WO2020199685A1 - 一种双远心投影镜头及投影*** - Google Patents

一种双远心投影镜头及投影*** Download PDF

Info

Publication number
WO2020199685A1
WO2020199685A1 PCT/CN2019/129570 CN2019129570W WO2020199685A1 WO 2020199685 A1 WO2020199685 A1 WO 2020199685A1 CN 2019129570 W CN2019129570 W CN 2019129570W WO 2020199685 A1 WO2020199685 A1 WO 2020199685A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
lens group
telecentric
group
Prior art date
Application number
PCT/CN2019/129570
Other languages
English (en)
French (fr)
Inventor
谭迪
高志强
杨伟樑
赵远
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2020199685A1 publication Critical patent/WO2020199685A1/zh
Priority to US17/490,687 priority Critical patent/US20220019062A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/06Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components
    • G02B9/08Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components arranged about a stop
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the invention relates to the field of projection technology, in particular to a double telecentric projection lens and a projection system.
  • the telecentric lens is mainly designed to correct the parallax of the traditional industrial lens. It can be within a certain object distance range, so that the image magnification will not change. According to its unique optical characteristics: high resolution, Ultra-wide depth of field, ultra-low distortion and unique parallel light design, etc., bring a qualitative leap in precision inspection of machine vision.
  • the bi-telecentric projection lens refers to a projection lens that includes the object-side telecentric optical path and the image-side telecentric optical path.
  • the principle is to place the aperture diaphragm on the image-side focal plane and the object-side focal plane, so that the The chief rays are parallel to the optical axis, and the combination of these two types of telecentric light paths forms a bi-telecentric imaging light path.
  • the bi-telecentric projection lens can further eliminate object-side distortion and image-side distortion, thereby further improving detection accuracy.
  • the inventor of the present invention found that the current bi-telecentric projection lens structure is relatively complicated.
  • the main technical problem solved by the embodiments of the present invention is to provide a dual-telecentric projection lens and a projection system with a simple structure.
  • a technical solution adopted in the embodiments of the present invention is to provide a bi-telecentric projection lens, which includes a first lens group, an aperture stop, and a second lens group arranged in sequence from the object side to the image side.
  • the center of the aperture stop is located at the back focus of the first lens group and the front focus of the second lens group, and the first lens group is used to receive incident parallel to the central optical axis of the first lens group And expand the projection beam;
  • the aperture stop is used to receive the projection beam emitted by the first lens group and output the projection beam to the second lens group;
  • the second lens group is used to receive the projection light beam emitted from the aperture stop, converge the projection light beam, and make the projection light beam emerge parallel to the central optical axis of the second lens group; wherein,
  • the optical power of the bi-telecentric projection lens is greater than 0.03, the object-side numerical aperture of the bi-telecentric projection lens is 1.7, and the image-side numerical aperture of the bi-telecentric projection lens is 5.95.
  • the first lens group satisfies:
  • the second lens group satisfies: among them, Is the optical power of the bi-telecentric projection lens, Is the optical power of the first lens group, Is the optical power of the second lens group.
  • the first lens group includes a first lens, a second lens, and a third lens that are sequentially arranged along a central optical axis of the first lens group; the first lens has positive refractive power, and the first lens The second lens has a positive refractive power, and the second lens has a smaller refractive power than the first lens, and the third lens has a positive refractive power or a negative refractive power.
  • the first lens satisfies:
  • the second lens satisfies:
  • the third lens satisfies: among them, Is the optical power of the first lens group, Is the optical power of the first lens, Is the optical power of the second lens, Is the optical power of the third lens.
  • the third lens is a single lens or a doublet lens.
  • the second lens group includes a fourth lens, a fifth lens, and a sixth lens that are sequentially arranged along the central optical axis of the second lens group; the fourth lens has a negative refractive power, and the The fifth lens is a meniscus lens with positive refractive power, the sixth lens has positive refractive power, and the refractive power of the sixth lens is smaller than the refractive power of the fifth lens.
  • the fourth lens satisfies:
  • the fifth lens satisfies:
  • the sixth lens satisfies: among them, Is the optical power of the second lens group, Is the optical power of the fourth lens, Is the optical power of the fifth lens, Is the optical power of the sixth lens.
  • the bi-telecentric projection lens further includes: a turning mirror, which is arranged on a side of the first lens group away from the aperture stop, and is used to turn the projection light beam so that it enters the The first lens group.
  • a turning mirror which is arranged on a side of the first lens group away from the aperture stop, and is used to turn the projection light beam so that it enters the The first lens group.
  • the turning mirror is a total internal reflection prism.
  • another technical solution adopted by the embodiment of the present invention is to provide a projection system including the above-mentioned bi-telecentric projection lens.
  • the embodiment of the present invention provides a bi-telecentric projection lens by arranging a first lens group to receive a projection beam incident parallel to the central optical axis of the first lens group.
  • the projection beam is expanded.
  • the aperture diaphragm receives the projection beam emitted by the first lens group and outputs the projection beam to the second lens group.
  • the second lens group receives the projection beam emitted from the aperture diaphragm and condenses the projection. And make the projection light beam parallel to the central optical axis of the second lens group to exit.
  • the principal rays of the object side and the image side are parallel to the optical axis, forming a bi-telecentric imaging optical path, and the structure is simple, and the illumination is uniform. Sex.
  • FIG. 1 is a schematic structural diagram of a bi-telecentric projection lens provided by one embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a bi-telecentric projection lens provided by another embodiment of the present invention.
  • Fig. 3a is the modulation transfer function of the double telecentric projection lens of Fig. 1 at a spatial frequency of 100 lp/mm;
  • Fig. 3b is the modulation transfer function of the double telecentric projection lens of Fig. 1 at a spatial frequency of 100 lp/mm after the tolerance is introduced;
  • FIG. 4 is a schematic diagram of a distortion curve of the bi-telecentric projection lens of FIG. 1;
  • FIG. 5 is a schematic diagram of field curvature curve of the bi-telecentric projection lens of FIG. 1;
  • Fig. 6 is a schematic diagram of a relative illuminance curve of the double telecentric projection lens of Fig. 1;
  • FIG. 7 is a schematic structural diagram of a projection system provided by an embodiment of the present invention.
  • the bi-telecentric projection lens in the embodiment of the present invention has a simple structure and good illumination uniformity.
  • the bi-telecentric projection lens in the embodiment of the present invention can be applied to the projection system in this embodiment, so that the structure of the system is simple and the illumination uniformity is better.
  • bi-telecentric projection lens and the projection system will be described below through embodiments.
  • FIG. 1 is a schematic structural diagram of a bi-telecentric projection lens provided by one embodiment of the present invention.
  • the bi-telecentric projection lens 100 includes a steering mirror 110, a first lens group 120, an aperture stop 130, and a second lens group 140 arranged in sequence from the object side to the image side.
  • the center of the aperture stop 130 It is located at the back focus of the first lens group 120 and the front focus of the second lens group 130.
  • the turning mirror 110 is used to turn the projection light beam so that it enters the first lens group 120
  • the first lens group 120 is used to receive the projection light beam incident parallel to the central optical axis of the first lens group 120, and perform the projection light beam
  • the aperture stop 130 is used to receive the projection beam emitted by the first lens group 120 and output the projection beam to the second lens group 140
  • the second lens group 140 is used to receive the projection beam emitted from the aperture stop 130 , Converge the projection beam, and make the projection beam emerge parallel to the central optical axis of the second lens group 140.
  • the bi-telecentric projection lens 100 has a refractive power greater than 0.03, an object-side numerical aperture of 1.7, and an image-side numerical aperture of 5.95.
  • the aperture diaphragm By placing the aperture diaphragm on the image side focal plane and the object side focal plane respectively, the principal rays of the object side and the image side are parallel to the optical axis, forming a bi-telecentric imaging optical path, and the structure is simple, and the illumination is uniform. Sex.
  • the turning mirror 110 may be a total internal reflection (TIR) prism for reflecting the light beam.
  • the steering mirror 110 may be a right angle prism.
  • the turning mirror 110 is arranged on the side of the first lens group 120 away from the aperture stop 130, and the right-angled surface of the turning mirror 110 (the right-angled surface is the side formed by the right-angle side) is opposite to the object side, and the other side of the turning mirror 110
  • the right angle surface is opposite to the first lens group 120 and perpendicular to the central optical axis of the first lens group 120.
  • the reflection angle of the inclined surface of the steering mirror 110 may be 90 degrees.
  • the turning mirror 110 is used to receive the projection beam incident from the right angle plane of the vertical turning mirror 110 and turn the projection beam so that the projection beam is parallel to the central optical axis of the first lens group 120 and enters the first lens group 120, so that The chief ray of the object is parallel to the optical axis.
  • the steering mirror 110 does not have to be a triangular lens, and may also be other prisms or plane mirrors.
  • the projection beam can enter the steering mirror 110 at other angles, and the reflection angle of the steering mirror 110 can also be other angles, as long as the projection beam finally output by the steering mirror 110 is parallel to the center of the first lens group 120 The optical axis is sufficient.
  • the bi-telecentric projection lens 100 may further include: an object plane 101.
  • the object plane 101 is used to emit a projection light beam to the turning mirror 110 and make the projection light beam perpendicularly incident on a right angle surface of the turning mirror 110.
  • the object surface 101 may be provided with a display chip to output the projected light beam.
  • the display chip may be a digital micromirror device (DMD) display chip, or a liquid crystal silicon (Liquid Crystalon Silicon, LCoS) display chip, etc.
  • the turning mirror 110 may be omitted.
  • the object plane 101 is arranged on the side of the first lens group 120 away from the aperture stop 130 and perpendicular to the central optical axis of the first lens group 120.
  • the object plane 101 directly emits the projection beam to the first lens group 120.
  • the first lens group 120 may include several optical lenses.
  • the length of the first lens group 120 is less than 12 mm and the clear aperture is less than 11.5 mm.
  • the first lens group 120 has a large positive refractive power, and the first lens group 120 satisfies: among them, Is the optical power of the bi-telecentric projection lens 100, Is the refractive power of the first lens group 120 so that the object-side numerical aperture of the bi-telecentric projection lens 100 is 1.7.
  • the first lens group 120 is used to receive the projection light beam output by the turning mirror 110, collimate and expand the projection light beam and output it to the aperture stop 130.
  • the chief ray of the central field of view of the projection beam output by the turning mirror 110 is parallel to or coincides with the central optical axis of the first lens group 120.
  • the first lens group 120 includes: a first lens 121, a second lens 122 and a third lens 123.
  • the first lens 121, the second lens 122, and the third lens 123 may be made of glass or plastic materials.
  • the first lens 121, the second lens 122 and the third lens 123 are sequentially arranged along the central optical axis of the first lens group 120 in the direction from the turning mirror 110 to the second lens group 140.
  • the central optical axes of the first lens 121, the second lens 122, and the third lens 123 coincide, so that the projection light beam emitted by the turning mirror 110 passes through the first lens 121 and the second lens 122 along the central optical axis of the first lens group 120.
  • the third lens 123 is arranged.
  • the light-emitting surface of the first lens 121 and the light-incident surface of the second lens 122 may be arranged in close fit.
  • the first lens 121 is a convex lens with positive refractive power
  • the first lens 121 satisfies:
  • the second lens 122 is a convex lens with positive refractive power.
  • the refractive power of the second lens 122 is smaller than that of the first lens 121, and the second lens 122 satisfies:
  • the third lens 123 may be a single lens or a doublet lens with positive refractive power or negative refractive power.
  • the third lens 123 is a single lens, and the third lens 123 has negative refractive power;
  • the third lens 123 is a doublet lens, and the third lens 123 has negative refractive power.
  • the third lens 123 satisfies: among them, Is the optical power of the first lens group 120, Is the optical power of the first lens 121, Is the optical power of the second lens 122, Is the refractive power of the third lens 123.
  • the object-side numerical aperture value of the bi-telecentric projection lens 100 can be guaranteed.
  • the third lens 123 when the third lens 123 is a single lens, the first lens 121 is a double convex lens, and the second lens 122 includes a convex surface facing the object surface and an adjacent next lens. Facing the plane of the image plane, the third lens 123 includes a concave surface facing the object plane and the next adjacent plane facing the image plane.
  • the third lens 123 when the third lens 123 is a doublet lens, the first lens 121 includes a plane facing the object plane and an adjacent next plane facing the image plane. Convex surface, the second lens 122 includes a convex surface facing the object surface and an adjacent next plane facing the image surface, and one of the cemented lenses of the third lens 123 includes a convex surface facing the object surface and an adjacent next surface. The convex surface of the image surface, and the other cemented lens of the third lens 123 includes a concave surface facing the object surface and the next adjacent plane facing the image surface.
  • the aperture stop 130 is disposed between the first lens group 120 and the second lens group 140, and the central optical axis of the aperture stop 130 coincides with the central optical axis of the first lens group 120 and the central optical axis of the second lens group 140.
  • the aperture stop 130 is located at the back focus of the first lens group 120 and the front focus of the second lens group 140 to form a bi-telecentric imaging optical path and stabilize the magnification of the bi-telecentric projection lens 100 without increasing the depth of field.
  • the changes change.
  • the back focus of the first lens group 120 is the focus of the first lens group 120 on the side close to the second lens group 140;
  • the front focus of the second lens group 140 is the second lens group 140 on the side close to the first lens group 120 Focus.
  • the aperture stop 130 is used to receive the projection light beam emitted from the first lens group 120 and output the projection light beam to the second lens group 140.
  • the aperture stop 130 By making the first lens group 120 and the second lens group 140 approximately symmetrical about the aperture stop 130, a deformed double Gaussian structure is formed, so that when the projection beam is propagated, the vertical axis introduced by the first lens group 120 and the second lens group 140 The aberrations (such as spherical aberration, vertical axis chromatic aberration, etc.) cancel each other out, so that the vertical axis aberration of the bi-telecentric projection lens 100 can be effectively reduced.
  • the second lens group 140 may include several optical lenses.
  • the length of the second lens group 140 is less than 9 mm, and the clear aperture is less than 7 mm.
  • the second lens group 140 has a positive refractive power, and the second lens group 140 satisfies: among them, Is the optical power of the bi-telecentric projection lens 100, Is the refractive power of the second lens group 140 so that the image-side numerical aperture of the bi-telecentric projection lens 100 is 5.95.
  • the second lens group 140 is used to receive the projection light beam output by the aperture stop 130, converge the projection light beam and make the projection light beam parallel to the central optical axis of the second lens group 140 and output.
  • the chief ray of the central field of view of the projection beam output by the aperture stop 130 is parallel to or coincides with the central optical axis of the second lens group 140.
  • the second lens group 140 includes a fourth lens 144, a fifth lens 145, and a sixth lens 146.
  • the fourth lens 144, the fifth lens 145, and the sixth lens 146 may be made of glass or plastic materials.
  • the fourth lens 144, the fifth lens 145, and the sixth lens 146 are sequentially arranged along the central optical axis of the second lens group 140 in the direction from the turning mirror 110 to the second lens group 140.
  • the central optical axes of the fourth lens 144, the fifth lens 145 and the sixth lens 146 coincide, so that the projection light beam emitted by the aperture stop 130 passes through the fourth lens 144 and the fifth lens in sequence along the central optical axis of the second lens group 140 145 and sixth lens 146.
  • the light-emitting surface of the fifth lens 145 and the light-incident surface of the sixth lens 146 may be arranged in close fit.
  • the fourth lens 144 is a concave lens with negative refractive power, and the fourth lens 144 satisfies
  • the fifth lens 145 is a meniscus lens with positive refractive power
  • the fifth lens 145 satisfies:
  • the sixth lens 146 is a convex lens with positive refractive power.
  • the refractive power of the sixth lens 146 is slightly smaller than that of the fifth lens 145, and the sixth lens satisfies: among them, Is the optical power of the second lens group 140, Is the optical power of the fourth lens 144, Is the optical power of the fifth lens 145, Is the refractive power of the sixth lens 146.
  • the fourth lens 144 is a concave lens
  • the fifth lens 145 includes a concave surface facing the object surface and an adjacent next surface.
  • the convex surface of the image surface the sixth lens 146 includes a convex surface facing the object surface and an adjacent convex surface facing the image surface.
  • the fourth lens 144 when the third lens 123 is a doublet lens, includes a concave surface facing the object surface and an adjacent next concave surface facing the image surface.
  • Concave surface the fifth lens 145 includes a concave surface facing the object surface and an adjacent convex surface facing the image surface.
  • the sixth lens 146 includes a convex surface facing the object surface and an adjacent plane facing the image surface.
  • the fifth lens 145 and the sixth lens 146 are attached to each other.
  • the bi-telecentric projection lens 100 may perform imaging on the image plane 102.
  • the image plane 102 is used to receive the projection beam emitted by the second lens group 140 to perform imaging.
  • the image plane 102 may be perpendicular to the central optical axis of the second lens group 140, so that the projection beam output by the second lens group 140 is condensed on the image plane 102, so that the resulting projection image has better illumination uniformity.
  • the bi-telecentric projection lens 100 may also include a steering structure (not shown).
  • the turning structure can be a refraction structure or a reflection structure.
  • the turning structure is provided between the second lens group 140 and the image plane 102, and is used to steer the projection beam emitted by the second lens group 140, so that the position of the image plane 102 can be flexible Set up.
  • the focal lengths of the first lens group 120 and the second lens group 140 are proportional, so that the magnification of the bi-telecentric projection lens 100 is 3.5.
  • the object-side telecentricity of the bi-telecentric projection lens 100 is less than 0.8°, and the image-side telecentricity is less than 1.8°.
  • FIG. 3a is a schematic diagram of the modulation transfer function (MTF) of the bi-telecentric projection lens of FIG. 1 at a spatial frequency of 100 lp/mm.
  • MTF modulation transfer function
  • FIG. 4 is a schematic diagram of a distortion curve of the bi-telecentric projection lens of FIG. It can be seen from FIG. 4 that the amount of distortion of the bi-telecentric projection lens 100 changes very little, within 0.5%.
  • FIG. 5 is a schematic diagram of a field curvature curve of the bi-telecentric projection lens of FIG. 1. It can be seen from FIG. 5 that the curvature of field of the bi-telecentric projection lens 100 is less than 0.05 mm.
  • FIG. 6 is a schematic diagram of the relative illuminance curve of the bi-telecentric projection lens of FIG. 1. It can be seen from FIG. 6 that the relative illuminance of the bi-telecentric projection lens 100 is greater than 92%.
  • the working process of the bi-telecentric projection lens 100 is roughly as follows: after the incident projection beam is turned by the turning mirror 110, the projection beam of the first lens group 120 is incident parallel to the central optical axis of the first lens group 120, and the first After the lens group 120 expands the projection light beam, the projection light beam passes through the aperture stop 130 and enters the second lens group 140.
  • the second lens group 140 condenses the projection light beam and makes the projection light beam parallel to the central optical axis of the second lens group 140. , Thereby performing imaging on the image plane 102.
  • the bi-telecentric projection lens 100 receives the projection beam incident parallel to the central optical axis of the first lens group 120 by setting the first lens group 120, and expands the projection beam.
  • the aperture stop 130 receives the first
  • the projection light beam emitted from the lens group 120 is output to the second lens group 140.
  • the second lens group 140 receives the projection light beam emitted from the aperture stop 130, condenses the projection light beam, and makes the projection light beam parallel to the second lens group.
  • the central optical axis of the lens group 140 emits.
  • the principal rays of the object side and the image side are parallel to the optical axis, forming a bi-telecentric imaging optical path, and the structure is simple, and the illumination is uniform. Sex.
  • FIG. 7 is a schematic structural diagram of a projection system provided by an embodiment of the present invention.
  • the projection system 200 includes the bi-telecentric projection lens 100 in the first embodiment.
  • the projection system 200 may further include: an illumination module 210.
  • the illumination module 210 may be a laser light source, such as a fiber coupled laser light source, a diode laser light source, or a solid laser light source, and so on.
  • the illumination module 210 may include a red laser light source, a green laser light source, and a blue laser light source.
  • the illumination module 210 can make the bi-telecentric projection lens 100 most truly reproduce the rich and gorgeous colors of the objective world, and provide more Shocking expressiveness.
  • the illumination module 210 is provided on the light incident side of the bi-telecentric projection lens 100, and the illumination module 210 is used to provide an illumination beam for the bi-telecentric projection lens 100.
  • the relative position of the illumination module 210 and the bi-telecentric projection lens 100 can be determined by the illumination The incident direction of the light beam is determined.
  • the projection system 200 is provided with a bi-telecentric projection lens 100 with a simple structure and good illuminance uniformity, so that the entire projection system 200 has a simple structure, good illuminance uniformity, and fixed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

一种双远心投影镜头(100)及包括双远心投影镜头(100)的投影***(200)。双远心投影镜头(100)包括从物方到像方依次设置的第一透镜组(120)、孔径光阑(130)和第二透镜组(140),孔径光阑(130)的中心位于第一透镜组(120)的后焦点以及第二透镜组(140)的前焦点。第一透镜组(120)用于接收平行第一透镜组(120)的中心光轴入射的投影光束,并对投影光束扩束。孔径光阑(130)用于接收第一透镜组(120)出射的投影光束,并使其输出至第二透镜组(140)。第二透镜组(140)用于接收孔径光阑(130)出射的投影光束,会聚投影光束,并使其平行第二透镜组(140)的中心光轴出射。其中,双远心投影镜头的光焦度大于0.03,物方数值孔径为1.7。通过以上方式获得的双远心投影镜头结构简单,具有较好的照度均匀性。

Description

一种双远心投影镜头及投影***
本申请要求于2019年4月01日提交中国专利局,申请号为2019102585243,发明名称为“一种双远心投影镜头及投影***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及投影技术领域,尤其是一种双远心投影镜头及投影***。
背景技术
近十多年来,机器视觉的快速发展和不断完善,使其成为检测领域不可或缺的组成部分,而成像镜头作为机器视觉的眼睛显得尤为重要。采用传统的定焦或变焦镜头成本低,但是存在图像畸变较大的缺陷,会造成较大测量误差。
远心镜头(Telecentric Lens),主要是为纠正传统工业镜头视差而设计,它可以在一定的物距范围内,使得到的图像放大倍率不会变化,依据其独特的光学特性:高分辨率、超宽景深、超低畸变以及独有的平行光设计等,给机器视觉精密检测带来质的飞跃。
双远心投影镜头是指包含物方远心光路和像方远心光路的投影镜头,其原理就是将孔径光阑分别放置于像方焦平面和物方焦平面,使得物方和像方的主光线都平行于光轴,将这两种远心光路结合起来就构成了双远心成像光路。双远心投影镜头能够进一步消除物方畸变和像方畸变,从而进一步提高检测精度。
本发明的发明人在实现本发明实施例的过程中发现:目前的双远心投影镜头结构较为复杂。
发明内容
本发明实施例主要解决的技术问题是提供一种双远心投影镜头及投影***,结构简单。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种双远心投影镜头,包括从物方到像方依次设置的第一透镜组、孔径光阑和第二透镜组,所述孔径光阑的中心位于所述第一透镜组的后焦点、以及所述第二透镜 组的前焦点,所述第一透镜组用于接收平行所述第一透镜组的中心光轴入射的投影光束,并对所述投影光束进行扩束;所述孔径光阑用于接收所述第一透镜组出射的所述投影光束,并使所述投影光束输出至所述第二透镜组;所述第二透镜组用于接收从所述孔径光阑出射的所述投影光束,会聚所述投影光束,并使所述投影光束平行所述第二透镜组的中心光轴出射;其中,所述双远心投影镜头的光焦度大于0.03,所述双远心投影镜头的物方数值孔径为1.7,所述双远心投影镜头的像方数值孔径为5.95。
可选地,所述第一透镜组满足:
Figure PCTCN2019129570-appb-000001
所述第二透镜组满足:
Figure PCTCN2019129570-appb-000002
其中,
Figure PCTCN2019129570-appb-000003
为所述双远心投影镜头的光焦度,
Figure PCTCN2019129570-appb-000004
为所述第一透镜组的光焦度,
Figure PCTCN2019129570-appb-000005
为所述第二透镜组的光焦度。
可选地,所述第一透镜组包括沿所述第一透镜组的中心光轴依次设置的第一透镜、第二透镜和第三透镜;所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,且所述第二透镜的光焦度小于所述第一透镜的光焦度,所述第三透镜具有正光焦度或者负光焦度。
可选地,所述第一透镜满足:
Figure PCTCN2019129570-appb-000006
所述第二透镜满足:
Figure PCTCN2019129570-appb-000007
所述第三透镜满足:
Figure PCTCN2019129570-appb-000008
其中,
Figure PCTCN2019129570-appb-000009
为所述第一透镜组的光焦度,
Figure PCTCN2019129570-appb-000010
为所述第一透镜的光焦度,
Figure PCTCN2019129570-appb-000011
为所述第二透镜的光焦度,
Figure PCTCN2019129570-appb-000012
为所述第三透镜的光焦度。
可选地,所述第三透镜为单透镜或双胶合透镜。
可选地,所述第二透镜组包括沿所述第二透镜组的中心光轴依次设置的第四透镜、第五透镜和第六透镜;所述第四透镜具有负光焦度,所述第五透镜为具有正光焦度的弯月型透镜,所述第六透镜具有正光焦度,并且所述第六透镜的光焦度小于所述第五透镜的光焦度。
可选地,所述第四透镜满足:
Figure PCTCN2019129570-appb-000013
所述第五透镜满足:
Figure PCTCN2019129570-appb-000014
所述第六透镜满足:
Figure PCTCN2019129570-appb-000015
其中,
Figure PCTCN2019129570-appb-000016
为所述第二透镜组的光焦度,
Figure PCTCN2019129570-appb-000017
为所述第四透镜的光焦度,
Figure PCTCN2019129570-appb-000018
为所述第五透镜的光焦度,
Figure PCTCN2019129570-appb-000019
为所述第六透镜的光焦度。
可选地,所述双远心投影镜头还包括:转向镜,设于所述第一透镜组远离所述孔径光阑的一侧,用于将所述投影光束转向,以使其入射所述第一透镜组。
可选地,所述转向镜为全内反射棱镜。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种投影***,包括上述的双远心投影镜头。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例提供一种双远心投影镜头通过设置第一透镜组接收平行第一透镜组的中心光轴入射的投影光束,并对投影光束进行扩束,孔径光阑接收第一透镜组出射的投影光束,并使该投影光束输出至第二透镜组,第二透镜组接收从孔径光阑出射的投影光束,会聚该投影光束,并使该投影光束平行第二透镜组的中心光轴出射。通过将孔径光阑分别放置于像方焦平面和物方焦平面,使得物方和像方的主光线都平行于光轴,构成双远心成像光路,并且结构简单,具有较好的照度均匀性。
附图说明
一个或多个实施通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种双远心投影镜头的结构示意图;
图2为本发明另一实施例提供的一种双远心投影镜头的结构示意图;
图3a为图1的双远心投影镜头在空间频率100lp/mm时的调制传递函数;
图3b为图1的双远心投影镜头引入公差后在空间频率100lp/mm时的调制传递函数;
图4为图1的双远心投影镜头的畸变曲线示意图;
图5为图1的双远心投影镜头的场曲曲线示意图;
图6为图1的双远心投影镜头的相对照度曲线示意图;
图7为本发明实施例提供的一种投影***的结构示意图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例中的双远心投影镜头,结构简单,并且具有较好的照度均匀性。
本发明实施例中的双远心投影镜头,能够应用于本实施例中的投影***,以使***的结构简单,并且具有更好的照度均匀性。
具体地,下面将通过实施例对双远心投影镜头和投影***进行阐述。
实施例一
请参阅图1,为本发明其中一实施例提供的一种双远心投影镜头的结构示意图。如图1所示,双远心投影镜头100包括从物方到像方依次设置的:转向镜110、第一透镜组120、孔径光阑130和第二透镜组140,孔径光阑130的中心 位于第一透镜组120的后焦点、以及第二透镜组130的前焦点。
其中,转向镜110用于将投影光束转向,以使其入射第一透镜组120,第一透镜组120用于接收平行第一透镜组120的中心光轴入射的投影光束,并对投影光束进行扩束,孔径光阑130用于接收第一透镜组120出射的投影光束,并使该投影光束输出至第二透镜组140,第二透镜组140用于接收从孔径光阑130出射的投影光束,会聚该投影光束,并使该投影光束平行第二透镜组140的中心光轴出射。其中,双远心投影镜头100的光焦度大于0.03,物方数值孔径为1.7,像方数值孔径为5.95。通过将孔径光阑分别放置于像方焦平面和物方焦平面,使得物方和像方的主光线都平行于光轴,构成双远心成像光路,并且结构简单,具有较好的照度均匀性。
转向镜110可以为全内反射(Total Internal Reflection,TIR)棱镜,用于对光束进行反射。其中,转向镜110可以为直角三棱镜。转向镜110设于第一透镜组120远离孔径光阑130的一侧,并且,转向镜110的其中一直角面(直角面为直角边形成的侧面)与物方相对,转向镜110的另一直角面与第一透镜组120相对、并垂直于第一透镜组120的中心光轴。其中,转向镜110的斜面的反射角度可以为90度。转向镜110用于接收垂直转向镜110的其中一直角面入射的投影光束,并将该投影光束转向,以使投影光束平行第一透镜组120的中心光轴入射第一透镜组120,从而使得物方的主光线平行于光轴。
可选地,在一些其他实施例中,转向镜110不一定为三棱透镜,还可以为其他棱镜或平面镜等等。当转向镜110为其他棱镜时,投影光束可以以其他角度入射转向镜110,转向镜110的反射角度也可以为其他角度,只要使得转向镜110最后输出的投影光束平行第一透镜组120的中心光轴即可。
可选地,如图1或图2所示,双远心投影镜头100还可以包括:物面101。物面101用于向转向镜110发射投影光束,并使得投影光束垂直入射转向镜110的其中一直角面。其中,物面101可以设有显示芯片,以输出投影光束,例如,显示芯片可以为数字微镜器件(Digital Micromirror Device,DMD)显示芯片、或硅基液晶(LiquidCrystalonSilicon,LCoS)显示芯片等等。
可选地,在一些其他实施例中,转向镜110可以省略。物面101设于第一透镜组120远离孔径光阑130的一侧,并垂直于第一透镜组120的中心光轴,物面101直接向第一透镜组120发射投影光束。
第一透镜组120可以包括若干个光学透镜。第一透镜组120的长度小于12mm,通光孔径小于11.5mm。第一透镜组120具有较大的正光焦度,并且第一透镜组120满足:
Figure PCTCN2019129570-appb-000020
其中,
Figure PCTCN2019129570-appb-000021
为双远心投影镜头100的光焦度,
Figure PCTCN2019129570-appb-000022
为第一透镜组120的光焦度,以使得双远心投影镜头100的物方数值孔径为1.7。第一透镜组120用于接收转向镜110输出的投影光束,并对投影光束进行准直扩束并输出至孔径光阑130。优选地,转向镜110输出的投影光束的中心视场主光线与第一透镜组120的中心光轴平行或者重合。
具体地,第一透镜组120包括:第一透镜121、第二透镜122和第三透镜123。第一透镜121、第二透镜122和第三透镜123可以由玻璃或塑料材料制备而成。第一透镜121、第二透镜122和第三透镜123沿第一透镜组120的中心光轴按照从转向镜110到第二透镜组140的方向依次设置。第一透镜121、第二透镜122和第三透镜123的中心光轴重合,以使得转向镜110出射的投影光束沿第一透镜组120的中心光轴依次经过第一透镜121、第二透镜122和第三透镜123。
可选地,第一透镜121的出光面与第二透镜122的入光面可以无间隙贴合设置。
其中,第一透镜121为凸透镜,具有正光焦度,并且第一透镜121满足:
Figure PCTCN2019129570-appb-000023
第二透镜122为凸透镜,具有正光焦度,第二透镜122的光焦度小于第一透镜121的光焦度,并且第二透镜122满足:
Figure PCTCN2019129570-appb-000024
第三透镜123可以为单透镜或双胶合透镜,具有正光焦度或者负光焦度,例如,如图1所示,第三透镜123为单透镜,则第三透镜123具有负光焦度;如图2所示,第三透镜123为双胶合透镜,则第三透镜123具有负光焦度。第三透镜123满足:
Figure PCTCN2019129570-appb-000025
其中,
Figure PCTCN2019129570-appb-000026
为第一透镜组120的光焦度,
Figure PCTCN2019129570-appb-000027
为第一透镜121的光焦度,
Figure PCTCN2019129570-appb-000028
为第二透镜122的光焦度,
Figure PCTCN2019129570-appb-000029
为第三透镜123的光焦度。通过以上方式,以保证双远心投影镜头100的物方数值孔径值。
其中,在本实施例中,如图1所示,当第三透镜123为单透镜时,第一透镜121为双凸透镜,第二透镜122包含一个面对物面的凸面和相邻的下一个面向像面的平面,第三透镜123包含一个面对物面的凹面和相邻的下一个面向像面的平面。
可选地,在一些其他实施例中,如图2所示,当第三透镜123为双胶合透镜时,第一透镜121包含一个面对物面的平面和相邻的下一个面向像面的凸面,第二透镜122包含一个面对物面的凸面和相邻的下一个面向像面的平面,第三透镜123的其中一胶合透镜包含一个面对物面的凸面和相邻的下一个面向像面的凸面,第三透镜123的另一胶合透镜包含一个面对物面的凹面和相邻的下一个面向像面的平面。
孔径光阑130设于第一透镜组120和第二透镜组140之间,孔径光阑130的中心光轴与第一透镜组120的中心光轴和第二透镜组140的中心光轴重合。并且,孔径光阑130位于第一透镜组120的后焦点、以及第二透镜组140的前焦点,以构成双远心成像光路,并使得双远心投影镜头100的放大倍率稳定,不随着景深的变化而变化。其中,第一透镜组120的后焦点为第一透镜组120位于靠近第二透镜组140一侧的焦点;第二透镜组140的前焦点为第二透镜组140靠近第一透镜组120一侧的焦点。孔径光阑130用于接收第一透镜组120出射的投影光束,并使投影光束输出至第二透镜组140。通过使得第一透镜组120和第二透镜组140关于孔径光阑130近似对称,形成变形双高斯结构,以使得在传播投影光束时,第一透镜组120和第二透镜组140引入的垂轴像差(例如球差、垂轴色差等)相互抵消,从而可有效地减小双远心投影镜头100的垂轴像差。
第二透镜组140可以包括若干个光学透镜。第二透镜组140的长度小于9mm,通光孔径小于7mm。第二透镜组140具有正光焦度,并且第二透镜组140满足:
Figure PCTCN2019129570-appb-000030
其中,
Figure PCTCN2019129570-appb-000031
为双远心投影镜头100的光焦度,
Figure PCTCN2019129570-appb-000032
为第二透镜组140的光焦度,以使得双远心投影镜头100的像方数值孔径为5.95。第二透镜组140用于接收孔径光阑130输出的投影光束,并对投影光束进行会聚并使投影光束平行第二透镜组140的中心光轴输出。优选地,孔径光阑130输出的投影光束的中心视场主光线与第二透镜组140的中心光轴平行或者重合。
具体地,第二透镜组140包括:第四透镜144、第五透镜145和第六透镜146。第四透镜144、第五透镜145和第六透镜146可以由玻璃或塑料材料制备而成。第四透镜144、第五透镜145和第六透镜146沿第二透镜组140的中心光轴按照从转向镜110到第二透镜组140的方向依次设置。第四透镜144、第五透镜145和第六透镜146的中心光轴重合,以使得孔径光阑130出射的投影光束沿第二透镜组140的中心光轴依次经过第四透镜144、第五透镜145和第六透镜146。
可选地,第五透镜145的出光面与第六透镜146的入光面可以无间隙贴合设置。
其中,第四透镜144为凹透镜,具有负光焦度,并且第四透镜144满足
Figure PCTCN2019129570-appb-000033
第五透镜145为弯月型透镜,具有正光焦度,并且第五透镜145满足:
Figure PCTCN2019129570-appb-000034
第六透镜146为凸透镜,具有正光焦度,第六透镜146的光焦度略小于第五透镜145的光焦度,并且第六透镜满足:
Figure PCTCN2019129570-appb-000035
其中,
Figure PCTCN2019129570-appb-000036
为第二透镜组140的光焦度,
Figure PCTCN2019129570-appb-000037
为第四透镜144的光焦度,
Figure PCTCN2019129570-appb-000038
为第五透镜145的光焦度,
Figure PCTCN2019129570-appb-000039
为第六透镜146的光焦度。通过以上方式,以保证双远心投影镜头100的像方数值孔径值。
其中,在本实施例中,如图1所示,当第三透镜123为单透镜时,第四透镜144为凹透镜,第五透镜145包含一个面对物面的凹面和相邻的下一个面向像面的凸面,第六透镜146包含一个面对物面的凸面和相邻的下一个面向像面的凸面。
可选地,在一些其他实施例中,如图1所示,当第三透镜123为双胶合透镜时,第四透镜144包含一个面对物面的凹面和相邻的下一个面向像面的凹面,第五透镜145包含一个面对物面的凹面和相邻的下一个面向像面的凸面,第六透镜146包含一个面对物面的凸面和相邻的下一个面向像面的平面,并且,第五透镜145和第六透镜146贴合设置。
可选地,如图1或图2所示,双远心投影镜头100可以在像面102进行成像。像面102用于接收第二透镜组140出射的投影光束,从而进行成像。其中, 像面102可以垂直于第二透镜组140的中心光轴,以使得第二透镜组140输出的投影光束会聚于像面102,以使得所成的投影图像具有较好的照度均匀性。
可选地,双远心投影镜头100还可以包括转向结构(图未示)。转向结构可以为折射结构或反射结构,转向结构设于第二透镜组140与像面102之间,用于对第二透镜组140出射的投影光束进行转向,从而使像面102的位置可灵活设置。
其中,在本实施例中,第一镜头组120和第二镜头组140的焦距成比例,使得双远心投影镜头100的放大倍率为3.5。并且,双远心投影镜头100的物方远心度小于0.8°,像方远心度小于1.8°。
请参阅图3a,图3a为图1的双远心投影镜头在空间频率100lp/mm时的调制传递函数(Modulation Transfer Function,MTF)示意图。从图3a可以看出,双远心投影镜头100在空间频率100lp/mm时每毫米周期的空间频率大于60%。对双远心投影镜头100通过蒙特卡洛分析方法进行公差分析,满足引入公差后,如图3b所示,双远心投影镜头在空间频率100lp/mm时每毫米周期的空间频率大于30%。
请参阅图4,图4为图1的双远心投影镜头的畸变曲线示意图。从图4可以看出,双远心投影镜头100的畸变量的变化极小,在0.5%以内。
请参阅图5,图5为图1的双远心投影镜头的场曲曲线示意图。从图5可以看出,双远心投影镜头100的场曲小于0.05mm。
请参阅图6,图6为图1的双远心投影镜头的相对照度曲线示意图。从图6可以看出,双远心投影镜头100的相对照度大于92%。
在本实施例中,双远心投影镜头100的工作过程大致为:入射的投影光束经过转向镜110转向后,平行第一透镜组120的中心光轴入射第一透镜组120投影光束,第一透镜组120对投影光束进行扩束后,投影光束经过孔径光阑130,入射第二透镜组140,第二透镜组140会聚投影光束,并使投影光束平行第二透镜组140的中心光轴出射,从而在像面102进行成像。
在本实施例中,双远心投影镜头100通过设置第一透镜组120接收平行第一透镜组120的中心光轴入射的投影光束,并对投影光束进行扩束,孔径光阑130接收第一透镜组120出射的投影光束,并使该投影光束输出至第二透镜组140,第二透镜组140接收从孔径光阑130出射的投影光束,会聚该投影光束, 并使该投影光束平行第二透镜组140的中心光轴出射。通过将孔径光阑分别放置于像方焦平面和物方焦平面,使得物方和像方的主光线都平行于光轴,构成双远心成像光路,并且结构简单,具有较好的照度均匀性。
实施例二
请参阅图7,为本发明实施例提供的一种投影***的结构示意图。如图7所示,该投影***200包括上述实施例一中的双远心投影镜头100。
可选地,该投影***200还可以包括:照明模块210。照明模块210可以为激光光源,例如光纤耦合激光光源、二极管激光光源或固体激光光源等等。照明模块210可以包括红色激光光源、绿色激光光源、蓝色激光光源,通过采用三基色激光,照明模块210能够使双远心投影镜头100最真实地再现客观世界丰富、艳丽的色彩,提供更具震撼的表现力。
其中,照明模块210设于双远心投影镜头100的入光侧,照明模块210用于为双远心投影镜头100提供照明光束,照明模块210与双远心投影镜头100的相对位置可以由照明光束的入射方向决定。
在本实施例中,投影***200通过设置结构简单、且具有较好的照度均匀性的双远心投影镜头100,使得整个投影***200的结构简单,具有较好的照度均匀性,并具有固定的倍率、高远心度、景深大等优势。
需要说明的是,本发明的说明书及其附图中给出了本发明的较佳的实施方式,但是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施方式,这些实施方式不作为对本发明内容的额外限制,提供这些实施方式的目的是使对本发明的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施方式,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种双远心投影镜头,其特征在于,包括从物方到像方依次设置的第一透镜组、孔径光阑和第二透镜组,所述孔径光阑的中心位于所述第一透镜组的后焦点、以及所述第二透镜组的前焦点,
    所述第一透镜组用于接收平行所述第一透镜组的中心光轴入射的投影光束,并对所述投影光束进行扩束;
    所述孔径光阑用于接收所述第一透镜组出射的所述投影光束,并使所述投影光束输出至所述第二透镜组;
    所述第二透镜组用于接收从所述孔径光阑出射的所述投影光束,会聚所述投影光束,并使所述投影光束平行所述第二透镜组的中心光轴出射;
    其中,所述双远心投影镜头的光焦度大于0.03,所述双远心投影镜头的物方数值孔径为1.7,所述双远心投影镜头的像方数值孔径为5.95。
  2. 根据权利要求1所述的双远心投影镜头,其特征在于,
    所述第一透镜组满足:
    Figure PCTCN2019129570-appb-100001
    所述第二透镜组满足:
    Figure PCTCN2019129570-appb-100002
    其中,
    Figure PCTCN2019129570-appb-100003
    为所述双远心投影镜头的光焦度,
    Figure PCTCN2019129570-appb-100004
    为所述第一透镜组的光焦度,
    Figure PCTCN2019129570-appb-100005
    为所述第二透镜组的光焦度。
  3. 根据权利要求2所述的双远心投影镜头,其特征在于,所述第一透镜组包括沿所述第一透镜组的中心光轴依次设置的第一透镜、第二透镜和第三透镜;
    所述第一透镜具有正光焦度,所述第二透镜具有正光焦度,且所述第二透镜的光焦度小于所述第一透镜的光焦度,所述第三透镜具有正光焦度或者负光焦度。
  4. 根据权利要求3所述的双远心投影镜头,其特征在于,
    所述第一透镜满足:
    Figure PCTCN2019129570-appb-100006
    所述第二透镜满足:
    Figure PCTCN2019129570-appb-100007
    所述第三透镜满足:
    Figure PCTCN2019129570-appb-100008
    其中,
    Figure PCTCN2019129570-appb-100009
    为所述第一透镜组的光焦度,
    Figure PCTCN2019129570-appb-100010
    为所述第一透镜的光焦度,
    Figure PCTCN2019129570-appb-100011
    为所述第二透镜的光焦度,
    Figure PCTCN2019129570-appb-100012
    为所述第三透镜的光焦度。
  5. 根据权利要求3所述的双远心投影镜头,其特征在于,所述第三透镜为单透镜或双胶合透镜。
  6. 根据权利要求2所述的双远心投影镜头,其特征在于,所述第二透镜组包括沿所述第二透镜组的中心光轴依次设置的第四透镜、第五透镜和第六透镜;
    所述第四透镜具有负光焦度,所述第五透镜为具有正光焦度的弯月型透镜,所述第六透镜具有正光焦度,并且所述第六透镜的光焦度小于所述第五透镜的光焦度。
  7. 根据权利要求6所述的双远心投影镜头,其特征在于,
    所述第四透镜满足:
    Figure PCTCN2019129570-appb-100013
    所述第五透镜满足:
    Figure PCTCN2019129570-appb-100014
    所述第六透镜满足:
    Figure PCTCN2019129570-appb-100015
    其中,
    Figure PCTCN2019129570-appb-100016
    为所述第二透镜组的光焦度,
    Figure PCTCN2019129570-appb-100017
    为所述第四透镜的光焦度,
    Figure PCTCN2019129570-appb-100018
    为所述第五透镜的光焦度,
    Figure PCTCN2019129570-appb-100019
    为所述第六透镜的光焦度。
  8. 根据权利要求1-7任一项所述的双远心投影镜头,其特征在于,所述双远心投影镜头还包括:
    转向镜,设于所述第一透镜组远离所述孔径光阑的一侧,用于将所述投影光束转向,以使其入射所述第一透镜组。
  9. 根据权利要求8所述的双远心投影镜头,其特征在于,所述转向镜为全内反射棱镜。
  10. 一种投影***,其特征在于,包括权利要求1-9任一项所述的双远心投影镜头。
PCT/CN2019/129570 2019-04-01 2019-12-28 一种双远心投影镜头及投影*** WO2020199685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/490,687 US20220019062A1 (en) 2019-04-01 2021-09-30 Double telecentric projection lens and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910258524.3 2019-04-01
CN201910258524.3A CN110058387B (zh) 2019-04-01 2019-04-01 一种双远心投影镜头及投影***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,687 Continuation US20220019062A1 (en) 2019-04-01 2021-09-30 Double telecentric projection lens and projection system

Publications (1)

Publication Number Publication Date
WO2020199685A1 true WO2020199685A1 (zh) 2020-10-08

Family

ID=67318075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129570 WO2020199685A1 (zh) 2019-04-01 2019-12-28 一种双远心投影镜头及投影***

Country Status (3)

Country Link
US (1) US20220019062A1 (zh)
CN (1) CN110058387B (zh)
WO (1) WO2020199685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057458A1 (en) * 2021-10-06 2023-04-13 Nil Technology Aps Image capture and light projection using at least one lens unit having a telecentric image plane or a telecentric object plane

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058387B (zh) * 2019-04-01 2021-04-23 广景视睿科技(深圳)有限公司 一种双远心投影镜头及投影***
CN110879456B (zh) * 2019-11-26 2022-03-25 歌尔光学科技有限公司 投影镜组、投影光学***以及增强现实设备
CN111474685B (zh) * 2020-06-01 2021-08-03 中国科学院长春光学精密机械与物理研究所 一种长焦距宽谱段消色差光学镜头
WO2022104749A1 (zh) * 2020-11-20 2022-05-27 欧菲光集团股份有限公司 光学成像***、取像模组及电子装置
CN112578571A (zh) * 2020-12-28 2021-03-30 广景视睿科技(深圳)有限公司 一种投影光学***及汽车的抬头显示装置
US11726397B2 (en) 2020-12-31 2023-08-15 Iview Displays (Shenzhen) Company Ltd. Projection apparatus
CN112731751A (zh) * 2020-12-31 2021-04-30 广景视睿科技(深圳)有限公司 一种投影设备
CN112764196B (zh) * 2021-01-08 2022-03-11 广景视睿科技(深圳)有限公司 一种双远心投影镜头及汽车的抬头显示装置
CN113933978B (zh) * 2021-11-03 2023-03-21 广东奥普特科技股份有限公司 一种远心镜头
WO2023240836A1 (en) * 2022-06-13 2023-12-21 Huawei Technologies Co., Ltd. Image-space telecentric optical lens and spectral camera comprising the same
CN115202137A (zh) * 2022-07-20 2022-10-18 Oppo广东移动通信有限公司 投影光学***、投影光学模组及电子设备
CN115639663B (zh) * 2022-12-05 2023-03-10 昂坤视觉(北京)科技有限公司 双远心镜头
CN116859557B (zh) * 2023-09-05 2024-01-05 江西联昊光电有限公司 投影镜头及投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243360A (zh) * 2005-06-14 2008-08-13 卡尔蔡司Smt股份公司 具有大孔径和平面端面的投影物镜
JP2009223085A (ja) * 2008-03-18 2009-10-01 Olympus Corp 撮像装置及びそれを用いた静脈認証装置
CN106483642A (zh) * 2016-12-14 2017-03-08 舜宇光学(中山)有限公司 一种基于机器视觉的双远心镜头
CN208580257U (zh) * 2018-07-03 2019-03-05 嘉兴中润光学科技有限公司 双远心定焦镜头
CN110058387A (zh) * 2019-04-01 2019-07-26 广景视睿科技(深圳)有限公司 一种双远心投影镜头及投影***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991329B (zh) * 2015-05-22 2017-08-25 福建浩蓝光电有限公司 一种用于工业3d扫描***的高分辨率投影镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243360A (zh) * 2005-06-14 2008-08-13 卡尔蔡司Smt股份公司 具有大孔径和平面端面的投影物镜
JP2009223085A (ja) * 2008-03-18 2009-10-01 Olympus Corp 撮像装置及びそれを用いた静脈認証装置
CN106483642A (zh) * 2016-12-14 2017-03-08 舜宇光学(中山)有限公司 一种基于机器视觉的双远心镜头
CN208580257U (zh) * 2018-07-03 2019-03-05 嘉兴中润光学科技有限公司 双远心定焦镜头
CN110058387A (zh) * 2019-04-01 2019-07-26 广景视睿科技(深圳)有限公司 一种双远心投影镜头及投影***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057458A1 (en) * 2021-10-06 2023-04-13 Nil Technology Aps Image capture and light projection using at least one lens unit having a telecentric image plane or a telecentric object plane

Also Published As

Publication number Publication date
CN110058387A (zh) 2019-07-26
US20220019062A1 (en) 2022-01-20
CN110058387B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2020199685A1 (zh) 一种双远心投影镜头及投影***
CN104570296B (zh) 超短焦投影镜头
CN110888288B (zh) 投影光学***及图像投影装置
CN105988207B (zh) 放大光学***、光学单元和投影仪设备
CN101685199B (zh) 光学引擎及其广角投影镜头模块
JP2017044914A (ja) 投射光学系および投射装置および投射システム
TWI795592B (zh) 投影鏡頭及投影機
CN111198472B (zh) 投影镜头及激光投影装置
CN210323733U (zh) 投影镜头及投影装置
CN101915980A (zh) 像方远心定焦投影镜头
CN108319002A (zh) 一种镜头
CN105759543A (zh) 投影光学***及投影装置
CN204405927U (zh) 超短焦投影镜头
CN107817593B (zh) 一种超短焦投影镜头
CN207457592U (zh) 一种超短焦投影镜头
CN109407288A (zh) 一种折反式超短焦投影镜头***
CN105759405B (zh) 能增大视场角的光学***及投影镜头
CN109254387B (zh) 投影镜头及图像输出设备
CN207663136U (zh) 一种反射式超短焦投影镜头
CN110873955A (zh) 一种投影机用超短焦镜头
CN105785553B (zh) 可小型化的短焦投影镜头
CN208937804U (zh) 一种投影机用超短焦镜头
KR20080082068A (ko) 헤드마운트 디스플레이의 광학시스템
CN115616743B (zh) 一种光学投影***及电子设备
CN116859557B (zh) 投影镜头及投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19923464

Country of ref document: EP

Kind code of ref document: A1