WO2017020636A1 - Dlp微型投影机 - Google Patents

Dlp微型投影机 Download PDF

Info

Publication number
WO2017020636A1
WO2017020636A1 PCT/CN2016/083251 CN2016083251W WO2017020636A1 WO 2017020636 A1 WO2017020636 A1 WO 2017020636A1 CN 2016083251 W CN2016083251 W CN 2016083251W WO 2017020636 A1 WO2017020636 A1 WO 2017020636A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
light
free
light source
Prior art date
Application number
PCT/CN2016/083251
Other languages
English (en)
French (fr)
Inventor
高志强
赵远
杨伟樑
王梓
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2017020636A1 publication Critical patent/WO2017020636A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of digital projection display technology, and in particular to a DLP pico projector.
  • DLP pico projectors also known as digital light processing projectors
  • the mirror device DMD chip is used as an imaging device, and an instrument for projecting an image by adjusting reflected light.
  • the miniature DLP projector currently used in the market is also called a pocket or palm projector.
  • the structure of the optical path design determines the size of the projector. How to reduce the optical energy loss and design the optical path structure. It is reasonable and compact to meet the requirements of miniaturization, and has become one of the technical problems to be solved by those skilled in the art.
  • the present invention provides a DLP pico projector that has a reasonable layout, low production cost, and meets the market requirements of high lumens and miniaturization.
  • a DLP pico projector comprising: an illumination optical system comprising: a light source, a beam shaping component, a beam guiding component, a DMD light modulator, and a projection lens group; the beam shaping component comprising: disposed on the light path of the light source
  • the beam guiding member includes: a spectroscopic lens free-form lens group and a right-angle prism sequentially disposed on the optical path of the collecting lens group; the free-form lens group including the first free-form lens and the second Freeform lens, the first The free-form surface lens includes a first curved surface disposed at a light incident surface and a second curved surface disposed at a light exit surface, the second free curved lens including a third curved surface disposed on the light incident surface and a fourth curved surface disposed on the light exit surface a surface; the light incident on the first curved surface of the first free-form lens forms an angle with the normal of the first curved surface of the first free-form lens, and the light incident on the third curved surface of
  • the light source comprises a first light source, a second light source and a third light source
  • the concentrating lens group comprises a first concentrating lens group disposed on the optical path of the first light source, and is disposed on the optical path of the second light source a dichroic lens group, and a third collecting lens group disposed on the optical path of the third light source
  • the spectroscopic lens includes a first beam splitting lens disposed on the optical path of the first collecting lens group or the second collecting lens group, And a second beam splitting lens disposed on the optical path of the third collecting lens group
  • the free-form lens group and the right-angle prism are disposed on the optical path of the second beam splitting lens.
  • the beam guiding member further comprises the relay lens, the fly-eye lens or the light bar disposed on the optical path of the beam splitting lens.
  • the relay lens has a light-enhancing effect that complements the loss of light energy from light transmitted over long distances.
  • a compound eye lens or light bar can homogenize the beam.
  • the angle between the light incident on the first curved surface of the first free-form lens and the normal line of the first curved surface of the first free-form lens Satisfy the relationship:
  • the angle between the light incident on the third curved surface of the second free-form lens and the normal of the third curved surface of the second free-form lens Satisfy the relationship:
  • the reasonable design of the optical path reduces the distance traveled by light, reduces the loss of light energy, reduces the volume of the projector, and improves the brightness of the projector.
  • the refractive index N of the first free-form surface lens and the second free-form surface lens satisfies the relationship: 1.1 ⁇ N ⁇ 2.0.
  • the reasonable design of the optical path reduces the distance traveled by light, reduces the loss of light energy, reduces the volume of the projector, and improves the brightness of the projector.
  • the first light source is a blue LED light source
  • the second light source is a red LED light source
  • the third light source is a green LED light source.
  • a three primary color light source composed of a first LED light source, a second LED light source, and a third LED light source.
  • the DMD light modulator is parallel to a right-angled side of the right-angle prism.
  • the projection lens group is composed of a double Gauss lens group, and adopts a structure in which a diaphragm is placed.
  • This arrangement has the characteristics of good telecentricity and small aberration, which projects light modulated by the DLP light modulator.
  • the concentrating lens group is composed of a spherical lens and an aspheric lens, and both the spherical lens and the aspheric lens have positive power. Therefore, the light has a collecting and collecting effect.
  • the first beam splitting lens comprises a first working surface disposed facing the first collecting lens group, and a second working surface disposed opposite to the first collecting lens group, wherein the second beam splitting lens comprises a facing surface a third working surface disposed by the third collecting lens group and a fourth working surface disposed opposite to the third collecting lens group; the first working surface of the first beam splitting lens is coated with an anti-reflection film, and the second working The surface is plated with an anti-reflection film; the third working surface of the second spectroscopic lens is coated with an anti-reflection film, and the fourth working surface is coated with an anti-reflection film.
  • the anti-reflection film can transmit as much light as possible through the corresponding light, and filter out other light to ensure that the concentrated light does not mix other light and improve the purity of the light.
  • the anti-reflection film can increase the reflectivity of the corresponding light.
  • the DLP pico projector has a reasonable structural layout
  • the off-axis deflection design reduces the distance of light propagation and shortens the optical path by using a free-form lens group to cooperate with each other. It reduces the loss of light energy, reduces the volume of the DLP pico projector, and improves the projection quality, meeting the market requirements of high lumens and miniaturization.
  • Figure 1 is a schematic view showing the structure of a preferred embodiment of the DLP pico projector of the present invention.
  • Figure 2 is a partial enlarged view of a freeform lens group in a preferred embodiment of the DLP pico projector of the present invention.
  • a specific structure of a DLP pico projector includes: an illumination optical system sequentially disposed along an optical path; comprising: a light source, a beam shaping member, and a beam guiding member; a DMD light modulator; Projection lens group.
  • the beam shaping component includes: a collecting lens group disposed on the optical path of the light source; the beam guiding component includes: a spectroscopic lens free-form lens group and a right-angle prism sequentially disposed on the optical path of the collecting lens group; DMD light a modulator, and a projection lens group; wherein the free-form surface lens group includes a first free-form surface lens and a second free-form surface lens, the first free-form surface lens includes a first curved surface disposed on a light incident surface and disposed at a second curved surface of the light exit surface, the second free-form surface lens includes a third curved surface disposed on the light incident surface and a fourth curved surface disposed on the light exit surface; and the light incident on the first curved surface of the first free curved lens
  • the normal line of the first curved surface of a free-form surface lens forms a certain angle
  • the light incident on the third curved surface of the second free-form surface lens forms a certain angle with the normal line of the third curved
  • the light source comprises the first light source, the second light source and the third light source: the first light source is a blue LED light source, the second light source is a red LED light source, and the third light source is a green LED light source .
  • the first LED light source, the second LED light source and the third LED light source comprise three primary color light sources. The positions of the three light sources are not limited to the setting manner defined in the embodiment, and the three groups of light sources may also be other types of light sources, not limited to the LED light source. .
  • the collecting lens group includes a first collecting lens group disposed on the optical path of the first light source, a second collecting lens group disposed on the optical path of the second light source, and a third collecting light disposed on the optical path of the third light source a lens assembly;
  • the spectroscopic lens includes a first beam splitting lens disposed on an optical path of the first collecting lens group or the second collecting lens group, and a second beam splitting lens disposed on the optical path of the third collecting lens group;
  • the free-form lens group and the right-angle prism are disposed on the optical path of the second beam splitting lens.
  • the light source may also include only the first light source and the second light source;
  • the concentrating lens group includes a first concentrating lens group disposed on the optical path of the first light source, and a first optical path disposed on the optical path of the second light source a dichroic lens group;
  • the spectroscopic lens includes a first beam splitting lens disposed on the optical path of the first collecting lens group, and a second beam splitting lens disposed on the optical path of the second collecting lens group; the free-form lens group and The right angle prism is disposed on the optical path of the second beam splitting lens.
  • the number of specific light sources, as well as the corresponding collecting lens group and the spectroscopic lens, can be set according to actual conditions.
  • the beam shaping component includes: a first collecting lens group 10 disposed on a corresponding optical path along a direction of a blue LED light source B, and a second collecting lens group 20 disposed on a corresponding optical path thereof along a direction of the green LED light source G,
  • the third collecting lens group 30 is disposed on the corresponding optical path along the direction of the red LED light source R.
  • the beam guiding member includes: a first beam splitting lens 1 disposed on the corresponding light path of the first collecting lens group 10, and a relay lens 2, and is disposed on the optical path corresponding to the light emitted from the third collecting lens group 30.
  • the first beam splitting lens 1 includes a first working surface 11 disposed facing the first collecting lens group 10 and a second working surface 12 disposed opposite to the first collecting lens group 10.
  • the second beam splitting lens 3 includes a third working surface 32 disposed facing the third collecting lens group 30, and a fourth working surface 31 disposed opposite to the third collecting lens group 30.
  • the DMD optical modulator 8 is also referred to as a digital light processing projector, and is an apparatus for projecting an image by adjusting a reflected light by using a digital micromirror device DMD chip as an imaging device. It modulates light emitted from the illumination optical system that emits light, and is parallel to the right-angle side of the right-angle prism 7.
  • the projection lens group 50 is composed of a double Gauss lens group, and adopts a structure in which a pupil is placed in the center, and has characteristics of good telecentricity and small aberration, and projects light modulated by the DMD light modulator 8.
  • the blue light beam emitted from the blue LED light source B passes through the first collecting lens group 10, and the first collecting lens group 10 is composed of a spherical lens and an aspherical lens, and the spherical lens and the aspherical lens are combined. Both have positive power, so they have a collecting and collecting effect on light.
  • the concentrated light passes through the first working surface 11 of the first beam splitting lens 1 and the first of the first beam splitting lens 1
  • the working surface 11 is coated with an anti-reflection film, which can transmit as much blue light as possible, and filter out other light to ensure that the concentrated light does not mix other light and improve the purity of the light.
  • the green light beam emitted by the green LED light source G passes through the second collecting lens group 20, and the second collecting lens group 20 is also composed of a spherical lens and an aspheric lens, and both the spherical lens and the aspheric lens have positive light.
  • the power therefore, has the effect of collecting and concentrating light.
  • the concentrated light passes through the second working surface 12 of the first spectroscopic lens 1.
  • the second working surface 12 of the first spectroscopic lens 1 is coated with an anti-reflection film, which can reflect the green light as much as possible into the blue light. In the light path.
  • the blue light transmitted through the first spectroscopic lens 1 and the green light reflected by the first spectroscopic lens 1 are merged together, and then passed through the relay lens 2.
  • the relay lens 2 has a light-enhancing effect and can be transmitted over a long distance. The light energy loss of the post-light is supplemented.
  • the red light beam emitted by the red LED light source R passes through the third collecting lens group 30, and the third collecting lens group 30 is also composed of a spherical lens and an aspheric lens, and both the spherical lens and the aspheric lens have positive light.
  • the power therefore, has the effect of collecting and concentrating light.
  • the concentrated light passes through the third working surface 32 of the second beam splitting lens 3, and the third working surface 32 of the second beam splitting lens 3 is coated with an anti-reflection film to transmit as much red light as possible; the second beam splitting lens 3
  • the fourth working surface 31 is plated with an anti-reflection film, which can reflect the blue light and the green light after passing through the relay lens 2 and then merge with the red light, and the merged three kinds of light enter the fly-eye lens or the light rod 4, the compound eye
  • the lens or light bar 4 has a uniform light effect to form a uniform illumination system.
  • the blue light beam emitted by the blue LED light source B is transmitted through the first working surface 11 of the first beam splitting lens 1 and is coincident or parallel with the central optical axis of the first beam splitting lens 1, and the green light beam emitted by the green LED light source G passes through.
  • the red light beam emitted by the red LED light source R is transmitted through the third working surface 32 of the second beam splitting lens 3 and then transmitted.
  • the central optical axes of the second beam splitting lens 3 are coincident or parallel.
  • the uniform light rays after the fly-eye lens or the light bar 4 are compressed by the free-form lens group 40, and the free-form lens group 40 includes a first free-form lens 5 and a second free-form lens 6.
  • the first free-form surface lens 5 includes a first curved surface S1
  • the second free-form surface lens 6 includes a third curved surface S2
  • the first free-form lens 5 is incident on the first curved surface S1 and the first free surface
  • An angle formed by the normal A1 of the first curved surface of the curved lens 5 Satisfy the relationship:
  • the angle between the light incident on the third curved surface S2 of the second freeform lens 6 and the normal B1 of the third curved surface of the second freeform lens 6 Satisfy the relationship:
  • the refractive index N of the first free-form surface lens 5 and the second free-form surface lens 6 satisfies the relationship: 1.1 ⁇ N ⁇ 2.0.
  • the reasonable design of the optical path reduces the distance traveled by light, reduces the loss of light energy, reduces the volume of the projector, and improves the brightness of the projector.
  • the light path compressed by the free-form lens group 40 passes through the right-angle prism 7 and is incident on the DMD light modulator 8 to modulate the light.
  • the modulated light passes through the right-angle prism 7 to transmit light through the projection lens group 50 by total reflection.
  • the projection lens group 50 is composed of a double Gauss lens group, adopts a structure with a diaphragm centered, and has a large wide angle feature, which can increase the projection range of the projector.
  • the present invention does not limit the materials of the beam shaping member, the beam guiding member and the projection lens group, and the material thereof may be glass, plastic or other light transmissive materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种DLP微型投影机,包括:照明光学***,DMD光调制器(8)以及投影透镜组(50)。照明光学***包括:光源、光束整形部件(10,20,30)和光束引导部件。光束引导部件包括:分光镜片(1,3),中继透镜(2),复眼透镜或光棒(4),自由曲面透镜组(40)和直角棱镜(7)。DMD光调制器(8)与直角棱镜(7)的一直角边平行。这种DLP微型投影机采用自由曲面透镜组(40)相互配合,缩短了光程,降低了光能损失,提高了投影质量。

Description

DLP微型投影机 技术领域
本发明涉及数字投影显示技术领域,特别涉及一种DLP微型投影机。
背景技术
近年来,随着科技的不断进步,各类电子产品都趋于小型化,易携带的方向发展,投影机也不例外,DLP微型投影机,也称为数码光处理投影机,是以数字微镜装置DMD芯片作为成像器件,通过调节反射光实现投射图像的仪器。目前市面上使用的微型DLP投影机亦被称为口袋型或掌上型投影机,其光路设计的结构决定了投影机的尺寸大小,如何在减少光能量损失的前提下,又能将光路结构设计的合理紧凑,从而满足微型化的要求,成为本领域技术人员有待解决的技术问题之一。
发明内容
为了解决上述问题,本发明提供一种布局合理,生产成本较低,满足流明度高、微型化的市场要求DLP微型投影机。
本发明所采用的技术方案是:
一种DLP微型投影机,包括:照明光学***,包括:光源、光束整形部件,光束导引部件,DMD光调制器,以及投影透镜组;所述光束整形部件包括:设置在所述光源光路上的聚光透镜组;所述光束导引部件包括:依次设置于聚光透镜组光路上的分光镜片自由曲面透镜组及直角棱镜;所述自由曲面透镜组,包括第一自由曲面透镜及第二自由曲面透镜,所述第一 自由曲面透镜包括设置在光束入射面的第一曲面和设置在光束出射面的第二曲面,所述第二自由曲面透镜包括设置在光束入射面的第三曲面与设置在光束出射面的第四曲面;射入第一自由曲面透镜第一曲面的光线与第一自由曲面透镜第一曲面的法线形成一定的夹角,射入第二自由曲面透镜第三曲面的光线与第二自由曲面透镜第三曲面的法线亦形成一定的夹角。
优选地,所述光源包括第一光源、第二光源和第三光源;所述聚光透镜组包括设置在第一光源光路上的第一聚光透镜组,设置在第二光源光路上的第二聚光透镜组,以及设置在第三光源光路上的第三聚光透镜组;所述分光镜片包括设置于第一聚光透镜组或第二聚光透镜组光路上的第一分光镜片,以及设置于第三聚光透镜组光路上的第二分光镜片;所述自由曲面透镜组及直角棱镜设置在第二分光镜片的光路上。
优选地,所述光束导引部件还包括所述设置在分光镜片光路上的中继透镜,复眼透镜或光棒。中继透镜具有光线增强的作用,可对远距离传输后光线的光能损失进行补充。复眼透镜或光棒可对光束进行均匀化。
优选地,所述射入第一自由曲面透镜第一曲面的光线与第一自由曲面透镜第一曲面的法线形成的夹角
Figure PCTCN2016083251-appb-000001
满足关系式:
Figure PCTCN2016083251-appb-000002
射入第二自由曲面透镜第三曲面的光线与第二自由曲面透镜第三曲面的法线形成的夹角
Figure PCTCN2016083251-appb-000003
满足关系式:
Figure PCTCN2016083251-appb-000004
该光路合理的设计减少了光线传播的路程,降低光能损失,减小投影机体积,提高投影机亮度。
优选地,所述第一自由曲面透镜及第二自由曲面透镜的折射率N满足关系式:1.1≤N≤2.0。该光路合理的设计减少了光线传播的路程,降低光能损失,减小投影机体积,提高投影机亮度。
优选地,所述第一光源为蓝色LED光源,所述第二光源为红色LED光源,所述第三光源为绿色LED光源。由第一LED光源、第二LED光源和第三LED光源组成的三基色光源。
优选地,所述DMD光调制器与所述直角棱镜的一直角边平行。
优选地,所述投影透镜组由双高斯透镜组组成,采用光阑中置的结构。这种设置具有远心性好、像差小的特点,其对由所述DLP光调制器调制后的光进行投影。
优选地,所述聚光透镜组由一个球面透镜和一个非球面透镜组成,球面透镜与非球面透镜都具有正的光焦度。因此对光线具有收集汇聚的作用。
优选地,所述第一分光镜片包括面对第一聚光透镜组设置的第一工作面,以及背对第一聚光透镜组设置的第二工作面,所述第二分光镜片包括面对第三聚光透镜组设置的第三工作面,以及背对第三聚光透镜组设置的第四工作面;所述第一分光镜片的第一工作面上镀有增透膜,第二工作面上镀有增反膜;所述第二分光镜片的第三工作面上镀有增透膜,第四工作面上镀有增反膜。增透膜,可尽可能多的透过相应的光线,滤掉其他光线,保证汇聚后的光线不参杂其他光线,提高光线的纯度。增反膜可提高相应的光线的反射率。
与现有技术相比,本发明具有如下有益效果:此DLP微型投影机结构布局合理,通过采用自由曲面透镜组相互配合,其离轴偏转的设计减少了光线传播的距离,缩短了光程,降低了光能损失,减小DLP微型投影机体积的同时提高了投影质量,满足流明度高、微型化的市场要求。
附图说明
图一是本发明的DLP微型投影机优选实施例的结构示意图。
图二是本发明的DLP微型投影机优选实施例中自由曲面透镜组的局部放大图。
具体实施方式
下面将结合本发明的附图,对本发明的技术方案进行清楚、完整地描述,显然,但应当理解本发明的保护范围并不受具体实施方式的限制。基 于本发明中的具体实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
如图一所示,根据本发明所述的DLP微型投影机的具体结构包括沿光路顺次设置的:照明光学***;包括:光源、光束整形部件和光束导引部件;DMD光调制器;以及投影透镜组。所述光束整形部件包括:设置在所述光源光路上的聚光透镜组;所述光束导引部件包括:依次设置于聚光透镜组光路上的分光镜片自由曲面透镜组及直角棱镜;DMD光调制器,以及投影透镜组;其中,所述自由曲面透镜组,包括第一自由曲面透镜及第二自由曲面透镜,所述第一自由曲面透镜包括设置在光束入射面的第一曲面和设置在光束出射面的第二曲面,所述第二自由曲面透镜包括设置在光束入射面的第三曲面与设置在光束出射面的第四曲面;射入第一自由曲面透镜第一曲面的光线与第一自由曲面透镜第一曲面的法线形成一定的夹角,射入第二自由曲面透镜第三曲面的光线与第二自由曲面透镜第三曲面的法线亦形成一定的夹角。
其中,光源包括所述光源包括第一光源、第二光源和第三光源:所述第一光源为蓝色LED光源,所述第二光源为红色LED光源,所述第三光源为绿色LED光源。由第一LED光源、第二LED光源和第三LED光源组成三基色光源,三种光源的位置不限于本实施例限定的设置方式,三组光源也可以是其他类型的光源,不限于LED光源。所述聚光透镜组包括设置在第一光源光路上的第一聚光透镜组,设置在第二光源光路上的第二聚光透镜组,以及设置在第三光源光路上的第三聚光透镜组;所述分光镜片包括设置于第一聚光透镜组或第二聚光透镜组光路上的第一分光镜片,以及设置于第三聚光透镜组光路上的第二分光镜片;所述自由曲面透镜组及直角棱镜设置在第二分光镜片的光路上。
所述光源也可以仅包括第一光源和第二光源;所述聚光透镜组包括设置在第一光源光路上的第一聚光透镜组,以及设置在第二光源光路上的第 二聚光透镜组;所述分光镜片包括设置于第一聚光透镜组光路上的第一分光镜片,设置于第二聚光透镜组光路上的第二分光镜片;所述自由曲面透镜组及直角棱镜设置在第二分光镜片的光路上。
可以根据实际情况设置具体光源数目,以及相应的聚光透镜组和分光镜片。
所述光束整形部件包括:沿蓝色LED光源B方向设置在其对应光路上的第一聚光透镜组10,沿绿色LED光源G方向设置在其对应光路上的第二聚光透镜组20,沿红色LED光源R方向设置在其对应光路上的第三聚光透镜组30。
所述光束导引部件包括:设置于第一聚光透镜组10出射光对应光路上的第一分光镜片1、中继透镜2,设置于第三聚光透镜组30出射光对应光路上的第二分光镜片3、复眼透镜或光棒4、自由曲面透镜组40及一直角棱镜7。所述第一分光镜片1包括面对第一聚光透镜组10设置的第一工作面11,以及背对第一聚光透镜组10设置的第二工作面12。所述第二分光镜片3包括面对第三聚光透镜组30设置的第三工作面32,以及背对第三聚光透镜组30设置的第四工作面31。
DMD光调制器8也称为数码光处理投影机,是以数字微镜装置DMD芯片作为成像器件,通过调节反射光实现投射图像的仪器。其对从所述射出光的照明光学***射出的光进行调制,与所述直角棱镜7的一直角边平行。
投影透镜组50由双高斯透镜组组成,采用光阑中置的结构,具有远心性好、像差小的特点,其对由所述DMD光调制器8调制后的光进行投影。
如上所述,蓝色LED光源B所发出的蓝色光束,经过第一聚光透镜组10,第一聚光透镜组10由一个球面透镜和一个非球面透镜组成,且球面透镜与非球面透镜都具有正的光焦度,因此对光线具有收集汇聚的作用。汇聚后的光线经过第一分光镜片1的第一工作面11,第一分光镜片1的第一 工作面11上镀有增透膜,可尽可能多的透过蓝色光线,滤掉其他光线,保证汇聚后的光线不参杂其他光线,提高光线的纯度。
绿色LED光源G所发出的绿色光束,经过第二聚光透镜组20,第二聚光透镜组20亦由一个球面透镜和一个非球面透镜组成,且球面透镜与非球面透镜都具有正的光焦度,因此对光线具有收集汇聚的作用。汇聚后的光线经过第一分光镜片1的第二工作面12,第一分光镜片1的第二工作面12上镀有增反膜,可尽可能多的将绿色光线进行反射汇入蓝色光线光路中。
经过第一分光镜片1透射后的蓝色光线和经过第一分光镜片1反射后的绿色光线汇合在一起,再经过中继透镜2,中继透镜2具有光线增强的作用,可对远距离传输后光线的光能损失进行补充。
红色LED光源R所发出的红色光束,经过第三聚光透镜组30,第三聚光透镜组30亦由一个球面透镜和一个非球面透镜组成,且球面透镜与非球面透镜都具有正的光焦度,因此对光线具有收集汇聚的作用。汇聚后的光线经过第二分光镜片3的第三工作面32,第二分光镜片3的第三工作面32上镀有增透膜,可尽可能多的透过红色光线;第二分光镜片3的第四工作面31上镀有增反膜,可将经过中继透镜2后的蓝色光线与绿色光线反射后与红色光线汇合,汇合后的三种光线进入复眼透镜或光棒4,复眼透镜或光棒4具有匀光的作用,形成均匀照明***。
由上可知,蓝色LED光源B所发蓝色光束经过第一分光镜片1的第一工作面11透射后与第一分光镜片1中心光轴重合或平行,绿色LED光源G所发绿色光束经过经过第一分光镜片1的第二工作面12反射后与第一分光镜片1中心光轴重合或平行,红色LED光源R所发红色光束经过第二分光镜片3的第三工作面32透射后与第二分光镜片3中心光轴重合或平行。
通过复眼透镜或光棒4后的均匀光线再经过自由曲面透镜组40对光路进行压缩,自由曲面透镜组40包括第一自由曲面透镜5及第二自由曲面透镜6。
如图二所示,第一自由曲面透镜5包括第一曲面S1,所述第二自由曲面透镜6包括第三曲面S2,射入第一自由曲面透镜5第一曲面S1的光线与第一自由曲面透镜5第一曲面的法线A1形成的夹角
Figure PCTCN2016083251-appb-000005
满足关系式:
Figure PCTCN2016083251-appb-000006
Figure PCTCN2016083251-appb-000007
射入第二自由曲面透镜6第三曲面S2的光线与第二自由曲面透镜6第三曲面的法线B1形成的夹角
Figure PCTCN2016083251-appb-000008
满足关系式:
Figure PCTCN2016083251-appb-000009
且第一自由曲面透镜5及第二自由曲面透镜6的折射率N满足关系式:1.1≤N≤2.0。该光路合理的设计减少了光线传播的路程,降低光能损失,减小投影机体积,提高投影机亮度。
经过自由曲面透镜组40压缩后的光路再通过一直角棱镜7后光线入射到DMD光调制器8中将光线进行调制,调制后的光线通过直角棱镜7利用全反射将光线通过投影透镜组50进行投射。投影透镜组50由双高斯透镜组组成,采用光阑中置的结构,具有大广角的特点,可增大投影机的投影范围。
值得注意的是,本发明并不限定光束整形部件、光束导引部件和投影透镜组的材料,其材质可以为玻璃、塑料或其他的透光材料。
最后,还需要说明的是,在文本中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种DLP微型投影机,其特征在于,包括:
    照明光学***,包括:光源、光束整形部件,光束导引部件,DMD光调制器,以及投影透镜组;
    其中,所述光束整形部件包括:设置在所述光源光路上的聚光透镜组;
    所述光束导引部件包括:依次设置于聚光透镜组光路上的分光镜片,自由曲面透镜组及直角棱镜;
    所述自由曲面透镜组,包括第一自由曲面透镜及第二自由曲面透镜,所述第一自由曲面透镜包括设置在光束入射面的第一曲面和设置在光束出射面的第二曲面,所述第二自由曲面透镜包括设置在光束入射面的第三曲面与设置在光束出射面的第四曲面;射入第一自由曲面透镜第一曲面的光线与第一自由曲面透镜第一曲面的法线形成一定的夹角,射入第二自由曲面透镜第三曲面的光线与第二自由曲面透镜第三曲面的法线亦形成一定的夹角。
  2. 根据权利要求1所述的DLP微型投影机,其特征在于,所述光源包括第一光源、第二光源和第三光源;所述聚光透镜组包括设置在第一光源光路上的第一聚光透镜组,设置在第二光源光路上的第二聚光透镜组,以及设置在第三光源光路上的第三聚光透镜组;所述分光镜片包括设置于第一聚光透镜组或第二聚光透镜组光路上的第一分光镜片,以及设置于第三聚光透镜组光路上的第二分光镜片;所述自由曲面透镜组及直角棱镜设置在第二分光镜片的光路上。
  3. 根据权利要求1所述的DLP微型投影机,其特征在于,所述光束导引部件还包括所述设置在分光镜片光路上的中继透镜,复眼透镜或光棒。
  4. 根据权利要求1所述的DLP微型投影机,其特征在于,所述射 入第一自由曲面透镜第一曲面的光线与第一自由曲面透镜第一曲面的法线形成的夹角
    Figure PCTCN2016083251-appb-100001
    满足关系式:
    Figure PCTCN2016083251-appb-100002
    射入第二自由曲面透镜第三曲面的光线与第二自由曲面透镜第三曲面的法线形成的夹角
    Figure PCTCN2016083251-appb-100003
    满足关系式
    Figure PCTCN2016083251-appb-100004
    Figure PCTCN2016083251-appb-100005
  5. 根据权利要求1所述的DLP微型投影机,其特征在于,所述第一自由曲面透镜及第二自由曲面透镜的折射率N满足关系式:1.1≤N≤2.0。
  6. 根据权利要求2所述的DLP微型投影机,其特征在于,所述第一光源为蓝色LED光源,所述第二光源为红色LED光源,所述第三光源为绿色LED光源。
  7. 根据权利要求1所述的DLP微型投影机,其特征在于,所述DMD光调制器与所述直角棱镜的一直角边平行。
  8. 根据权利要求1所述的DLP微型投影机,其特征在于,所述投影透镜组由双高斯透镜组组成,采用光阑中置的结构。
  9. 根据权利要求1所述的DLP微型投影机,其特征在于,所述聚光透镜组由一个球面透镜和一个非球面透镜组成,且球面透镜与非球面透镜都具有正的光焦度。
  10. 根据权利要求2所述的DLP微型投影机,其特征在于,所述第一分光镜片包括面对第一聚光透镜组设置的第一工作面,以及背对第一聚光透镜组设置的第二工作面,所述第二分光镜片包括面对第三聚光透镜组设置的第三工作面,以及背对第三聚光透镜组设置的第四工作面;所述第一分光镜片的第一工作面上镀有增透膜,第二工作面上镀有增反膜;所述第二分光镜片的第三工作面上镀有增透膜,第四工作面上镀有增反膜。
PCT/CN2016/083251 2015-08-03 2016-05-25 Dlp微型投影机 WO2017020636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520589136.0 2015-08-03
CN201520589136.0U CN204883152U (zh) 2015-08-03 2015-08-03 Dlp微型投影机

Publications (1)

Publication Number Publication Date
WO2017020636A1 true WO2017020636A1 (zh) 2017-02-09

Family

ID=54827508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083251 WO2017020636A1 (zh) 2015-08-03 2016-05-25 Dlp微型投影机

Country Status (2)

Country Link
CN (1) CN204883152U (zh)
WO (1) WO2017020636A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204883152U (zh) * 2015-08-03 2015-12-16 广景视睿科技(深圳)有限公司 Dlp微型投影机
CN106842794A (zh) * 2017-03-28 2017-06-13 广景视睿科技(深圳)有限公司 一种非远心dlp微型投影模组
CN106990661A (zh) * 2017-05-17 2017-07-28 合肥蔚星光电科技有限公司 一种用于三维扫描的dlp投影***
CN110703542A (zh) * 2018-07-09 2020-01-17 宁波舜宇车载光学技术有限公司 Dlp投影***及其应用
CN112882230B (zh) * 2019-11-29 2023-05-26 宁波舜宇车载光学技术有限公司 光学***及消除色边的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202837791U (zh) * 2012-08-30 2013-03-27 广景科技有限公司 Dlp微型投影机
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
WO2014115818A1 (ja) * 2013-01-23 2014-07-31 株式会社ニコン 映像投写光学系および映像投写装置
CN203811978U (zh) * 2014-05-15 2014-09-03 广景科技有限公司 Dlp 微型投影机
CN203838464U (zh) * 2014-05-15 2014-09-17 广景科技有限公司 直线型dlp 微型投影机
CN104155835A (zh) * 2014-08-15 2014-11-19 广景科技有限公司 Dlp微型投影机
CN203982065U (zh) * 2014-08-15 2014-12-03 广景科技有限公司 Dlp 微型投影机
CN204270006U (zh) * 2014-12-17 2015-04-15 广景科技有限公司 直线型dlp微型投影机
CN204883152U (zh) * 2015-08-03 2015-12-16 广景视睿科技(深圳)有限公司 Dlp微型投影机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202837791U (zh) * 2012-08-30 2013-03-27 广景科技有限公司 Dlp微型投影机
CN103529629A (zh) * 2012-08-30 2014-01-22 广景科技有限公司 Dlp微型投影机
WO2014115818A1 (ja) * 2013-01-23 2014-07-31 株式会社ニコン 映像投写光学系および映像投写装置
CN203811978U (zh) * 2014-05-15 2014-09-03 广景科技有限公司 Dlp 微型投影机
CN203838464U (zh) * 2014-05-15 2014-09-17 广景科技有限公司 直线型dlp 微型投影机
CN104155835A (zh) * 2014-08-15 2014-11-19 广景科技有限公司 Dlp微型投影机
CN203982065U (zh) * 2014-08-15 2014-12-03 广景科技有限公司 Dlp 微型投影机
CN204270006U (zh) * 2014-12-17 2015-04-15 广景科技有限公司 直线型dlp微型投影机
CN204883152U (zh) * 2015-08-03 2015-12-16 广景视睿科技(深圳)有限公司 Dlp微型投影机

Also Published As

Publication number Publication date
CN204883152U (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017020636A1 (zh) Dlp微型投影机
WO2017049935A1 (zh) 一种投影照明光路及其投影模组
WO2020199685A1 (zh) 一种双远心投影镜头及投影***
WO2015172536A1 (zh) 直线型dlp微型投影机
WO2016095619A1 (zh) 直线型dlp微型投影机
WO2015172537A1 (zh) Dlp微型投影机
WO2019080506A1 (zh) 一种图案投影灯光学模组结构
WO2017012220A1 (zh) 一种紧凑型投影装置
JP2015108797A (ja) 広角投影光学システム
WO2020119421A1 (zh) 投影成像***及激光投影设备
WO2019104915A1 (zh) 一种投影***及tir棱镜组
CN111208701B (zh) 激光投影设备
CN105974560A (zh) 广角投影***及镜头
CN114296217A (zh) 一种投影镜头及投影***
CN114296218A (zh) 一种投影镜头及投影***
CN114296220A (zh) 一种投影镜头及投影***
CN113568263B (zh) 一种基于菲涅尔透镜提高准直效率的照明***
CN112462491A (zh) 投影镜头及投影机
CN114137708A (zh) 一种投影镜头及投影***
CN101915980A (zh) 像方远心定焦投影镜头
CN107817593B (zh) 一种超短焦投影镜头
WO2019104970A1 (zh) 一种rtir光学元件组及其投影***
CN109407288A (zh) 一种折反式超短焦投影镜头***
WO2023124807A1 (zh) 投影设备
WO2023206782A1 (zh) 一种投影***以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16832124

Country of ref document: EP

Kind code of ref document: A1