WO2016195440A1 - 편광자의 제조방법 및 이를 이용하여 제조된 편광자 - Google Patents

편광자의 제조방법 및 이를 이용하여 제조된 편광자 Download PDF

Info

Publication number
WO2016195440A1
WO2016195440A1 PCT/KR2016/005953 KR2016005953W WO2016195440A1 WO 2016195440 A1 WO2016195440 A1 WO 2016195440A1 KR 2016005953 W KR2016005953 W KR 2016005953W WO 2016195440 A1 WO2016195440 A1 WO 2016195440A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
crosslinking
aqueous solution
polarizing plate
polyvinyl alcohol
Prior art date
Application number
PCT/KR2016/005953
Other languages
English (en)
French (fr)
Inventor
김지영
유혜민
나균일
박진용
이응기
남택근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680031108.4A priority Critical patent/CN107667305B/zh
Priority to US15/572,685 priority patent/US10479870B2/en
Priority to JP2017558489A priority patent/JP6822641B2/ja
Publication of WO2016195440A1 publication Critical patent/WO2016195440A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P7/00Dyeing or printing processes combined with mechanical treatment
    • D06P7/005Dyeing combined with texturising or drawing treatments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0076Dyeing with mineral dye
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • D06P1/6533Aliphatic, araliphatic or cycloaliphatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67316Acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present specification relates to a method of manufacturing a polarizer and a polarizer manufactured using the same.
  • a liquid crystal display is a display that visualizes polarization due to the switching effect of liquid crystal, and is used in various categories ranging from large-sized TVs as well as small and medium-sized displays such as wristwatches, electronic calculators, and cellular phones.
  • a large number of polarizing plates currently in mass production for display devices are dyed dichroic materials such as iodine or dichroic dye on a base film made of a polyvinyl alcohol-based film, crosslinked with a boron compound, and then stretched and oriented. What bonded the protective film which is optically transparent and has mechanical strength on both surfaces or one surface of (polarizer) is used.
  • the stretched polyvinyl alcohol-based film polarizer has a problem that shrinkage deformation easily occurs under durability conditions such as high temperature and high humidity.
  • the stress affects the protective film, causing bending, and as a result, problems such as a change in physical properties of the polarizing plate including the same, a light leakage phenomenon in the liquid crystal display, and the like occur.
  • the boron compound generally used in the crosslinking step of the polarizer manufacturing process has a short crosslinked chain, so that a wide shrinkage occurs by the stretching process, which is a main cause of shrinkage deformation of the polarizer.
  • a method of using an organic crosslinking agent in addition to the boron compound specifically, a method of crosslinking treatment with a polyhydric aldehyde compound has been proposed.
  • aldehydes suffer from peculiar smell and handling stability.
  • a method of crosslinking with a polyhydric carboxylic acid compound has also been proposed, but the effect of improving the polarizer shrinkage strain is not sufficient.
  • the present specification is to provide a method of manufacturing a polarizer and a polarizer manufactured using the same.
  • One embodiment of the present specification comprises the steps of dyeing at least one dye of iodine and dichroic dye on the polyvinyl alcohol-based film;
  • the first crosslinking step and the second crosslinking step provide a method of manufacturing a polarizer to perform stretching together with crosslinking.
  • An exemplary embodiment of the present specification also provides a polarizer manufactured according to the method of manufacturing the polarizer.
  • An exemplary embodiment of the present specification also provides a polarizer including boron element at 0.5 wt% to 5 wt% with respect to 100 wt% of the polarizer.
  • an exemplary embodiment of the present specification provides a polarizing plate including the polarizer.
  • An exemplary embodiment of the present specification also provides a polarizing plate having a crack incidence rate of 5% or less after durability evaluation under conditions left for 24 hours under any one temperature selected from 80 ° C to 120 ° C.
  • an exemplary embodiment of the present specification includes a display panel
  • an image display device including the polarizing plates attached to one or both surfaces of the display panel.
  • Method of manufacturing a polarizer according to an exemplary embodiment of the present specification can produce a polarizer excellent in dimensional stability, durability and the like.
  • a polarizing plate including a polarizer according to an exemplary embodiment of the present specification has an advantage of low crack incidence under high temperature durability conditions. As a result, there is an advantage that it is possible to prevent the problem of light leakage phenomenon in the liquid crystal display and the like including the same.
  • the polarizer according to an exemplary embodiment of the present specification has an excellent shrinkage strain improvement effect, it is possible to thin the efficient polarizer.
  • the polarizer according to one embodiment of the present specification has excellent handleability.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a polarizer according to one embodiment of the present specification.
  • FIG. 2 is a micrograph photographing whether cracks are generated in the polarizing plates according to Examples 1 and 3 and Comparative Examples 1 and 5.
  • FIG. 2 is a micrograph photographing whether cracks are generated in the polarizing plates according to Examples 1 and 3 and Comparative Examples 1 and 5.
  • the method of manufacturing a polarizer according to an exemplary embodiment of the present specification includes first and second crosslinking steps, and each step uses an aqueous solution containing a polyvalent carboxylic acid compound and a boron compound.
  • the polyvalent carboxylic acid compound which is an organic crosslinking agent in addition to the boron compound which is an inorganic crosslinking agent, the width shrinkage of the film by crosslinking is alleviated, and the shrinkage rate in heat-resistant conditions can also be obtained.
  • the polycarboxylic acid compound is added to the first crosslinking step in addition to the boron compound and only the boron compound is added to the second crosslinking step, the crosslinking reaction of the polycarboxylic acid compound is not sufficiently achieved.
  • the effect of the addition of the polyvalent carboxylic acid compound is significantly lowered.
  • the crosslinking reaction by the boron compound takes place first, followed by an aqueous solution containing the polyvalent carboxylic acid compound. Since it is immersed, the effect of adding a polycarboxylic acid compound in a film becomes low.
  • both the first cross-linking step and the second cross-linking step includes a boron compound and a polycarboxylic acid compound, there is an advantage that both compounds can be uniformly distributed in the film to achieve crosslinking.
  • the first and second crosslinking steps are performed using an aqueous solution containing both a boric acid compound and a polyvalent carboxylic acid compound, the width shrinkage of the polarizer due to crosslinking is alleviated while maintaining excellent optical properties, It is possible to effectively enhance the shrinkage deformation improvement of the.
  • the first crosslinking step and the second crosslinking step are performed together with the crosslinking. That is, the first and second crosslinking steps are first crosslinking and stretching steps and second crosslinking and stretching steps, respectively.
  • a polarizer having excellent dimensional stability can be prepared. Specifically, it is possible to manufacture a polarizer having a more excellent shrinkage strain improvement effect at a thin thickness.
  • the method of manufacturing a polarizer according to one embodiment of the present specification performs a third crosslinking step after the first and second crosslinking steps to solve this phenomenon.
  • the method of manufacturing a polarizer according to an exemplary embodiment of the present specification includes a third crosslinking step performed by using a third aqueous solution including a polyhydric carboxylic acid compound after the first and second crosslinking steps.
  • the third aqueous solution does not contain a boron compound, unlike the first and second aqueous solutions.
  • the stretching does not proceed in the third crosslinking step.
  • the third crosslinking step is performed using the third aqueous solution containing the polyvalent carboxylic acid compound after the stretching step, the boron compound remaining on the surface of the polyvinyl alcohol-based film is removed, and the boron compound precipitates on the surface or the boron compound
  • the crosslinking chain of can prevent the width shrinkage due to the short crosslinking reaction, and as a result, there is an effect that can reduce the surface defect of the polyvinyl alcohol-based film.
  • the crosslinking reaction of the hydroxyl group of polyvinyl alcohol can be enhanced by the addition of the polyhydric carboxylic acid compound, so that the effect of improving the shrinkage strain can be expressed more efficiently.
  • the polyhydric carboxylic acid compound may mean a carboxylic acid compound containing two or more carboxyl groups (carboxyl group, -COOH).
  • carboxylic acid compound containing two or more carboxyl groups (carboxyl group, -COOH).
  • -OH hydroxyl group
  • the manufacturing method of the polarizer which concerns on this specification uses the polyhydric carboxylic acid compound which has two or more carboxy groups.
  • polyvinyl alcohol and polyhydric carboxylic acid may react to introduce a crosslinked form such as the following structure into the polarizer.
  • the polyhydric carboxylic acid compound concentration index X remaining on the surface of the polyvinyl alcohol-based film after performing the third crosslinking step may satisfy the following formula (1).
  • the polyvinyl alcohol-based film surface may mean from 0 to about 2 ⁇ m depth.
  • the inventors of the present specification have found that the polarization plate including the polarizer is significantly low in the crack generation rate in the polarizing plate even under high temperature and durable conditions.
  • Equation (1) 0.25 ⁇ X ⁇ 0.4
  • X is a carboxylic over from the first to the integral of the absorption spectrum obtained by measurement with ATR (attenuated total reflection) of the polarizer performs a three-step cross-linking 1580cm -1 to 1780cm -1 acid measured by ATR (attenuated total reflection) of the polarizer performs a cross-linking step using an aqueous solution that does not contain a compound means a value obtained by subtracting the integral of 1580cm -1 to 1780cm -1 of the absorption spectrum obtained.
  • the third crosslinking step may be performed by using an immersion method.
  • the third crosslinking step may be performed by impregnating the polyvinyl alcohol-based film in a crosslinking bath containing a third aqueous solution containing a polycarboxylic acid compound.
  • the cleaning step since the cleaning step is performed after the third crosslinking step, the iodine, boric acid, and polycarboxylic acid absorbed in the immediately preceding step of the cleaning process may escape, affecting the properties of the finally produced polarizer.
  • the first and second aqueous solutions may include 0.5 wt% to 10 wt% of the boron compound with respect to 100 wt% of the first and second aqueous solutions, and specifically 1 weight It may be included in% to 6% by weight, more specifically may include 1% to 4% by weight.
  • the boron compound is contained in less than 1% by weight with respect to 100% by weight of the aqueous solution, the crosslinking reaction of the boron compound is not sufficiently progressed, there is a problem of wrinkles of the polarizer and optical properties deterioration, if contained in excess of 10% by weight There is a problem that it is difficult to perform the stretching step due to the crosslinking reaction with the boron compound.
  • the first and second aqueous solutions may include the polyhydric carboxylic acid compound in an amount of 10 wt% to 150 wt%, based on 100 wt% of the boron compound, and specifically, 20 wt% to It may be included in 100% by weight, more specifically 20% to 80% by weight.
  • the polyvalent carboxylic acid compound is included in less than 10% by weight with respect to 100% by weight of the boron compound, the addition and crosslinking reaction of the polyvalent carboxylic acid does not proceed sufficiently, so that the effect of improving the shrinkage strain cannot be obtained.
  • the polyhydric carboxylic acid compound when included in more than 150% by weight with respect to 100% by weight of the boron compound, the crosslinking reaction of the boron compound does not proceed effectively, there is a problem of wrinkles generation of the polarizer and problems of optical properties deterioration.
  • the ratio of the boron compound and polyhydric carboxylic acid compound contained in the said 1st and 2nd aqueous solution may be the same, and may differ as needed.
  • the third aqueous solution may include 0.5 wt% to 10 wt% of the polyhydric carboxylic acid compound with respect to 100 wt% of the third aqueous solution, and specifically 1 wt% to 5 wt% It may be, and more specifically may include 1% to 3% by weight.
  • the polyvalent carboxylic acid compound is included in less than 0.5% by weight relative to 100% by weight of the third aqueous solution, the effect of strengthening the crosslinking reaction of the hydroxyl group of the polyvinyl alcohol is minimal due to the addition of the polyvalent carboxylic acid compound.
  • the polycarboxylic acid compound is glutaric acid, succinic acid, malonic acid, oxalic acid, 1,2,3,4-butanetetracarboxylic acid, citric acid, malic acid, tartaric acid, and their It may be at least one selected from the group consisting of derivatives.
  • the present invention is not limited thereto.
  • the dyeing step (hereinafter, 'dying step') is for dyeing iodine molecules and / or dichroic dyes on a polyvinyl alcohol-based film, and iodine molecules and / or dichroic dye molecules vibrate in the stretching direction of the polarizer.
  • the dyeing may be performed by, for example, impregnating a polyvinyl alcohol-based film in a treatment bath containing a solution containing an iodine solution and / or a dichroic dye.
  • water is generally used as the solvent used in the solution of the dyeing step, but an appropriate amount of an organic solvent having compatibility with water may be added.
  • iodine and / or dichroic dye may be used in an amount of 0.06 parts by weight to 0.25 parts by weight with respect to 100 parts by weight of the solvent.
  • the transmittance of the polarizer prepared after stretching may satisfy the range of 40% to 47%.
  • auxiliary agent such as an iodide compound in order to improve the dyeing efficiency
  • the auxiliary agent in a ratio of 0.3 parts by weight to 2.5 parts by weight with respect to 100 parts by weight of the solvent.
  • the reason for adding an auxiliary agent such as the iodide compound is to increase the solubility of iodine in water because the solubility in water is low in the case of iodine.
  • the mixing ratio of the iodine and the iodide compound is preferably 1: 5 to 1:10 by weight.
  • the temperature of the treatment bath is less than 25 °C dyeing efficiency may be lowered, if it exceeds 40 °C may cause a lot of sublimation of iodine may increase the amount of iodine used.
  • the time for immersing the polyvinyl alcohol-based film in the treatment bath is preferably about 30 seconds to 120 seconds. If the immersion time is less than 30 seconds, the dyeing may not be uniformly made on the polyvinyl alcohol-based film, and if the immersion time exceeds 120 seconds, the dyeing is saturated and it is not necessary to immerse any more.
  • first and second crosslinking steps are performed. As mentioned above, the first and second crosslinking steps are each performed with crosslinking.
  • the cross-linking and stretching step is to align the polymer chain in a certain direction while the iodine and / or dichroic dye is adsorbed to the polyvinyl alcohol polymer matrix to obtain the desired polarization properties, the polyvinyl alcohol-based film is deposited in an aqueous solution
  • the deposition method is carried out in general, but is not limited thereto, and may be performed by a coating method or a spraying method for applying or spraying a solution containing a crosslinking agent to a polyvinyl alcohol-based film.
  • water is generally used as the solvent used in the first and second aqueous solutions, but an appropriate amount of an organic solvent having compatibility with water may be added.
  • the temperature of the first and second aqueous solution depends on the amount and the draw ratio of the crosslinking agent, but is not limited to this, it is generally preferred that it is 30 °C to 60 °C. Specifically, the temperature may be 33 ° C. to 60 ° C. or 35 ° C. to 60 ° C.
  • the temperature of the crosslinking bath is controlled at high temperature conditions in order to improve the mobility of the polyvinyl alcohol-based film chains. Adjust the temperature.
  • the time for immersing the polyvinyl alcohol-based film in the aqueous solution is preferably about 30 seconds to 120 seconds. If the immersion time is less than 30 seconds, the crosslinking may not be uniformly made in the polyvinyl alcohol-based film, and if it exceeds 120 seconds, the crosslinking is saturated and it is not necessary to immerse any more.
  • the solvent and temperature used for a 1st and 2nd aqueous solution may be mutually same, and may differ as needed, such as ensuring processability.
  • the first and second aqueous solutions may further include an iodine compound in addition to the polyhydric carboxylic acid compound and the boron compound.
  • the iodine-based compound contained in the aqueous solution plays a role of polarization characteristics and color control.
  • the iodine-based compound may be employed without limitation as long as it is an iodine-based compound known in the art that can be used as an adjuvant in the dyeing step, and for example, potassium iodide, calcium iodide, lithium iodide, and the like may correspond thereto.
  • the iodine-based compound is not limited thereto, but preferably may be included in 1% to 10% by weight relative to 100% by weight of each of the first and second aqueous solution.
  • the stretching is preferably stretched at a stretching temperature of 30 °C to 60 °C.
  • the stretching temperature may vary depending on the content of the crosslinking agent, and at a temperature of less than 30 ° C., the fluidity of the polyvinyl alcohol-based film chain may be lowered, thereby reducing the stretching efficiency.
  • the stretching temperature is higher than 60 ° C., the polyvinyl alcohol-based film This is because it may soften and weaken the strength.
  • the stretching may be performed by a polyvinyl alcohol-based film alone, or after laminating the base film on the polyvinyl alcohol-based film, it may be carried out by a method of stretching the polyvinyl alcohol-based film and the base film together.
  • the base film is used to prevent the polyvinyl alcohol-based film from breaking during the stretching process when the polyvinyl alcohol-based film (for example, PVA film having a thickness of 60 ⁇ m or less) is thinned, and is 10 ⁇ m. It can be used to manufacture the following thin PVA polarizer.
  • polymer films having a maximum draw ratio of 5 times or more under a temperature condition of 20 ° C. to 85 ° C. may be used.
  • a high density polyethylene film, a polyurethane film, a polypropylene film, a polyolefin film, and an ester may be used.
  • Type films, low density polyethylene films, high density polyethylene and low density polyethylene coextrusion films, copolymer resin films containing ethylene vinyl acetate in high density polyethylene, acrylic films, polyethylene terephthalate films, polyvinyl alcohol films, cellulose films, etc. Can be.
  • the said maximum draw ratio means the draw ratio immediately before a break generate
  • stacking method of the said base film and a polyvinyl alcohol-type film is not specifically limited.
  • the base film and the polyvinyl alcohol-based film may be laminated via an adhesive or a pressure-sensitive adhesive, or may be laminated by placing a polyvinyl alcohol-based film on a base film without a separate medium.
  • the resin forming the base film and the resin forming the polyvinyl alcohol-based film may be carried out by a method of co-extrusion, or may be carried out by coating a polyvinyl alcohol-based resin on the base film.
  • the base film may be removed by removing from the polarizer after the stretching is completed, it may be carried out to the next step without removing.
  • the base film may be used as a polarizer protective film to be described later.
  • the third crosslinking step is performed using a third aqueous solution, and the third aqueous solution includes a polyhydric carboxylic acid compound but no boron compound.
  • the polyhydric carboxylic acid compound included in the third aqueous solution may be the same as or different from the polyhydric carboxylic acid compound contained in the first and / or second aqueous solution.
  • the content of the polyhydric carboxylic acid compound contained in the third aqueous solution is the same as described above.
  • the solvent used in the third aqueous solution may be the same as or different from the solvent used in the first and second aqueous solutions.
  • water is used, but organic solvents such as alcohols and DMSO having compatibility with water are used. May be added in an appropriate amount.
  • the temperature of a 3rd aqueous solution is not limited to this, It is preferable that it is generally 20 degreeC-40 degreeC. Specifically, it may be 20 °C to 35 °C or 20 °C to 30 °C.
  • the temperature of the third aqueous solution satisfies the above range, the crosslinking reaction may effectively occur, and there is an advantage in that the efficiency of processability is increased.
  • the third crosslinking step may be performed using an immersion method.
  • the time for immersing the polyvinyl alcohol-based film in the third aqueous solution is preferably about 1 second to 10 seconds. If the immersion time is less than 1 second, the effect of removing the polyvinyl alcohol-based boron compound and strengthening the crosslinking reaction with the polyvinyl alcohol is insignificant. If the immersion time is longer than 10 seconds, the crosslinking is saturated and further immersed. Because there is no.
  • a step of drying the polyvinyl alcohol-based film (hereinafter, referred to as a 'drying step') may be performed as necessary.
  • the drying step is to remove water or solvent remaining in the polarizer and to correct the external deformation of the polarizer, and may be performed through a drying method of the polarizer known in the art, for example, the drying step May be performed by a method of allowing the polarizer to pass through a heating roll, or may be performed by a method of drying the polarizer in an oven.
  • the method of manufacturing a polarizer according to one embodiment of the present specification may include additional steps known in the art, if necessary.
  • the method may further include swelling the polyvinyl alcohol-based film before the dyeing step, a complementary color step of correcting the color of the polarizer, and the like.
  • One embodiment of the present specification also provides a polarizer manufactured according to the above-described embodiments.
  • the polarizer manufactured by the manufacturing method according to an exemplary embodiment of the present specification has the above-described effect. That is, it is excellent in dimensional stability, durability, and the like.
  • the thinner the thickness of the polarizer is maximized the above-described effect.
  • the thickness of the polarizer manufactured according to the manufacturing method may be 5 ⁇ m to 25 ⁇ m.
  • the polarizer having the boron content may have a thickness of 5 ⁇ m to 25 ⁇ m.
  • the crack generation rate after the durability evaluation of the conditions left for 24 hours at any one temperature selected from 80 °C to 120 °C is 5% or less
  • the crack occurrence rate is a sample of the same conditions 100 is prepared to provide a polarizing plate which means the ratio of the sample in which the crack occurred 100.
  • any one temperature selected from 80 ° C to 120 ° C of the conditions of the durability evaluation means any one temperature selected from 80 ° C to 120 ° C, the above at all temperatures within the range of 80 ° C to 120 ° C
  • the polarizer shrinkage value does not have to be satisfied.
  • the polarizer may have a crack generation rate of 5% or less after durability evaluation under conditions left for 24 hours at 100 ° C.
  • the polarizing plate may include a polarizer according to the above-described exemplary embodiment.
  • the crack incidence rate after the durability evaluation of the conditions left for 24 hours at any one temperature selected from 80 °C to 120 °C is 10% or less
  • the crack occurrence rate is a sample of the same conditions 6 was prepared to provide a polarizing plate which means the ratio of the samples in which cracks occurred.
  • the crack incidence may be preferably 8% or less, more preferably 5% or less. According to an exemplary embodiment of the present specification, the crack generation rate is 1% or less.
  • an exemplary embodiment of the present specification shows the length after durability evaluation of a condition of being left for 24 hours under any one temperature selected from 20 ° C. to 30 ° C. after 48 hours under any one temperature selected from 60 ° C. to 70 ° C. It provides a polarizing plate having a direction (MD) shrinkage of 0.01% to 0.03%.
  • any one temperature selected from 60 °C to 70 °C of the conditions of the durability evaluation means any one of the selected temperature selected from 60 °C to 70 °C, the above at all temperatures within the range of 60 °C to 70 °C It is not necessary to satisfy the polarizer shrinkage value.
  • the temperature of any one selected from 20 ° C to 30 ° C of the conditions of the durability evaluation means any one temperature selected similarly, and should satisfy the shrinkage value of the polarizing plate at all temperatures within the range of 20 ° C to 30 ° C. It is not.
  • a polarizing plate having a longitudinal shrinkage (MD) shrinkage of 0.01% to 0.03% after durability evaluation under a condition of being left for 48 hours at a temperature of 65 ° C for 24 hours at a temperature of 25 ° C. can be.
  • the polarizer included in the polarizing plate having a longitudinal shrinkage (MD) shrinkage of 0.01% to 0.03% after the durability evaluation may have a thickness of 5 ⁇ m to 25 ⁇ m.
  • the polarizing plate may be a polarizing plate having a protective film on one surface of the polarizer.
  • a polarizing plate having a protective film on one surface of the polarizer may be a polarizing plate having an adhesive layer on the other surface of the polarizer.
  • the demand for thinning of the polarizing plate is increasing in order to improve the tendency of thinning of display devices and the bending of the panel. Accordingly, a polarizing plate having a protective film provided on only one surface of the polarizer has been proposed.
  • the polarizing plate may have a thinner thickness than a conventional polarizing plate having a protective film on both sides of the polarizer, and is inexpensive to manufacture, and retardation of a protective film such as a TAC film.
  • a high contrast ratio can be realized by eliminating the black luminance increase caused by).
  • the polarizing plate according to the exemplary embodiment of the present specification is very advantageous to be applied as a polarizing plate having a protective film on only one surface of the polarizer.
  • the protective film provided on one surface of the polarizer may be used without limitation as long as it is a general protective film known in the art, and examples thereof include TAC, COP, and acrylic film.
  • One embodiment of the present specification also includes a display panel; And a polarizing plate according to the above-described exemplary embodiment attached to one or both surfaces of the display panel.
  • the display panel may be a liquid crystal panel, a plasma panel, and an organic light emitting panel.
  • the image display device may be a liquid crystal display (LCD), a plasma display (PDP), and an organic light emitting display (OLED). .
  • the image display device may be a liquid crystal display device including a liquid crystal panel and polarizing plates provided on both sides of the liquid crystal panel, wherein at least one of the polarizing plates according to the above-described embodiment of the present specification It may be a polarizing plate manufactured according to the manufacturing method of the polarizing plate.
  • the type of liquid crystal panel included in the liquid crystal display device is not particularly limited.
  • a panel of a passive matrix type such as, but not limited to, a twisted nematic (TN) type, a super twisted nematic (STN) type, a ferrolectic (F) type, or a polymer dispersed (PD) type; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
  • the type of other components constituting the liquid crystal display device for example, the upper and lower substrates (for example, color filter substrates or array substrates) is not particularly limited, and the configurations known in the art are not limited. Can be employed.
  • a polyvinyl alcohol film having a thickness of 30 ⁇ m was dipped by immersing for 40 seconds in an aqueous solution at 30 ° C. containing 0.1 wt% of iodine and 1 wt% of potassium iodide (KI). At this time, the polyvinyl alcohol film was stretched three times in the dye solution. Next, the cumulative draw ratio was 3.5 times while immersing in a first aqueous solution at 35 ° C. containing 1.5 wt% glutaric acid and 1 wt% boric acid for 20 seconds. In a second aqueous solution at 54 ° C.
  • the cumulative draw ratio was 5.4 times while immersing for 2 minutes.
  • the polyvinyl alcohol film was immersed for 3 seconds in 35 degreeC 3rd aqueous solution containing 1 weight% of glutaric acid. Thereafter, the film was dried in an oven at 80 ° C. for 2 minutes to prepare a polarizer having a thickness of about 12 ⁇ m.
  • An acrylic film having a thickness of 40 ⁇ m was laminated on one surface of the manufactured polarizer, and an adhesive was applied to the other surface to prepare a polarizing plate.
  • a polarizing plate was manufactured in the same manner as in Example 1 except that the glutaric acid content was 1.5 wt% in the third aqueous solution.
  • a polarizing plate was manufactured in the same manner as in Example 1 except that the glutaric acid content was 2 wt% in the third aqueous solution.
  • a polarizing plate was prepared in the same manner as in Example 1 except that the glutaric acid content of the first and second aqueous solutions was both zero and the third crosslinking step was not performed.
  • a polarizing plate was manufactured in the same manner as in Example 1 except that the glutaric acid content was 0.3 wt% in the third aqueous solution.
  • a polarizing plate was manufactured in the same manner as in Example 1, except that the glutaric acid content was 5 wt% in the third aqueous solution.
  • a polarizing plate was manufactured in the same manner as in Example 1 except that the third crosslinking step was not performed.
  • a polarizing plate was manufactured in the same manner as in Example 1 except that the glutaric acid content of the first and second aqueous solutions was all zero.
  • the polarizing plates prepared according to Examples 1 to 3 and Comparative Examples 1 to 5 were cut to a size of 10 mm x 160 mm. At this time, the extending direction (MD direction) of the polarizing plate was made into the long axis, and the direction orthogonal to it was made into the long axis.
  • a test piece was prepared by laminating a polarizing plate on glass through the applied pressure-sensitive adhesive.
  • the end of the sensor connected to the DMS (Displacement Measuring System) equipment consists of a laser exit part and a sensing part part.
  • the long axis of the polarizing plate is positioned in line with the laser coming from the sensor, and attaches a reflector at one end adjacent to the sensor. It is a device that can continuously record information about the distance between the sensor and the reflector by using the principle that the laser from the sensor hits the reflector at the end of the specimen and then comes back to be detected. Therefore, as the distance between the sensor and the reflector increases, the polarizing plate contracts. On the contrary, when the distance between the sensor and the reflector approaches, the polarizing plate expands.
  • the rate of dimensional change can be calculated from the initial value stabilized at 25 ° C temperature and 50% relative humidity and the final value after 24 hours recovery at 25 ° C temperature and 50% relative humidity after shrinking for 48 hours in a 65 ° C oven. have.
  • the specimen was left to stand at 100 ° C. for 24 hours, and then visually evaluated for deformation on the appearance of the polarizing plate.
  • the crack incidence rate in the polarizing plate is manufactured by six specimens under the same conditions, and means the proportion of the specimens in which the crack occurs in the six polarizers.
  • the polarizing plate provided with a protective film only on one surface of the polarizer including the polarizer manufactured according to the manufacturing method of the polarizer according to one embodiment of the present specification is significantly incidence of cracks and stretching direction (MD direction) shrinkage rate It can be seen that low. Moreover, in Examples 1-3, the crack in a polarizing plate did not generate
  • the polarizing plate provided with the protective film on only one surface of the polarizer including the polarizer manufactured according to the manufacturing method of the polarizer according to one embodiment of the present specification has a low stretching direction (MD direction) shrinkage.
  • Comparative Example 1 in which crosslinking was performed with an aqueous solution containing only a boron compound showed high crack initiation rate and stretching direction (MD direction) shrinkage rate due to the short crosslinked chain of the boron compound.
  • the comparative example 4 which did not perform the third crosslinking step, also exhibited crack incidence and stretching compared to Comparative Example 1.
  • the shrinkage ratio in the direction (MD direction) was lowered, the effect of improving the dimensional stability and durability was not significant. This is because the boron compound remaining on the surface of the polarizer is not removed because the third crosslinking step is not performed.
  • Example 2 shows the results of observing the polarizing plate having the protective film on only one surface of the polarizer according to Examples 1 and 3 and Comparative Example 1 and Comparative Example 5 using optical microscopy.
  • Example 1 and Example 3 the crack incidence was 0%, whereas the polarizing plate provided with the protective film on only one surface of the polarizer according to Comparative Example 1 had a crack of 67%, and protected only on one surface of the polarizer according to Comparative Example 5.
  • the polarizing plate with a film was able to confirm that 50% of cracks occurred.
  • the crack incidence rate is the number of samples in which cracks are formed in 100 polarizers by manufacturing 100 polarizers each having a protective film on only one surface of the polarizer under the same conditions with respect to the total area of the polarizer having the protective film only on one surface of the entire polarizer. The crack incidence rate was obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

본 명세서는 폴리비닐알코올계 필름에 요오드 및 이색성 염료 중 적어도 하나의 염료를 염착시키는 단계; 상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제1 수용액을 이용하여 가교시키는 제1 가교 단계; 상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제2 수용액을 이용하여 가교시키는 제2 가교 단계; 상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물을 포함하는 제3 수용액을 이용하여 가교시키는 제3 가교 단계를 포함하고, 상기 제1 가교 단계 및 제2 가교 단계는 가교와 함께 연신을 수행하는 것인 편광자의 제조방법 및 이를 이용하여 제조된 편광자에 관한 것이다.

Description

편광자의 제조방법 및 이를 이용하여 제조된 편광자
본 출원은 2015년 6월 3일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0078294호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 편광자의 제조방법 및 이를 이용하여 제조된 편광자에 관한 것이다.
액정표시장치는 액정의 스위칭 효과에 의한 편광을 가시화하는 디스플레이로서, 손목시계, 전자계산기, 휴대전화 등의 중소형 디스플레이뿐만 아니라 대형 TV에 이르기까지 다양한 범주에서 사용되고 있다.
현재 디스플레이 장치용으로 양산 실용화되고 있는 편광판의 상당수는 폴리비닐알코올계 필름으로 이루어진 기재필름에 요오드나 이색성 염료 등의 이색성 재료를 염색하고, 붕소 화합물로 가교시킨 후, 연신 배향시켜서 이루어지는 편광 필름(편광자)의 양면 혹은 편면에 광학적으로 투명하고 또한 기계적 강도를 가지는 보호필름을 접합한 것이 이용되고 있다.
그러나, 연신된 폴리비닐알콜올계 필름 편광자는 고온 고습과 같은 내구 조건(durability condition)하에서 수축 변형이 쉽게 일어난다는 문제점이 있다. 편광자가 변형되면, 그 응력이 보호필름에 영향을 주어 휘어짐이 발생하게 되며 결과적으로 이를 포함하는 편광판의 물성 변화, 액정표시장치에서의 빛샘 현상을 야기하는 등의 문제가 발생한다.
편광자 제조 공정 중 가교 단계에서 일반적으로 사용하는 붕소 화합물은 가교 사슬이 짧아 연신 공정에 의해 폭 수축이 많이 일어나며, 이는 편광자의 수축 변형의 주 원인이 된다. 이를 해결하기 위해, 붕소 화합물 이외에 유기계 가교제를 사용하는 방법 구체적으로, 다가 알데히드 화합물로 가교 처리하는 방법이 제안되었다. 그러나, 알데히드는 특유의 냄새와 취급 안정성에 문제가 있다. 또한, 다가 카복시산 화합물로 가교 처리하는 방법도 제안되었으나, 편광자 수축 변형의 개선 효과가 충분하지 못하다.
본 명세서는 편광자의 제조방법 및 이를 이용하여 제조된 편광자를 제공하고자 한다.
본 명세서의 일 실시상태는 폴리비닐알코올계 필름에 요오드 및 이색성 염료 중 적어도 하나의 염료를 염착시키는 단계;
상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제1 수용액을 이용하여 가교시키는 제1 가교 단계;
상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제2 수용액을 이용하여 가교시키는 제2 가교 단계;
상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물을 포함하는 제3 수용액을 이용하여 가교시키는 제3 가교 단계를 포함하고,
상기 제1 가교 단계 및 제2 가교 단계는 가교와 함께 연신을 수행하는 것인 편광자의 제조방법을 제공한다.
본 명세서의 일 실시상태는 또한, 상기 편광자의 제조방법에 따라 제조된 편광자를 제공한다.
본 명세서의 일 실시상태는 또한, 편광자 100 중량%에 대하여 붕소 원소를 0.5 중량% 내지 5 중량%로 포함하는 편광자를 제공한다.
또한, 본 명세서의 일 실시상태는 상기 편광자를 포함하는 편광판을 제공한다.
본 명세서의 일 실시상태는 또한, 80℃ 내지 120℃ 중 선택되는 어느 하나의 온도 하에 24시간 방치하는 조건의 내구성 평가 후의 크랙(crack) 발생율이 5% 이하인 것인 편광판을 제공한다.
또한, 본 명세서의 일 실시상태는 표시 패널; 및
상기 표시 패널의 일면 또는 양면에 부착되어 있는 상기 편광판을 포함하는 화상표시장치를 제공한다.
본 명세서의 일 실시상태에 따른 편광자의 제조방법은 치수안정성, 내구성 등이 우수한 편광자를 제조할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 편광자를 포함하는 편광판은 고온 내구 조건(durability condition)하에 크랙 발생율이 낮은 장점이 있다. 결과적으로, 이를 포함하는 액정표시장치 등에서 빛샘 현상의 문제를 방지할 수 있다는 장점이 있다.
또한, 본 명세서의 일 실시상태에 따른 편광자는 우수한 수축 변형 개선 효과를 가져, 효율적인 편광자의 박막화가 가능하다.
또한, 본 명세서의 일 실시상태에 따른 편광자는 취급성이 우수하다.
도 1은 본 명세서의 일 실시상태에 따른 편광자의 제조방법의 순서도이다.
도 2는 실시예 1 및 3 및 비교예 1 및 5에 따른 편광판의 크랙 발생 여부를 촬영한 현미경 사진이다.
이하, 본 명세서를 더욱 상세히 설명한다.
본 명세서의 일 실시상태에 따른 편광자의 제조방법은 제1 및 제2 가교 단계를 포함하며, 각 단계는 모두 다가 카복시산 화합물 및 붕소 화합물을 포함하는 수용액을 이용한다. 무기계 가교제인 붕소 화합물 이외에 유기계 가교제인 다가 카복시산 화합물을 포함함으로써 가교에 의한 필름의 폭 수축을 완화하며, 내열 조건에서의 수축율 또한 감소시키는 효과를 얻을 수 있다. 다만, 제1 가교 단계에만 붕소 화합물 이외에 다가 카복시산 화합물을 첨가하고 제2 가교 단계에는 붕소 화합물만 첨가하는 경우, 다가 카복시산 화합물의 가교 반응이 충분히 이루어지지 못한 상태에서 제2 가교 단계에서 씻겨 나와 다가 카복시산 화합물의 첨가 효과가 현저히 낮아진다. 또한, 제1 가교 단계에는 붕소 화합물만 첨가하고, 제2 가교 단계에만 붕소 화합물 이외에 다가 카복시산 화합물을 첨가하는 경우, 붕소 화합물에 의한 가교 반응이 일부 먼저 일어난 후 다가 카복시산 화합물을 포함하는 수용액에 침지되므로 필름 내에 다가 카복시산 화합물이 첨가되는 효과가 낮아진다. 한편, 제1 가교 단계 및 제2 가교 단계에 모두 붕소 화합물과 다가 카복시산 화합물을 포함할 경우, 필름 내에 두 화합물이 균일하게 분포하여 가교를 이룰 수 있다는 장점이 있다. 결과적으로, 붕산 화합물 및 다가 카복시산 화합물을 모두 포함하는 수용액을 이용하여, 제1 및 제2 가교 단계를 수행하는 경우, 우수한 광학 물성을 유지하면서 가교에 의한 편광자의 폭 수축을 완화하고 내열 조건에서의 수축 변형 개선을 효율적으로 강화시킬 수 있다. 한편, 상기 제1 가교 단계 및 제2 가교 단계는 가교와 함께 연신을 수행한다. 즉, 상기 제1 및 제2 가교 단계는 각각 제1 가교 및 연신 단계, 및 제2 가교 및 연신 단계이다.
다가 카복시산 화합물 및 붕소 화합물을 모두 포함하는 수용액으로 제1 및 제2 가교 및 연신하는 단계를 수행함으로써, 치수안정성이 우수한 편광자를 제조할 수 있다. 구체적으로, 얇은 두께에서 더욱 우수한 수축 변형 개선 효과를 가지는 편광자를 제조할 수 있다.
다만, 제1 가교단계와 제2 가교단계만 수행하고, 제3 가교단계를 수행하지 않는 경우, 필름의 표면에 붕소의 결정들이 석출되어 잔류하는 현상이 일어나고, 이를 해결하기 위해 필름을 세정하는 단계를 추가로 수행할 경우, 폴리비닐알코올계 필름내부의 붕산 및 다가 카복시산도 함께 빠져나가게 된다.
본 명세서의 일 실시상태에 따른 편광자의 제조방법은 이러한 현상을 해결하기 위해 제1 및 제2 가교 단계 이후에 제3 가교 단계를 수행한다.
구체적으로, 본 명세서의 일 실시상태에 따른 편광자의 제조방법은 제1 및 제2 가교 단계 이후에 다가 카복시산 화합물을 포함하는 제3 수용액을 이용하여 수행하는 제3 가교 단계를 포함한다. 구체적으로, 제3 수용액은 제1 및 제2 수용액과 달리 붕소 화합물은 포함하지 않는다.
이때, 제3 가교 단계에서는 제1 및 제2 가교 단계와 달리, 연신은 진행되지 않는다. 연신 단계 후에 다가 카복시산 화합물을 포함하는 제3 수용액을 이용하여 제3 가교 단계를 수행할 경우, 폴리비닐알코올계 필름의 표면에 잔류하는 붕소 화합물을 제거하여, 붕소 화합물이 표면에 석출되거나 붕소 화합물의 가교 사슬이 짧은 가교 반응에 따른 폭 수축을 방지할 수 있어, 결과적으로 폴리비닐알코올계 필름의 표면불량을 저하시킬 수 있는 효과가 있다. 더욱이, 다가 카복시산 화합물의 첨가로 인하여 폴리비닐알코올의 히드록시기의 가교 반응을 강화시킬 수 있어, 수축 변형 개선 효과를 더욱 효율적으로 발현시킬 수 있다.
한편, 상기 다가 카복시산 화합물은 2 이상의 카복시기(carboxyl group, -COOH)를 포함하는 카복시산 화합물을 의미할 수 있다. 폴리비닐알코올과 가교를 이루기 위해서는 가교제 하나의 분자 내에 폴리비닐알코올의 히드록시기(-OH)기와 반응할 수 있는 치환기가 2개 이상 존재하여야 한다. 이에, 본 명세서에 따른 편광자의 제조방법은 2 이상의 카복시기를 가지는 다가 카복시산 화합물을 이용한다.
이에 한정되는 것은 아니나, 예를 들면 폴리비닐알코올과 다가 카복시산이 반응하여 편광자 내에 하기의 구조와 같은 가교 형태를 도입할 수 있다.
Figure PCTKR2016005953-appb-I000001
본 명세서의 일 실시상태에 따르면, 상기 제3 가교 단계 수행 후에 상기 폴리비닐알코올계 필름 표면에 잔류하는 다가 카복시산 화합물 농도 지표 X는 하기 식 (1)을 만족할 수 있다. 이때, 상기 폴리비닐알코올계 필름 표면은 0 내지 약 2㎛ 깊이까지를 의미할 수 있다. 본 명세서의 발명자들은 이 경우, 상기 편광자를 포함하는 편광판은 고온 내구 조건 하에서도 편광판 내 크랙(crack) 발생율이 현저히 낮음을 발견하였다.
식 (1): 0.25 ≤ X ≤ 0.4
상기 식 (1)에 있어서, X는 제1 내지 제3 가교 단계를 수행한 편광자의 ATR(attenuated total reflection)로 측정하여 얻은 흡수 스펙트럼의 1580cm-1 내지 1780cm-1 의 적분값에서 다가 카르복실산 화합물을 포함하지 않은 수용액을 이용하여 가교 단계를 수행한 편광자의 ATR(attenuated total reflection)로 측정하여 얻은 흡수 스펙트럼의 1580cm-1 내지 1780cm-1 의 적분값을 뺀 값을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 제3 가교 단계는 침지법을 이용하여 수행할 수 있다. 예를 들어, 제3 가교 단계는 상기 폴리비닐알코올계 필름을 다가 카복시산 화합물을 포함하는 제3 수용액이 담겨있는 가교조에 함침시켜 수행할 수 있다. 종래에는 제3 가교 단계 이후 세정 단계를 거치기 때문에, 세정 과정 중 직전 공정에서 흡수된 요오드, 붕산, 및 다가 카르복실산이 빠져나올 수 있어 최종적으로 제조된 편광자의 물성에 영향을 주는 문제점이 있었다. 본 명세서에서는 제3 가교 단계를 침지법을 이용하여 수행함으로써, 제3 가교 단계 이후 별도의 세정 단계를 필요로 하지 않는 바, 공정 경제성 측면의 장점이 있으며, 제조될 편광자의 물성을 저하시키지 않는 이점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 및 제2 수용액은 상기 붕소 화합물을 각각 제1 및 제2 수용액 100 중량%에 대하여 0.5 중량% 내지 10 중량%로 포함할 수 있으며, 구체적으로 1 중량% 내지 6 중량%로 포함할 수 있고, 더욱 구체적으로 1 중량% 내지 4 중량%로 포함할 수 있다. 붕소 화합물이 수용액 100 중량%에 대하여 1 중량% 미만으로 포함될 경우, 붕소 화합물의 가교 반응이 충분히 진행되지 못해 편광자의 주름 발생 문제 및 광학 물성 저하의 문제가 있으며, 10 중량% 초과로 포함될 경우, 과도한 붕소 화합물과의 가교 반응으로 인한 연신 단계 수행이 어려워지는 문제점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 및 제2 수용액은 상기 다가 카복시산 화합물을 각각 붕소 화합물 100 중량%에 대하여 10 중량% 내지 150 중량%로 포함할 수 있으며, 구체적으로 20 중량% 내지 100 중량%로 포함할 수 있고, 더욱 구체적으로 20 중량% 내지 80 중량%로 포함할 수 있다. 다가 카복시산 화합물이 붕소 화합물 100 중량%에 대하여 10 중량% 미만으로 포함될 경우, 다가 카복시산의 첨가 및 가교 반응이 충분히 진행되지 못해 효율적인 수축 변형 개선 효과를 얻을 수 없다. 구체적으로, 얇은 두께에서 더욱 우수한 수축 변형 개선 효과를 구현하기 위해서는 상기의 범위를 만족하는 것이 바람직하다. 한편, 다가 카복시산 화합물이 붕소 화합물 100 중량%에 대하여 150 중량% 초과로 포함될 경우, 붕소 화합물의 가교 반응이 효과적으로 진행되지 못해 편광자의 주름 발생 문제 및 광학 물성 저하의 문제가 있다.
한편, 상기 제1 및 제2 수용액에 포함되는 붕소 화합물 및 다가 카복시산 화합물의 비율은 동일할 수도 있으며, 필요에 따라, 상이할 수도 있다.
본 명세서의 일 실시상태에 따르면, 상기 제3 수용액은 다가 카복시산 화합물을 제3 수용액 100 중량%에 대하여 0.5 중량% 내지 10 중량% 로 포함될 수 있으며, 구체적으로 1 중량% 내지 5 중량%로 포함할 수 있고, 더욱 구체적으로 1 중량% 내지 3 중량%로 포함할 수 있다. 다가 카복시산 화합물이 제3 수용액 100 중량%에 대하여 0.5 중량% 미만으로 포함될 경우, 다가 카복시산 화합물의 첨가로 인하여 폴리비닐알코올의 히드록시기의 가교 반응 강화 효과가 미미하며, 다가 카복시산 화합물이 제3 수용액 100 중량%에 대하여 10 중량% 초과로 포함될 경우, 과다한 가교제의 농도에 의해 표면불량을 일으킬 수 있는 문제점이 있다.
또 하나의 실시상태에 따르면, 상기 다가 카복시산 화합물은 글루타르산, 숙신산, 말론산, 옥살산, 1,2,3,4-부탄테트라카르복시산, 시트르산, 말릭산(Malic acid), 타르타르산 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 다만, 이에 의하여 한정되는 것은 아니다.
이하, 도 1을 참고하여, 본 명세서의 편광자의 제조방법의 각 단계를 보다 구체적으로 설명한다.
먼저, 상기 염착시키는 단계(이하 '염착 단계')는 요오드 분자 및/또는 이색성 염료를 폴리비닐알코올계 필름에 염착시키기 위한 것으로, 요오드 분자 및/또는 이색성 염료 분자는 편광자의 연신 방향으로 진동하는 빛은 흡수하고, 수직 방향으로 진동하는 빛은 통과시킴으로써, 특정한 진동 방향을 갖는 편광을 얻을 수 있도록 해줄 수 있다. 이때, 상기 염착은, 예를 들면, 폴리비닐알코올계 필름을 요오드 용액 및/또는 이색성 염료를 함유하는 용액이 담긴 처리욕에 함침시킴으로써 이루어질 수 있다.
이때, 상기 염착 단계의 용액에 사용되는 용매는 물이 일반적으로 사용되지만, 물과 상용성을 갖는 유기 용매가 적당량 첨가되어 있어도 된다. 한편, 요오드 및/또는 이색성 염료는 용매 100 중량부에 대해서, 0.06 중량부 내지 0.25 중량부로 사용될 수 있다. 상기 요오드 등의 이색성 물질이 상기 범위 내일 경우, 연신 이후에 제조된 편광자의 투과도가 40% 내지 47%의 범위를 만족할 수 있다.
한편, 이색성 물질로서 요오드를 이용하는 경우에는, 염착 효율의 개선을 위해 요오드화 화합물 등의 보조제를 추가로 함유하는 것이 바람직하며, 상기 보조제는 용매 100 중량부에 대하여 0.3 중량부 내지 2.5 중량부의 비율로 사용될 수 있다. 이때, 상기 요오드화 화합물 등의 보조제를 첨가하는 이유는, 요오드의 경우, 물에 대한 용해도가 낮기 때문에 물에 대한 요오드의 용해도를 높이기 위해서이다. 한편, 상기 요오드와 요오드화 화합물의 배합 비율은 중량기준으로 1:5 내지 1:10이 바람직하다.
상기 추가될 수 있는 요오드화 화합물의 구체적인 예로는, 요오드화 칼륨, 요오드화 리튬, 요오드화 아연, 요오드화 알루미늄, 요오드화 납, 요오드화 구리, 요오드화 바륨, 요오드화 칼슘, 요오드화 주석, 요오드화 티탄 또는 이들의 혼합물 등을 들 수 있으나, 이에 한정하는 것은 아니다.
한편, 처리욕의 온도로는 25℃ 내지 40℃ 정도로 유지되는 것이 바람직하다. 처리욕의 온도가 25℃ 미만인 경우 염착 효율이 떨어질 수 있으며, 40℃를 초과하는 경우 요오드의 승화가 많이 일어나 요오드의 사용량이 늘어날 수 있다.
이때, 폴리비닐알코올계 필름을 처리욕에 침지하는 시간은 30초 내지 120초 정도인 것이 바람직하다. 침지시간이 30초 미만일 경우 폴리비닐알코올계 필름에 염착이 균일하게 이루어지지 않을 수 있으며, 120초를 초과할 경우에는 염착이 포화(saturation)되어 더 이상 침지할 필요가 없기 때문이다.
다음으로 제1 및 제2 가교 단계를 수행한다. 전술한 바와 같이, 제1 및 제2 가교 단계는 각각 가교와 함께 연신을 수행한다.
한편, 가교 및 연신 단계는 요오드 및/또는 이색성 염료가 폴리비닐알코올 고분자 매트릭스에 흡착되면서 고분자 사슬을 일정한 방향으로 배향시켜 원하는 편광 물성을 얻도록 하기 위한 것으로, 폴리비닐알코올계 필름을 수용액에 침적시켜 수행하는 침적법이 일반적으로 사용되지만, 이에 한정되는 것은 아니며, 폴리비닐알코올계 필름에 가교제를 포함하는 용액을 도포하거나 분사하는 도포법 또는 분무법에 의해 수행될 수도 있다.
이때, 상기 제1 및 제2 수용액에 사용되는 용매는 물이 일반적으로 사용되지만, 물과 상용성을 갖는 유기 용매가 적당량 첨가되어 있을 수 있다.
한편, 상기 제1 및 제2 수용액의 온도는 가교제의 양과 연신비에 따라 다르며, 이에 한정하는 것은 아니나, 일반적으로 30℃ 내지 60℃인 것이 바람직하다. 구체적으로, 33℃ 내지 60℃ 또는 35℃ 내지 60℃일 수 있다. 일반적으로 가교제의 양이 늘어나면 폴리비닐알코올계 필름 사슬의 유동성(mobility)을 향상시키기 위해 높은 온도조건으로 가교욕의 온도를 조절하며, 가교제의 양이 적으면 상대적으로 낮은 온도조건으로 가교욕의 온도를 조절한다. 한편, 수용액에 폴리비닐알코올계 필름을 침지시키는 시간은 30초 내지 120초 정도인 것이 바람직하다. 침지시간이 30초 미만일 경우 폴리비닐알코올계 필름에 가교가 균일하게 이루어지지 않을 수 있으며, 120초를 초과할 경우에는 가교가 포화(saturation)되어 더 이상 침지할 필요가 없기 때문이다.
제1 및 제2 수용액에 사용되는 용매, 온도는 서로 동일할 수도 있으며, 공정성 확보 등의 필요에 따라, 상이할 수도 있다.
제1 및 제2 수용액에 포함되는 가교제인 다가 카복시산 화합물 및 붕소 화합물에 대한 설명은 전술한 내용이 그대로 적용된다.
한편, 제1 및 제2 수용액은 다가 카복시산 화합물 및 붕소 화합물 이외에 요오드계 화합물을 추가로 더 포함할 수 있다. 이때, 수용액에 포함되는 요오드계 화합물은 편광 특성 및 색상 조절 역할을 수행한다. 상기 요오드계 화합물은 염착 단계에서 보조제로 사용될 수 있는 당 기술분야에 알려진 요오드계 화합물이면 제한없이 채용될 수 있으며, 예를 들어, 요오드화 칼륨, 요오드화 칼슘, 요오드화 리튬 등이 이에 해당될 수 있다. 한편, 상기 요오드계 화합물은 이에 한정되는 것은 아니나, 바람직하게는 상기 제1 및 제2 수용액 각각 100 중량% 대비 1 중량% 내지 10 중량%로 포함될 수 있다.
한편, 연신은 상기 폴리비닐알코올계 필름을 4.5배 내지 8배의 연신비로 연신하는 것이 바람직하다. 왜냐하면, 폴리비닐알코올계 필름에 편광성능을 부여하기 위해서는 폴리비닐알코올계 필름의 고분자 사슬을 배향시켜야 하는데, 4.5배 미만의 연신비에서는 사슬의 배향이 충분히 일어나지 않을 수 있고, 8배 초과의 연신비에서는 폴리비닐알코올계 필름 사슬이 절단될 수 있기 때문이다.
이때, 상기 연신은 30℃ 내지 60℃의 연신온도로 연신하는 것이 바람직하다. 상기 연신온도는 가교제의 함량에 따라 달라질 수 있는데, 30℃ 미만의 온도에서는 폴리비닐알코올계 필름 사슬의 유동성이 저하되어 연신 효율이 감소될 수 있으며, 60℃를 초과하는 경우, 폴리비닐알코올계 필름이 연화되어 강도가 약해질 수 있기 때문이다.
한편, 상기 연신은 폴리비닐알코올계 필름 단독으로 수행될 수도 있고, 폴리비닐알코올계 필름에 기재 필름을 적층한 후, 폴리비닐알코올계 필름과 기재 필름을 함께 연신하는 방법으로 수행될 수도 있다. 상기 기재 필름은 두께가 얇은 폴리비닐알코올계 필름(예를 들면, 60㎛ 이하의 PVA 필름)을 연신하는 경우, 연신 과정에서 폴리비닐알코올계 필름이 파단되는 것을 방지하기 위해 사용되는 것으로, 10㎛ 이하의 박형 PVA 편광자를 제조하기 위해 사용될 수 있다.
이때, 상기 기재 필름으로는, 20℃ 내지 85℃ 온도 조건하에서 최대 연신 배율이 5배 이상인 고분자 필름들이 사용될 수 있으며, 예를 들면, 고밀도 폴리에틸렌 필름, 폴리우레탄 필름, 폴리프로필렌 필름, 폴리올레핀 필름, 에스테르계 필름, 저밀도 폴리에틸렌 필름, 고밀도 폴리에틸렌 및 저밀도 폴리에틸렌 공압출 필름, 고밀도 폴리에틸렌에 에틸렌 비닐아세테이트가 함유된 공중합체 수지 필름, 아크릴 필름, 폴리에틸렌테레프탈레이트 필름, 폴리비닐알코올계 필름, 셀룰로오스계 필름 등이 사용될 수 있다. 한편, 상기 최대 연신 배율은 파단이 발생하기 직전의 연신 배율을 의미한다.
또한, 상기 기재 필름과 폴리비닐알코올계 필름의 적층 방법은 특별히 한정되지 않는다. 예를 들면, 기재 필름과 폴리비닐알코올계 필름을 접착제 또는 점착제를 매개로 적층할 수도 있고, 별대의 매개물 없이 기재 필름상에 폴리비닐알코올계 필름을 얹어놓는 방식으로 적층할 수도 있다. 또한, 기재 필름을 형성하는 수지와 폴리비닐알코올계 필름을 형성하는 수지를 공압출하는 방법으로 수행되거나, 또는 기재 필름 상에 폴리비닐알코올계 수지를 코팅하는 방법으로 수행될 수도 있다.
한편, 상기 기재 필름은 연신이 완료된 후에 편광자로부터 이탈시켜 제거할 수도 있으나, 제거하지 않고, 다음 단계로 진행할 수도 있다. 이 경우, 상기 기재 필름은 후술할 편광자 보호 필름 등으로 사용될 수 있다.
다음으로, 제3 가교 단계를 수행한다.
전술한 바와 같이, 제3 가교 단계는 제3 수용액을 이용하여 수행하며, 제3 수용액은 다가 카복시산 화합물은 포함하나, 붕소 화합물은 포함하지 않는다.
제3 수용액에 포함되는 다가 카복시산 화합물은 제1 및/또는 제2 수용액에 포함되는 다가 카복시산 화합물과 동일할 수도 있고, 상이할 수도 있다.
한편, 제3 수용액에 포함되는 다가 카복시산 화합물의 함량은 전술한 바와 동일하다.
제3 수용액에 사용되는 용매는 제1 및 제2 수용액에 사용되는 용매와 동일할 수도 있고, 상이할 수도 있으며, 일반적으로 물이 사용되지만, 물과 상용성을 갖는 알코올류, DMSO 등의 유기 용매가 적당량 첨가되어 있을 수 있다.
한편, 제3 수용액의 온도는 이에 한정하는 것은 아니나, 일반적으로 20℃ 내지 40℃인 것이 바람직하다. 구체적으로, 20℃ 내지 35℃ 또는 20℃ 내지 30℃일 수 있다. 제3 수용액의 온도가 상기 범위를 만족할 경우, 가교 반응이 효과적으로 일어날 수 있으며, 공정성의 효율이 증가하는 장점이 있다.
전술한 바와 같이, 제3 가교 단계는 침지법을 이용하여 수행할 수 있다. 이 때, 제3 수용액에 폴리비닐알코올계 필름을 침지시키는 시간은 1초 내지 10초 정도인 것이 바람직하다. 침지시간이 1초 미만일 경우 폴리비닐알코올계 잔류하는 붕소 화합물의 제거 및 폴리비닐알코올과의 가교 반응 강화 효과가 미미하며, 10초를 초과할 경우에는 가교가 포화(saturation)되어 더 이상 침지할 필요가 없기 때문이다.
본 명세서의 일 실시상태에 따르면, 상기 제3 가교 단계 이후에, 필요에 따라, 상기 폴리비닐알코올계 필름을 건조하는 단계(이하 '건조 단계')를 수행할 수 있다.
상기 건조 단계는 편광자에 잔류하는 물 또는 용매를 제거하고, 편광자의 외관 변형을 교정하기 위한 것으로, 당 기술분야에 알려져 있는 편광자의 건조 방법을 통해 수행될 수 있으며, 예를 들면, 상기 건조하는 단계는 편광자를 가열 롤을 통과하도록 하는 방법으로 수행될 수도 있고, 편광자를 오븐에서 건조시키는 방법으로 수행될 수도 있다.
본 명세서의 일 실시상태에 따른 편광자의 제조방법은 필요에 따라, 당 기술분야에 알려진 추가의 단계를 포함할 수 있다. 예를 들어, 염착 단계 전에 폴리비닐알코올계 필름을 팽윤시키는 단계, 편광자의 색상을 보정해주는 보색 단계 등을 추가로 포함할 수 있다.
본 명세서의 일 실시상태는 또한, 전술한 실시상태들에 따라 제조된 편광자를 제공한다. 본 명세서의 일 실시상태에 따른 제조방법으로 제조된 편광자는 전술한 효과를 보인다. 즉, 치수안정성, 내구성 등이 우수하다.
한편, 상기 편광자의 두께가 얇을수록 전술한 효과가 극대화된다. 본 명세서의 일 실시상태에 따르면, 상기 제조방법에 따라 제조된 편광자의 두께는 5㎛ 내지 25㎛일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 붕소 함량을 가지는 편광자는 두께가 5㎛ 내지 25㎛일 수 있다.
본 명세서의 일 실시상태는 또한, 80℃ 내지 120℃ 중 선택되는 어느 하나의 온도 하에 24시간 방치하는 조건의 내구성 평가 후의 크랙(crack) 발생율이 5% 이하이며, 상기 크랙 발생율은 동일 조건의 샘플을 100개 제조하여 100개 중 크랙이 발생한 샘플의 비율을 의미하는 것인 편광판을 제공한다. 이때, 상기 내구성 평가의 조건 중 80℃ 내지 120℃ 중 선택되는 어느 하나의 온도란 80℃ 내지 120℃ 중 선택되는 어느 하나의 특정 온도를 의미하는 것이며, 80℃ 내지 120℃ 범위 내의 모든 온도에서 상기 편광자 수축률 값을 만족하여야 하는 것은 아니다. 예를 들어, 본 명세서의 일 실시상태에 따르면, 상기 편광자는 100℃ 온도 하에서 24시간 방치하는 조건의 내구성 평가 후의 크랙(crack) 발생율이 5% 이하일 수 있다. 한편, 상기 편광판은 전술한 일 실시상태에 따른 편광자를 포함할 수 있다.
본 명세서의 일 실시상태는 또한, 80℃ 내지 120℃ 중 선택되는 어느 하나의 온도 하에 24시간 방치하는 조건의 내구성 평가 후의 크랙(crack) 발생율이 10% 이하이며, 상기 크랙 발생율은 동일 조건의 샘플을 6개 제조하여 6개 중 크랙이 발생한 샘플의 비율을 의미하는 것인 편광판을 제공한다.
상기 크랙 발생율은 바람직하게는 8% 이하일 수 있으며, 더욱 바람직하게는 5% 이하일 수 있다. 본 명세서의 일 실시상태에 따르면, 상기 크랙 발생율은 1% 이하이다.
또한, 본 명세서의 일 실시상태는 60℃ 내지 70℃ 중 선택되는 어느 하나의 온도 하에 48시간 방치 후, 20℃ 내지 30℃ 중 선택되는 어느 하나의 온도 하에서 24시간 방치하는 조건의 내구성 평가 후의 길이 방향(MD) 수축률이 0.01% 내지 0.03%인 것인 편광판을 제공한다. 이때, 상기 내구성 평가의 조건 중 60℃ 내지 70℃ 중 선택되는 어느 하나의 온도란 60℃ 내지 70℃ 중 선택되는 어느 하나의 특정 온도를 의미하는 것이며, 60℃ 내지 70℃ 범위 내의 모든 온도에서 상기 편광판 수축률 값을 만족하여야 하는 것은 아니다. 상기 내구성 평가의 조건 중 20℃ 내지 30℃ 중 선택되는 어느 하나의 온도도 마찬가지로 선택되는 어느 하나의 특정 온도를 의미하는 것이며, 20℃ 내지 30℃ 범위 내의 모든 온도에서 상기 편광판의 수축률 값을 만족하여야 하는 것은 아니다. 예를 들어, 본 명세서의 일 실시상태에 따르면, 65℃ 온도 하에서 48시간 방치 후, 25℃ 온도 하에서 24시간 방치하는 조건의 내구성 평가 후의 길이 방향(MD) 수축률이 0.01% 내지 0.03%인 편광판일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 내구성 평가 후 길이 방향(MD) 수축률이 0.01% 내지 0.03%인 편광판에 포함되는 편광자는 두께가 5㎛ 내지 25㎛일 수 있다.
한편, 본 명세서의 일 실시상태에 따르면, 상기 편광판은 편광자의 일면에 보호필름을 구비한 편광판일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 편광자의 일면에 보호필름을 구비한 편광판은 상기 편광자의 타면에 점착층을 구비한 편광판일 수 있다.
최근 디스플레이 장치들의 박형화 경향 및 패널의 밴딩(bending) 개선을 위해 편광판의 박형화에 대한 요구가 높아지고 있으며, 이에 편광자의 일면에만 보호필름이 구비된 편광판이 제안되고 있다. 편광자의 일면에만 보호필름이 구비된 편광판의 경우, 편광자의 양면에 보호필름을 구비하는 종래의 편광판에 비하여 얇은 두께를 가질 수 있으며, 제조 원가도 저렴하며, TAC 필름 등 보호필름의 리타데이션(retardation)에 기인한 블랙(black) 휘도 상승을 제거하여, 높은 콘트라스트 비를 구현할 수 있다는 장점이 있다. 특히, IPS 모드 액정표시장치에 포함될 경우, 높은 콘트라스트 비를 구현할 수 있다. 그러나, 패널에 부착되기 위해 편광자의 보호필름이 구비되지 않은 면에 감압점착제(PSA)가 구비되기 때문에, 편광자의 양면에 보호필름을 구비한 편광판에 비해 내구성이 약하며, 편광판 내 크랙(crack) 발생율이 높다는 문제점이 있다. 이는 패널에 부착 시, 빛샘 현상의 원인이 된다. 본 명세서의 연구자들은 본 명세서의 일 실시상태에 따른 상기 편광자의 일면에만 보호필름을 구비하여 편광판을 제조하는 경우, 상기와 같은 문제점이 발생하지 않음을 발견하였다. 다시 말해, 본 명세서의 일 실시상태에 따른 상기 편광판은 편광자의 일면에만 보호필름이 구비된 편광판으로 적용되기 매우 유리하다.
상기 편광자의 일면에 구비되는 보호필름은 당 기술분야에 알려진 일반적인 보호필름이라면 제한없이 채용될 수 있으며, TAC, COP, 아크릴계 필름 등을 예로 들 수 있다.
본 명세서의 일 실시상태는 또한, 표시 패널; 및 상기 표시 패널의 일면 또는 양면에 부착되어 있는 전술한 실시상태에 따른 편광판을 포함하는 화상표시장치를 제공한다.
상기 표시 패널은 액정 패널, 플라즈마 패널 및 유기발광 패널일 수 있으며, 이에 따라, 상기 화상표시장치는 액정표시장치(LCD), 플라즈마 표시장치(PDP) 및 유기전계발광 표시장치(OLED)일 수 있다.
보다 구체적으로, 상기 화상표시장치는 액정 패널 및 이 액정 패널의 양면에 각각 구비된 편광판들을 포함하는 액정표시장치일 수 있으며, 이때, 상기 편광판 중 적어도 하나가 전술한 본 명세서의 일 실시상태에 따른 편광판의 제조방법에 따라 제조된 편광판일 수 있다.
이때, 상기 액정표시장치에 포함되는 액정 패널의 종류는 특별히 한정되지 않는다. 예를 들면, 그 종류에 제한되지 않고, TN(twisted nematic)형, STN(super twisted nematic)형, F(ferroelectic)형 또는 PD(polymer dispersed)형과 같은 수동 행렬 방식의 패널; 2단자형(two terminal) 또는 3단자형(three terminal)과 같은 능동행렬 방식의 패널; 횡전계형(IPS; In Plane Switching) 패널 및 수직배향형(VA; Vertical Alignment) 패널 등의 공지의 패널이 모두 적용될 수 있다. 또한, 액정표시장치를 구성하는 기타 구성, 예를 들면, 상부 및 하부 기판(예를 들어, 컬러 필터 기판 또는 어레이 기판) 등의 종류 역시 특별히 제한되지 않고, 이 분야에 공지되어 있는 구성이 제한없이 채용될 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것이며, 이에 의하여 본 명세서의 범위가 한정되는 것은 아니다.
<실시예 1>
두께 30㎛인 폴리비닐알코올 필름을 요오드 0.1 중량% 및 요오드화칼륨(KI) 1 중량%가 함유된 30℃의 수용액에 40초간 침지하여 염착하였다. 이때 염착 용액에서 폴리비닐알코올 필름이 3배 연신 되도록 하였다. 다음으로 글루타르산 1.5 중량% 및 붕산 1 중량%가 함유된 35℃의 제1 수용액에 20초간 침지하면서 누적 연신비가 3.5배가 되도록 하였다. 글루타르산 1 중량% 및 붕산 2.5 중량%가 함유된 54℃의 제2 수용액에서는 2분간 침지하면서 누적 연신비가 5.4배가 되도록 하였다. 다음으로 글루타르산 1 중량%가 함유된 35℃의 제3 수용액에 폴리비닐알코올 필름을 3초간 침지하였다. 이후, 필름을 80℃의 오븐에서 2분간 건조시켜 두께 약 12㎛의 편광자를 제조하였다. 제조된 편광자의 일면에 접착제를 이용하여 두께 40㎛의 아크릴 필름을 적층하고, 다른 일면에는 점착제를 도포하여 편광판을 제조하였다.
<실시예 2>
제3 수용액에서 글루타르산 함량이 1.5 중량%인 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<실시예 3>
제3 수용액에서 글루타르산 함량이 2 중량%인 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<비교예 1>
제1 및 제2 수용액의 글루타르산 함량이 모두 0이며, 제3 가교 단계를 수행하지 않은 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<비교예 2>
제3 수용액에서 글루타르산 함량이 0.3 중량%인 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<비교예 3>
제3 수용액에서 글루타르산 함량이 5 중량%인 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<비교예 4>
제3 가교단계를 수행하지 않은 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
<비교예 5>
제1 및 제2 수용액의 글루타르산 함량이 모두 0인 것을 제외하고는 실시예 1과 동일하게 편광판을 제조하였다.
< 실험예 > 실시예 1 내지 3 및 비교예 1 내지 5에 따라 제조된 편광판의 고온 내구성 평가
실시예 1 내지 3 및 비교예 1 내지 5에 따라 제조된 편광판은 10mm x 160mm 크기로 잘랐다. 이 때, 편광판의 연신방향(MD방향)을 장축으로 하고, 그에 직교하는 방향을 장축으로 하였다. 도포된 점착제를 매개로 하여 편광판을 유리에 적층하여 시편을 제조하였다.
DMS(Displacement Measuring System) 장비에 연결 된 센서 끝에는 레이저가 나오는 부분과 감지되는 부분으로 구성되어 있다. 상기 시편에서 편광판의 장축이 센서로부터 나오는 레이저와 일직선을 이루도록 위치하고, 센서와 인접한 한쪽 끝에 반사체를 부착한다. 센서로부터 나온 레이저가 시편 끝의 반사체에 부딪힌 후 반사되어 돌아와 감지가 되는 원리를 이용하여 센서와 반사체 사이의 거리에 대한 정보를 지속적으로 기록할 수 있는 장비이다. 따라서, 센서와 반사체 사이의 거리가 멀어진 만큼 편광판은 수축한 것이며, 반대로 센서와 반사체 사이의 거리가 가까워지면 편광판은 팽창한 것이다.
치수변화율은 25℃온도 및 50%의 상대습도에서 안정화 된 초기 값과 65℃ 오븐 안에서 48시간 수축 후 25℃ 온도 및 50%의 상대습도에서 24시간 원복된 후의 최종 값으로부터 하기 식에 의해 계산할 수 있다.
치수변화율(%) = (내구평가 후 편광판 길이 - 초기 편광판 길이) / (초기 편광판 길이) x 100
편광판은 내구평가 시 대부분 수축하는 경향을 보이므로 내구평가 후 길이가 초기 길이 대비 짧아지는 바, 치수변화율은 음의 값을 갖게 된다. 치수변화율이 0에 가까울수록 내구평가에 의해 길이 변화가 크지 않음을 의미한다. 즉, 치수변화율이 0에 가까울수록 치수안정성이 높음을 의미한다.
또한, 상기 시편을 100℃에서 24시간 방치한 후, 편광판 외관에 변형 여부를 육안으로 평가하였다. 하기 표 1에서 편광판 내 크랙(crack) 발생율은 동일 조건의 시편 6개씩 제조하여 6개 중의 편광판 외관에 크랙이 생긴 시편의 비율을 의미한다.
실험예에 따라, 측정한 내구성 평가 후 크랙(crack) 발생율 및 편광판의 연신방향(MD 방향) 수축율(%)을 계산하여 그 결과를 하기 표 1에 정리하였다.
한편, 편광판에 포함되는 편광자 표면에 잔류하는 다가 카복시산 화합물 농도 지표 X에 대한 정의는 전술한 바와 동일하다.
Figure PCTKR2016005953-appb-T000001
상기 표 1을 참고하면, 본 명세서의 일 실시상태에 따른 편광자의 제조방법에 따라 제조된 편광자를 포함하는 편광자의 일면에만 보호필름이 구비된 편광판은 크랙 발생율 및 연신방향(MD 방향) 수축율이 현저히 낮음을 알 수 있다. 더욱이, 실시예 1 내지 3의 경우, 편광판 내 크랙이 발생하지 않았다. 이는 결과적으로 편광판의 치수안정성, 내구성 등이 우수함을 의미한다.
또한, 본 명세서의 일 실시상태에 따른 편광자의 제조방법에 따라 제조된 편광자를 포함하는 편광자의 일면에만 보호필름이 구비된 편광판은 연신방향(MD 방향) 수축율이 낮음을 알 수 있다.
구체적으로 살펴보면, 붕소 화합물만을 포함하는 수용액으로 가교를 수행한 비교예 1는 붕소 화합물의 짧은 가교 사슬로 인해 크랙 발생율 및 연신방향(MD 방향) 수축율이 높음을 알 수 있다.
한편, 다가 카복시산 화합물 및 붕소 화합물을 모두 포함하는 수용액으로 제1 및 제2 가교 및 연신 단계를 수행한 비교예 2 및 3의 경우, 비교예 1에 비하여 크랙 발생율 및 연신방향(MD 방향) 수축율이 낮아지긴 하였으나, 상기 식 (1)을 만족하지 않는 바, 치수안정성 및 내구성 향상 등의 효과가 효율적으로 구현되지 못함을 알 수 있다.
다가 카복시산 화합물 및 붕소 화합물을 모두 포함하는 수용액으로 제1 및 제2 가교 및 연신 단계를 수행하였으나, 제3 가교 단계를 수행하지 않은 비교예 4의 경우 역시, 비교예 1에 비하여 크랙 발생율 및 연신방향(MD 방향) 수축율이 낮아지긴 하였으나 치수안정성 및 내구성 향상 등의 효과가 크지 않음을 볼 수 있다. 제3 가교 단계를 수행하지 않아 편광자 표면에 잔류하는 붕소 화합물이 제거되지 못함에서 기인하는 문제이다.
한편, 제3 가교 단계에서만 다가 카복시산 화합물을 사용한 비교예 5의 경우, 다가 카복시산 화합물에 의한 가교 반응이 효과적으로 일어나지 않아 내구성 및 치수안정성이 취약한 것을 볼 수 있다.
도 2에 실시예 1 및 실시예 3과 비교예 1 및 비교예 5에 따른 편광자의 일면에만 보호필름이 구비된 편광판을 Optical Microscopy를 이용하여 관찰한 결과를 나타내었다. 실시예 1 및 실시예 3은 크랙 발생율이 0%인데 비해, 비교예 1에 따른 편광자의 일면에만 보호필름이 구비된 편광판은 67% 의 크랙이 발생하였고, 비교예 5에 따른 편광자의 일면에만 보호필름이 구비된 편광판은 50%의 크랙이 발생한 것을 확인할 수 있었다. 상기 크랙 발생율은 전체 편광자의 일면에만 보호필름이 구비된 편광판 총 면적에 대하여 동일 조건의 편광자의 일면에만 보호필름이 구비된 편광판을 100개씩 제조하여 100개 중의 편광판 외관에 crack이 생긴 샘플의 개수로 crack 발생율을 구하였다.

Claims (17)

  1. 폴리비닐알코올계 필름에 요오드 및 이색성 염료 중 적어도 하나의 염료를 염착시키는 단계;
    상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제1 수용액을 이용하여 가교시키는 제1 가교 단계;
    상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물 및 붕소 화합물을 포함하는 제2 수용액을 이용하여 가교시키는 제2 가교 단계;
    상기 폴리비닐알코올계 필름과 상기 염료를 다가 카복시산 화합물을 포함하는 제3 수용액을 이용하여 가교시키는 제3 가교 단계를 포함하고,
    상기 제1 가교 단계 및 제2 가교 단계는 가교와 함께 연신을 수행하는 것인 편광자의 제조방법.
  2. 청구항 1에 있어서,
    상기 제3 가교 단계 수행 후에 상기 폴리비닐알코올계 필름 표면에 잔류하는 다가 카복시산 화합물 농도 지표 X가 하기 식 (1)을 만족하는 것을 특징으로 하는 편광자의 제조방법:
    식 (1): 0.25 ≤ X ≤ 0.4
    상기 식 (1)에 있어서, X는 제1 내지 제3 가교 단계를 수행한 편광자의 ATR(attenuated total reflection)로 측정하여 얻은 흡수 스펙트럼의 1580cm-1 내지 1780cm-1 의 적분값에서 다가 카르복실산 화합물을 포함하지 않은 수용액을 이용하여 가교 단계를 수행한 편광자의 ATR(attenuated total reflection)로 측정하여 얻은 흡수 스펙트럼의 1580cm-1 내지 1780cm-1 의 적분값을 뺀 값을 의미한다.
  3. 청구항 1에 있어서,
    상기 제3 가교 단계는 침지법을 이용하여 수행하는 것을 특징으로 하는 편광자의 제조방법.
  4. 청구항 1에 있어서,
    상기 붕소 화합물은 각각 제1 및 제2 수용액 100 중량%에 대하여 0.5 중량% 내지 10 중량%로 포함되는 것을 특징으로 하는 편광자의 제조방법.
  5. 청구항 1에 있어서,
    상기 제1 수용액 및 제2 수용액 내의 다가 카복시산 화합물은 각각 붕소 화합물 100 중량%에 대하여 10 중량% 내지 150 중량%로 포함되는 것을 특징으로 하는 편광자의 제조방법.
  6. 청구항 1에 있어서,
    상기 제3 수용액은 다가 카복시산 화합물을 제3 수용액 100 중량%에 대하여 0.5 중량% 내지 10 중량% 로 포함되는 것을 특징으로 하는 편광자의 제조방법.
  7. 청구항 1에 있어서,
    상기 다가 카복시산 화합물은 글루타르산, 숙신산, 말론산, 옥살산, 1,2,3,4-부탄테트라카르복시산, 시트르산, 말릭산(Malic acid), 타르타르산 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 편광자의 제조방법.
  8. 청구항 1에 있어서,
    상기 제3 가교 단계 이후에 상기 폴리비닐알코올계 필름을 건조하는 단계를 포함하는 것을 특징으로 하는 편광자의 제조방법.
  9. 청구항 1 내지 8 중 어느 한 항에 따른 방법으로 제조된 편광자.
  10. 청구항 9에 있어서,
    상기 편광자의 100 중량%에 대하여 붕소 원소를 0.5 중량% 내지 5 중량% 로 포함하는 편광자.
  11. 청구항 9에 따른 편광자를 포함하는 편광판.
  12. 청구항 11에 있어서,
    상기 편광판은 60℃ 내지 70℃ 중 선택되는 어느 하나의 온도 하에 48시간 방치 후, 20℃ 내지 30℃ 중 선택되는 어느 하나의 온도 하에서 24시간 방치하는 조건의 내구성 평가 후의 길이 방향(MD) 수축률이 0.01% 내지 0.03%인 것인 편광판.
  13. 상기 편광판은 80℃ 내지 120℃ 중 선택되는 어느 하나의 온도 하에 24시간 방치하는 조건의 내구성 평가 후의 크랙(crack) 발생율이 10% 이하인 것인 편광판.
  14. 청구항 11에 있어서,
    상기 편광판은 편광자의 일면에 보호필름을 구비된 것을 특징으로 하는 편광판.
  15. 청구항 14에 있어서,
    상기 편광판은 편광자의 타면에 점착층이 구비되어 편광자와 접하여 구비된 것인 편광판.
  16. 표시 패널; 및
    상기 표시 패널의 일면 또는 양면에 부착되어 있는 청구항 11에 따른 편광판을 포함하는 화상표시장치.
  17. 표시 패널; 및
    상기 표시 패널의 일면 또는 양면에 부착되어 있는 청구항 12 내지 15 중 어느 하나에 따른 편광판을 포함하는 화상표시장치.
PCT/KR2016/005953 2015-06-03 2016-06-03 편광자의 제조방법 및 이를 이용하여 제조된 편광자 WO2016195440A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680031108.4A CN107667305B (zh) 2015-06-03 2016-06-03 用于制造偏光器的方法和由其制造的偏光器
US15/572,685 US10479870B2 (en) 2015-06-03 2016-06-03 Method for manufacturing polarizer and polarizer manufactured thereby
JP2017558489A JP6822641B2 (ja) 2015-06-03 2016-06-03 偏光子の製造方法およびこれを用いて製造される偏光子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0078294 2015-06-03
KR20150078294 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016195440A1 true WO2016195440A1 (ko) 2016-12-08

Family

ID=57440871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005953 WO2016195440A1 (ko) 2015-06-03 2016-06-03 편광자의 제조방법 및 이를 이용하여 제조된 편광자

Country Status (5)

Country Link
US (1) US10479870B2 (ko)
JP (2) JP6822641B2 (ko)
KR (1) KR101998093B1 (ko)
CN (1) CN107667305B (ko)
WO (1) WO2016195440A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI782046B (zh) * 2017-07-03 2022-11-01 日商住友化學股份有限公司 偏光膜的製造方法及製造裝置
KR102209683B1 (ko) 2018-03-09 2021-01-29 주식회사 엘지화학 디스플레이 패널용 시인성 개선 필름 및 이를 포함하는 디스플레이 장치
CN111837061B (zh) * 2018-11-12 2022-05-27 日东电工株式会社 偏振膜、层叠偏振膜、图像显示面板、以及图像显示装置
CN110125563A (zh) * 2019-04-30 2019-08-16 大族激光科技产业集团股份有限公司 一种除偏振片碘分子层的方法
KR20220041614A (ko) * 2020-09-25 2022-04-01 동우 화인켐 주식회사 반사방지용 편광판 및 이를 포함하는 화상표시장치
WO2022071372A1 (ja) * 2020-09-30 2022-04-07 株式会社クラレ 偏光フィルムの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634816A (ja) * 1992-07-17 1994-02-10 Mitsui Toatsu Chem Inc 偏光子および保護フィルムを積層するに用いる偏光フィルム用接着剤組成物、ならびに該接着剤組成物を利用した偏光子および保護フィルムの積層方法
KR20070078734A (ko) * 2006-01-27 2007-08-01 주식회사 엘지화학 편광판용 접착제 및 이의 제조방법
JP2009244863A (ja) * 2008-03-12 2009-10-22 Nitto Denko Corp 偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
US20090323185A1 (en) * 2008-06-30 2009-12-31 Nitto Denko Corporation Polarizer, method for production thereof, polarizing plate, optical film, and image display
KR20140019310A (ko) * 2011-02-07 2014-02-14 니폰 가야꾸 가부시끼가이샤 아조 화합물 및 그 염, 및 그것들을 함유하는 염료계 편광막 및 편광판

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333523A (ja) 2001-05-07 2002-11-22 Nitto Denko Corp 偏光板及びそれを用いた液晶表示装置
JP2006139166A (ja) * 2004-11-15 2006-06-01 Nitto Denko Corp 偏光子の製造方法、及び偏光子、及び偏光板、及び光学フィルム、及び画像表示装置
CN100549738C (zh) * 2005-03-10 2009-10-14 日本化药株式会社 碘系偏光膜及其制造方法和使用该碘系偏光膜的偏光板
TWI388888B (zh) 2005-03-10 2013-03-11 Nippon Kayaku Kk 碘系偏光膜、其製造方法及使用該碘系偏光膜之偏光板以及使用該偏光板之液晶顯示裝置
US20080192345A1 (en) 2005-03-10 2008-08-14 Noriaki Mochizuki Iodine Polarizing Film, a Method for Producing the Same, and a Polarizing Plate Using the Same
TWI273105B (en) 2005-10-27 2007-02-11 Daxon Technology Inc Thin films and method of fabricating the same
JP4641501B2 (ja) 2006-01-25 2011-03-02 株式会社クラレ 偏光フィルム用ポリビニルアルコール系重合体フィルム及び偏光フィルム
KR101008230B1 (ko) 2006-06-27 2011-01-17 금오공과대학교 산학협력단 편광필름 및 그의 제조방법
JP2009098653A (ja) * 2007-09-27 2009-05-07 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
CN102311552A (zh) * 2010-06-10 2012-01-11 东友精细化工有限公司 制备偏振片的方法
KR20110135321A (ko) 2010-06-10 2011-12-16 동우 화인켐 주식회사 편광자의 제조방법
KR101718937B1 (ko) * 2010-06-21 2017-03-23 동우 화인켐 주식회사 Led용 편광자의 제조방법
KR20120057924A (ko) * 2010-11-29 2012-06-07 동우 화인켐 주식회사 편광자의 제조방법
JP5722255B2 (ja) * 2012-02-28 2015-05-20 住友化学株式会社 偏光板の製造方法
JP5860448B2 (ja) 2013-11-14 2016-02-16 日東電工株式会社 偏光膜および偏光膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634816A (ja) * 1992-07-17 1994-02-10 Mitsui Toatsu Chem Inc 偏光子および保護フィルムを積層するに用いる偏光フィルム用接着剤組成物、ならびに該接着剤組成物を利用した偏光子および保護フィルムの積層方法
KR20070078734A (ko) * 2006-01-27 2007-08-01 주식회사 엘지화학 편광판용 접착제 및 이의 제조방법
JP2009244863A (ja) * 2008-03-12 2009-10-22 Nitto Denko Corp 偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
US20090323185A1 (en) * 2008-06-30 2009-12-31 Nitto Denko Corporation Polarizer, method for production thereof, polarizing plate, optical film, and image display
KR20140019310A (ko) * 2011-02-07 2014-02-14 니폰 가야꾸 가부시끼가이샤 아조 화합물 및 그 염, 및 그것들을 함유하는 염료계 편광막 및 편광판

Also Published As

Publication number Publication date
JP2018517170A (ja) 2018-06-28
JP2020034938A (ja) 2020-03-05
JP6953496B2 (ja) 2021-10-27
CN107667305A (zh) 2018-02-06
CN107667305B (zh) 2020-06-30
US10479870B2 (en) 2019-11-19
KR101998093B1 (ko) 2019-07-09
US20180134854A1 (en) 2018-05-17
KR20160142794A (ko) 2016-12-13
JP6822641B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2016195440A1 (ko) 편광자의 제조방법 및 이를 이용하여 제조된 편광자
WO2016056803A1 (ko) 편광판의 제조방법 및 이를 이용하여 제조된 편광판
KR20150056044A (ko) 편광막 및 편광막의 제조 방법
US11314006B2 (en) Method for manufacturing polarizer and polarizer manufactured by the same
TW201728916A (zh) 偏光膜之製造方法
KR20060089601A (ko) 편광 필름과 그의 제조 방법, 및 이를 이용한 광학 부품
WO2015046969A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 및 그 제조 방법
KR100743421B1 (ko) 편광판
WO2014104553A1 (ko) 내구성이 우수한 편광판
KR101790404B1 (ko) 편광자의 제조방법, 이를 이용하여 제조된 편광자, 이를 포함하는 편광판 및 화상표시장치
WO2019013599A1 (ko) 편광판
WO2012002662A2 (ko) 편광자의 제조방법
WO2016052954A1 (ko) 박형 편광자의 제조방법, 및 이를 이용하여 제조된 박형 편광자
JP7199343B2 (ja) 偏光フィルム、偏光板、及びそれらの製造方法
WO2019031713A1 (ko) 액정표시장치
WO2016052895A1 (ko) 편광자의 제조방법 및 이를 이용하여 제조된 편광자 및 편광판
US10114159B2 (en) Method for manufacturing polarizer and polarizer manufactured by the same
WO2014112724A1 (ko) 편광자의 제조 방법
KR101772265B1 (ko) 편광판의 제조방법 및 이를 이용하여 제조된 편광판
WO2015046936A1 (ko) 광학 필름 및 그 제조방법
WO2012074188A1 (ko) 편광자의 제조방법
KR101998094B1 (ko) 편광자 제조장치, 편광자의 제조방법, 상기 방법으로 제조된 편광자, 상기 편광자를 포함하는 편광판 및 상기 편광판을 포함하는 디스플레이 장치 또는 액정 표시 장치
WO2021167282A1 (ko) 편광자, 편광판 및 이를 포함하는 광학표시장치
KR101997662B1 (ko) 편광자 제조장치, 편광자의 제조방법, 상기 방법으로 제조된 편광자, 상기 편광자를 포함하는 편광판 및 상기 편광판을 포함하는 디스플레이 장치 또는 액정 표시 장치
WO2019132241A1 (ko) 편광판 및 이를 포함하는 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558489

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15572685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803793

Country of ref document: EP

Kind code of ref document: A1