surface, it may be a glass aspherical lens that is easy to ensure accuracy.
  • the first reflective optical system MR1 is disposed on the exit side (enlargement side) of the first optical group 40a, that is, the most reflective side of the second optical group 40b, and has a concave shape. Includes surface R1.
  • the first reflection optical system MR1 emits the light beam emitted from the first optical group 40a toward the second reflection optical system MR2 by the reflection at the first reflection surface R1.
  • the second reflection optical system MR2 includes a second reflection surface R2 which is disposed on the enlarged side of the first reflection optical system MR1 on the optical path and has a curved surface shape.
  • the second reflective optical system MR2 (or the lens L7) forms a light reflection region in a part of the lens L7 constituting the first optical group 40a that is not used as a refractive lens.
  • the second reflection surface R2 is provided.
  • the lens on which the second reflecting surface R2 is provided is a double-sided aspheric negative lens, and the second reflecting surface R2 that is a part of the lens is also aspherical. ing.
  • the second reflecting optical system MR2 is an aspherical mirror.
  • the second reflection optical system MR2 emits the light beam emitted from the first reflection optical system MR1 toward the third reflection optical system MR3 by reflection at the second reflection surface R2.
  • the third reflection optical system MR3 includes a third reflection surface R3 which is disposed on the enlargement side of the second reflection optical system MR2 on the optical path, that is, the most enlargement side, and has a convex shape.
  • the third reflection optical system MR3 emits the light beam emitted from the second reflection optical system MR2 toward the screen that is the irradiated surface by the reflection at the third reflection surface R3.
  • the respective mirrors (reflection optical systems MR1 to MR3) constituting the second optical group 40b will be described.
  • all the reflecting surfaces R1 to R3 of the first to third reflecting optical systems MR1 to MR3 have an aspherical shape, are composed of rotationally symmetric surfaces, and have the same optical axis.
  • the focal length of the first reflective optical system MR1 is f1
  • the focal length of the second reflective optical system MR2 is f2
  • the focal length of the third reflective optical system MR3 is f3, f1, f2, and f3 are as follows.
  • Conditional expression (1) is satisfied.
  • ) k 1, 2, 3
  • fk can also be expressed as the focal length of each reflecting optical system shown in the conditional expression (1).
  • Conditional expression (1) is a condition relating to the focal lengths f1, f2, and f3 of the three reflecting surfaces R1 to R3.
  • the conditions for reducing the size of the optical group 40b and forming the primary image including the aberration produced by the first optical group 40a on the screen efficiently as a secondary image with sufficiently corrected aberrations. is there. If the absolute value of the focal length f1 of the first reflecting surface R1 is larger than the absolute value of the focal length f3 of the third reflecting surface R3, that is, if the positive power becomes too weak, the size of the first reflecting surface R1 becomes smaller.
  • the position of the light beam incident on the second reflecting surface R2 can be set to a low position by making the first reflecting surface R1 a surface having a stronger power than the other two reflecting surfaces R2 and R3.
  • the first and second reflecting surfaces R2 and R3 can be reduced in size.
  • the absolute value of the focal length f2 of the second reflecting surface R2 is set to be larger than the absolute value of the focal length f1 of the reflecting surface R1 and the focal length f3 of the reflecting surface R3, that is, a surface having low power.
  • the positive power of the first reflecting surface R1 and the negative power of the third reflecting surface R3 can be set with good balance, and various aberrations can be corrected with good balance.
  • a part of the lens surface of the lens (lens L7) of the first optical group 40a (refractive optical system) and the reflecting surface (second reflecting surface R2) are reduced.
  • the plurality of lenses L1 to L7 constituting the first optical group 40a (refractive optical system) and the second optical group 40b (reflection optical system) are constituted.
  • All surfaces of the first to third reflecting optical systems MR1 to MR3 are rotationally symmetric surfaces and are coaxial optical systems having the same optical axis.
  • the projection optical system 40 when the focal length of the entire system is F and the focal length of the first optical group 40a (refractive optical system) is FL, the projection optical system 40 has the following conditional expression (2 ) Is satisfied. 0.05 ⁇ F / FL ⁇ 0.15 (2)
  • Conditional expression (2) is a condition relating to the ratio between the focal length of the entire system and the focal length of the first lens group, and is a condition for achieving downsizing of the entire apparatus while taking a long back focus.
  • the first optical group 40a (refractive index) has a very short focal length and has a role of creating a primary image in order to obtain a long back focus for inserting the color synthesis prism PR and the like. It is necessary to increase the focal length of the optical system.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded and the focal length of the first optical group 40a becomes too short, it becomes difficult to correct various aberrations, and the number of lenses needs to be increased accordingly. It also becomes difficult to secure the necessary back focus. Conversely, if the focal length of the first optical group 40a becomes too long beyond the lower limit of conditional expression (2), aberration correction becomes easy, but the total lens length becomes long, which is preferable in terms of miniaturization. Absent. By satisfying conditional expression (2), it is possible to achieve downsizing of the entire apparatus while taking a long back focus.
  • the projection optical system 40 can satisfy the following conditional expression (3) Satisfied. 0.0 ⁇
  • the super-wide-angle projection optical system as in the present embodiment has a very wide angle of view. Therefore, compared to a general projection optical system (for example, a projection optical system having a half angle of view of about 30 °), the aberration due to the projection distance is reduced. The amount of change is very large. When the projection distance is changed, the focal length is very short, so the curvature of field and distortion at the periphery of the screen at the high image height position change greatly compared to the case where the focus change at the low image height position is small. To do. Therefore, in the projection optical system according to the present embodiment, the field curvature change and the distortion change mainly in the periphery of the screen are corrected at the time of focusing accompanying zooming.
  • a general projection optical system for example, a projection optical system having a half angle of view of about 30 °
  • Conditional expression (3) is a condition related to the ratio of the focal lengths of the fixed group and the moving group during focusing in the first optical group 40a, and can be said to be a condition for performing focusing with a simple configuration.
  • each of the lenses L1 to L7 constituting the first optical group 40a has a circular shape that is symmetric about the optical axis OA.
  • the lens L7 on the enlargement side that tends to be the largest is also circular. Thereby, the error in a manufacturing process can be suppressed as much as possible. Further, all the lenses L1 to L7 can be circular.
  • the second optical group 40b is composed of a single concave mirror. In the projection optical system, the light beam reflected by the concave mirror interferes with the refractive optical system.
  • the lens arranged on the side (the lens on the most enlarged side of the first optical group 40a) needs to be cut into a non-circular shape. If the lens has a non-circular shape, the lens frame structure for housing the lens becomes complicated and the cost increases.
  • the lens L7 that is positioned closest to the enlargement side a part of the lens surface is made to function as a reflecting surface, so that each of the lenses L1 to L7 has a circular shape and is a general lens barrel. The structure can be taken, and it is possible to achieve an improvement in accuracy as well as cost reduction.
  • the reduction side is substantially telecentric.
  • the assembly variation is easily absorbed. it can.
  • the distance to the screen is generally very close.
  • the image formed on the panel surface PI of the liquid crystal panel 18G (18R, 18B) is temporarily formed by the first optical group 40a before the mirror of the second optical group 40b, and then the second optical Proximity projection is performed by re-imaging the image on the screen by the group 40b. That is, the first optical group 40a creates a primary image (intermediate image) before the second optical group 40b.
  • the close-up projection optical system as described above since the aberration fluctuation at the time of zooming is relatively large, there is a possibility that the zooming range cannot be made very large.
  • the primary image formed by the first optical group 40a is preferably optimized so that a good image can be obtained even when the projection magnification is changed. Further, in a general proximity projection optical system, contrast reduction due to field curvature and astigmatism variation is large. In addition, a change in distortion during zooming tends to be larger than that in a normal lens system.
  • the projection optical system 40 of the present embodiment has the configuration of the second optical group 40b when the primary image formed by the first optical group 40a is re-imaged by the second optical group 40b.
  • the generation of chromatic aberration in the entire optical system is reduced as much as possible, and light is reflected multiple times to increase the substantial optical path length.
  • the power of each optical element can be reduced.
  • the burden on the first optical group 40a can be reduced.
  • the number of mirrors constituting the second optical group 40b is an odd number.
  • the projection light is configured to return to the light source side, that is, a screen is arranged on the light source side for close-up projection, so that a general reflection mirror is not used in the installation of the projector or an even number of reflection mirrors.
  • the arm for installing the projector on the wall surface can be shortened and the strength can be reduced.
  • the numerical aperture on the object side is 0.27 or more, that is, the F number is about 1.8 times or more while having the brightness of about 1.8 (or 1.5 times more). (2 times or more, 1.6 times or more), a high zooming range is ensured, and it has sufficient performance for high-resolution image display elements.
  • an aspherical lens molded from a resin to the refractive optical system.
  • an aspherical lens molded from a resin must be molded on both sides with high precision, and if the ratio of the thickness between the central part and the peripheral part, that is, the thickness deviation ratio is large, internal distortion tends to occur during molding.
  • an aspheric surface is used for a large lens, there is a limitation in shape from the viewpoint of manufacturing.
  • resin molding of aspherical mirrors requires only one side of molding. Since surface reflection is used, the effect of internal distortion is small, and the mirror thickness can be made uniform and easy to mold. More accurate than aspheric lenses.
  • the aspherical surface is specified by the following polynomial (aspherical surface equation). However, c: Curvature (1 / R) h: Height from the optical axis k: Aspherical cone coefficient Ai: Aspherical higher order aspherical coefficient OBJ means panel surface PI, STO means aperture stop ST, IMG means screen It means the upper image surface (projected surface). In addition, a surface having “*” written before the surface number is a surface having an aspherical shape.
  • Example 1 The lens surface data of Example 1 is shown in Table 1 below. [Table 1] f 4.002 ⁇ 69.9 ° NA 0.278 In Table 1 and the following table, a power of 10 (for example, 1.00 ⁇ 10 +18 ) is expressed using E (for example, 1.00E + 18).
  • Table 3 shows the values of the variable intervals 9, 12, 14, and 19 in Table 1 at a projection magnification of 126 times, a projection magnification of 162 times, and a projection magnification of 110 times.
  • FIG. 4 is a sectional view of the projection optical system 40 of the first embodiment.
  • the projection optical system 40 in FIG. 4 corresponds to the projection optical system 40 in the first embodiment.
  • the projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification according to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L4 constituting the first-first lens group 41 and lenses L5 to L7 constituting the first-second lens group 42. 7 lenses L1 to L7.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors. Although the aspherical mirror other than the second reflecting optical system MR2 is drawn as it is without being cut out in FIG. 4, in an actual optical system, it is a shape partially cut out from a circular shape (see FIG. 3). .
  • the first optical group 40a which is a refractive optical system, includes a biconvex positive first lens (lens L1) and a biconvex positive second lens (in order from the reduction side).
  • Lens L2 a cemented lens of a biconcave negative third lens (lens L3) and a biconvex positive fourth lens (lens L4), an aperture stop ST, a biconvex fifth lens (lens L5) ), A positive meniscus sixth lens (lens L6) with a convex surface facing the reduction side, and a negative seventh lens (lens L7) with a biconcave shape and aspheric surfaces on both sides. Is done.
  • the light beam emitted from the first optical group 40a is subjected to primary imaging between the first reflecting optical system MR1 of the first optical group 40a and the second optical group 40b, and then the first reflecting optical system MR1. Reflected by the aspherical concave reflecting surface R1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side and is placed on the upper half of the lens surface of the seventh lens (lens L7) arranged on the most enlarged side of the first optical group 40a. It is reflected by the aspherical concave reflecting surface R2 of the provided second reflecting optical system MR2.
  • the refracting surface on the most enlarged side of the first optical group 40a and the reflecting surface R2 of the second reflecting optical system MR2 have the same surface shape, and approximately half are transmissive surfaces and the other half with the optical axis OA interposed. Is a reflective surface.
  • the light beam reflected by the second reflecting optical system MR2 is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3 and forms an image on the screen.
  • focusing is performed by moving the fifth lens (lens L5) and the sixth lens (lens L6) of the first-second lens group 42 by floating.
  • the seventh lens (lens L7) on the most enlarged side which is also used as the second reflecting optical system MR2, is fixed.
  • the first-first lens group 41 and the second optical group 40b are also fixed.
  • FIG. 5A is a reduction aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 126 times
  • FIG. 5B is a diagram when the projection magnification is 162 times
  • FIG. 5C is a reduction side aberration diagram of the projection optical system
  • FIG. 5C is a reduction side aberration diagram of the projection optical system when the projection magnification is 110 times.
  • 6 (A) to 6 (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. 5 (A).
  • FIGS. 6A to 6E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 6A corresponds to the case of the maximum field angle.
  • FIGS. 7A to 7E are lateral aberration diagrams of the projection optical system corresponding to FIG. 5B
  • FIGS. 8A to 8E are FIGS.
  • FIG. 6 is a lateral aberration diagram of the projection optical system
  • Example 2 The lens surface data of Example 2 is shown in Table 4 below. [Table 4] f 4.029 ⁇ 69.8 ° NA 0.278
  • Table 6 shows the values of the variable intervals 9, 12, 14, and 19 in Table 4 at a projection magnification of 125 times, a projection magnification of 161 times, and a projection magnification of 110 times.
  • FIG. 9 is a sectional view of the projection optical system 40 of the second embodiment.
  • the projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification according to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L4 constituting the first-first lens group 41 and lenses L5 to L7 constituting the first-second lens group 42. 7 lenses L1 to L7.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors. Note that the aspherical mirror other than the second reflecting optical system MR2 is drawn as it is without being cut out in FIG. 9, but in an actual optical system, the shape is partially cut out from a circular shape.
  • the first optical group 40a which is a refractive optical system, has a biconvex positive first lens (lens L1) in order from the reduction side and a meniscus shape with the convex surface facing the reduction side.
  • Positive second lens (lens L2), biconcave third lens (lens L3) and biconvex positive fourth lens (lens L4), aperture stop ST, biconvex positive A fifth lens (lens L5), a negative sixth lens (lens L6) having a meniscus shape with a convex surface facing the reduction side and an aspheric surface on both sides, and a seventh positive meniscus shape with the convex surface facing the reduction side It is composed of seven lenses (lens L7).
  • the light beam emitted from the first optical group 40a is subjected to primary imaging between the first reflecting optical system MR1 of the first optical group 40a and the second optical group 40b, and then the first reflecting optical system MR1. Reflected by the concave reflecting surface R1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side and is placed on the upper half of the lens surface of the seventh lens (lens L7) arranged on the most enlarged side of the first optical group 40a.
  • the refracting surface on the most enlarged side of the first optical group 40a and the reflecting surface R2 of the second reflecting optical system MR2 have the same surface shape, and approximately half are transmissive surfaces and the other half with the optical axis OA interposed. Is a reflective surface.
  • the light beam reflected by the second reflecting optical system MR2 is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3 and forms an image on the screen.
  • the most magnified lens (lens L7) of the first optical group 40a shared with the concave reflecting surface R2 of the second reflecting optical system MR2 is configured as a spherical lens. If this surface is an aspherical surface, such a large-aperture lens is generally a resin lens. However, since a spherical lens can be processed with glass with high accuracy, there is a variation in performance. To prevent it, it is very effective.
  • focusing is performed by moving the fifth lens (lens L5) and the sixth lens (lens L6) of the first-second lens group 42 by floating.
  • the seventh lens (lens L7) on the most enlarged side which is also used as the second reflecting optical system MR2, is fixed.
  • the first-first lens group 41 and the second optical group 40b are also fixed.
  • FIG. 10A is a reduction side aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 125 times
  • FIG. 10B is a diagram when the projection magnification is 161 times
  • FIG. 10C is a reduction side aberration diagram of the projection optical system
  • FIG. 10C is a reduction side aberration diagram of the projection optical system when the projection magnification is 110 times
  • FIGS. 11A to 11E are lateral aberration diagrams of the projection optical system corresponding to FIG. 11A to 11E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 11A corresponds to the case of the maximum field angle.
  • FIGS. 12A to 12E are lateral aberration diagrams of the projection optical system corresponding to FIG. 10B
  • FIGS. 13A to 13E are FIGS.
  • FIG. 6 is a lateral aberration diagram of the projection optical system corresponding to FIG.
  • Example 3 The lens surface data of Example 3 is shown in Table 7 below. [Table 7] f 3.977 ⁇ 69.9 ° NA 0.278
  • Table 9 shows values of variable intervals 9, 12, 14, and 19 in Table 7 at a projection magnification of 126 times, a projection magnification of 162 times, and a projection magnification of 110 times.
  • FIG. 14 is a sectional view of the projection optical system 40 of the third embodiment.
  • the projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification corresponding to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L4 constituting the first-first lens group 41 and lenses L5 to L7 constituting the first-second lens group 42. 7 lenses L1 to L7.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors. Note that the aspherical mirror other than the second reflecting optical system MR2 is drawn as it is without being cut out in FIG. 14, but in an actual optical system, the shape is partially cut from a circular shape.
  • the first optical group 40a which is a refractive optical system, has a biconvex positive first lens (lens L1) in order from the reduction side and a meniscus shape with the convex surface facing the reduction side.
  • the seventh lens (lens L7) has a refractive power of 7 lenses.
  • the light beam emitted from the first optical group 40a is subjected to primary imaging between the first reflecting optical system MR1 of the first optical group 40a and the second optical group 40b, and then the first reflecting optical system MR1. Reflected by the concave reflecting surface R1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side and is placed on the upper half of the lens surface of the seventh lens (lens L7) arranged on the most enlarged side of the first optical group 40a.
  • the light is reflected by the convex reflecting surface R2 of the provided second reflecting optical system MR2.
  • the refracting surface on the most enlarged side of the first optical group 40a and the reflecting surface R2 of the second reflecting optical system MR2 have the same surface shape, and approximately half are transmissive surfaces and the other half with the optical axis OA interposed. Is a reflective surface.
  • the light beam reflected by the second reflecting optical system MR2 is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3 and forms an image on the screen.
  • the second reflective optical system MR2 is a convex surface. That is, the second reflective optical system MR2 can be configured with a convex surface. In the case of a convex surface, the third reflective optical system MR3 has a shape that is relatively perpendicular to the optical axis, so that the thickness in the depth direction can be reduced.
  • focusing is performed by moving the fifth lens (lens L5) and the sixth lens (lens L6) of the first-second lens group 42 by floating.
  • the seventh lens (lens L7) on the most enlarged side which is also used as the second reflecting optical system MR2, is fixed.
  • the first-first lens group 41 and the second optical group 40b are also fixed.
  • FIG. 15A is a reduction aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 126 times
  • FIG. 15B is a diagram when the projection magnification is 162 times
  • FIG. 15C is a reduction side aberration diagram of the projection optical system
  • FIG. 15C is a reduction side aberration diagram of the projection optical system when the projection magnification is 110 times
  • FIGS. 16A to 16E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 16A to 16E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 16A corresponds to the case of the maximum field angle.
  • FIGS. 17A to 17E are lateral aberration diagrams of the projection optical system corresponding to FIG. 15B
  • FIGS. 18A to 18E are FIGS.
  • FIG. 6 is a lateral aberration diagram of the projection optical system corresponding to FIG.
  • Example 4 The lens surface data of Example 4 is shown in Table 10 below.
  • the second reflecting optical system MR2 is not shared with a part of the first optical group 40a but exists alone. [Table 10] f 3.994 ⁇ 70.0 ° NA 0.278
  • Table 12 shows the values of the variable intervals 7, 10, 12, and 15 in Table 10 at a projection magnification of 126 times, a projection magnification of 161 times, and a projection magnification of 110 times.
  • FIG. 19 is a cross-sectional view of the projection optical system 40 of the fourth embodiment.
  • the projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification according to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L3 constituting the first-first lens group 41 and lenses L4, L5 constituting the first-second lens group 42. 5 lenses L1 to L5.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors.
  • the second reflective optical system MR2 exists alone.
  • the aspherical mirror is drawn as it is in FIG. 19 without being cut out, but in an actual optical system, the shape is partially cut out from a circular shape.
  • the first optical group 40a which is a refractive optical system, will be described in detail in the order of the optical paths.
  • the first optical group 40a which is a refractive optical system, is a biconvex positive first lens (lens L1) in order from the reduction side, and a negative meniscus shape with the convex surface facing the reduction side.
  • the fifth lens is a biconvex and positive fifth lens (lens L5).
  • the light beam emitted from the first optical group 40a is subjected to primary imaging between the first reflecting optical system MR1 of the first optical group 40a and the second optical group 40b, and then the first reflecting optical system MR1. Reflected by the aspherical concave reflecting surface R1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side and is reflected by the aspherical concave reflecting surface R2 of the second reflecting optical system MR2.
  • the light beam reflected by the second reflecting optical system MR2 is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3 and forms an image on the screen.
  • the second reflecting optical system MR2 is configured with only a single mirror surface.
  • the second reflecting optical system MR2 has a lens positioned closest to the first optical group 40a. A part can also be used as the reflecting surface R2 of the second reflecting optical system MR2.
  • the first optical group 40a which is a refractive optical system, is configured by five lenses by using three single aspherical mirrors in the second optical group 40b.
  • the first optical group 40a is composed entirely of spherical lenses that are easy to ensure accuracy and can be formed into a general circular shape, variations in manufacturing can be reduced.
  • the three aspherical mirrors are all rotationally symmetric and coaxial with the optical axis of the refractive system, so that the installation accuracy can be easily obtained.
  • the second reflecting optical system MR2 is relatively small, it is formed as a circular glass aspherical mirror that is easy to ensure accuracy, and is cut in half on the optical axis, so that one circular glass is formed. It is also possible to produce two parts from an aspherical mirror.
  • focusing is performed by moving the fourth lens (lens L4) and the fifth lens (lens L5) of the first-second lens group 42 by floating.
  • the 1-1st lens group 41 and the second optical group 40b are fixed.
  • FIG. 20A is a reduction aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 126 times
  • FIG. 20B is a diagram when the projection magnification is 161 times
  • FIG. 20C is a reduction side aberration diagram of the projection optical system
  • FIG. 20C is a reduction side aberration diagram of the projection optical system when the projection magnification is 110 times.
  • FIGS. 21A to 21E are lateral aberration diagrams of the projection optical system corresponding to FIG.
  • FIGS. 21A to 21E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 21A corresponds to the case of the maximum field angle.
  • FIGS. 22 (A) to 22 (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. 20 (B), and FIGS. 23 (A) to 23 (E) are FIGS.
  • FIG. 6 is a lateral aberration diagram of the projection optical system corresponding to FIG.
  • Example 5 The lens surface data of Example 5 is shown in Table 13 below. [Table 13] f 4.019 ⁇ 70.7 ° NA 0.278
  • Table 15 shows the values of the variable intervals 7, 10, 12, and 15 in Table 13 at a projection magnification of 125 times, a projection magnification of 161 times, and a projection magnification of 110 times.
  • FIG. 24 is a sectional view of the projection optical system 40 of the fifth embodiment.
  • a projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification according to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L3 constituting the first-first lens group 41 and lenses L4, L5 constituting the first-second lens group 42. 5 lenses L1 to L5.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors.
  • the second reflective optical system MR2 exists alone. Note that the aspherical mirror is drawn as it is in FIG. 24 without being cut out, but in an actual optical system, the shape is partially cut out from a circular shape.
  • the first optical group 40a which is a refractive optical system, includes a biconvex positive first lens (lens L1) and a biconvex positive second lens (from the reduction side).
  • a cemented lens of a lens L2) and a negative meniscus third lens (lens L3) with a convex surface facing the enlargement side, an aperture stop ST, a biconvex fourth lens (lens L4), and both surfaces are aspherical.
  • a negative meniscus fifth lens (lens L5) having a convex surface facing the enlargement side is composed of five lenses.
  • the light bundle emitted from the first optical group 40a is primarily imaged between the first reflective optical system MR1 of the first optical group 40a and the second optical group 40b, and then the non-reflection of the first reflective optical system MR1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side and is reflected by the aspherical concave reflecting surface R2 of the second reflecting optical system MR2.
  • the light beam reflected by the second reflecting optical system MR2 is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3 and forms an image on the screen.
  • Example 5 three aspherical mirrors are provided in the second optical group 40b, and one aspherical lens (lens L5) is provided in the first optical group 40a.
  • the group 40a has a five-lens configuration and a very small configuration, but the total length can be shortened as compared to the fourth embodiment.
  • the first optical group 40a can be formed into a general circular shape, there are few problems in manufacturing, and the aspherical lens (lens L5) is composed of a low-power lens with a small thickness ratio, so It is also possible to reduce the influence of distortion and the like.
  • focusing is performed by moving the fourth lens (lens L4) and the fifth lens (lens L5) of the first-second lens group 42 by floating.
  • the 1-1st lens group 41 and the second optical group 40b are fixed.
  • FIG. 25A is a reduction side aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 126 times
  • FIG. 25B is a diagram when the projection magnification is 161 times
  • FIG. 25C is a reduction side aberration diagram of the projection optical system
  • FIG. 25C is a reduction side aberration diagram of the projection optical system when the projection magnification is 110 times
  • FIGS. 26A to 26E are lateral aberration diagrams of the projection optical system corresponding to FIG. FIGS. 26A to 26E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 26A corresponds to the case of the maximum field angle.
  • FIGS. 27 (A) to 27 (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. 25 (B), and FIGS. 28 (A) to 28 (E) are FIGS.
  • FIG. 6 is a lateral aberration diagram of the projection optical system corresponding to FIG.
  • Example 6 The lens surface data of Example 6 is shown in Table 16 below.
  • the second reflective optical system MR2 includes a lens (lens L9) positioned on the reduction side of the first enlargement side lens (lens L10) in the first optical group 40a. ).
  • [Table 16] f 4.094 ⁇ 70.2 ° NA 0.278
  • Table 18 shows the values of the variable intervals 12, 16, 18, and 29 in Table 16 at a projection magnification of 125 times, a projection magnification of 171 times, and a projection magnification of 99 times.
  • FIG. 29 is a diagram illustrating the configuration from the object plane to the concave reflecting mirror of the projection optical system 40 of Example 6 and a ray diagram.
  • FIG. 30 is a sectional view of the projection optical system 40 of the sixth embodiment. 29 and 30, the projection optical system 40 enlarges and projects an image on the panel surface PI at a magnification according to the distance to the screen.
  • the first optical group 40a includes lenses L1 to L4 constituting the 1-1st lens group 41 and lenses L5 to L10 constituting the 1-2nd lens group 42. 10 lenses L1 to L10.
  • the second optical group 40b includes first to third reflection optical systems MR1 to MR3 which are three aspherical mirrors.
  • the second reflective optical system MR2 is shared with the lens located on the reduction side of the lens on the most enlargement side in the first optical group 40a.
  • the aspherical mirror other than the second reflecting optical system MR2 is drawn as it is without being cut out in FIG. 30, but in an actual optical system, the shape is partially cut from a circular shape.
  • the first optical group 40a which is a refractive optical system, includes a positive first lens (lens L1) that is biconvex in order from the reduction side, and a second positive meniscus lens that is convex on the reduction side.
  • (Lens L2) a cemented lens of a biconcave negative third lens (lens L3) and a biconvex positive fourth lens (lens L4), an aperture stop ST, and a biconvex positive fifth lens (Lens L5), a sixth lens (lens L6) of a positive meniscus lens having a convex surface facing the reduction side, a seventh lens (lens L7) of a negative meniscus lens having a convex surface facing the magnification side, and a convex surface facing the magnification side
  • the eighth lens (lens L8) of the negative meniscus lens, the ninth lens (lens L9) of the positive meniscus lens having the convex surface facing the reduction side, and the tenth lens (lens L10) of the negative meniscus lens having the convex surface facing the magnification side It consists of 10 lenses of.
  • the first optical group 40a is entirely composed of spherical lenses.
  • the light bundle emitted from the first optical group 40a is primarily imaged between the first reflective optical system MR1 of the first optical group 40a and the second optical group 40b, and then the non-reflection of the first reflective optical system MR1.
  • the light beam reflected by the first reflecting optical system MR1 returns to the first optical group 40a side, passes through the tenth lens (lens L10) of the first optical group 40a, and then is concavely reflected by the second reflecting optical system MR2. Reflected by the surface R2.
  • the concave reflecting surface R2 is composed of a reflecting film formed on the upper half of the ninth lens (lens L9) of the first optical group 40a. That is, the reflecting surface R2 is refracted by the ninth lens (lens L9). Shared with the face.
  • the light beam reflected by the second reflecting optical system MR2 passes through the tenth lens (lens L10) again, is reflected by the aspherical convex reflecting surface R3 of the third reflecting optical system MR3, and forms an image on the screen. .
  • Example 6 since the first optical group 40a, which is a refractive optical system, is composed of spherical lenses that are easy to ensure accuracy and can be formed into a general circular shape, there are fewer problems in manufacturing.
  • the aspherical surface in Example 6 is only two surfaces of the reflecting surfaces R1 and R3 of the first reflecting optical system MR1 and the third reflecting optical system MR3, and is constituted by a general rotationally symmetric surface, It is relatively easy to manufacture, and the second optical group 40b is coaxial with the first optical group 40a, has good installation properties, and is easy to make.
  • the sixth and seventh lenses (lenses L6 and L7) that can move integrally in the first-second lens group 42 and the eighth lens (lens) that can move independently. L8) is moved by floating and focusing is performed.
  • the other lenses in the first-second lens group 42 and the first-first lens group 41 and the second optical group 40b are fixed.
  • FIG. 31A is a reduction side aberration diagram (spherical aberration, astigmatism, distortion) of the projection optical system when the projection magnification is 125 times
  • FIG. 31B is a diagram when the projection magnification is 171 times
  • FIG. 31C is a reduction side aberration diagram of the projection optical system
  • FIG. 31C is a reduction side aberration diagram of the projection optical system when the projection magnification is 99 times
  • FIGS. 32A to 32E are lateral aberration diagrams of the projection optical system corresponding to FIG. FIGS. 32A to 32E show lateral aberrations at image heights of 100%, 80%, 60%, 40%, and 15%, respectively.
  • FIG. 32A corresponds to the case of the maximum field angle.
  • FIG. 33 (A) to 33 (E) are lateral aberration diagrams of the projection optical system corresponding to FIG. 31 (B), and FIGS. 34 (A) to 34 (E) are FIG. 31 (C).
  • FIG. 6 is a lateral aberration diagram of the projection optical system corresponding to FIG.
  • the refracting optical system (first optical group 40a) has a small lens configuration of about 5 to 7 while having a wide angle of view of about 70 ° at the wide angle end. It is possible.
  • the reflecting optical system is a single mirror system
  • the light beam reflected by the concave lens interferes with the most magnified lens of the refractive optical system. Some parts may need to be cut.
  • the reflecting optical system has a three-mirror configuration as in the present embodiment, depending on the configuration, the portion on the enlargement side that may interfere with the refractive optical system as in the above-described example is used as a mirror. Since it can be used (can be used for both purposes), the configuration becomes easy and the cost is advantageous.
  • the refractive optical system (first optical group).
  • the refractive optical system (first optical group) has a sufficiently good optical performance equivalent to the case where the refracting optical system (first optical group) is composed of a number of lenses as in the prior art, and the total length of the focus group Short and light weight.
  • the present invention is not limited to the above-described embodiments or examples, and can be implemented in various modes without departing from the gist thereof.
  • the curved shape of the second reflective optical system MR2 is a concave surface or a convex surface, but a configuration of a flat surface is also possible.
  • the manufacturing method of the lens L7 which is a light transmission / reflection optical system.
  • a lens coat is applied.
  • the lens L7 can be manufactured by vapor-depositing aluminum in a state where the region corresponding to the light transmission region is masked so that the reflection film is formed only in the portion corresponding to the light reflection region.
  • one or more lenses having substantially no power can be added before, after or between the lenses constituting each lens group.
  • the target of enlargement projection by the projection optical system 40 is not limited to an image formed by a liquid crystal panel, and an image formed by a light modulation element such as a digital micromirror device is enlarged and projected by the projection optical system 40. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

コンパクトながら近接投射が可能な投射光学系、及び当該投射光学系を備えたプロジェクターを提供すること。 投射光学系40は、屈折光学系である第1光学群40aと反射光学系である第2光学群40bとを備えている。第2光学群40bは、凹面形状を有する第1反射面、曲面形状を有する第2反射面及び凸面形状を有する第3反射面をそれぞれ有する第1~第3反射光学系MR1~MR3を含む。第1~第3反射光学系MR1~MR3は、焦点距離に関する条件式(1)を満たす。第1光学群40aから射出された画像光は第2光学群40bによって反射され、被投射面に投射される。

Description

投射光学系及びプロジェクター
 本発明は、画像表示素子の画像を拡大投影するプロジェクターへの組み込みに適した投射光学系及びこれを用いたプロジェクターに関する。
 近年、近距離から投射して大画面を得ることが可能なプロジェクター用の投射光学系として、例えば屈折光学系と1枚の非球面反射面とを用いるものが提案されている(例えば特許文献1等参照)。
 しかしながら、例えば特許文献1(特開2008-250296号)では、屈折光学系に非球面レンズを含み、また、再結像させるための非球面反射面が1枚であるため、屈折光学系にかなり負担がかかる。例えば、Fナンバーを明るくして、広い変倍範囲に対応しようとすると、例えば複数の強い非球面を含めても10数枚のレンズを必要とするといったことになる可能性がある。
特開2008-250296号公報
 本発明は、上記背景に鑑みてなされたものであり、コンパクトながら近接投射が可能な投射光学系、及び当該投射光学系を備えたプロジェクターを提供することを目的とする。
 上記目的を達成するため、本発明に係る第1の投射光学系は、縮小側から順に設けられた、複数のレンズからなり正のパワーを有する屈折光学系と、反射光学系と、を備えた投射光学系であって、反射光学系は、屈折光学系から射出された光の光路上に屈折光学系側から順に設けられた第1反射光学系と第2反射光学系と第3反射光学系とを含み、第1反射光学系は、凹面形状を有する第1反射面を含み、第2反射光学系は、曲面形状を有する第2反射面を含み、第3反射光学系は、凸面形状を有する第3反射面を含み、第1反射面、第2反射面及び第3反射面のうち少なくとも2つは非球面形状を有し、第1反射光学系の焦点距離をf1、第2反射光学系の焦点距離をf2、第3反射光学系の焦点距離をf3、としたとき、f1,f2,f3が条件式(1)を満足することを特徴とする。
  |f2|>|f3|>|f1|…(1)
 上記投射光学系は、凹面形状を有する第1反射面、曲面形状を有する第2反射面及び凸面形状を有する第3反射面をそれぞれ有する第1~第3反射光学系を備えている。また、第1~第3反射光学系は条件式(1)を満たす。したがって、上記投射光学系はコンパクトながら近接投射が可能である。なお、第1~第3反射光学系のパワーをφ1,φ2,φ3とすると、条件式(1)を、
  φ2<φ3<φ1 (φk=|1/fk|) k=1,2,3
   ただし、fkは条件式(1)に示す各反射光学系の焦点距離
と表記することもできる。すなわち、第2反射光学系のパワーが最も弱く、第1反射光学系のパワーが最も強く、第3反射光学系のパワーがその中間である。
 本発明の具体的な側面によれば、全系の焦点距離をF、屈折光学系の焦点距離をFLとするとき、条件式(2)を満足する。
  0.05 < F/FL < 0.15…(2)
 この場合、バックフォーカスを長くとりながら、装置全体の小型化を達成することができる。
 本発明の別の側面によれば、前記複数のレンズが全て回転対称系である。
 本発明のさらに別の側面によれば、前記複数のレンズ及び第1~第3反射光学系の全ての面は、回転対称面で構成され、同一の光軸を有する共軸光学系である。
 本発明のさらに別の側面によれば、前記複数のレンズは、屈折光学系の一部として機能する光透過領域と第2反射面として機能する光反射領域とを有する光透過反射光学系を含む。この場合、屈折光学系のレンズのレンズ面の一部と反射光学系の反射面とを共有面として構成することが可能となる。
 本発明のさらに別の側面によれば、光透過反射光学系は、屈折光学系において最も拡大側に配置されており、投射距離の変更に伴う変倍時のフォーカスの際、固定されている。
 本発明のさらに別の側面によれば、屈折光学系は、変倍時に少なくとも1つの移動するレンズ群を有し、最も縮小側の可変間隔を境にして、縮小側から順に正のパワーを有する第1-1レンズ群と、正のパワーを有する第1-2レンズ群とから構成され、第1-1レンズ群の焦点距離をF1-1、第1-2レンズ群の焦点距離をF1-2とするとき、条件式(3)を満足する。
  0.0 < |F1-1/F1-2| < 1.0…(3)
 この場合、像面湾曲や歪曲収差を補正することが可能となる。
 本発明のさらに別の側面によれば、物体側の開口数は0.27以上である。
 本発明のさらに別の側面によれば、縮小側は略テレセントリックである。
 本発明のさらに別の側面によれば、変倍範囲が1.4倍以上ある。
 上記目的を達成するため、本発明に係る第2の投射光学系は、縮小側から順に設けられた、複数のレンズからなり正のパワーを有する屈折光学系と、少なくとも3面の反射面を有する反射光学系と、を備えた投射光学系であって、屈折光学系を構成する複数のレンズは、屈折光学系の一部として機能する光透過領域と反射光学系の反射面として機能する光反射領域とを有する光透過反射光学系を含む。
 上記投射光学系において、光透過反射光学系に屈折レンズとしての機能と反射ミラーとしての機能とを兼用させることで、コンパクトながら近接投射を可能なものとすることができる。
 上記目的を達成するため、本発明に係るプロジェクターは、光源と、光源からの光を変調して画像光を形成する光変調素子と、画像光を投射する上記いずれかの投射光学系とを備える。プロジェクターは上記いずれかの投射光学系を備えることで、コンパクトながら近接投射を可能なものとすることができる。
実施形態の投射光学系を組み込んだプロジェクターの概略構成を示す図である。 実施形態又は実施例1の投射光学系における物体面から投射面までの構成および光線図である。 図2のうち、物体面から凹面反射ミラーまでの一部拡大図である。 実施例1の投射光学系の構成を示す図である。 (A)~(C)は、実施例1の投射光学系の縮小側収差図である。 (A)~(E)は、図5(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図5(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図5(C)に対応する投射光学系の横収差図である。 実施例2の投射光学系の構成を示す図である。 (A)~(C)は、実施例2の投射光学系の縮小側収差図である。 (A)~(E)は、図10(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図10(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図10(C)に対応する投射光学系の横収差図である。 実施例3の投射光学系の構成を示す図である。 (A)~(C)は、実施例3の投射光学系の縮小側収差図である。 (A)~(E)は、図15(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図15(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図15(C)に対応する投射光学系の横収差図である。 実施例4の投射光学系の構成を示す図である。 (A)~(C)は、実施例4の投射光学系の縮小側収差図である。 (A)~(E)は、図20(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図20(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図20(C)に対応する投射光学系の横収差図である。 実施例5の投射光学系の構成を示す図である。 (A)~(C)は、実施例5の投射光学系の縮小側収差図である。 (A)~(E)は、図25(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図25(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図25(C)に対応する投射光学系の横収差図である。 実施例6の投射光学系の物体面から凹面反射ミラーまでの構成および光線図である。 実施例6の投射光学系の構成を示す図である。 (A)~(C)は、実施例6の投射光学系の縮小側収差図である。 (A)~(E)は、図31(A)に対応する投射光学系の横収差図である。 (A)~(E)は、図31(B)に対応する投射光学系の横収差図である。 (A)~(E)は、図31(C)に対応する投射光学系の横収差図である。
 以下に図面を参照して、本発明の実施形態に係る投射光学系について詳細に説明する。
 図1に示すように、本発明の一実施形態に係る投射光学系を組み込んだプロジェクター2は、画像光を投射する光学系部分50と、光学系部分50の動作を制御する回路装置80とを備える。
 光学系部分50において、光源10は、例えば超高圧水銀ランプであって、R光、G光、及びB光を含む光を射出する。ここで、光源10は、超高圧水銀ランプ以外の放電光源であってもよいし、LEDやレーザーのような固体光源であってもよい。第1インテグレーターレンズ11及び第2インテグレーターレンズ12は、アレイ状に配列された複数のレンズ素子を有する。第1インテグレーターレンズ11は、光源10からの光束を複数に分割する。第1インテグレーターレンズ11の各レンズ素子は、光源10からの光束を第2インテグレーターレンズ12のレンズ素子近傍にて集光させる。第2インテグレーターレンズ12のレンズ素子は、重畳レンズ14と協働して、第1インテグレーターレンズ11のレンズ素子の像を液晶パネル18R、18G、18Bに形成する。このような構成により、光源10からの光が液晶パネル18R、18G、18Bの表示領域の全体を略均一な明るさで照明する。
 偏光変換素子13は、第2インテグレーターレンズ12からの光を所定の直線偏光に変換させる。重畳レンズ14は、第1インテグレーターレンズ11の各レンズ素子の像を、第2インテグレーターレンズ12を介して液晶パネル18R、18G、18Bの表示領域上で重畳させる。
 第1ダイクロイックミラー15は、重畳レンズ14から入射したR光を反射させ、G光及びB光を透過させる。第1ダイクロイックミラー15で反射されたR光は、反射ミラー16及びフィールドレンズ17Rを経て、光変調素子である液晶パネル18Rへ入射する。液晶パネル18Rは、R光を画像信号に応じて変調することにより、R色の画像を形成する。
 第2ダイクロイックミラー21は、第1ダイクロイックミラー15からのG光を反射させ、B光を透過させる。第2ダイクロイックミラー21で反射されたG光は、フィールドレンズ17Gを経て、光変調素子である液晶パネル18Gへ入射する。液晶パネル18Gは、G光を画像信号に応じて変調することにより、G色の画像を形成する。第2ダイクロイックミラー21を透過したB光は、リレーレンズ22、24、反射ミラー23、25、及びフィールドレンズ17Bを経て、光変調素子である液晶パネル18Bへ入射する。液晶パネル18Bは、B光を画像信号に応じて変調することにより、B色の画像を形成する。
 クロスダイクロイックプリズム19は、光合成用のプリズムであり、各液晶パネル18R、18G、18Bで変調された光を合成して画像光とし、投射光学系40へ進行させる。
 投射光学系40は、各液晶パネル18G,18R,18Bによって変調されクロスダイクロイックプリズム19で合成された画像光を不図示のスクリーン上に拡大投射する投射用ズームレンズである。
 回路装置80は、ビデオ信号等の外部画像信号が入力される画像処理部81と、画像処理部81の出力に基づいて光学系部分50に設けた液晶パネル18G,18R,18Bを駆動する表示駆動部82と、投射光学系40に設けた駆動機構(不図示)を動作させて投射光学系40の状態を調整するレンズ駆動部83と、これらの回路部分81,82,83等の動作を統括的に制御する主制御部88とを備える。
 画像処理部81は、入力された外部画像信号を各色の諧調等を含む画像信号に変換する。なお、画像処理部81は、外部画像信号に対して歪補正や色補正等の各種画像処理を行うこともできる。
 表示駆動部82は、画像処理部81から出力された画像信号に基づいて液晶パネル18G,18R,18Bを動作させることができ、当該画像信号に対応した画像又はこれに画像処理を施したものに対応する画像を液晶パネル18G,18R,18Bに形成させることができる。
 レンズ駆動部83は、主制御部88の制御下で動作し、投射光学系40を構成する一部の光学要素をアクチュエーターACを介して光軸OAに沿って適宜移動させることにより、投射光学系40によるスクリーン上への画像の投射において変倍に伴うフォーカス(変倍時のフォーカス)を行うことができる。なお、レンズ駆動部83は、投射光学系40全体を光軸OAに垂直な上下方向に移動させるアオリの調整により、スクリーン上に投射される画像の縦位置を変化させることもできる。
 以下、図2及び図3等を参照して、実施形態の投射光学系40について具体的に説明する。なお、図2等で例示した投射光学系40は、後述する実施例1の投射光学系40と同一の構成となっている。便宜上、+Y方向を上方向とし、-Y方向を下方向とする。
 実施形態の投射光学系40は、液晶パネル18G(18R,18B)に形成された画像を不図示のスクリーン上に投射する。ここで、投射光学系40と液晶パネル18G(18R,18B)との間には、図1のクロスダイクロイックプリズム19に相当するプリズムPRが配置されている。
 投射光学系40は、縮小側から順に、複数のレンズからなり正のパワーを有する屈折光学系である第1光学群40aと、複数のミラーからなり種々の曲面形状の反射面を有する反射光学系である第2光学群40bとからなる。
 第1光学群40aは、含まれるレンズ間に形成される空間のうち、レンズの移動により可変となる間隔のうち最も縮小側の可変間隔BDを境にして、縮小側に設けられ、正のパワーを有する第1-1レンズ群41と、拡大側に設けられ、第1-1レンズ群41のパワーと比較して弱い正のパワーを有する第1-2レンズ群42と、からなる屈折光学系である。
 第2光学群40bは、第1光学群40aから射出された光の光路上に第1光学群40a側から順に設けられた第1反射光学系MR1と、第2反射光学系MR2と、第3反射光学系MR3とを含む反射光学系である。
 ここで、図示の例では、第1光学群40aと第2光学群40bとは、一部の要素(レンズL7または第2反射光学系MR2とする)を共有している。言い換えると、当該一部の要素は、レンズL7と見れば、屈折光学系である第1光学群40aの一部として機能し、第2反射光学系MR2と見れば、反射光学系である第2光学群40bの一部として機能する光透過反射光学系である。ここでは、レンズL7(あるいは第2反射光学系MR2)の下側領域が、光を透過屈折させるレンズ(屈折レンズ)としての機能を有する光透過領域となっている。一方、第2反射光学系MR2(あるいはレンズL7)の上側領域が、光を反射するミラー(ミラーレンズ)としての機能を有する光反射領域となっている。従って、図1に示す場合、液晶パネル18G(18R,18B)からプリズムPRを経て投射される画像光の光線は、第1光学群40aを経て第2光学群40bに射出されるに際して、第1光学群40aの最も拡大側に配置されるレンズL7(あるいは第2反射光学系MR2)の下側を通過する。また、当該光線は、第2光学群40bの第1反射光学系MR1で反射された後、再び第2反射光学系MR2(あるいはレンズL7)に入射する。この際、当該光線は、第2反射光学系MR2(あるいはレンズL7)の上側で第3反射光学系MR3に向けて反射される。
 以下、屈折光学系である第1光学群40aについて、詳細に説明する。
 第1光学群40aのうち、第1-1レンズ群41は開口絞りSTを有し、開口絞りSTよりも縮小側にレンズ群(レンズL1~L4)を有する。レンズL1~L4は、投射距離の変更に伴う変倍時のフォーカスの際に、固定されている。
 第1-2レンズ群42は、開口絞りSTよりも拡大側に配置されるレンズ群(レンズL5~L7)を有する。これらのうち、レンズL5,L6はフォーカス群を構成している。レンズL5,L6はそれぞれ、投射距離の変更に伴う変倍時のフォーカスの際に、アクチュエーターACにより、光軸OAに沿った方向A1(光軸方向)に移動する。ここでは、レンズL5とレンズL6とは独立して移動可能となっているものとする。これにより、広い変倍域においても、最終的に良好な画像を得られるような1次像を作ることができる。なお、アクチュエーターACによる移動のさせ方については、変倍時のフォーカスの態様により種々の態様が可能であり、例えば各レンズをまったく独立に移動させてもよいし、カム機構等を利用して互いに連動させて移動させてもよい。一方、第1光学群40aにおいて最も拡大側に配置されているレンズL7(あるいは第2反射光学系MR2)は、上記変倍に伴うフォーカスの際に、固定されている。
 以下、第1光学群40aを構成する各レンズについて縮小側から順に説明する。第1-1レンズ群41は、既述のように、4枚のレンズL1~L4で構成され、レンズL1、L2は、正レンズであり、レンズL3とレンズL4とは接合レンズである。第1-2レンズ群42は、既述のように、3枚のレンズL5~L7で構成され、レンズL5は、正レンズであり、レンズL6は、正のメニスカスレンズであり、レンズL7は、両面非球面の負レンズである。すなわち、第1光学群40aは、全体で7枚のレンズL1~L7で構成されている。レンズL1~L7各々は、光軸OAについて軸対称な円形状である。言い換えると、屈折光学系である第1光学群40aを構成する複数のレンズL1~L7が全て回転対称系である。また、レンズL7以外は、全てガラス製の球面レンズである。レンズL7は両面非球面レンズであり、比較的レンズ径も大きいことから、樹脂レンズとすることが安価で好ましい。しかし、レンズL7は軸対称な円形状であり、一部を反射面しても使用することから、精度を確保しやすいガラス非球面レンズとしてもよい。
 以下、第2光学群40bについて、詳細に説明する。
 第2光学群40bのうち、第1反射光学系MR1は、第1光学群40aの射出側(拡大側)、すなわち第2光学群40bにおける最も縮小側に配置され、凹面形状を有する第1反射面R1を含む。第1反射光学系MR1は、第1反射面R1での反射により、第1光学群40aから射出された光線を第2反射光学系MR2に向けて射出する。
 第2反射光学系MR2は、光路上、第1反射光学系MR1の拡大側に配置され、曲面形状を有する第2反射面R2を含む。ここでは、既述のように、第2反射光学系MR2(あるいはレンズL7)は、第1光学群40aを構成するレンズL7のうち屈折レンズとしては利用されない一部分に光反射領域を形成していることで、第2反射面R2を有するものとなっている。また、上記のように、第2反射面R2を設ける対象となっているレンズが両面非球面の負レンズであることに伴い、その一部の面である第2反射面R2も非球面となっている。見方を変えると、第2反射光学系MR2は、非球面ミラーである。第2反射光学系MR2は、第2反射面R2での反射により、第1反射光学系MR1から射出された光線を第3反射光学系MR3に向けて射出する。
 第3反射光学系MR3は、光路上、第2反射光学系MR2の拡大側、すなわち最も拡大側に配置され、凸面形状を有する第3反射面R3を含む。第3反射光学系MR3は、第3反射面R3での反射により、第2反射光学系MR2から射出された光線を被照射面であるスクリーンに向けて射出する。
 以下、第2光学群40bを構成する各ミラー(反射光学系MR1~MR3)の特性について説明する。まず、第1~第3反射光学系MR1~MR3の全ての反射面R1~R3は、非球面形状をそれぞれ有し、かつ、回転対称面で構成され、同一の光軸を有する。
 また、第1反射光学系MR1の焦点距離をf1、第2反射光学系MR2の焦点距離をf2、第3反射光学系MR3の焦点距離をf3、としたとき、f1,f2,f3が下記の条件式(1)を満足する。
  |f2|>|f3|>|f1|…(1)
 なお、上記要件に関して、第1~第3反射光学系MR1~MR3のパワーをφ1,φ2,φ3とすると、条件式(1)を、
  φ2<φ3<φ1 (φk=|1/fk|) k=1,2,3
   ただし、fkは条件式(1)に示す各反射光学系の焦点距離
と表記することもできる。
 条件式(1)は、3つの反射面R1~R3の焦点距離f1,f2,f3に関する条件であり、各反射面R1~R3のパワーφ1,φ2,φ3を適切に設定することで、第2光学群40bの小型化を図り、かつ、第1光学群40aで作られた収差を含む1次像を効率よく収差の十分に補正された2次像としてスクリーン上に結像させるための条件である。仮に、第1反射面R1の焦点距離f1の絶対値が第3反射面R3の焦点距離f3の絶対値よりも大きくなり、すなわち正のパワーが弱くなりすぎると、第1反射面R1のサイズが大きくなるとともに、第2反射面R2のサイズも大きくなり小型化という点で好ましくないものとなってしまう。これに対して、第1反射面R1を他の2枚の反射面R2,R3よりもパワーの強い面とすることで、第2反射面R2に入射する光束の位置を低い位置とすることができ、第1、第2反射面R2,R3を小型化することが可能となる。
 また、例えば第2反射面R2の焦点距離f2の絶対値を、反射面R1の焦点距離f1の絶対値および反射面R3の焦点距離f3の絶対値よりも大きくする、すなわちパワーの弱い面とすることで、第1反射面R1の正のパワーと、第3反射面R3の負のパワーをバランスよく設定することができ、諸収差をバランスよく補正することが可能となる。また、第2反射面R2のパワーを弱くすることで、上記のような第1光学群40a(屈折光学系)のレンズ(レンズL7)のレンズ面の一部と反射面(第2反射面R2)とを共有面として構成することが可能となる。
 また、以上の投射光学系40の場合、結果的に第1光学群40a(屈折光学系)を構成する複数のレンズL1~L7、及び、第2光学群40b(反射光学系)を構成する第1~第3反射光学系MR1~MR3の全ての面は、回転対称面で構成され、同一の光軸を有する共軸光学系となっている。
 また、上記構成の投射光学系40において、全系の焦点距離をF、第1光学群40a(屈折光学系)の焦点距離をFLとするとき、投射光学系40は、下記の条件式(2)を満足する。
  0.05 < F/FL < 0.15…(2)
 条件式(2)は、全系の焦点距離と第1レンズ群の焦点距離の比に関する条件で、バックフォーカスを長くとりながら、装置全体の小型化を達成するための条件である。
 この種の超広角投射光学系では、焦点距離が非常に短く、色合成プリズムPRなどを入れるための長いバックフォーカスを得るためには、1次像を作る役割をもつ第1光学群40a(屈折光学系)の焦点距離を長くすることが必要となる。
 条件式(2)の上限を超えて、第1光学群40aの焦点距離が短くなり過ぎると、諸収差の補正が困難となり、レンズ枚数もそれに伴い多くする必要が生じ好ましくない。また、必要なバックフォーカスを確保することも困難になる。逆に、条件式(2)の下限を超えて、第1光学群40aの焦点距離が長くなり過ぎると、収差補正は容易になるが、レンズ全長が長くなることになり小型化という点で好ましくない。条件式(2)を満足するものとすることで、バックフォーカスを長くとりながらも、装置全体の小型化を達成することが可能となる。
 さらに、第1-1レンズ群41の焦点距離をF1-1、第1-2レンズ群42の焦点距離をF1-2とするとき、投射光学系40は、下記の条件式(3)を満足する。
  0.0 < |F1-1/F1-2| < 1.0…(3)
 本実施形態のような超広角投射光学系では、非常に広い画角を有するため、一般的な投射光学系(例えば半画角30°程度の投射光学系)と比較すると、投射距離による収差の変化量が非常に大きい。投射距離を変化させると、焦点距離が非常に短いため、低像高位置での焦点変化が少ないのに比較して、高像高位置の画面周辺部での像面湾曲や歪曲収差が大きく変化する。したがって、本実施形態の投射光学系では、変倍に伴うフォーカスに際して、主に画面周辺部での像面湾曲変化や歪曲変化を補正している。条件式(3)は、第1光学群40a内でのフォーカス時における固定群と移動群との焦点距離の比に関する条件であり、簡単な構成でフォーカスを行うための条件であると言える。フォーカス群の焦点距離を長くして、パワーを小さくすることで、低像高位置での焦点変化を少なくし、高像高位置での像面湾曲や歪曲収差を補正することが可能となる。
 条件式(3)の上限を超えて、フォーカス群の焦点距離が短くなり、パワーが強くなり過ぎるとフォーカスの際に、周辺部の像面湾曲や歪曲を補正する為の移動量が大きくなり過ぎ好ましくない。逆に、条件式(3)の下限を超えて、フォーカス群のパワーが弱くなりすぎると、レンズ群を移動させたときに、光軸近傍での焦点位置も動いてしまい、低像高位置と高像高位置での焦点位置を一致させるために、複数のレンズ群を精度良く移動させることが必要となり、枠構成上も難しくなるため好ましくない。条件式(3)を満足するものとすることで、変倍に伴うフォーカスに際して、像面湾曲や歪曲収差を十分に抑制する補正が可能となっている。
 なお、上記のように、第1光学群40aを構成するレンズL1~L7各々は、光軸OAについて軸対称な円形状となっている。最も大きくなりやすい拡大側のレンズL7も円形である。これにより、製造過程における誤差を極力抑えることができる。また、全てのレンズL1~L7を円形状にできる。比較例として、例えば第2光学群40bを1枚の凹面ミラーで構成する投射光学系を考えると、当該投射光学系では、当該凹面ミラーで反射された光束が屈折光学系と干渉するため、ミラー側に配置されるレンズ(第1光学群40aのうち最も拡大側のレンズ)は、非円形形状にカットする必要が生じる可能性がある。レンズを非円形形状とすると、レンズを収納する鏡枠構造が複雑となり、コストアップとなってしまう。これに対して本実施形態では、最も拡大側に位置するレンズL7において、レンズ面の一部を反射面として機能させることで、レンズL1~L7各々を全て円形状として、一般的なレンズ鏡枠構造をとることができ、低コスト化と同時に精度向上を達成することが可能となる。
 また、図示のように、投射光学系40において、縮小側は、略テレセントリックである。これにより、例えば上記のように、クロスダイクロイックプリズム19において各液晶パネル18R、18G、18Bで変調された光を合成して画像光とする場合において、組み立てのバラツキを吸収しやすいものとすることができる。
 近接投射光学系では、一般に、スクリーンまでの距離が非常に近い。投射光学系40では、液晶パネル18G(18R,18B)のパネル面PIに形成された画像を、一旦、第1光学群40aによって第2光学群40bのミラーの手前で結像させ、第2光学群40bによって画像をスクリーンに再結像させることで、近接投射が行なわれる。つまり、第1光学群40aは、第2光学群40bの手前で1次像(中間像)を作る。上記のような近接投写光学系では、変倍時の収差変動が比較的大きいため、あまり変倍範囲を大きく取れない可能性がある。従って、第1光学群40aにより形成される1次像は、投射倍率を変化させても、良好な画像が得られるように最適化されていることが好ましい。また、一般的な近接投射光学系では、像面湾曲、非点収差の変動によるコントラスト低下が大きい。また、変倍時の歪曲収差の変化も通常レンズ系よりも大きくなる傾向が高い。
 しかし、本実施形態の投射光学系40は、上述のように、第1光学群40aで作られた1次像を第2光学群40bで再結像させるにあたって、第2光学群40bの構成を色収差の発生しない3枚のミラー(反射光学系MR1~MR3)とすることで、光学系全体での色収差の発生を極力低減し、かつ、光を複数回反射させて実質的な光路長を長くすることで、各光学要素のパワー低減できる。その結果、第1光学群40aの負担を減らすことができる。したがって、強い非球面を有するレンズを使用しなくても、第1光学群40aの構成枚数を少なくし、広い変倍範囲に対応できるような投射光学系を構成し、低コスト化、コンパクト化を達成することができる。
 また、本実施形態では、第2光学群40bを構成するミラーの枚数を奇数枚としている。この場合、投射光を光源側に返すように構成する、すなわち近接投射に際して光源側にスクリーンを配置するようにして、プロジェクターの設置において、一般的な反射ミラーを使わない方式や偶数枚の反射ミラーで折り返す場合に比べて、プロジェクターを壁面に設置するためのアームを短くすることができ、強度的にも小さくてすむようにできる。
 さらに、上記のような構成とすることにより、物体側の開口数を0.27以上、すなわちFナンバーが1.8程度の明るさを有しながら、1.4倍以上(さらには1.5倍以上、1.6倍以上)の高い変倍範囲を確保し、高解像度の画像表示素子にも十分対応可能な性能を有するものとなっている。
 また、本願発明とは別の考えとして、樹脂で成形された非球面レンズを屈折光学系に適用することも考えられる。しかしながら、樹脂で成形された非球面レンズは、両面を精度よく成形しなければならず、中心部と周辺部の厚みの比、すなわち偏肉比が大きいと成形時に内部歪が生じやすい。特に、大きなレンズに非球面を利用する場合には、製造の観点から形状的制限が生じる。非球面レンズと比較すると、非球面ミラーの樹脂成形の場合、片面のみの成形ですみ、表面反射を利用することから内部歪の影響も少なく、ミラー厚も成形しやすい厚さで均一にできるため、非球面レンズよりも精度が出しやすい。また、さらに別の考えとして、ミラーのみで投射光学系を構成することも考えられる。しかし、反射のみに頼ると、反射した光路と反射面の干渉という問題が生じやすくなり、この問題を解決するために、自由曲面ミラーや偏芯の要素を入れてしまうと、製造上非常に難しくなる。本実施形態では、比較的製造を容易としつつも、高精度でコンパクトな構成とすることができる。
〔実施例〕
 以下、投射光学系40の具体的な実施例について説明する。以下に説明する実施例1~4に共通する諸元の意味を以下にまとめた。
  f       全系の焦点距離
  ω       半画角
  NA      開口数
  R       曲率半径
  D       軸上面間隔(レンズ厚又はレンズ間隔)
  Nd      d線の屈折率
  Vd      d線のアッベ数
 非球面は、以下の多項式(非球面式)によって特定される。
Figure JPOXMLDOC01-appb-I000001
ただし、
  c: 曲率(1/R)
  h: 光軸からの高さ
  k: 非球面の円錐係数
  Ai:非球面の高次非球面係数
 なお、OBJは、パネル面PIを意味し、STOは開口絞りSTを意味し、IMGは、スクリーン上の像面(被投射面)を意味する。また、面番号の前に「*」が記載されている面は、非球面形状を有する面である。
(実施例1)
 実施例1のレンズ面のデータを以下の表1に示す。
〔表1〕
  f      4.002
  ω    69.9゜
  NA    0.278
Figure JPOXMLDOC01-appb-I000002
 以上の表1及び以下の表において、10のべき乗数(例えば1.00×10+18)をE(例えば1.00E+18)を用いて表すものとする。
 以下の表2は、実施例1のレンズ面の非球面係数である。
〔表2〕
Figure JPOXMLDOC01-appb-I000003
 以下の表3は、投射倍率126倍、投射倍率162倍及び投射倍率110倍において、表1中の可変間隔9,12,14,19の値を示している。
〔表3〕
Figure JPOXMLDOC01-appb-I000004
 図4は、実施例1の投射光学系40の断面図である。図4の投射光学系40は、実施形態1の投射光学系40に相当する。図4において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L4と、第1-2レンズ群42を構成するレンズL5~L7との7枚のレンズL1~L7を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。なお、第2反射光学系MR2以外の非球面ミラーについて、図4では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる(図3参照)。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸形状の正の第1レンズ(レンズL1)、両凸形状の正の第2レンズ(レンズL2)、両凹形状の負の第3レンズ(レンズL3)と両凸形状の正の第4レンズ(レンズL4)との接合レンズ、開口絞りST、両凸形状の第5レンズ(レンズL5)、縮小側に凸面を向けたメニスカス形状の正の第6レンズ(レンズL6)、両凹形状で両面に非球面が施された負の第7レンズ(レンズL7)の7枚のレンズで構成される。第1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の非球面凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第1光学群40aの最も拡大側に配置される第7レンズ(レンズL7)のレンズ面の上半分に設けられた第2反射光学系MR2の非球面凹反射面R2で反射される。なお、第1光学群40aの最も拡大側の屈折面と、第2反射光学系MR2の反射面R2は同一面形状で構成され、光軸OAをはさんで略半分が透過面、残りの半分は反射面となっている。第2反射光学系MR2で反射された光線束は、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーン上に結像する。
 投射距離を変更して変倍する場合には、第1-2レンズ群42のうち、第5レンズ(レンズL5)と第6レンズ(レンズL6)とをフローティングにより移動することでフォーカスを行う。なお、第2反射光学系MR2と兼用している最も拡大側の第7レンズ(レンズL7)は固定である。また、第1-1レンズ群41及び第2光学群40bも固定である。
 図5(A)は、投射倍率126倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図5(B)は、投射倍率162倍の時の投射光学系の縮小側収差図であり、図5(C)は、投射倍率110倍の時の投射光学系の縮小側収差図である。また、図6(A)~6(E)は、図5(A)に対応する投射光学系の横収差図である。図6(A)~6(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図6(A)は、最大画角の場合に対応する。同様に、図7(A)~7(E)は、図5(B)に対応する投射光学系の横収差図であり、図8(A)~8(E)は、図5(C)に対応する投射光学系の横収差図である。
(実施例2)
 実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
  f      4.029
  ω    69.8゜
  NA     0.278
Figure JPOXMLDOC01-appb-I000005
 以下の表5は、実施例2のレンズ面の非球面係数である。
〔表5〕
Figure JPOXMLDOC01-appb-I000006
 以下の表6は、投射倍率125倍、投射倍率161倍及び投射倍率110倍において、表4中の可変間隔9,12,14,19の値を示している。
〔表6〕
Figure JPOXMLDOC01-appb-I000007
 図9は、実施例2の投射光学系40の断面図である。図9において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L4と、第1-2レンズ群42を構成するレンズL5~L7との7枚のレンズL1~L7を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。なお、第2反射光学系MR2以外の非球面ミラーについて、図9では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸形状で正の第1レンズ(レンズL1)、縮小側に凸面を向けたメニスカス形状の正の第2レンズ(レンズL2)、両凹形状で第3レンズ(レンズL3)と両凸形状で正の第4レンズ(レンズL4)との接合レンズ、開口絞りST、両凸形状で正の第5レンズ(レンズL5)、縮小側に凸面を向けたメニスカス形状で両面に非球面が施された負の第6レンズ(レンズL6)、縮小側に凸面を向けたメニスカス形状で正の第7レンズ(レンズL7)の7枚のレンズで構成される。第1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第1光学群40aの最も拡大側に配置される第7レンズ(レンズL7)のレンズ面の上半分に設けられた第2反射光学系MR2の凹面反射面R2で反射される。なお、第1光学群40aの最も拡大側の屈折面と、第2反射光学系MR2の反射面R2は同一面形状で構成され、光軸OAをはさんで略半分が透過面、残りの半分は反射面となっている。第2反射光学系MR2で反射された光線束は、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーンに結像する。
 実施例2では、第2反射光学系MR2の凹面反射面R2と共有される第1光学群40aの最も拡大側のレンズ(レンズL7)は、球面レンズとして構成されている。仮に、この面を非球面とするとこのような大口径レンズは樹脂レンズとするのが一般的であるが、球面レンズは硝子で高精度に加工することが可能となるので、性能のバラツキなどを防ぐ為には、非常に有効となる。
 投射距離を変更して変倍する場合には、第1-2レンズ群42のうち、第5レンズ(レンズL5)と第6レンズ(レンズL6)とをフローティングにより移動することでフォーカスを行う。なお、第2反射光学系MR2と兼用している最も拡大側の第7レンズ(レンズL7)は固定である。また、第1-1レンズ群41及び第2光学群40bも固定である。
 図10(A)は、投射倍率125倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図10(B)は、投射倍率161倍の時の投射光学系の縮小側収差図であり、図10(C)は、投射倍率110倍の時の投射光学系の縮小側収差図である。また、図11(A)~11(E)は、図10(A)に対応する投射光学系の横収差図である。図11(A)~11(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図11(A)は、最大画角の場合に対応する。同様に、図12(A)~12(E)は、図10(B)に対応する投射光学系の横収差図であり、図13(A)~13(E)は、図10(C)に対応する投射光学系の横収差図である。
(実施例3)
 実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
  f      3.977
  ω    69.9゜
  NA    0.278
Figure JPOXMLDOC01-appb-I000008
 以下の表8は、実施例3のレンズ面の非球面係数である。
〔表8〕
Figure JPOXMLDOC01-appb-I000009
 以下の表9は、投射倍率126倍、投射倍率162倍及び投射倍率110倍において、表7中の可変間隔9,12,14,19の値を示している。
〔表9〕
Figure JPOXMLDOC01-appb-I000010
 図14は、実施例3の投射光学系40の断面図である。図14において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L4と、第1-2レンズ群42を構成するレンズL5~L7との7枚のレンズL1~L7を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。なお、第2反射光学系MR2以外の非球面ミラーについて、図14では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸形状で正の第1レンズ(レンズL1)、縮小側に凸面を向けたメニスカス形状の正の第2レンズ(レンズL2)、縮小側に凸面を向けたメニスカス形状で第3レンズ(レンズL3)と両凸形状で正の第4レンズ(レンズL4)との接合レンズ、開口絞りST、両凸の正の屈折力を有する第5レンズ(レンズL5)、拡大側に凸面を向けたメニスカス形状で両面に非球面が施された負の第6レンズ(レンズL6)、両凸形状の正の屈折力を有する第7レンズ(レンズL7)の7枚のレンズで構成される。第1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第1光学群40aの最も拡大側に配置される第7レンズ(レンズL7)のレンズ面の上半分に設けられた第2反射光学系MR2の凸面反射面R2で反射される。なお、第1光学群40aの最も拡大側の屈折面と、第2反射光学系MR2の反射面R2は同一面形状で構成され、光軸OAをはさんで略半分が透過面、残りの半分は反射面となっている。第2反射光学系MR2で反射された光線束は、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーンに結像する。
 実施例3では、第2反射光学系MR2は、凸面となっている。すなわち第2反射光学系MR2は、凸面でも構成できる。凸面で構成する場合、第3反射光学系MR3は、比較的光軸に対して垂直に近くなるような形状となるため、奥行き方向の厚みを小さくできる。
 投射距離を変更して変倍する場合には、第1-2レンズ群42のうち、第5レンズ(レンズL5)と第6レンズ(レンズL6)とをフローティングにより移動することでフォーカスを行う。なお、第2反射光学系MR2と兼用している最も拡大側の第7レンズ(レンズL7)は固定である。また、第1-1レンズ群41及び第2光学群40bも固定である。
 図15(A)は、投射倍率126倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図15(B)は、投射倍率162倍の時の投射光学系の縮小側収差図であり、図15(C)は、投射倍率110倍の時の投射光学系の縮小側収差図である。また、図16(A)~16(E)は、図15(A)に対応する投射光学系の横収差図である。図16(A)~16(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図16(A)は、最大画角の場合に対応する。同様に、図17(A)~17(E)は、図15(B)に対応する投射光学系の横収差図であり、図18(A)~18(E)は、図15(C)に対応する投射光学系の横収差図である。
(実施例4)
 実施例4のレンズ面のデータを以下の表10に示す。特に、本実施例及び次の実施例5では、第2反射光学系MR2は、第1光学群40aの一部と共有するものとしてではなく、単独で存在する。
〔表10〕
  f      3.994
  ω    70.0゜
  NA     0.278
Figure JPOXMLDOC01-appb-I000011
 以下の表11は、実施例4のレンズ面の非球面係数である。
〔表11〕
Figure JPOXMLDOC01-appb-I000012
 以下の表12は、投射倍率126倍、投射倍率161倍及び投射倍率110倍において、表10中の可変間隔7,10,12,15の値を示している。
〔表12〕
Figure JPOXMLDOC01-appb-I000013
 図19は、実施例4の投射光学系40の断面図である。図19において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L3と、第1-2レンズ群42を構成するレンズL4,L5との5枚のレンズL1~L5を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。ここで、既述のように、第2反射光学系MR2は、単独で存在する。なお、非球面ミラーについて、図19では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸形状で正の第1レンズ(レンズL1)、縮小側に凸面を向けた負メニスカス形状の第2レンズ(レンズL2)と両凸形状で正の第3レンズ(レンズL3)との接合レンズ、開口絞りST、縮小側に凸面をむけたメニスカス形状の正の第4レンズ(レンズL4)、両凸形状で正の第5レンズ(レンズL5)の5枚のレンズで構成される。第1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の非球面凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第2反射光学系MR2の非球面凹反射面R2で反射される。第2反射光学系MR2で反射された光線束は、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーンに結像する。
 なお、以上では、第2反射光学系MR2は、単独のミラー面のみとして構成されているが、実施例1~3の場合と同様に、第1光学群40aの最も拡大側に位置するレンズの一部を、第2反射光学系MR2の反射面R2として利用することも可能である。
 ただし、実施例4では、第2光学群40bにおいて、単独の非球面ミラーを3面使用することで、屈折光学系である第1光学群40aは、5枚のレンズで構成できている。また、第1光学群40aは、精度を確保しやすい球面レンズですべて構成され、かつ、一般的な円形状にできることから、製造上もバラツキを少なくすることができる。また、第2光学群40bにおいて、3面の非球面ミラーは、全て回転対称で屈折系の光軸と同軸となっているため設置精度は出しやすくなっている。第2反射光学系MR2は、比較的小型であることから、精度を確保しやすい円形状のガラス非球面ミラーとして成形し、光軸上で半分に切断することで、1個の円形状のガラス非球面ミラーから2個の部品を製造することも可能である。
 投射距離を変更して変倍する場合には、第1-2レンズ群42の第4レンズ(レンズL4)と第5レンズ(レンズL5)とをフローティングにより移動することでフォーカスを行う。なお、第1-1レンズ群41及び第2光学群40bは固定である。
 図20(A)は、投射倍率126倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図20(B)は、投射倍率161倍の時の投射光学系の縮小側収差図であり、図20(C)は、投射倍率110倍の時の投射光学系の縮小側収差図である。また、図21(A)~21(E)は、図20(A)に対応する投射光学系の横収差図である。図21(A)~21(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図21(A)は、最大画角の場合に対応する。同様に、図22(A)~22(E)は、図20(B)に対応する投射光学系の横収差図であり、図23(A)~23(E)は、図20(C)に対応する投射光学系の横収差図である。
(実施例5)
 実施例5のレンズ面のデータを以下の表13に示す。
〔表13〕
  f      4.019
  ω    70.7゜
  NA     0.278
Figure JPOXMLDOC01-appb-I000014
 以下の表14は、実施例5のレンズ面の非球面係数である。
〔表14〕
Figure JPOXMLDOC01-appb-I000015
 以下の表15は、投射倍率125倍、投射倍率161倍及び投射倍率110倍において、表13中の可変間隔7,10,12,15の値を示している。
〔表15〕
Figure JPOXMLDOC01-appb-I000016
 図24は、実施例5の投射光学系40の断面図である。図24において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L3と、第1-2レンズ群42を構成するレンズL4,L5との5枚のレンズL1~L5を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。ここで、既述のように、第2反射光学系MR2は、単独で存在する。なお、非球面ミラーについて、図24では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸形状で正の第1レンズ(レンズL1)、両凸形状で正の第2レンズ(レンズL2)と拡大側に凸面を向けた負メニスカス形状の第3レンズ(レンズL3)との接合レンズ、開口絞りST、両凸形状の第4レンズ(レンズL4)、両面に非球面が施され拡大側に凸面を向けた負メニスカスレンズの第5レンズ(レンズL5)の5枚のレンズで構成される。1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の非球面凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第2反射光学系MR2の非球面凹反射面R2で反射される。第2反射光学系MR2で反射された光線束は、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーンに結像する。
 実施例5では、第2光学群40bに3枚の非球面ミラーを設けるとともに、第1光学群40aに1枚の非球面レンズ(レンズL5)を設けることで、屈折光学系である第1光学群40aとしては、5枚構成と非常に少ない構成としながら、実施例4と比較すると全長を短くできている。また、第1光学群40aは、一般的な円形状にできることから、製造上も問題も少なく、非球面レンズ(レンズL5)は、偏肉比が小さいパワーの小さいレンズで構成されるので、内部歪などの影響も小さくすることが可能となっている。
 投射距離を変更して変倍する場合には、第1-2レンズ群42の第4レンズ(レンズL4)と第5レンズ(レンズL5)とをフローティングにより移動することでフォーカスを行う。なお、第1-1レンズ群41及び第2光学群40bは固定である。
 図25(A)は、投射倍率126倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図25(B)は、投射倍率161倍の時の投射光学系の縮小側収差図であり、図25(C)は、投射倍率110倍の時の投射光学系の縮小側収差図である。また、図26(A)~26(E)は、図25(A)に対応する投射光学系の横収差図である。図26(A)~26(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図26(A)は、最大画角の場合に対応する。同様に、図27(A)~27(E)は、図25(B)に対応する投射光学系の横収差図であり、図28(A)~28(E)は、図25(C)に対応する投射光学系の横収差図である。
(実施例6)
 実施例6のレンズ面のデータを以下の表16に示す。特に、本実施例では、例えば図29に示すように、第2反射光学系MR2は、第1光学群40aのうち最も拡大側のレンズ(レンズL10)よりも縮小側に位置するレンズ(レンズL9)と共有されるものとなっている。
〔表16〕
  f      4.094
  ω    70.2゜
  NA     0.278
Figure JPOXMLDOC01-appb-I000017
 以下の表17は、実施例6のレンズ面の非球面係数である。
〔表17〕
Figure JPOXMLDOC01-appb-I000018
 以下の表18は、投射倍率125倍、投射倍率171倍及び投射倍率99倍において、表16中の可変間隔12,16,18,29の値を示している。
〔表18〕
Figure JPOXMLDOC01-appb-I000019
 図29は、実施例6の投射光学系40の物体面から凹面反射ミラーまでの構成および光線図である。また、図30は、実施例6の投射光学系40の断面図である。図29及び図30において、投射光学系40は、パネル面PI上の像をスクリーンまでの距離に応じた倍率で拡大投射するものである。縮小側から順に、投射光学系40のうち、第1光学群40aは、第1-1レンズ群41を構成するレンズL1~L4と、第1-2レンズ群42を構成するレンズL5~L10との10枚のレンズL1~L10を有する。また、第2光学群40bは、3枚の非球面ミラーである第1~第3反射光学系MR1~MR3を有する。ここで、既述のように、第2反射光学系MR2は、第1光学群40aのうち最も拡大側のレンズよりも縮小側に位置するレンズと共有されている。なお、第2反射光学系MR2以外の非球面ミラーについて、図30では切り欠かずにそのまま描いているが、実際の光学系では、円形状から一部切り欠いた形状となる。
 各光学要素について光路順に詳しく説明すると、屈折光学系である第1光学群40aは、縮小側から順に両凸で正の第1レンズ(レンズL1)、縮小側に凸で正の第2メニスカスレンズ(レンズL2)、両凹形状の負の第3レンズ(レンズL3)と両凸形状の正の第4レンズ(レンズL4)との接合レンズ、開口絞りST、両凸形状の正の第5レンズ(レンズL5)、縮小側に凸面を向けた正メニスカスレンズの第6レンズ(レンズL6)、拡大側に凸面を向けた負メニスカスレンズの第7レンズ(レンズL7)、拡大側に凸面を向けた負メニスカスレンズの第8レンズ(レンズL8)、縮小側に凸面を向けた正のメニスカスレンズの第9レンズ(レンズL9)、拡大側に凸面を向けた負のメニスカスレンズの第10レンズ(レンズL10)の10枚のレンズで構成される。第1光学群40aは、全て球面レンズで構成される。1光学群40aから射出された光線束は、第1光学群40aと第2光学群40bの第1反射光学系MR1との間で、1次結像したあと、第1反射光学系MR1の非球面凹反射面R1で反射される。第1反射光学系MR1で反射された光線束は、第1光学群40a側に戻り、第1光学群40aの第10レンズ(レンズL10)を通過した後、第2反射光学系MR2の凹反射面R2で反射される。凹反射面R2は、第1光学群40aの第9レンズ(レンズL9)の上側半分に形成された反射膜で構成されている、すなわち、反射面R2は、第9レンズ(レンズL9)の屈折面と共有されている。第2反射光学系MR2で反射された光線束は、再び、第10レンズ(レンズL10)を通過して、第3反射光学系MR3の非球面凸反射面R3で反射され、スクリーンに結像する。
 実施例6では、屈折光学系である第1光学群40aは、全て精度を確保しやすい球面レンズで構成され、かつ、一般的な円形状にできることから、製造上も問題が少なくできる。また、実施例6での非球面は、第1反射光学系MR1と第3反射光学系MR3の反射面R1,R3の2面のみであり、かつ一般的な回転対称面で構成されるため、比較的製造しやすく、第2光学群40bは、第1光学群40aと同軸の構成であり設置性も良く、作りやすいものになっている。
 投射距離を変更して変倍する場合には、第1-2レンズ群42のうち一体で移動可能な第6及び第7レンズ(レンズL6,L7)と単独で移動可能な第8レンズ(レンズL8)とをフローティングにより移動することでフォーカスを行う。なお、第1-2レンズ群42のうち他のレンズと、第1-1レンズ群41及び第2光学群40bとは固定である。
 図31(A)は、投射倍率125倍の時の投射光学系の縮小側収差図(球面収差、非点収差、歪曲収差)であり、図31(B)は、投射倍率171倍の時の投射光学系の縮小側収差図であり、図31(C)は、投射倍率99倍の時の投射光学系の縮小側収差図である。また、図32(A)~32(E)は、図31(A)に対応する投射光学系の横収差図である。図32(A)~32(E)はそれぞれ、像高100%、80%、60%、40%、15%における横収差を示している。図32(A)は、最大画角の場合に対応する。同様に、図33(A)~33(E)は、図31(B)に対応する投射光学系の横収差図であり、図34(A)~34(E)は、図31(C)に対応する投射光学系の横収差図である。
〔実施例のまとめ〕
 上記実施例1~6について、焦点距離等についての条件式(1)~(3)に関する項目は、下記の表19の通りである。なお、下欄の各数値から、条件式(1)~(3)が満たされていることが分かる。
〔表19〕
Figure JPOXMLDOC01-appb-I000020
 また、いずれの実施例においても、広角端での半画角70゜程度の広い画角を有しながら、屈折光学系(第1光学群40a)は5枚から7枚程度の少ないレンズ構成で可能となっている。また、比較として例えば反射光学系を1枚ミラー方式とした場合には、凹レンズで反射した光束が屈折光学系の最も拡大側のレンズと干渉するため、スクリーンのオフセット量を高くしたり、レンズの一部をカットしたりする必要が生じる可能性がある。これに対して本実施形態のように、反射光学系を3枚ミラー構成とした場合、構成によっては、上述した例のように屈折光学系のうち干渉するおそれのある拡大側の部分をミラーとして利用できる(兼用させることができる)ため、構成が楽になり、コスト的にも有利になる。
 以上のように、本実施形態の投射光学系あるいはこれを用いたプロジェクターは、反射光学系(第2光学群)が全体として負のパワーを持っているため、屈折光学系(第1光学群)が従来よりも簡単な構成でありながら、従来のように屈折光学系(第1光学群)を多数のレンズで構成した場合と同等の十分良好な光学性能を有し、かつ、フォーカス群全長が短く、軽量化されたものとなる。これにより、フォーカス群と主鏡筒との結合部を簡略化しても性能に影響を与えることなく、レンズ全体の小型化およびコストダウンも可能となっている。
 この発明は、上記の実施形態又は実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
 例えば、第2反射光学系MR2の曲面形状については、凹面又は凸面としているが、平面とする構成も可能である。
 また、上記実施形態において、たとえば、光透過反射光学系であるレンズL7の製造方法についても、種々の態様が可能である。例えば通常のレンズ作製工程で屈折レンズを成形した後、レンズ用コートを施す。その後、光反射領域に相当する箇所にのみに反射膜が形成されるように、光透過領域に相当する領域をマスクした状態でアルミを蒸着することでレンズL7を作製することができる。
 また、例えば、各実施例において、各レンズ群を構成するレンズの前後又は間に1つ以上の実質的にパワーを持たないレンズを追加することができる。
 また、投射光学系40による拡大投射の対象は、液晶パネルによって形成された画像に限らず、デジタル・マイクロミラー・デバイス等の光変調素子によって形成された画像を投射光学系40によって拡大投射することができる。
 2…プロジェクター、 10…光源、 11,12…インテグレーターレンズ、 13…偏光変換素子、 14…重畳レンズ、 15…ダイクロイックミラー、 16…反射ミラー、 17B…フィールドレンズ、 17G…フィールドレンズ、 17R…フィールドレンズ、 18G,18R,18B…液晶パネル、 19…クロスダイクロイックプリズム、 21…ダイクロイックミラー、 22…リレーレンズ、 23…反射ミラー、 40…投射光学系、 40a…第1光学群、 40b…第2光学群、 41…第1-1レンズ群、 42…第1-2レンズ群、 50…光学系部分、 80…回路装置、 81…画像処理部、 81,82,83…回路部分、 82…表示駆動部、 83…レンズ駆動部、 88…主制御部、 A1…方向、 AC…アクチュエーター、 BD…可変間隔、 L1…レンズ、 L1-L10…レンズ、 MR1-MR3…反射光学系、 OA…光軸、 PI…パネル面、 PR…プリズム、 R1-R3…反射面、 f1,f2,f3…焦点距離、 φ1,φ2,φ3…パワー

Claims (12)

  1.  縮小側から順に設けられた、複数のレンズからなり正のパワーを有する屈折光学系と、反射光学系と、を備えた投射光学系であって、
     前記反射光学系は、前記屈折光学系から射出された光の光路上に前記屈折光学系側から順に設けられた第1反射光学系と第2反射光学系と第3反射光学系とを含み、
     前記第1反射光学系は、凹面形状を有する第1反射面を含み、
     前記第2反射光学系は、曲面形状を有する第2反射面を含み、
     前記第3反射光学系は、凸面形状を有する第3反射面を含み、
     前記第1反射面、前記第2反射面及び前記第3反射面のうち少なくとも2つは非球面形状を有し、
     前記第1反射光学系の焦点距離をf1、前記第2反射光学系の焦点距離をf2、前記第3反射光学系の焦点距離をf3、としたとき、f1,f2,f3が条件式(1)を満足することを特徴とする投射光学系。
      |f2|>|f3|>|f1|…(1)
  2.  請求項1に記載の投射光学系において、全系の焦点距離をF、前記屈折光学系の焦点距離をFLとするとき、条件式(2)を満足することを特徴とする投射用光学系。
      0.05 < F/FL < 0.15…(2)
  3.  請求項1または2に記載の投射光学系において、前記複数のレンズが全て回転対称系であることを特徴とする投射光学系。
  4.  請求項3に記載の投射光学系において、前記複数のレンズ及び前記第1~第3反射光学系の全ての面は、回転対称面で構成され、同一の光軸を有する共軸光学系であることを特徴とする投射光学系。
  5.  請求項1から4までのいずれか一項に記載の投射光学系において、前記複数のレンズは、前記屈折光学系の一部として機能する光透過領域と前記第2反射面として機能する光反射領域とを有する光透過反射光学系を含むことを特徴とする投射光学系。
  6.  請求項5に記載の投射光学系において、前記光透過反射光学系は、前記屈折光学系において最も拡大側に配置されており、投射距離の変更に伴う変倍時のフォーカスの際、固定されていることを特徴とする投射光学系。
  7.  請求項1から6までのいずれか一項に記載の投射光学系において、前記屈折光学系は、変倍時に少なくとも1つの移動するレンズ群を有し、最も縮小側の可変間隔を境にして、縮小側から順に正のパワーを有する第1-1レンズ群と、正のパワーを有する第1-2レンズ群とから構成され、前記第1-1レンズ群の焦点距離をF1-1、前記第1-2レンズ群の焦点距離をF1-2とするとき、条件式(3)を満足することを特徴とする投射光学系。
      0.0 < |F1-1/F1-2| < 1.0…(3)
  8.  請求項1から7までのいずれか一項に記載の投射光学系において、物体側の開口数は0.27以上であることを特徴とする投射用光学系。
  9.  請求項1から8までのいずれか一項に記載の投射光学系において、縮小側は略テレセントリックであることを特徴とする投射光学系。
  10.  請求項1から9までのいずれか一項に記載の投射光学系において、変倍範囲が1.4倍以上あることを特徴とする投射光学系。
  11.  縮小側から順に設けられた、複数のレンズからなり正のパワーを有する屈折光学系と、少なくとも3面の反射面を有する反射光学系と、を備えた投射光学系であって、
     前記屈折光学系を構成する前記複数のレンズは、前記屈折光学系の一部として機能する光透過領域と前記反射光学系の反射面として機能する光反射領域とを有する光透過反射光学系を含むことを特徴とする投射光学系。
  12.  光源と、
     前記光源からの光を変調して画像光を形成する光変調素子と、
     前記画像光を投射する請求項1から11までのいずれか一項に記載の投射光学系とを備えることを特徴とするプロジェクター。
PCT/JP2016/003789 2015-08-21 2016-08-19 投射光学系及びプロジェクター WO2017033445A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/753,912 US10466452B2 (en) 2015-08-21 2016-08-19 Projection optical system and projector
CN201680048554.6A CN107924046B (zh) 2015-08-21 2016-08-19 投影光学***和投影仪

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163476A JP6582728B2 (ja) 2015-08-21 2015-08-21 投射光学系及びプロジェクター
JP2015-163476 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033445A1 true WO2017033445A1 (ja) 2017-03-02

Family

ID=58100437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003789 WO2017033445A1 (ja) 2015-08-21 2016-08-19 投射光学系及びプロジェクター

Country Status (4)

Country Link
US (1) US10466452B2 (ja)
JP (1) JP6582728B2 (ja)
CN (1) CN107924046B (ja)
WO (1) WO2017033445A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219740A (ja) * 2016-06-08 2017-12-14 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
WO2017213058A1 (ja) * 2016-06-08 2017-12-14 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
WO2020116141A1 (ja) * 2018-12-07 2020-06-11 ソニー株式会社 画像表示装置及び投射光学系
US11029586B2 (en) 2017-09-25 2021-06-08 Canon Kabushiki Kaisha Optical system and image projection apparatus
TWI788366B (zh) * 2017-07-10 2023-01-01 日商索尼股份有限公司 圖像顯示裝置及投射光學系統

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415520B2 (ja) * 2016-11-28 2018-10-31 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
JP6780315B2 (ja) * 2016-06-22 2020-11-04 カシオ計算機株式会社 投影装置、投影システム、投影方法及びプログラム
ES2869878T3 (es) * 2017-01-17 2021-10-26 Signify Holding Bv Generación de posición de luz puntual ajustable
CN108927994A (zh) * 2017-05-22 2018-12-04 三纬国际立体列印科技股份有限公司 立体打印装置
JP2019124796A (ja) 2018-01-16 2019-07-25 キヤノン株式会社 結像光学系、画像投射装置およびカメラシステム
TWI812715B (zh) * 2018-06-29 2023-08-21 日商索尼股份有限公司 圖像顯示裝置及投射光學系統
US10996448B2 (en) * 2018-07-26 2021-05-04 Fujifilm Corporation Imaging optical system, projection display device, and imaging apparatus having a catoptric system and a dioptric system
JP2020086174A (ja) * 2018-11-27 2020-06-04 富士フイルム株式会社 結像光学系、投写型表示装置、および撮像装置
JP7259412B2 (ja) * 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、撮像装置、および光学素子の製造方法
JP7259413B2 (ja) * 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、および撮像装置
JP7259411B2 (ja) 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、および撮像装置
JP2021117279A (ja) * 2020-01-23 2021-08-10 セイコーエプソン株式会社 投写光学系およびプロジェクター
JP7120259B2 (ja) * 2020-01-24 2022-08-17 セイコーエプソン株式会社 投写光学系、およびプロジェクター
CN114114518A (zh) 2020-08-28 2022-03-01 中强光电股份有限公司 光波导、光波导的制作方法以及头戴式显示装置
US11982798B2 (en) * 2020-11-18 2024-05-14 Coretronic Corporation Projection lens and projection apparatus
CN113589496B (zh) * 2021-07-27 2022-10-25 深圳市凯润智能照明有限公司 一种用于胶片投影的光学***及投影设备
CN116300292A (zh) * 2023-03-29 2023-06-23 广州市小萤成像技术有限公司 一种投影光路结构及投影广告灯

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222063A (ja) * 2000-02-07 2001-08-17 Minolta Co Ltd リアプロジェクション光学系
JP2006184775A (ja) * 2004-12-28 2006-07-13 Fujinon Corp 反射型光学系およびこれを用いた投写型表示装置
JP2013242594A (ja) * 2013-07-26 2013-12-05 Seiko Epson Corp 投射光学系及び投射型画像表示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093230A1 (en) * 2001-05-15 2002-11-21 Industrial Research Limited High etendue optical imaging system
JP2007079524A (ja) 2004-10-21 2007-03-29 Sony Corp 投射光学系及び投射型画像表示装置
TWI289210B (en) 2004-10-21 2007-11-01 Sony Corp Projection optical system and projection type image display device
US20060198018A1 (en) * 2005-02-04 2006-09-07 Carl Zeiss Smt Ag Imaging system
JP4890771B2 (ja) 2005-02-28 2012-03-07 富士フイルム株式会社 投写光学系およびこれを用いた投写型表示装置
CN103955048B (zh) * 2007-01-25 2017-04-12 扬明光学股份有限公司 背投影装置以及用于背投影装置的方法
JP5274030B2 (ja) 2007-03-07 2013-08-28 リコー光学株式会社 投射光学系およびプロジェクタ装置および画像読取装置
JP5332686B2 (ja) * 2009-02-13 2013-11-06 セイコーエプソン株式会社 投射光学系及び投射型画像表示装置
JP5632782B2 (ja) 2011-03-24 2014-11-26 リコー光学株式会社 投射光学系および投射型画像表示装置
WO2013005444A1 (ja) * 2011-07-05 2013-01-10 日東光学株式会社 投射光学系およびプロジェクタ装置
JP5825047B2 (ja) * 2011-10-28 2015-12-02 株式会社リコー 画像表示装置
JP6172431B2 (ja) * 2012-11-26 2017-08-02 株式会社リコー 投射光学系
JP2015060090A (ja) * 2013-09-19 2015-03-30 富士フイルム株式会社 投写光学系および投写型表示装置
JP2015215478A (ja) 2014-05-12 2015-12-03 セイコーエプソン株式会社 投写レンズ及びプロジェクター
JP5930085B1 (ja) 2015-01-27 2016-06-08 セイコーエプソン株式会社 投射光学系
JP5939324B1 (ja) 2015-02-18 2016-06-22 セイコーエプソン株式会社 投射光学系
JP5930088B1 (ja) 2015-02-18 2016-06-08 セイコーエプソン株式会社 投射光学系
JP5949975B1 (ja) 2015-02-18 2016-07-13 セイコーエプソン株式会社 投射光学系
JP5930101B1 (ja) 2015-06-12 2016-06-08 セイコーエプソン株式会社 投射光学系及びプロジェクター
JP5950000B1 (ja) 2015-06-12 2016-07-13 セイコーエプソン株式会社 投射光学系及びプロジェクター

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222063A (ja) * 2000-02-07 2001-08-17 Minolta Co Ltd リアプロジェクション光学系
JP2006184775A (ja) * 2004-12-28 2006-07-13 Fujinon Corp 反射型光学系およびこれを用いた投写型表示装置
JP2013242594A (ja) * 2013-07-26 2013-12-05 Seiko Epson Corp 投射光学系及び投射型画像表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219740A (ja) * 2016-06-08 2017-12-14 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
WO2017213058A1 (ja) * 2016-06-08 2017-12-14 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
JP2018205699A (ja) * 2016-06-08 2018-12-27 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
US11079579B2 (en) 2016-06-08 2021-08-03 Canon Kabushiki Kaisha Image forming optical system, and imaging apparatus and projecting apparatus having the same
JP7016763B2 (ja) 2016-06-08 2022-02-07 キヤノン株式会社 結像光学系、それを備える撮像装置及び投射装置
TWI788366B (zh) * 2017-07-10 2023-01-01 日商索尼股份有限公司 圖像顯示裝置及投射光學系統
US11029586B2 (en) 2017-09-25 2021-06-08 Canon Kabushiki Kaisha Optical system and image projection apparatus
WO2020116141A1 (ja) * 2018-12-07 2020-06-11 ソニー株式会社 画像表示装置及び投射光学系
JPWO2020116141A1 (ja) * 2018-12-07 2021-10-21 ソニーグループ株式会社 画像表示装置及び投射光学系
US11528458B2 (en) 2018-12-07 2022-12-13 Sony Group Corporation Image display apparatus and projection optical system
JP7318665B2 (ja) 2018-12-07 2023-08-01 ソニーグループ株式会社 画像表示装置及び投射光学系

Also Published As

Publication number Publication date
CN107924046A (zh) 2018-04-17
US10466452B2 (en) 2019-11-05
JP6582728B2 (ja) 2019-10-02
CN107924046B (zh) 2020-06-19
US20180246302A1 (en) 2018-08-30
JP2017040849A (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2017033445A1 (ja) 投射光学系及びプロジェクター
US11042082B2 (en) Projection optical system including movable lens groups, a non-movable lens group, and a curved mirror
US9671598B2 (en) Projection optical system
WO2016199393A1 (ja) 投射光学系及びプロジェクター
JP5930088B1 (ja) 投射光学系
US9810976B2 (en) Projection optical system
JP5939324B1 (ja) 投射光学系
CN110286465B (zh) 投射光学***以及投射型图像显示装置
US10156708B2 (en) Projection zoom lens and projection type image display device
CN107636511B (zh) 投射光学***和投影仪
WO2018179561A1 (ja) 投写光学系、画像投写装置および画像投写システム
US20200241400A1 (en) Projection optical system and projector
JP6662159B2 (ja) 投射光学系及びプロジェクター
CN109983384B (zh) 投射光学***和投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15753912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838796

Country of ref document: EP

Kind code of ref document: A1