WO2023124807A1 - 投影设备 - Google Patents

投影设备 Download PDF

Info

Publication number
WO2023124807A1
WO2023124807A1 PCT/CN2022/136613 CN2022136613W WO2023124807A1 WO 2023124807 A1 WO2023124807 A1 WO 2023124807A1 CN 2022136613 W CN2022136613 W CN 2022136613W WO 2023124807 A1 WO2023124807 A1 WO 2023124807A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
group
lens group
light
projection
Prior art date
Application number
PCT/CN2022/136613
Other languages
English (en)
French (fr)
Inventor
阴亮
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111631763.2A external-priority patent/CN114296217A/zh
Priority claimed from CN202111633706.8A external-priority patent/CN114296218A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2023124807A1 publication Critical patent/WO2023124807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present disclosure relates to the technical field of projection display, and in particular, to a projection device.
  • Projection display technology refers to a technology that controls the light source by plane image information, and uses the optical system and projection space to enlarge the image and display it on the projection screen.
  • a projection device includes a light source, an optical machine and a lens.
  • the light source is configured to emit an illumination beam.
  • the optical machine is configured to modulate the illumination beam emitted by the light source to obtain a projection beam.
  • the lens is configured to image the projection beam.
  • the lens includes a first lens group and a second lens group.
  • the first lens group is located at the light exit side of the optical machine, and is configured to form an image of the projected light beam incident on the first lens group.
  • the first lens group includes a front group lens group, a middle group lens group and a rear group lens group.
  • the rear group mirror group, the middle group mirror group and the front group mirror group are arranged in sequence along a direction away from the optical machine.
  • the rear lens group includes a first sub-lens group, a second sub-lens group and a third sub-lens group.
  • the first sub-lens group is a doublet lens group.
  • the first sub-lens group is configured to reduce vertical chromatic aberration of the lens.
  • the second sub-lens group is a triplet lens group.
  • the second sub-lens group is configured to reduce vertical chromatic aberration of the lens and correct spherical aberration of the lens.
  • the third sub-lens group is a doublet lens group.
  • the third sub-lens group is configured to correct residual coma and field curvature of the lens.
  • the first sub-lens group, the second sub-lens group and the third sub-lens group are arranged in sequence along a direction away from the optical machine.
  • the second lens group is located on the light emitting side of the first lens group.
  • the second lens group is configured to re-image the projection light beam imaged by the first lens group and reflect it to a preset position.
  • the second lens group includes a mirror.
  • the reflector includes a first surface and a second surface.
  • the first surface is close to the front group lens group and is configured to transmit the projection light beam incident on the first surface.
  • the second surface is far away from the front group lens group and is opposite to the first surface.
  • the second surface is configured to reflect a projection beam incident on the second surface.
  • FIG. 1 is a structural diagram of a projection device according to some embodiments.
  • Fig. 2 is a partial structural diagram of a projection device according to some embodiments.
  • FIG. 3 is an optical path diagram of a light source, an optical machine, and a lens in a projection device according to some embodiments;
  • FIG. 4 is an arrangement diagram of tiny mirrors in a digital micromirror device according to some embodiments.
  • Fig. 5 is another optical path diagram of a light source, an optical machine and a lens in a projection device according to some embodiments;
  • FIG. 6 is a structural diagram of another projection device according to some embodiments.
  • Fig. 7 is a structural diagram of a lens according to some embodiments.
  • Fig. 8 is a structural diagram of another lens according to some embodiments.
  • FIG. 9 is a lateral chromatic aberration graph of a lens according to some embodiments.
  • Figure 10 is a ray fan diagram according to some embodiments.
  • Figure 11 is another ray fan diagram according to some embodiments.
  • Fig. 12 is another fan diagram of rays according to some embodiments.
  • Fig. 13 is another fan diagram of rays according to some embodiments.
  • Fig. 14 is another fan diagram of rays according to some embodiments.
  • Fig. 15 is another fan diagram of rays according to some embodiments.
  • Fig. 16 is another fan diagram of rays according to some embodiments.
  • Fig. 17 is another fan diagram of rays according to some embodiments.
  • Fig. 18 is another fan diagram of rays according to some embodiments.
  • Figure 19 is yet another ray fan diagram according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • Fig. 1 is a structural diagram of a projection device according to some embodiments.
  • the projection device 100 includes a complete machine housing 40 (only part of the complete machine housing 40 is shown in FIG. 1 ), a light source 10 assembled in the complete machine housing 40 , an optical engine 20 and a lens 30 .
  • the light source 10 is configured to provide an illumination beam.
  • the optical machine 20 is configured to use an image signal to modulate the illumination beam provided by the light source 10 to obtain a projection beam.
  • the lens 30 is configured to project the projection light beam on a screen or a wall to form an image.
  • the light source 10, the light engine 20 and the lens 30 are sequentially connected along the light beam propagation direction, and each is wrapped by a corresponding housing.
  • the housings of the light source 10 , the light engine 20 and the lens 30 support the corresponding optical components and make the optical components meet certain sealing or airtight requirements.
  • Fig. 2 is a partial structural diagram of a projection device according to some embodiments.
  • one end of the optical machine 20 is connected to the light source 10, and the light source 10 and the optical machine 20 are arranged along the outgoing direction of the illumination beam of the projection device 100 (refer to the M direction in Figure 2).
  • the other end of the optical machine 20 is connected to the lens 30 , and the optical machine 20 and the lens 30 are arranged along the outgoing direction of the projection light beam of the projection device 100 (refer to the N direction in FIG. 2 ).
  • the outgoing direction M of the illuminating light beam is approximately perpendicular to the outgoing direction N of the projection light beam.
  • this connection structure can adapt to the characteristics of the optical path of the reflective light valve in the optical machine 20.
  • the length of the optical path in one dimension is beneficial to the structural arrangement of the whole machine.
  • the length of the optical path in this dimension direction will be very long, which is not conducive to the structural arrangement of the whole machine.
  • the reflective light valve will be described later.
  • the light source 10 can sequentially provide the three primary colors of light (other colors can also be added on the basis of the three primary colors of light). white light formed. Alternatively, the light source 10 can also output the three primary colors of light at the same time, continuously emitting white light.
  • the light source 10 may include a laser that emits a laser beam of at least one color, such as a red laser beam, a blue laser beam or a green laser beam.
  • the laser may comprise a monochromatic laser. That is, the laser emits a laser beam of one color.
  • the light source 10 further includes a fluorescent wheel configured to convert the color of the laser beam under the irradiation of the laser beam emitted by the laser to obtain light of other colors.
  • the monochromatic laser can cooperate with the fluorescent wheel to emit light of different colors in time sequence.
  • the laser can also be a multicolor laser. That is, the laser emits laser beams of various colors.
  • the light source 10 includes a plurality of lasers emitting laser beams of different colors.
  • Fig. 3 is an optical path diagram of a light source, an optical engine and a lens in a projection device according to some embodiments.
  • the optical machine 20 includes a lens assembly 230 , a prism assembly 240 and a digital micromirror device (Digital Micromirror Device, DMD) 250 .
  • the lens assembly 230 is located on the light emitting side of the light source 10 , and the lens assembly 230 can converge the illumination beam provided by the light source 10 to the prism assembly 240 .
  • the prism assembly 240 is located on the light emitting side of the lens assembly 230 , and the prism assembly 240 is located between the DMD 250 and the lens 30 .
  • the prism assembly 240 reflects the illumination beam to the digital micromirror device 250 , and the digital micromirror device 250 modulates the illumination beam to obtain a projection beam, and reflects the projection beam to the lens 30 . It should be noted that the projected light beam emitted by the digital micromirror device 250 enters the lens 30 through the prism assembly 240 .
  • the digital micromirror device 250 uses the image signal to modulate the illumination beam provided by the light source 10, that is, to control the projection beam to display different brightness and gray scale for different pixels of the image to be displayed, so as to finally form an optical image, Therefore, the digital micromirror device 250 is also called a light modulation device or a light valve. According to whether the light modulation device (or light valve) transmits or reflects the illumination light beam, the light modulation device can be classified into a transmissive light modulation device or a reflective light modulation device. For example, the digital micromirror device 250 shown in FIG. 3 reflects the illumination light beam, that is, it is a reflective light modulation device.
  • the liquid crystal light valve transmits the illumination beam, so it is a transmissive light modulation device.
  • the optical machine 20 can be divided into a single-chip system, a two-chip system or a three-chip system.
  • the digital micromirror device 250 is applied in a DLP (Digital Light Processing, digital light processing) projection architecture, and the optical machine 20 shown in FIG. 3 uses a DLP projection architecture.
  • the light modulation device in some embodiments of the present disclosure is a digital micromirror device 250 .
  • FIG. 4 is an arrangement diagram of tiny mirrors in a digital micromirror device according to some embodiments.
  • the digital micromirror device 250 comprises thousands of tiny mirror mirrors 2501 that can be individually driven to rotate.
  • the lens 2501) corresponds to a pixel in the projected image to be displayed.
  • the image signal can be converted into digital codes such as 0 and 1 after being processed, and the tiny mirror 2501 can swing in response to these digital codes. Controlling the duration of each tiny reflective mirror 2501 in the on state and the off state respectively, to realize the gray scale of each pixel in a frame of image. In this way, the digital micromirror device 250 can modulate the illuminating light beam, and then realize the display of the projected picture.
  • the open state of the tiny reflective mirror 2501 is the state where the tiny reflective mirror 2501 is and can be maintained when the illumination light beam emitted by the light source 10 is reflected by the tiny reflective mirror 2501 and can enter the lens 30 .
  • the off state of the tiny reflective mirror 2501 is the state where the tiny reflective mirror 2501 is and can be maintained when the illumination light beam emitted by the light source 10 is reflected by the tiny reflective mirror 2501 and does not enter the lens 30 .
  • Fig. 5 is another optical path diagram of a light source, an optical engine and a lens in a projection device according to some embodiments.
  • the light machine 20 further includes a light homogenizing component 210 .
  • the homogenizing component 210 is located between the light source 10 and the lens assembly 230 , the homogenizing component 210 can receive the illumination beam provided by the light source 10 and homogenize the illumination beam.
  • the uniform light component 210 may include a light pipe, and the outlet of the light pipe may be rectangular, so as to have a shaping effect on the light spot.
  • the prism assembly 240 may adopt a total internal reflection (Total Internal Reflection, TIR) prism or a refraction total internal reflection (Refraction Total Internal Reflection, RTIR) prism, or may also be other types of prisms, and this disclosure does not make any reference to this limited.
  • TIR Total Internal Reflection
  • RTIR refraction total internal reflection
  • the optical machine 20 further includes a vibrating mirror 260 .
  • the vibrating mirror 260 is located between the prism assembly 240 and the lens 30, and the vibrating mirror 260 is configured to deflect the projected light beam.
  • the projection light beam modulated by the digital micromirror device 250 is incident on the vibrating mirror 260 after passing through the prism assembly 240, and the vibrating mirror 260 includes flat glass. The flat glass can be angularly displaced.
  • the flat glass when the flat glass vibrates at a higher frequency between different placement angles, the flat glass can transmit the projection light beam modulated by the digital micromirror device 250 to different positions of the lens 30 , thereby realizing image shift. Moreover, the flat glass can cooperate with the digital micromirror device 250 to vibrate, so that high-resolution image display can be realized without changing the physical resolution of the DMD 250. In this way, when the lens 30 cooperates with the digital micromirror device 250 and the vibrating mirror 260 , 4K high-resolution image display can be realized.
  • Fig. 6 is a structural diagram of another projection device according to some embodiments.
  • the projection device 100 further includes a projection screen 60 .
  • the projection screen 60 is disposed on the light emitting path of the lens 30 and is configured to receive the projection light beam emitted by the lens 30 for image display.
  • the projection screen 60 may be a curtain or a wall, which is not limited in the present disclosure.
  • the projection light beam emitted from the lens of the projection device is projected onto a curtain or a wall, and is reflected into human eyes through the curtain or wall, so as to realize the display of the projected image.
  • the lens of the projection device such as a projector
  • the projection screen there needs to be a certain distance between the lens of the projection device (such as a projector) and the projection screen to make the projection picture clear.
  • the object will block the projection light beam emitted by the lens, so that the projection picture on the projection screen will be missing and the display effect will be affected.
  • the projection device In order to prevent the object from blocking the lens and affecting the display effect, the projection device usually adopts an ultra-short-focus lens.
  • the ultra-short-focus lens due to the short projection distance of the ultra-short-focus lens, the requirement for a large field of view and high imaging requirements, and the cost and miniaturization of the projection equipment must be considered when designing the lens, which makes the design of the lens more difficult.
  • the wavelength of the light emitted by the light source has changed from 620nm to 645nm. Since the lens has different chromatic aberrations for different wavelengths of light, the lens designed based on the wavelength within 620nm is not suitable for the wavelength within 645nm, and the projection screen of the projection device is prone to color shift.
  • some embodiments of the present disclosure provide a lens 30 .
  • the lens 30 in some embodiments of the present disclosure is described in detail below.
  • FIG. 7 is a block diagram of a lens according to some embodiments.
  • the lens 30 includes a first lens group 301 and a second lens group 302 .
  • the first lens group 301 is located at the light output side of the optical machine 20 , and the first lens group 301 is configured to form an image of the projected light beam incident on the first lens group 301 .
  • the second lens group 302 is located on the side of the first lens group 301 away from the optical machine 20 (ie, the light exit side of the first lens group 301), and the second lens group 302 is configured to project the image formed by the first lens group 301
  • the beam is imaged again, and the re-imaged projection beam is reflected to a predetermined position.
  • the preset position may refer to the position where the projection screen 60 is located.
  • the projected light beam emitted by the light valve can pass through the first lens group 301 and then pass through the first lens group 301 and the second lens group 301.
  • the first imaging is performed between the two lens groups 302
  • the second imaging is performed on the projection screen 60 at the preset position after being reflected by the second lens group 302 .
  • the projection screen 60 may be disposed on a side of the first lens group 301 away from the second lens group 302 . In this way, the distance between the lens 30 and the projection screen 60 is small, and the probability of objects appearing between the lens 30 and the projection screen 60 is small, thereby reducing the situation that the screen is blocked, saving space, and facilitating the projection device 100. miniaturization.
  • the first lens group 301 includes a rear group lens group 3011 , a middle group lens group 3012 and a front group lens group 3013 .
  • the rear group mirror group 3011 , the middle group mirror group 3012 and the front group mirror group 3013 are arranged in sequence along the direction away from the optical machine 20 .
  • the front group lens group 3013 is close to the second lens group 302
  • the middle group lens group 3012 is located on the side of the front group lens group 3013 away from the second lens group 302
  • the rear group lens group 3011 is located at the side of the middle group lens group 3012 away from the front group lens One side of the group 3013, and close to the digital micromirror device 250.
  • the optical axes of the second lens group 302 , the rear group lens group 3011 , the middle group lens group 3012 and the front group lens group 3013 are collinear with each other.
  • the rear group lens group 3011 includes a first lens 11, a second lens 12, a third lens 13, a fourth lens 14, a fifth lens 15, a sixth lens 16, a seventh lens 17, a Eight lenses 18 , a ninth lens 19 and an aperture stop 114 .
  • First lens 11, second lens 12, third lens 13, fourth lens 14, fifth lens 15, sixth lens 16, aperture stop 114, seventh lens 17, eighth lens 18, ninth lens 19 along The directions close to the second lens group 302 are arranged in sequence.
  • the aperture stop 114 is located between the sixth lens 16 and the seventh lens 17 and is configured to control the light flux of the lens 30 .
  • the diaphragm refers to an object that limits light beams in an optical system.
  • the aperture stop 114 refers to the stop that limits the imaging light beam (such as the above-mentioned projection light beam) the most in the optical system.
  • the first lens 11 , the second lens 12 , the third lens 13 , the fourth lens 14 , the fifth lens 15 , the sixth lens 16 , the seventh lens 17 , the eighth lens 18 and the ninth lens 19 are spherical lenses respectively.
  • the diopters of the first lens 11, the second lens 12, the fourth lens 14, the sixth lens 16, the seventh lens 17 and the eighth lens 18 are positive numbers respectively, and the third lens 13, the fifth lens 15 and the ninth lens 19
  • the diopters of are negative numbers. It should be noted that when light is incident from one object to another medium with a different optical density than the object, the propagation direction of the light will be deflected. This phenomenon is called refraction, and the diopter is Refers to the unit of refractive power of the medium in the refractive phenomenon.
  • the second lens 12 and the third lens 13 are cemented together to form the first sub-lens group 101 .
  • the first sub-lens group 101 is configured to reduce vertical chromatic aberration of the lens 30 .
  • the Abbe number of the second lens 12 is greater than the Abbe number of the third lens 13 , and the refractive index of the second lens 12 is smaller than that of the third lens 13 .
  • the Abbe number VD2 of the second lens 12 is any value in the range of 60-90 (60 ⁇ VD2 ⁇ 90), and the refractive index ND2 of the second lens 12 is less than 1.6 (ND2 ⁇ 1.6).
  • the Abbe number VD2 of the second lens 12 is 60, 70, 75, 80, or 90.
  • the Abbe number is also called "dispersion coefficient", and the Abbe number is an index used to represent the dispersion ability of a transparent medium.
  • the larger the refractive index of the medium the more serious the dispersion of light passing through the medium, and the smaller the Abbe number of the medium; the smaller the refractive index of the medium, the lighter the dispersion of light passing through the medium, and the smaller the Abbe number of the medium.
  • the dispersion refers to a phenomenon in which polychromatic light is decomposed into monochromatic light to form a spectrum. For example, since different colors of light correspond to different refractive indices when propagating in the medium, the different colors of light have different propagation paths when propagating in the medium, resulting in dispersion phenomenon.
  • the fourth lens 14 , the fifth lens 15 and the sixth lens 16 are cemented together to form the second sub-lens group 102 .
  • the Abbe number of the fourth lens 14 is greater than the Abbe number of the fifth lens 15
  • the Abbe number of the fifth lens 15 is smaller than the Abbe number of the sixth lens 16 .
  • the refractive index of the fourth lens 14 is smaller than that of the fifth lens 15
  • the refractive index of the fifth lens 15 is greater than that of the sixth lens 16 .
  • the Abbe number VD5 of the fifth lens 15 is any value in the range of 20-35 (20 ⁇ VD5 ⁇ 35), and the refractive index ND5 of the fifth lens 15 is greater than 1.85 (ND5>1.85).
  • the Abbe number VD6 of the sixth lens 16 is any value in the range of 60-90 (60 ⁇ VD6 ⁇ 90).
  • the Abbe number VD5 of the fifth lens 15 is 20, 25, 27, 30, or 35, and the Abbe number VD6 of the sixth lens 16 is 60, 70, 75, 80, or 90.
  • the eighth lens 18 and the ninth lens 19 are glued together to form the third sub-lens group 103 .
  • the Abbe number of the eighth lens 18 is smaller than that of the ninth lens 19 , and the refractive index of the eighth lens 18 is greater than that of the ninth lens 19 .
  • the Abbe number VD8 of the eighth lens 18 is any value in the range of 20-35 (20 ⁇ VD8 ⁇ 35), and the refractive index ND8 of the eighth lens 18 is greater than 1.7 (ND8>1.7).
  • the Abbe number VD9 of the ninth lens 19 is any value in the range of 30-60 (30 ⁇ VD9 ⁇ 60).
  • the Abbe number VD8 of the eighth lens 18 is 20, 25, 27, 30, or 35, and the Abbe number VD9 of the ninth lens 19 is 30, 40, 45, 50, or 60.
  • materials can be selected according to the Abbe number or the range of the refractive index of each lens for processing.
  • the first sub-lens group 101 , the second sub-lens group 102 and the third sub-lens group 103 are used to reduce chromatic aberration caused by light of different wavelengths, so that the spectral range of the lens 30 can reach 450nm-645nm.
  • the first sub-lens group 101 and the second sub-lens group 102 can reduce the vertical axis chromatic aberration of the lens 30, the second sub-lens group 102 can also correct the spherical aberration of the lens 30, and the third sub-lens group 103 can correct the lens 30 Residual coma and field curvature of the middle aperture stop 114. In this way, the chromatic aberration can be effectively corrected, the processing accuracy requirement of the lens 30 can be reduced, and the design and manufacture of the lens 30 can be facilitated.
  • the aperture stop 114 to limit the luminous flux of the lens 30, and make the luminous flux of the lens 30 correspond to the F-number of the lens 30, the light rays with larger aberrations at the edge positions in the projection beam can be shielded, Improve the display effect of the projection screen.
  • the F number refers to the reciprocal of the relative aperture of the lens 30 .
  • chromatic aberration refers to the difference caused by different heights on the image plane after light beams of different wavelengths in the off-axis field of view pass through the lens.
  • the spherical aberration refers to the aberration caused by the misalignment of the corresponding image points on the optical axis due to the different projection angles of the object points of the optical axis on the lens.
  • the conical light beam emitted by an off-axis object point cannot converge into a clear point at the ideal image plane after being refracted by the optical system, but a spot in the shape of a comet.
  • the imaging error of this optical system is called coma .
  • the field curvature means that after the light beam passes through the optical system, the intersection point of the light beam does not coincide with the ideal image point. Although a clear image point can be obtained at each specific point, the entire image plane is a curved surface. This phenomenon is called field curvature. song.
  • the middle group lens group 3012 includes the tenth lens 110 .
  • the tenth lens 110 may be a spherical lens, and the diopter of the tenth lens 110 is a positive number.
  • the middle group lens group 3012 is movable.
  • the middle group lens group 3012 moves along the direction of the optical axis of the middle group lens group 3012 .
  • the middle group lens group 3012 can also be aligned along the front group lens group 3012 or the rear lens group.
  • the direction of the optical axis of the group lens group 3011 or the second lens group 302 moves.
  • the front group lens group 3013 includes an eleventh lens 111 , a twelfth lens 112 and a thirteenth lens 113 .
  • the eleventh lens 111 , the twelfth lens 112 and the thirteenth lens 113 are arranged in sequence along a direction close to the second lens group 302 .
  • the eleventh lens 111 and the twelfth lens 112 may be spherical lenses, and the thirteenth lens 113 may be an aspheric lens.
  • the diopter of the eleventh lens 111 and the thirteenth lens 113 may be a positive number, and the diopter of the twelfth lens 112 may be a negative number.
  • the thirteenth lens 113 may include a concave-convex aspheric lens. Since the diameter of the aspheric lens near the second lens group 302 needs to be larger, in order to reduce the manufacturing difficulty and cost of the aspheric lens, the thirteenth lens 113 can be made of plastic material.
  • the front group lens group 3013 is movable. By adjusting the relative positions of the front group lens group 3013 and the second lens group 302 , the distortion of the lens 30 under different sizes of projection images can be corrected.
  • the distortion refers to the aberration caused by the lens having different magnifications to different parts of the object when an object is imaged by the lens.
  • astigmatism can be effectively improved and distortion corrected by disposing an aspheric lens (eg, the thirteenth lens 113 ) at a position close to the second lens group 302 .
  • an aspheric lens eg, the thirteenth lens 113
  • the second lens group 302 includes a mirror 3021 configured to reflect the projected light beam emitted by the first lens group 301 for imaging.
  • the mirror 3021 includes a first surface S1 and a second surface S2.
  • the first surface S1 and the second surface S2 are oppositely disposed, and the first surface S1 is close to the front group lens group 3013 , and the second surface S2 is away from the front group lens group 3013 .
  • the first surface S1 is configured to transmit the projection beam incident to the first surface S1.
  • the second surface S2 is configured to reflect the projection beam incident to the second surface S2.
  • the projection beam emitted by the front group mirror group 3013 passes through the first surface S1 and enters the second surface S2, and is reflected by the second surface S2 to the projection screen 60 for projection imaging.
  • the chromatic aberration can be corrected through the first surface S1 and the second surface S2 respectively, and the two surfaces can be freely designed , improve the chromatic aberration correction effect of the lens 30, and reduce the design difficulty of the two surfaces.
  • the projection beam is mainly reflected by the second surface S2
  • the energy of the projection beam is mainly concentrated on the second surface S2
  • the second surface S2 is a part of the outer surface of the lens 30, compared with the first
  • the surface S1 makes it easier to install a heat dissipation device on the second surface S2 for heat dissipation, thereby improving the service life of the lens 30 .
  • Fig. 8 is a structural diagram of another lens according to some embodiments.
  • the first surface S1 is configured to reflect the light X1 of the first wavelength band and transmit the light X2 of the second wavelength band.
  • the second surface S2 is configured to reflect the light X2 of the second wavelength band.
  • the light X1 of the first wavelength band includes red light
  • the light X2 of the second wavelength band includes green light and blue light.
  • the first surface S1 reflects the red light, transmits the green light and the blue light
  • the second surface S1 S2 reflects green and blue light. Since human eyes are less sensitive to blue light, and the energy of green light and red light in the projection device 100 is relatively high. Therefore, the first surface S1 and the second surface S2 respectively reflect the red light and the green light, which can disperse the energy of the projected light beam on the two surfaces, avoiding damage to a single surface due to large light energy, thereby improving the use of the lens 30 life. Since the energy of green light is generally higher than that of red light, it is easier to install a cooling device for heat dissipation by irradiating the green light with higher energy on the second surface S2 near the outer side of the lens 30 .
  • the reflector 3021 may be a concave reflector configured to reduce the divergence angle of the projected light beam.
  • the reflector 3021 is a concave-convex double aspheric reflector or a double free-form surface reflector.
  • the projection device 100 performs imaging through the second lens group 302, and the second lens group 302 can compress the projected light beam in a large scale to realize large-size image display.
  • the second lens group 302 compresses the projected light beam in a large proportion, distortion is likely to occur, and the use of an aspheric mirror or a free-form mirror can effectively correct astigmatism and distortion, and improve the display effect of the projected picture.
  • the concave-convex double aspheric mirror or the double free-form surface mirror can also correct chromatic aberration, thereby improving the ability of the lens 30 to correct chromatic aberration.
  • the total diopter between the first lens group 301 and the second lens group 302 in the lens 30 is a positive number to converge light.
  • the equivalent focal length F of the lens 30, the equivalent focal length FB of the rear group lens group 3011, the equivalent focal length FM of the middle group lens group 3012, the equivalent focal length FF of the front group lens group 3013, and the second lens The equivalent focal length FC of group 302 satisfies the following relationship:
  • the equivalent focal length refers to: converting the imaging angle of view on photosensitive elements of different sizes into the lens focal length corresponding to the same imaging angle of view on the 135 model camera, the converted focal length is the equivalent focal length.
  • the 135 model camera refers to a camera using 135 model film.
  • 135 film is a roll-shaped photosensitive film with a height of 35mm perforated on both sides, also known as 35mm film, or Leica (Leica) film.
  • the throw ratio of the lens 30 adopting the above-mentioned telecentric structure can be any value within the range of 0.20-0.25, for example, the throw ratio of the lens 30 is 0.20, 0.21, 0.22, 0.23, 0.24 or 0.25.
  • the lens 30 in the projection device 100 can meet the requirements of using an ultra-short-focus lens, shorten the distance between the lens 30 and the projection screen 60, and can realize image display of 70 inches to 100 inches.
  • the shortest distance L3 between the rear surface of the projection device 100 and the projection screen 60 is much smaller than the size L4 of the projection screen.
  • the telecentric architecture means that the optical path of the projection beam modulated by the light valve (such as the digital micromirror device 250 ) needs to enter the lens 30 in a direction parallel to the optical axis of the lens 30 .
  • the length L1 of the first lens group 301 and the distance L2 between the first lens group 301 and the second lens group 302 satisfy the following relationship:
  • the distance L2 between the first lens group 301 and the second lens group 302, and the back working distance BFL of the lens 30 satisfy the following relationship:
  • the back working distance BFL of the lens 30 refers to the distance between the light valve (such as the DMD 250) and the last surface of the lens 30 where the projected light beam is incident.
  • the optical system designed with the above structure can increase the back working distance BFL of the lens 30 while the size of the lens 30 is small. In this way, it is beneficial to arrange components such as the prism assembly 240 and the vibrating mirror 260, and it is beneficial to improve the resolution of the projected picture. Moreover, the structure of the lens 30 is compact.
  • the F number of lens 30 is 2.0
  • the effective focal length (Effective Focal Length, FFL) of lens 30 is 2.195mm
  • the displacement of image plane relative to optical axis is any value in the range of 140% to 150%, and the resolution of the lens can reach 93lp/mm.
  • the size of the projection screen of the device 100 can be any value in the range of 70 inches to 100 inches, and the throw ratio of the lens 30 (ie, the ratio of the projection distance to the length of the projection screen) can be any value in the range of 0.20 to 0.25.
  • the projection distance refers to the shortest distance between the lens 30 and the projection screen.
  • FIG. 9 is a graph of lateral chromatic aberration of a lens according to some embodiments.
  • the abscissa indicates lateral chromatic aberration, which can also be called vertical axis chromatic aberration, and the ordinate indicates the field of view or object height.
  • the two curves that are symmetrical about the vertical axis and located on both sides of the vertical axis are the positions of the Airy disk, and the four curves respectively represent the vertical axis chromatic aberration of light with wavelengths of 450nm, 525nm, 620nm, and 645nm. It should be noted that, since the wavelengths of the light of 620 nm and the light of 645 nm are similar, the curves corresponding to the light of 620 nm and 645 nm in FIG. 9 overlap.
  • the Airy disk refers to a light spot formed at a focal point due to diffraction when a point light source is imaged by a diffraction-limited lens.
  • a diffraction limited lens is an ideal lens without geometrical optical aberrations.
  • the size of a pixel is about 5.4 ⁇ m. Because the chromatic aberration of the light of each wavelength in Fig. 9 is less than 1.8 ⁇ m respectively, therefore, as shown in Fig. 9, the chromatic aberration of the light of red wavelength (620nm and 645nm), green wavelength (525nm) and blue wavelength (450nm) is less than or equals 0.3 pixels. In this way, in some embodiments of the present disclosure, the lens 30 can effectively improve the chromatic aberration caused by light of different colors, and the spectrum of the projection device 100 can be extended to 450nm ⁇ 645nm.
  • FIG. 10 is a ray fan diagram according to some embodiments
  • Fig. 11 is another ray fan diagram according to some embodiments
  • Fig. 12 is another ray fan diagram according to some embodiments
  • Fig. 13 is a ray fan diagram according to some embodiments Another ray fan diagram
  • FIG. 14 is another ray fan diagram according to some embodiments
  • FIG. 15 is another ray fan diagram according to some embodiments
  • FIG. 16 is another ray fan diagram according to some embodiments Figures
  • FIG. 17 is another ray fan diagram according to some embodiments
  • FIG. 18 is another ray fan diagram according to some embodiments
  • FIG. 19 is another ray fan diagram according to some embodiments.
  • Figures 10 to 19 respectively show the aberration values of light with wavelengths of 450nm, 525nm, 620nm, and 645nm on the horizontal axis and the vertical axis with the dominant wavelength light under normalized conditions of each field of view.
  • Any color can be regarded as a color formed by mixing a certain spectral color with a reference light source in a certain proportion, and the wavelength corresponding to this spectral color is the dominant wavelength.
  • the 10 graphs respectively represent 10 normalized fields of view, and the two graphs in each field of view are respectively the light fan diagrams of the lens 30 in the meridional direction and the sagittal direction,
  • the fan diagram is centered on the optical axis.
  • the horizontal axes P X and P Y in each graph represent the pupil height under the condition of the field of view, and the vertical axes EX and E Y represent the lateral aberration between each wavelength light and the main wavelength light.
  • the maximum scale used in the ten groups of light fan diagrams in Figure 10 is ⁇ 15 ⁇ m.
  • the curves corresponding to different wavelengths of light have a high degree of coincidence in each field of view, and the maximum value of the vertical axis is also small, which can effectively improve the color shift and improve the display effect of the projection screen.
  • the diffraction limit of the chromatic aberration correction of the projected image can be made within 0.3 pixels.
  • the diffraction limit means that an ideal object point is imaged by an optical system. Due to the limitation of diffraction, it is impossible to obtain an ideal image point, but a Fraunhofer diffraction image (Airy disk).
  • the aperture stop 114 by setting the aperture stop 114, the aspheric lens (the thirteenth lens 113) and the aspheric reflector or the free-form surface reflector (reflector 3021), the aberration of the large field of view can be corrected, and the performance of the lens 30 can be improved. resolution, and the lens 30 can realize high-quality image display in the spectral range of 450nm-645nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种投影设备(100),包括光源(10)、光机(20)以及镜头(30)。镜头(30)包括第一透镜组(301)和第二透镜组(302)。第一透镜组(301)包括前群镜组(3013)、中群镜组(3012)和后群镜组(3011)。后群镜组(3011)包括第一子透镜组(101)、第二子透镜组(102)和第三子透镜组(103)。第一子透镜组(101)为双胶合透镜组。第二子透镜组(102)为三胶合透镜组。第三子透镜组(103)为双胶合透镜组。第二透镜组(302)被配置为将经第一透镜组(301)成像的投影光束再次成像,并反射至预设位置。第二透镜组(302)包括反射镜(3021)。反射镜(3021)包括第一表面(S1)以及第二表面(S2)。

Description

投影设备
本申请要求于2021年12月29日提交的、申请号为202111631763.2的中国专利申请的优先权;2021年12月29日提交的、申请号为202111633706.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影显示技术领域,尤其涉及一种投影设备。
背景技术
随着投影显示技术的不断发展,投影显示产品已经从传统的商教等领域发展到作为替代电视的产品越来越受到消费者的欢迎。投影显示技术是指一种由平面图像信息控制光源,利用光学***和投影空间把图像放大并显示在投影屏幕上的技术。
发明内容
提供一种投影设备,所述投影设备包括光源、光机以及镜头。所述光源被配置为发出照明光束。所述光机被配置为将所述光源发出的照明光束进行调制以获得投影光束。所述镜头被配置为将所述投影光束进行成像。所述镜头包括第一透镜组以及第二透镜组。所述第一透镜组位于所述光机的出光侧,且被配置为将入射至所述第一透镜组的投影光束进行成像。所述第一透镜组包括前群镜组、中群镜组以及后群镜组。所述后群镜组、所述中群镜组和所述前群镜组沿远离所述光机的方向依次排布。所述后群镜组包括第一子透镜组、第二子透镜组以及第三子透镜组。所述第一子透镜组为双胶合透镜组。所述第一子透镜组被配置为降低所述镜头的垂轴色差。所述第二子透镜组为三胶合透镜组。所述第二子透镜组被配置为降低所述镜头的垂轴色差,且校正所述镜头的球差。所述第三子透镜组为双胶合透镜组。所述第三子透镜组被配置为矫正所述镜头的残余慧差和场曲。所述第一子透镜组、所述第二子透镜组以及第三子透镜组沿远离所述光机的方向依次排列。所述第二透镜组位于所述第一透镜组的出光侧。所述第二透镜组被配置为将经所述第一透镜组成像的投影光束再次成像,并反射至预设位置。所述第二透镜组包括反射镜。所述反射镜包括第一表面以及第二表面。所述第一表面靠近所述前群镜组,且被配置为透射入射至所述第一表面的投影光束。所述第二表面远离所述前群镜组,且与所述第一表面相对设置。所述第二表面被配置为反射入射至所述第二表面的投影光束。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种投影设备的结构图;
图2为根据一些实施例的一种投影设备的部分结构图;
图3为根据一些实施例的投影设备中光源、光机和镜头的光路图;
图4为根据一些实施例的一种数字微镜器件中微小反射镜片的排列图;
图5为根据一些实施例的投影设备中光源、光机和镜头的另一种光路图;
图6为根据一些实施例的另一种投影设备的结构图;
图7为根据一些实施例的镜头的结构图;
图8为根据一些实施例的另一种镜头的结构图;
图9为根据一些实施例的镜头的横向色差曲线图;
图10为根据一些实施例的光线扇面图;
图11为根据一些实施例的另一种光线扇面图;
图12为根据一些实施例的又一种光线扇面图;
图13为根据一些实施例的又一种光线扇面图;
图14为根据一些实施例的又一种光线扇面图;
图15为根据一些实施例的又一种光线扇面图;
图16为根据一些实施例的又一种光线扇面图;
图17为根据一些实施例的又一种光线扇面图;
图18为根据一些实施例的又一种光线扇面图;
图19为根据一些实施例的又一种光线扇面图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
图1为根据一些实施例的一种投影设备的结构图。
本公开一些实施例提供了一种投影设备100。如图1所示,该投影设备100包括整机壳体40(图1中仅示出部分整机壳体40),装配于整机壳体40中的光源10,光机20以及镜头30。该光源10被配置为提供照明光束。该光机20被配置为利用图像信号对光源10提供的照明光束进行调制以获得投影光束。该镜头30被配置为将投影光束投射在屏幕或墙壁上成像。
光源10、光机20和镜头30沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源10、光机20和镜头30各自的壳体对相应的光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。
图2为根据一些实施例的一种投影设备的部分结构图。
如图2所示,光机20的一端连接光源10,且光源10和光机20沿着投影设备100的照 明光束的出射方向(参照图2中的M方向)设置。光机20的另一端和镜头30连接,且光机20和镜头30沿着投影设备100的投影光束的出射方向(参照图2中的N方向)设置。照明光束的出射方向M与投影光束的出射方向N大致垂直,这种连接结构一方面可以适应光机20中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于整机的结构排布。例如,当将光源10、光机20和镜头30设置在一个维度方向(例如M方向)上时,该维度方向上光路的长度就会很长,从而不利于整机的结构排布。所述反射式光阀将在后文中描述。
在一些实施例中,光源10可以时序性地提供三基色光(也可以在三基色光的基础上增加其他色光),由于人眼的视觉暂留现象,人眼看到的是由三基色光混合形成的白光。或者,光源10也可以同时输出三基色光,持续发出白光。光源10可以包括激光器,该激光器可发出至少一种颜色的激光光束,比如红色激光光束、蓝色激光光束或绿色激光光束。
在一些实施例中,所述激光器可以包括单色激光器。也就是说,所述激光器发出一种颜色的激光光束。在这种情况下,光源10还包括荧光轮,所述荧光轮被配置为在所述激光器发出的激光光束的照射下对激光光束的颜色进行转换,以获得其他颜色的光线。这样,单色激光器可以配合荧光轮按照时序发出不同颜色的光。当然,所述激光器也可以为多色激光器。也就是说,所述激光器发出多种颜色的激光光束。或者,光源10包括多个分别发出不同颜色激光光束的激光器。
图3为根据一些实施例的投影设备中光源、光机和镜头的光路图。
光源10发出的照明光束进入光机20。如图3所示,光机20包括透镜组件230、棱镜组件240以及数字微镜器件(Digital Micromirror Device,DMD)250。透镜组件230位于光源10的出光侧,且透镜组件230可以将光源10提供的照明光束会聚至棱镜组件240。棱镜组件240位于透镜组件230的出光侧,且棱镜组件240位于数字微镜器件250与镜头30之间。棱镜组件240将照明光束反射至数字微镜器件250,数字微镜器件250对照明光束进行调制以得到投影光束,并将投影光束反射至镜头30中。需要说明的是,数字微镜器件250出射的投影光束透过棱镜组件240入射至镜头30。
光机20中,数字微镜器件250是利用图像信号对光源10提供的照明光束进行调制,即:控制投影光束针对待显示图像的不同像素显示不同的亮度和灰阶,以最终形成光学图像,因此数字微镜器件250也被称为光调制器件或光阀。根据光调制器件(或光阀)对照明光束进行透射还是进行反射,可以将光调制器件分为透射式光调制器件或反射式光调制器件。例如,图3所示的数字微镜器件250对照明光束进行反射,即为一种反射式光调制器件。而液晶光阀对照明光束进行透射,因此是一种透射式光调制器件。此外,根据光机20中使用的光调制器件的数量,可以将光机20分为单片***、双片***或三片***。
数字微镜器件250应用于DLP(Digital Light Processing,数字光处理)投影架构中,图3所示的光机20使用了DLP投影架构。本公开一些实施例中的光调制器件为数字微镜器件250。
图4为根据一些实施例的一种数字微镜器件中微小反射镜片的排列图。
如图4所示,数字微镜器件250包含成千上万个可被单独驱动以旋转的微小反射镜片2501,这些微小反射镜片2501呈阵列排布,一个微小反射镜片2501(例如每个微小反射镜片2501)对应待显示的投影画面中的一个像素。图像信号通过处理后可以转换成0、1这样的数字代码,响应于这些数字代码,微小反射镜片2501可以摆动。控制每个微小反射镜片2501在开状态和关状态分别持续的时间,来实现一帧图像中每个像素的灰阶。这样,数字微镜器件250可以对照明光束进行调制,进而实现投影画面的显示。微小反射镜片2501的开状态为光源10发出的照明光束经微小反射镜片2501反射后可以进入镜头30时,微小反射镜片2501所处且可以保持的状态。微小反射镜片2501的关状态为光源10发出的照明光束经微小反射镜片2501反射后未进入镜头30时,微小反射镜片2501所处且可以保持的状态。
图5为根据一些实施例的投影设备中光源、光机和镜头的另一种光路图。
在一些实施例中,如图5所示,光机20还包括匀光部件210。匀光部件210位于光源10与透镜组件230之间,该匀光部件210可以接收光源10提供的照明光束,并对该照明光束进行匀化。匀光部件210可以包括光导管,该光导管的出口可以为矩形,从而对光斑具有整形效果。在一些实施例中,棱镜组件240可以采用全内反射(Total Internal Reflection,TIR)棱镜或折射全反射(Refraction Total Internal Reflection,RTIR)棱镜,或者也可以为其他类型的棱镜,本公开对此不作限定。
在一些实施例中,如图3和图5所示,光机20还包括振镜260。该振镜260位于棱镜组件240和镜头30之间,且振镜260被配置为对投影光束进行偏移。例如,数字微镜器件250调制的投影光束在透过棱镜组件240后入射至振镜260,振镜260包括平板玻璃。该平板玻璃可以进行角度位移。
这样,当该平板玻璃在不同的放置角度之间以较高频率震动时,该平板玻璃可以将数字微镜器件250调制的投影光束透射至镜头30的不同位置,从而实现图像的偏移。并且,该平板玻璃可以配合数字微镜器件250进行振动,从而无需改变DMD 250物理分辨率即可实现高分辨率的图像显示。这样,在镜头30配合数字微镜器件250和振镜260的情况下,可以实现4K高分辨率的图像显示。
图6为根据一些实施例的另一种投影设备的结构图。
在一些实施例中。如图6所示,投影设备100还包括投影屏幕60。投影屏幕60设置在镜头30的出光光路上,且被配置为接收镜头30出射的投影光束以进行图像显示。例如,投影屏幕60可以为幕布,也可以为墙面,本公开对此不做限定。
通常,从投影设备的镜头出射的投影光束会投射到幕布或墙壁上,并经过幕布或墙壁反射入人眼,以实现投影画面的显示。目前,投影设备(如投影仪)的镜头与投影屏幕之间需要相距一定的距离,以使投影画面清晰。然而,如果投影屏幕与镜头之间存在物体时,该物体会遮挡镜头出射的投影光束,从而使得投影屏幕上的投影画面缺失,影响显示效果。
为了避免物体遮挡镜头影响显示效果,投影设备通常采用超短焦镜头。然而,由于超短焦镜头的投影距离短,视场要求大,成像要求高,并且在设计镜头时还要考虑投影设备的成本与小型化,导致镜头的设计难度较大。另外,随着三色激光光源的广泛使用,光源发出的光线的波长由620nm变为645nm。由于镜头对不同波长的光线的色差不同,因此,基于620nm以内的波长设计的镜头并不适用于645nm以内的波长,投影设备的投影画面容易存在色偏的问题。
为了解决上述问题,本公开一些实施例提供了一种镜头30。下面详细描述本公开一些实施例中的镜头30。
图7为根据一些实施例的镜头的结构图。
在一些实施例中,如图7所示,镜头30包括第一透镜组301和第二透镜组302。第一透镜组301位于光机20的出光侧,且第一透镜组301被配置为将入射至第一透镜组301的投影光束进行成像。第二透镜组302位于第一透镜组301的远离光机20的一侧(即第一透镜组301的出光侧),且第二透镜组302被配置为将经第一透镜组301成像的投影光束再次成像,并将该再次成像的投影光束反射至预设位置。需要说明的是,所述预设位置可以指投影屏幕60所在的位置。
在本公开一些实施例中,通过采用二次成像架构的镜头30,光阀(如数字微镜器件250)出射的投影光束在通过第一透镜组301后,可以在第一透镜组301和第二透镜组302之间进行第一次成像,并在经第二透镜组302反射后,在所述预设位置处的投影屏幕60上进行第二次成像。投影屏幕60可以设置于第一透镜组301的背离第二透镜组302的一侧。这样,镜头30与投影屏幕60之间的距离较小,物体出现在镜头30与投影屏幕60之间的概率较小,从而可以减少画面被遮挡的情况,节省使用空间,有利于投影设备100的小型化。
在一些实施例中,如图7所示,第一透镜组301包括后群镜组3011、中群镜组3012和前群镜组3013。后群镜组3011、中群镜组3012和前群镜组3013沿远离光机20的方向依次排布。前群镜组3013靠近第二透镜组302,中群镜组3012位于前群镜组3013的远离第 二透镜组302的一侧,后群镜组3011位于中群镜组3012的远离前群镜组3013的一侧,且靠近数字微镜器件250。并且,第二透镜组302与后群镜组3011、中群镜组3012以及前群镜组3013的光轴互相共线。
例如,如图7所示,后群镜组3011包括第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16、第七透镜17、第八透镜18、第九透镜19以及孔径光阑114。第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16、孔径光阑114、第七透镜17、第八透镜18、第九透镜19沿靠近第二透镜组302的方向依次设置。孔径光阑114位于第六透镜16和第七透镜17之间,且被配置为控制镜头30的光通量。
所述光阑是指光学***中对光束起限制作用的物体。如,透镜的边缘或框架等。而孔径光阑114是指在光学***中限制成像光束(如上述投影光束)最多的光阑。
第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16、第七透镜17、第八透镜18和第九透镜19分别为球面透镜。
第一透镜11、第二透镜12、第四透镜14、第六透镜16、第七透镜17和第八透镜18的屈光度分别为正数,第三透镜13、第五透镜15和第九透镜19的屈光度分别为负数。需要说明的是,当光线由一种物体入射至另一种与该物体的光密度不同的介质时,光线的传播方向会产生偏折,这种现象称为屈光现象,而所述屈光度是指该屈光现象中的介质的屈光能力的单位。
在一些实施例中,如图7所示,第二透镜12和第三透镜13互相胶合,以构成第一子透镜组101。第一子透镜组101被配置为降低镜头30的垂轴色差。第二透镜12的阿贝数大于第三透镜13的阿贝数,第二透镜12的折射率小于第三透镜13的折射率。例如,第二透镜12的阿贝数VD2为60~90范围中的任一值(60<VD2<90),且第二透镜12的折射率ND2小于1.6(ND2<1.6)。例如,第二透镜12的阿贝数VD2为60、70、75、80或90等。
需要说明的是,阿贝数也称“色散系数”,所述阿贝数是一种用于表示透明介质色散能力的指数。一般来说,介质的折射率越大,经过该介质的光线的色散越严重,该介质的阿贝数越小;介质的折射率越小,经过该介质的光线的色散越轻微,该介质的阿贝数越大。所述色散是指一种复色光分解为单色光以形成光谱的现象。如,由于不同颜色的光线在介质中传播时对应不同的折射率,因此不同颜色的光线在介质中传播时具有不同的传播路径,从而产生色散现象。
在一些实施例中,如图7所示,第四透镜14、第五透镜15和第六透镜16互相胶合,以构成第二子透镜组102。第四透镜14的阿贝数大于第五透镜15的阿贝数,且第五透镜15的阿贝数小于第六透镜16的阿贝数。第四透镜14的折射率小于第五透镜15的折射率,且第五透镜15的折射率大于第六透镜16的折射率。例如,第五透镜15的阿贝数VD5为20~35范围中的任一值(20<VD5<35),且第五透镜15的折射率ND5大于1.85(ND5>1.85)。第六透镜16的阿贝数VD6为60~90范围中的任一值(60<VD6<90)。例如,第五透镜15的阿贝数VD5为20、25、27、30或35等,第六透镜16的阿贝数VD6为60、70、75、80或90等。
在一些实施例中,如图7所示,第八透镜18和第九透镜19互相胶合,以构成第三子透镜组103。第八透镜18的阿贝数小于第九透镜19的阿贝数,且第八透镜18的折射率大于第九透镜19的折射率。例如,第八透镜18的阿贝数VD8为20~35范围中的任一值(20<VD8<35),且第八透镜18的折射率ND8大于1.7(ND8>1.7)。第九透镜19的阿贝数VD9为30~60范围中的任一值(30<VD9<60)。例如,第八透镜18的阿贝数VD8为20、25、27、30或35等,第九透镜19的阿贝数VD9为30、40、45、50或60等。
需要说明的是,在进行光学设计时,可以根据上述各个透镜的阿贝数或折射率的范围选择材料,以进行加工。
在本公开一些实施例中,通过第一子透镜组101、第二子透镜组102以及第三子透镜组103以降低不同波长光线产生的色差,可以使镜头30的光谱范围达到450nm~645nm。并且, 第一子透镜组101和第二子透镜组102可以降低镜头30的垂轴色差,第二子透镜组102还可以矫正镜头30的球差,且第三子透镜组103可以矫正镜头30中孔径光阑114的残余慧差和场曲。这样,可以有效校正色差,降低镜头30的加工精度要求,便于设计和制造镜头30。
另外,通过设置孔径光阑114以限制镜头30的光通量,并使镜头30的光通量与镜头30的F数相对应,可以屏蔽投影光束中的在边缘位置处的、具有较大像差的光线,提高投影画面的显示效果。所述F数是指镜头30的相对孔径的倒数。
需要说明的是,由于在色散现象中不同颜色的光线在介质中传播时具有不同的传播路径,因此不同颜色的光线的光路之间存在的差异,这种差异导致的像差称之为色像差(简称色差)。所述垂轴色差是指轴外视场中不同波长的光束通过透镜后在像面上的高度不相同导致的差异。所述球差是指由于光轴的物点在透镜上的投射角度不同,其对应的像点在光轴上不重合而导致的像差。由轴外物点发出的锥形光束,经光学***折射后,在理想像面处不能会聚成一个清晰的点,而是一个呈彗星形状的光斑,则此光学***的成像误差称为慧差。所述场曲是指光束经过光学***后,该光束的交点与理想像点不重合,虽然在每个特定点都能得到清晰的像点,但整个像平面是一个曲面,该现象称为场曲。
在一些实施例中,如图7所示,中群镜组3012包括第十透镜110。第十透镜110可以为球面透镜,且第十透镜110的屈光度为正数。
在一些实施例中,中群镜组3012可移动。例如,中群镜组3012沿中群镜组3012的光轴的方向移动。当然,由于第二透镜组302、后群镜组3011、中群镜组3012和前群镜组3013的光轴互相共线,因此,中群镜组3012也可以沿前群镜组3012或后群镜组3011或第二透镜组302的光轴的方向移动。通过调整中群镜组3012在前群镜组3013和后群镜组3011之间的相对位置,可以对不同尺寸的投影画面进行聚焦成像。
在一些实施例中,如图7所示,前群镜组3013包括第十一透镜111、第十二透镜112和第十三透镜113。第十一透镜111、第十二透镜112和第十三透镜113沿靠近第二透镜组302的方向依次设置。第十一透镜111和第十二透镜112可以为球面透镜,第十三透镜113可以为非球面透镜。第十一透镜111和第十三透镜113的屈光度可以为正数,第十二透镜112的屈光度可以为负数。
在一些实施例中,第十三透镜113可以包括凹凸非球面透镜。由于靠近第二透镜组302的非球面透镜的口径需要较大,因此,为了降低非球面透镜的制作难度和成本,第十三透镜113可以采用塑胶材质。
在一些实施例中,前群镜组3013可移动。通过调整前群镜组3013与第二透镜组302的相对位置,可以校正不同尺寸的投影画面下的镜头30的畸变。所述畸变是指当一物体通过透镜进行成像时,因透镜对该物体的不同部分具有不同的放大率而导致的像差。
在本公开一些实施例中,通过将非球面透镜(如,第十三透镜113)设置在靠近第二透镜组302的位置,可以有效改善像散,并校正畸变。
在一些实施例中,如图7所示,第二透镜组302包括反射镜3021,反射镜3021被配置为反射第一透镜组301出射的投影光束以进行成像。通过设置反射镜3021,可以折叠镜头30的光路,减小镜头30的长度,从而减小镜头30的尺寸。反射镜3021包括第一表面S1和第二表面S2。第一表面S1和第二表面S2相对设置,且第一表面S1靠近前群镜组3013,第二表面S2远离前群镜组3013。
第一表面S1被配置为透射入射至第一表面S1的投影光束。第二表面S2被配置为反射入射至第二表面S2的投影光束。前群镜组3013出射的投影光束透过第一表面S1入射至第二表面S2,并被第二表面S2反射至投影屏幕60,以进行投影成像。
在本公开一些实施例中,由于投影光束通过第一表面S1和第二表面S2进行二次成像,因此,可以分别通过第一表面S1和第二表面S2校正色差,并且可以自由设计两个表面,提高了镜头30的色差校正效果,降低了两个表面的设计难度。另外,由于主要通过第二表面S2反射投影光束,因此,投影光束的能量主要集中在第二表面S2上,而由于第二表面 S2为镜头30的外表面的一部分,因此,相比于第一表面S1,更容易在第二表面S2上设置散热装置,以进行散热,从而提高镜头30的使用寿命。
图8为根据一些实施例的另一种镜头的结构图。
在一些实施例中,如图8所示,第一表面S1被配置为反射第一波段的光线X1,透射第二波段的光线X2。并且,第二表面S2被配置为反射第二波段的光线X2。这样,可以通过反射镜3021的两个表面反射的不同光线(如第一波段的光线X1和第二波段的光线S2)之间的光程差进一步矫正色差,提高投影画面的显示效果。
在一些实施例中,第一波段的光线X1包括红色光,第二波段的光线X2包括绿色光和蓝色光。
在本公开一些实施例中,由于光源10中的红色光的波段扩大到645nm,红色光产生的色偏严重,因此,第一表面S1反射红色光,透射绿色光和蓝色光,且第二表面S2反射绿色光和蓝色光。由于人眼对蓝色光的敏感程度较低,且投影设备100中绿色光和红色光的能量较高。因此,第一表面S1和第二表面S2分别反射红色光和绿色光,可以将投影光束的能量分散在两个表面上,避免单个表面因受到较大光线能量而损坏,从而提高镜头30的使用寿命。由于绿色光的能量通常高于红色光,因此,使能量较高的绿色光照射在镜头30的靠近外侧的第二表面S2,更容易设置散热装置以进行散热。
在一些实施例中,反射镜3021可以为凹面反射镜,且被配置为减小投影光束的发散角度。例如,反射镜3021为凹凸双非球面反射镜或双自由曲面反射镜。
投影设备100通过第二透镜组302进行成像,且第二透镜组302可以对投影光束进行大比例压缩,以实现大尺寸的图像显示。然而,在第二透镜组302对投影光束进行大比例压缩的过程中,容易产生畸变,而采用非球面反射镜或自由曲面反射镜可以有效校正像散和畸变,提高投影画面的显示效果。
另外,由于反射镜3021的第二表面S2可以反射用于成像的投影光束,因此,凹凸双非球面反射镜或双自由曲面反射镜也可以校正色差,从而提高了镜头30的色差矫正的能力。
在一些实施例中,镜头30中的第一透镜组301和第二透镜组302之间的总屈光度为正数,以对光线进行会聚。
在一些实施例中,镜头30的等效焦距F、后群镜组3011的等效焦距FB、中群镜组3012的等效焦距FM、前群镜组3013的等效焦距FF和第二透镜组302的等效焦距FC满足以下关系:
5<|FB/F|<12;
15<|FM/F|<25;
10<|FF/F|<20;
3<|FC/F|<12。
所述等效焦距是指:将不同尺寸感光元件上成像的视角,转换为135型号相机上相同的成像视角所对应的镜头焦距,这个转换后的焦距就是等效焦距。所述135型号相机是指使用135型号胶卷的相机。135型号胶卷是一种高度为35mm的两边打孔的卷状感光胶片,也称35mm胶卷,或莱卡(Leica)型胶卷。
采用上述远心架构的镜头30的投射比可以为0.20~0.25范围内的任一值,如,镜头30的投射比为0.20、0.21、0.22、0.23、0.24或0.25。这样,投影设备100中的镜头30可以满足超短焦镜头的使用需求,缩短了镜头30与投影屏幕60之间的距离,并且可以实现70英寸~100英寸的图像显示。例如,如图6所示,投影设备100的后表面与投影屏幕60之间的最短距离L3远小于投影画面的尺寸L4。
需要说明的是,所述远心架构是指经光阀(如数字微镜器件250)调制后的投影光束的光路需要以平行于镜头30的光轴的方向入射至镜头30之中。
在一些实施例中,如图7和图8所示,第一透镜组301的长度L1、与第一透镜组301以及第二透镜组302之间的距离L2满足以下关系:
1.5<L1/L2<2。
第一透镜组301以及第二透镜组302之间的距离L2、与镜头30的后工作距离BFL满足以下关系:
0.35<BFL/L2<0.7。
所述镜头30的后工作距离BFL是指所述光阀(如DMD 250)与镜头30中的投影光束入射的最后一个面之间的距离。
采用上述架构设计的光学***,可以在镜头30的尺寸较小的情况下,增大镜头30的后工作距离BFL。这样,利于设置棱镜组件240和振镜260等部件,利于提高投影画面的分辨率。并且,镜头30的架构紧凑。
在对上述镜头30进行光学仿真后,镜头30的F数为2.0,镜头30的有效焦距(Effective Focal Length,FFL)为2.195mm,像面相对光轴的偏移量(光阀出射的投影光束的中心与光阀的光轴之间的距离、与光阀出射的投影光束的半高度之比)为140%~150%范围内的任一值,镜头的解像力可以达到93lp/mm,该投影设备100的投影画面的尺寸可以为70英寸~100英寸范围内的任一值,镜头30的投射比(即投影距离与投影画面长度的比值)可以为0.20~0.25范围内的任一值。所述投影距离是指镜头30与投影画面之间的最短距离。
图9为根据一些实施例的镜头的横向色差曲线图。
如图9所示,横坐标表示横向色差,也可以称垂轴色差,纵坐标表示视场或物高。两条关于纵轴对称,且分别位于纵轴两侧的曲线为艾里斑所在的位置,四条曲线分别表示波长为450nm、525nm、620nm、645nm的光线的垂轴色差。需要说明的是,由于620nm的光线、645nm的光线的波长相近,因此,图9中620nm、645nm的光线对应的曲线重合。所述艾里斑是指点光源通过衍射受限透镜成像时,由于衍射而在焦点处形成的光斑。衍射受限透镜是指没有几何光学像差的理想透镜。
通常一个像素的尺寸大约在5.4μm左右。由于图9中的各个波长的光线的色差分别小于1.8μm,因此,如图9所示,红色波长(620nm和645nm)、绿色波长(525nm)和蓝色波长(450nm)的光线的色差小于或等于0.3个像素。这样,在本公开一些实施例中,镜头30可以有效改善不同颜色光线产生的色差,并投影设备100的光谱可以扩展为450nm~645nm。
图10为根据一些实施例的光线扇面图;图11为根据一些实施例的另一种光线扇面图;图12为根据一些实施例的又一种光线扇面图;图13为根据一些实施例的又一种光线扇面图;图14为根据一些实施例的又一种光线扇面图;图15为根据一些实施例的又一种光线扇面图;图16为根据一些实施例的又一种光线扇面图;图17为根据一些实施例的又一种光线扇面图;图18为根据一些实施例的又一种光线扇面图;图19为根据一些实施例的又一种光线扇面图。
图10至图19分别示出了波长为450nm、525nm、620nm、645nm的光线在归一化的各个视场条件下与主波长光线分别在横轴和纵轴上的像差值。任何一个颜色都可以看作为用某一个光谱颜色按照一定比例与一个参照光源相混合而形成的颜色,这个光谱颜色对应的波长即是主波长。
如图10至图19所示,10个图分别表示归一化的10个视场,每个视场中的两个图表分别为镜头30在子午方向上和弧矢方向上的光扇图,该光扇图以光轴为中心。每个图表中的横轴P X、P Y为该视场条件下的光瞳高度,纵轴E X、E Y为各个波长光线与主波长光线之间的横向像差。图10中的十组光扇图采用的最大尺规为±15μm。
如图10至图19所示,不同波长光线对应的曲线在各视场下的重合度较高,且纵轴最大值也较小,可以有效改善色偏,提高投影画面的显示效果。
在本公开一些实施例中,可以在显示4K高分辨率的投影图像的情况下,使投影图像的色差校正的衍射极限在0.3个像素以内。所述衍射极限是指一个理想物点经光学***成像,由于衍射的限制,不可能得到理想像点,而是得到一个夫朗和费衍射像(艾里斑)。
并且,通过设置孔径光阑114、非球面透镜(第十三透镜113)以及非球面反射镜或自由曲面反射镜(反射镜3021),可以对大视场像差进行矫正,提高了镜头30的解像力,并 且使镜头30可以在450nm~645nm光谱范围内实现高质量的图像显示。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种投影设备,包括:
    光源,所述光源被配置为发出照明光束;
    光机,所述光机被配置为将所述光源发出的照明光束进行调制以获得投影光束;以及
    镜头,所述镜头被配置为将所述投影光束进行成像;
    所述镜头包括:
    第一透镜组,位于所述光机的出光侧,所述第一透镜组被配置为将入射至所述第一透镜组的投影光束进行成像,所述第一透镜组包括:
    前群镜组;
    中群镜组;以及
    后群镜组,所述后群镜组、所述中群镜组和所述前群镜组沿远离所述光机的方向依次排布,所述后群镜组包括:
    第一子透镜组,为双胶合透镜组,所述第一子透镜组被配置为降低所述镜头的垂轴色差;
    第二子透镜组,为三胶合透镜组,所述第二子透镜组被配置为降低所述镜头的垂轴色差,且校正所述镜头的球差;以及
    第三子透镜组,为双胶合透镜组,所述第三子透镜组被配置为矫正所述镜头中的残余慧差和场曲,所述第一子透镜组、所述第二子透镜组以及第三子透镜组沿远离所述光机的方向依次排列;以及
    第二透镜组,位于所述第一透镜组的出光侧,所述第二透镜组被配置为将经所述第一透镜组成像的投影光束再次成像,并反射至预设位置,所述第二透镜组包括反射镜,所述反射镜包括:
    第一表面,靠近所述前群镜组,所述第一表面被配置为透射入射至所述第一表面的投影光束;以及
    第二表面,远离所述前群镜组,且与所述第一表面相对设置,所述第二表面被配置为反射入射至所述第二表面的投影光束。
  2. 根据权利要求1所述的投影设备,其中,所述第一表面被配置为反射第一波段的光线,透射第二波段的光线,所述第二表面被配置为反射所述第二波段的光线。
  3. 根据权利要求2所述的投影设备,其中,所述第一波段的光线包括红色光,所述第二波段的光线包括绿色光和蓝色光。
  4. 根据权利要求1至3中任一项所述的投影设备,其中,所述后群镜组包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、孔径光阑、第七透镜、第八透镜和第九透镜,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述孔径光阑、所述第七透镜、所述第八透镜和所述第九透镜沿着靠近所述第二透镜组的方向依次设置;其中
    所述第一透镜、所述第二透镜、所述第四透镜、所述第六透镜、所述第七透镜以及所述第八透镜的屈光度为正数,所述第三透镜、所述第五透镜以及所述第九透镜的屈光度为负数。
  5. 根据权利要求4所述的投影设备,其中,所述第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜分别为球面透镜。
  6. 根据权利要求4或5所述的投影设备,其中,
    所述第二透镜和所述第三透镜相互胶合,以构成所述第一子透镜组,所述第二透镜的阿贝数大于所述第三透镜的阿贝数,且所述第二透镜的折射率小于所述第三透镜的折射率;
    所述第四透镜、所述第五透镜和所述第六透镜相互胶合,以构成所述第二子透镜组,所述第四透镜的阿贝数大于所述第五透镜的阿贝数,所述第五透镜的阿贝数小于所述第六透镜的阿贝数,并且所述第四透镜的折射率小于所述第五透镜的折射率,所述第五透镜的折射率大于所述第六透镜的折射率;
    所述第八透镜和所述第九透镜相互胶合,以构成所述第三子透镜组,所述第八透镜的 阿贝数小于所述第九透镜的阿贝数,且所述第八透镜的折射率大于所述第九透镜的折射率。
  7. 根据权利要求6所述的投影设备,其中,
    所述第二透镜的阿贝数为60~90范围中的任一值,且所述第二透镜的折射率小于1.6;
    所述第五透镜的阿贝数为20~35范围中的任一值,且所述第五透镜的折射率大于1.85;
    所述第六透镜的阿贝数为60~90范围中的任一值;
    所述第八透镜的阿贝数为20~35范围中的任一值,且所述第八透镜的折射率大于1.7;
    所述第九透镜的阿贝数为30~60范围中的任一值。
  8. 根据权利要求1至7中任一项所述的投影设备,其中,所述中群镜组包括第十透镜,所述第十透镜的屈光度为正数。
  9. 根据权利要求8所述的投影设备,其中,所述第十透镜为球面透镜。
  10. 根据权利要求1至9中任一项所述的投影设备,其中,所述前群镜组包括:
    第十一透镜;
    第十二透镜;以及
    第十三透镜;其中
    所述第十一透镜、所述第十二透镜、所述第十三透镜沿着靠近所述第二透镜组的方向依次设置,所述第十一透镜的屈光度为正数,所述第十二透镜和所述第十三透镜的屈光度为负数。
  11. 根据权利要求10所述的投影设备,其中,所述第十一透镜和所述第十二透镜为球面透镜,所述第十三透镜为非球面透镜。
  12. 根据权利要求11所述的投影设备,其中,所述第十三透镜包括凹凸非球面透镜,且所述第十三透镜采用塑胶材料。
  13. 根据权利要求1至12中任一项所述的投影设备,其中,所述反射镜包括凹面反射镜。
  14. 根据权利要求13所述的投影设备,其中,所述反射镜包括双非球面反射镜或双自由曲面反射镜。
  15. 根据权利要求1至14中任一项所述的投影设备,其中,所述镜头的等效焦距、所述后群镜组的等效焦距、所述中群镜组的等效焦距、所述前群镜组的等效焦距和所述第二透镜组的等效焦距满足以下关系:
    5<|FB/F|<12;
    15<|FM/F|<25;
    10<|FF/F|<20;
    3<|FC/F|<12;
    其中,F表示所述镜头的等效焦距,FB表示所述后群镜组的等效焦距,FM表示所述中群镜组的等效焦距,FF表示所述前群镜组的等效焦距,FC表示所述第二透镜组的等效焦距。
  16. 根据权利要求1至15中任一项所述的投影设备,其中,
    所述镜头的投射比为0.20~0.25范围中的任一值;
    所述第一透镜组和所述第二透镜组的长度满足以下关系:
    1.5<L1/L2<2;
    所述镜头的后工作距离满足以下关系:
    0.35<BFL/L2<0.7;
    其中,L1表示所述第一透镜组的总长度,L2表示所述第一透镜组和所述第二透镜组之间的距离,BFL表示所述镜头的后工作距离。
  17. 根据权利要求1至16中任一项所述的投影设备,其中,所述前群镜组、所述中群镜组以及所述后群镜组的光轴共线。
  18. 根据权利要求1至17中任一项所述的投影设备,其中,在所述前群镜组的光轴方向上,所述前群镜组可移动,以校正不同尺寸投影画面的畸变;在所述中群镜组的光轴 方向上,所述中群镜组可移动,以进行不同尺寸投影画面的聚焦成像。
  19. 根据权利要求1至18中任一项所述的投影设备,所述光机包括:
    光阀,被配置为将入射至所述光阀的照明光束调制成投影光束后反射;
    棱镜组件,位于所述光阀与所述镜头之间,所述棱镜组件被配置为将所述光源发出的照明光束反射至所述光阀,并透射所述光阀出射的投影光束;以及
    振镜,位于所述棱镜组件和所述镜头之间,所述振镜被配置为对所述光阀出射的投影光束进行像素偏移。
  20. 根据权利要求1至19中任一项所述的投影设备,还包括:
    投影屏幕,设置在所述第一透镜组的远离所述第二透镜组的一侧,且位于所述预设位置,所述投影屏幕被配置为接收所述镜头成像后投影光束以进行图像显示。
PCT/CN2022/136613 2021-12-29 2022-12-05 投影设备 WO2023124807A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111633706.8 2021-12-29
CN202111631763.2 2021-12-29
CN202111631763.2A CN114296217A (zh) 2021-12-29 2021-12-29 一种投影镜头及投影***
CN202111633706.8A CN114296218A (zh) 2021-12-29 2021-12-29 一种投影镜头及投影***

Publications (1)

Publication Number Publication Date
WO2023124807A1 true WO2023124807A1 (zh) 2023-07-06

Family

ID=86997592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136613 WO2023124807A1 (zh) 2021-12-29 2022-12-05 投影设备

Country Status (1)

Country Link
WO (1) WO2023124807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577911A (zh) * 2023-07-14 2023-08-11 沂普光电(天津)有限公司 一种高清晰度低投射比小型化投影镜头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008614A1 (en) * 2005-07-05 2007-01-11 Jackson John E Dichroic mangin mirror
JP2011248365A (ja) * 2011-05-30 2011-12-08 Hitachi Ltd 投写型映像表示装置
CN103995354A (zh) * 2014-05-16 2014-08-20 北京理工大学 基于全息衍射光学元件的消色差的波导显示***
CN110456599A (zh) * 2018-05-08 2019-11-15 青岛海信激光显示股份有限公司 投影成像***及激光投影装置
CN212160320U (zh) * 2020-07-07 2020-12-15 四川长虹电器股份有限公司 一种投影光学***
CN113504633A (zh) * 2021-06-29 2021-10-15 青岛海信激光显示股份有限公司 一种投影***
CN215340674U (zh) * 2021-05-31 2021-12-28 深圳光峰科技股份有限公司 超短焦投影光学***
CN114296218A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影***
CN114296217A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008614A1 (en) * 2005-07-05 2007-01-11 Jackson John E Dichroic mangin mirror
JP2011248365A (ja) * 2011-05-30 2011-12-08 Hitachi Ltd 投写型映像表示装置
CN103995354A (zh) * 2014-05-16 2014-08-20 北京理工大学 基于全息衍射光学元件的消色差的波导显示***
CN110456599A (zh) * 2018-05-08 2019-11-15 青岛海信激光显示股份有限公司 投影成像***及激光投影装置
CN212160320U (zh) * 2020-07-07 2020-12-15 四川长虹电器股份有限公司 一种投影光学***
CN215340674U (zh) * 2021-05-31 2021-12-28 深圳光峰科技股份有限公司 超短焦投影光学***
CN113504633A (zh) * 2021-06-29 2021-10-15 青岛海信激光显示股份有限公司 一种投影***
CN114296218A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影***
CN114296217A (zh) * 2021-12-29 2022-04-08 青岛海信激光显示股份有限公司 一种投影镜头及投影***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577911A (zh) * 2023-07-14 2023-08-11 沂普光电(天津)有限公司 一种高清晰度低投射比小型化投影镜头
CN116577911B (zh) * 2023-07-14 2023-09-29 沂普光电(天津)有限公司 一种高清晰度低投射比小型化投影镜头

Similar Documents

Publication Publication Date Title
WO2020119421A1 (zh) 投影成像***及激光投影设备
US20150323767A1 (en) Projection lens and projector
CN111208701B (zh) 激光投影设备
JP3442744B2 (ja) 広角投写レンズおよび投写型表示装置
CN113504633B (zh) 一种投影***
CN114296217A (zh) 一种投影镜头及投影***
CN114296218A (zh) 一种投影镜头及投影***
US11422336B2 (en) Projection lens and projection device
CN114296220A (zh) 一种投影镜头及投影***
TW202111379A (zh) 投影鏡頭及投影機
CN114137708A (zh) 一种投影镜头及投影***
WO2023124807A1 (zh) 投影设备
JP7133398B2 (ja) 投射光学系および画像投射装置
CN201673301U (zh) 投射用广角透镜及投射型显示装置
WO2023124812A1 (zh) 投影设备
CN111999870B (zh) 用于图像投影的变焦镜头及图像投影装置
JP2010134343A (ja) 投影光学系、およびこれを用いる投影装置
CN114114644A (zh) 一种投影镜头及投影***
JPWO2018030157A1 (ja) 投射型表示装置
JP2006267530A (ja) 照明装置及び投写型表示装置
CN113359380A (zh) 光学引擎和激光投影设备
JP3669933B2 (ja) 照明装置および投写型表示装置
JP4860124B2 (ja) 投射型表示装置
WO2020187204A1 (zh) 激光投影设备
CN109975949A (zh) 一种投影镜头及投影***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914062

Country of ref document: EP

Kind code of ref document: A1