WO2023206782A1 - 一种投影***以及电子设备 - Google Patents

一种投影***以及电子设备 Download PDF

Info

Publication number
WO2023206782A1
WO2023206782A1 PCT/CN2022/101980 CN2022101980W WO2023206782A1 WO 2023206782 A1 WO2023206782 A1 WO 2023206782A1 CN 2022101980 W CN2022101980 W CN 2022101980W WO 2023206782 A1 WO2023206782 A1 WO 2023206782A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
imaging
component
projection system
Prior art date
Application number
PCT/CN2022/101980
Other languages
English (en)
French (fr)
Inventor
林钧尉
谢典良
李贵宇
许雅伶
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023206782A1 publication Critical patent/WO2023206782A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the field of projection technology, and more specifically, the present application relates to a projection system and electronic equipment.
  • Polarization spectroscopy projectors can be used with LCOS displays.
  • LCOS displays use polarized light. Therefore, most polarization spectrometry projectors need to use glass PBS prism systems.
  • glass PBS prisms In order to ensure the improvement of performance, glass PBS prisms , generally using the expensive SCHOTT SF57 material, which is a disadvantage in terms of cost.
  • SCHOTT SF57 material which is a disadvantage in terms of cost.
  • Now some manufacturers are also actively developing very cheap plastic PBS films for use in projection machines.
  • the lighting and imaging systems in polarized spectroscopic projectors are designed separately from each other, and the The necessary component for separating the optical paths of the lighting system and the imaging system is the polarizing mechanism, which directly results in the inability to further reduce the size of the projector.
  • One purpose of this application is to provide a new technology solution for a projection system and electronic equipment.
  • a projection system includes light source components, imaging components and reflective components;
  • the imaging assembly includes a first lens located proximate an exit pupil of the imaging assembly; the first lens has a first portion and a second portion, the first portion and the second portion being separated by an optical axis;
  • At least the chief ray of the emitted light rays from the light source assembly is incident through the first part of the first lens, and then at least the reflected chief ray of the reflected light rays formed by the reflection component is emitted through the second part of the first lens.
  • the projection system includes an illumination system and an imaging system
  • the light source assembly and the imaging assembly constitute an illumination system
  • the reflective component and the imaging assembly constitute an imaging system
  • the F/ of the illumination system # is 0.45 to 0.55 times of the projection system.
  • the principal ray is transmitted from the first part of the first lens to the reflective component to form a first optical path
  • the reflected principal ray is transmitted from the reflective component to the second part of the second lens to form a second optical path.
  • Optical path, the first optical path and the second optical path are arranged non-coaxially.
  • the radius of curvature of the first part of the first lens is not equal to the radius of curvature of the second part of the first lens.
  • the principal ray is transmitted from the first part of the first lens to the reflective component to form an illumination light path
  • the reflected principal ray is transmitted from the reflective component to the second part of the first lens to form imaging. light path;
  • the radius of curvature of the first part of the first lens is smaller than the radius of curvature of the second part of the first lens.
  • the imaging component includes a lens group arranged along the optical axis, and the lens group includes the first lens.
  • the light source assembly includes a light source group and a light combining group, the light emitted by the light source group is transmitted to the light combining group, and the light combining group transmits the received light to the first part of the first lens.
  • the light combining group includes a compound parabolic concentrator and the optical waveguide plate, the optical waveguide plate is located on the light exit side of the compound parabolic concentrator; or the light combining group includes a total internal reflection lens. and an optical waveguide plate located on the light exit side of the total internal reflection lens.
  • the light combining group includes three compound parabolic concentrators or three total internal reflection lenses, and the three compound parabolic concentrators or three total internal reflection lenses are arranged along different horizontal planes, The lengths of the optical waveguides corresponding to the three compound parabolic concentrators or the three total internal reflection lenses are not equal.
  • the light combining group includes three compound parabolic concentrators or three total internal reflection lenses, and the three compound parabolic concentrators or three total internal reflection lenses are arranged along the same horizontal plane, The lengths of the optical waveguides corresponding to the three compound parabolic concentrators or the three total internal reflection lenses are equal to each other.
  • an electronic device includes the projection system as described in the first aspect.
  • a projection system which achieves the purpose of reducing the size of the projection system.
  • Figure 1 shows a schematic structural diagram of the imaging component.
  • Figure 2 shows the structural diagram of the projection system.
  • Figure 3 shows the second structural diagram of the projection system.
  • Figure 4 shows the structural diagram three of the projection system.
  • Figure 5 shows the structural diagram 4 of the projection system.
  • Figure 6 shows the second structural diagram of the imaging component.
  • Figure 7 shows a schematic structural diagram of a projection system in the prior art.
  • Light source component 11. Light source group; 12. Light combining group; 121. Collimator; 122. Optical waveguide; 123. Compound parabolic condenser; 124. Total internal reflection lens; 125. Dichroic mirror;
  • Imaging component 21. First lens; 22. Second lens; 23. Third lens; 24. Fourth lens; 211. First part; 212. Second part;
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • the prior art projection light machine includes: a light source system 01 , a focusing mechanism 02 , a polarizing mechanism 03 , an LCOS display system 04 and an imaging light path system 05 .
  • the light source system 01, the focusing mechanism 02 and the polarizing mechanism 03 which are arranged in sequence and have a common straight line at their center points, constitute the illumination light path.
  • the straight line where the center points of the light source system 01, the focusing mechanism 02 and the polarizing mechanism 03 are located is the illumination optical axis; they are arranged in sequence
  • the imaging optical path system 05, the polarizing mechanism 03 and the LCOS display system 04 whose center points are in a straight line constitute the imaging optical path.
  • the straight line where the center points of the imaging optical path system, the polarizing mechanism and the LCOS display system are located is the imaging optical axis, and the imaging optical axis is the same as the above-mentioned
  • the illumination optical axis is vertical. It can be seen that at present, the lighting and imaging systems in the projection machine are designed separately from each other, and the necessary component to separate the optical paths of the lighting system and the imaging system is the polarizing mechanism (PBS), which directly results in the inability to further reduce the size of the projection machine.
  • PBS polarizing mechanism
  • the projection system includes: a light source component 1 , an imaging component 2 and a reflective component 3 .
  • the imaging component 2 includes a first lens 21 close to the exit pupil of the imaging component 2; the first lens 21 has a first part 211 and a second part 212, and the first part 211 and the second part 212 Separated by the optical axis; at least the principal ray of the light ray L1 emitted by the light source assembly 1 is incident through the first part of the first lens 21, and then at least the principal ray of the reflected light ray L2 formed by the reflection of the reflective component 3 passes through The second part of the first lens 21 emerges.
  • the projection system in the embodiment of the present application only includes the light source component 1, the imaging component 2 and the reflective component 3, and the projection system does not include a polarization mechanism.
  • the light L1 emitted by the light source component 1 is directly transmitted to the imaging component 2, and the light L1 is transmitted to the reflective component 3 through the imaging component 2, and then reflected by the reflective component 3; the reflected reflected light L2 passes through the imaging component 2 and then emerges. Therefore, in this embodiment, the light source assembly 1 and the imaging assembly 2 constitute an illumination system.
  • the imaging component 2 and the reflective component 3 constitute an imaging system.
  • the illumination system and imaging system share the architecture of imaging component 2.
  • the main light emitted by the light source assembly 1 is transmitted to the first part 211 of the first lens 21 , that is, the entrance pupil position of the illumination light path corresponds to the first part 211 of the first lens 21 .
  • the chief ray emitted by the light source component 1 enters the interior of the imaging component 2 through the first part 211 of the first lens 21 , and then is transmitted inside the imaging component 2 .
  • the chief ray emitted by the light source component 1 is transmitted to the reflective component 3 through the imaging component 2 .
  • the first part 211 of the first lens 21 is the left area of the first lens 21 .
  • the chief light emitted by the light source assembly 1 passes through the left side of the first lens 21 of the imaging assembly 2 .
  • the side area enters the interior of the imaging component 2 and is further transmitted to the reflective component 3 to be reflected by the reflective component 3 .
  • the light L1 emitted by the light source component 1 enters the interior of the imaging component 2 through the first lens 21 of the imaging component 2, where the light emitted by the light source component 1 includes chief ray and marginal ray.
  • the light L1 emitted by the light source component 1 passes through the left area of the first lens 21 of the imaging component 2 and enters the interior of the imaging component 2; as shown in Figures 2 to 4, the light source component 1
  • the emitted chief light passes through the left area of the first lens 21 of the imaging component 2 and enters the interior of the imaging component 2 . Therefore, the projection system (illumination system) provided by the embodiment of the present application can realize that at least the main light enters the interior of the imaging component 2 through the left area of the first lens 21 of the imaging component 2 .
  • the main beam is the light beam that emits from the edge of the object, passes through the center of the aperture diaphragm, and finally reaches the edge of the image.
  • the light emitted by the light source module is transmitted to the reflective component 3 through the imaging component 2, and then is reflected by the reflective component 3 to form reflected light L2.
  • the reflected light L2 is the light carrying the display light.
  • the reflected light L2 includes the reflected main light and the reflected edge light.
  • the reflected chief ray is emitted after passing through the second part 212 of the first lens 21 during the transmission process, and can enter the user's eyes. That is, the exit pupil position of the imaging optical path corresponds to the second part 212 of the first lens 21 .
  • the second part 212 of the first lens 21 is the right area of the first pupil.
  • the reflected principal light formed after being reflected by the reflective component 3 is transmitted through the imaging component 2. Finally, it exits through the right area of the first lens 21 of the imaging component 2 . Or the first part 211 of the first lens 21 is the right area of the first lens 21 , and the second part 212 of the first lens 21 is the left area of the first lens 21 .
  • the chief ray emitted by the light source assembly 1 is incident through the right region of the first lens 21 , and the reflected chief ray formed by the reflection component 3 is emitted through the left region of the first lens 21 .
  • the reflected light L2 formed by the reflection of the reflective component 3 enters the human eye through the first lens 21 of the imaging component 2, where the light reflected by the reflective component 3 includes the reflected main ray and the reflected edge ray.
  • the reflected light L2 reflected by the reflective component 3 exits through the right area of the first lens 21 of the imaging component 2;
  • the reflected light L2 formed by the reflection of the reflective component 3 The light exits through the right area of the first lens 21 of the imaging component 2 . Therefore, the projection system (imaging system) provided by the embodiment of the present application can realize that at least the reflected chief ray is emitted through the right area of the first lens 21 of the imaging component 2 .
  • the projection system provided does not include a polarization mechanism, which reduces the size of the projection system.
  • the illumination light path and the imaging light path share the imaging component 2.
  • the chief ray of the illumination light path is incident from the first part 211 of the first lens 21, and the reflected chief ray of the imaging light path is emitted from the second part 212 of the first lens 21, so that the illumination
  • the optical axis and the imaging optical axis are basically parallel to each other, further reducing the size of the projection system.
  • optical axis is the central axis of the entire structure of the imaging component 2 .
  • the reflective component 3 may be a light valve component.
  • light valve components are polarized spectroscopic components.
  • the light valve component includes but is not limited to an LCOS display screen, and may also be an LCD display screen.
  • the projection system includes an illumination system and an imaging system.
  • the light source component 1 and the imaging component 2 constitute an illumination system.
  • the reflective component 3 and the imaging component 2 constitute an imaging system.
  • the F/# of the lighting system is 0.45 to 0.55 times that of the projection system.
  • the F/# of the imaging system is 0.45 to 0.55 times that of the projection system.
  • the F/# of the lighting system (corresponding to the entrance pupil of the lighting system) is 0.45 to 0.55 times the F/# of the projection system.
  • the F/# of the imaging system (corresponding to the exit pupil of the imaging system) is 0.45 to 0.55 times the F/# of the projection system.
  • the F/# of the imaging system is 1.23
  • the light angle of the projection system is -24°-24°.
  • the light angle is -24°-0°
  • the imaging light path the light angle is 0°-24°.
  • the F/# of the converted lighting and imaging light path (the projection system includes the lighting light path and the imaging light path, that is, the projection system) is 2.4
  • the F/# of the imaging system is 1.23
  • the F/# of the lighting and imaging light path system and the F/# of the imaging system /#The relationship is 0.5125 times.
  • the light ray L1 represents the light in the illumination light path (the entrance pupil of the lighting system to the reflective component 3)
  • the reflected ray L2 represents the light in the imaging light path (the reflective component 3 to the exit pupil)
  • the triangle A represents the design of the projection system.
  • the maximum exit pupil, triangle A1 and triangle A2 respectively represent the light angles of the entrance pupil and exit pupil that can be received by the illumination light path and imaging light path.
  • This implementation limits the F/# of the projection system, as well as the F/# of the illumination light path system and the F/# of the imaging light path system, so that at least the main light emitted by the light source assembly 1 can be incident through the first part 211 of the first lens 21, And the reflected chief ray formed by reflection by the reflective component 3 is emitted through the second part 212 of the first lens 21 .
  • the entrance pupil position of the lighting system is on the same side as the exit pupil position of the imaging system, and the entrance pupil position of the lighting system is compared with the exit pupil position of the imaging system.
  • the position is closer to the first lens 21 to further reduce the size of the projection system.
  • the height difference between the exit pupil position and the entrance pupil position is h.
  • the chief ray is transmitted to the reflective component 3 through the first part 211 of the first lens 21 to form an illumination light path, and the reflected principal ray passes through the reflective component 3
  • the second portion 212 transmitted to the second lens 22 forms an imaging light path, and the illumination light path and the imaging light path are arranged non-coaxially.
  • the chief light emitted by the light source assembly 1 is transmitted to the reflective component 3 through the first part 211 of the first lens 21 to form an illumination light path, that is, in the illumination light path, the chief light is incident from the first part 211 of the first lens 21, Then it is transmitted within the imaging component 2.
  • the reflected chief ray is transmitted to the second part 212 of the second lens 22 through the reflective component 3 to form an imaging light path. That is, in the imaging light path, the reflected chief ray emerges from the second part 212 of the first lens 21 , which is the incident position of the chief ray. It is not at the same position as the exit position of the reflected main ray, that is, the main ray does not travel straight in and out.
  • the projection system provided by this embodiment is an off-axis projection system.
  • the illumination light path and the imaging light path share the imaging component 2
  • the illumination light path and the imaging light path are non-coaxially arranged, that is, the illumination light path and the imaging light path are arranged non-coaxially. All are deviated from the optical axis, and the illumination light path and imaging light path do not overlap.
  • the radius of curvature of the first portion 211 of the first lens 21 is not equal to the radius of curvature of the second portion 212 of the first lens 21 .
  • the chief ray passes through the first part 211 of the first lens 21 and is transmitted to the reflective component 3 to form an illumination light path.
  • the reflected principal ray is transmitted through the reflective component 3 to the second part 212 of the second lens 22 to form an imaging light path.
  • the illumination light path is
  • the optical path and the optical path of the imaging light path are equal, and the entrance pupil of the illumination system and the exit pupil of the imaging system have the same optical properties.
  • the choice of different structures of the light source assembly 1 may lead to the problem of unequal optical path lengths between the lighting system and the imaging system.
  • the radius of curvature of the first part 211 of the first lens 21 can be set to be equal to the radius of curvature of the first part 211 of the first lens 21 .
  • the radii of curvature of the second portion 212 are not equal. That is, by setting the first part 211 and the second part 212 of the first lens 21 as lenses with different degrees of diopter, the optical path of the illuminating light path and the optical path of the imaging light path are adjusted, so that the optical path of the illuminating light path and the imaging light path are The optical path is consistent.
  • the first lens 21 closest to the entrance pupil of the lighting system is designed to be a freeform lens, that is, the first lens 21 closest to the exit pupil of the imaging system is designed to be a freeform lens. lens.
  • the chief ray is transmitted to the reflective component 3 through the first part 211 of the first lens 21 to form an illumination light path
  • the reflected principal ray is transmitted to the reflective component 3 through the reflective component 3 .
  • the second part 212 of the second lens 22 forms an imaging optical path; when the optical path of the illumination optical path is smaller than the optical path of the imaging optical path, the radius of curvature of the first part 211 of the first lens 21 is smaller than the first optical path.
  • the radius of curvature of the second portion 212 of the lens 21 is .
  • the optical path of the illumination light path is smaller than the optical path of the imaging light path.
  • the curvature of the first part 211 of the first lens 21 (refer to FIG. 6 , the area enclosed by the box is the first part 211)
  • the radius is set smaller than the radius of curvature of the second portion 212 of the first lens 21 to lengthen the optical path of the illumination light path.
  • the radius of curvature affects the focal length of the lens, which is related to the optical path length of the optical path. Therefore, adjusting the parameter of the radius of curvature can adjust the optical path length.
  • the imaging component 2 includes a lens group arranged along the optical axis, and the lens group includes the first lens 21 .
  • the architecture of the imaging component 2 is defined, and the imaging component 2 is composed of a lens group.
  • the lenses in the lens group of the imaging assembly 2 are not particularly limited, as long as the chief ray emitted by the light source assembly 1 can be incident through the first part 211 of the first lens 21 , and the reflected chief ray can pass through the second part of the first lens 21 Just shoot out part of 212.
  • the lens group further includes a second lens 22 , a third lens 23 and a fourth lens 24 arranged sequentially along the optical axis.
  • the second lens 22 The first lens 21 is arranged adjacent to the first lens 21; the first lens 21 is a biconvex lens, the second lens 22 is a biconcave lens, the third lens 23 is a meniscus lens, and the fourth lens 24 is a convex-concave lens. .
  • the lens group in the direction from the exit pupil position of the imaging component 2 to the reflective component 3 , the lens group includes a first lens 21 , a second lens 22 , a third lens 23 and a fourth lens 24 in sequence.
  • the first lens 21 is a biconvex lens
  • the second lens 22 is a biconcave lens
  • the third lens 23 is a meniscus lens
  • the fourth lens 24 is a convex-concave lens
  • the first lens 21, the second lens 22, the third lens 23 and the fourth lens 24 has different ability to deflect light, which does not affect the incidence of the main ray and the exit of the reflected main ray. Therefore, the architecture of the imaging component 2 includes but is not limited to the four lenses mentioned above.
  • the light source assembly 1 includes a light source group 11 and a light combining group 12.
  • the light emitted by the light source group 11 is transmitted to the light combining group 12.
  • the light combining group 12 to transmit the received light to the first part 211 of the first lens 21 .
  • the light source assembly 1 includes a light source group 11 and a light combining group 12 arranged corresponding to the light source group 11 .
  • the light source group 11 includes a first light source, a second light source and a third light source.
  • the first light source may be a light source that emits red light
  • the second light source may be a light source that emits green light
  • the third light source may be a light source that emits blue light.
  • the light combining group 12 processes the light emitted by the light source group 11 , and the processed light is incident through the first part 211 of the first lens 21 .
  • the light source is not limited to LED, but may also be Lamp, Laser, etc.
  • the light combining group 12 includes a compound parabolic concentrator 123 and the optical waveguide.
  • the optical waveguide is located on the light exit side of the compound parabolic concentrator 123 . ;
  • the light combining group 12 includes a total internal reflection lens 124 and an optical waveguide, and the optical waveguide is located on the light exit side of the total internal reflection lens 124 .
  • the light combining group includes three compound parabolic concentrators 123 or three total internal reflection lenses 124 , and the three compound parabolic concentrators 123 are arranged along different horizontal planes, or either The three total internal reflection lenses 124 are arranged along different horizontal planes;
  • the lengths of the optical waveguide plates corresponding to the three compound parabolic concentrators 123 or the three total internal reflection lenses 124 are not equal.
  • the light combining group includes three compound parabolic concentrators 123 or three total internal reflection lenses 124.
  • the three compound parabolic concentrators 123 are arranged along the same horizontal plane, or three The total internal reflection lenses 124 are arranged along the same horizontal plane;
  • the lengths of the optical waveguides corresponding to the three compound parabolic concentrators 123 or the three total internal reflection lenses 124 are equal.
  • the light combining group 12 includes a collimator 121 (Collimators), an optical waveguide 122 (Ligh/wave guides) and a dichroic mirror 125 (Dichroic mirror).
  • the principal light emitted by the light source group 11 passes through the collimator 121 and becomes parallel light.
  • the parallel light passes through the optical waveguide 122 and is transmitted to the dichroic mirror 125 , and then is reflected by the dichroic mirror 125 to the first part 211 of the first lens 21 .
  • the chief ray is incident through the first part 211 of the first lens 21 .
  • the light source group 11 includes three light sources, and the collimators 121 are provided corresponding to the light sources, that is, the light combining group 12 is provided with three collimators 121 .
  • the optical waveguide plates 122 are provided corresponding to different collimators 121 , that is, the light combining group 12 is provided with three optical waveguide plates 122 .
  • different collimators 121 are disposed at different locations (the collimators 121 are not disposed on the same horizontal plane), and the lengths of the optical waveguide plates 122 are inconsistent.
  • a first optical waveguide plate, a second optical waveguide plate and a third optical waveguide plate are provided, the length of the first optical waveguide plate ⁇ the length of the second optical waveguide plate ⁇ the third optical waveguide plate The length of the optical waveguide.
  • the light combining group 12 uses a compound parabolic condenser 123 (CPC) or a total internal reflection lens 124 (TIR lens) and an optical waveguide 122 to illuminate the entrance pupil image plane. (angular space) The ability to even out light.
  • the light combining group 12 includes a compound parabolic concentrator 123 (CPC), an optical waveguide 122 (Ligh/wave guides) and a dichroic mirror 125 (Dichroic mirror).
  • the light combining group 12 includes a total internal reflection lens 124 (TIR lens), an optical waveguide 122 (Ligh/wave guides) and a dichroic mirror 125 (Dichroic mirror).
  • TIR lens total internal reflection lens
  • optical waveguide 122 Large/wave guides
  • dichroic mirror 125 Dichroic mirror
  • different collimators 121 are disposed at different locations (the collimators 121 are not disposed on the same horizontal plane), and the lengths of the optical waveguide plates 122 are inconsistent.
  • a first optical waveguide plate, a second optical waveguide plate and a third optical waveguide plate are provided, and the length of the first optical waveguide plate ⁇ the length of the second optical waveguide plate ⁇ The length of the third optical waveguide plate.
  • the light combining group 12 includes collimators 121 (Collimators) and optical waveguides 122 (Ligh/wave guides).
  • the collimator 121 collimates the principal light emitted by the light source group 11 into parallel light.
  • the parallel light is directly transmitted to the first part 211 of the first lens 21 through the optical waveguide 122 , and the principal light is incident through the first part 211 of the first lens 21 .
  • the light combining group 12 includes but is not limited to the above-mentioned structure.
  • the light combining group 12 can also use a light guide or a wave guide to achieve a traditional light combining prism (X-cube) to combine the RGB three elements. The ability of form to become one.
  • an electronic device includes the projection system as described in the first aspect.
  • the electronic device may be a projection light machine or an illumination light path.
  • Projection machines can be used in portable business projection, small conference presentations, personal theaters, outdoor display projection, education and entertainment, and output display of digital products; or the projection system can be used in AR equipment or VR equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种投影***以及电子设备。所述投影***包括:光源组件、成像组件和反射部件;所述成像组件包括靠近所述成像组件的出瞳位置的第一透镜;所述第一透镜具有第一部分和第二部分,所述第一部分和所述第二部分被光轴分隔开;所述光源组件发射光线中的至少主光线经过第一透镜的第一部分入射,进而被所述反射部件反射形成的反射光线中的至少反射主光线经过第一透镜的第二部分出射。

Description

一种投影***以及电子设备 技术领域
本申请涉及投影技术领域,更具体地,本申请涉及一种投影***以及电子设备。
背景技术
随着极化分光型显示技术与LED光源的配合使用,使得极化分光型投影光机的体积越来越小,并逐渐发展成便于携带的微型投影光机。
极化分光型投影光机可以搭配LCOS显示屏使用,LCOS显示屏使用的是偏振光,因此,极化分光型投影光机大部分需要采用玻璃PBS棱镜***,而玻璃PBS棱镜为了保证性能的提高,一般采用的是价格昂贵的肖特SF57材料,这在成本上是一个劣势。现在一些厂家也在积极开发价格十分便宜的塑胶PBS膜用于投影光机上,虽然降低了PBS棱镜***的成本,但是极化分光型投影光机内照明与成像***彼此是分开设计的,而将照明***与成像***的光路分离的必要元件为偏光机构,这直接导致投影光机体积无法进一步缩小。
发明内容
本申请的一个目的是提供一种投影***以及电子设备新技术方案。
根据本申请实施例的第一方面,提供了一种投影***。投影***包括光源组件、成像组件和反射部件;
所述成像组件包括靠近所述成像组件的出瞳位置的第一透镜;所述第一透镜具有第一部分和第二部分,所述第一部分和所述第二部分被光轴分隔开;
所述光源组件发发射光线中的至少主光线经过第一透镜的第一部分入射,进而被所述反射部件反射形成的反射光线中的至少反射主光线经过第一透镜的第二部分出射。
可选地,所述投影***包括照明***和成像***,所述光源组件、所述成像组件构成了照明***,所述反射部件和所述成像组件构成了成像 ***,所述照明***的F/#为所述投影***的0.45~0.55倍。
可选地,所述主光线从所述第一透镜的第一部分传输至反射部件形成第一光路,所述反射主光线从所述反射部件传输至所述第二透镜的第二部分形成第二光路,所述第一光路和所述第二光路非共轴设置。
可选地,所述第一透镜的第一部分的曲率半径与所述第一透镜的第二部分的曲率半径不相等。
可选地,所述主光线从所述第一透镜的第一部分传输至反射部件以形成照明光路,所述反射主光线从所述反射部件传输至所述第一透镜的第二部分以形成成像光路;
在所述第一光路的光程小于所述第二光路的光程的情况下,所述第一透镜的第一部分的曲率半径小于第一透镜的第二部分的曲率半径。
可选地,所述成像组件包括沿光轴设置的透镜组,所述透镜组包括所述第一透镜。
可选地,所述光源组件包括光源组和合光组,所述光源组发出的光线传输至合光组,所述合光组以将接收的光线传输至第一透镜的第一部分。
可选地,所述合光组包括复合抛物面聚光器和所述光波导片,所述光波导片位于所述复合抛物面聚光器的出光侧;或者所述合光组包括全内反射透镜和光波导片,所述光波导片位于所述全内反射透镜的出光侧。
可选地,所述合光组包括三个复合抛物面聚光器或者三个所述全内反射透镜,三个所述复合抛物面聚光器或者三个所述全内反射透镜沿不同水平面设置,与三个所述复合抛物面聚光器或者三个所述全内反射透镜一一对应的光波导片的长度不相等。
可选地,所述合光组包括三个复合抛物面聚光器或者三个所述全内反射透镜,三个所述复合抛物面聚光器或者三个所述全内反射透镜沿同一水平面设置,与三个所述复合抛物面聚光器或者三个所述全内反射透镜一一对应的光波导片的长度相等。
根据本申请实施例第二方面,提供了一种电子设备。所述电子设备包括如第一方面所述的投影***。
在本申请实施例中,提供了一种投影***,实现了缩小投影***的体的目的。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其他特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1所示为成像组件的结构示意图一。
图2所示为投影***的结构示意图一。
图3所示为投影***的结构示意图二。
图4所示为投影***的结构示意图三。
图5所示为投影***的结构示意图四。
图6所示为成像组件的结构示意图二。
图7所示为现有技术投影***的结构示意图。
附图标记说明:
1、光源组件;11、光源组;12、合光组;121、准直器;122、光波导片;123、复合抛物面聚光器;124、全内反射透镜;125、二向色镜;
2、成像组件;21、第一透镜;22、第二透镜;23、第三透镜;24、第四透镜;211、第一部分;212、第二部分;
3、反射部件。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其他例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参照图7所示,现有技术的投影光机包括:光源***01、聚光机构02、偏光机构03和LCOS显示***04和成像光路***05。其中依次排列且中心点共直线的光源***01、聚光机构02及偏光机构03构成照明光路,光源***01、聚光机构02及偏光机构03的中心点所在的直线为照明光轴;依次排列且中心点共直线的成像光路***05、偏光机构03及LCOS显示***04构成成像光路,成像光路***、偏光机构及LCOS显示***的中心点所在的直线为成像光轴,成像光轴与所述照明光轴垂直。可见,目前投影光机内照明与成像***彼此是分开设计的,而将照明***与成像***的光路分离的必要元件为偏光机构(PBS),这直接导致投影光机体积无法进一步缩小。
基于上述技术问题,本申请提供了一种投影***。参照图1-图6所示,投影***包括:包括光源组件1、成像组件2和反射部件3。所述成像组件2包括靠近所述成像组件2的出瞳位置的第一透镜21;所述第一透镜21具有第一部分211和第二部分212,所述第一部分211和所述第二部分212被光轴分隔开;所述光源组件1发射光线L1中的至少主光线经过第一透镜21的第一部分入射,进而被所述反射部件3反射形成的反射光线L2中的至少反射主光线经过第一透镜21的第二部分出射。
换句话说,本申请实施例的投影***只包括了光源组件1、成像组件2和反射部件3,投影***不包含偏振机构。光源组件1发出的光线L1直 接传输至成像组件2,光线L1经过成像组件2传输至反射部件3,进而被反射部件3反射;反射后的反射光线L2经过成像组件2后出射。因此在该实施例中,光源组件1和成像组件2构成了照明***。成像组件2和反射部件3构成了成像***。照明***和成像***共享了成像组件2的架构。
在该实施例中,光源组件1发出的主光线传输至第一透镜21的第一部分211,即照明光路的入瞳位置与第一透镜21的第一部分211相对应。光源组件1发出的主光线经过第一透镜21的第一部分211进入成像组件2内部,进而在成像组件2内部传输,光源组件1发出的主光线经成像组件2传输至反射部件3。参照图1-图6所示,第一透镜21的第一部分211为第一透镜21的左侧区域,在照明光路中,光源组件1发出的主光线经过成像组件2的第一透镜21的左侧区域进入成像组件2内部,进而传输至反射部件3被反射部件3反射。
在一个具体的实施例中,光源组件1发出的光线L1经过成像组件2的第一透镜21进入成像组件2内部,其中光源组件1发出的光线包括了主光线(chiefray)及边缘光线(marginalray),其中参照图1-图5所示,光源组件1发出的光线L1经过成像组件2的第一透镜21的左侧区域进入了成像组件2内部;参照图2-图4所示,光源组件1发出的主光线经过成像组件2的第一透镜21的左侧区域进入了成像组件2内部。因此,本申请实施例提供的投影***(照明***)能够实现至少主光线经过成像组件2的第一透镜21的左侧区域进入了成像组件2内部。
其中主光线为本领域技术人员所公知的概念,即百度百科中的解释:主光束就是光线由物的边缘出射,通过孔径光阑的中心最后到达像的边缘的光束。
在该实施例中,光源模块发出的光线经过成像组件2传输至反射部件3,进而被反射部件3反射形成反射光线L2。其中反射光线L2为携带有显示光迅的光线。反射光线L2包括了反射主光线和反射边缘光线。反射主光线在传输过程中经过第一透镜21的第二部分212后被射出,可以进入用户眼中。即成像光路的出瞳位置与第一透镜21的第二部分212相对应。参照图1-图6所示,第一透镜21的第二部分212为第一瞳的右侧 区域,在成像光路中,被反射部件3反射后形成的反射主光线经过成像组件2的传输,最后经过成像组件2的第一透镜21的右侧区域出射。或者第一透镜21的第一部分211为第一透镜21的右侧区域,第一透镜21的第二部分212为第一透镜21的左侧区域。光源组件1发出的主光线经过第一透镜21的右侧区域入射,被反射部件3反射形成的反射主光线经过第一透镜21的左侧区域出射。
在一个具体的实施例中,反射部件3反射形成的反射光线L2经过成像组件2的第一透镜21出射进入人眼,其中反射部件3反射的光线包括了反射的主光线和反射的边缘光线,其中参照图1-图5所示,反射部件3反射的反射光线L2经过成像组件2的第一透镜21的右侧区域出射;参照图2-图4所示,反射部件3反射形成的反射主光线经过成像组件2的第一透镜21的右侧区域出射。因此,本申请实施例提供的投影***(成像***)能够实现至少反射的主光线经过成像组件2的第一透镜21的右侧区域进行出射。
因此在本申请实施例中,提供的投影***不包括偏振机构,缩小了投影***的体积。投影***中照明光路和成像光路共享成像组件2,照明光路的主光线从第一透镜21的第一部分211射入,成像光路的反射主光线从第一透镜21的第二部分212射出,使得照明光轴和成像光轴基本平行设置,进一步缩小了投影***的体积。
需要说明的是,光轴是成像组件2整个架构的中心轴。
在一个可选的实施例中,反射部件3可以是光阀部件。例如光阀部件属于极化分光式部件。例如光阀部件包括但不限定是LCOS显示屏,也可以是LCD显示屏。
在一个实施例中,参照图1所示,所述投影***包括照明***和成像***,光源组件1、成像组件2构成了照明***,所述反射部件3和所述成像组件2构成了成像***,所述照明***的F/#为投影***F/#的0.45~0.55倍。所述成像***的F/#为投影***F/#的0.45~0.55倍。
其中照明***(对应于照明***的入瞳)的F/#为投影***F/#的0.45~0.55倍。成像***(对应于成像***的出瞳)的F/#为投影***F/# 的0.45~0.55倍。
例如成像***的F/#为1.23,投影***的光线角度为-24°-24°。照明光路中,光线角度为-24°-0°,成像光路中,光线角度为0°-24°。换算照明与成像光路(投影***包括了照明光路和成像光路,即投影***)的F/#为2.4,成像***的F/#为1.23,照明与成像光路***的F/#与成像***的F/#关系为0.5125倍。参照图1所示,其中光线L1代表照明光路(照明***的入瞳至反射部件3)的光线,反射光线L2代表成像光路(反射部件3至出瞳)的光线,三角形A代表投影***设计的最大出瞳,三角形A1和三角形A2分别代表照明光路、成像光路可接收的入瞳与出瞳的光线角度。
本实施对投影***的F/#、以及照明光路***的F/#和成像光路***的F/#进行限定,至少使得光源组件1发出的主光线能够经过第一透镜21的第一部分211入射,以及使得被反射部件3反射形成的反射后的主光线经过第一透镜21的第二部分212出射。
在一个可选的实施例中,参照图1-图6所示,照明***的入瞳位置与成像***的出瞳位置位于同侧,且照明***的入瞳位置相较于成像***的出瞳位置更靠近第一透镜21设置,以进一步缩小投影***的体积。参照图6所示,出瞳位置和入瞳位置之间存在的高度差为h。
在一个实施例中,参照图1-图6所示,所述主光线经过所述第一透镜21的第一部分211传输至反射部件3形成照明光路,所述反射主光线经过所述反射部件3传输至所述第二透镜22的第二部分212形成成像光路,所述照明光路和所述成像光路非共轴设置。
该实施例中,光源组件1发出的主光线经过第一透镜21的第一部分211传输至反射部件3形成照明光路,即在照明光路中,主光线是从第一透镜21的第一部分211入射,进而在成像组件2内传输。反射主光线经过反射部件3传输至第二透镜22的第二部分212形成成像光路,即在成像光路中,反射主光线是从第一透镜21的第二部分212出射,即主光线的入射位置和反射主光线的出射位置不是在同一位置,即主光线并非是直进直出这样传输的。
因此本实施例提供的投影***为离轴(Off-axis)投影***,照明光 路和成像光路虽然共享使用了成像组件2,但是照明光路和成像光路是非共轴设置的,即照明光路和成像光路均偏离光轴,且照明光路和成像光路不重叠。
在一个实施例中,参照图6所示,所述第一透镜21的第一部分211的曲率半径与所述第一透镜21的第二部分212的曲率半径不相等。
在正常情况下,主光线经过第一透镜21的第一部分211传输至反射部件3形成照明光路,反射主光线经过反射部件3传输至第二透镜22的第二部分212形成成像光路,照明光路的光程和成像光路的光程是相等的,以及照明***的入瞳和成像***的出瞳具备相同的光学特性。但是光源组件1的不同架构的选择,可能导致照明***与成像***不等光程之问题,为了解决这个问题,可以将第一透镜21的第一部分211的曲率半径设置为与第一透镜21的第二部分212的曲率半径不相等。即通过将第一透镜21的第一部分211和第二部分212设置为具有不同程度的屈光度的镜片,以调整照明光路的光程和成像光路的光程,使得照明光路的光程和成像光路的光程一致。例如将最靠近照明***的入瞳位置的第一透镜21设计为自由曲面(freeform)形式的透镜,也即将最靠近成像***的出瞳位置的第一透镜21设计为自由曲面(freeform)形式的透镜。
在一个实施例中,参照图6所示,所述主光线经过所述第一透镜21的第一部分211传输至反射部件3形成照明光路,所述反射主光线经过所述反射部件3传输至所述第二透镜22的第二部分212形成成像光路;在所述照明光路的光程小于所述成像光路的光程的情况下,所述第一透镜21的第一部分211的曲率半径小于第一透镜21的第二部分212的曲率半径。
在该实施例中,照明光路的光程(入瞳光程)小于成像光路的光程,将第一透镜21的第一部分211(参照图6,方框框住的区域为第一部分211)的曲率半径设置为小于第一透镜21的第二部分212的曲率半径,以加长照明光路的光程。具体地,曲率半径影响着透镜的焦距,透镜的焦距与光路的光程相关。因此调整曲率半径的参数可以调整光路光程。
在一个实施例中,参照图1-图6所示,所述成像组件2包括沿光轴设置的透镜组,所述透镜组包括所述第一透镜21。
在该实施例中,对成像组件2的架构进行了限定,成像组件2由透镜组构成。本实施例对成像组件2的透镜组中的透镜不作特别限定,只要能够使得光源组件1发出的主光线经过第一透镜21的第一部分211入射,以及反射主光线经过第一透镜21的第二部分212出射即可。
在一个具体的实施例中,参照图1-图6所示,所述透镜组还包括沿光轴依次设置的第二透镜22、第三透镜23和第四透镜24,所述第二透镜22与所述第一透镜21相邻设置;所述第一透镜21为双凸透镜,所述第二透镜22为双凹透镜,所述第三透镜23为凹凸透镜,所述第四透镜24为凸凹透镜。
在该实施例中,在成像组件2的出瞳位置至反射部件3的方向上,透镜组依次包括第一透镜21、第二透镜22、第三透镜23和第四透镜24。第一透镜21为双凸透镜,第二透镜22为双凹透镜,第三透镜23为凹凸透镜,第四透镜24为凸凹透镜,第一透镜21、第二透镜22、第三透镜23和第四透镜24是对光线的偏折能力不同,并不会影响主光线的入射以及反射主光线的出射。因此成像组件2的架构包括但不限于是上述四个透镜。
在一个实施例中,参照图2-图5所示,所述光源组件1包括光源组11和合光组12,所述光源组11发出的光线传输至合光组12,所述合光组12以将接收的光线传输至第一透镜21的第一部分211。
在该实施例中,对光源组件1的架构进行限定,光源组件1包括光源组11和与光源组11对应设置的合光组12。例如光源组11包括第一光源、第二光源和第三光源。其中第一光源可以为发出红光的光源,第二光源可以为发出绿光的光源,第三光源可以为发出蓝光的光源。合光组12对光源组11发出的光线进行处理,处理后的光线经过第一透镜21的第一部分211入射。
在一个可选的实施例中,光源不限于LED,也可以是Lamp、Laser等。
在一个实施例中,参照图2-图5所示,所述合光组12包括复合抛物面聚光器123和所述光波导,所述光波导位于所述复合抛物面聚光器123的出光侧;
或者所述合光组12包括全内反射透镜124和光波导,所述光波导位于所述全内反射透镜124的出光侧。
在一个具体的实施例中,所述合光组包括三个复合抛物面聚光器123或者三个所述全内反射透镜124,三个所述复合抛物面聚光器123沿不同水平面设置,或者或者三个所述全内反射透镜124沿不同水平面设置;
与三个所述复合抛物面聚光器123或者三个所述全内反射透镜124一一对应的光波导片的长度不相等。
在一个具体的实施例中,所述合光组包括三个复合抛物面聚光器123或者三个所述全内反射透镜124,三个所述复合抛物面聚光器123沿同一水平面设置,或者三个所述全内反射透镜124沿同一水平面设置;
与三个所述复合抛物面聚光器123或者三个所述全内反射透镜124一一对应的光波导片的长度相等。
在一个具体的实施例中,参照图2所示,合光组12包括准直器121(Collimators)、光波导片122(Ligh/wave guides)和二向色镜125(Dichroic mirror)。光源组11发出的主光线经过准直器121变为平行光。平行光经过光波导片122的传输至二向色镜125,进而被二向色镜125反射至第一透镜21的第一部分211,主光线经过第一透镜21的第一部分211入射。在该实施例中,光源组11包括三个光源,准直器121对应于光源设置,即合光组12设置有三个准直器121。光波导片122对应于不同的准直器121设置,即合光组12设置有三个光波导片122。在该实施例中,不同准直器121的设置位置不同(准直器121并非在同一水平面设置),光波导片122的长度不一致。参照图2所示,沿光线的传输方向,设置有第一光波导片、第二光波导片和第三光波导片,第一光波导片的长度<第二光波导片的长度<第三光波导片的长度。
在一个具体的实施例中,参照图3和图4所示,合光组12采用复合抛物面聚光器123(CPC)或全内反射透镜124(TIR lens)和光波导片122对入瞳像平面(angular space)匀光的能力。参照图3所示,合光组12包括复合抛物面聚光器123(CPC)、光波导片122(Ligh/wave guides)和二向色镜125(Dichroic mirror)。参照图4所示,合光组12包括全内反射透镜124(TIR  lens)、光波导片122(Ligh/wave guides)和二向色镜125(Dichroic mirror)。在该实施例中,不同准直器121的设置位置不同(准直器121并非在同一水平面设置),光波导片122的长度不一致。参照图3和图4所示,沿光线的传输方向,设置有第一光波导片、第二光波导片和第三光波导片,第一光波导片的长度<第二光波导片的长度<第三光波导片的长度。
在一个具有的实施例中,参照图5所示,合光组12包括准直器121(Collimators)和光波导片122(Ligh/wave guides)。准直器121将光源组11发出的主光线准直为平行光,平行光经过光波导片122直接传输至第一透镜21的第一部分211,主光线经过第一透镜21的第一部分211入射。参照图5所示,沿光线的传输方向,设置有第一光波导片、第二光波导片和第三光波导片,第一光波导片的长度=第二光波导片的长度=第三光波导片的长度。
需要说明的是,合光组12包括但不限于是上述架构,合光组12还可以是采用导光柱(light guide)或波导(wave guide)达成传统合光棱镜(X-cube)将RGB三色合而为一的能力。
根据本申请实施例第二方面,提供了一种电子设备。所述电子设备包括如第一方面所述的投影***。例如电子设备可以是投影光机,或者照明光路。投影光机可以应用于便携式商务投影、小型会议演示、个人影院、野外显示投影、教育娱乐以及数码产品的输出显示等领域;或者投影***可以应用于AR设备或者VR设备。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过示例对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (11)

  1. 一种投影***,其特征在于,包括光源组件(1)、成像组件(2)和反射部件(3);
    所述成像组件(2)包括靠近所述成像组件(2)的出瞳位置的第一透镜(21);所述第一透镜(21)具有第一部分(211)和第二部分(212),所述第一部分(211)和所述第二部分(212)被光轴分隔开;
    所述光源组件(1)发射光线中的至少主光线经过第一透镜(21)的第一部分(211)入射,进而被所述反射部件(3)反射形成反射光线中的至少反射主光线经过第一透镜(21)的第二部分(212)出射。
  2. 根据权利要求1所述的投影***,其特征在于,所述投影***包括照明***和成像***,所述光源组件(1)、所述成像组件(2)构成了所述照明***,所述反射部件(3)和所述成像组件(2)构成了所述成像***,所述照明***的F/#为所述投影***的0.45~0.55倍。
  3. 根据权利要求1所述的投影***,其特征在于,所述主光线经过所述第一透镜(21)的第一部分(211)传输至所述反射部件(3)以形成照明光路;所述反射主光线经过所述反射部件(3)传输至所述第一透镜(21)的第二部分(212)以形成成像光路;所述照明光路和所述成像光路非共轴设置。
  4. 根据权利要求1所述的投影***,其特征在于,所述第一透镜(21)的第一部分(211)的曲率半径与所述第一透镜(21)的第二部分(212)的曲率半径不相等。
  5. 根据权利要求1所述的投影***,其特征在于,所述主光线经过所述第一透镜(21)的第一部分(211)传输至所述反射部件(3)形成照明光路,所述反射主光线经过所述反射部件(3)传输至所述第一透镜(21)的第二部分(212)形成成像光路;
    在所述照明光路的光程小于所述成像光路的光程的情况下,所述第一透镜(21)的第一部分(211)的曲率半径小于第一透镜(21)的第二部分(212) 的曲率半径。
  6. 根据权利要求1所述的投影***,其特征在于,所述成像组件(2)包括沿光轴设置的透镜组,所述透镜组包括所述第一透镜(21)。
  7. 根据权利要求1所述的投影***,其特征在于,所述光源组件(1)包括光源组(11)和合光组(12),所述光源组(11)发出的光线传输至合光组(12),所述合光组(12)以将接收的光线传输至第一透镜(21)的第一部分(211)。
  8. 根据权利要求7所述的投影***,其特征在于,所述合光组(12)包括复合抛物面聚光器(123)和光波导片(122),所述光波导片(122)位于所述复合抛物面聚光器(123)的出光侧;
    或者所述合光组(12)包括全内反射透镜(124)和光波导片(122),所述光波导片(122)位于所述全内反射透镜(124)的出光侧。
  9. 根据权利要求8所述的投影***,其特征在于,所述合光组包括三个复合抛物面聚光器(123)或者三个所述全内反射透镜(124),三个所述复合抛物面聚光器(123)沿不同水平面设置,或者三个所述全内反射透镜(124)沿不同水平面设置;
    与三个所述复合抛物面聚光器(123)或者三个所述全内反射透镜(124)一一对应的光波导片的长度不相等。
  10. 根据权利要求8所述的投影***,其特征在于,所述合光组包括三个复合抛物面聚光器(123)或者三个所述全内反射透镜(124),三个所述复合抛物面聚光器(123)沿同一水平面设置,或者三个所述全内反射透镜(124)沿同一水平面设置;
    与三个所述复合抛物面聚光器(123)或者三个所述全内反射透镜(124)一一对应的光波导片的长度相等。
  11. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-10任一项所述的投影***。
PCT/CN2022/101980 2022-04-28 2022-06-28 一种投影***以及电子设备 WO2023206782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210469768.8A CN114967311B (zh) 2022-04-28 2022-04-28 一种投影***以及电子设备
CN202210469768.8 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023206782A1 true WO2023206782A1 (zh) 2023-11-02

Family

ID=82979859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101980 WO2023206782A1 (zh) 2022-04-28 2022-06-28 一种投影***以及电子设备

Country Status (2)

Country Link
CN (1) CN114967311B (zh)
WO (1) WO2023206782A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167067A (zh) * 2022-05-30 2022-10-11 歌尔股份有限公司 一种投影***以及头戴设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002463A (zh) * 2004-07-23 2007-07-18 三星电子株式会社 图像显示设备
JP2013007881A (ja) * 2011-06-24 2013-01-10 Fujifilm Corp 投写用変倍光学系および投写型表示装置
CN106646884A (zh) * 2016-12-30 2017-05-10 苏州苏大维格光电科技股份有限公司 一种投影物镜及三维显示装置
WO2022012345A1 (zh) * 2020-07-15 2022-01-20 深圳光峰科技股份有限公司 一种光源***与投影***
WO2022078025A1 (zh) * 2020-10-14 2022-04-21 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2939237B2 (ja) * 1997-04-09 1999-08-25 三星電子株式会社 反射型プロジェクター
JPH10301057A (ja) * 1997-04-25 1998-11-13 Asahi Glass Co Ltd 反射型投射表示装置
US8014075B2 (en) * 2007-11-06 2011-09-06 Seiko Epson Corporation Projection type image display device
CN101487928A (zh) * 2008-01-15 2009-07-22 红蝶科技(深圳)有限公司 三色混合光源组件及投影***
CN101510044B (zh) * 2009-03-18 2010-11-17 重庆大学 一种基于光栅光调制器的微型投影显示***
CN101915995A (zh) * 2010-07-26 2010-12-15 杭州晶景光电有限公司 基于全内反射透镜均匀照明的光学投影***
US9417443B2 (en) * 2014-05-27 2016-08-16 Yi-Jou Lin Projector, projecting lens of the projector and method of projecting images
CN111381421A (zh) * 2018-12-28 2020-07-07 青岛海信激光显示股份有限公司 照明光学***及投影设备
CN111381379A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 光束整形装置和投影设备
CN211506154U (zh) * 2020-04-26 2020-09-15 杭州光粒科技有限公司 一种lcos投影显示***
CN113641068A (zh) * 2020-05-11 2021-11-12 青岛海信激光显示股份有限公司 照明装置和激光投影设备
CN112987473A (zh) * 2021-04-13 2021-06-18 杭州灵伴科技有限公司 一种微型投影显示装置以及具有它的ar显示***
CN113777870A (zh) * 2021-09-27 2021-12-10 青岛海信激光显示股份有限公司 投影光源和投影设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002463A (zh) * 2004-07-23 2007-07-18 三星电子株式会社 图像显示设备
JP2013007881A (ja) * 2011-06-24 2013-01-10 Fujifilm Corp 投写用変倍光学系および投写型表示装置
CN106646884A (zh) * 2016-12-30 2017-05-10 苏州苏大维格光电科技股份有限公司 一种投影物镜及三维显示装置
WO2022012345A1 (zh) * 2020-07-15 2022-01-20 深圳光峰科技股份有限公司 一种光源***与投影***
WO2022078025A1 (zh) * 2020-10-14 2022-04-21 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示***

Also Published As

Publication number Publication date
CN114967311B (zh) 2023-10-20
CN114967311A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US11868035B2 (en) Projection optical system and image display device with refractive optical system to form an image on a receiving surface
EP1852723B1 (en) Projection optical system and image display apparatus
US20100079733A1 (en) Optical engine and wide angle projection lens module thereof
CN111198472B (zh) 投影镜头及激光投影装置
WO2016095619A1 (zh) 直线型dlp微型投影机
JP2015215478A (ja) 投写レンズ及びプロジェクター
CN110832377A (zh) 图像显示装置和投影光学***
US6773111B2 (en) Projection type image display apparatus
US7448755B2 (en) Three-panel projection display apparatus for displaying color images
US10495959B2 (en) Projector and illumination system thereof
JP2000137204A (ja) 照明装置およびそれを用いた投射型表示装置
JP2019113842A (ja) 投影装置
WO2017020636A1 (zh) Dlp微型投影机
US9151956B2 (en) Light source system for stereoscopic projection
WO2023206782A1 (zh) 一种投影***以及电子设备
US6478430B2 (en) Illumination apparatus and projection apparatus
US8215777B2 (en) Light guide module and projection apparatus having the same
JP3414164B2 (ja) 液晶プロジェクタ
CN110456491B (zh) 投影成像***及激光投影装置
CN110456599B (zh) 投影成像***及激光投影装置
CN111487839A (zh) 光学引擎和投影设备
CN112578610B (zh) 投影镜头及激光投影设备
CN115708004A (zh) 一种镜头***和投影装置
CN115903174A (zh) 一种镜头***和投影装置
EP2096478A2 (en) Projection optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939611

Country of ref document: EP

Kind code of ref document: A1