WO2017028429A1 - 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法 - Google Patents

一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法 Download PDF

Info

Publication number
WO2017028429A1
WO2017028429A1 PCT/CN2015/097906 CN2015097906W WO2017028429A1 WO 2017028429 A1 WO2017028429 A1 WO 2017028429A1 CN 2015097906 W CN2015097906 W CN 2015097906W WO 2017028429 A1 WO2017028429 A1 WO 2017028429A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light conversion
cured
semi
film
Prior art date
Application number
PCT/CN2015/097906
Other languages
English (en)
French (fr)
Inventor
何锦华
Original Assignee
江苏诚睿达光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏诚睿达光电有限公司 filed Critical 江苏诚睿达光电有限公司
Priority to PL15901631T priority Critical patent/PL3340320T3/pl
Priority to EP15901631.0A priority patent/EP3340320B1/en
Priority to US15/750,958 priority patent/US10141486B2/en
Priority to KR1020187002436A priority patent/KR102026842B1/ko
Priority to JP2017567798A priority patent/JP6675423B2/ja
Publication of WO2017028429A1 publication Critical patent/WO2017028429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the invention belongs to the technical field of light-converting body packaged LEDs, and in particular relates to a process method for laminating encapsulated LEDs based on a silicone resin light conversion body which is rolled in series.
  • LED has the advantages of high brightness, low heat, long life, environmental protection, and renewable utilization. It is called the most promising new generation of green lighting source in the 21st century. At present, although the theoretical life of LED can reach more than 100,000 hours, in actual use, it is subject to various factors such as chip failure, package failure, thermal overstress failure, electrical overstress failure or / and assembly failure. The failure of the package is particularly prominent, which causes the LED to appear prematurely with light decay or light failure, which will hinder the advancement of LED as a new energy-saving illumination source. In order to solve these problems, many scholars in the industry have carried out related research and proposed some improvement measures that can improve LED light efficiency and actual service life.
  • the newly developed flip-chip LED has the advantages of high luminous efficiency, high reliability and easy integration compared with the traditional formal LED, and the packaging material is greatly simplified, such as the gold wire and solid crystal glue of the traditional formal LED package. Materials such as brackets are no longer needed; the packaging process is also greatly simplified. For example, the solid crystal, wire bonding, and even splitting of the traditional LED packaging process are no longer needed, making flip-chip LEDs more and more widely used;
  • most of the existing flip-chip LED packaging technologies use a casting process of a silicone resin-based light conversion body and a flip-chip LED chip, a screen printing process, an upper and lower plate mold process, and a single roll.
  • the pendulum pressing process, etc., these processes and their associated packaging equipment can not solve the pores and thickness unevenness of the silicone resin light-converting body, resulting in low yield of the light-converting packaged LED;
  • the low production efficiency makes the product cost high.
  • Chinese Patent Application No. 201010204860.9 discloses "a method for packaging a flip-chip LED chip", the steps of which include: (a) applying a light conversion body to a surface of an LED chip by screen printing, and baking and curing the light conversion body; (b) fixing the LED chip on the chip substrate to bond the LED chip electrode to the chip substrate electrode; (c) fixing the LED chip and the chip substrate to the bottom of the holder reflector cup; (d) using the wire to fix the wire
  • the positive and negative electrodes of the chip substrate are respectively connected to the positive and negative electrodes of the bracket; (e) the mold or lens is placed on the bracket on which the LED chip and the chip substrate are fixed, and is filled with the silicone; (f) the overall structure is baked and cured.
  • the method improves the light transfer by a screen printing process
  • the uniformity of the thickness of the replacement coating increases the uniformity of the distribution of the phosphor particles to achieve the purpose of improving the yield; however, there are also the following obvious disadvantages:
  • First, the screen printing prints the silicone resin-based light converter
  • the surface of the LED chip which is then affected by the thermal overstress during the baking and curing process, may cause the light conversion body coating and the coating surface layer of the LED chip to partially generate bubbles to form uneven bumps; the second is to seal the mold or the lens cover. It is filled with silica gel and LED chip package coated with light conversion body.
  • the entire LED chip packaging process is not equipped with an intelligent control system for control, which directly affects the improvement of the yield.
  • Chinese Patent Application No. 201310270747.4 discloses "LEDs coated with a light conversion body layer, a method of manufacturing the same, and an LED device", the solution comprising: an LED arrangement step of arranging LEDs on one surface in a thickness direction of a support sheet; In the method of covering the LED, a light conversion body layer is provided on one surface in the thickness direction of the support sheet, and the light conversion body layer is composed of an active energy ray-curable resin and a light conversion body which are cured by irradiation with active energy rays.
  • Forming the composition Forming the composition; curing step, irradiating the light conversion body layer with the active energy ray to cure the light conversion body layer; and cutting the light conversion body layer corresponding to the LED to obtain the light conversion body including the LED and the coated LED
  • the purpose of this method is to provide an LED device in which a light conversion body is uniformly disposed around an LED to prevent damage, thereby obtaining an LED coated with a light conversion body layer, and an LED having the light conversion body layer coated thereon;
  • the fluorescent resin composition of the light-converting body may cause the localized bubbles of the surface layer of the light-converting body to form uneven ridges due to the influence of the thermal over-stress;
  • the light-converting layer is covered.
  • the LED will still be affected by thermal overstress, resulting in a decrease in light efficiency in the use of LEDs.
  • the process in the entire packaging process is cumbersome, and the production efficiency of packaged LEDs is not high.
  • the upper and lower flat mold process will lead to flipping. The displacement of the chip will inevitably lead to a decrease in yield.
  • Ciba 201380027218.X discloses a "resin sheet laminate and a method for producing a semiconductor light-emitting device using the same", wherein the resin sheet laminate is provided with a phosphor-containing resin layer on a substrate.
  • the phosphor-containing resin layer has a plurality of blocks, and the substrate has a longitudinal direction and a width direction, and the plurality of blocks are repeatedly arranged in a row in the longitudinal direction.
  • the object of the invention is to improve the uniformity of color and brightness of the semiconductor light-emitting device to which the phosphor-containing resin layer is attached, the ease of manufacture, the degree of freedom in design, etc., by the resin sheet laminate.
  • the phosphor resin sheet used is a cured phosphor resin sheet, which will not effectively eliminate pores, irregularities or other processing defects which may remain therein; Pressurizing the pressurizing tool from the side of the semiconductor light emitting element may damage the semiconductor light emitting element; thirdly, using the adhesive bonding process in the phosphor resin layer, it is difficult to remove the residue in the bonded semiconductor light emitting element. The bonding process is highly prone to generate pores, which causes a decrease in the yield. At the same time, the presence of the bonding layer also reduces the light-emitting efficiency of the LED element. Fourth, the basis of the phosphor resin sheet bonded to the light-emitting surface of the semiconductor light-emitting element.
  • the material is not peeled off, which directly affects the light effect of the semiconductor light-emitting element.
  • the phosphor resin layer is repeatedly arranged in a plurality of blocks in the longitudinal direction, but a plurality of blocks of the phosphor resin layer are realized. Configuration, the actual operation procedure is cumbersome, which will affect the packaging efficiency of the entire component. The arrangement error of multiple blocks in the position will directly affect the accuracy of the subsequent bonding with the light-emitting elements, and the size between multiple blocks In terms of thickness, if it does not meet the requirements of consistency, it may lead to serious product consistency problems.
  • the object of the present invention is to provide a process for laminating encapsulated LEDs based on a tandem rolled silicone resin light converter in order to overcome the deficiencies of the prior art.
  • the present invention has the remarkable advantages of using a continuous rolling process to package LEDs. It can meet the requirements of the silicone resin light-converting body to fit the packaged LED, thereby improving the production efficiency and excellent product rate of the industrial batch LED package.
  • a method for bonding a packaged LED based on a tandem rolled silicone resin light-converting body characterized in that it comprises preparation of a semi-cured light conversion film and pseudo-curing of a semi-cured light conversion film
  • the basic steps of the preparation of the LED flip chip array film, the two-roller roll bonding type of the LED package component, the curing of the LED package component, and the flow-through process of the cutting process of the LED package component include the basic steps including as follows:
  • Step 1 Preparation of a semi-cured light conversion film: obtaining a semi-cured light conversion film composed of a protective film A, a semi-cured light conversion film, and a protective film B; the semi-cured light conversion film includes a semi-cured silicone resin and light Conversion material
  • Step 2 pseudo-curing of the semi-cured light conversion film: under vacuum conditions, using the low-temperature freezing method, the semi-cured light conversion film obtained in step 1 is pseudo-cured, thereby obtaining a pseudo-curing light conversion film;
  • Step 3 Preparation of the LED flip chip array diaphragm: obtaining an LED flip chip array diaphragm, wherein the LED flip chip in the LED flip chip array diaphragm is arranged in an array on the carrier film, wherein the LED is inverted
  • the arrangement of the chips in an array means that the LED flip-chips are arranged in an array, or the LED flip-chip components are arranged in an array; the LED flip chip components are two or two. More than one single LED flip core Combination of pieces;
  • Step 4 Double Roll Rolling of LED Package Components:
  • the protective film B of the pseudo-curing light conversion film described in Step 2 is peeled off under vacuum conditions to obtain pseudo-curing without a protective film on one side.
  • the light conversion film is then changed from a pseudo-cured state to a semi-cured state by heating or/and illumination, and then the semi-cured light conversion film and the LED flip chip array film are performed.
  • Double-roll rolling bonding, LED flip-chip bonding in the LED flip-chip array is embedded in the semi-cured light conversion body film, thereby obtaining an LED package component;
  • Step 5 curing the LED package component: curing the LED package component under vacuum condition by using heating or/and curing, thereby obtaining a cured LED package component;
  • Step 6 Cutting the LED package component: peeling off the protective film A of the LED package component after the step 5 is cured, and cutting the cured LED package component to obtain a slit having a single LED package component Finished LED package components.
  • the implementation principle of the present invention is: in order to better solve the problems existing in the existing LED flip chip packaging process, the present invention skillfully designs a silicone resin light conversion body based on tandem rolling to roll and package the LED. New Technology.
  • the principle of the roll-fitting packaging of the present invention is that, on the one hand, the roller is rolled to cause irregularities in the semi-cured silicone resin light conversion film to eliminate the possibility of residual in the semi-cured silicone light conversion film.
  • the invention is a continuous process flow, which is favorable for satisfying the processing conditions of the mass production of the LED package component and ensuring the same size, which not only improves the production efficiency of the LED package component, but also improves the production efficiency of the LED package component.
  • the light color consistency of the finished LED package components is improved, and the superior product rate is greatly improved.
  • the present invention proposes a new type of process for series-rolling and rolling package LEDs, which overcomes the existing casting process, screen printing process, upper and lower plate mold process and single roll swinging process.
  • the problem of light-emitting efficiency, production efficiency and excellent product rate of the packaged LED existing in the process is obviously insufficient; the invention can meet the needs of the semi-cured silicone resin light-converting body to package and package the LED, thereby improving the production of the industrialized batch LED package. Efficiency and quality.
  • the present invention proposes a new process of flow-type tandem rolling and packaging of LEDs, which can effectively eliminate the pores, irregularities and other processing defects that may remain in the semi-cured silicone resin light conversion film, thereby significantly improving
  • the color consistency of the finished LED package components, such as the LED package components produced by the present invention, is significantly improved over the prior art.
  • the third is the low-temperature freezing scheme proposed by the present invention.
  • the pseudo-cured silicone resin light conversion film is obtained and then the protective film B is peeled off, and then the protective film is obtained by direct heating or/and light heating.
  • the semi-cured silicone resin light conversion film of B is rolled and bonded with the LED flip chip array film to obtain the LED package component, which satisfactorily solves the semi-cured silicone resin in the prior art.
  • the protective film of the light conversion film cannot be peeled off.
  • the process is simplified, and the light of the finished LED package component is remarkably improved.
  • the color consistency is also suitable for the equipment system supporting the continuous process and implementing the intelligent control to better meet the production requirements of the industrial batch packaging LED, thereby significantly improving the production efficiency of the industrial batch packaging LED.
  • the process method proposed by the invention is widely applicable to the laminating and packaging process of the silicone resin light conversion body and various power size LED flip chips, and fully satisfies the fine processing of the product production process in the industrial batch packaging LED process. demand.
  • FIG. 1 is a schematic block diagram showing a process of a method for bonding and packaging LEDs based on a tandem rolled silicone resin light-converting body according to the present invention.
  • FIG. 2 is a schematic flow chart showing a process of a method for bonding and packaging LEDs based on a tandem rolled silicone resin light-converting body according to the present invention.
  • FIG. 3 is a schematic view showing the steps of preparing the semi-cured light conversion film shown in FIG. 2 of the present invention.
  • FIG. 4 is a schematic view showing the steps of pseudo-curing of the semi-cured light conversion film shown in FIG. 2 of the present invention.
  • Fig. 5 is a view showing the steps of the protective film B in the double-rolled roll-bonding type of the double-rolled roll-bonding type of the LED package body shown in Fig. 2;
  • FIG. 6 is a schematic view showing the process of the double-rolled roll-on-ply composite type of the reheating pseudo-curing light conversion film of the LED package component shown in FIG. 2 from the pseudo-cured state to the semi-cured state.
  • FIG. 7 is a process diagram of roll bonding of a two-roll roll-rolling composite type of the LED package component shown in FIG. 2 of the present invention; intention.
  • FIG. 8A is a schematic plan view showing the finished LED package component produced by the present invention.
  • FIG. 8B is a schematic plan view showing the planar structure of the finished single LED package component obtained by drawing according to the present invention.
  • the first smooth surface of the third double roll rolling device in the double roll rolling and pasting step is applied to the single roll.
  • the second smooth surface of the third double roll rolling device is applied to the single roll in the double roll rolling press synthesis step.
  • Example 1 a method for bonding a packaged LED based on a tandem rolled silicone resin light conversion body, which comprises preparing a semi-cured light conversion film, pseudo-curing a semi-cured light conversion film, The preparation process of the LED flip chip array film, the two-roll roll bonding synthesis type of the LED package component, the curing of the LED package component, and the flow continuous process of the cutting process of the LED package component, the specific steps include the following :
  • Step 1 Preparation of a semi-cured light conversion film: obtaining a semi-cured light conversion film composed of a protective film A, a semi-cured light conversion film, and a protective film B; the semi-cured light conversion film includes a semi-cured silicone resin and light Conversion material
  • Step 2 pseudo-curing of the semi-cured light conversion film: under vacuum conditions, using the low-temperature freezing method, the semi-cured light conversion film obtained in step 1 is pseudo-cured, thereby obtaining a pseudo-curing light conversion film;
  • Step 3 Preparation of the LED flip chip array diaphragm: obtaining an LED flip chip array diaphragm, wherein the LED flip chip in the LED flip chip array diaphragm is arranged in an array on the carrier film, wherein the LED is inverted
  • the arrangement of the chips in an array means that the LED flip-chips are arranged in an array, or the LED flip-chip components are arranged in an array; the LED flip chip components are two or two. More than one single LED flip chip combination;
  • Step 4 Double Roll Rolling of LED Package Components:
  • the protective film B of the pseudo-curing light conversion film described in Step 2 is peeled off under vacuum conditions to obtain pseudo-curing without a protective film on one side.
  • the light conversion film is then changed from a pseudo-cured state to a semi-cured state by heating or/and illumination, and then the semi-cured light conversion film and the LED flip chip array film are performed.
  • Double-roll rolling bonding, LED flip-chip bonding in the LED flip-chip array is embedded in the semi-cured light conversion body film, thereby obtaining an LED package component;
  • Step 5 curing of the LED package components: under vacuum conditions, using heating or / and light curing, the LED The package component is cured to obtain a cured LED package component;
  • Step 6 Cutting the LED package component: peeling off the protective film A of the LED package component after the step 5 is cured, and cutting the cured LED package component to obtain a slit having a single LED package component Finished LED package components.
  • the invention is suitable for the production and processing of optoelectronic devices or electronic devices similar to LED flip chip structures.
  • any of the existing silicone resins with high light transmittance and good temperature resistance can be selected for use in the process of the present invention, in order to meet the reflow soldering temperature of ordinary LED package components and heat, light, etc. during long-term use.
  • the present invention preferably employs a methyl vinyl silicone resin; existing quantum dot phosphors and phosphors can be selected for use in the process of the present invention.
  • the mixed slurry used in the present invention does not need to include an adhesive; when the use of the finished LED package component under extreme conditions is required, and the adhesion between the light conversion body and the LED needs to be further enhanced, the present invention A binder may be included in the mixed slurry to be used.
  • the preparation of the semi-cured light conversion film of step 1 means that the protective film A, the semi-cured light conversion film and the protective film B are sandwiched under vacuum to form a semi-solidified mixed slurry composed of at least a silicone resin and a light conversion material.
  • the material is subjected to roll forming by a single or multiple sets of two rolls to obtain a semi-cured light conversion film composed of a protective film A, a semi-cured light conversion film, and a protective film B.
  • the light conversion material of step 1 is a quantum dot phosphor or a phosphor.
  • Step 1 described in single or multiple sets of two-roller roll forming, wherein:
  • the single set of two-roll rolling forming refers to a semi-cured mixed slurry composed of a protective film A, a silicone resin and a light conversion material, and a double-roll rolling device that passes the protective film B through a single set of smooth surfaces;
  • the plurality of sets of two-roll roll forming means that the semi-cured paste composed of the protective film A, the silicone resin and the light conversion material, and the protective film B are roll-formed by a pair of smooth double-roll rolling devices to obtain a rough half. Curing the phosphor film, and then rolling the obtained semi-cured light conversion film into a set of two or more sets of smooth double-roll rolling devices to obtain a refined semi-cured light conversion film. sheet;
  • the protective film A (9-2), the semi-cured slurry (9-1) and the protective film B (9-3) pass through the first pair of smooth surfaces in step 1.
  • Single roller A1 (1-1) and single roller A2 (1-2) of the roller rolling device Rolling is performed to obtain a coarse light conversion diaphragm (9-4), and the coarse light conversion diaphragm (9-4) is passed through a set of smooth second roller rolling devices A3 (1- 3) Rolling is performed with the single roller A4 (1-4) to obtain a purified light conversion film (9-5).
  • the thickness of the crude light conversion film is less than 850 ⁇ m; the thickness of the optimal light conversion film is 150-300 ⁇ m; the thickness of the purified light conversion film is 800 ⁇ m; the optimal polishing light conversion film The thickness is 150-250 ⁇ m.
  • the material of the protective film A and the protective film B in the step 1 is polyester, polyolefin or polyether.
  • the temperature of the single or multiple sets of two rolls is 50-120 ° C; the optimum roll forming temperature is 80-100 ° C.
  • the temperature of the low temperature freezing in the step 2 is -5 to -40 ° C; preferably, the freezing temperature is -10 to -20 ° C.
  • the pseudo-cured light conversion film of the step 2 means that the semi-cured light conversion film obtained in the step 1 is only physically hardened.
  • step 2 the light conversion film obtained in step 1 is subjected to a first freezing single roller (2-1) and a second freezing sheet of a freezing component having a temperature of -5 to -40 ° C.
  • the roller (2-2) was pseudo-cured to obtain a pseudo-curing light conversion film (9-6).
  • the carrier film of the step 3 is a stretchable carrier film; the material of the stretchable carrier film is one of high temperature resistant polyester or polydimethylsiloxane or polyvinyl chloride.
  • the temperature at which the pseudo-cured light conversion film is changed from the pseudo-cured state to the semi-cured state by heating or/and illumination is 50-120 ° C; preferably the temperature is 80-100 ° C;
  • step 4 first passes the pseudo-cured light conversion diaphragm (9-6) obtained in step 2 through the first traction single roller (3-1) and the second traction sheet of the traction member.
  • the roller (3-2) peels off the protective film B (9-3), and the peeled protective film B (9-3) is accommodated in the take-up roller (8-1); see FIG. 4
  • the pseudo-curing light conversion film (9-6) is peeled off the protective film B (9-3)
  • it is passed through the first warming single roll (4-1) and the second back of the temperature returning member.
  • the single-roller (4-2) is heated to change the pseudo-cured light conversion film from a pseudo-cured state to a semi-cured state to obtain a semi-cured light conversion film (9-7) after peeling off the protective film B. .
  • Step 4 the double roll rolling paste synthesis type of bonding temperature is 50-120 ° C; the best paste synthesis type temperature is 80-100 ° C;
  • step 4 the semi-cured light conversion film (9-7) after peeling off the protective film B and the LED flip chip array film obtained in step 3 are rolled by the third double roll.
  • the first smooth surface of the device is attached to the single roller (5-1) and the second smooth surface of the third double roller rolling device is attached to the single roller (5-2) for phase alignment and rolling.
  • the LED flip chip in the LED flip chip array is embedded in the semi-cured light conversion film (9-7) to obtain an LED package component.
  • the photocuring method of step 5 is active energy ray curing; the curing method has a curing temperature of 140-180° C., a curing time of ⁇ 1 h; an optimum curing temperature of 150-160° C., and a curing time of 2 h.
  • the step of cutting the cured LED package component in step 6 means that the cured LED package component is rolled and cut by a device consisting of a roller member A and a smooth roller member B with an array edge, and is obtained by dividing into a single sheet. a finished LED package component that is slit by an LED package component;
  • the roller A with the array edge is a single roller A with an array edge or a flat conveyor A with an array edge
  • the smooth roller B is a smooth single roller B or a smooth surface transfer device B. At least one of the roller A and the smooth roller B with the array edge is a single roller;
  • the array edge in the roller A with the array edge is a knife edge having an array of rectangular grids; wherein the rectangular grid has the same size as the finished single LED package component;
  • the spacing between the single roller and the single roller or single roller and the planar conveyor does not exceed the thickness of the carrier film in the LED flip chip array diaphragm.
  • the slit has a slit width of 20 ⁇ m; the optimum slit slit width is 15 ⁇ m.
  • the carrier film is stretched by the stretching machine, so that the finished LED package component is divided along the slit after stretching, thereby obtaining a finished single LED package component; See Figures 8A, 8B.
  • the invention relates to a method for bonding and packaging LEDs based on a tandem rolled silicone resin light-converting body, which is widely applicable to a laminating and packaging process of a silicone resin optical converter and various power-sized LED flip chips.
  • Example 2 An equipment system for a method for bonding a packaged LED based on a tandem rolled silicone resin light-converting body, which comprises a side protection for stripping a light conversion film with a double-sided protective film a protective film peeling device for a film, which comprises a roll-bonding device for forming an LED package component by using a single-sided protective film-containing light conversion film package; and the protective film peeling device comprises a light conversion film disposed in sequence a freezing member, a one-side protective film pulling member that is frozen and a light-transfer film returning member, and a light-converting film returning member; the rolling bonding device includes two smooth surface-contacting sheets having a smooth surface Roller.
  • the light conversion diaphragm freezing component is a freezing roller assembly including one or more roller temperatures A single-roller with a temperature of -40 ° C to -5 ° C.
  • the light conversion diaphragm freezing member in the protective film peeling device includes a first freezing single roller (2-1) and a second freezing single roller (2-2) having a temperature of -5 to -40 °C. , pseudo-curing was carried out to obtain a pseudo-cured light conversion film (9-6).
  • the light conversion frozen film member is a temperature control device including a light conversion film receiving port and a light conversion film output port and having an ambient temperature of -40 ° C to -5 ° C.
  • the traction member includes a traction single roller with a card slot for fixing the one-side protective film on the light conversion film; the single-sided protection film is provided on both sides in the width direction a hole that matches a card slot of a single roller with a card slot; the protective film peeling device further includes a film take-up device.
  • the one-side protective film pulling member includes a first traction single roller (3-1) and a second traction single roller (3-2) with a card slot, and a protective film B (9-3) The peeling protective film B (9-3) is peeled off, and it is accommodated in the film roll (8-1).
  • the light conversion diaphragm rewarming component is a heating roller assembly, and the heating roller assembly comprises one or more regenerative single rollers with a roller temperature of 50 ° C to 120 ° C; the light conversion diaphragm rewarming component It is a temperature control device with a light conversion diaphragm receiving port and a light conversion diaphragm output port and an ambient temperature of 50 ° C to 120 ° C.
  • the light conversion diaphragm returning member includes a first reheating single roller (4-1) and a second reheating single roller (4-2) for heating the pseudo-curing light conversion film. The sheet was changed from the pseudo-cured state to the semi-cured state, and a semi-cured light conversion film (9-7) obtained by peeling off the protective film B was obtained.
  • the two roller surfaces of the rolling bonding device are all smooth single rollers, which are single rollers that respectively place the light conversion diaphragm and single rollers that place the LED flip chip array diaphragm, and face each other. Align the settings.
  • the rolling bonding device is a third double roll rolling device including a first smooth surface single roll (5-1) and a second smooth single roll (5-2). ), the opposite direction is rolled, and the semi-cured light conversion film (9-7) and the LED flip chip array film after peeling off the protective film B pass through the double roll rolling device to make the LED flip chip array
  • the LED flip chip is embedded in the semi-cured light conversion film (9-7) to obtain an LED package component.
  • the single roller with the two roller surfaces being smooth surfaces is provided with a displacement adjusting device for adjusting the distance between the single-roller of the light-converting diaphragm and the single-roller roller of the LED flip-chip array film; and the placement of the light-converting diaphragm
  • the single roller and the single roller of the LED flip chip array diaphragm have a radial runout distance of ⁇ 2 ⁇ m;
  • the equipment system further includes a rolling press device for preparing a light conversion diaphragm; the rolling pressure
  • the welding device is a process device located at the front end of the protective film peeling device;
  • the rolling press device is one or more sets of double roller rollers; and the double roller roller is provided with a displacement adjusting device for adjusting the roller pitch;
  • the single roll radial runout distance of the double roll roller is ⁇ 2 ⁇ m.
  • the rolling press device comprises a first double roll rolling device of a smooth surface and a second double roll rolling device of a smooth surface
  • the first double roll rolling device of the smooth surface comprises a single roll Wheel A1 (1-1) and single roller A2 (1-2)
  • smooth second roller rolling device includes single roller A3 (1-3) and single roller A4 (1-4); protection
  • the film A (9-2), the semi-cured slurry (9-1), and the protective film B (9-3) are rolled by a single roll A1 (1-1) and a single roll A2 (1-2).
  • a crude light conversion diaphragm (9-4) is obtained, and the crude light conversion diaphragm (9-4) is rolled by a single roller A3 (1-3) and a single roller A4 (1-4).
  • the equipment system further includes a curing device that is a process device located at the rear end of the roll bonding device.
  • the curing device is a tunnel temperature control device or a tunnel illumination device;
  • the tunnel temperature control device includes a heating component, a temperature control component, and a conveyor channel;
  • the tunnel illumination device includes an illumination component, a light intensity adjustment component, and Conveyor channel.
  • the equipment system further includes a cutting device that cuts the cured LED package component, the cutting device being a process equipment disposed at a rear end of the curing device.
  • the cutting device is a rolling and cutting device comprising a roller member A and a smooth roller member B with an array of blades arranged in opposite directions.
  • the rolling element A with the array cutting edge in the rolling cutting device is a single roller A with an array cutting edge or a flat conveying device A with an array cutting edge;
  • the smooth rolling member B is a smooth single roller a wheel B or a smooth surface transfer device B; at least one of the roller member A with the array edge and the smooth roller member B is a single roller;
  • the array blade is a knife edge having an array of rectangular lattices;
  • the size of the rectangular grid is the same as the size of a single LED package component.
  • the rolling cutting device is provided with an adjusted displacement adjusting device with an array of cutting edges of the roller A and the smooth rolling member B; wherein the roller A and the smooth roller B with the array edge are single rollers
  • the radial runout distance of the roller is ⁇ 2 ⁇ m.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

提供一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,包括半固化光转换膜片的准备、半固化光转换膜片的假性固化、LED倒装芯片阵列膜片的准备、LED封装体元件的双辊滚压贴合成型、LED封装体元件的固化和LED封装体元件的裁切工序构建的流程式连续工艺,具有运用连续滚压工艺贴合封装LED的显著优点,能够满足有机硅树脂光转换体贴合封装LED的条件需要,从而提高工业化批量LED封装的生产效率和优品率。

Description

一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法 技术领域
本发明属于光转换体封装LED技术领域,特别是涉及一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法。
背景技术
LED具有高亮度、低热量、长寿命、环保、可再生利用等优点,被称为21世纪最有发展前景的新一代绿色照明光源。目前,虽然LED的理论寿命可以达到100000小时以上,然而在实际使用中,因为受到芯片失效、封装失效、热过应力失效、电过应力失效或/和装配失效等多种因素的制约,其中以封装失效尤为突出,而使得LED过早地出现了光衰或光失效的现象,这将阻碍LED作为新型节能型照明光源的前进步伐。为了解决这些问题,业界许多学者已开展了相关研究,并且提出了一些能够提高LED光效和实际使用寿命的改进措施。如近几年新发展起来的倒装LED与传统的正装LED相比,具有高光效、高可靠性和易于集成的优点,并且封装材料大幅简化,如传统正装LED封装的金线、固晶胶、支架等材料都不再需要;封装工艺流程也大幅简化,如传统正装LED封装工艺的固晶、焊线,甚至是分光等都不再需要,使得倒装LED得到越来越广泛的应用;但同时也要看到,现有倒装LED封装技术大多采用的是有机硅树脂类的光转换体与倒装LED芯片贴合的流延工艺、丝网印刷工艺、上下平板模工艺、单辊摆压工艺等,这些工艺及其相配套的封装装备均不能很好地解决有机硅树脂类光转换体存在的气孔、厚薄不均等瑕疵,造成光转换体封装LED的良品率低;同时还因生产效率低,使得产品成本居高不下。
中国专利申请201010204860.9公开了“一种倒装LED芯片的封装方法”,其步骤包括:(a)通过丝网印刷把光转换体涂覆于LED芯片表面,并对光转换体进行烘烤固化;(b)把LED芯片固定在芯片基板上,使LED芯片电极与芯片基板电极键合;(c)把LED芯片和芯片基板固定在支架反射杯的杯底;(d)利用导线将已固定的芯片基板的正负电极分别与支架的正负电极连接;(e)将封模或透镜盖在固定有LED芯片和芯片基板的支架上,并充满硅胶;(f)整体结构进行烘烤固化。该方法虽然通过丝网印刷工艺来提高光转 换体涂覆厚度的均匀性,提高荧光粉颗粒分布的均匀性,以达到提高良品率的目的;但还存在以下明显不足:一是丝网印刷把有机硅树脂类的光转换体涂覆于LED芯片表面,之后在烘烤固化过程中因受热过应力影响,还是会导致光转换体涂层与LED芯片的涂覆面层局部产生气泡而形成凹凸不平的瑕疵;二是将封模或透镜盖充满硅胶与涂覆有光转换体的LED芯片封装,之后整体结构进行烘烤固化过程中因受热过应力影响,还是会导致封模或透镜盖中的硅胶面层局部产生气泡而形成凹凸不平的瑕疵。因不能解决LED芯片封装过程中受热过应力的影响,必然会导致LED光效下降;三是整个LED芯片封装工艺未配备智能控制***进行控制,直接影响良品率的提升。
中国专利申请201310270747.4公开了“被覆有光转换体层的LED、其制造方法以及LED装置”,该方案包括:LED配置工序,在支撑片的厚度方向的一个面上配置LED;层配置工序,以被覆LED的方式在支撑片的厚度方向的一个面上配置光转换体层,所述光转换体层由含有通过活性能量射线的照射而固化的活性能量射线固化性树脂以及光转换体的荧光树脂组合物形成;固化工序,对光转换体层照射活性能量射线,使光转换体层固化;裁切工序,与LED对应地裁切光转换体层,从而得到具备LED、和被覆LED的光转换体层的被覆有光转换体层的LED;以及LED剥离工序,在裁切工序之后,将被覆有光转换体层的LED从支撑片剥离。该方法的目的在于提供光转换体均匀配置在LED的周围以防损伤,从而得到被覆有光转换体层的LED、以及具备该被覆有光转换体层的LED的LED装置;但还存在以下明显不足:一是光转换体的荧光树脂组合物在固化过程中,因受热过应力影响,还是会导致光转换体面层的局部产生气泡而形成凹凸不平的瑕疵;二是覆有光转换体层的LED,仍然会受到热过应力影响,导致LED使用中出现光效下降;三是整个封装工艺中的工序比较繁琐,封装LED的生产效率不高;四是上下平板模工艺,会导致倒装芯片发生位移,必然会造成良品率降低。
中国专利申请:201380027218.X公开了“树脂片材层合体及使用其的半导体发光元件的制造方法”,该方案所述树脂片材层合体是在基材上设置有含荧光体树脂层,所述含荧光体树脂层具有多个区块,基材具有长度方向和宽度方向,所述多个区块在长度方向上重复配置成列。虽然该方案的发明目的在于,通过所述树脂片材层合体,提高贴附有含荧光体树脂层的半导体发光元件的颜色和亮度的均匀性、制造的容易性、设计的自由度等,但还存在以下明显不足:一是采用的荧光体树脂片材为固化的荧光体树脂片材,将无法有效消除其中可能残留的气孔、凹凸不平或其它加工瑕疵等;二是在粘接工序中, 将加压工具自半导体发光元件侧进行加压,会损伤半导体发光元件;三是采用荧光体树脂层中含粘接剂粘接工艺,很难清除被粘接后的半导体发光元件中的残留物,粘接过程极易产生气孔,会造成良品率降低,同时,粘接层的存在还降低了LED元件的出光效率;四是与半导体发光元件的发光面粘接的荧光体树脂片材的基材没有被剥离,会直接影响半导体发光元件的光效;五是荧光体树脂层以多个区块在长度方向上重复配置成列的方式呈现,然而实现该荧光体树脂层的多个区块配置,实际操作程序繁琐,将影响整个元件的封装效率,多个块区在位置上的布置差错会直接影响后续与发光元件之间的贴合的精确度,而多个区块之间在大小与厚度方面如果在不能满足一致性的要求,则可能会导致严重的产品一致性问题。
综上所述,如何克服现有技术所存在的不足已成为当今于光转换体封装LED技术领域中亟待解决的重大难题之一。
发明内容
本发明的目的是为克服现有技术的不足而提供一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,本发明具有运用连续滚压工艺贴合封装LED的显著优点,能够满足有机硅树脂光转换体贴合封装LED的条件需要,从而提高工业化批量LED封装的生产效率和优品率。
根据本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,它包括半固化光转换膜片的准备、半固化光转换膜片的假性固化、LED倒装芯片阵列膜片的准备、LED封装体元件的双辊滚压贴合成型、LED封装体元件的固化和LED封装体元件的裁切工序构建的流程式连续工艺,其基本步骤包括如下:
步骤1,半固化光转换膜片的准备:获取由保护膜A、半固化光转换膜和保护膜B构成的半固化光转换膜片;所述半固化光转换膜包括半固化有机硅树脂和光转换材料;
步骤2,半固化光转换膜片的假性固化:在真空条件下,采用低温冷冻方式,将步骤1获取的半固化光转换膜片进行假性固化,从而得到假性固化光转换膜片;
步骤3,LED倒装芯片阵列膜片的准备:获取LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片以阵列方式排列于载体膜片上,其中LED倒装芯片以阵列方式排列,是指以单个LED倒装芯片为单元排列成阵列,或者以LED倒装芯片组件为单元排列成阵列中的一种;所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯 片组合而成;
步骤4,LED封装体元件的双辊滚压贴合成型:在真空条件下,剥离步骤2所述的假性固化光转换膜片的保护膜B,得到单侧不含保护膜的假性固化光转换膜片,然后通过加温或/和光照方式使假性固化光转换膜片从假性固化状态变为半固化状态,之后再将半固化光转换膜片与LED倒装芯片阵列膜片进行双辊滚压贴合,使所述LED倒装芯片阵列中的LED倒装芯片贴合嵌入所述半固化光转换体膜片中,从而得到LED封装体元件;
步骤5,LED封装体元件的固化:在真空条件下,采用加温或/和光固化方式,将LED封装体元件进行固化,从而得到固化LED封装体元件;
步骤6,LED封装体元件的裁切:将步骤5固化后LED封装体元件的保护膜A剥离,并对固化LED封装体元件进行裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件。
本发明的实现原理是:为了更好地解决现有LED倒装芯片封装工艺中所存在的问题,本发明巧妙地设计了基于串联滚压的有机硅树脂光转换体滚压贴合封装LED的新工艺。本发明的滚压贴合封装原理在于:一方面利用辊轮滚压使半固化有机硅树脂光转换膜片中的凹凸不平之处产生流动,消除半固化有机硅光转换膜片中可能残留的气孔、凹凸不平或其它加工瑕疵等,从而得到无气孔、平整以及厚度均匀的精制半固化机硅树脂光转换膜;另一方面采用低温冷冻方式,得到假性固化后的有机硅树脂光转换膜片并随后剥离保护膜B,之后通过直接加温或/和光照加温方式,得到不含保护膜B的半固化光转换膜片,使其与LED倒装芯片阵列膜片进行滚压贴合,从而得到LED封装体元件;再一方面本发明为连续化工艺流程,有利于满足批量生产LED封装体元件的加工条件和保证规格尺寸完全一致,不仅提高了LED封装体元件的生产效率,同时提高了成品LED封装体元件的光色一致性,使优品率大幅提升。
本发明与现有技术相比其显著的优点在于:
一是本发明提出的是一种流程式串联滚压贴合封装LED的新制式工艺,它克服了现有流延工艺、丝网印刷工艺、上下平板模工艺和单辊摆压工艺等旧制式工艺所存在的贴合封装LED的出光效率、生产效率和优品率明显不足的问题;本发明能够满足半固化有机硅树脂光转换体贴合封装LED的需要,从而提高了工业化批量LED封装的生产效率和优品率。
二是本发明提出了流程式串联滚压贴合封装LED的新工艺,能够有效地消除半固化有机硅树脂光转换膜片中可能残留的气孔、凹凸不平以及其它加工瑕疵等,从而显著地提高成品LED封装体元件的光色一致性,如本发明制得的LED封装体元件的优品率相比现有技术有明显提高。
三是本发明提出的低温冷冻方案,首先得到假性固化后的有机硅树脂光转换膜片并随后剥离保护膜B,之后通过直接加温或/和光照加温方式,得到不含保护膜片B的半固化有机硅树脂光转换膜片,使其与LED倒装芯片阵列膜片进行滚压贴合,从而得到LED封装体元件,很好地解决了现有传统工艺中半固化有机硅树脂光转换膜片的保护膜无法剥离的重大难题。
四是本发明提出的LED封装体元件的双辊滚压贴合成型的具体实施方案中,不仅革除了现有传统工艺中的粘结层,简化了工序,显著提高成品LED封装体元件的光色一致性,而且还适于配套连续化工艺的装备***及实施智能控制,更好地满足工业化批量封装LED的生产要求,从而显著提高工业化批量封装LED的生产效率。
五是本发明提出的工艺方法广泛适用于有机硅树脂光转换体与各种功率大小LED倒装芯片的贴合封装工艺,完全满足工业化批量封装LED过程中对产品生产工艺过程实施精细化加工的需求。
附图说明
图1为本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法的流程方框示意图。
图2为本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法的流程布局结构示意图。
图3为本发明图2所示半固化光转换膜片的准备的工序示意图。
图4为本发明图2所示半固化光转换膜片的假性固化的工序示意图。
图5为本发明图2所示LED封装体元件的双辊滚压贴合成型中剥离半固化光转换膜片中的保护膜B的工序示意图。
图6为本发明图2所示LED封装体元件的双辊滚压贴合成型中回温假性固化光转换膜片从假性固化状态至半固化状态的工序示意图。
图7为本发明图2所示LED封装体元件的双辊滚压贴合成型中滚压贴合的工序示 意图。
图8A为本发明制得的成品LED封装体元件的平面结构示意图。
图8B为本发明拉伸制得的成品单颗LED封装体元件的平面结构示意图。
本发明附图中的编号说明如下:
1-1 半固化光转换膜片的准备步骤中光面的第一双辊滚压装置的单辊轮A1。
1-2 半固化光转换膜片的准备步骤中光面的第一双辊滚压装置的单辊轮A2。
1-3 半固化光转换膜片的准备步骤中光面的第二双辊滚压装置的单辊轮A3。
1-4 半固化光转换膜片的准备步骤中光面的第二双辊滚压装置的单辊轮A4。
1-5 第一缓冲辊轮。
1-6 第二缓冲辊轮。
2-1 半固化光转换膜片的假性固化步骤中的冷冻部件的第一冷冻单辊轮。
2-2 半固化光转换膜片的假性固化步骤中的冷冻部件的第二冷冻单辊轮。
3-1 双辊滚压贴合成型步骤中剥离保护膜B的牵引部件的第一牵引单辊轮。
3-2 双辊滚压贴合成型步骤中剥离保护膜B的牵引部件的第二牵引单辊轮。
4-1 双辊滚压贴合成型步骤中回温假性固化光转换膜片的回温部件的第一回温单辊轮。
4-2 双辊滚压贴合成型步骤中回温假性固化光转换膜片的回温部件的第二回温单辊轮。
5-1 双辊滚压贴合成型步骤中第三双辊滚压装置的第一光面贴合单辊轮。
5-2 双辊滚压贴合成型步骤中第三双辊滚压装置的第二光面贴合单辊轮。
5-3 LED倒装芯片。
5-4 载体膜。
6 固化装置。
7 剥离和裁切装置。
8-1 收膜辊轮
8-2 收卷辊轮
8-3 LED倒装芯片缓冲辊轮。
9-1 半固化浆料。
9-2 保护膜A
9-3 保护膜B
9-4 粗制光转换膜片。
9-5 精制光转换膜片。
9-6 假性固化光转换膜片。
9-7 剥离保护膜B后的半固化光转换膜片。
具体实施方式
下面将结合附图和实施例对本发明的具体实施方式作进一步的详细说明。
实施例1。结合图1,本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,它包括半固化光转换膜片的准备、半固化光转换膜片的假性固化、LED倒装芯片阵列膜片的准备、LED封装体元件的双辊滚压贴合成型、LED封装体元件的固化和LED封装体元件的裁切工序构建的流程式连续工艺,其具体步骤包括如下:
步骤1,半固化光转换膜片的准备:获取由保护膜A、半固化光转换膜和保护膜B构成的半固化光转换膜片;所述半固化光转换膜包括半固化有机硅树脂和光转换材料;
步骤2,半固化光转换膜片的假性固化:在真空条件下,采用低温冷冻方式,将步骤1获取的半固化光转换膜片进行假性固化,从而得到假性固化光转换膜片;
步骤3,LED倒装芯片阵列膜片的准备:获取LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片以阵列方式排列于载体膜片上,其中LED倒装芯片以阵列方式排列,是指以单个LED倒装芯片为单元排列成阵列,或者以LED倒装芯片组件为单元排列成阵列中的一种;所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯片组合而成;
步骤4,LED封装体元件的双辊滚压贴合成型:在真空条件下,剥离步骤2所述的假性固化光转换膜片的保护膜B,得到单侧不含保护膜的假性固化光转换膜片,然后通过加温或/和光照方式使假性固化光转换膜片从假性固化状态变为半固化状态,之后再将半固化光转换膜片与LED倒装芯片阵列膜片进行双辊滚压贴合,使所述LED倒装芯片阵列中的LED倒装芯片贴合嵌入所述半固化光转换体膜片中,从而得到LED封装体元件;
步骤5,LED封装体元件的固化:在真空条件下,采用加温或/和光固化方式,将LED 封装体元件进行固化,从而得到固化LED封装体元件;
步骤6,LED封装体元件的裁切:将步骤5固化后LED封装体元件的保护膜A剥离,并对固化LED封装体元件进行裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件。
特别需要说明的是:
本发明适用于对与LED倒装芯片结构类同的光电器件或电子器件的生产加工。
凡透光率高、耐温性好的现有有机硅树脂均可选择用于本发明的工艺方法,为了满足普通LED封装体元件在使用时的回流焊温度以及长期使用时的热、光等老化耐受条件,本发明优选采用甲基乙烯基有机硅树脂;现有量子点荧光体、荧光粉均可选择用于本发明的工艺方法。
通常情况下,本发明采用的混合浆料中不需要包括粘接剂;当选择在极端条件下使用成品LED封装体元件,需要进一步增强光转换体与LED之间的粘接力时,本发明采用的混合浆料中可以包括粘接剂。
本发明提出的一种基于串联滚压的热塑性树脂光转换体贴合封装LED的工艺方法的进一步优选方案是:
步骤1所述半固化光转换膜片的准备,是指在真空条件下,将保护膜A、半固化光转换膜和保护膜B夹合至少包括有机硅树脂和光转换材料组成的半固化混合浆料,经单组或多组双辊滚压成型,从而得到由保护膜A、半固化光转换膜和保护膜B构成的半固化光转换膜片。
步骤1所述光转换材料为量子点荧光体或荧光粉。
步骤1所述单组或多组双辊滚压成型,其中:
单组双辊滚压成型是指将保护膜A、有机硅树脂和光转换材料组成的半固化混合浆料以及保护膜B通过单组光面的双辊滚压装置;
多组双辊滚压成型是指将保护膜A、有机硅树脂和光转换材料组成的半固化浆料以及保护膜B通过一组光面的双辊滚压装置滚压成型,得到粗制的半固化荧光粉膜片,然后将得到的粗制的半固化光转换膜片再经一组、两组或两组以上光面的双辊滚压装置滚压成型,得到精制的半固化光转换膜片;
需要说明的是:参见图3所示,步骤1中保护膜A(9-2)、半固化浆料(9-1)以及保护膜B(9-3)通过一组光面的第一双辊滚压装置的单辊轮A1(1-1)和单辊轮A2(1-2) 进行滚压,得到粗制光转换膜片(9-4),粗制光转换膜片(9-4)再通过一组光面的第二双辊滚压装置的单辊轮A3(1-3)和单辊轮A4(1-4)进行滚压,得到精制光转换膜片(9-5)。
所述粗制光转换膜片的厚度为850μm以内;最佳粗制光转换膜片的厚度为150-300μm;所述精制光转换膜片的厚度为800μm以内;最佳精制光转换膜片的厚度为150-250μm。
步骤1所述保护膜A和保护膜B的材质为聚酯、聚烯烃或聚醚。
所述经单组或多组双辊滚压成型的温度为50-120℃;最佳滚压成型的温度为80-100℃。
步骤2所述低温冷冻的温度为-5至-40℃;优选冷冻温度为-10至-20℃。
步骤2所述假性固化光转换膜片,是指步骤1得到的半固化光转换膜片仅发生物理形态硬化。
需要说明的是:参见图4所示,步骤2将步骤1所得光转换膜片经过温度为-5至-40℃的冷冻部件的第一冷冻单辊轮(2-1)和第二冷冻单辊轮(2-2),进行假性固化,得到假性固化光转换膜片(9-6)。
步骤3所述载体膜片为可拉伸载体膜;所述可拉伸载体膜片的材质为耐高温聚酯或聚二甲基硅氧烷、聚氯乙烯中的一种。
步骤4所述通过加温或/和光照方式使假性固化光转换膜片从假性固化状态变为半固化状态的温度为50-120℃;优选温度为80-100℃;
需要说明的是:参见图5所示,步骤4首先将步骤2所得假性固化光转换膜片(9-6)通过牵引部件的第一牵引单辊轮(3-1)和第二牵引单辊轮(3-2),对保护膜B(9-3)进行剥离,剥离的保护膜B(9-3)收纳于收膜辊轮(8-1)中;参见图6所示,步骤4将假性固化光转换膜片(9-6)经剥离保护膜B(9-3)后,再将其通过回温部件的第一回温单辊轮(4-1)和第二回温单辊轮(4-2),以加温方式使假性固化光转换膜片从假性固化状态变为半固化状态,得到剥离保护膜B后的半固化光转换膜片(9-7)。
步骤4所述双辊滚压贴合成型的贴合温度为50-120℃;最佳贴合成型的温度为80-100℃;
需要说明的是:参见图7所示,步骤4最后将剥离保护膜B后的半固化光转换膜片(9-7)与步骤3所得LED倒装芯片阵列膜片通过第三双辊滚压装置的第一光面贴合单辊轮(5-1)和第三双辊滚压装置的第二光面贴合单辊轮(5-2)进行相向对准滚压,使所 述LED倒装芯片阵列中的LED倒装芯片贴合嵌入半固化光转换膜片(9-7)中,从而得到LED封装体元件。
步骤5所述光固化方式为活性能量射线固化;所述加温固化方式,其固化温度为140-180℃、固化时间为≥1h;最佳固化温度为150-160℃,固化时间为2h。
步骤6所述对固化LED封装体元件进行裁切,是指将固化LED封装体元件通过由带阵列刀口的滚件A和光面滚件B组成的装置进行滚压裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件;
所述带阵列刀口的滚件A为带阵列刀口的单辊轮A或带阵列刀口的平面传送装置A,所述光面滚件B为光面单辊轮B或光面平面传送装置B,所述带阵列刀口的滚件A和光面滚件B中至少一个为单辊轮;
所述带阵列刀口的滚件A中的阵列刀口为具有阵列矩形格子的刀口;其中,所述矩形格子的尺寸和成品单颗LED封装体元件的尺寸相同;
所述单辊轮与单辊轮或单辊轮与平面传送装置的间距不超过所述LED倒装芯片阵列膜片中载体膜的厚度。
步骤6所述切缝为缝宽为20μm以内;最佳切缝缝宽为15μm。
步骤6得到成品LED封装体元件后,再通过拉伸机对其载体膜片进行拉伸,使得成品LED封装体元件在拉伸后即沿切缝分割,从而制得成品单颗LED封装元件;参见图8A、8B所示。
本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,广泛适用于有机硅树脂光转换体与各种功率大小的LED倒装芯片的贴合封装工艺。
实施例2。本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法所采用的装备***,它包括用于剥离带有双侧保护膜的光转换膜片的其中一侧保护膜的保护膜剥离装置,采用单侧含保护膜的光转换膜片封装LED倒转芯片阵列形成LED封装体元件的滚压贴合装置;所述保护膜剥离装置包括依次连接设置的光转换膜片冷冻部件、牵引剥离光转换膜片被冷冻后的单侧保护膜牵引部件以及光转换膜片回温部件;所述滚压贴合装置包括两个辊面均为光面的光面贴合单辊轮。
本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法所采用的装备***的具体实施方案进一步公开如下:
所述光转换膜片冷冻部件为冷冻辊轮组件,该冷冻辊轮组件包括一个或多个辊轮温 度为-40℃~-5℃的冷冻单辊轮。参见图4所示,保护膜剥离装置中光转换膜片冷冻部件包括温度为-5至-40℃的第一冷冻单辊轮(2-1)和第二冷冻单辊轮(2-2),进行假性固化,得到假性固化光转换膜片(9-6)。
所述光转换冷冻膜片部件为包含光转换膜片接收口和光转换膜片输出口且环境温度设置为-40℃~-5℃的控温设备。
所述牵引部件包括带有卡槽的牵引单辊轮,该卡槽用于固定所述光转换膜片上的所述单侧保护膜;所述单侧保护膜的宽度方向的两侧设有与带有卡槽的单辊轮的卡槽相匹配的孔洞;所述保护膜剥离装置还包括收膜装置。参见图5所示,单侧保护膜牵引部件包括第一牵引单辊轮(3-1)和带有卡槽的第二牵引单辊轮(3-2),对保护膜B(9-3)进行剥离,剥离的保护膜B(9-3)收纳于收膜辊轮(8-1)中。
所述光转换膜片回温部件为加热辊轮组件,该加热辊轮组件包括一个或多个辊轮温度为50℃~120℃的回温单辊轮;所述光转换膜片回温部件为设有光转换膜片接收口和光转换膜片输出口且环境温度设置为50℃~120℃的控温设备。参见图6所示,光转换膜片回温部件包括第一回温单辊轮(4-1)和第二回温单辊轮(4-2),以加温方式使假性固化光转换膜片从假性固化状态变为半固化状态,得到剥离保护膜B后的半固化光转换膜片(9-7)。
所述滚压贴合装置中的两个辊面均为光面的单辊轮,是指分别放置光转换膜片的单辊轮和放置LED倒装芯片阵列膜片的单辊轮,且相向对准设置。参见图7所示,滚压贴合装置为第三双辊滚压装置,其包括第一光面贴合单辊轮(5-1)和第二光面贴合单辊轮(5-2),相向对准滚压,剥离保护膜B后的半固化光转换膜片(9-7)与LED倒装芯片阵列膜片通过该双辊滚压装置,使所述LED倒装芯片阵列中的LED倒装芯片贴合嵌入半固化光转换膜片(9-7)中,从而得到LED封装体元件。
所述两个辊面均为光面的单辊轮设有调节光转换膜片单辊轮与LED倒装芯片阵列膜片单辊轮辊间距的位移调节装置;所述放置光转换膜片的单辊轮和放置LED倒装芯片阵列膜片的单辊轮的径向跳动距离均为≤2μm;所述装备***还包括用于制备光转换膜片的滚压压合装置;该滚压压合装置为位于所述保护膜剥离装置前端的工序装置;所述滚压压合装置为一组或多组双辊辊轮;所述双辊辊轮设有调节辊间距的位移调节装置;所述双辊辊轮的单辊径向跳动距离≤2μm。参见附图3所示,滚压压合装置包括光面的第一双辊滚压装置和光面的第二双辊滚压装置,光面的第一双辊滚压装置包括单辊 轮A1(1-1)和单辊轮A2(1-2),光面的第二双辊滚压装置包括单辊轮A3(1-3)和单辊轮A4(1-4);保护膜A(9-2)、半固化浆料(9-1)以及保护膜B(9-3)通过单辊轮A1(1-1)和单辊轮A2(1-2)进行滚压,得到粗制光转换膜片(9-4),粗制光转换膜片(9-4)再通过单辊轮A3(1-3)和单辊轮A4(1-4)进行滚压,得到精制光转换膜片(9-5)。
所述装备***还包括固化装置,该固化装置为位于滚压贴合装置后端的工序装置。
所述固化装置为隧道式控温装置或隧道式光照装置;所述隧道式控温装置包括加温部件、温度调控部件和传送带通道;所述隧道式光照装置包括光照部件、光照强度调控部件和传送带通道。
所述装备***还包括对固化LED封装体元件进行裁切的裁切装置,该裁切装置为设置于所述固化装置后端的工序装备。
所述裁切装置为滚压裁切装置,该滚压裁切装置包括相向对准设置的带有阵列刀口的滚件A和光面滚件B。
所述滚压裁切装置中带有阵列刀口的滚件A为带有阵列刀口的单辊轮A或带有阵列刀口的平面传送装置A;所述光面滚件B为光面的单辊轮B或光面的平面传送装置B;所述带有阵列刀口的滚件A与所述光面滚件B中至少一个为单辊轮;所述阵列刀口为具有阵列矩形格子的刀口;所述矩形格子的尺寸和单颗LED封装体元件的尺寸相同。
所述滚压裁切装置设有调节的带有阵列刀口的滚件A和光面滚件B间距的位移调节装置;所述带有阵列刀口的滚件A和光面滚件B中凡为单辊轮的,其辊径向跳动距离≤2μm。
本发明的具体实施方式中凡未涉到的说明属于本领域的公知技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (15)

  1. 一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,它包括半固化光转换膜片的准备、半固化光转换膜片的假性固化、LED倒装芯片阵列膜片的准备、LED封装体元件的双辊滚压贴合成型、LED封装体元件的固化和LED封装体元件的裁切工序构建的流程式连续工艺,其基本步骤包括如下:
    步骤1,半固化光转换膜片的准备:获取由保护膜A、半固化光转换膜和保护膜B构成的半固化光转换膜片;所述半固化光转换膜包括半固化有机硅树脂和光转换材料;
    步骤2,半固化光转换膜片的假性固化:在真空条件下,采用低温冷冻方式,将步骤1获取的半固化光转换膜片进行假性固化,从而得到假性固化光转换膜片;
    步骤3,LED倒装芯片阵列膜片的准备:获取LED倒装芯片阵列膜片,所述LED倒装芯片阵列膜片中的LED倒装芯片以阵列方式排列于载体膜片上,其中LED倒装芯片以阵列方式排列,是指以单个LED倒装芯片为单元排列成阵列,或者以LED倒装芯片组件为单元排列成阵列中的一种;所述LED倒装芯片组件由两个或两个以上的单个LED倒装芯片组合而成;
    步骤4,LED封装体元件的双辊滚压贴合成型:在真空条件下,剥离步骤2所述的假性固化光转换膜片的保护膜B,得到单侧不含保护膜的假性固化光转换膜片,然后通过加温或/和光照方式使假性固化光转换膜片从假性固化状态变为半固化状态,之后再将半固化光转换膜片与LED倒装芯片阵列膜片进行双辊滚压贴合,使所述LED倒装芯片阵列中的LED倒装芯片贴合嵌入所述半固化光转换体膜片中,从而得到LED封装体元件;
    步骤5,LED封装体元件的固化:在真空条件下,采用加温或/和光固化方式,将LED封装体元件进行固化,从而得到固化LED封装体元件;
    步骤6,LED封装体元件的裁切:将步骤5固化后LED封装体元件的保护膜A剥离,并对固化LED封装体元件进行裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件。
  2. 根据权利要求1所述的一种基于串联滚压的热塑性树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述半固化光转换膜片的准备,是指在真空条件下,将保护膜A、半固化光转换膜和保护膜B夹合至少包括有机硅树脂和光转换材料组成的半固化混合浆料,经单组或多组双辊滚压成型,从而得到由保护膜A、半固化光转换膜和保护膜B构成的半固化光转换膜片。
  3. 根据权利要求1所述的一种基于串联滚压的热塑性树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述光转换材料为量子点荧光体或荧光粉。
  4. 根据权利要求2所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述单组双辊或多组双辊滚压成型,其中:
    单组双辊滚压成型是指将保护膜A、有机硅树脂和光转换材料组成的半固化混合浆料以及保护膜B通过单组光面的双辊滚压装置滚压成型;
    多组双辊滚压成型是指将保护膜A、有机硅树脂和光转换材料组成的半固化浆料以及保护膜B通过一组光面的双辊滚压装置滚压成型,得到粗制的半固化荧光粉膜片,然后将得到的粗制的半固化光转换膜片再经一组、两组或两组以上光面的双辊滚压装置滚压成型,得到精制的半固化光转换膜片。
  5. 根据权利要求4所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,所述粗制光转换膜片的厚度为850μm以内;所述精制光转换膜片的厚度为800μm以内。
  6. 根据权利要求1-4任一所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤1所述保护膜A和保护膜B的材质为聚酯、聚烯烃或聚醚。
  7. 根据权利要求2或4所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,所述经单组或多组双辊滚压成型的温度为50-120℃。
  8. 根据权利要求1-5任一所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2所述低温冷冻的温度为-5至-40℃。
  9. 根据权利要求1-5任一所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤2所述假性固化光转换膜片,是指步骤1得到的半固化光转换膜片仅发生物理形态硬化。
  10. 根据权利要求1-5任一所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤4所述通过加温或/和光照方式使假性固化光转换膜片从假性固化状态变为半固化状态的温度为50-120℃;所述双辊滚压贴合成型的贴合温度为50-120℃。
  11. 根据权利要求1-5任一所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤5所述光固化方式为活性能量射线固化;所述加 温固化方式,其固化温度为140-180℃、固化时间为≥1h。
  12. 根据权利要求1所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤6所述对固化LED封装体元件进行裁切,是指将固化LED封装体元件通过由带阵列刀口的滚件A和光面滚件B组成的装置进行滚压裁切,得到具有分割为单颗LED封装体元件切缝的成品LED封装体元件;
    所述带阵列刀口的滚件A为带阵列刀口的单辊轮A或带阵列刀口的平面传送装置A,所述光面滚件B为光面单辊轮B或光面平面传送装置B,所述带阵列刀口的滚件A和光面滚件B中至少一个为单辊轮;
    所述带阵列刀口的滚件A中的阵列刀口为具有阵列矩形格子的刀口;其中,所述矩形格子的尺寸和成品单颗LED封装体元件的尺寸相同;
    所述单辊轮与单辊轮或单辊轮与平面传送装置的间距不超过所述LED倒装芯片阵列膜片中载体膜的厚度。
  13. 根据权利要求1或12所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤6所述切缝为缝宽为20μm以内。
  14. 根据权利要求1或12所述的一种串联基于滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤3所述载体膜片为可拉伸载体膜片;所述可拉伸载体膜片的材质为耐高温聚酯、聚二甲基硅氧烷或聚氯乙烯。
  15. 根据权利要求14所述的一种基于串联滚压的有机硅树脂光转换体贴合封装LED的工艺方法,其特征在于,步骤6所述成品LED封装体元件,再通过拉伸机对其载体膜片进行拉伸,使得成品LED封装体元件在拉伸后即沿切缝分割,从而制得成品单颗LED封装体元件。
PCT/CN2015/097906 2015-08-18 2015-12-18 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法 WO2017028429A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL15901631T PL3340320T3 (pl) 2015-08-18 2015-12-18 Metoda procesowa z wykorzystaniem fotokonwertera żywicy organicznej do pakietu dodatkowego led przez rolkowanie tandemowe
EP15901631.0A EP3340320B1 (en) 2015-08-18 2015-12-18 Process method using an organic silicone resin photoconverter to bond-package led by tandem rolling
US15/750,958 US10141486B2 (en) 2015-08-18 2015-12-18 Process method using organic silicone resin photoconverter to bond-package LED by tandem rolling
KR1020187002436A KR102026842B1 (ko) 2015-08-18 2015-12-18 직렬 롤링에 기반한 유기 실리콘 수지 광 변환체로 led를 본딩 패키징하는 공정방법
JP2017567798A JP6675423B2 (ja) 2015-08-18 2015-12-18 直列ローリングによって有機シリコン樹脂光変換体でledを貼り合せてパッケージするプロセス方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510509581.6 2015-08-18
CN201510509581.6A CN106469780B (zh) 2015-08-18 2015-08-18 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法

Publications (1)

Publication Number Publication Date
WO2017028429A1 true WO2017028429A1 (zh) 2017-02-23

Family

ID=58050699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097906 WO2017028429A1 (zh) 2015-08-18 2015-12-18 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法

Country Status (7)

Country Link
US (1) US10141486B2 (zh)
EP (1) EP3340320B1 (zh)
JP (1) JP6675423B2 (zh)
KR (1) KR102026842B1 (zh)
CN (1) CN106469780B (zh)
PL (1) PL3340320T3 (zh)
WO (1) WO2017028429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141486B2 (en) 2015-08-18 2018-11-27 Jiangsu Cherrity Optronics Co., Ltd. Process method using organic silicone resin photoconverter to bond-package LED by tandem rolling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570221B (en) * 2016-08-11 2022-05-04 Lumens Co Ltd LED module and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255431A (en) * 1992-06-26 1993-10-26 General Electric Company Method of using frozen epoxy for placing pin-mounted components in a circuit module
CN1722393A (zh) * 2004-07-16 2006-01-18 株式会社半导体能源研究所 层压***、ic片及片卷、以及用于制造ic芯片的方法
CN102881780A (zh) * 2011-07-15 2013-01-16 展晶科技(深圳)有限公司 发光模组及其制造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174434A (ja) * 1987-12-28 1989-07-11 Chiharu Yoshihara 板状体の製造法および装置
JP2873842B2 (ja) * 1989-12-07 1999-03-24 三菱レイヨン株式会社 フイルム状熱硬化性樹脂の製造方法
US20050008821A1 (en) * 2003-07-07 2005-01-13 Pricone Robert M. Process and apparatus for fabricating precise microstructures and polymeric molds for making same
US7259030B2 (en) * 2004-03-29 2007-08-21 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US20070090387A1 (en) * 2004-03-29 2007-04-26 Articulated Technologies, Llc Solid state light sheet and encapsulated bare die semiconductor circuits
JP4749062B2 (ja) * 2004-07-16 2011-08-17 株式会社半導体エネルギー研究所 薄膜集積回路を封止する装置及びicチップの作製方法
CN100530575C (zh) * 2004-07-30 2009-08-19 株式会社半导体能源研究所 层压***、ic薄片、ic薄片卷、以及ic芯片的制造方法
JP4749074B2 (ja) * 2004-07-30 2011-08-17 株式会社半導体エネルギー研究所 Icチップの作製方法及び装置
JP4676735B2 (ja) * 2004-09-22 2011-04-27 東レ・ダウコーニング株式会社 光半導体装置の製造方法および光半導体装置
US20060280912A1 (en) * 2005-06-13 2006-12-14 Rong-Chang Liang Non-random array anisotropic conductive film (ACF) and manufacturing processes
US20080265462A1 (en) * 2007-04-24 2008-10-30 Advanced Chip Engineering Technology Inc. Panel/wafer molding apparatus and method of the same
CN101306565A (zh) * 2007-05-16 2008-11-19 鑫昌机械工业股份有限公司 亲油性橡胶薄制品压延生产方法
JP5080881B2 (ja) * 2007-06-27 2012-11-21 ナミックス株式会社 発光ダイオードチップの封止体の製造方法
SG184740A1 (en) * 2007-10-22 2012-10-30 Amcrew Inc Surface emitting body and internally illuminated sign having the surface emitting body assembled therein
JP2009194064A (ja) * 2008-02-13 2009-08-27 Takatori Corp 基板への接着フィルム貼付け装置及び貼付け方法
JP5064278B2 (ja) * 2008-03-25 2012-10-31 日東電工株式会社 光半導体素子封止用樹脂シートおよび光半導体装置
JP5093049B2 (ja) * 2008-10-27 2012-12-05 コニカミノルタホールディングス株式会社 有機エレクトロニクス素子、その製造方法、及び製造装置
CN101901740B (zh) * 2009-05-27 2011-10-19 台湾暹劲股份有限公司 一种电子元件切割剥料机及其方法
CN105047597B (zh) * 2009-06-15 2018-04-03 日东电工株式会社 半导体背面用切割带集成膜
WO2011105185A1 (ja) * 2010-02-26 2011-09-01 コニカミノルタオプト株式会社 光学半導体素子モジュールの製造方法
CN101872828B (zh) 2010-06-21 2012-07-25 深圳雷曼光电科技股份有限公司 一种倒装led芯片的封装方法
TW201216526A (en) * 2010-08-20 2012-04-16 Koninkl Philips Electronics Nv Lamination process for LEDs
JP2012142364A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp 封止部材、封止方法、および、光半導体装置の製造方法
KR20120081809A (ko) * 2011-01-12 2012-07-20 삼성엘이디 주식회사 형광체 도포 방법 및 형광체 도포 장치
KR101769356B1 (ko) * 2011-03-25 2017-08-18 삼성전자주식회사 발광소자에 형광체층을 형성하는 방법 및 장치
KR20120109737A (ko) * 2011-03-25 2012-10-09 삼성전자주식회사 발광 소자 패키지 및 그 제조 방법
KR20130100724A (ko) * 2012-03-02 2013-09-11 닛토덴코 가부시키가이샤 발광 장치 집합체 및 조명 장치
JP2013183089A (ja) * 2012-03-02 2013-09-12 Idec Corp 発光装置、照明装置、発光装置集合体および発光装置の製造方法
SG11201405896TA (en) * 2012-04-12 2014-11-27 Saint Gobain Performance Plast Method of manufacturing light emitting device
KR101922457B1 (ko) * 2012-06-28 2018-11-27 도레이 카부시키가이샤 수지 시트 적층체 및 그것을 사용한 반도체 발광 소자의 제조 방법
US20140001949A1 (en) * 2012-06-29 2014-01-02 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
EP2914066A4 (en) * 2012-10-29 2015-11-25 Nitto Denko Corp METHOD FOR PRODUCING AN ORGANIC ELECTROLUMINESCENTER PANEL USING THE ROLL-TO-ROLL PROCESS
JP2014093403A (ja) * 2012-11-02 2014-05-19 Shin Etsu Chem Co Ltd 熱硬化性シリコーン樹脂シート及びその製造方法、該熱硬化性シリコーン樹脂シートを使用する発光装置及びその製造方法
JP5961148B2 (ja) * 2013-08-02 2016-08-02 富士フイルム株式会社 発光装置の製造方法
JP2015082580A (ja) * 2013-10-23 2015-04-27 日東電工株式会社 半導体装置およびその製造方法
CN106469780B (zh) 2015-08-18 2018-02-13 江苏诚睿达光电有限公司 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法
CN106469778B (zh) * 2015-08-18 2017-12-22 江苏诚睿达光电有限公司 一种异形有机硅树脂光转换体贴合封装led的工艺方法
CN106469767B (zh) * 2015-08-18 2017-12-01 江苏诚睿达光电有限公司 一种基于串联滚压的有机硅树脂光转换体贴合封装led的装备***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255431A (en) * 1992-06-26 1993-10-26 General Electric Company Method of using frozen epoxy for placing pin-mounted components in a circuit module
CN1722393A (zh) * 2004-07-16 2006-01-18 株式会社半导体能源研究所 层压***、ic片及片卷、以及用于制造ic芯片的方法
CN102881780A (zh) * 2011-07-15 2013-01-16 展晶科技(深圳)有限公司 发光模组及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340320A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141486B2 (en) 2015-08-18 2018-11-27 Jiangsu Cherrity Optronics Co., Ltd. Process method using organic silicone resin photoconverter to bond-package LED by tandem rolling

Also Published As

Publication number Publication date
JP2018525816A (ja) 2018-09-06
US10141486B2 (en) 2018-11-27
CN106469780B (zh) 2018-02-13
KR102026842B1 (ko) 2019-09-30
EP3340320A4 (en) 2018-08-01
PL3340320T3 (pl) 2020-03-31
EP3340320A1 (en) 2018-06-27
JP6675423B2 (ja) 2020-04-01
CN106469780A (zh) 2017-03-01
KR20180022862A (ko) 2018-03-06
US20180240947A1 (en) 2018-08-23
EP3340320B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2017028430A1 (zh) 一种精制光转换体贴合封装led的工艺方法及精制装备***
WO2017028417A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的工艺方法
WO2017028429A1 (zh) 一种基于串联滚压的有机硅树脂光转换体贴合封装led的工艺方法
WO2017028419A1 (zh) 一种异形有机硅树脂光转换体贴合封装led的工艺方法
WO2017028420A1 (zh) 一种异形有机硅树脂光转换体贴合封装led的装备***
WO2017028428A1 (zh) 一种基于串联滚压的有机硅树脂光转换体贴合封装led的装备***
WO2017028418A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的装备***
JP2018525816A5 (zh)
JP2018533194A5 (zh)
JP2018527745A5 (zh)
WO2017028427A1 (zh) 一种基于滚压式的热塑性树脂光转换体贴合封装led的智能控制***及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567798

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187002436

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE